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Mw Moment magnitude.

Tip Number of periods.

N Number of points for a geometric distribution.
NE* Normalized error (s = a,b,¢).

OFE® Overall error (s = a,b,c).

qua Quadratic family of pulses.

K Effect of horizontal seismic forces.

7 Geometric ratio used in Eq. 3.1.

rec Rectangular family of pulses.

R Strength reduction factor.

Ry Ductility factor (NEHRP provisions).

R, Strength reduction factor of a system subjected to a pulse.
Rp Redundancy factor.

R Strength factor.

Rsdef Equivalent SDOF R-factor.

R Damping factor.

R, Ductility factor.

R, Reduction factor (SEAOC Bluebook).
o Parameter used in Eq. 1.10.
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= a, b, ¢ defines the three error measures given by Egs. 4.4, 4.5, and 4.6, respectively.

s

sin Sinusoidal family of pulses.

Sa Elastic pseudo-acceleration.

Se Elastic psedo-velocity.

Sps Design spectral response acceleration at short periods.

t Time.

tq Pulse duration.

t, Rise time.

trh Triangular family of pulses, having ¢, = 1/2 the duration of the first incursion.
tr0 Triangular family of pulses, having ¢, = 0 the duration of the first incursion.
trl Triangular family of pulses, having ¢, = 1 the duration of the first incursion.
t Time of maximum positive displacement of a SDOF system.

min (1)  Minimum ¢; for all systems subjected to a ground motion.

12} Time of maximum negative displacement.

maz (t;) Maximum ¢, for all systems subjected to a ground motion.

T Natural period of a system.

T, Limiting period used in Egs. 1.9 and 1.13.

T., T, Limiting periods used in Eq. 1.9.

T. Limiting periods used in Eq. 1.13.

T, Characteristic period of the ground motion.
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mdo f

Characteristic pulse period.

Period used in the NEHRP Guidelines [2].

Predominant period of the ground motion used in Eq. 1.12.
Optimal period for the optimal pulse of each ground motion.
First and second periods of vibration.

Optimal period for the qua(2) and qua(3) pulses of each ground motion for elasto-plastic

systems having 8 = 5%.

Limiting period defined in Eq. 5.7.

Parameter used in Eq. 1.10.

Relative displacement.

Design displacement.

Elastic displacement.

Equivalent SDOF elastic displacement.
Instantaneous change in ground displacement.
Maximum ultimate displacement.

Peak roof displacement given by Eq. 6.7 for the mode of vibration j.

uzg’é arN—opx Peak roof displacement obtained with DRAIN-2DX.

umdo f

mdof
uu,pul(Tg)

mdof
u-u.,;oul (T

u,vidic

Estimated peak roof displacement using Vidic R-factor model.
Estimated peak roof displacement using the pulse R-factor model, having T, = 17
Estimated peak roof displacement using Ordaz R-factor model, having T, = T}.

22



mdo f
u,record

Uy

umdof

usda_f

U1,Uq

U2

Vg,maz

Vi

Te

Estimated peak roof displacement using the ground motion R-factor.
Yield displacement.

MDOF yield displacement.

Equivalent SDOF yield displacement.

Peak positive displacements.

Peak negative displacement.

Pulse velocity.

Peak ground velocity.

Design strength.

Strength required for elastic response.
Ultimate strength.

Yield strength.

Yield strength of a MDOF system.

Total weight of a MDOF system.
Instantaneous change in ground acceleration.
Post-yield stiffness.

Effective modal mass coeflicient.

Damping ratio.

Strength parameter.

Elastic strength parameter of a system subjected to a ground motion.
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ndof Equivalent SDOF elastic strength parameter.

Ty Strength parameter of a system subjected to a simple pulse.
Ny Strength parameter of a system subjected to a ground motion.
Ty Yield strength parameter.

nréof MDOF yield strength parameter.

n;d"f Equivalent SDOF yield strength parameter.

Ty Estimated yield strength parameter.

K Ratio T'/t4.

w Ductility demand of a system.

£ Coefficient used in Eq. 1.14.

P Redundancy factor (NEHRP provisions).

Gea, Povs Pea  Amplification factors used in Eq. 1.9.
{6} Deformed shape vector or mode of vibration.

{¢1},{¢2} First and second modes of vibration.

¢ Site coefficient used in Eq. 1.12.
w Circular frequency of a system.
Q, Overstrength factor (NEHRP provisions).
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R/C
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Interstory drift index.
Long duration records.
Mx—llti—degree-of-freedom.
Reinforced concrete.
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Single-degree-of-freedom.
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Chapter 1

Introduction and Background

1.1 Statement of the Problem

Codes for the seismic design of buildings and bridges worldwide usually obtain the lateral design
force by dividing the strength required for elastic response by a reduction factor that accounts
for the inelastic behavior of the structure, overstrength of the structure, and other factors that
are considered to be important. Improving the techniques used for estimating the lateral strength
required for structures subjected to earthquake ground motions, as well as improving the conceptual
foundations of these techniques would be of value. For example, fig. 1.1 shows the reduction factors
used in the United States [2], Mexico, Japan, and European [3] nations for reinfored concrete (R/C)
structural wall buildings of regular configuration, having fundamental period T, and located on rock
sites [4]. While the reduction factor is period-dependent in the European and Mexican codes, in

the United States and Japan, the reduction factor is invariant with period.

Codes in the United States designate different values of the reduction factor for different framing
systems, reflecting perceptions of their ductility capacity, likely overstrength, and performance in
past earthquakes. The advent of performance-based seismic design introduces a need for accuracy

in estimating the peak displacement of the structure and the damage associated with its response.
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Figure 1.1: Strength reduction factors versus period (T) prescribed by 4 codes for design of rein-
forced concrete structural wall buildings

Not only are the ground motions subject to variability, but the reduction factors also vary relative
to the ground motions. Increasing attention to both safety and economic consequences underscores

the need to improve the reduction factors used in the design of buildings and bridges [4].

Although the reduction factor depends on the material overstrength, design overstrength, and
redundancy characteristics of the structural system, as described in the Commentary of the NEHRP
Provisions [2], the present work focuses only on the strength reduction factor (R-factor), defined
as the ratio of the strength required for the system to remain elastic when responding to a given
ground motion and the strength required for the system to develop a specified degree of a non-linear

behavior, with the degree of nonlinearity indexed by the ductility of the system.

A better understanding of the inlastic behavior of systems under complex ground motions may
develop when the characteristics of inelastic response to simple ground motions is understood. The
simpler ground motions have been called elementary forces, explosive-type loads, pulse-type forces

[5], pulse excitations or pulse force [6], or impulsive loads [7] in the literature. These names refer



to forces or accelerations that contain a single impulse of arbitrary form.

This work shows that inelastic response of structures is affected similarly by simple pulses and
earthquake ground motions. These similarities allow a new approach to be developed to estimate
R-factors for systems with varied load-deformation and hysteretic characteristics to earthquake
ground motions using the R-factors for systems subjected to simple pulses. The approach makes
use of the observation that R-factors for systems responding to simple pulses are similar to those

obtained for earthquake ground motion records.

1.2 Historical Perspective: Evolution of Strength Reduc-

tion Factors

1.2.1 History of Code Strength Reduction Factors

The Structural Engineers Association of California (SEAOC) in 1959 [1] made an attempt to account
for non-linear behavior in the design of structures in the design provisions prepared for the Uniform
Building Code. In these provisons the elastic base shear force was multiplied by a coefficient K
equal to 1.33 for bearing wall buildings, 0.80 for dual systems, 0.67 for moment-resisting frames,

and 1.00 for framing systems not classified among the other categories.

The K factor expresses the same concept as the R-factor in the sense of reducing the design
strength. When the K factor is used, the design strength is multiplied by the K factor; the R-factor
is applied as a divisor to the elastic strength. Hence, the R-factor is defined as the ratio of the force
that an elastic system would develop under a given ground motion to the force that this system

would develop if the system had non-linear inelastic behavior.

The first time that the R-factor terminology was introduced in the United States was in ATC-
3-06, 1978 [8]. At that time, a committee was formed to determine values of these factors. The

~ committee based its decision on “the inherent toughness, amount of damping when undergoing in-
g ) g going



elastic response, and observed past performance of various types of framing systems.” A footnote to
the table of R-factors states “these factors should be periodically reviewed as additional experience
and research information are obtained.”

Further research has been conducted since the publication of ATC-3-06 (e.g. [9, 10, 11, 12, 13]).

ATC-34 [14] identified several intrinsic properties that should affect the strength reduction factor.

Researchers at the University of California in the mid-1980’s [15, 16] proposed the R-factor

should be composed of three separate factors, as described in ATC-19 [4], having the following

relationship:

R=R, R, Rs (1.1)

where: R, = strength factor, R, = ductility factor, and Rg = damping factor, which was set to 1.0.

Others (Freeman [17], ATC-19 [4], and ATC-34 [14]) have considered the R-factor of a system

to be the product of three factors:
R:RS-R”'RR (12)

where R, = strength factor, R, = ductility factor, and R = redundancy factor. In this formulation,
the redundancy factor, Rg, is associated with the number of plastic hinges that develop before
collapse [18]. Failure occurs when all vertical lines of seismic framing of a redundant, ductile,
seismic framing system have failed. If a structure should collapse when the first hinge initiates, the

system is considered to lack redundancy, resulting in Rr = 1.

The strength factor, R, is the ratio of the maximum ultimate strength, V., and the design

strength, V;, as shown in Fig. 1.2. Nonlinear analysis is used to establish the ultimate strength,

Vin, of a system.

Finally, the ductility factor, R,, is the ratio of the strength required for elastic response to the



Ry= VelVnm
Rs = Vm/V4
}

Figure 1.2: Strength-displacement curves for an elastic and inelastic SDOF system

ground motion, V., to the ultimate strength, V... Hence,

R=R, R, -Rp=-"--%.Rp (1.3)

Information about these three components of the R-factor can be found in ATC-19 [4].

The NEHRP Provisions [2] also takes into account these three components. The R-factor in
this document is the product of the first two components, the overstrength factor, K., and the
ductility factor, R,, which are termed R4 and £, respectively. The ), factor considers the system,
material, and design overstrength of the structure. The redundancy factor, Rg, is considered in the

combination of loads using the factor p:

E=p-Qg+02-Sps-D (1.4)

where E = horizontal and vertical earthquake-induced forces, Qg = effect of horizontal seismic
forces, D = dead load, Sps = design spectral response acceleration at short periods, and p =

redundancy factor.

The parameter p varies with the seismic design category, and ranges from 1 for redundant

systems to 1.5 for non-redundant systems. This penalizes non-redundant systems by increasing the



design force level.

The 1988 SEAOC “Blue Book” [19] uses a similar procedure, based on working stress design. In
the Blue Book, the elastic forces are reduced by a factor called R,, while in the NEHRP provisions,

the elastic forces are reduced by R for design at the ultimate strength level.

The foregoing analytical study considers the response of SDOF oscillators. For the elasto-plastic
SDOF oscillators, the ultimate strength and the design strength are equal to the yield strength V.
For this case, the factor B, = 1. Since the oscillator has only one degree of freedom, the oscillator is
a non-redundant system, and Rg = 1. Therefore, the R-factor given by Eq. 1.2 or 1.3 is simplified
to R = R,. The ductility reduction factor R, in the previous discussion is from now on called the
strength reduction factor, and is simply called the R-factor for convenience. The R-factor relates the
strength required for elastic response to the yield strength associated with a specified displacement

ductility response.

1.2.2 History of R-Factor Models

Much has been published on the strength reduction factor in the literature. Several physically-
based idealizations have been used to gain insight into the R-factors determined for ground motion
records [20]. These physical idealizations were developed in analytical studies of undamped systems
subjected to a small number of pulses. The original observations for short, intermediate, and long
period systems are described in this section, along with six models developed over the last three
decades by Newmark and Hall [21], Riddell, Hidalgo, and Cruz [22], Nassar and Krawinkler [23],
Miranda [24], Vidic, Fajfar, and Fischinger [25], and Ordaz and Pérez-Rocha [26].

The original observations for short, intermediate, and long period systems are as follows [20]:

1. Short period systems:

o Instantaneous change in ground acceleration. For short period systems subjected to ac-

celeration pulses having one incursion and those having discontinuous acceleration, the
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R-factor was estimated as follows [20]. The external force associated with an instanta-
neous change in ground acceleration, §,, is considered to produce work in deforming the
system through the maximum displacementat, v, given by —mij,um, where m is the
mass of the system. The external work done is set equal to the work done in deforming

the elasto-plastic system, resulting in:

_2p-—1
©

R (1.5)

e Preservation of the force. For short period systems subjected to continuous acceleration
functions [20] and for systems with periods less than an empirical limit of 0.0303 s
subjected to ground motions [7, 27], any reduction in strength would result in very large
ductility demands. Hence, the yield strength must equal the strength required for elastic

response, Or

R=1 forallu (1.6)

Thus, for very short period systems the excitation is received as a quasi-static loading.
Even modest reductions in strength result in displacements that are very large compared

with the yield displacement.
2. Intermediate period systems:

e Instantaneous change in ground velocity. It is considered that an instantaneous change
in ground velocity causes a change in the kinetic energy of the system, independent of
the load-deformation relation. The work done in driving the elasto-plastic system to its
maximum displacement is equal to this change in kinetic energy. Equating the work done

on an elasto-plastic system and the change in kinetic energy results in:

R=/2p—1 (1.7)



This is termed the “equal energy rule” and was said to be applicable to intermediate
period systems (having periods between 0.125 to 0.5 s subjected to earthquake ground
motions) [7, 27]. However, this rule is found to be valid only for certain pulses (Section

3.4) and many of the R-factor models that followed do not conform to this idealization.

3. Long period systems:

e Instantaneous change in ground displacement. For an instantaneous change in ground
displacement, —u, ,, the maximum deformation of a long period system, u,,, is indepen-
dent of the load-deformation relation. This is known as the ”equal displacement rule,”

for which the R-factor is given by:
R=ypu (1.8)

This rule was said to be applicable for periods larger than approximately 0.5 s [7, 27]. For
very long period systems, the maximum displacements of elastic and inelastic systems

are equal, and equal the ground displacement.

