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Abstract. Many real life situations can be described using twice continuously differen-
tiable functions over convex sets with interior points. Such functions have an interesting
separation property: At every interior point of the set they separate particular classes of
quadratic convex functions from classes of quadratic concave functions. Using this property
we introduce new characterizations of the derivative and its zero points. The results are
applied to the study of sensitivity of the Cobb-Douglas production function. They are also
used to describe the least squares solutions in linear and nonlinear regression.
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1. Introduction

Operations research is the study of improvable real life situations using mathematical
models [11]. One of its basic topics is the identification of extreme values of functions
and their corresponding optimal solutions. The classic extreme value theorem of
Fermat is still widely used in various frameworks in the study of extreme points. The
theorem says that a locally optimal solution can occur only at a zero-derivative point,
also called a “stationary point”, e.g., [6, 11, 12]. These points have been recently
characterized for continuously differentiable functions with a Lipschitz derivative
and, in particular, for twice continuously differentiable functions in several variables
[17, 18, 19]. The characterizations are based on the quadratic envelope property of
functions introduced in [17] and they do not require infinitesimal calculus. They
provide an alternative approach to the study of optimality. Let us loosely illustrate
these ideas for a twice continuously differentiable function f(x) of the single variable
x on an interval I = [a, b] around an interior point x∗ of I. Since f(x) is assumed to
be twice continuously differentiable we know that its second derivative assumes its
extreme values on I. In particular, there exists a number

ρ = max
x∈I

|f ′′(x)|.
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Following [17, 18, 19] (and Theorems 3 and 4 below) we know that an arbitrary
number g = g(x∗) is the derivative of f at x∗ if, and only if, the ratio function

|f(x)− f(x∗)− g · (x− x∗)|
(x− x∗)2

(1)

is bounded on the set I \ {x∗} = {x ∈ I, x ̸= x∗} with an upper bound 1
2ρ. For the

purpose of studying sensitivity of the function we can state this result differently:
An arbitrary number g = g(x∗) is the derivative of f at x∗ if, and only if, there
exists Λ ≥ ρ (in fact, for every Λ “sufficiently large”) such that

|f(x)− f(x∗)− g · (x− x∗)| ≤ 1

2
Λ(x− x∗)2 (2)

for every x ∈ I.

Example 1 (Verification of Derivative). Consider f(x) = x5 − x2 on I = [−1, 2]
and x∗ = 0. We would like to know whether f ′(x∗) = 0. Since the ratio function
(1), with g = 0, is

|x5 − x2|
x2

= |x3|

and it is bounded on I \ {0}, we conclude that g = f ′(0) = 0. How about, say,
x∗ = 1? Since |x5 − x2|/(x − 1)2 → ∞ as x → 1 we conclude that at this point
f ′(x∗) ̸= 0.

Example 2 (Sensitivity). Let us approximate f(x) = x5−x2 on I = [−1, 2] around
x∗ = 0. We know by (2) that, for a given tolerance ε > 0

1

2
Λ(x− x∗)2 ≤ ε

implies
|f(x)− f(x∗)− g · (x− x∗)| ≤ ε

for x ∈ I. One can specify Λ = ρ = 158. Therefore, since we already know that
g = f ′(0) = 0, for every x satisfying 79x2 ≤ ε we have |f(x)| ≤ ε. In particular, for
the choice ε = 1, we know that |f(x)| ≤ 1| for every x such that 79x2 ≤ 1.

There are real life situations which possibly cannot be improved, such as situ-
ations described by the classical laws of physics. The above results may provide
different mathematical descriptions of these situations.

Example 3. Consider an object of mass m moving in time along a twice continu-
ously differentiable trajectory f(x) governed by Newton’s second law. If F (x) denotes
some “force” acting on the object then on a time interval I = [a, b] the law says that
F (x) = mf ′′(x). When the force is explicitly known, one can obtain the object’s
trajectory by finding a solution of this differential equation. Suppose that we do not
necessarily know the force. Nevertheless, using (1) we know that for the trajectory
f(x) on I and the instantaneous velocity v(x∗), at every moment x∗, a < x∗ < b the
ratio function

|f(x)− f(x∗)− v(x∗) · (x− x∗)|
(x− x∗)2
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is bounded on the set I \ {x∗}. After specifying Λ = ρ in (2), a bound is

1

2
Λ =

1

2
ρ =

1

2
max
x∈I

|f ′′(x)| = 1

2m
max
x∈I

|F (x)|.

