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Balancing three matrices in control theory∗
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Abstract. Several problems from control theory are presented which are sensitive to badly
scaled matrices. We were specially concerned with the algorithms involving three matrices,
thus we extended the Ward’s balancing algorithm for two matrices. Numerical experiments
confirmed that balancing three matrices can produce an accurate frequency response matrix
for descriptor linear systems, it can also improve the solution of the pole assignment problem
via state feedback and the determination of the controllable part of the system.

AMS subject classifications: 65F35, 65Y04

Key words: balancing three matrices, diagonal transformations, numerical stability, fre-
quency response matrix, pole assignment problem, controllable part of the system

1. Introduction

When applied to matrices with a wide range in the magnitude of elements a nu-
merically stable algorithm can nevertheless produce a result with a large error. The
standard attempt to reduce the magnitude range of elements of a matrix A is to scale
its rows and columns by multiplication with positive definite diagonal matrices. Such
a technique is used prior to solving a linear system Ax = b in [8]. As emphasized
in the introduction of [10], in the absence of any other information, a satisfactory
scaling is one in which the absolute errors in the elements are all about the same size.
This choice of a scaling strategy makes the condition number meaningful. In case
when only rounding errors are introduced, the error in an element is proportional
to its size and the scaling forces all elements of A to be about the same size. This
process is called balancing. Furthermore, the balanced system can produce a more
accurate result. The same problem is observed when solving the standard eigenvalue
problem Ax = λx, where inaccuracies in eigenvalues and eigenvectors are reduced by
a diagonal similarity transformation introduced by Parlett and Reinsch in [20]. This
similarity transformation equilibrates the column and row norms, and reduces the
norm of A. In the generalized eigenvalue problem Ax = λBx, balancing is enforced
on both matrices A and B, as proposed by Ward in [29], and by Lemonnier and Van
Dooren in [16]. It is important to emphasize here that in most cases balancing will
improve condition numbers, and the balanced problems will produce more accurate
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results than the original ones. Nevertheless, there are examples where balancing
does not improve the condition of the problem, or even worse, it can produce more
ill-conditioned problems as illustrated by Watkins [30].

On the other hand, some algorithms are almost invariant under scaling in re-
spect of numerical stability. Such algorithms are, for example, Jacobi algorithms
for solving symmetric eigenvalue and singular value problems, see [9]. In the case
of a positive definite matrix A, the condition number for eigenvalues is bounded by
n ·minD is diagonal κ(DAD), and the condition number for singular values is bounded
by

√
n · minD is diagonal κ(AD) (see van der Sluis [27]), showing that the forward

errors are invariant under appropriate scalings.
In this paper, we propose efficient algorithms for balancing three matrices and

we study how the scaling issues affect computational tasks in computational control.
Specially, we are interested in numerical problems related to descriptor systems,
which involve three matrices of different dimensions. A descriptor system has the
following form

Eẋ(t) = Ax(t) +Bu(t) (1)

y(t) = Cx(t) +Du(t),

where A,E ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m, and m ≤ n (usually, it is
m ≪ n). E is often singular. As pointed out by Paige in [18], scaling represents a
coordinate transformation. When x̃ = D−1

2 x, ũ = D−1
3 u, and ỹ = D4y, for positive

definite diagonal matrices D1, D2, D3 and D4, then the system

D1ED2
˙̃x(t) = D1AD2x̃(t) +D1BD3ũ(t)

ỹ(t) = D4CD2x̃(t) +D4DD3u(t),

is equivalent to (1) in the sense of restricted state-space equivalence (i.e., they have
the same transfer function). Paige distinguishes two reasons for scaling in control
theory. The first one is to choose coordinate transformations and units (this corre-
sponds to diagonal scalings) so that the mathematical problem accurately reflects
the sensitivity of the physical problem. The second reason is to minimize the effect
of rounding errors on the computed solution, and it is less important. Scaling for
numerical stability must not alter physical sensitivity. As an example of scaling in
control theory, Paige refers to measuring how far a system with E = I, where I is
the identity matrix, is from an uncontrollable one. His proposed measure is pes-
simistic if bounds on model uncertainties are dominated by the uncertainties in just
a few elements. In this case, a good scaling is similar to the one for the generalized
eigenvalue problem: scale so that the uncertainties in elements of A and B are all
of the same order of magnitude. In order to determine controllability of system (1)
with a general matrix E, the scaling has to include three matrices A, B and E.

In [4] and [5], an efficient algorithm for computing the frequency response ma-
trix G(σ) = C(σE − A)−1B + D of system (1) is proposed for a large number of
shifts σ. The first part of this algorithm comprises the m-Hessenberg–triangular–
triangular reduction of matrices A, B and E performed by a sequence of orthogonal
transformations, and an efficient version of this algorithm is introduced in [4]. A
similar reduction is used for solving the pole assignment problem in descriptor linear
systems via state feedback. This problem is very sensitive to input data.
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The algorithms of our interest, which are related to the descriptor systems, are
based on orthogonal transformations. Even orthogonal transformations applied to
badly scaled matrices can result in adding two numbers with a large difference in
the order of magnitude. In floating point arithmetic the influence of the number
with a small order of magnitude can be completely lost in the sum. Although the
orthogonal transformation always produces a result with a small norm-wise relative
error, in case of badly scaled matrices they can severely increase the element-wise
error (for QR factorization see [15, Section 19.4]), or they can transform a nonsin-
gular matrix into a singular one. For example, in [22], Powell and Reid observed
that for the least squares problems, in which the rows of the coefficient matrix vary
widely in norm, Householder QR factorization has unsatisfactory backward stability
properties. They showed that row and column pivoting give a desirable backward
error, and in [7], Cox and Higham proved that sorting the rows by a descending
∞-norm at the start gives the same result.

