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Abstract. The paper is devoted to singular calculus of variations problems with con-
straints which are not regular mappings at the solution point, i.e., its derivatives are not
surjective. We pursue an approach based on the constructions of the p-regularity theory.
For p-regular calculus of the variations problem we present necessary conditions for opti-
mality in a singular case and illustrate our results by a classical example of calculus of the
variations problem.
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1. Introduction

We investigate the following Lagrange problem

Jo(z) = /t P, 2(t), 2/ (1))dt — min (1)
subject to
H(t, I(t), I/(t)) = O, Mla:(tl) + MQI(tQ) = 0, (2)

where z € C2[t1,ts], H(t,z(t),2'(t)) = (Hi(t,z(t),2'(t)),..., Hu(t,z(t),2' ()7,

H; : RxR" xR" = R, i=1,...,m,
F:RxR"xR" — R,

t € [t1,ta], My, My are n x n matrices and C.([t1,t2]) are Banach spaces of n-
dimensional [-times continuously differentiable vector functions with usual norms.
The system of equations (2) can be replaced by the following operator equation

*Corresponding author. FEmail addresses: aprus@uph.edu.pl (A.Prusiniska), tret@uph.edu.pl
(A. Tret’yakov)

http://www.mathos.hr/mc (©2014 Department of Mathematics, University of Osijek



562 A.PRUSINSKA AND A.TRET YAKOV

where
G: XY,
= {z(-) € C[t1,ta] : Myx(t1) + Moz (tz) = 0},
Y = Cnlt1, 2]
and

Let us define

)‘(t) = (Al(t)a /\ (t>)T7

MO H = Al(t)H A () Hi s
At)Hy = M (t)Hiz A A (8) Hon s
ANt Hy = M (t)Hig + -+ A (£) Hypr

If InG'(2) =Y, where &(t) is a solution to (1) - (2), then necessary conditions of
Euler-Lagrange

d
H, — E(Fm/ + /\(t)Hm/) =0

hold. Here, F,, H,, F,/, H,: are partial derivatives of F(t,z(t),2'(t)) and
H(t,x(t),2'(t)) with respect to z and a’, respectively.

In a singular (nonregular) case when ImG’(Z) # Y, we can only guarantee that
the following equations

Fp + ()

hold, where A3 + [|A(#)]|> = 1, i.e., Ao might be equal to 0, and then we have not
constructive information of the functional F (¢, z(t),z'(t)).

Example 1. Consider the problem

Jo(z) = /0 ﬂ(a:f(t) +23(t) + 23 (t) + x5 (t) + 22(t))dt — min (4)

subject to

+ @b () (t) + o (2o (t) —
t) + a1 (t) + a5 (t)z2(t) — 2f (t)z1 () — o3

ZCi(O)—LL'i(27T)=O,i= ,.-.yD, p>2. Here

where Is is the unit matrix of size 5 and
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The solution of (1) - (2) s &(t) = 0 and G'(0) is singular.
The corresponding Euler-Lagrange system of equations (see (3)) in this case is
as follows:

2201 + A2 — AL + Mk — Mab + Aoak — Aoz =0
20x2 — A1 — Ay + Mk + ok — A2l — Aoz =0
2X0 3 +p)\1x1x§_1 —l—p)\gxgxg_l =0 (6)
2\0%4 +p)\1x2:v£_1 —p)\gxlxi_l =0
2X\oT5 — p)\lnglxl — p)\13:23315’71 — p)\2$2I;§71 —|—p/\23:1:17§71 =0
Ai(0) — X (27) = 0, i=1,2.

(to simplify formulas we omit dependence of t here and further in the paper).
If Ao = 0, we obtain the series of spurious solutions to the system (4) - (5):

x1 = asint, x2 =acost, x3=1x4=1x5=0,

A1 = bsint, Ao =bcost, a,beR.

2. Elements of p-regularity theory

Let us consider the equation
flz) =0, (7)

where f : X — Y and X, Y are Banach spaces, f € CPT}(X). Moreover, let us
assume that f’(Z) is singular, where & is a solution of (7).