In particular, if the object is moving with a constant velocity, then ρ = 0 and we
conclude that its position is f(x) = f(x∗)+ v(x∗) · (x−x∗) at every x ∈ I. It is easy
to verify these properties for the trajectory of an object during its free fall.

The preceding examples show that the new characterizations of the derivative
may not always be suitable for calculating the derivative but they have three appli-
cations. They can be used to verify (rather than calculate) the derivative, determine
a region around a given x∗ where all values of the function fall within a specified
tolerance, and one can possibly use them to learn more about the model.

The objective of this paper is to extend some of the recent results for functions of
the single variable to functions in several variables. The extensions will be illustrated
on the Cobb-Douglas production function in economics and also in regression. In
particular, we obtain new characterizations of partial derivatives of the production
function, which are important to study sensitivity of the model, and new charac-
terizations of the best least squares solutions. These illustrations have different
mathematical properties. The Cobb-Douglas function is studied around non-zero
derivative points and therefore the related problems are well posed [13, 14]. In con-
trast, the least squares problems generally are ill posed and they are also known to
be notoriously ill conditioned [2]. We will not study numerical topics. In optimiza-
tion these are studied in, e.g., [4] and [7]. Mathematical background of the paper is
set at the level of intermediate calculus and linear algebra. The most recent material
related to this paper can be found in [19].

2. Separation of functions

Consider a twice continuously differentiable (abbreviated: C2) function f in n vari-
ables on a closed and bounded (abbreviated: compact) convex set K with interior
points. Denote by H = ∇2f(x) the Hessian matrix of f at x and by λi = λi(x) its
i-th eigenvalue, i = 1, . . . , n. Since the eigenvalues of H are real numbers we can
introduce the “global” spectral radius of H on K, denoted by

ρ = max
x∈K

max
i=1,...,n

|λi|.

This is a non-negative number which depends on H and K. It makes the function
f(x) + 1

2ρ||x
2|| convex. Here ||x|| denotes the Euclidean norm of a column n-tuple

x. In fact, one has a more general claim.

Theorem 1. Consider a C2 function f in n variables on a compact convex set
K in its open domain and the global spectral radius ρ of its Hessian matrix on K.
Then for every number Λ ≥ ρ, the function f(x) + 1

2Λ||x
2|| is convex on K and the

function f(x)− 1
2Λ||x

2|| is concave on K.
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Proof. The function f(x) + 1
2Λ||x

2|| is convex on K if, and only if, the matrix
∇2f(x) + ΛI, where I is the n × n unit matrix, is positive semi-definite for every
x ∈ K. Using the transpose uT of u, and matrix multiplication, this is equivalent to

uT∇2f(x)u

||u2||
+ Λ ≥ 0,

for every u ̸= 0. Since Λ ≥ ρ, we have λi(x) + ρ ≥ 0, and it follows that λi(x) +
Λ ≥ 0, i = 1, . . . , n. Hence we conclude that f(x) + 1

2Λ||x
2|| is convex. Similarly

one can prove the concavity part.

Example 4. If f is a C2 function of the single variable on an interval I = [a, b],
then

ρ = max
x∈I

|f ′′(x)|.

This number was introduced in Section 1. For f(x) = sinx on I = [−π, π], it is
ρ = 1. For the product function f(x) = x1x2, the eigenvalues of the Hessian matrix
on any compact convex set K are λ1 = −1 and λ2 = 1, hence ρ = 1.

We use ρ to describe a separation property of C2 functions.

Theorem 2 (Separation property of C2 functions). Consider a C2 function f(x) in
n variables defined on an open set of Rn containing a compact convex set K. Denote
by ρ the global spectral radius of the Hessian matrix of f on K. Take an arbitrary
interior point x∗ of K and denote by G = ∇f(x∗) the gradient of f at x∗. Then for
every number Λ such that Λ ≥ ρ, we have

−1

2
Λ||x− x∗||2+f(x∗)+G·(x− x∗)≤f(x)≤f(x∗)+G·(x− x∗)+

1

2
Λ||x− x∗||2 (3)

for every x ∈ K.