In order to avoid this sort of numerical instability in problems involving three
matrices, it is advisable to balance all three matrices. Balancing is performed by
diagonal transformations which reduce the difference in orders of magnitude of all
elements in these matrices. We will illustrate the need for balancing with an ex-
ample. In [18] (see also [4]), an algorithm that reveals controllability of system (1)
with nonsingular E is proposed. The original system is transformed to an equiv-
alent system with a suitable form, and for m = 1 this form is equivalent to the
m-Hessenberg–triangular–triangular form. The algorithm for the m-Hessenberg–
triangular–triangular reduction first reduces E to the upper triangular form. Then
it annihilates one by one element below the diagonal of B with the Givens rotations
applied from the left, while simultaneously maintaining the triangular form of E
by applying the Givens rotations from the right. When B is done, the algorithm
switches to A, annihilating elements below the m-th subdiagonal. Suppose that E
and B are already upper triangular. Let the exact matrices A, B and E be defined
as follows

A =







5
4 − 1

2 2

1 3
4 − 1

3

1 − 1
4

1
30






, B =







3
2

0

0






, E =







1 1 1

0 1 1

0 0 ǫ






,

where ǫ is a small number. This is a typical situation in practice, where the input
data represent measured physical quantities. These quantities may be represented in
different units, hence the element in matrices may have a wide range in magnitude.
Nevertheless, E is a nonsingular matrix. Now, we want to annihilate the element on
position (3, 1) of A by the Givens rotation Gl. We obtain

Gl =







1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2






, A1 = GlA =







5
4 − 1

2 2√
2 1

2
√
2
− 9

30
√
2

0 − 1√
2

11
30

√
2






,

E1 = GlE =







1 1 1

0 1√
2

1+ǫ√
2

0 − 1√
2

−1+ǫ√
2






.
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When the above computation is performed in finite precision arithmetic with the
roundoff error u and when ǫ ≤ u/2, then the computed matrix Ê1 and its elements
are of the form

fl
(

1√
2
+ ǫ√

2

)

= fl
(

1√
2

)

,

fl
(

− 1√
2
+ ǫ√

2

)

= −fl
(

1√
2

)

,
Ê1 =









1 1 1

0 fl
(

1√
2

)

fl
(

1√
2

)

0 −fl
(

1√
2

)

−fl
(

1√
2

)









,

and Ê1 is singular. In this example, matrix E is badly scaled which caused adding
one large and one small number, thus loosing nonsingularity of the orthogonally
transformed matrix E. Actually, the condition number of E1 increased to infinity.
If our task was to solve the pole assignment problem, this result would reduce the
number of finite poles that can be assigned. On the other hand, if the balancing
algorithm presented in the next section is applied to the matrices A, B, and E, it
produces matrices Abal = DlADr, Bbal = DlB, and Ebal = DlEDr, with Dl =
diag(1, 1, 104) and Dr = diag(0.1, 1, 100). Elements which determine the Givens
rotation Gbal,1 that annihilates Abal(3, 1) are (0.1, 1000), and the updated matrix

Êbal,1 = fl(Gbal,1Ebal) has the form

Êbal,1 =





1.000000000000000·10−1 1.000000000000000·100 1.000000000000000·102

0 9.999999950000001·10−5 1.000000000551115·10−2

0 −9.999999950000000·10−1 −9.999999950000000·101



 .

Êbal,1 is now both exactly and numerically nonsingular.

It is important to emphasize here that balancing is always applied to the original
input data before any other transformation. Suppose that the numerically singular
matrix E presented in the previous example is obtained from a singular matrix E0 by
some non exact numerical algorithm. Then the reasoning of the rest of the example
does not hold for this situation, because balancing is not going to be applied to E.
The element E3,3 is equal to ε instead of 0, and represents the error introduced by
floating point arithmetic. Balancing in this case would only increase the error by
the factor of 106. On the other hand, balancing performed on E0 would result with
a singular matrix Ebal,0, and the same numerical algorithm applied to Ebal,0 would
again produce a numerically singular matrix.

Besides control theory, there are other examples involving three matrices of the
same dimensions. Such an example is the quadratic eigenvalue problem λ2Ax +
λEx + Bx = 0, for A,B,E ∈ R

n×n. A similar example comes from the structural
dynamics engineering problem, where direct frequency analysis leads to the solution
of the algebraic linear system (σ2A+σB+C)x = b for several values of the frequency-
related parameter σ (see, for example, [24] and [25]).

1.1. Balancing two matrices

There are two different approaches to balancing two n × n matrices A = [aij ] and
B = [bij ]. In [16] , Lemonnier and Van Dooren developed a balancing algorithm
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suitable for general eigenvalue computing. The main idea is to reduce the rela-
tive condition number of the computed eigenvalues by diagonal scaling DlADr and
DlBDr. They showed that this is achieved when ‖DlADrej‖22 + ‖DlBDrej‖22 =
‖eTi DlADr‖22 + ‖eTi DlBDr‖22 = 1 for all i,j, and their method is based on a co-
ordinate descent method, which can have slow convergence. Ward [29] proposes a
different balancing technique which applies to two matrices involved in the general-
ized eigenvalue problem, but this technique is applicable to other problems with two
matrices as well. This technique produces two diagonal matrices Dl and Dr such
that the range of elements in DlADr and DlBDr is favorably small. The basic idea
is forcing the exponents in exponential notation of all nonzero elements in DlADr