The six R-factor models considered in detail in this study (Newmark and Hall [21], Riddell, Hidalgo,
and Cruz [22], Nassar and Krawinkler [23], Miranda [24], Vidic, Fajfar, and Fischinger [25], and

Ordaz and Pérez-Rocha [26]) are summarized in the following:

1. Newmark and Hall [21] developed strength reduction factors for elasto-plastic SDOF systems
with damping § = 0.5, 1, 2, 3, 5, 7, 10, and 20% of critical damping based on three ground

motions and pulse excitations, for ductilities 4 < 10. The strength reduction factor is given



Table 1.1: Parameters R* and T* for the Riddell, Hidalgo, and Cruz R-factor model [22]

| Parameter | p=2[p=3[p=4]p=5[p=6|p=7|p=8]
K 2.0 3.0 4.0 5.0 5.6 6.2 6.8
T 0.1 0.2 0.3 0.4 0.4 04 0.4
as a function of the ductility and period of the system:
| 1 0<T<%
—2.513log(\/2p—1
V=T (%) n ooz
V2u—1 L<T<T
“T% T.<T<T,
7 T,.<T<T
7 I, <T <10

where:

° TCL — 27[' d’evvi,ma.z

¢eaag,maz

T, = T, and Ty = 27 52222 are the delimiting periods

® dymaz, Ugmaz, a0d Qg mer are the peak ground displacement, velocity, and acceleration,
respectively,

® by, Pev, and P, are amplification factors applied to dgmez; Vgmaez, a0d Ggmaez, Te-
spectively, to determine ordinates of the elastic spectrum in the displacement, veloc-
ity, and acceleration regions, with ¢.g = 2.73 — 0.45(nf3, ¢ = 3.38 — 0.67Inf, and
beq = 4.38 — 1.04In0.

2. Riddell, Hidalgo, and Cruz [22] used 4 sets of ground motions to develop approximate mean
strength reduction factors for elasto-plastic systems having 8 = 5% and p < 10. They

recommended:

(1.10)

where R* and T* depend on the ductility of the system, as shown in Table 1.1.



Table 1.2: Parameters a and b for the Nassar and Krawinkler R-factor model [23]

l a a b |
0.00 | 1.00 | 0.42
0.02 | 1.00 | 0.37
0.10 | 0.80 | 0.29

3. Nassar and Krawinkler [23] analyzed the inelastic response of elasto-plastic, bilinear, and
stiffness-degrading systems having 8 = 5% and g < 8, using 15 ground motions recorded
in the western United States on alluvium and rock sites. Strength reduction factors were
calculated as the mean of the ratios of elastic to inelastic isoductile strengths. Based on
analytical considerations, strength reduction factors were assumed to have the functional

form

R=[c(u—1)+1]° (1.11)

with the parameter ¢ given by: ¢(T, @) = % + % These functions were fit to the computed
means to obtain values of the parameters a and b, given in Table 1.2, as functions of the

post-yield stiffness, c.

4. Miranda [24] considered 124 ground motions divided in rock, alluvium, and soft soil categories,
for bilinear systems having o = 3%, 8 = 5%, and p < 6. Mean strength reduction factors

were approximated by the function:

R=1+ﬁ%121 (1.12)

where the coefficient ® depends on the soil condition as follows:

(a) For rock sites ® =1+ ﬁ — %ea}p [‘% (lnT — g)z}

(b) For alluvium sites ® =1 + 7—z — Zmexp [—2 (lnT - é) 2]

(c) For soft soil sites @ =1 + % — %,Gemp [—3 (lnTlG. — %)2]

For soft soil sites, Ty a “predominant period of the ground motion” is used in the expression

10



for ®. Miranda defined this period 7, to be the period at which the maximum relative velocity

occurs for an elastic system having B =5%.

5. Vidic, Fajfar, and Fischinger [28, 25] developed strength reduction factor relations based on
the response of bilinear and stiffness degrading (Q-model) systems to records from California,
Montenegro, Chile, and Mexico City. The post-yield stiffness was 10% of the initial stiffness,
© < 10, and viscous damping either was constant (proportional to the mass) or was propor-
tional to the instantaneous stiffness. The proposed R-factor relations for bilinear systems and

5% mass-proportional damping are given by the following bilinear relation:

095 T T
_ 1.35 (,Lt - 11 . T, T. S 1 (113)
. T

where:

o T, =0.75u"2T,

° Ta, — 27r éevvg mazx

¢caag,maa:

® 4y maz and Ugmas are the peak ground acceleration and velocity, respectively
e &., is the acceleration amplification factor (= 2.5)

e ¢., = is the velocity amplification factor equal to 2.0, 1.8, 2.6, and 2.8 for Standard,
U.S.A., Chilean and the soft soils of Mexico City records, respectively, for 5% damping.
In the present study, ¢e, = 1.8 is used for the ground motions recorded in the U.S.A.,
bey = 2.6 is used for the ground motions recorded in Chile, ¢e, = 2.8 is used for the soft

soil Mexico City record, and @, = 2.0 is used for the other records.

6. Ordaz and Pérez-Rocha [26] used 445 ground motions from the Guerrero and Mexico City
Accelerographic Arrays with elasto-plastic systems having § = 5% and p = 1.5, 2, 4, and 8.

They recommended:

€(n)
R=14+(u-1) (ﬂ) (1.14)

dg,ma.x
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where dymer = peak ground displacement, D(T') = elastic displacement response spectrum
computed for the damping considered, andé(x) = 0.388(x — 1)1 . The formula applies for a

wide variety of site conditions (implicit in D(T')), and for damping ratios between 2 and 10%.

These and other researchers (e.g. [29, 24, 23, 26, 22, 25, 21]) have studied the inelastic response of
systems with different damping ratios, stiffness degradation, and ductilities using various numbers
of ground motions records. Some have determined R-factors recommendations based on statistical
analysis of the computed results, obtaining mean strength reduction factors which are dependent
on the period and the ductility of the structure. For example, a structure having a specific period
and strength associated with with a specific ductility response may require R, = 6.4 for one record
and R, = 3.8 for another record resulting in a mean R-factor R, = 5.1. Therefore, R, = 5.1 would
result in a very conservative design if the first record shakes the structure, and in a non-conservative
design that could potentially result in failure if the second record shakes the structure. Hence, R,

is a characteristic of the structure in relation to the ground motion.

1.2.3 Response of SDOF Systems to Pulses and Ground Motions

Several researchers have considered the effect of various pulses on the response of SDOF systems
[5, 6, 7, 30, 31, 20, 32, 33]. These pulses have been described as elementary forces, explosive-type
loads, pulse-type forces [5], pulse excitations or pulse forces [6], and impulsive loads (7] in the
literature. As summarized in Table 1.3, an early study on undamped elastic response to simple
pulses was by Jacobsen and Eyre [5], elasto-plastic inelastic response was considered by Biggs [33],
and a more thorough treatment of inelastic response was presented by Veletsos [34, 20, 31, 30, 32].
As shown in Table 1.3, these studies considered a limited variety of pulses [33, 20, 30, 32] or

emphasized elastic response [5, 20].

Researchers have long been aware of similarities in the response of single-degree-oi-
(SDOF) systems to ground motions and to pulse-type excitations (e.g. [30, 20, 31, 32]). Investigators

recently have used pulses to represent near fault ground motions [35, 36, 37, 38, 39, 40]. Other

12



Table 1.3: Abstract of previous work

Researchers Pulses Load -deformation| Damping
response (% of critical)
More Y cycle sine pulses, triangular pulses, Elasti
Jacobsen & than 30 exponential pulses, SDOIf‘: 0
Ayre’ pulses: skewed-versed sine pulses, systems
step pulses, pulses with rest period.
s Elastic and
Biggs 1 /A D/ Elasto-Plastic 0
SDOF systems
14 cycle vel. pulses, :
Around displ. pulses with partial Elastic 0, 5, 10,
30 IECOVETY, ] SDOF 20, 50,
pulses: %2 cycle displ. pulse, systems 100
full-cycle disp. pulses,
Veletsos & Y cycle accel. pulses
Newmark®
N h‘vﬁq W Elasto-Plastic
SDOF 0, 10
N N/ systems
5 different
nonlinear SDOF
Veletsos*° systems, Elasto- 0
Plastic 1,2,3 DOF|
systems
Veletsos & Elasto-
Vann®2 Plastic 0
1,2,3,5 DOF
systems




investigators have studied large numbers of ground motions to determine mean or approximate
strength reductipn factors to obtain the strengths associated with constant ductility demands (e.g.
[11, 24, 23, 26, 27]). |

Observation of computed response indicates that only a few cycles of ground motion cause
yielding in many of the systems of practical interest [41]. These cycles describe a pulse of irregular
form over a short interval of the ground motion and of sufficient intensity to cause yielding in a
given structure [20, 31, 34, 42]. The equal displacement, equal energy, and equal acceleration rules
were established first for pulses and were then applied to ground motions based on similarities
between pulses and ground motions [30, 20, 31, 32, 43, 44]. Thus, it should not be surprising that
the R-factors determined for pulses resemble those determined for ground motions. Even though
the response of a system subjected to a ground motion and a simple pulse are different, it may be
noticed that the R-factor obtained for a ground motion is very similar to the R-factor obtained for a
particular pulse. The following three conditions are satisfied for R-factors of elasto-plastic systems

under ground motions and simple pulses:

1. R =1 for the elastic response (u = 1) for all periods.
2. R = u for long period systems.

3. R =1 independent of the ductility for very short period systems. Ground motions and several

of the pulses explored in this thesis follow this rule.

Sewell [45] found that the damaging characteristics of numerous ground motions can be separated
into two distinct components: (1) an elastic contribution, given by the elastic pseudo-acceleration
spectrum, and (2) a strength reduction factor, R, applied to the elastic spectrum to determine
the strengths of nonlinear oscillators that result in constant ductility responses. A systematic
dependence of R-factors on earthquake magnitude and distance could not be identified, nor could a
systematic dependence of R-factors on record duration be identified. Thus, one may conclude that

R-factors of ground motions are not dependent on the ground motion waveform to the extent that
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the ground motion waveform may vary systematically with earthquake magnitude and distance and
the duration of the record. Therefore, inelastic response can be considered in the present study of
R-factors applicable to elastic spectra for ground motions selected without particular regard as to

the source magnitude, epicentral distance, or record duration.

1.3 Objectives and Scope

1.3.1 Objectives

The main objectives of this study are:

1. To understand the inelastic response of SDOF systems subjected to simple pulses.

2. To develop an understanding of the strength reduction factors associated with various pulse

shapes.

3. To develop and refine the observation that pulse R-factors may be used in conjunction with
elastic response spectra to estimate the inelastic spectra associated with earthquake ground

motions.

4. To identify the applicability and limitations of using pulse R-factors to estimate inelastic
response spectra with regard to the duration and frequency content of the ground motions

and the presence or absence of near-fault forward directivity features.

5. To understand the applicability of using pulse R-factors to estimate peak displacements and

interstory drift indices of regular multistory buildings subjected to earthquake ground motions.

1.3.2 Scope and Limitations

The results of this study are strictly valid only for the 15 ground motions, 24 pulses, and the range

of periods considered, although it is believed that the basic findings are more generally applicable.
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Parameters that may affect the design and response of more complex structures (e.g. bridges
and buildings), such as redundancy and overstrength, are not explicitly addressed in this study.
The applications to MDOF systems that are considered assume structural behavior dominated by
flexural deformations in the plane of the frame. Effects of torsional behavior and vertical ground

motions effects were not considered.

1.4 Organization

This report is organized as follows: Chapter 2 introduces the concept of identifying the cycles
contained in the ground motions that cause SDOF systems to reach their peak responses, and
compares peak responses to these cycles with peak responses computed using the complete ground
motion records. Chapter 3 focuses on the inelastic response of elasto-plastic SDOF oscillators
subjected to 24 simple pulse waveforms. The strengths and corresponding strength reduction factors
required for constant ductility responses are discussed, as are the concepts of equal energy, equal
displacement, and preservation of force. Chapter 4 presents the technique for estimating inelastic
response spectra for elasto-plastic SDOF systems subjected to strong ground motions. Chapter 5
compares the isoductile response spectra generated using pulse R-factors with those determined
using the R — u — T relations recommended by other investigators, for elasto-plastic, bilinear,
and stiffness-degrading oscillators. Chapter 6 introduces the use of pulse R-factors for estimating
the peak response of MDOF systems subjected to ground motion excitations. Estimates of peak
roof displacements and interstory drift indices obtained using pulse R-factors and other R—p — T
relations are compared with the peak values determined by nonlinear dynamic analysis of the MDOF

systems. Chapter 7 presents conclusions and recommendations for future research.
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Chapter 2

Record Segment Identification in

Earthquake Records

2.1 Introduction

Observations of computed response indicate that only a few cycles of ground motion cause yielding
in many simple systems of practical interest [41]. These cycles describe a pulse of irregular form
over a short interval of the ground motion record and of sufficient intensity to cause yielding in a

given structure [34, 20, 31].

Bonelli [42] pointed out that the main non-linear incursions are closely related to long pulses
in the records, and identified the acceleration pulses of six ground motions that reproduced the
inelastic response of a 10-story reinforced concrete structural wall building. According to Bonelli,
there are certain segments consisting of portions of the complete acceleration history of the record
that produce the maximum inelastic responses. The problem is that, in general, the occurrence

time of the maximum displacements as well as the pulse shape are not known a priori.

In the same year, Bozorgnia and Mahin [37] indicated that inelastic demands in near-source

records are due to long period pulses contained within the records, and that idealized pulses may
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be used to approximate the inelastic response due to the entire record.

In this chapter, the determination of the portions of complete accelerograms that produce max-
imum inelastic deformation is undertaken and results are presented graphically. Comparisons be-
tween the response of systems to whole ground motion records and to pulses within the records are

also presented.