Proof. We know, forΛ ≥ ρ, that C(x,Λ) = f(x) + 1
2Λ||x||

2 is a convex function on
K, by Theorem 1. Therefore, for x and x∗ in K, we have

C(λx+ (1− λ)x∗,Λ) ≤ λC(x,Λ) + (1− λ)C(x∗,Λ)

for every 0 ≤ λ ≤ 1. Hence

f(λx+ (1− λ)x∗) ≤ 1

2
Λ||λx+ (1− λ)x∗||2 + λf(x)− 1

2
Λλ||x||2

+(1− λ)f(x∗) +
1

2
Λ(1− λ)||x∗||2.

Using properties of the norm, and after division by λ > 0, this yields

f(x∗ + λ(x− x∗))− f(x∗)

λ
≤ f(x)− f(x∗) +

1

2
Λ(1− λ)||x− x∗||2.

On the left-hand side we have a quotient of functions in the single variable λ of the
type 0

0 . Using L’Hopital’s rule, in the limit λ → 0 this becomes

∇f(x∗) · (x− x∗) ≤ f(x)− f(x∗) +
1

2
Λ||x− x∗||2.
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Similarly, since C̃(x,Λ) = f(x)− 1
2Λ||x||

2 is a concave function, it follows that

∇f(x∗) · (x− x∗) ≥ f(x)− f(x∗)− 1

2
Λ||x− x∗||2.

Theorem 2 gives relationships between a C2 function and its first and second
derivatives. The second derivative enters the inequalities indirectly through ρ.

Example 5. Consider f(x) = sinx on a compact interval and its interior point x∗.
The separation property, after specifying Λ = ρ and ρ = 1, says that

−1

2
(x−x∗)2+sinx∗+cosx∗ · (x−x∗) ≤ sinx ≤ sinx∗+cosx∗ · (x−x∗)+

1

2
(x−x∗)2

for every x ∈ I. At x∗ = 0 this yields

x− 1

2
x2 ≤ sinx ≤ x+

1

2
x2 for − π ≤ x ≤ π.

The choice of a smaller interval, e.g., I = [−π
4 ,

π
4 ] and ρ = 1

2 maxx∈I |f ′′(x)| =
√
2
4

yields

x−
√
2

4
x2 ≤ sinx ≤ x+

√
2

4
x2 for − π

4
≤ x ≤ π

4
.

The separation is depicted in Figure 1 on the region −π
2 ≤ x, x∗ ≤ π

2 by an “extended
graph” of f(x) in the space with coordinates (x, x∗); function sinx is represented in
that space as sinx+ 0 · x∗.

Figure 1: Separating property of sine function
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The inequalities (3) can be written in a more concise form using the absolute
value function. For f(x) on K we introduce its “extension function” around an
interior point x∗ of K as

E(x, x∗) =
|f(x)− f(x∗)−∇f(x∗) · (x− x∗)|

||x− x∗||2
, x ∈ K \ {x∗} = {x ∈ K,x ̸= x∗}.

Theorem 2 says that E(x, x∗) is bounded on the set K \ {x∗} by 1
2ρ.

Example 6. Consider f(x) = x1x2 on K = {(x1, x2)
T : −1 ≤ x1, x2 ≤ 1}. Its

extension function around x∗ = 0 is

E(x, x∗) =
|x1x2|
x2
1 + x2

2

.

Since ρ = 1, by Example 4, an upper bound of E(x, x∗) on K \ {x∗} is 1
2 . The graph

of this function is depicted in a different context in [19].

Theorem 2 can also be used to find lower bounds of the global spectral radius.

Example 7. Consider the product function f(x) = x1x2 · · ·xn in n ≥ 2 variables on
a compact convex set K in Rn containing x∗ = 0 in its interior. Since G = ∇f(x∗)
= 0, (3) gives a lower bound of the global spectral radius ρ of the Hessian matrix of
f on K

2x1x2 · · ·xn

x2
1 + x2

2 + · · ·+ x2
n

≤ ρ for every x = (xi) ̸= 0.