and DlBDr to be as close to zero as possible. The diagonal matrices are defined
as Dl = diag(10l1 , . . . , 10ln) and Dr = diag(10r1 , . . . , 10rn) ∈ R

n×n. Besides 10,
another radix can be used for exponential representation. For example, multipli-
cation with powers of 2 introduces no rounding errors. The elements of the scaled
matrices are of the form (DlADr)ij = 10li+rjaij and (DlBDr)ij = 10li+rjbij . The
magnitude of an element is represented as the logarithm of its absolute value. In
order to reduce the range of magnitude for elements, the objective

min
li,rj









n
∑

i,j=1
aij 6=0

(li + rj + log10 |aij |)2 +
n
∑

i,j=1
bij 6=0

(li + rj + log10 |bij |)2









is minimized using a generalized conjugate gradient method developed by Concus et
al. [6]. This algorithm is implemented in the LAPACK [1] routine dggbal.

2. Balancing three matrices

Our main goal is to indicate a need of balancing three matrices in particular prob-
lems, and we will illustrate its benefits in Section 3. Since we are going to apply
balancing to several different problems, and since the Lemonnier and Van Dooren’s
approach is specially tailored for the eigenvalue problem, the Ward’s approach seems
more suitable for our task. We will just mention here that in [2] Betcke generalized
Lemonnier and Van Dooren’s method to balancing an arbitrary number of matrices
of the same dimensions involved in the polynomial eigenvalue problem.

In the Control and Systems Library SLICOT [26], there already exists the routine
TG01AD which can balance three matrices, but it has several drawbacks. It is only a
slight modification of the Ward’s algorithm. The minimization function takes into
account only the element with the largest magnitude in each row of the matrix B.
On the other hand, the generalized conjugate gradient method in this routine uses
the same preconditioner as in the case of two matrices. The preconditioner in dggbal

is a singular matrix, while the system of normal equations in case of three matrices
can be nonsingular. Thus, the conjugate gradient method can stop before reaching
the minimum of the minimization function. The second drawback of TG01AD is that
it can result with unsatisfactory scaling of the matrix B, leaving it with a large
norm. This is particulary inconvenient for algorithms that include rank revealing,
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such as the staircase reduction. Both drawbacks are illustrated by examples and
presented in Section 3.

Besides stressing the benefits of the balancing algorithms, our intention is to offer
a proper and better algorithm for balancing three matrices, which will correct both
drawbacks of the routine TG01AD and provide more functionality.

We will extend Ward’s approach to balancing three matrices which will change
the minimization problem, but the minimization algorithm will remain the same.
Our balancing algorithm will produce diagonal matrices Dl and Dr, such that the
range of magnitude orders of all elements in the matrices DlADr, DlEDr, and DlB
is optimally small. Computation of the frequency response matrix G(σ) is invariant
under such diagonal transformations. We can optionally balance the matrix B from
the right introducing the third diagonal matrix DB.

After introducing abbreviations l = (l1, . . . , ln) and r = (r1, . . . , rn), our problem
of balancing matrices A = [aij ], B = [bij ], and E = [eij ] is equivalent to the
minimization problem

min
l,r∈Rn

φ(l, r), (2)

φ(l, r) =
n
∑

i=1









n
∑

j=1

aij 6=0

(li + rj + log10 |aij |)
2 +

n
∑

j=1

eij 6=0

(li + rj + log10 |eij |)
2 +

m
∑

j=1

bij 6=0

(li + log10 |bij |)
2









.

To find a solution of the minimization problem (2), we differentiate the function
φ(l, r) and equalize its gradient with zero, as in [29]. After obtaining minimizing lmin

and rmin, if integers in l and r are required, they can be retrieved by the rounding
operation. Further, ∇φ(l, r) = 0 results with a linear system Lx = p which has the
following form

L =

[

F1 G
GT F2

]

, p =

[

−c
−d

]

, x =

[

l
r

]

, (3)

where

• F1 ∈ R
n×n is a diagonal matrix F1 = diag(nr1 , . . . , nrn) and

nri =
n
∑

j=1
aij 6=0

1 +
n
∑

j=1
eij 6=0

1 +
m
∑

j=1
bij 6=0

1

is the total number of nonzero elements in the i-th rows of A, B, and E,

• F2 ∈ R
n×n is a diagonal matrix F2 = diag(nc1 , . . . , ncn) and

ncj =

n
∑

i=1
aij 6=0

1 +

n
∑

i=1
eij 6=0

1

is the total number of nonzero elements in the j-th columns of A and E,

• G = [gij ] ∈ R
n×n is the sum of the incidence matrices of A and E, i.e.,

gij =

{

1, if aij 6= 0
0, if aij = 0

}

+

{

1, if eij 6= 0
0, if eij = 0

}

,
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• c = [ci] ∈ R
n has elements

ci =

n
∑

j=1
aij 6=0

log10 |aij |+
n
∑

j=1
eij 6=0

log10 |eij |+
m
∑

j=1
bij 6=0

log10 |bij |,

• d = [dj ] ∈ R
n has elements

dj =

n
∑

i=1
aij 6=0

log10 |aij |+
n
∑

i=1
eij 6=0

log10 |eij |.