We describe the basic constructions of p-regularity theory (see e.g. [6]) which
are used for the investigation of singular problems.

Suppose that the space Y is decomposed into a direct sum

Y=Y1...0Y, (8)
where Y1 = Imf/(2), Z1 =Y. Let Zs be a closed complementary subspace to Y7 (we
assume that such closed complement exists), and let Pz, : Y — Z5 be the projection
operator onto Zs along Yi. By Y2 we mean the closed linear span of the image of
the quadratic map Py, f?)(2)[]2. More generally, define inductively

Y; = span ImPy, f()(2)[]: C Z; i=2,...,p—1,

where Z; is a chosen closed complementary subspace for (Y7 & ... ® Y;_1) with
respect to Y, ¢ =2,...,p and Py, : Y — Z; is the projection operator onto Z; along
(Yi®...8Y;_1) with respect to Y, i = 2,...,p. Finally, ¥, = Z,. The order p is
chosen as the minimum number for which (8) holds. Let us define the following
mappings

filz) =Pif(x), fi:X—=>Y, i=1,...,p,

where P; := Py, : Y — Y; is the projection operator onto Y; along (Y1 & ...®
Yio1®Yi11@...0Y,) withrespect to Y, i =1,...,p.
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Definition 1. The linear operator ¥,(&,h) € LIX,Y1®...0Y,), he X, h#0

Wy (&, h) = f1(2) + f3 ()b + ...+ [P (@) R,
1s called the p-factor operator.

Definition 2. We say that the mapping [ is p-reqular at & along an element h if
Im¥,(z,h) =Y.

Remark 1. The condition of p-reqularity of the mapping f(x) at the point & along
h s equivalent to
Im f{P) (2)[h]P~* o Ker ¥,,_1(&, h) = Y,

where
U,y (8,h) = f1(&) + f5(@)h+ ...+ fP0 @) [h)P2.

Definition 3. We say that the mapping [ is p-reqular at & if it is p-reqular along
any h from the set

P

- e \ {0},

where
Ker* /7 (2) = {¢ € X : 17 (&)[¢)* = 0}

1s the k-kernel of the k-order mapping f,gk)(fc)[ﬁ]k.

For a linear surjective operator W,(#,h) : X — Y between Banach spaces, by
{W,(&,h)} " we denote its right inverse. Therefore,

{0, (&, h)} 1Y 2%
and we have
{U,(2,h)} (y) ={z € X: U,(3,h)r =y} .
We define the norm of {U,(&,h)}~! via the formula

{2, h)} M = sup imf{||z[| - = € {¥p(2,h)} (1)}

lyll=1
We say that {¥,(2,h)} 7! is bounded if ||[{¥,(%,h)} 1| < oo.

Definition 4. The mapping f is called strongly p-regular at the point & if there
exists v > 0 such that

sup ||{w, (@, m)} | < o,
heH,

where

Y



NECESSARY p-TH ORDER OPTIMALITY CONDITIONS 565
3. Optimality conditions for p-regular optimization problems

We recall the p-order necessary conditions for singular optimization problems (see
[2]-[5]) of the form:

min () 9)

subject to
f(x) =0, (10)

where f : X - Y, f € CPTHX), ¢ : X = R, p € C*(X) and X, Y are Banach
spaces. We assume that & is a solution of (9) - (10) and Imf'(Z) # Y.
Let us define the p-factor Lagrange function

P
Lp(x, A, h) = ¢(z) + <Z fED @)nE, >\> ,
k=1
where A € Y, 1(0) (x) = f(x) and

P
- 2 kD) k-1
L A h) = E —_ h A).
The following basic theorems on optimality conditions in a nonregular case were
formulated and proved in [2].

Theorem 1 (Necessary and sufficient conditions for optimality). Let X and Y be
Banach spaces,

peC*X), fecr'(X), f:X—=Y, ¢:X—=>R

Suppose that h € H,(&) and f is p-reqular along h at the point &. If & is a local
solution to problem (9) - (10), then there exist multipliers \(h) € Y* such that

*/\

Lo, (@,A(R), h) = 0 & ¢/(2) + (fi(@) + -+ [P @) *D) Am) =0, (1)

Moreover, if f is strongly p-reqular at Z, there exist o > 0 and multipliers ;\(h) such
that (11) is fulfilled and

Lpaa (&, A(h), )[R = al|h]?,
for every h € Hp(z), then & is a strict local minimizer to problem (9) - (10).