In particular, for n = 2, the inequality is obvious. But it is not obvious for n ≥ 3.

3. Characterizations of the gradient and its zero points

The well-known geometric property of the gradient of f(x) at x∗ is that it is an n-
tuple in Rn orthogonal to the level set {x : f(x) = f(x∗)} at x∗ and pointing in the
direction of steepest ascent of f from x∗. This property is used in the classic steepest
ascent method of Cauchy and in its many variations and numerical improvements.
In mathematical modelling it is used to describe many interesting situations such
as flight of insects toward a light source, trajectory of a heat-seeking missile and
movements of sharks in water towards higher blood concentration [1]. In this section
we will use Theorem 2 to give an essentially different property of the gradient. In
fact, we will characterize the gradient.

Theorem 3 (Global characterization of the gradient). Consider a C2 function f(x)
in n variables defined on an open set of Rn containing a compact convex set K with
a nonempty interior. Also consider the global spectral radius ρ of the Hessian matrix
of f on K and a number Λ,Λ ≥ ρ. A row n-tuple G = G(x∗) is the gradient of f at
an interior point x∗ of K if, and only if, the inequalities (3) hold for every x ∈ K.

Proof. In view of Theorem 2, we only have to show that G in (3), is represented by
an n-tuple of partial derivatives. This can be seen after dividing (3) by ||x−x∗|| ≠ 0
where x ̸= x∗ is chosen on the i-th coordinate axis. The i-th component of G = (Gi),
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in the limit x → x∗, is the partial derivative ∂f
∂xi

(x∗), i = 1, . . . , n. Hence G is the
gradient of f at x∗.

Theorem 3 can be formulated differently using the extension function of f .

Theorem 4 (Uniform bound characterization of the gradient). Consider a C2 func-
tion f(x) in n variables defined on an open set of Rn containing a compact convex
set K with a nonempty interior. Also consider the global spectral radius ρ of the
Hessian matrix of f on K and a number Λ,Λ ≥ ρ. A row n-tuple G = G(x∗) is the
gradient of f at an interior point x∗ of K if, and only if

|f(x)− f(x∗)−G · (x− x∗)|
||x− x∗||2

≤ 1

2
Λ (4)

for every x ∈ K \ {x∗}.

Let us illustrate Theorem 4.

Example 8. Consider f(x) = x0.4 on the interval I = [2, 4]. Take x∗ = 3. Is
f ′(3) = 0.2? Since the left-hand side in (4), with G = 0.2, is not bounded on the set
I \ {3} because

|x0.4 − 30.4 − 0.2(x− 3)|
(x− 3)2

→ ∞ as x → 3

we conclude that f ′(3) ̸= 0.2. This situation is depicted in Figure 2.

Figure 2: Incorrect derivative

Is f ′(3) = 0.4? Since the ratio function

|x0.4 − 30.4 − 0.4(x− 3)|
(x− 3)2
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Figure 3: Correct derivative

is bounded on I \ {3} we conclude that f ′(3) = 0.4. This situation is depicted in
Figure 3.

Warning. Theorems 3 and 4 do not generally hold for continuously differentiable
functions. A counter example is f(x) = |x|3/2 on I = [−1, 1] considered around
x∗ = 0, [17].

Theorem 3 can also be used to estimate values of functions around a given point
x∗ falling within a prescribed tolerance ε ≥ 0. Let us follow-up on Example 2 for
functions in several variables.

Theorem 5. Consider a C2 function f(x) in n variables defined on an open set of
Rn containing a compact convex set K with nonempty interior. Let ρ > 0 be the
global spectral radius of the Hessian matrix of f on K and take Λ ≥ ρ. Consider an
interior point x∗ of K. Then for a given ε ≥ 0

|f(x)− f(x∗)−∇f(x∗) · (x− x∗)| ≤ ε whenever ||x− x∗||2 ≤ 2ε

Λ
, x ∈ K.