2.2 Peak Response of SDOF Systems to Ground Motions

This section identifies: (1) the occurrence time of maximum displacements of SDOF elasfo—plastic
systems having various periods and ductility demands subjected to 15 ground motions, (2) the
record segments that produce the peak displacements, and (3) comparisons between the responses
of the systems subjected to the complete ground motions and subjected to the record segments

within the record that produce maximum displacements.

2.2.1 Identification of Peak Response Occurrence Time of SDOF Sys-

tems Subjected to Ground Motions

In order to identify the occurrence time of the maximum inelastic responses, elasto-plastic SDOF
systems with 5% of critical damping are studied when subjected to 15 ground motions. These
recorded ground motions were selected from those used in FEMA-307 [46]. Three categories of
motions were defined: Short Duration (SD), Long Duration (LD), and Forward Directive (FD).
Five records were selected for each category (Table 2.1). Associated with each record is an identifier
name, an identifier number, the origin of the record and date, the peak ground acceleration relative
to the acceleration of gravity, magnitude, and characteristic period, T, which ranges from 0.2 to 2

s over the 15 records.

During the ground motion actions, the SDOF oscillators reach a peak displacement that may

involve inelastic response or just elastic response. This peak may be either in the first or third
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Table 2.1: Properties of recorded ground motions and their identifiers

] Identifier | No. | Earthquake Date* femez | Magnitude | Ty (s)
SD | WN87TMWLN.090 | 1 | Whittier Narrows 1/8/87 0.175 My =59 0.20
SD | BB92CIVC.360 | 2 | Bigg Bear 28/6/92 0544 | Mz =65 | 040
SD | SP88GUKA.360 | 3 | Spitak 7/12/88 0207 | Mw =68 | 0.5
SD | LP89CORR.090 | 4 | Loma Prieta 17/10/99 0.478 My = 6.9 0.85
SD | NR94CENT.360 | 5 | Northridge 17/1/94 0221 | My =67 | 1.00
LD | CHS5LLEO0.010 | 6 | Central Chile 3/3/85 0.711 My, =738 0.30
LD | CHS85VALP.070 7 | Central Chile 3/3/85 0.176 M, =178 0.55
LD | IV40ELCN.180 8 | Imperial Valley 18/5/40 0.348 Mp =6.3 0.65
LD | LN92JOSH.360 9 | Landers 28/6/92 0.274 My =74 1.30
LD | MX85SCT1.270 | 10 | Michoacan 19/9/85 0.171 | Mw = 8.0- 8.1 | 2.00
FD | LN92LUCN.250 | 11 | Landers 29/6/92 0.733 My =74 0.20
FD | LP89SARA.360 | 12 | Loma Prieta 17/10/89 0.504 My =6.9 0.40
FD | NR94NWHL.360 | 13 | Northridge 17/1/94 0.589 Mw = 6.7 0.80
FD | NRO4SYLH.090 | 14 | Northridge 17/1/94 0604 | Mw =67 | 0.90
FD | KO95TTRI.360 | 15 | Hyogo-Ken Nambu 17/1/95 | 0.617 My = 6.9 1.40

* day/month/year
v, 1 v,
. — , >
19z u u ) uy u
2 -Vy 2 -Vy

COMPLETE ': CYCLE

INCOMPLETE ': CYCLE

Figure 2.1: Yield strength-displacement cycles of elasto-plastic systems
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quadrant; the discussion below assumes the peak displacement is in the third quadrant. The
motion preceding the peak displacement u; in Fig. 2.1 begins at u; in the case of a “complete” 1/2
cycle (yield strength V, is reached), or u; in the case of an “incomplete” 1/2 cycle (yield strength
is not reached). The displacements u; and u; occur at times ¢; and 2, respectively. The “complete
1/2 cycle” of Fig. 2.1 refers to the cycle that starts by unloading from a yield condition (uz, V)
and finishes at the maximum negative displacement (uz, —V}) without any reversals in the middle
of the cycle. The “incomplete 1/2 cycle” refers to the cycle that starts at a point 1" of maximum

displacement without yielding and finishes at (uz, —V;), without any reversals between u; and us.

A set of 150 systems was studied for each ground motion, consisting of 15 periods ranging from
0.04 to 3 s and 10 strengths ranging from 0.1 to 2 times the product of the mass, m, and peak
ground acceleration, @y mq;. Response time histories were generated using the computer program
NONSPEC [47]. For each of the systems with non-linear behavior, the 1/2 cycle (complete or
incomplete) that contained the peak displacement (positive or negative) was identified together
with the initial time #; and final time t,, corresponding to the displacements u(or u'l) and us.
It was observed that the interval of time from ¢; to t; was very similar for all systems for each
particular ground motion. During this segment of time, the displacement of most of the systems
that reached yield strength went from the prior peak value u;(or u;) to the peak value u; without

any reversal.

Table 2.2 shows the times at which the peak ground acceleration, agmqs, and peak ground
velocity, Vg maz, of each ground motion record are reached. The table also shows the minimum time,
min (t;), and maximum time, maz (), among all the ¢; and ¢; values obtained for all systems that
have complete or incomplete 1/2 cycles, where multiple min (t1) — maz (t2) ranges are shown, each
describes the interval over which most of the 150 oscillators reached their peak displacements. It
so happens that records having only one interva of time have the peak ground acceleration and
round velocity reached within that interval, while records having two intervals of time have
the peak ground acceleration reached in one interval and the peak ground velocity reached in the

other interval. Of all the durations of ground motion considered (in some cases larger than one
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Table 2.2: Time parameters for peak response to each ground motion

Ground t(agmaz) | t(Vgmaz) | min (t1) — maz (t2) | (t1 — t2) e
motion (s) (s) (s) (s)
WN87MWLN.090 4.12 4.08 3.98-4.22 3.80-4.40
BB92CIVC.360 5.10 5.05 5.02-5.5 4.80-5.72
SP88GUKA.360 10.48 10.49 10.34-11.12 10.12-11.32
LP89CORR.090 4.04 3.96 3.84-4.62 3.60-4.80
NR94CENT.360 8.92 9.80 8.7-9.38, 9.54-10.68 8.50-10.92
CHS5LLEO.010 43.34 41.43 43.5-44.22, 41.3-42.28 41.12-44.40
CHS85VALP.070 26.62 29.30 26.4-26.9, 28.54-29.5 | 26.20-29.72
IV40ELCN.180 2.12 2.16 1.78-2.5 1.50-2.72
LN92JOSH.360 25.98 27.48 | 25.56-26.42, 26.68-27.72 | 25.32-27.92
MX855CT1.270 58.08 58.44 58.48-60.1 57.8-60.32
LN92LUCN.250 10.37 10.39 10.38-13.02 10.12-13.20
LP89SARA.360 7.34 6.28 6.24-8.18 6.00-8.40
NR94NWHL.360 4.32 5.34 4.04-5.16, 5.32-6.14 3.80-6.32
NR94SYLH.090 4.08 6.48 3.86-5.48, 6.14-7.7 3.60-7.92
KO95TTRI.360 5.83 6.28 5.29-6.69 5.12-6.92

minute), only a small interval of time, with duration less than 4 seconds, is really significant for the

oscillators considered. The meaning of the last column in Table 2.2 is described in Section 2.2.2.

2.2.2 Response to Ground Motion Recorded Segments

The maximum displacements of the structures that occur in the intervals of time min (t;) —maz (t3)
identified in Table 2.2 are the ones of interest for the design of structures. Perhaps, if the main
cycle that produces the maximum inelastic responses is known, it may be a suitable substitute for

the ground motion for design purposes.

The identification of the timing of these record segments resulted in the values min (¢;) and
maz (t3) in Table 2.2. Considering that the cycles were calculated only for systems having strengths
ranging from 0.1 up to 2m - @y mq, and periods from 0.04 to 3.0 s, a margin of roughly 0.2 s was
considered in identifying the limits of min (¢;) and maz (t7) to take into account systems with
smaller or larger strengths; therefore, the time segment of the record with interval (min (1) — 0.2

s, maz (t2) + 0.2 s) is set to be (t1 — t2) 4.

in Table 2.2. Fig. 2.2 plots the record segment of each
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ground motion record which is contained in the interval (¢; — t3) Comparisons between the

cycle®
responses of the systems to the records and to the record segments comprised in (¢; — t2) cycle AT€

presented in this section in terms of the strengths and reduction factors.

2.2.2.1 Isoductile Strength Parameter

The inelastic response spectra for systems having periods from 0.04 to 3 s and strengths to result
in ductility demands equal to 1, 2, 4, and 8 subjected to the ground motions and to the pulses were
calculated using the computer program PCNSPEC [48], a modified version of NONSPEC [47]. For
a given period, the strength-ductility relation is not necessarily monotonic since the same ductility

may result for different strengths; the largest strength required to achieve the specified ductility

was retained in cases where different strengths result in the same ductility.

Figures 2.3 to 2.5 compare the response spectra of elasto-plastic systems having ductility de-
mands of 1, 2, 4, and 8 for the SD, LD, and FD records (Table 2.1).The spectra plot the dimensionless

strength parameter, 77, defined as the ratio

n(p,T)= YD) (2.1)

m - Qgmaz

where:

n(u,T) = strength parameter of a system with ductility ¢ and natural period T

V,(u, T) = yield strength of a system with ductility 4 and natural period T

e m = mass of the system

@gmac = peak ground acceleration

For each record, two strength spectra are plotted. The strengths required for constant ductility

responses to the record, n,, and the isoductile strengths 1, for the pulse of each record over the
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Figure 2.3: Strength response spectra for systems subjected to the records, 7., and to the pulses,
Tp, for the pulses defined in Fig. 2.1 for the Short Duration motions
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interval (¢; — t2) ., are shown in Fig. 2.1. Focusing on the elastic strength response, in some cases,
ne(u = 1,T) is very similar to n,(u = 1,T) (e.g. NR94CENT.360 and NR94SYLH.360 records) and
in other cases, is very different (e.g. MX85SCT1.270 and KO95TTRI.360 records). Considering the

inelastic strength responses, for u = 2, 4, and 8, similar trends can be found between 7, and 7, in

the short and long period ranges of the spectra. In the intermediate period range, the differences

are larger.

2.2.2.2 Strength Reduction Factor

The strength reduction factor, or R-factor, is given by the ratio

R T) =

o V,(u=1,T) = strength required for elastic response of a system having natural period T

o V,(u,T) = yield strength of a system having ductility 4 and natural period T

Figures 2.6 to 2.8 present values of R,, the R-factor spectra for the systems subjected to the SD,
LD, and FD records, respectively, and values of R,, the R-factor spectra for the systems subjected
to the pulses ranging (t; — ?2) ., in Fig. 2.1. It can be observed that, for short period systems, the
R. and R, factors are fairly similar, while for intermediate and long period systems the R-factors
are quite different, especially for u = 8; in general, the strength reduction factors generated by the

pulses are smaller than those computed for by the complete records.

2.2.3 Limitations

In this chapter, many of the systems studied reached yielding in one or two cycles of the ground

motion. However:
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e Not all of the systems reach the peak ductility response within the same interval of the motion.

e Systems with different characteristics may reach the peak ductility response in different in-

tervals, and these intervals are not known a prior:.

o The shape and duration of the intervals are erratic, irregular, and unpredictable over their
entire set of records, even though for a given record nearly all systems reached their peak

ductility in a narrow segment of the ground motion record.

2.3 Summary

Only a few cycles of ground motion cause yielding in many of the systems studied. These cycles
define a segment of the ground motions characterized by its short duration and irregular shape,
and produce p'eak ductility demands at consistent times that can not be predicted a priori. The
pulses often are a poor substitute for the records since the associated elastic and isoductile strength
spectra differ. Compared to the strength response spectra, the R-factors of the pulses are better
approximations to the R-factors of the records. Since the occurrence times and pulse shapes are
not known a priori, the use of simple pulse shapes to determine R-factors that may be applicable

to the elastic response spectra determined for the complete ground motion record is explored in

Chapters 3 to 6.
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Chapter 3

Isoductile Strengths and Strength
Reduction Factors of Elasto-plastic
SDOF Systems Subjected to Simple

Pulse Waveforms

3.1 Introduction

To better understand inelastic response to complicated waveforms such as the ground motions gen-
erated by earthquakes leads one to consider, as a starting point, the inelastic demands generated
by simpler motions. In this chapter, the inelastic response of elasto-plastic SDOF oscillators sub-
jected to 24 simple pulse waveforms is studied. The waveforms contain linear, quadratic, sinusoidal,
and triangular acceleration components that repeat for not more than several cycles. Similarities
and differences in oscillator response characteristics are presented and organized by a characteris-
tic period. Strengths and corresponding strength reduction factors required for constant ductility

responses are discussed. Response data are compared with expectations based on the concepts of
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equal energy, equal displacement, and preservation of force. Limitations on the applicability of the

equal energy concept are identified.

The eﬁ'ect.of various pulses on the response of SDOF systems (33, 6, 7, 5, 20, 31, 30, 32] has
been considered by several researchers. These pulses have been described as elementary forces,
explosive-type loads, pulse-type forces [5], pulse excitations or pulse forces [6], and impulsive loads
[7] in the literature. As summarized in Table 1.3, an early study on undamped elastic response
to simple pulses was by Jacobsen and Ayre [5], elasto-plastic inelastic response was considered
by Biggs [33], and a more thorough treatment of inelastic response was presented by Veletsos
[34, 20, 31, 30, 32]. As shown in Table 1.3, these studies considered a limited variety of pulses
[33, 20, 30, 32] or emphasized elastic response [5, 20]. The present study considers the nonlinear
response of elasto-plastic oscillators subjected to a broader set of 24 pulses. Strengths to achieve
displacement ductilities, i, equal to 1, 2, 4, and 8 were computed for SDOF oscillators having viscous
damping equal to 5% of critical damping. Similarities and differences in the required strengths and
corresponding strength reduction factors are discussed. The applicability of the equal displacement
rule [34] and rules based on preservation of energy [49, 34] and force to the data set are identified.
Chapter 4 identifies a subset of these pulses whose R-factors resemble those obtained from recorded
ground motions, allowing the pulse R-factors to be used in conjunction with site specific elastic

response spectra to obtain estimated inelastic response spectra.