The next theorem also gives necessary and sufficient conditions for optimality
but it is more convenient for application (see [1]).

Theorem 2. Let X and Y be Banach spaces,

peC¥X), fectt'(X), f:X—=Y, ¢:X—=>R, heHy),
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and let f be p-regular along h at the point &. If & is a solution to problem (9) - (10),
then there exist multipliers \;(h) € Y;*, i =1,...,p such that

@)+ (@) M)+ (FO@ D) K =0, (12)

and

* _

(f“f)(gz)[h](’f—l)) M) =0, k=1,....i—1,i=2,....p. (13)

Moreover, if f is strongly p-reqular at &, there exist o > 0 and multipliers \;(h),
i=1,...,p such that (12) - (13) hold, and

2
p(p+1)

for every h € Hp(Z), then & is a strict local minimizer to problem (9) - (10).

(7@ + g7 @Mm + .+ P @A) ) > P

Proof. We need to prove only formula (13). From (11) we obtain

*/\

@@) + (PL@) + - + Bf P @)D ) Ak) =0,
This expression can be transformed as follows
P(@) + [@) PAR) + -+ (FO@) @) PrA®R) = 0.
Let Ar(h) == PiA(h), k=1,...,p. Then, fori <k, k=1,...,p,
(FO@ D) Ak) = (rO@RED) PrAR)
= (PO@) ) Aih) =0,
which proves (13). O

To apply the previous theorem to singular calculus of variations problems let us
define the p-factor Euler-Lagrange function

S(z) = F(x)+ <)‘(f)= (91(95) +g5(2)[A] + ... + gz(vpil)(x)[h]pilw
= F(z) + MO)GPV ()[h]r
where
GOV @R = g1(x) + ghl@)h] + - + gD (@B,
)\(t) = (>\1 (t>a RS /\m(t))T

and gi(z), for k =1,...,p are determined for the mapping G(x) similarly to fi(z),
k=1,...,p for the mapping f(z) in the construction of the p-factor operator, i.e.,
gk(z) = Py, G(x), k =1,...,p. Let us define

k—1 — 3 k—1 i j
g V@t = Y Clgln ) @B (WY k=1, p,
i+j=k—1
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where - -
gl(mi(z)f)j (z) = glix ) O (2).

i J

Definition 5. We say that problem (1) - (2) is p-regular at & along

P
he () Ker*g{” (@), |[hl] # 0
k=1

I (g1(8) + .-+ gf) (@)W ™") = Cunlta; .
We consider the following theorem

Theorem 3. Let @(t) be a solution of problem (1) - (2) and assume that the problem
18 p-reqular at T along
P
h e ﬂ Kerkg](gk)(ﬁz).
k=1

Then there exists a multiplier N(t) = (Ai(t), ..., An(t))T such that the following
p-factor Euler-Lagrange equation

~ d ~ ~ < P i k— R i .
Sul) = 8w (@) = Fu(#) + <)\, > Chor 9o (@) (h’)3>
k=1it+j=k—1 -
d RS i (k1) 1\
- sz(fc)+<A(t)7Z > Cliagyi); (i)hz(h’)3> (14)
k=1i+j=k—1 2’
=0
holds.

The proof of this theorem is very similar to the one of the analogous result for
the singular isoperimetric problem, as in [1] or [4].