In the special case when the matrices A, B, and E contain only nonzero elements,
the system matrix in (3) reduces to

M =

[

(2n+m)In 2ene
T
n

2ene
T
n 2nIn

]

, (4)

where In ∈ R
n×n is the identity matrix and en = [ 1 . . . 1 ]T ∈ R

n.
Minimization problem (2) is in fact a linear least squares problem, and (3) repre-

sent its system of normal equations. We know that the matrix of normal equations
is positive semidefinite, and that the system is consistent (see [12], [3]). The system
matrix L of system (3) is symmetric positive semidefinite or positive definite. The
matrix M defined by (4) is symmetric positive definite, and its inverse is equal to

M−1 =

[ 1
2n+m

In + 2
(2n+m)mene

T
n − 1

nm
ene

T
n

− 1
nm

ene
T
n

1
2n In + 1

nm
ene

T
n

]

. (5)

Now we can conclude that there is a solution to the equation ∇φ(l, r) = 0,
and the Hessian Hess(φ) = 2L is positive semidefinite, so this solution is indeed
the global minimum of the function φ. Since we are dealing here with a symmetric
positive semidefinite consistent system, we can apply the conjugate gradient method
for obtaining its solution (see [14]). The conjugate gradient method is an iterative
method specially suited for positive (semi-) definite matrices with a structure (such
as L), where the matrix–vector product is efficiently implemented. For our purpose
most convenient is the usage of a preconditioned conjugate gradient method with
M as the preconditioner (see, for example, [13]), presented in Algorithm 1. The
solution of a system with the matrix M can be found directly, since we know the
explicit expression for M−1, and the product M−1v with a vector v requires only
O(n) operations. The convergence rate of this method depends on the number of
different eigenvalues of M−1L (see [13]). For L = M , the method converges in only
1 iteration.

Algorithm 1 (Preconditioned conjugate gradient method for the system Lx = p.).

(1) x0 = 0;
(2) r0 = p;
(3) solve Mz0 = r0;
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(4) s0 = z0;
(5) for k = 1, 2, . . .

(6) αk−1 =
zT
k−1

rk−1

sT
k−1

Lsk−1

;

(7) xk = xk−1 + αk−1sk−1;
(8) rk = rk−1 − αk−1Lsk−1;
(9) solve Mzk = rk;

(10) βk =
zT
k rk

zT
k−1

rk−1

;

(11) sk = zk + βksk−1;
(12) end

2.1. Increasing the weight of B

Since the matrix B has usually less elements than A and E, its influence on the
minimization process is weaker. This can give an unsatisfactory result for B, where
resulting A and E are balanced much better than B. This is not an issue when
balancing involves matrices of the same dimensions as in [29] and [16]. Therefore,
we introduce here the weighted minimization function. To increase its influence,
we can multiply the part in φ involving the matrix B with stronger weight. The
matrices A and E have n2 elements, and B only mn, thus the logical choice for
weight is n

m
. In this case only the definition of the matrix F1 and the vector c in (3)

are changed to

• F1 ∈ R
n×n is a diagonal matrix F1 = diag(nr1 , . . . , nrn) and

nri =

n
∑

j=1
aij 6=0

1 +

n
∑

j=1
eij 6=0

1 +
n

m

m
∑

j=1
bij 6=0

1,

• c = [ci] ∈ R
n has elements

ci =
n
∑

j=1
aij 6=0

log10 |aij |+
n
∑

j=1
eij 6=0

log10 |eij |+
n

m

m
∑

j=1
bij 6=0

log10 |bij |.

In case when the matrices A, B, and E contain only nonzero elements, the system
matrix in (3) reduces to

M =

[

3nIn 2ene
T
n

2ene
T
n 2nIn

]

. (6)

The matrix M is positive definite, and its inverse is equal to

M−1 =

[ 1
3nIn + 2

3n2 ene
T
n − 1

n2 ene
T
n

− 1
n2 ene

T
n

1
2nIn + 1

n2 ene
T
n

]

. (7)
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2.2. Balancing B from both sides

This variant of the balancing algorithm produces diagonal matrices Dl, Dr and DB

such that the range of magnitude orders of all elements in the matrices DlADr,
DlEDr, and DlBDB is optimally small.

Let us denote DB = diag(10q1 , . . . , 10qm) ∈ R
m×m and q = (q1, . . . , qm). The

minimization problem is a bit more complicated than before:

min
l,r,q

φ(l, r, q), (8)

φ(l, r, q) =
n
∑

i=1









n
∑

j=1

aij 6=0

(li + rj + log10 |aij |)
2+

n
∑

j=1

eij 6=0

(li + rj + log10 |eij |)
2+

m
∑

j=1

bij 6=0

(li + qj + log10 |bij |)
2









.

Equalizing ∇φ(l, r, q) = 0 produces a linear system Lx = p with the following form




F1 G K
GT F2 0
KT 0 F3









l
r
q



 =





−c
−d
−f



 , (9)

where F1, F2, G, c and d have the same form as in the original version of balancing,
and

• F3 ∈ R
m×m is a diagonal matrix F3 = diag(ncb1 , . . . , ncbm) and

ncbj =

n
∑

i=1
bij 6=0

1

is the total number of nonzero elements in the j-th column of B,

• K = [kij ] ∈ R
n×m is the incidence matrix of B, i.e.,

kij =

{

1, if bij 6= 0
0, if bij = 0

}

,

• f = [fj] ∈ R
m has elements

fj =

n
∑

i=1
bij 6=0

log10 |bij |.

In the special case, when the matrices A, B, and E contain only nonzero elements,
the system matrix in (9) reduces to

M =





(2n+m)In 2ene
T
n ene

T
m

2ene
T
n 2nIn 0

emeTn 0 nIm



 , (10)

where In ∈ R
n×n and Im ∈ R

m×m are the identity matrices, en = [ 1 . . . 1 ]T ∈ R
n,

and em = [ 1 . . . 1 ]T ∈ R
m.