3.2 Methodology

This parametric study addresses the response of elasto-plastic oscillators having viscous damping

equal to 5% of critical damping, for the following conditions:
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Figure 3.1: Acceleration time history of a pulse

3.2.1 Pulse Waveforms

Twenty-four acceleration pulses were used, defined by their shape and duration. The pulses (shown

in Table 3.1) are classified according to four criteria:

1. Pulse shape. Six pulse shapes were defined, using quadratic (qua), sinusoidal (sin), rectangular
(rec), and triangular (tr0, trh, trl) components. The triangular pulse families are named
according to the rise time of the first incursion; tr0, trh, and trl have rise time, ¢., equal to

0, 1/2, and 1 times the duration of the first incursion, respectively.

2. Number of incursions. The trace of the acceleration waveform may alternate between positive
and negative accelerations. A pulse having only positive acceleration is said to have one
incursion. A pulse having two incursions has acceleration in one direction followed by a

reversal in the opposite direction, and so on.

3. Final pulse velocity. If the integral of the pulse acceleration is zero, the pulse is said to be
"balanced” (the motion has zero final velocity). “Unbalanced” pulses have non-zero velocity

for t > t4, where t,4 is the duration of the pulse (Fig. 3.1).

4. Initial acceleration. “Shock” loading refers to pulses with non-zero initial acceleration; ”grad-
ual” loading refers to those with zero initial acceleration. The qua, sin, trh, and trl families
apply loading gradually; the rec and tr0 families are shock pulses (the use of the phrase “shock

loading” in this thesis has no direct relation to the effects of blast loading on structures).
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Table 3.1: Description and classification of acceleration pulses
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The pulses are identified according to the convention family name(number_of_incursions). For ex-
ample, qua(2) refers to a quadratic pulse with 2 incursions, and tr0(5) is a triangular pﬁlse, having
five incursions, with ¢, = 0. Appendix A shows the equations defining the acceleration histories of
the 24 pulses used in this study and the figures of the acceleration, velocity, and displacement time

histories of each pulse versus the dimensionless time parameter ¢/%4.

3.2.2 Periods

One-hundred and seven periods, T, were considered. The first 100 values were distributed geomet-
rically to provide greater resolution in the short period range. The geometric ratio, r, of a set of N

points is given by:

= cap{ 1)~ i)} 3.)
where k = T'/t4, k1 and &y are the first and the N* values of , respectively. Intermediate values
k; are given by k; = ri*~lkn. The first 100 periods were defined by x; = 0.01 and £y = K100 = 15.
These are supplemented by 7 additional periods corresponding to « = 20, 25, 30, 40, 60, 80, and
100. Accordingly, the duration of the pulse is constrained to t¢q € [0.017,1007], where T is the

natural period of vibration of the system calculated using the initial stiffness.

3.2.3 Displacement Ductility

Strengths required for each SDOF oscillator to achieve specified ductilities (hereinafter referred to
as isoductile strengths) were computed for displacement ductilities p = 1, 2, 4, and 8 as shown in
Section 2.2.2.1. Isoductile strengths were computed for two cases. “Forced response” refers to cases
in which the specified ductility demand is reached during the pulse excitation (0 < t/tg < 1), while
“overall response” refers to cases in which the specified ductility demand occurs at any time during

or after the excitation (0 < t/tq < o), following the terminology of Ref. [6].

A consistent basis was desired for interpreting the isoductile strength data. The pulse duration,
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Figure 3.2: Comparison of elastic strength, (a) 7 vs. T/tq4, and (b) 1 vs. T/T,, for the quadratic
family

t4, did not organize the data well, because the pulses had varied numbers of incursions. Instead, it
was found that the data were better organized with respect to a parameter termed the characteristic
period, T,. For the families sin, qua, rec, trh, and trl, the duration of the pulse having a complete
cycle (2 incursions) defines the characteristic period (T, = tg). A different convention is used for
the tr0 family, for which T, was set equal to the duration of the pulse having 3 incursions. The
characteristic period is the same for all pulses of the same family. For example, T, equals the
duration of the pulse sin(2). The pulse sin(1) has half a cycle, and T, = 2¢4 for this pulse.” This

procedure, when applied to all pulses, results in the ratios T/t shown in Table 3.1.

The isoductile strengths for systems with = 1 subjected to the qua pulse family are plotted
in Fig. 3.2. The strengths have little consistency when plotted against /¢4, but similarities are
apparent when plotted against T/T,. The curves show similar trends for small and large period

ratios T/T,; these trends are also present for larger ductilities. While the characteristic period was
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useful for organizing the results, the response spectra were so varied that it was not possible to
define the notions of short, intermediate, and long period systems using consistent numerical limits

for the set of 24 pulses.

3.3 Analytical Results

The strengths and strength reduction factors associated with the computed isoductile response data

are presented in this section.

3.3.1 Isoductile Strength Spectra
3.3.1.1 General features

Figures 3.3 and 3.4 plot the dimensionless strength parameter 7 given in Eq. 2.1 vs. T/T, for the
gradual and shock pulses, respectively, for 4 = 1, 2, 4, and 8. Overall and forced responses are

plotted with different line types in the figures. It can be observed that:

o The largest strengths are required for elastic behavior. As ductility increases, strength curves
become smoother and decrease in magnitude. The largest reduction in strength is in the
vicinity of T = T, for all 24 pulses. Large reductions also occur for short period systems
(T/T, < 0.5) subjected to shock pulses. For any pulse, the strength reduction tends to be

larger for an increase in ductility from 1 to 2 than for increases from 2 to 4 or from 4 to 8.

e The “forced” isoductile strengths are equal to the “overall” isoductile strengths for many
values of T/T,. For some intervals of T/T,, the forced strengths are smaller than the overall
strengths. For u = 1, the point of divergence is T'/T, = 1 for the qua, sin, trh, and rec families
and for the tr1(2) pulse. For the trl1(1) pulse, forced and overall responses differ for all T/T,
(the differences are too small to be seen in much of Fig. 3.3). The point of divergence for the

tr0 family occurs at values of T < T, that depend on the number of incursions.
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Figure 3.3: Strength parameter, n, vs. T/T), of systems with u = 1, 2, 4, and 8. Forced and overall
responses to gradual loading pulses
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Figure 3.4: Strength parameter, n, vs. T/T), of systems with u = 1, 2, 4, and 8. Forced and overall
responses to shock loading pulses
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o The largest differences in magnitude between forced and overall strength spectra are found
for p = 1, particularly for pulses with one incursion. The greater the ductility, the lesser is

the difference.

e Peak spectral isoductile strengths occur at the same value of T'/T, in 94 out of 96 cases (24
pulses x 4 ductility values = 96 cases); the exceptions are trl(1) and tr0(3) for x = 1. The
largest isoductile strengths for overall responses equaled those for forced responses in 81 of

the 96 cases.

Strength spectra for each pulse family have distinct signatures that identify and differentiate each
other. The largest differences in the strength spectra aré found for T/T, < 1. In this region
the shape of the pulse is important and determines the behavior of the systems. Peak isoductile
strengths are located in the region of 0 < T'//T, < 1. Peak isoductile strengths for u > 4 occur for
T/T, ~ 0 for all pulses except the rec family and tr1(2). The tr0(1) and tr0(2) pulses aﬁ‘e the only
pulses for which peak isoductile strengths occur for T/T, ~ 0 for > 1. As can be seen in Fig.
3.2b, as the number of incursions increases, the value of T'/T, at which the peak isoductile strengths

occurs tends to umity for 4 = 1.

The number of incursions for a given family of pulses has a significant effect on the required
elastic strength, especially in the region near T/T, = 1. The larger the number of incursions, the
higher is the strength necessary for elastic response (see Fig. 3.5a), due to the development of
resonance. The elastic spectra increase as the number of incursions increases, and the spectra often
have similar shapes, with peaks and troughs occurring at nearly the same periods. However, the
number of incursions has little effect on the isoductile strengths for p > 2 (Fig. 3.5a). The peak
spectral isoductile strengths shift to lower periods as the number of incursions of the pulse decreases

and as the ductility increases.
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Figure 3.5: Overall response of systems with p = 1, 2, 4, and 8 subjected to quadratic pulses, (a)
Strength parameter, 7, vs. T'/Ty; (b) R-factors vs. T/T,
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3.3.1.2 Short period systems

In Figs. 3.3 and 3.4 it can be seen that the pulse families sort into three groups with regard to the

isoductile strengths of short period systems (T'/T, < 0.5):

1. The gradual (qua, sin, trh) families and tr1(1) pulse: isoductile strengths tend to unity as
T/T, — 0, and small differences in strength cause large differences in ductility response (Fig.
3.3). As T/T, — 0, the yield strength approaches the product of the mass and the peak

acceleration of the pulse, m - agmaz-

2. The shock pulse families (rec and tr0): the strength parameter tends to unity for u = 8, and
tends to an average of 1.848 for p = 1 as T/T, — 0 (Fig. 3.4). Closed-form solutions for
undamped elastic systems subjected to shock loading show the strength parameter tends to
2 as T/T, — 0 [33, 7]. Figure 3.4 shows that the isoductile strengths are always higher for
shock loading than for gradual loading as T/T, — 0.

3. A hybrid pulse, tr1(2): this gradual loading pulse is discontinuous at t4/2, resulting in a trend

in between the two trends mentioned above.

3.3.1.3 Long period systems

The impulse-momentum principle is known to be applicable to long period systems (T > T,). This
principle holds that when the period of the system is large relative to the duration of the pulse, the
system experiences the pulse as an impulse of magnitude, I,, where I, is equal to the integral of the
pulse acceleration over its duration [6]. The overall isoductile strengths tend to zero as t4/T — 0
at a rate that depends on the ductility and on the integral of the pulse, independent of the pulse
shape. Pulses with one incursion and amplitudes, agmas, set to 3/2, 7/4, 1, 1, 1/2, and 1 for the
qua(1), sin(1), trh(1), tr1(1), rec(1), and tr0(1) pulses, respectively, have area equal to ¢4/2, where
t; is constant for all pulses. Accordingly, not only do the elastic responses have the same initial

slopes (with respect to t4/T) as tg/T — 0, but the strengths for each ductility value have equal
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slopes, with the slope decreasing as ductility increases. This is explained as follows. The work done

in deforming an elasto-plastic system, E, is given by [31]:

Ey=—2-(2u—1) (3.2)

where w is the circular frequency of the system (w = 27/ T) An elastic system responding to an
impulse would have kinetic energy, E, given by Ex = I2 2m. Equatin_g E; to Ej for an impulse

having area, I, allows the required yield strength V,, to be expressed as:

2r I

= T =T (33)

vy
Equation 3.3 applies for ¢;/T" up to about 0.25 for the 24 pulses considered. This limit is consistent
with results reported in [6] for linear elastic systems, for which Equation 3.3 applies with u = 1.
Since the systems in the present study are damped, the approximate strength (Eq. 3.3) is an upper
bound. If pulses are balanced, the integral of the pulse acceleration is zero and the elastic and
inelastic strengths have slopes equal to zero as t;/T — 0. If bilinear systems are considered, having

post-yield stiffness equal to o times the initial stiffness, the work in defroming the system to a peak

displacement u,, = puy, Es, is given by:

V2 \
By=L (21— 1+ a(p - 1)?) (3.4)

Equating E, to E\ allows Equation 3.3 to be generalized to:

27 I,

Vo= —
’ T\/.‘Z/,L—1+a(,u—1)2
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3.3.2 Strength Reduction Factors

The strength reduction factor, R, also termed response modification factor, response ratio, and
inelastic acceleration response ratio in the literature, is the ratio of the strength for 4 = 1 to the

isoductile yield strength, V, , as shown in Eq. 2.2 or, equivalently

R(u,T) = Eig—(;lT-)T—) (3.6)

Strength reduction factors are plotted in Figs. 3.6 and 3.7 for the gradual loading and shock loading
pulses, respectively. R-factors obtained from the forced and overall isoductile strengths are plotted

in each figure using different line types. Similar features can be observed in the spectra:

o The higher the ductility value is, the larger is the R-factor. The R-factor necessarily is equal
- to unity for u = 1, for all pulses. R-factors tend to asymptotic limits for short and long period

systems.

e For each family of pulses, the larger the number of incursions, the larger the R-factor is in
the region of T ~ T,. R-factors are not sensitive to the number of incursions for 7/T, < 0.5,
but are sensitive for longer periods. Thus, the R(u,T) relation depends on the number of

incursions when T'/T, > 0.5.

o R-factors for intermediate periods systems are very similar for pulses having the same number

of incursions.

e Differences between R-factors for forced and overall responses are larger and extend over larger
period ranges for unbalanced pulses (non-zero velocity at t = ¢5). The largest differences are

found in the intermediate period region, for T/, > 0.5.

e Peak spectral R-factors occur in the region 1 < T'/T), < 100 for all the pulses except tr0(2).

The ratio T/T, at which R-factors are largest decreases as the number of incursions increases.
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Figure 3.6: R-factor vs. T/T, of systems with x4 = 1, 2, 4, and 8. Forced and overall responses to
gradual loading pulses
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Figure 3.7: R-factor vs. T/T, of systems with p = 1, 2, 4, and 8. Forced and overall responses to
gradual loading pulses
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o Peak spectral R-factors can exceed the ductility value for pulses with more than one incursion

when p > 2.

e Peak spectral R-factors differed for forced and overall responses for ,u > 2 in 60 out of 72 cases

(24 pulses and 3 ductilities).

3.4 Applicability of the Newmark and Hall Observations

Several physically-based idealizations have been used to gain insight into the ‘R-factors obtained
from ground motion records. These physical idealizations were developed in analytical studies
of undamped systems subjected to a small number of pulses [20]. The pulses uséd in the original
studies (the tr0 family and the trh(2) pulse) were included in the 24 pulses considered in the present
study. The original observations for short, intermediate, and long period systems are described in
Section 1.2.2. In this section the original Newmark and Hall observations are evaluated for the 24

pulses of this study for short, intermediate, and long period systems.