In problem (4) - (5) of Example 1, the mapping G is singular at
T = (asint,acost,0,0,0)”, a € R. Indeed,

where

Ty —x
If we replace (Ié + Ii) by 2’ + Lz, where

0-1000
L‘(1 0 000)’
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then G'(Z)(-) = (-)' + L(-) and

KerG'(z) = Span {(q)l(t), 0,0,0)", (®2(t),0,0, O)T}
& {(0,0,23(t), z4(t), 25(t)", z; € C?[0,27], i = 3,4,5},

where @1 (t) = (sint,cost)?, ®5(t) = (cost, —sint)”, and moreover,
d 1
ImG’(z) = (Ker(G'(2)*)* = <Ker(—%(~)’ + LT())>
= {¢ € Caf0,2m] : (&,4h) = 0,4 =1,2,4h1(t) = (sint, cost)”,
a2 (t) = (cost, — sint)T}
# C20, 27].

It means that the mapping G(z) is non-regular at the points . We obtain that Y5 =

{0}, ..., Y1 = {0} and Y, = (ImGP~Y(z))* = Span{t, 2}, where o} = 1o,
2

¥y = —1p1 and (P, ;) = 05, (C,nm) = [ C(T)n(T)dr.

The projection operator Py, is defined as

P, <z;) = Ppy = J1¢1 + Ga2tba,

where y = (y1,y2)T and
(y — (11 + §2tb2),¥1) =0,
(y — (71901 + §2102),2) = 0,

i.e.,
1
2w
Let us point out that P,(z1,¢1 + z2v2) = x191 + z29s.

Based on Remark 1, we can verify surjectivity of P,G® (z)[h]P~
KerG®—1)(z) for

1
(Y, ¥1) = 71, %@ﬂ/@ = 2.

! only on

h € KerG'(z) N --- N Ker? P,GP)(7),

h = (asint,acost,1,1,1)T.
In order to calculate P,G®)(z)[h]P~" let us determine G»)(z) and

p—1 p—1 p—1 :
®) () [B1P~1 — pl 00 hy “sint hj " cost —hi (cost+sint)
G @] P (0 0 k5 ' cost —hh 'sint A2 '(sint — cost) )
It is obvious that h = (asint,acost, 1,1,1)7 belongs to KerG'(z)N---NKer’ GP) (z)
and consequently to KerG'(z) N --- N Ker? P,G®) (z). We have

G ()P, 2] = pla(as — z5) (Smt> + pla(ay — x5) ( cost ) .

cost —sint
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It means that
P,GP) (z)[hP! 2] = GP)(z) (W71, 2]

and
GP)(Z)[h]P o KerG' (%) = Span {®, Dy} =Y.

Therefore, GP)(z)[h]P~" is surjection. Hence, G(z) is p-regular along h at the points
7 = (asint,acost,0,0,0)”. Finally, we can apply Theorem 3 with \g = 1. We have
constructed an operator

/

6@+ ne @ = () + (

0 —1 plasint placost —pla(cost + sint)
1 0 placost —plasint pla(sint — cost)

which corresponds to the following system (F,» = 0):
Fo(2) + (G'(z) + PGP ()[R )* A = 0 &
Fo(z) + G'(2) A+ (Ppa<p> (g-c)[h]p—l)T A= 0.
It leads to the system of equations

2x1 + )\/1 —X=0

2%9 + )\/2 +A =0

2%3 + p!\i1asint + p!Asacost = 0

2%T4 + p!A\iacost — plhsasint = 0

2T5 — plAia(cost + sint) + p!hqa(sint — cost) =0
A(0) = Ni(27) =0, i = 1,2

or

2asint+ N — A2 =0

2acost+ N5+ A =0

A1sint + Agcost =0

A1 cost — Aosint =0

—A1(cost 4 sint) + Ao(sint — cost) = 0,
Xi(0) — \i(2m) =0, i =1,2.

One can verify that the false solutions of (6)
r1 = asint, xo =acost, x3=x4 =25 =0

do not satisfy system (15) for a # 0. It means that x; = asint, xo = acost,
x3 = x4 = x5 do not satisfy the 2-factor Euler-Lagrange equation (14).
Let us consider the same problem with higher derivatives #’(t), ..., (™, r > 2,

2]
J(z) = / F(t,x(t),z'(t),...,2"(t))dt — min, (t) € C*"[t1, ta],
t1
subject to a subsidiary differential relation
Hy(t,z(t), 2/ (t),. ..,z (t)) 0