There is an alternative form of the minimization function φ in (8), where the
part involving the matrix B has stronger weight, as in the previous subsection.
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Proposition 1. (i) The matrix M ∈ R
(2n+m)×(2n+m) defined in (10) is symmet-

ric positive semidefinite of rank 2n+m−1, and its Moore–Penrose generalized
inverse is

M †=











1
2n+m

In − 3
2(2n+m)2 ene

T
n

n−m
2n(2n+m)2 ene

T
n

3
2(2n+m)2 ene

T
m

n−m
2n(2n+m)2 ene

T
n

1
2nIn − 3

2(2n+m)2 ene
T
n

−5n−m
2n(2n+m)2 ene

T
m

3
2(2n+m)2 emeTn

−5n−m
2n(2n+m)2 emeTn

1
n
Im + −7n−2m

2n(2n+m)2 emeTm











.

(11)

(ii) In case when L 6= M , the following holds: Ker(L)⊥ ⊂ Ker(M)⊥.

Proof. (i) A direct verification of the Moore–Penrose conditions proves the state-
ment about M †. It can be easily verified that the vector

u0 =
1√

2n+m





en
−en
−em





is a unit eigenvector of M corresponding to the eigenvalue λ0 = 0. Further,
the following equation holds

MM † = I − u0u
T
0 ,

thus Ker(M) = span{u0} and Im(M) = Ker(M)⊥ since M is symmetric.

(ii) Let us compute Lu0:

Lu0 =
1√

2n+m





F1 G K
GT F2 0
KT 0 F3









en
−en
−em



 =
1√

2n+m





F1en −Gen −Kem
GT en − F2en
KT en − F3em



 ,

whose components are

(Lu0)(i) =
1√

2n+m









nri −









n
∑

j=1
aij 6=0

1 +

n
∑

j=1
eij 6=0

1









−









m
∑

j=1
bij 6=0

1

















= 0,

i = 1, . . . , n

(Lu0)(n+ j) =
1√

2n+m







n
∑

i=1
aij 6=0

1 +

n
∑

i=1
eij 6=0

1− ncj






= 0, j = 1, . . . , n

(Lu0)(2n+ j) =
1√

2n+m







n
∑

i=1
bij 6=0

1− ncbj






= 0, j = 1, . . . ,m

Hence, u0 ∈ Ker(L) and Ker(M) ⊂ Ker(L). The statement follows immedi-
ately by taking orthogonal complements.
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Part (ii) of Proposition 1 is important for line (9) of Algorithm 1. Since the
system Lx = p is consistent rk = p−Lxk ∈ Im(L) = Ker(L)⊥ ⊂ Ker(M)⊥ = Im(M).
Thus, the system Mzk = rk is consistent and there exists its solution zk. In the
SLICOT routine TG01AD this might not be the case. The preconditioner used in this
routine

M = 2

[

nIn ene
T
n

ene
T
n nIn

]

is the same as in dggbal (see [29]) and is singular. On the other hand, the system
matrix L is as in the original version of our algorithm for m = 1 and can be non-
singular. In some special cases it can happen that 0 6= rk ∈ Ker(M), producing
zk = 0 and the algorithm will prematurely stop since xk+1 = xk. Such an example
is presented in Section 3.

In the cases of the quadratic eigenvalue problem λ2Ax+ λEx+Bx = 0 and the
algebraic linear system (σ2A + σB + C)x = b, all three matrices are of the same
size A,B,E ∈ R

n×n, and they all have to be balanced from both sides with the
same diagonal matrices: DlADr, DlEDr and DlBDr. In this case the balancing
procedure reduces to the Ward’s balancing algorithm described in [29], except that
the elements of F1, F2, G, c and d equally include elements of all three matrices, and
the matrix M is equal to the corresponding matrix in dggbal multiplied by factor
of 3/2.

3. Numerical tests

The tests were executed on the Intel R© CoreTM Duo CPU under Ubuntu Linux 10.04
(lucid). They were programmed in Fortran, compiled with Intel R© Fortran Compiler
12.0.2, and all variables were in double precision or double complex precision. The
balancing algorithms for three matrices are implemented in the routine dg3bal,
whose code is available from the author. We denote by: S – the original variant, W
– the weighted variant, R – the variant where B is balanced from both sides.

As a verification of functionality of the dg3bal routine, we performed a set of
tests with random matrices. The matrices were generated by starting with well
scaled random matrices, and then by scaling rows and columns of A and E, as well
as rows of B with the same diagonal matrices Dlr. The variant S of the balancing
algorithm produced all three balanced matrices with a narrow magnitude range,
and balanced matrices A and E are very similar to the matrices produced by the
LAPACK routine dggbal. In case when the columns of B are badly scaled, only
the variant R of dg3bal algorithm was successful in balancing the matrix B. In
case when the rows of B are scaled with a different diagonal matrix DlB whose
diagonal elements DlB(i, i) = Dlr(i, i)

3 have a wider range in magnitude than Dlr,
the variant W is slightly better for B than the other two variants. On the other hand,
the balanced matrices A and E have more scattered elements in this case than the
obtained balanced matrices for the variants S and R. Nevertheless, all three variants
of our balancing algorithm balanced the matrix B better than the diagonal matrix
obtained from dggbal. If we define range as proportion between the largest and the
smallest element in magnitude, then the logarithm of range of the original matrix B
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Figure 1: dg3bal vs. TG01AD: reduction of the magnitude range and the maximal magnitude of
elements in B

in this case is reduced on average to 68.86% of its value by dggbal, to 57.80% of its
value by the variant S, and to 44.27% of its value by the variant W .