1. Short period systems: Figure 3.8a plots R vs. p for short periods (T/ts = 0.01) for forced vi-
bration and overall responses to the 24 pulses. It can be observed that the R-factors for forced
and overall response are the same for short period oscillators, because maximum response al-
ways occurs at t < t4. The R-factors in Fig. 3.8a follow three trends. Oscillators subjected to
shock pulses have R-factors that follow the equation of instantaneous acceleration change [20]
(Eq. 1.5). For the gradual loading pulses (the qua, sin, and trh families and tr1(1) pulse),
the R-factor is nearly independent of ductility, since R & 1. As the ductility increases, the
R-factors diverge slowly from unity, for small T/¢4. Finally, the pulse tr1(2) follows a path
that is intermediate between the two trends described above. This suggests that R-factors for

short period systems have upper and lower bounds that appear to be given by Egs. 1.5 and

1.6, respectively.
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Figure 3.8: R-factor vs. ductility u: (a) Forced and overall responses of systems having 7'/t = 0.01,
(b) Forced response of systems having T'/ts = 8, (c) Overall response of systems having T/ts = 8,
and (d) Forced and overall responses of systems having T'/ts = 100
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2. Intermediate period systems: The equal energy rule was said to be valid for intermediate
period systems subjected to pulses having a single incursion and for systems whose elastic
pseudo-velocity in response to pulses having two incursions and the tr0(3) pulse is from about

0.8-1 times the maximum ground velocity [20].

In the intermediate period range no distinct trends are apparent except for a very narrow
period range where differences in the response of balanced and unbalanced pulses determine
the strengths of the systems. Figure 3.8b plots R vs. p for the forced vibration response
of systems for T/t = 8. It can be observed that the R-factor is independent of the pulse
shape; the R-factors for all pulses follow the trend given by Eq. 1.8 (equal displacement rule).
Figure 3.8c plots R vs. p for the overall response of systems for T'/t; = 8. In this case, the
data plot along two curves: balanced pulses follow the equal displacement rule (Eq. 1.8),
while unbalanced pulses follow the equal energy rule (Eq. 1.7). These trends depend little on
the pulse shape. Unbalanced pulses are received as an instantaneous velocity change when
" the overall response is considered. The R-factors deviate slightly from Eq. 1.7 because the

systems studied here are damped.

The range of applicability of Eq. 1.7 to the overall response to unbalanced pulses depends
on the shape of the pulse, the number of incursions, and the ductility of the system. The
larger the number of incursions and the larger the ductility, the narrower is the period range
over which Eq. 1.7 applies. The range of applicability becomes more restricted as ductility
increases. For example, the region of applicability of equal energy rule for the unbalanced pulse
qua(l) is T/ts€[1.2 — 30] if u = 2, while T/t4€[1.6 — 20] if 4 = 8. For qua(5), T/ts€[4 — 20]
for 4 = 2, and T/ty¢[5 — 10] for u = 8. The R-factors for the balanced pulses do not exhibit

any period region where the equal energy rule applies.

3. Long period systems: Figure 3.8d plots R vs. u for long period systems (T/tq = 100*), for all
pulses. The data follow a straight line corresponding to R = u. The maximum deformation

is independent of the system behavior (elastic or elasto-plastic), type of loading (gradual or
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shock), and type of response (forced vs. overall). Thus, the equal displacement rule (Eq. 1.8)

is applicable to all 24 pulses for long period systems.

3.5 Summary

Based on the study of a large number of elasto-plastic SDOF oscillator responses to 24 simple pulses,

the following conclusions result:

1. Isoductile strengths of short period systems are higher for shock loading than gradual loading

pulses. Strengths are sensitive to the shape of the pulse for T' < T,.

2. The impulse-momentum principle is applicable to the elastic and inelastic response of long

period systems, which experience the pulse as an impulse, independent of pulse shape.

3. The characteristic period, T}, is an important time parameter that defines the regions of the
spectra where maximum strengths or R-factors are present, with peak strengths located in

0 < T/T, <1 and peak R-factors located in 1 < T/T, < 100.

4. Within any one family of pulses, R-factors depend on the number of incursions, since this
number affects the elastic response substantially but has little effect on inelastic isoductile

strengths.

5. Previous studies that focused on a subset of the pulses considered herein led to the preservation
of the force, equal energy, and equal displacement rules that are widely accepted in earthquake

engineering. The applicability and limitations of these rules for the set of 24 pulses are as

follows:

e The equal displacement rule applies to systems with high T'/T, ratios. The rule is valid

for all pulses considered and for the forced and overall responses, consistent with prior

findings.

1 Except pulse tr0(2), which required T'/t4 = 300 to converge to R = p.
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o The equal energy rule applies only to the overall response of intermediate period systems
subjected to only unbalanced pulses over a relatively narrow period range. The equal
displacement rule is applicable to intermediate period systems subjected to balanced
pulses (overall response) and to both balanced and unbalanced forced vibration responses.
These observations are counter to conventional views, which hold that the equal energy

rule is generally applicable to intermediate period systems.

e Short period systems subjected to shock pulses can be considered to be subject to an
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e The strength required for short périod systems subjected to gradual loading pulses is
approximately m - Ggmas regardless of the ductility level, for the elasto-plastic cases
considered. This is consistent with prior findings that force is preserved in short period .
systems, and relates to the observation that R-factors tend to unity as period tends to

zero. Systems with positive post-yield stiffness are discussed in Chapter 5.
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Chapter 4

Estimating Isoductile SDOF Response

Spectra Using Pulse R-factors

4.1 Introduction

In this chapter a new approach is described for estimating inelastic response spectra for elasto-
plastic SDOF systems subjected to strong ground motions. In this approach, inelastic spectra
are estimated by applying strength reduction factors determined for a simple pulse to the elastic
response spectrum of the ground motion. This approach relies upon similarities in the strength
reduction factors computed for earthquake ground motions and for short duration pulses, indicating
that strength reduction factors exhibit a degree of waveform independence. Based on the ground
motions studied, these findings appear to be equally applicable to short and long duration ground
motions and those having near-fault forward directivity effects.

Researchers have long been aware of similarities in the response of single-degree-of-freedom
(SDOF) systems to ground motions and to pulse-type excitations (e.g. [20, 31, 30, 32]). Investigators

recently have used pulses to represent near fault ground motions [38, 40, 37, 39, 35, 36]. Other

investigators have studied large numbers of ground motions to determine mean or approximate

33



strength reduction factors to obtain inelastic strengths associated with constant ductility demands

(e.g. [27, 23, 24, 11, 26, 50]).

Observation of computed response indicates that only a few cycles of ground motion cause
yielding in many of the systems of practical interest (Chapter 2 and [41]). These cycles describe
a pulse of irregular form over a short interval of the ground motion and of sufficient intensity to
cause yielding in a given structure [34, 20, 31, 42]. The equal displacement, equal energy, and equal
acceleration rules were established first for pulses and were then applied to ground motions based
on similarities between pulses and ground motions [20, 31, 30, 32, 44, 43, 51, 52]. While Chapter 3
identifies some exceptions to these rules, it should not be surprising that the R-factors determined

for pulses resemble those determined for ground motions.

Sewell [45] found that the damaging characteristics of numerous ground motions can be separated
into two distinct components: (1) an elastic contribution, given by the elastic pseudo-acceleration
| spectrum, and (2) a strength reduction factor, R, applied to the elastic spectrum to determine the
strengths of nonlinear oscillators that result in constant ductility responses, referred to as “isoductile
strengths.” A systematic dependence of R-factors on earthquake magnitude and distance could not

be identified, nor could Sewell identify a systematic dependence of R-factors on record duration.

Recognizing that a few cycles of the ground motion dominate the nonlinear response of many
systems of interest, the approach developed in this chapter estimates inelastic spectra by apply-
ing the strength reduction factors determined for a simple pulse to the elastic response spectrum

determined for the ground motion.

To illustrate this for a single case, Fig. 4.1 compares the response spectra of elasto-plastic systems
having ductility demands of 2, 4, and 8 for the NS Newhall record of the 1994 Northridge earthquake
(Table 2.1). The spectra plot the strength parameter, , defined by Eq. 2.1. The strengths required
for constant ductility responses to the record, ., are compared with the isoductile strengths 7, for
a pulse called qua(2) (see Fig. 4.2). The strengths 7, are also compared with the strengths given by

the elastic response spectrum for this record, 7., divided by the strength reduction factors, R,, for
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Figure 4.1: Comparison for NR94NWHL.360 record among the strength response spectra to the
record, 7,, the overall response to the pulse qua(2), 7, and the ratio of the elastic response spectrum

to the record to the R-factor of the same pulse, n./R,(T, = 0.75s). (a) Systems having p = 2, (b)
Systems having u = 4, and (c) Systems having u = 8
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Figure 4.2: Normalized acceleration, velocity, and displacement time histories of the qua(2), qua(3),
and sin(5) pulses
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this pulse, with the duration of the pulse selected to be 0.75 s. Although 7, and 7, are dissimilar,
Fig. 4.1 shows that the ratio 7./ R, provides a very good estimate of 7, for each duAc.tility value.
This example shows that a simple pulse cannot represent the complex information contained within
the ground motion that produces the elastic response spectrum, but the pulse contains sufficient

information to characterize the strength reduction factor.

This chapter explores the possibility of using R-factors obtained from pulses to estimate the
inelastic response spectra of 15 recorded strong ground motions. The set of 24 pulses considered
in Chapter 3 were used together with the 15 recorded ground motions of Chapter 2, selected to
represent short and long durations of shaking and the presence or absence of near-fault forward
directivity conditions. Simplifications developed in this chapter lead to a single quadratic pulse
recommended for all records except the soft soil 1985 Mexico City SCT record, for which a sinusoidal

pulse is recommended.

4.2 Methodology

This section describes the SDOF systems, ground motions, and pulses considered in the study.
Definitions of the strength parameters are provided along with the three error measures used to

identify optimal pulse shapes for estimating the inelastic response spectra.

4.2.1 Systems

Elasto-plastic SDOF systems were considered, having 5% of critical damping and strengths required
to achieve ductility responses u = 1, 2, 4, and 8. The isoductile strengths for each ground motion
were determined at 45 periods, T', between 0.04 and 3 s. The periods were spaced at 0.02, 0.05,
and 0.1 s in the period intervals [0.04 - 0.2], [0.25 - 1], and [1 - 3] s, respectively.

As described in Chapter 3 and in Cuesta and Aschheim [43], strength response spectra were

calculated for the pulses at 107 periods. The first 100 periods were distributed geometrically to
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provide greater resolution in the short period range, using Eq. 3.1 with x; = 0.01 and ky = K100
= 15. These are supplemented by 7 additional periods corresponding to « = 20, 25, 30, 40, 60, 80,
and 100. Accordingly, the duration of the pulse is constrained to ¢4 € [0.017,1007], where T is the

initial natural period of vibration of the system.

4.2.2 Ground Motions

The fifteen recorded ground motions in Chapter 2 and shown in Table 2.1 are selected for this study.
The characteristic period T, was chosen to coincide approximately with the first (lowest period)
peak of the equivalent velocity spectrum and the period at which the transition occurs between the
constant acceleration and constant velocity portions of a smoothed design spectrum fitted to the
elastic spectrum [53, 54, 55]. This period approximately corresponds to the period T used to define
smoothed elastic design spectra in the NEHRP Guidelines [2].

4.2.3 Pulse Waveforms

The 24 acceleration pulses used here are the same ones described in Chapter 3 and in Cuesta and
Aschheim [43]. The pulses, shown in Table 4.1, are classified according to four criteria mentioned

in Section 3.2.1. An index number is added to each cell to identify the pulses in future plots.

Section 3.2.3 showed that the response data were best organized with respect to a parameter
termed the characteristic period of the pulse, Tp. For the families sin, qua, rec, trh, and trl, the
duration of the pulse, ¢4, having a complete cycle (2 incursions) defines the characteristic period
(T, = ta). The characteristic period is the same for all pulses of the same family. For example, T,
equals the duration of the pulse qua(2). The pulse sin(5) has 2.5 cycles, and T, = 2t4/5 for this

pulse.

Three of the 24 pulses studied are of particular significance in the present chapter. Two of these

are the qua(2) and qua(3) pulses, characterized by quadratic rising and descending segments. The
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Table 4.1: Index number of the acceleration pulses *
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+ The number in the lower left-hand corner of each cell indicates the "pulse index number." An
asterisk (*) indicates those pulses having nonzero final velocity.
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initial rising segment, in normalized form is given by

gy _ (At)2 (41)

Qg ,maz td

for 0 < i < <, where @y maqs is the peak acceleration of the pulse, and A = 4 or 6 for each pulse,

1
A
respectively. The third pulse is the sin(5) pulse, with

% —sin <57ri> (4.2)

Qg,maz td

for 0 < f; < 1. The acceleration, velocity, and displacement of these pulses are plotted versus a

dimensionless time parameter, t/t4, in Fig. 4.2. Further details are provided in Appendix A.

4.2.4 Isoductile Strength Spectra

The strengths required for each oscillator to achieve the specified ductilities were determined it-
eratively using the computer program PCNSPEC [48], a modified version of NONSPEC [47], as
discussed in Section 2.2.2.1. The isoductile strengths of the oscillators subjected to the pulses were
computed for two cases. As in Chapter 3, in the case of “forced” response, the duration of the
response over which the ductility demands developed was limited to 0 < t/t; < 1. In the case
of “overall” response, the maximum ductility demands may occur at any time, 0 < t/ts < oo.
Figures 4.3 and 4.4 present the strength response spectra and R-factors for the overall response to
the qua(2) pulse, and the forced responses to the qua(3) and sin(5) pulses.