Example 9. Consider f(x) = cosx around x∗ = 0. Here ρ = 1 and we can take
Λ = 1. Therefore for any tolerance ε ≥ 0, we know that |1− cosx| ≤ ε, for every x
which satisfies x2 ≤ 2ε. In general, the bigger choice of Λ, the smaller interval for
estimation.

Theorems 3 and 4 yield, in particular, characterizations of zero-derivative points
∇f(x∗) = 0. One only specifies G = 0 in the theorems. One can find illustrations
of this special case in, e.g., [12, 17, 18, 19].
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4. Cobb-Douglas production models

The Cobb-Douglas models are formulated as products of several functions each of
the single variable xi raised to some constant powers ai, i = 1, . . . , k. In economics,
they might represent the technological relationships between k different inputs such
as capital and labour and the amount of output that is produced by these inputs.
The results from the preceding sections are directly applicable to these models to
verify derivatives and study sensitivity under input perturbations. Let us outline
how this can be done on an example borrowed from [12, p. 291] with the original
notation.

Example 10. Consider the Cobb-Douglas production model Q(L,K) = 100L0.4K0.6

studied around L∗ = 1024 and K∗ = 32768. Here Q denotes total production (the
real value of all goods produced in, say, a year, L denotes labour input (the total
number of person hours worked in a year), K denotes capital input (the real value
of all machinery, equipment, and buildings), 0.4 and 0.6 are the output elasticities
of capital and labour respectively. Constant A = 100 is total factor productivity.

The partial derivatives are found to be ∂Q(L∗,K∗)
∂L ≈ 320 and ∂Q(L∗,K∗)

∂K ≈ 15. This
means that, at K∗, if L∗ is increased from 1024 to 1025, Q is roughly estimated to
increase by 320. Similarly, at the fixed L∗, if K is increased from 32768 to 32769,
Q is estimated to increase by 15.

The extended function of Q(L,K) around L∗ and Q∗ is the ratio function

E(L,K,L∗,K∗) =
|Q(L,K)−Q(L∗,K∗)− (320, 15)(L− L∗,K −K∗)T |

(L− L∗)2 + (K −K∗)2

where (L,K) ̸= (L∗,K∗) in a compact convex set containing (L∗,K∗) in its interior.
Its graph is depicted by Figure 4.

Figure 4: Extended Cobb-Douglas function around fixed inputs
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For the results to be meaningful, the function E(L,K,L∗,K∗) should be bounded
on every compact convex set around (L∗,K∗). From the graph (done in MATLAB)
we see that the bound has the value about 200. This implies that the global spectral
radius ρ of the Hessian matrix on the chosen region in (L,K) around (L∗,K∗) is
about 400. One can use this information for a more refined sensitivity analysis using
Theorem 5. Finer the grid in the (L,K) plane, smoother is the shape of the graph
and more accurate are the estimates of ρ and perturbed values of the function.

Partial derivatives of a general Cobb-Douglas function f(x1, . . . , xk), at a given

input x∗
i are Gi =

∂f(x∗
i )

∂xi
, i = 1, . . . , k. They can be verified directly using Theo-

rems 3 and 4 if we study the k “coordinate-wise” functions of the single variable:
f(x1, x

∗
2, . . . , x

∗
k), . . . , f(x

∗
1, . . . , x

∗
k−1, xk). Since the model is stated in terms of C2

functions and studied around non-zero inputs, the verifications of the derivatives and
study of sensitivity are well posed problems according to the general results given
in [13] and [14].

5. Regression

Theorems 3 and 4 can be used in linear regression to characterize least squares
solutions of possibly inconsistent systems of linear algebraic equations Ax = b. For
a given m× n matrix A and an m-tuple b, consider the function

F (x) = ||Ax− b||2.

The Hessian matrix of F (x) is ∇2F (x) = 2ATA which is positive semi definite.
Therefore F (x) is a convex function regardless of the choice of A and b. Its optimal
solution x∗ is called a least squares solution. It is a zero-derivative point of F (x)
so let us use, e.g., Theorem 4 for its characterization. Denote by σ the largest
eigenvalue of ATA.

Theorem 6 (Characterization of least squares solutions). An n-tuple x∗ is a least
squares solution of Ax = b if, and only if

| ||Ax− b||2 − ||Ax∗ − b||2 |
||x− x∗||2

≤ σ (5)

on the set K \ {x∗}, where K is an arbitrary compact convex set containing x∗ in
its interior.