3.1. Example 1: dg3bal vs. TG01AD

Here we show the superiority of our balancing routine dg3bal over the SLICOT
routine TG01AD. In the first test rounds, we generated matrices A, B, and E as in
Example 2, but with one example for each choice of diagonal matrices. The only
difference is that we changed the number of columns of B, taking m = 3, 5, 8. The
results presented in Figure 1(a) show that dg3bal balances elements of B better
than TG01AD, specially for larger m when B has larger influence in the minimization
function of dg3bal. Let us note here that TG01AD cannot balance the columns of B,
thus we compare it only to the variant S of dg3bal. The variant R would produce
a better result than TG01AD in case when B has badly scaled columns.

The second test round comprises one set of matrices A, B, and E, where n = 1000
and m = 10. A and E are generated by scaling random matrices with the matrix
Dlr = diag(10, 102, 103, . . . , 1010, 10, 102, 103, . . . , 1010) from both sides, and B is
generated by scaling a random matrix with DlB = diag(104, 108, 1012, . . . , 1040, 104,
108, 1012, . . . , 1040) from the left. In this case, Figure 1(b) displays the maximal
magnitude of elements in B, which maximally influences ‖B‖F .

The magnitude of the norm is extremely important for the rank revealing algo-
rithms deployed in the staircase reduction routines, which are used to determine the
controllable part of system (1). These are the SLICOT routines TG01HD and TG01HX,
and the new staircase reduction algorithm from [4]. The standard tolerance for rank
determination is n2u

√

‖A‖2F + ‖B‖2F , where u is the unit roundoff error. When the
norms of A and B are large, the numerical rank is usually smaller than the exact
rank. In extreme cases, it turns out to be equal to zero for nontrivial submatrices.
A detailed illustration of sensitivity of the staircase reduction is given in Example 5.
Figure 1(b) shows that the S and W variants of dg3bal are more successful in norm
reduction of B than TG01AD. The maximal magnitude of elements in A and E are of
order: 1 for TG01AD, 10 for variant S of dg3bal, and 106 for variant W of dg3bal.
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The last test round in this example is concerned with the problem of the singular
preconditioner in the routine TG01AD. Unfortunately, TG01AD has no option to use the
conjugate gradient method without preconditioning, or to change the preconditioner
itself. Let the matrices A, E, and B be defined as follows:

A =





10−2 0 10−4

0 10−4 104

10−2 0 10−4



 , E =





1 0 1
0 1 1
1 0 1



 , B =





1010

104

1010



 ,

and
√

‖A‖2F + ‖B‖2F = 1.414214 · 1010. In this case, TG01AD generates the same
matrix L and the vector p as the variant S of dg3bal, but M is the same as in
dggbal:

L =

















5 0 0 2 0 2
0 5 0 0 2 2
0 0 5 2 0 2
2 0 2 4 0 0
0 2 0 0 2 0
2 2 2 0 0 6

















, p =

















−4
−4
−4
4
4
4

















, M =

















6 0 0 2 2 2
0 6 0 2 2 2
0 0 6 2 2 2
2 2 2 6 0 0
2 2 2 0 6 0
2 2 2 0 0 6

















.

It is easy to check that Mp = M †p = 0. The first step of the conjugate gradient
method is to compute z0 = M †p. Since z0 = 0, it implies s0 = 0, α0 = 0, and x1 = x0

which will satisfy the stopping criterion and the routine stops with unchanged data.
The problem arises due to p ∈ Ker(M). On the other hand, the S variant of dg3bal
produces

Ab =





10−1 0 10−3

0 10−2 105

10−1 0 10−3



 , Eb =





10 0 10
0 100 10
10 0 10



 , Bb =





102

10−4

102



 ,

where
√

‖Ab‖2F + ‖Bb‖2F = 1.000001 · 105. The original and the balanced matrices
are now used as input to the routine TG01HD. For system (1) defined by the original
matrices A, B, and E, the routine returns that the system has 1 finite controllable
and 2 finite uncontrollable poles (poles are generalized eigenvalues of the pencil
A − λE). For the balanced system, it turns out to have 2 finite controllable and 1
infinite uncontrollable pole. Thus, since TG01AD stopped prematurely, it does not
change the original matrices, and TG01HD gives wrong answer about the controllable
poles. For the balanced system returned by dg3bal, TG01HD returns the correct
answer. Since E is obviously singular, there has to be an infinite pole.

3.2. Example 2: sensitivity of frequency response computation

to scaling

In this example, we demonstrate how badly scaled matrices can produce an inaccu-
rate frequency response matrix. We started with the descriptor system (A0,B0,C0,
D0,E0), where A0, E0 ∈ R

4×4, B0 ∈ R
4×1, C0 ∈ R

1×4, D0 = 0, and whose pole
is placed near 0.4518i. Then, we produced badly scaled matrices E = Dl,0E0Dr,0,
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A = Dl,0A0Dr,0, B = Dl,0B0, C = C0Dr,0, and D = D0, where Dl,0 and Dr,0

are badly scaled diagonal matrices. We observed three different choices of these
diagonal matrices. For each choice of the diagonal matrices we computed frequency
response matrices for the original and the balanced system, where them-Hessenberg–
triangular–triangular reduction of A, B, and E from [4] was the first step in the
algorithm, and σ ranged from 10−2i up to 102i.
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Figure 2: Magnitude of the computed frequency response matrices, for the original and the bal-

anced system: Dl,0 = Dr,0 = diag(100,103, 106,109), Dl,0 = Dr,0 = diag(100, 104,108, 1012),

and Dl,0 = Dr,0 = diag(100, 106,1012,1018)

We compared the computed frequency response matrices of the original system
and the balanced system obtained by the variant S of the balancing algorithm. The
obtained results are illustrated in Figure 2.