The isoductile strengths were normalized to obtain the dimensionless strength parameter, n,,
2.1. The estimated dimensionless isoductile strengths #,, are determined using the

pulse R-factor as:

O

where 7, (i = 1,T) is the strength for elastic response to the ground motion, and R, is the R-factor
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Figure 4.3: Isoductile strength response spectra for (a) overall response to qua(2), (b) forced re-
sponse to qua(3), and (c) forced response to sin(5)
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Figure 4.4: R-factor response spectra for (a) overall response to qua(2), (b) forced response to
qua(3), and (c) forced response to sin(5)
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computed for the pulse. For each period 7), linear interpolation was used to determine the pulse

R-factor at the periods (0.04 to 3 s) used to compute n,(u = 1,T).

4.2.5 Error Measures

To determine optimal pulses, comparisons between 1, (Eq. 2.1) and 7, (Eq. 4.3) were performed

for each ground motion and for each pulse over a wide range of T,. Three measures of the error

in the estimated dimensionless strength parameters were developed, so that any conclusions made

with respect to the pulses that minimize error are robust with regard to the error metric. These

measures are particularly sensitive to the differences between 7, and 7, in the short period range,

where strengths are largest. For a given ground motion, gm, ductility demand, d, pulse, i, and

pulse duration, j, the three error functions for the estimated isoductile strength spectra are:

where:

e o 1 & .

omd(6:7) = — 2 IMygma = fya(i: )] (44)
P m=1
\ 1 7 ) 1/2
Byns7) = (= 32 (e = 0ali ) (@5)
P m=1

.. 1 & . .

Brns1) = (32 cop(ruoma = tali))) -1 (45)
P m=1

e n, = number of periods (n, = 45, from 0.04 to 3 s)

e gm = ground motion index number (1 to 15)

¢ d = ductility index number (1 to 3, corresponding to p = 2, 4, and 8, respectively)

e i = pulse index number (1 to 24 for forced response, and 25 to 48 for overall response)
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e j = pulse characteristic period index number (1 to 41 in constant increments of 0.05 s in [0.2

-2.2]s).

Note that other investigators have focused on accurately representing the R-factors. Had the mea-
sure of the error been expressed in terms of the R-factors, the error measure would be particularly
sensitive to differences in the estimated and actual R-factors in the long period range, where the
R-factors are largest. Equations 4.4 to 4.6 focus on minimizing errors in the strength estimate. This
naturally emphasizes the need to provide adequate strength to structures responding nonlinearly,

particularly for the short period structures where the required strengths are largest.

The minimum error for each ground motion, pulse, and ductility value is given by E;m,d(z',j'),
where s = a, b, c refers to the error measures given by Eqs. 4.4, 4.5, and 4.6, respectively; and
7 indicates the period T, that minimizes this error. The error, E;‘m,*(i,i), is the minimum error
for each record and pulse, where the asterisk () indicates an average over the ductility variable.
Figure 4.5 shc;ws E°*, E®, and E° versus T,, for the case of the CH85LLEO.010 record (gm = 6),
using the forced response of the qua(3) pulse (¢ = 13). It can be observed that the curves for p =

8 have minimum values, E§13(13,3), for 7 = 8, which corresponds to T, = 0.55 s.

Figures 4.6a and 4.6b plot EZ,*(i,j') and EY, (1, 7) versus the pulse index number (Table 4.1),
for the LPS9CORR.090 (gm = 4) and the LN92LUCN.250 (¢9m = 11) records. Figure 4.6a shows
that the error measure is smallest for pulses ¢ = 13, 17 and 21, which are the qua(3), qua(4), and
qua(5) pulses, respectively, for the first record, while pulses with one incursion (i = 1 to 6) produce
the smallest error measure for the second record. The best pulse for each ground motion is given by
E;m’*(z, J ), with 2 identifying the pulse that minimizes the error measure over all ductility values,
when the best values of T}, are selected, for the specified ground motion. Hence, using E°, the
optimal pulses are 7 = 21 (forced response for the qua(5) pulse) for the LP89CORR.090 record and
2 = 30 (overall response for the tr0(1) pulse) for the LN92LUCN.250 record when all ductilities are

considered and T, is the remained fixed for each ductility value.
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Figure 4.5: Errors Ef,(13,7) vs. the characteristic period of the pulse, T}, in the estimate of the
response to CH85LLEQ.010 record with the R-factor of the forced response to the qua(3) pulse
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Figure 4.7: Average error, AE* = E;_(i,7), for the estimate of all the records using 24 pulses in
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The error Ef = E;m,*(;', 7) is taken as a reference to gauge the error obtained when simplifications
are introduced to identify a smaller set of pulses in place of the ones that minimize E;m’*(g,j'). For
a given ground motion, gm, pulse, 7, and error measure, the normalized error given by the ratio
NE;. .(i,7) = E}. .(4,7)/ E; indicates how good the estimate is compared with the optimal pulse
for the individual ground motion. Finally, the overall error is gauged over all the ground motions,
OE* = NE: _(i,7); where the asterisk (*) means an average of the NE;  (¢,7) values over the
ground motion variable. If the errors are not normalized by E], the average errors are given by
AE® = E:_(i,7), where E7 (i,7) is the average of E}, (¢,7) over the ground motion variable.
Figure 4.7 shows the average error, AE®, for each pulse using T, = T,. With this constraint, the

quadratic family of pulses gives the lowest AE® values. Section 4.3 applies a consistent procedure

to establish the pulses and characteristic periods that minimize the error measures.
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4.3 Results

4.3.1 The VBest Pulses

There is a pulse and associated period, T}, that minimizes the error in the estimated inelastic
strength spectra for each ground motion and a given ductility. The pulse T, that minimizes £° may
differ for different ductilities and error functions. For example, £® is minimized for p = 2, 4, and
8 for the WN87MWLN.090 record using tr0(2), tr1(2), and qua(4) pulsés, respectively, at T, = 0.2
s. The same pulse and T}, may happen to minimize the error measure for all ductilities, as with
the BB92CIVC.360 record, for which the best pulse is sin(2) at 7, = 0.2 s. There are also ground
motions where the best pulse and associated T}, differ for different ductilities. For example, the best
pulses for the IV40ELCN.180 record are qua(4) at T, = 0.7, qua(2) at T, = 0.4, and tr1(1) at T, =

0.3 s for u = 2, 4, and 8, respectively, using E° = E£°.

If T, is fixed for all ductilities, for a given record there is a single pulse and period T, = T,
among all possible combinations of ¢ and T,, that minimizes the error E; = E;m,*(z,j'). Table 4.2
shows for each ground motion the optimal pulses, the error Ef, and the periods T, = T', where the
minimum errors E2, E®, and E¢ occur. It can be observed that each record has its own best pulses
and particular T, values. The set of optimal pulses for the 15 ground motions consists of 12 of the 24
pulses considered. It is interesting to notice that the optimal pulses can be classified into 2 groups.
Where balanced pulses are optimal, it is for the overall response to the balanced pulses. Where
unbalanced pulses are optimal, it is for the forced response to the unbalanced pulses. Only for the
LN92LUCN.250 record did the best estimates occur for the overall response to an unbalanced pulse,
in this case the tr0(1) and qua(1) pulses. Figure 4.6b plots the errors £ = Ef; (4 ,7) for this record,
and it can be observed that the errors are smallest for the overall response to all the unbalanced
pulses having one incursion (i = 1 to 6). Based on Chapter 3 and on Cuesta and Aschheim [43}, this
motion is a good example of the use of the equal energy rule to estimate R-factors of intermediate

period systems. Figure 4.8 shows that the R-factors computed for this record and those determined
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Table 4.2: Ground motion-pulse match classification *

. Error Period
Ground motion Best Pulse Match - f )
*abc
WNSTMWLN.090 %AV 0.049 0.2
*ac b b b
BBI2CIVC.360 % %A 0.0565, 0.0612° 0.25%, 0.4
SP88GUKA.360 B.abc 0.056 0.25
be
LPSICORR.090 Wa 0.065 0.7, 0.6%
* b
NROACENT.360 B~ A | oo 1= 0.4
CH8SILEO.010 :' ac f b 0.064, 0.066° 0.3*, 0.45°
- abe
CHS5VALP.070 [l 0.094 0.45%,0.5°
*ac b b b
IVA0ELCN.180 % A 0.08, 0.08% 0.4*,03
LN92JOSH.360 Qv*abc 0.059 0.5
ac b b
MX855CT1.270 W LTAVA 0.133, 0.13% 2.15
* ¥
LN92LUCN.250 &a ..Al’c 0.062, 0.0625° 0.45% 0.2
LP8ISARA.360 Aac AL 0.0722, 0.0724° 0.3%, 0.4
*abc
NR94NW1'IL.360 % 0.079 0.7530’ O.Sb
be
NRO4SYLHL090 AL 0.07 0.7
abc
KO95TTRL360 Y 0.13 1.35% 1.4%

" these are the best pulses for p =2, 4, and 8 and the associated 7,= T , for each ground motion using the

three type of errors E°, E° ,and E¢ .

a, b, ¢ define the error measures a, b, and ¢ given by the errors E, , E f ,andE,

* overall response.

* Error E; using pulse given by errorb.
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Figure 4.8: R-factor response spectra to the LN92LUCN.250 record and the equal energy rule

R-factor, R = +/2u — 1
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using the equal energy rule for undamped elasto-plastic systems, given by R = 1/2u =1, are very
similar in the intermediate range of periods. For the rest of the ground motions, the optimal pulses
(that minimize £®) have R-factors that are not accurately represented by the equal energy rule for
intermediate period systems. Thus, the equal energy rule would not be a good rule to follow for 14

of the 15 ground motions.

There is no finding that unbalanced pulses are better for some motions and balanced pulses are
better for others. In fact, there are three ground motions (BB92CIVC.360, NR94CENT.360, and
IV40ELCN.180) for which a balanced pulse minimizes one error measure and an unbalanced pulse
minimizes another error measure. Table 4.2 shows that the errors EJ = Ef; (2, 7) for the records
that have different optimal pulses depending on the error measure to be minimized are very similar
even for those records whose optimal pulses are a balanced and an unbalanced pulse. This indicates

that the error computed over all periods is similar even though the R-factors of the pulses differ.

There are four records (SP88GUKA.360, NR94CENT.360, CH85VALP.070, and LN92LUCN.250)
whose best estimates are obtained with shock pulses: the tr0(2) pulse for the Northridge Century
City record and the tr0(1) pulse for the other three records. The R-factors for these records tend to
unity for short period systems, resulting in little reduction in strength as i increases. Nevertheless,
the error over all periods was smallest using the shock pulses, for which short period systems re-
spond to the excitation as an instantaneous change in ground acceleration, having R = (2u — 1) /u
[20]. For other records, the preceding formula is much less accurate, and gradual loading pulses,

having R = 1, estimate the response of short period systems more accurately.

Within any one family of pulses, R-factors depend on the number of incursions, since this
number affects the elastic response substantially (see Section 3.3.1). Table 4.2 shows the records
(WN87MWLN.090, LP89CORR.090, and MX85SCT1.270) whose best pulses have a larger number

of incursions; for these, the strengths for inelastic response are greatly reduced as ductility increases.

It also may be observed that the quadratic pulses minimize the E? error more often than the

other error measures. The best estimates for 11 of the 15 ground motions are quadratic pulses when
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using this error measure.

Figures 4.9, 4.10, and 4.11 plot isoductile strengths, n,, and their estimates, 7, for the optimal

pulses with respect to the error E® for the SD, LD, and FD records, respectively.

Recognizing the basic finding, that pulse R-factors can be used to estimate inelastic spectra, it
was desired to determine whether simplifications could be made in the selection of the pulses and

the characteristic period T,. Two simplifications are explored in the following sections.

4.3.2 Simplification No. 1 - Identifying a Subset of Best Pulses

Instead of identifying a different optimal pulse for each ground motion (Table 4.2), just one or
two pulses may minimize the errors E° sufficiently to obtain good estimates for the 15 ground
motions. Two pulses were found that minimize the three error measures: the qua(3) pulse (forced
response) and the qua(2) pulse (overall response). The qua(3) pulse minimizes each error measure
for 4 = 2 and the qua(2) pulse minimizes each error measure for p = 4 and 8 (different values of
T, were associated with each ductility-pulse-ground motion combination). To further simplify, the
possibility of using a single pulse for all ductilities was explored. Two cases are studied in detail
and compared with the case where the qua(3) pulse is used for u = 2 and the qua(2) pulse is used
for 4 = 4 and 8. First, the qua(2) pulse is used for all ductilities (z = 31) and second, the qua(3)
pulse is used for all ductilities (¢ = 13). For each case, the periods T,, = T} that minimize E;m,*(i,j)

were found for each ground motion (Table 4.3).

