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INTERPRETABILITY LOGIC IL DOES NOT HAVE FINITE
SUBTREE PROPERTY

Vedran Čačić and Mladen Vuković

Abstract. Usually, when a logic has finite model property (fmp), it
also has a stronger, finite submodel property: every model can be reduced
to a finite submodel. Or, at least, it has a finite subtree property, which is
restricted to models that are trees. We prove that interpretability logic IL
does not have finite subtree property.

1. Introduction

Interpretability logic is an extension of provability logic GL, and it is a
modal description of the relative interpretability. The paper [7] provides the
necessary definitions and detailed explanation and gives several examples of
interpretations. We are only interested in interpretability logic as a system of
modal logic. We introduce our notation and some basic facts, following [7].

The system GL is a modal propositional logic. The axioms of system GL
are all tautologies, (A → B) → ( A → B), and ( A → A) → A.
The inference rules of GL are modus ponens and necessitation A/ A.

The language of the interpretability logic contains the propositional letters
p0, p1, . . . , the logical connectives ¬, ∧, ∨,→ ↔, the unary modal operators

and ♦, and the binary modal operator ⊲. We use ⊥ for false and ⊤ for
true. We read ⊲ as binding stronger than binary boolean connectives, and
weaker than negation and unary modal operators. The interpretability logic
IL contains all axioms of the system GL and the following axioms: (A →
B) → A⊲B, (A⊲B ∧ B⊲C) → A⊲C, (A⊲C ∧ B⊲C) → (A∨B)⊲C,
A ⊲ B → (♦A → ♦B), and ♦A ⊲ A. The deduction rules of IL are modus
ponens and necessitation.

By adding the scheme A ⊲ B → (A ∧ C) ⊲ (B ∧ C) (Montagna’s
principle) one gets the system ILM. The system ILP is given by IL plus the
scheme A⊲B → (A⊲B) (principle of persistence). Further, ILW=IL+W,
where W is the axiom scheme (A ⊲ B) → (A ⊲ (B ∧ (¬A))). Finally, the
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system ILM0 is given by IL plus the scheme (A⊲B) → ((♦A∧ C) ⊲ (B ∧
C)).

The basic semantics for interpretability logic are Veltman models. An
ordered triple 〈W,R, (Sw : w ∈ W )〉 is called a Veltman frame if it satisfies
the following conditions: 〈W,R〉 is a GL–frame, i.e. W is a non–empty set,
and R is a transitive and reverse well–founded relation on W ; for every w ∈ W
we have Sw ⊆ W [w] × W [w], where W [w] = {u : wRu}; the relation Sw is
reflexive and transitive on W [w] for every w ∈ W ; wRuRv implies uSwv.

An ordered quadruple 〈W,R, (Sw : w ∈ W ),〉 is called a Veltman model
if it satisfies the following conditions: 〈W,R, {Sw : w ∈ W}〉 is a Veltman
frame and  is a forcing relation. We emphasize only the definition

w  A⊲B if and only if ∀u((wRu & u  A) ⇒ ∃v(uSwv & v  B)).

A Veltman frame 〈W,R, (Sw : w ∈ W )〉 is called: an ILM–frame if
uSwvRz then uRz; an ILP–frame if uSwv, then uSw′v for any w′ such that
wRw′, w′Ru.; an ILW–frame if the converse of R ◦ Sw is well–founded; an
ILM0–frame if wRxRySwy

′Rz then xRz.
We have the following completeness results: IL is sound and complete

w.r.t. (finite) Veltman frames, ILP is complete w.r.t. (finite) ILP–frames (all
in [3]), ILW is complete w.r.t. (finite) ILW–frames ([4], see also [5]), ILM is
complete w.r.t. (finite) ILM–frames (in [3], also in [1]). The system ILM0 is
complete w.r.t. ILM0–frames (in [5]).

2. fmp and related properties

We say that a logic Λ has finite model property (fmp) w.r.t. some class of
models M if M  Λ and for each formula F 6∈ Λ there exists a finite model
M ∈ M such that M 6 F. A logic Λ has fmp if Λ has fmp w.r.t. a class of
models.

So, the systems IL, ILM, ILP and ILW have the fmp (and all the systems
are decidable). A. Visser proved in [7] that interpretability logics IL and ILM
do not have the fmp w.r.t. Visser models. Decidability and the fmp are two
related issues that more or less seem to divide the landscape of interpretability
logics into the same classes. The proof that IL has the fmp is relatively easy.
The same can be said about ILM. For logics like ILM0 the issue seems much
more involved and a proper proof of the finite model property, if one exists
at all, has not been given yet.

Here we consider validity on trees. In the case of provability logic validity
on trees is equivalent to validity on GL–frames (see [6]). In the case of inter-
pretability logic this is not generally the case. D. de Jongh and F. Veltman in
[3] proved that the formula F ≡ (p → ¬q ∧ ¬q) ∧ (p⊲ q) → (p⊲ q ∧ ⊥)
is valid on all ILM–models on trees, but KILM 6|= F, where KILM is the class
of ILM–frames. For IL, ILW and ILP, on the other hand, one can restrict
oneself to tree models.
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We say that a logic Λ has finite submodel property w.r.t. a class of models
M if M  Λ and for every model M ∈ M and formula F , if M 6 F , then
there is a finite submodel N of M such that N 6 F . Finite (sub)tree property
is finite (sub)model property restricted to trees.