H(t,z(t),z'(t),..., 2" () = =|...],
Hp(t,x(t), 2 (t), ...,z (1)) 0
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Apx®) (t1) + Bra® (ty) = 0, where Ay, By are n x n matrices, k = 1,...,7. Let
Gz) = H(z(-),..., 2" (), G: X =,
where Y = C,,([t1, t2]) and
X = {z(-) € C¥[t1, ta] : Apx®(t1) + Bra®(ta) =0,k =1,...,7}.
Moreover,

k— _ k— Y1k
gl(C 1)($)[h]k 1 _ Z giil..l.)(m(r))ir[h+h/+"'+h( )]k Lk=1,....p,
it =k—1

and introduce the so - called p-factor Euler-Poisson function

K(z) = F(z) + <)\(t), (gl(ac) +gh(@)h] + ...+ 9P V(@ )[h]p—1)>_

Theorem 4. Let i(t) be a solution of problem (1) - (2) and assume that this problem
18 p-reqular at T along

p
he m Kerkglgk) (2).
k=1

Then there exists a multiplier A\(t) = (Ai(t), ..., An(t))T such that the following
p-factor Euler-Poisson equation

d d2
d

= Fo(2) + <X<t>, Zg,i’“><f>[h1’f-l>

— Ko (&) — o 4 (=1) Ky (2)

x

Fo (@) + ( A(t), , g;i’“‘”(f)[h]“> ]

k

Fyo (2 < Zg(k D) 1> ]:0
2(m)

The proof of Theorem 4 is similar to the one the reader can find in [4] for an
isoperimetric problem.

Il
-

holds.

Example 2. Consider the following problem

J(x) = /Oﬁ(xf(t) + 23(t) + 23(t))dt — min (16)
subject to

H(t,a(t),2'(t), 2" (1) = 2 (t) + 21(t) + 25 ()1 (8) — 2521 () = 0, (17)
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zi(0) — z;(m) = 0,2(0) + x}(7) = 0,i=1,2,3, p>2,p=2k,k=1,2,....
Here A1 = —By = I3, Ay = By = I3, where I3 means the unit matriz of size 3.
The solution of (16) - (17) is Z(t) = 0. The Euler-Poisson equation in this case
has the following form

2
i(/\(t)Hz/) + %(z\(t)Hmn) -0

F, HH, —
MoFr + A(t) g

or

20ox1 + A+ Azh = Aah + N =0

2022 +p)\x’2’_1x1 =0

2X0x3 — p)\xg_lxl =0,

A0) = A7) =0, N(0)+ XN(x) =0
and gives the series of spurious solutions x1 = asint, xo = 0, x3 = 0, A\ = bsint,
Mo =0, a € R. The mapping G(z) is singular at these points and G'(asint,0,0) is

not surjective. But G(x) is p-reqular at & = (asint,0,0) along h = (sint, 1, —1)T.
Indeed, Y1 = {sint}*, Yo = {0}, ..., Y,_1 = {0}, Y}, = Span{sint},

2p! 4
G'(@)h + Py, GP (Z)[h]P = hll + hy + —= sint / (h5Z, — h5Z,) sin rdr
Q 0
2p! g
=h{+h+ ra sint/ (hh — %) sin? 7dr = 0.
Q 0

It means that h € KerG'(z) N Py, Ker?G®)(z) and

Py, G (z)[]P7 () = ppla sims/ﬁ(vﬂ*l(-)2 — (=1)P7L()3) sin® 7dr.
0

™
We have
bsint lab -
PypG(p) (z)[n)P? m — o sint/ (m +n)sin® 7dr = Y,,b € R, m # —n,
n 0
n

i.e., G is p-regular at T = (asint,0,0) along h and at these points T we can guarantee
that Ao = 1 in the p-factor Euler-Poisson equation

2asint+ X' +1=0

' us
P sint/ sin? 7A(1)dr = 0

n 0
' ™

_pa sint/ sin? 7A(1)dr = 0
n 0

A(0) = A(m) = 0, A(0) + A() = 0.

The first equation has no solutions for a # 0 that satisfy the fourth equation.
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