Table 4.4 shows that the average errors AEjid(z',]A'), using these pulses with T}, = 17, are lowest
when the forced response of the qua(3) pulse is used for ¢ = 2 and the overall response of qua(2) is
used for u = 4 and 8. The errors decrease as ductility increases. The errors NE?, (i ,7) are shown
in Table 4.5 for the three cases with T, = Ty. Two records, NR94NWHL.360 and KO95TTRI.360,
have NE® values less than unity when using qua(3) for u = 2 and qua(2) for ¢ = 4 and 8 because
the errors E%; and Ef; are lower than E? obtained with only one pulse for all ductilities. The

smallest errors for the three cases are obtained for the SD motions; the LD motions have the
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Table 4.3: Characteristic pulse periods, T,

Ground T, =T7 (s) T, =1,
‘Motion qua(2),qua(3) |  qua(2) qua(3) (s)
WNS87TMWLN.090 0.20 0.20 0.20 0.20
BB92CIVC.360 0.40 0.45% , 0.40% 0.40 0.40
SP88GUKA.360 0.25 0.30 0.30° , 0.50% 0.55
LP89CORR.090 | 0.65°, 0.60° 0.55 0.65 0.85
NR94CENT.360 | 0.70°, 0.65° | 0.70°¢ , 0.65° 0.70%¢ , 0.65° 1.00
CH85LLEO.010 0.65 0.55%¢ , 0.65° 0.65 0.30
CHS85VALP.070 0.35 0.30%¢ , 0.35° 0.35 0.55
IV40ELCN.180 0.65 0.40 0.65% , 0.70° 0.65
LN92JOSH.360 - 0.80 0.60 0.85 1.30
MX855CT1.270 2.05%, 2.00% | 1.50° , 1.35% 2.20 2.00
LN92LUCN.250 | 0.30%, 0.25°¢ | 0.30% , 0.25% 0.30% , 0.25% 0.20
LP89SARA.360 0.85%, 0.60% 0.60 1.10° , 0.60° , 1.00° | 0.40
NR94NWHL.360 | 0.75°, 0.80° | 0.75°¢, 0.80° 0.80 0.80
NRY94SYLH.090 1.10 1.10 1.10 0.90
KO95TTRI.360 1.30%, 1.35¢ 0.75 1.35% , 1.40° 1.40

a, b, and c identify the error measures E2, E°, and E¢, respectively

Table 4.4: Average errors AE® = j,d(i,}') using (

a) qua(2) for u = 4 and 8, and qua(3) for p = 2,
(b) qua(2) (i =31) for all ductilities, and (c) qua(3) (

i =13) for all ductilities
T,=1T; T,=T; T,=T,

g | qua(2,3) | qua(2) | qua(3) | qua(2,3)* | qua(2)! | qua(3)! | qua(2,3)? | qua(2)® | qua(3)?
AE*° AE*° AE® AE° AE° AE® AE*° AE® AE*®
n=2 0.113 0.116 | 0.115 0.105 0.108 0.106 0.118 0.132 0.118
n=4 0.100 0.108 | 0.105 0.094 0.098 0.102 0.107 0.107 0.112
pL=2_8 0.076 0.081 | 0.079 0.071 0.072 0.075 0.082 0.082 0.083
Yy 0.096 0.102 | 0.100 0.090 0.093 0.094 0.102 0.107 0.105
AE® AE® | AFE° AE® AE® AE® AE® AE® | AE®
n=2 0.172 0.179 | 0.172 0.159 0.173 0.158 0.172 0.204 0.172
L= 0.140 0.152 | 0.144 0.135 0.141 0.144 0.155 0.155 0.162
pL=2=8 0.107 0.114 | 0.112 0.103 0.105 0.110 0.123 0.123 0.124
Yy 0.140 0.148 | 0.143 0.133 0.140 0.137 0.150 0.161 0.152
AE* AE* AFE*° AE* AFE*® AEs° AE*° AE° AFE¢
w=2 0.136 0.137 | 0.139 0.122 0.128 0.122 0.136 0.159 0.136
p=4 0.111 0.124 | 0.116 0.105 0.110 0.113 0.122 0.122 0.128
u=2_ 0.082 0.090 | 0.087 0.076 0.078 0.083 0.091 0.091 0.092
Vi 0.110 0.117 | 0.114 0.101 0.105 0.106 0.116 0.124 0.119

! The sin(5) pulse at T, = T, = 2.15 s is used for the ground motion no. 10
? The sin(5) pulse at T}, = 2 s is used for the ground motion no. 10
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Table 4.5: Normalized errors NE2, (i, ) at T, = Ty and T,, = Ty, using (a) qua(2) for all ductilities,
(b) qua(3) for all ductilities, (c) qua(2) for x = 4 and 8, and qua(3) for x = 2. Overall errors OE?,
for short duration (SD), long duration (LD), forward directive (FD), and all ground motions

Ground T, =17 T, =17 T,=1T,
Motion | qua(2,3) | qua(2) | qua(3) | qua(2,3)! | qua(2) | qua(3)! | qua(2,3)? | qua(2)? | qua(3)?
Record | NE® | NE* | NE* | NE® NE® | NE° NE* | NE* | NE°
1 1.157 | 1.369 | 1.043 | 1.157 | 1.369 | 1.043 1.157 | 1.369 | 1.043
2 1044 | 1.211 | 1.074 | 1.044 | 1.211 | 1.074 1.044 | 1.205 | 1.074
3 1238 | 1.191 | 1.454 | 1.238 1.191 | 1.454 1.498 1.525 | 1.529
4 1.238 | 1.385 | 1.209 | 1.238 1.385 | 1.209 1.602 | 1.862 | 1471
5 1.048 | 1.016 | 1.177 | 1.048 1.016 | 1.177 1.329 1.361 | 1.285
6 1211 | 1.144 | 1.331 | 1.211 1.144 | 1.331 1.705 1.553 | 1.791
7 1.152 | 1.096 [ 1.191 | 1.152 1.096 | 1.191 1.347 | 1436 | 1.420
8 1.009 | 1.075 | 1.068 | 1.009 1.075 | 1.068 1.009 1.185 | 1.068
9 1.544 | 1.780 | 1.583 | 1.544 1.780 | 1.583 2.051 | 2.080 | 2.066
10 1692 [ 1.981 | 1.538 | 0.977 1.000 | 1.000 1.063 1.063 | 1.063
11 1.990 | 2.040 | 1.845 | 1.990 | 2.040 | 1.845 2.145 | 2.214 | 2.042
12 1217 | 1.054 | 1.290 | 1.217 1.054 | 1.290 1.383 1.353 | 1.451
13 0.930 | 1.000 | 1.129 | 0.930 1.000 | 1.129 0.958 1.019 | 1.129
14 1.266 | 1.214 | 1.431 | 1.266 1214 | 1.431 1.357 1.331 | 1.550
15 0.974 | 1.054 | 1.000 | 0.974 | 1.054 | 1.000 0.988 1.104 | 1.006
Category | OE° | OE® | OE*° OFE* OE* | OFE® OE® OE* | OE°
SD 1.145 | 1.234 | 1.191 | 1.145 1234 | 1.191 1.326 1.464 | 1.280
LD 1.322 | 1415 | 1.342 | 1.179 1219 | 1.235 1.435 1.463 | 1.482
FD 1275 | 1.273 | 1.339 | 1.275 | 1.273 | 1.339 1.366 1.386 | 1.436
| Vg.m. 1.247 | 1.307 | 1.307 | 1.200 1242 | 1.255 | 1.376 1.438 | 1.399

|
! The sin(5) pulse at T, = T, = 2.15 s is used for the ground motion no. 10
2 The sin(5) pulse at T, = 2 s is used for the ground motion no. 10
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largest errors. The overall error, OE®, increased between 24.7 and 30.7% with respect to having
used the best pulse from Table 4.2 for each ground motion. It can be observed that the error
for MX85SCT1.27O record increased considerably. Poor estimates are obtained for this particular
ground motion, recorded on soft soils, using these quadratic pulses; estimates are much improved
with the sinusoidal sin(5) pulse. Accordingly, a second set of optimal pulses is considered in Table
4.4. If the sin(5) pulse with T}, = T}, = 2.15 s is used in conjunction with qua(2) and qua(3) for the
remaining 14 records, the errors AE; ,(3, 5) are reduced as shown in Table 4.4, resulting in overall
errors, OE®, between 20.0 and 25.5% higher than if the best pulse had been used for each ground
motion (Table 4.2). Although it was not formally part of this study, a sinusoidal pulse with 6
incursions did not improve the estimate given by sin(5) for MX85SCT1.270. The qua(2), qua(3),
and sin(5) pulses are characterized by R = 1 for short period systems and R = u for long period

systems (Fig. 4.4).

4.3.3 Simplification No. 2 — Identifying Characteristic Periods for the

Best Pulses

The characteristic pulse periods T, = T} that minimize the errors obtained with the qua(2) and
qua(3) pulses in Table 4.3, and the periods T, = 7, that minimize the errors obtained with the
best pulses in Table 4.2, often are similar to the characteristic periods of the ground motions, T,
reported in Table 4.3. These T, values were determined prior to this study and are reported in
FEMA-307 [46]. Using these values of T, to estimate the isoductile strength spectra (T, = Ty)
results in the average errors AEf,d(i,j’) shown in Table 4.4 using the pulses qua(2) and qua(3) for
all ductilities and using qua(3) for p = 2, and qua(2) for p = 4 and 8, for the three errors s =
a, b, and c. Considering all pulses individually (with T, = T}), the qua(3) pulse is the best for u
= 2, while qua(2) is best for p = 4 and 8. If both pulses are joined, using qua(3) for ¢ = 2 and
qua(2) for 4 = 4 and 8 for all records except the MX85SCT1.270 record for which the sin(5) pulse

is used, the errors AE;, are reduced with respect to using only the quadratic pulses for all the
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ground motions. The normalized errors for each ground motion, N Egm,*(i,ﬁ), and overall errors
OE*® are given in Table 4.5, using T}, = T,. The overall error OE*® is 1.438 and 1.399 u.s.ing qua(2)
and qua(3), respectively, an increase of 13.1 and 10.8% over OE* using T}, = T". The overall errors
for SD, LD, and FD categories ranged from 1.144 to 1.415 when T, = T}, and now range from 1.280
to 1.482 when T, = T,

Although the qua(3) pulse gave a smaller error, the increase in error if the simpler qua(2)
pulse is used instead is small. The qua(2) pulse may be recommended for all ductilities and all
ground motions except the soft soil MX85SCT1.270 record. The use of the qua(2) pulse (overall
response) with T, = T, is illustrated in Figs. 4.14, 4.13, and 4.12 for 14 of the 15 records with
the overall response of sin(5) used for the MX85SCT1.270 record. These figures plot the spectra of
the strength responses, 7,, and their estimates, 7}, for the SD, LD, and FD records. Chapert 5 will
identify another characteristic period, Ty, which improves the error measures over those calculated

with T, = Tj.

4.3.4 Near-Fault Ground Motions

Near-fault ground motions have been recorded in the 1971 San Fernando, 1979 Imperial Valley, 1994
Northridge, and 1995 Kobe earthquakes. These records are characterized by large velocity pulses.
Two types of near-fault motion have been described. The original concept of a near-fault “fHing”
[56] refers to the ground displacement that takes place as the fault slip causes a near-fault location
to displace permanently. More recently Iwan, Hall, and Somerville [57, 58, 40, 38} among others
have identified a second phenomenon in which shear waves emitted from the moving fault rupture
zone superpose at locations ahead of the fault rupture to produce large amplitude velocity pulses
having relatively long durations. For a strike-slip fault, superposition of the waves emitted from
the propagating rupture zone results in large velocity pulses that are perpendicular to the fault,

increasing the strengths required for elastic response in the long period range of the spectrum.

Iwan [57, 58] reported that the Landers and Northridge earthquakes generated near-fault ground
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motions characterized by a small number or even just one velocity pulse of short duration, large

amplitude, and very high input energy. He concluded that:

1. The shape of the response spectrum for near-fault earthquakes was very similar to the response

spectrum for more distant earthquake ground motions.

2. For short period systems, isoductile yield strengths are nearly equal to the strengths required

for elastic response (R = 1), given by V, = Ve = m - ¢4 mac-

3. For long period systems the relative displacement of the SDOF system tends to the peak

ground displacement, resulting in R = p.

Several researchers [38, 37, 35, 36, 40, 39] have suggested the use of idealized near-fault pulses to
replace the large amplitude velocity pulse(s) associated with forward directivity, for estimating the
response of MDOF systems. The idealized pulses are characterized by linear acceleration histories
similar to the rectangular family of pulses of this study (rec) and having one or two incursions in

the velocity histories.

The results of the present study on SDOF systems have some bearing on this topic. First, the
shock pulses used by these researchers produce in short period systems larger isoductile strength
demands than the gradual pulses, for which the strength reduction factors are larger than unity
(R = (2u — 1) /p, in Section 3.4). Even if the rec family were to give the correct elastic spectrum
the inelastic spectra would be incorrect for the short period range. Table 4.2 shows that responses
to the FD records are best estimated with the quadratic family of pulses which have R = 1 for short
period systems rather than with shock pulses. This result is also supported by Baez and Miranda
[59] who state that for extremely short period systems R =1 for all ground motions regardless of
near-fault effects. Second, the linear acceleration histories used by these researchers are not required
to obtain velocity pulses. The gradual pulse qua(2) proposed herein for estimating the R-factors of
the FD, SD, and LD motions, also has a velocity pulse in the time history, as shown in Fig. A.l.

Many other pulses considered in this study also have velocity pulses (see Appendix A).
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Figure 4.12: Isoductile strength response spectra to short duration records, 7,, and their estimates
fy, with the qua(2) pulse at T, = T, (see Table 4.3)
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Figure 4.14: Isoductile strength response spectra to forward directive records, 7,, and their estimates
fiy, with the qua(2) pulse at T, = T (see Table 4.3)
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The R-factors obtained from such pulses are applicable to ground motions recorded far from the
fault. The quadratic pulse gives R-factors that work well for SD, LD, and FD motions, but these R-
factors must be applied to the correct elastic spectrum. The elastic spectrum involves contributions
from a broad range of frequencies present in the ground motion, which produce varying degrees
of resonance in the elastic SDOF systems. A simple pulse is unlikely to contain the appropriate
range of frequencies and is unlikely to excite resonance similar to the richer and more complex
longer-duration ground motions. Thus, it is unlikely that a simple pulse can generate appropiate
spectra. Furthermore, even if a single pulse could generate correct spectra, the phasing of higher
mode responses resulting from a pulse will surely be different, in general from the phasing of higher
mode responses to a ground motion, and thus it is doubtful that such a pulse would result in an

accurate representation of potential demands on MDOF systems.

4.4 Summary

This chapter shows that R-factors exhibit a sufficient degree of waveform independence, and that
R-factors determined for simple pulses may be used in conjunction with elastic response spectra
for purposes of estimating the inelastic response spectra of elasto-plastic systems subjected to
earthquake ground motions. Based on Sewell [45], this conclusion should be valid across a large

range of earthquake magnitudes and distances.