Example 11 (Trivial example). Consider Ax = b where A = 0 is the m × n zero
matrix. Any n-tuple x∗ is its least squares solution.

Remark 1. Theorem 6 can be formulated using properties of generalized inverses of
matrices, e.g., [2, 8, 15]. In particular, the term Ax∗−b is the orthogonal projection
of b on the null space of AT .

Example 12 (Estimating number of divorces in Canada in 1890). The number
of registered divorces in Canada from 1880 to 1889 is given by the following data
according to the “Statistical Year-book of Canada 1902”:

Year (ti) 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
Divorces (di) 5 7 6 13 10 12 11 10 9 15

.
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Using linear regression we wish to estimate the number of divorces in 1890. The ten
years can be ordered from, say, 1 to 10 instead of 1880 to 1889. The linear regression
line can be assumed to be of the form d = x1t+x2. Passing this line through the ten
points gives a system Ax = b of 10 equations in 2 unknowns where

AT =

[
1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1

]
,

bT =
[
5 7 6 13 10 12 11 10 9 15

]
.

The least squares solution x∗ = (x∗
1, x

∗
2) is calculated to be x∗

1 = 0.73, x∗
2 = 5.8.

Hence the regression line is d = 0.73t+ 5.8 and the estimated number of divorces in
1890 is d = 0.73 · 11+5.8 = 13.83 ≈ 14. The result can be verified using Theorem 6.
An upper bound of the ratio function in (5) on any compact convex set containing
x∗ in its interior is σ = 392.90.

In general, the “error function” F (x) can be any C2 function. If data (di, ti),
i = 1, . . . , N in the (d, t) plane are approximated by, say, the exponential function

d = x1 · ex2t

describing, e.g., radioactive decay, then passing this function through the N points
yields a generally inconsistent system of N equations in two variables. The error
function could be of the form

F (x) =
∑

i=1,...,N

(di − x1 · ex2ti)2.

The nonlinear least squares problem here is to find minimizing points x∗ = (x∗
1, x

∗
2)

of F (x). At these points the derivative of F (x) must be equal to zero. One can use
Theorems 3 and 4 with G = 0 to characterize zero-derivative points.

Interesting approximations of data by exponential functions were described in
[9] and [10]. The measurements were done in vivo on patients using positron emis-
sion tomography after radioactive tissue tracer was administered into the patients’
“vascular space”. Also the influence of scan intervals on improvement of “parameter
estimates” (x∗ in minimization of the error function) was studied.

In the context of input optimization [16] the problem of finding “best scanning
intervals” can be identified as a problem of finding “optimal inputs”. Indeed, in
input optimization some or all data are identified as a vector input θ. The error
function is thus formulated in terms of x and θ, i.e., as some F = F (x, θ). The
problem is to find a particular θ∗ which minimizes the optimal value function F ◦(θ) =
F (x∗(θ), θ) subject to constraints imposed on x and θ. Here x∗(θ) is an optimal
solution of F (x, θ) for a given θ. This x∗(θ) can be calculated by a method of
“robust optimization” [3], which may take into consideration stochastic nature of
data. Characterizations of “optimal inputs” θ∗ over “regions of stability” for convex
parametric models are formulated in [16] using suitable Lagrange functions. The
study of optimal inputs is important in many applied areas including designs of
experiments [5].
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6. Conclusion

We have studied some of the basic problems in mathematical modeling using twice
continuously differentiable functions. One of these problems is how to characterize
the derivative and its zero points. We have found these characterizations using a
separating property of functions. The new results are based on the global quadratic
envelope property of functions and they do not explicitly require infinitesimal cal-
culus. One can use them to verify solutions of mathematical models which use
derivatives. They can also be used to study the model’s sensitivity to data and, in
some cases, to reformulate the model. The results are applied to the Cobb-Douglas
production model and to linear and nonlinear regression. In these applications we
have obtained equivalent, but geometrically different, characterizations of partial
derivatives of the Cobb-Douglas function and we have characterized least squares
solutions in linear regression.
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