As we can see, as the matricesDl,0 andDr,0 are gradually becoming worse scaled,
the produced frequency response matrix is becoming more inaccurate. For the first
choice we obtained 6–7 accurate leading digits when compared with the result for
the balanced system, while for the second choice there were 3–4 accurate digits.
Specially, for the third choice, the magnitudes of the errors were of the same order
as the magnitudes of the results or larger, producing a result with no accurate digit
for the original system.

Let us emphasize here that SLICOT has only the routine TB05AD which computes
the frequency response matrix for a system with E = I. In that case, balancing can
be applied via the LAPACK routine dgebal. dgebal balances only the matrix
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A by a diagonal similarity transformation, since TB05AD reduces only the matrix
A to the Hessenberg form. In MATLAB, the frequency response matrix can be
computed for a general descriptor system by the Hessenberg–triangular reduction of
matrices A and E, implemented in the routine freqresp. The MATLAB routine
seems to balance only the matrices A and E. The output of freqresp for the given
example is indistinguishable from the result of our routine applied to the balanced
system. Our algorithm based on the m-Hessenberg–triangular–triangular reduction
of A, B and E is more efficient than the algorithm based only on the Hessenberg–
triangular reduction, and this is the reason why we need a balancing algorithm for
three matrices.

3.3. Example 3: sensitivity of the staircase reduction

As mentioned earlier, the staircase reduction is a tool used to determine the control-
lable part of system (1), see, for example, [18] and [28]. This problem is numerically
very sensitive, since it relies on rank revealing algorithms. We started again with
random matrices A0, E0 ∈ R

15×15 and B0 ∈ R
15×3, and generated three sets of badly

scaled matrices Ai = DiA0Di, Ei = DiE0Di, Bi = DiB0, for i = 1, 2, 3, such that

D1 = diag(1, 102, 1, 1, 104, 1, 1, 106, 1, 1, 108, 1, 1, 109, 1),

D2 = diag(1, 103, 1, 1, 106, 1, 1, 109, 1, 1, 1012, 1, 1, 1014, 1),

D3 = diag(1, 103, 1, 1, 106, 1, 1, 109, 1, 1, 1012, 1, 1, 1016, 1).

We applied the SLICOT routine TG01HD to all four examples and obtained four
different results presented in the following table.

example # of contr. poles # of fin. uncontr. poles # of infin. uncontr. poles

0 15 0 0
1 3 9 1
2 1 14 0
3 0 15 0

Table 1: The results of TG01HD applied to four examples

The result for A0, E0, and B0 is correct, while all the others are incorrect due to
large norms of Ai and Ei. As the norms of these two matrices grow, the dimension
of the controllable part decreases. Specially, in case of the last example, TG01HD
exited immediately without finding the controllable part.

The SLICOT routine TG01HD recommends balancing the system by the routine
TG01AD. Our balancing routine returns the matrices A0, B0 and E0 for all examples.

3.4. Example 4: sensitivity of the pole assignment problem to

scaling

We are interested in another problem from control theory: the pole assignment
problem for descriptor linear systems of form (1) via state feedback. For details, see
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[11]. Let us define the closed-loop system

Eẋ = (A−BK)x(t) +Bv(t), (12)

where v(t) is an external signal, and K ∈ R
m×n is a feedback matrix. For the regular

system (1) with n1 = deg det(A − λE), and for the set of complex numbers Γ =
{λ1, λ2, . . . , λn1

} closed under complex conjugation, the problem is to find a state
feedback controller in the form u(t) = Kx(t)+v(t) such that Γ is the set of finite poles
of the closed-loop system (12), or alternatively, the elements of Γ are the eigenvalues
of the pencil (A − BK) − λE. Reliable methods for solving this problem are the
so-called Hessenberg methods based on explicit or implicit QZ-like techniques. An
explicit shift method for single input systems is proposed by Miminis and Paige
[17], and the implicit version of the algorithm for ordinary linear time invariant
systems with multiple inputs is proposed by Patel and Misra [21]. We applied the
QZ version of the Patel and Misra algorithm on a controllable descriptor system
with a non-singular matrix E. This algorithm is based on a reduction similar to the
m-Hessenberg–triangular–reduction, which reveals controllability of the system.

Our example of the descriptor system (1) is defined for A,E ∈ R
10×10 and

B ∈ R
10×3, where

A =































8.15·10−8 0 0 7.06·10−3 0 0 7.51·10−5
8.41·10−8 0 7.59·10−2

0 9.71·10−8 0 0 3.82·10−1 0 2.55·102 0 8.31·10−7 0
0 9.57·10−5

8.49·102 0 0 6.55·102 0 0 0 0
0 0 0 0 0 1.63·10−1 0 2.44·10−1 0 7.79·106

0 0 0 9.71·103 1.87·10−1
1.19·10−1 0 0 9.17·10−7 0

0 0 0 0 4.90·10−1 0 0 0 2.86·10−7 0
0 0 0 0 0 0 0 0 0 5.69·106

0 0 0 0 0 0 1.39·10−2 0 0 0
0 0 0 0 0 0 0 6.16·1014 0 0
0 0 0 0 0 0 0 0 5.68·10−7

3.37·106































,

BT =





1.62·101 0 0 0 0 0 0 0 0 0
4.51·101 0 0 9.13·10−1 0 8.26·105 0 0 0 0

0 9.62·10−1 0 0 8.17·10−1 0 0 0 2.60·1013 8.00·10−1



 .