It is easy to see that for the logic IL the finite subtree property implies the
fmp. Also, the ordinary “unraveling” technique (cloning every world as many
times as there are paths to it from the root), which works fine on Veltman
models, shows that the fmp implies finite tree property. However, as the next
proposition shows, it doesn’t imply the finite subtree property.

3. Main result

Proposition 3.1. The interpretability logic IL does not have finite sub-
tree property with respect to Veltman models.

Proof. Consider a Veltman frame M := 〈N, R, (Sn)n∈N〉, where (N′ is a
shortcut for N \ {0}):

R := {0} × N′ ∪ {〈2k − 1, 2k〉 : k ∈ N′}
S0 := {〈x, y〉 ∈ N′ × N′ : x ≤ y}

S2k := ∅ and S2k−1 := {〈2k, 2k〉} for k ∈ N′.

It is easily seen that M really is a Veltman frame: 0 R 2k − 1 R 2k implies
0 R 2k and 2k − 1 S0 2k; maximal length of an R–chain is 2; on respective
successor sets, S0 is a total order ≤, and other S–relations are universal.

It is also easily seen that M is a tree: the unique maximal path from 0
to 2k is 0 R 2k− 1 R 2k, and other pairs of worlds are either unconnected, or
connected only directly.

Consider a closed formula φ := ( ⊥ ⊲ ♦⊤) → ⊥ . For every even R–
successor n of 0 (on which ⊥ holds), there is its S0–successor n+1, which is
odd and therefore forces ♦⊥ (it has a successor n+ 2). So M, 0  ⊥ ⊲♦⊤.
But 0 R 1, so M, 0 6 ⊥. That together implies M, 0 6 φ, so φ doesn’t hold
on M.

Let now N be any finite submodel of M, and let’s denote its set of worlds
by S. Also let i ∈ S be arbitrary. Assume for contradiction that N, i 6 φ.
That means two things: N, i  ⊥ ⊲ ♦⊤ , and N, i 6 ⊥ . The last claim
implies i having a (R–)successor, so i is 0 or odd.

If i = 2k − 1 is odd, the only successor of i in M was i + 1 = 2k. Since
in N the world i still has a successor, it has to be 2k ∈ S. It didn’t have a
successor in M (because it’s positive and even), so it can’t have one in N, so
N, 2k  ⊥. Since ⊥ ⊲ ♦⊤ holds at i, we must have a Si-successor of 2k
on which ♦⊤ holds—but the only possible Si-successor or 2k is 2k itself (even
in M, so surely in N), and it is even and positive, so it doesn’t force ♦⊤.

That leaves the case i = 0 to be disproved. Since N is finite, S is finite, and
since 0 ∈ S, also S is nonempty. So it has a maximal element, m := maxS.



4 V. ČAČIĆ AND M. VUKOVIĆ

Since 0 has a R-successor in N, set S doesn’t contain only 0, so m > 0. That
implies 0 R m in N, and m surely doesn’t have a R-successor in N (it could
only have m + 1 if odd, but m + 1 > m = maxS means m + 1 6∈ S). That
means N,m  ⊥, and since 0 R m, we must have a S0-successor n of m at
which ♦⊤ holds. But n would have to be in S, so n ≤ m, and m S0 n implies
m ≤ n. So the only possibility is n = m, which is a contradiction since ⊥
and ♦⊤ cannot both hold at the same world.

We conclude that φ holds on every finite submodel of M, but it doesn’t
hold on M, so (since M is a tree) the closed fragment of IL doesn’t have the
finite subtree property.

4. Conclusion

The proposition above is important since in other logics with the fmp,
the proofs of the fmp usually start with a model for a formula and somehow
(“unraveling”, cutting width, cutting depth) produce a finite submodel for the
same formula. We have just shown that a particular step of that procedure—
namely, cutting width—cannot be universally carried out, although other
steps can: M is a tree (so unraveling would leave it the same), and of fi-
nite depth, equal to modal depth of φ (so cutting depth doesn’t change it
either).

Moreover, M is a frame, and φ is closed, so cutting width doesn’t even
work restricted to closed fragments. Also, the counterexample uses only rea-
soning from IL, so it works in every extension of IL where M is adequate.

It is even minimal in some way: by size, since N is the smallest infinite
set; by depth, since on depths 0 and 1 we can’t have S-relations connecting
different types of worlds if we don’t have propositional variables; and even by
length of the formula, but that requires a precise syntax and a lot of writing
to prove.
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Logika interpretabilnosti IL nema svojstvo konačnih podstabala

Vedran Čačić i Mladen Vuković

Sažetak. Obično, ako logika ima svojstvo konačnih modela

(fmp), tada takoder ima i jače svojstvo konačnih podmodela: svaki

model može se reducirati na konačan podmodel. Ili, barem, ima

svojstvo konačnih podstabala, što je svojstvo konačnih podmodela

restringirano na modele koji su stabla. Ovdje dokazujemo da

logika interpretabilnosti IL nema svojstvo konačnih podstabala.
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