E =































4.31·10−8 0 4.17·10−8 0 2.35·10−8 0 0 6.44·10−8
2.08·10−14 0

0 6.22·10−8 0 3.90·104 0 0 0 0 0 0
0 0 9.03·102 0 0 0 4.87·105 0 0 4.30·109

0 0 0 4.04·104 0 0 0 0 0 0
0 0 0 0 4.30·10−2

6.87·10−1 0 3.51·10−1 0 0
0 0 0 0 0 1.84·10−1 0 0 0 0
0 0 0 0 0 0 5.09·102 0 0 0
0 0 0 0 0 0 0 5.50·10−5 0 0
0 0 0 0 0 0 0 0 2.28·108 0
0 0 0 0 0 0 0 0 0 4.09·106































,

The set of desired finite poles of the closed-loop system is taken to be Γ = {−1 ±
2i,−8±12i,−3,−7,−15,−25,−30,−100}. The pole assignment algorithm produced
the feedback matrix

K =





1.30·10−8 0 0 0 0 0 0 0 0 0
0 −4.74·10−13

1.07·10−15 −2.31·10−19
7.53·10−7 −4.72·10−8 0 0 0 0

0 −1.54·10−17 −4.41·10−10
3.33·10−16

1.84·10−11
2.93·10−10 0 0 6.13·10−5

1.05·10−16



 ,
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Figure 3: Desired poles in Γ and the computed poles

and the computed eigenvalues of the pencil (A − BK) − λE are −3.0000, 8.6823±
12.732i,−6.7362,−0.13415, 0.40521, 0.94064,−2.4631, 1.5121±1.7799i, see Figure 3.
It has to be mentioned here that the matrices A − BK and E were balanced
prior to eigenvalue computation, and as we can see, only one eigenvalue was as-
signed correctly. On the other hand, when we applied the balancing algorithm
on the matrices A, B and E, obtaining Dl = diag(103, 10−2, 10−6, 10−2, 10−2, 10−3,
10−3, 101, 10−16, 10−2) and Dr = diag(104, 1010, 104, 10−2, 103, 103, 101, 103, 109,
10−4), and the balanced matrices Ab = DlADr, Bb = DlB, Eb = DlEDr, the
pole assignment algorithm applied to the balanced matrices produced the feedback
matrix

Kb=





1.30·10−4 0 0 0 0 0 0 0 0 0
0 7.49·10−1 −6.66·100 −1.00·100 −1.28·10−1 −2.04·100 0 0 0 0
0 0 0 0 0 0 3.91·108 2.93·108 7.45·108 −4.3341·107



.

In this case, all computed eigenvalues of the pencil Ab − BbKb − λEb have at least
8 correct digits. We also observed that in our experiments, where the columns of
B were badly scaled, the system became numerically uncontrollable, reducing the
number of eigenvalues that can be assigned. Thus, the variant R of the balancing
algorithm is applicable and useful for this problem.

3.5. Conclusion of the test results

From the presented test results we can conclude the following. The variant S is most
suitable for the control theory problems that include orthogonal transformations of
the matrices A and E from both sides, and B only from the left, such as frequency
response computing, staircase reduction and the pole assignment problem. If this
variant does not balance B in a satisfactory way because the rows of B are worse
scaled than the rows of A and E, then usage of the variant W is recommended. In
addition, if B has badly scaled columns and the algorithms involving rank revealing
are to be applied, such as staircase reduction and pole assignment problem, then the
variant R should be used.

At the end, we would like to illustrate sensitivity issues of a badly scaled system
demonstrated in this section by an example coming from a real application. The
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descriptor system of the form (1) is derived as a power system model, and this
example is based on the Brazilian interconnection power systems (BIPS) model
relating to a 1998 heavy load condition. Matrices of the system can be found as
example bips98 606, which is part of the Rommes group in UF Sparse Matrix
Collection [23]. The dimensions are: n = 7135 and m = p = 4. The matrix A is very
badly scaled, with the smallest element equal to 1.4341 · 10−17 and the largest equal
to 1020 on several entries, causing a large condition number κ2(A) = 3.1321 · 1026.
The routine dg3bal balanced all three matrices successfully. On the other hand,
since A has a large norm, the real effect of the balancing is observed when trying to
determine the controllable part of the original system. When applied to the original
system, the routine TG01HD returned without finding the controllable part, while
when applied to the balanced system, the routine returned the controllable part of
dimension 616. Clearly, we would not be able to solve this problem for this particular
example without balancing.

4. Conclusion

In this paper, three versions of an algorithm for balancing three matrices simulta-
neously are proposed. Balancing is performed via diagonal transformations and the
goal is to reduce the range of the order of magnitude for all elements of the involved
matrices. We illustrated its application with the reduction to the m-Hessenberg–
triangular–triangular form of three matrices A, B and E, which is used for efficient
computation of the frequency response matrix G(σ) = C(σE−A)−1B+D in case of
a descriptor system, with the pole assignment problem via state feedback, and with
finding the controllable part of the system. The reduction algorithm can produce
a very inaccurate result for badly scaled matrices. The basic variant balances rows
and columns of A and E, and only rows of B, since computing G(σ) is invariant
under such transformations. The weighted variant of the balancing algorithm gives
more weight to balancing of elements of B, since the basic algorithm can produce
well balanced A and E and poorly balanced B. The third variant offers a possibility
of balancing columns of B as well. Numerical experiments confirmed that balancing
matrices A, B and E before the m-Hessenberg–triangular–triangular reduction pro-
duces an accurate frequency response matrix, as well as accurate pole assignment
via state feedback. In case when the controllable part of the system is sought, the
answer might not be obtained when the system is badly scaled. Balancing is very
important for this kind of problem.
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