The quadratic pulses qua(2) (overall response for systems with p = 4 and 8) and qua(3) (forced
response for systems with u = 2) are adequate for 14 of the 15 records studied, while the sinusoidal
pulse sin(5) is necessary to estimate the inelastic spectra for the soft soil SCT record of the 1985
Michoacan earthquake (MX85SCT1.270). For simplicity and with little increase in error, the R-
factor for the overall response to the qua(2) pulse may be used for ductilities of 2, 4, and 8 for
goodness of the pulse R-factors seems to be

independent of the classification of the records into the SD, LD, and FD categories. This result is

particularly useful because:
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1. a single pulse shape can be used for generating the R-factors suitable for different load-
deformation and hysteretic characteristics rather than requiring separate R — p — T' relations

to be developed for each case of interest, and

2. gross features of waveform independence demonstrated in this chapter suggest that R—u—T
relations may be used for estimating the inelastic response spectra of unknown future ground
motions, an issue of particular interest where recorded ground motions are not available

because historic seismicity preceded the relatively recent deployment of strong motion instru-

mentation.

The characteristic period of the ground motion, T, may be estimated as the transition period
between the constant acceleration and constant velocity portions of a smoothed elastic design spec-
trum. The characteristic periods of the ground motions, T, are nearly equal to the characteristic

periods of the pulses, T}, that minimized the errors of the estimated isoductile strengths using the

qua(2), qua(3), and sin(5) pulses.
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Chapter 5

Comparisons of Inelastic Response
Spectra Determined Using Conventional

and Pulse R-Factors

5.1 Introduction

Chapter 4 showed that inelastic response spectra may be estimated by dividing elastic response
spectra by R-factors derived from the response to a simple pulse. The pulse R-factor depends on
the pulse shape, ductility (1), load-deformation model, and the period of the system (7') relative to
the characteristic period of the pulse (T,). In this chapter, inelastic spectra estimated using pulse
R-factors are compared with those obtained using other contemporary R — u - T relationships
for elasto-plastic, bilinear, and stiffness-degrading SDOF systems. Strong motion records used in
this chapter are the same ones described in Section 2.2.1. The accuracy of the estimates is not
found to depend strongly on duration or presence of forward directivity features, but is influenced
by the characteristic period and the presence of soft soil deposits that lead to nearly harmonic

waveforms. In this chapter, pulse R-factors are found to be slightly better than the R — u — T
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relations determined by other investigators for the 15 ground motions studied. Because the pulse
R-factors are defined implicitly by the specification of the pulse shape, they may be useful for a

variety of load-deformation models having varied hysteretic relationships.

Several researchers (e.g. [21, 29, 22, 23, 25, 24, 26]) have estimated isoductile response spectra
for single-degree-of-freedom (SDOF) systems subjected to ground motions by applying a strength
reduction factor (R) to elastic response spectra. The recommended R-factors describe the trends
observed for the ground motions and load-deformation behaviors that were investigated. In some
cases, response was computed for a large number of ground motions, and mean R-factor curves were
then approximated by analytical functions of ductility and period. In some cases the recommended

R — pp — T relations apply uniformly without regard to characteristics of the ground motion.

Chapter 4 and Cuesta and Aschheim [44, 43, 51, 60, 52] showed that the strength reduction
factors can be obtained from a simple pulse. As described in Chapter 2, peak ductility demands
are not reached throughout the duration of the record, but rather in one or several irregular cycles
traced by the record and having a fraction of the record duration [41, 34]. Since these pulses
can not be known a priori, Chapter 4 and Cuesta and Aschheim [44, 43, 51] focused on a variety
of simple pulse shapes. This chapter shows that the R-factors determined by simple pulses are
similar to those determined by other inverstigators in empirical studies of large numbers of ground
motions. In Chapter 4, a pulse waveform having quadratic acceleration components was adequate
for estimating the inelastic response spectra for elasto-plastic SDOF systems having 5% of critical
damping (see Fig. 5.1a) for 14 of the 15 ground motions studied. A sinusoidal pulse was necessary
for estimating the inelastic spectra of the Mexico City SCT ground motion, which was recorded on

soft lakebed deposits that gave rise to nearly harmonic motion.

This chapter compares the isoductile response spectra generated using pulse R-factors with those
determined using the R — p — T relations recommended by other investigators for elasto-plastic,
bilinear, and stiffness degrading oscillators. The comparisons indicate the pulse R-factors result

in slightly more accurate estimates of strength than can be determined using other contemporary
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'R — yu — T relations for the 15 ground motions used in this study. These ground motions include

motions identified as having short or long duration and those having near fault forward directivity

effects.

5.2 Framework of Study

This section describes the SDOF systems that were studied, the set of 15 ground motions, the two
pulses used to define the R-factors, and the empirical R — p — T relations recommended by other

investigators that are compared with the pulse R-factors.

Ground Motions

The 15 records used in Chapter 2, described in Section 2.2.1, and Table 2.1, are also used to

estimate and compare the strength response spectra of the systems studied in this chapter.

SDOF Systems and Load-Deformation Relations

As in previous chapters, strengths required for each oscillator to achieve specified ductilities of
2, 4, and 8 were determined iteratively using the computer program PCNSPEC [48], a modified
version of NONSPEC [47].

Six load-deformation models were used to develop the R — u — T relations (described in Section
1.2.2) that are compared with the pulse R-factors in this chapter. Because each R — y — T relation
might be best-suited to the particular load-deformation model on which it is based, all six load-
deformation models used in the development of the six R — p — T relations of Section 1.2.2 are used
in this study. The SDOF models comprise elasto-plastic systems having damping, 3, equal to 2,
5, or 10% of critical damping; bilinear systems having § = 5% and a post-yield stiffness, @, equal
to 2 or 10% of the initial stiffness; and, stiffness degrading systems having 8 = 5% and a = 2%.
The stiffness-degrading model is the same as the one described by Mahin and Lin [47], applicable

to systems that do not exhibit substantial degradation or pinching.
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Figure 5.1: Normalized acceleration, velocity, and displacement time histories of the qua(2) and
sin(5) pulses

As in Chapter 4, for each record, R-factors were computed for forty-five initial periods of vibra-
tion, T, varying from 0.04 to 3 s, with the periods spaced at 0.02 s in the range 0.04-0.2 s, 0.05 s in

the range 0.2-1 s, and 0.1 s in the range 1-3 s.

Pulse R-Factor Model

Two pulse waveforms were used to generate the pulse R-factors. The pulse R-factors then were
applied to the elastic spectra of the ground motions to generate the estimated inelastic response
spectra. The two pulses were identified in Chapter 4 as capable of representing the R-factors of the
15 ground motions with T, set equal to T,. The pulse R-factors were computed for 112 periods,
ranging from 0.005t; to 100¢4, where 25 is the duration of the pulse having peak acceleration ag mqz-

The two pulses are:

1. Quadratic pulse. The quadratic pulse, qua(2), was used for all but one of the ground motion

records. For this pulse (Fig. 5.1a), strengths are computed to limit the ductility demand that

88



may develop at any time during the response of the oscillator (0 < t/ts < c0). A parameter
termed the characteristic period of the pulse, Tj,, was defined to equal the duration of this

pulse (T, = t4). The acceleration time history, a,, in normalized form is

[ 16(2) 0<i<t
g _ 16(%_9 :ll-stid<% (5.1)
M U CEDRE RS

~16(£-1)" I<g <1

2. Sinusoidal pulse. The qua(2) pulse was not capable of generating accurate R-factors in the
case of the nearly harmonic SCT record of the 1985 Michoacan earthquake. For this record a
sinusoidal pulse called sin(5) was used, consisting of 5 half cycles of a sine wave, as illustrated
in Fig. 5.1b. For this pulse, isoductile strengths are determined to limit the peak ductility
response that occurs during the pulse excitation (0 < t/ts < 1). The characteristic period
of this pulse was defined to equal 2/5 of the duration of the pulse. The acceleration, a,, in

normalized form is is given by Eq. 4.2.

The inelastic spectra estimated using the pulses R-factors are compared with estimates made using
six models developed over the last three decades: Newmark and Hall [21], Riddell, Hidalgo, and
Cruz [22], Nassar and Krawinkler [23], Miranda [24], Vidic, Fajfar, and Fischinger [25], and Ordaz

and Pérez-Rocha [26]. These models are described in Section 1.2.2.

5.3 Analytical Results

The isoductile strengths, computed to obtain a specified ductility for each ground motion, were

normalized to obtain the dimensionless strength parameter, n,, defined in Eq. 2.1. The estimated
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dimensionless isoductile strengths, 7, are given by the ratio

fy(p, T) = %,‘)T—) (5.2)

where:

e n,(z =1,T) is the strength for elastic response to the ground motion

o R(u,T) is the strength reduction factor given in Eqgs. 1.9 to 1.14 or given by the pulse R-factor.

The pulse R-factor is calculated as

B T/T) = TE =D (53)

The pulse R-factors at the periods of interest (0.04 to 3 s) were calculated by linear interpolation
of a predetermined data set that is indexed by the dimensionless parameter T'/T,. This was done

after first specifying the value of 7T, to be used.

Figures 5.2 and 5.3 show the R-factor spectra versus T'/T, for systems subjected to the qua(2)
pulse and the sin(5) pulse, respectively. It can be observed (Fig. 5.4) that for short period systems
the R-factor follows the curve R = 1+a(u—1), independent of the damping of the system, reflecting
the strength available to resist the relatively slowly applied seismic loading. Long period systems
subjected to these pulses have R = p, for the types of hysteresis behavior studied. The maximum
strength reduction factor occurs around 7T'/T, = 1 for both pulses. The pulse R-factors are described
as functions of u and T/t4 or T/T,, while the ground motion R-factors are described as functions
of u and T. The R-factor spectra generated using the pulses are smoother than those generated

using the more irregular ground motions records.

Figure 5.5 shows the R-factor spectra determined using the six conventional R — u — T relations
(represented by Eqs. 1.9 to 1.14) for the case of the 1940 El Centro earthquake (IV40ELCN.180

record, T, = 0.65 5, @ = 0%, B = 5%). The R-factor spectra are similar to each other and resemble
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Figure 5.2: R-factor response spectra to the qua(2) pulse
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the pulse R-factor spectra (Fig. 5.2), particularly in the short and long period regions. Differences

among the R-factor models are more prominent at intermediate periods.

5.3.1 Error Measures

Comparisons between 7, and 7, were performed for each ground motion and ductility level. Three
measures of the error in the strength parameters were developed in Section 4.2.5. For a given ground

motion, gm, and ductility, d, the errors given in Eqs. 4.4, 4.5, and 4.6 for estimating the isoductile

strength spectra are simplified to:

a 1 & R
gmd = > [nygma = Tyl (5.4)
P m=1
; 1 22 ) 1/2
P m=1

P m=1

c 1 & N
s = (2 35 capyama= ) = 1 55)

where:

e n, = number of periods (n, = 45 from 0.04 to 3 s)

be)
Top

e gm = ground motion index number (1 to 15)

o d = ductility index number (1 to 3 corresponding to p = 2, 4, and 8, respectively)

The average error for each ground motion, gm, is given by E;, ., where the asterisk (*) means an
average over the ductility variable, and s = a, b, c refers to the error functions given by Eqs. 5.4,
5.5, and 5.6, respectively. The average error over all the records is given by AE® = E; ., where the

asterisks (*) indicate an average over the ground motion and ductility variables.

To estimate strength spectra using the pulse R-factors, it is necessary to first determine the value

of the characteristic period of the pulse, Tp, to be used. Three approaches were used to identify
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Figure 5.5: Estimated R-factor response spectra for the 1940 N-S component of El Centro earth-
quake (IV40ELCN.180 record, T, = 0.65 s)
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the characteristic periods. In the first approach, the periods 7, = T} were determined to minimize

the error function E°  for elasto-plastic systems having 8 = 5% (Table 5.2). In the second, T,

gm.,x
was equated to the characteristic period of the ground motion, T, = Ty, determined prior to this
study and reported in Table 2.1 and in FEMA-307 [46]. The second approach recognizes that
applications to unknown future ground motions will not have the opportunity to fit values of T7,
although the specification of a smoothed elastic design response spectrum locates T, approximately

at the intersection of the constant acceleration and constant velocity portions of the spectrum. In

the third approach, T, was equated to the period T3, defined as

* __ (‘S’U)ma:z:
Ty = 27T—(Sa)mw (5.7)

where

e S, = elastic pseudo-velocity spectrum for elasto-plastic systems having 8 = 5%

e S, = elastic pseudo-acceleration spectrum for elasto-plastic systems having 8 = 5%

Because S,(T) = 7(T) - agmaz and So(T) = £5.(T), Eq. 5.7 can be expressed equivalently as:

e _ 1T -0(T)lmas
= e (58)

Figure 5.6 illustrates the graphical determination of the period T3 according to Eq. 5.8 for
the CH85VALP.070 record. The curves T - n(T") and n(T) are plotted as well as the maximum
values of both curves. The period 7% = 1.5 s defines the period of maximum 7 - n(T), and n* =
1.173 is the elastic strength at this period. Since the maximum of n(T) is 3.482, Eq. 5.8 provides
T; = 14228 = (.505 s. Figure 5.6 also indicates a graphical method for establishing 75: Various
curves proportional to 1/7 are drawn to intersect the plot of n(7T"). The largest valued 1/T curve

to intersect n(T') does so precisely at the location that T is a maximum. This intersection defines

the period T and strength parameter n(7") at which #T is easily identified from the plot. The
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Figure 5.6: Graphical determination of the period T for the CH85VALP.070 record

values of [T - n(T)| .. and |n(T)| .. so determined can be used in Eq. 5.8 to determine 77, or the

maxr maz

intersection of the corresponding constant strength and largest valued 1/T curves can be determined
graphically, with this intersection identifying T5. This graphical intersection is seen to correspond

exactly to the intersection of the constant acceleration and constant velocity portions of a smoothed
design spectrum.
This technique works perfectly well for harmonic pulses as shown in Figure 5.7 for the sin(5)

pulse. In this case peak T-n(T) and n(T') are reached at the same period ratio T'/T, = 1; therefore,

Ty = T,, resulting in a definition for T35 that also is consistent with the period of the harmonic

excitation.

Returning to the 15 ground motions, Table 5.1 shows the periods Ty, T7, and Ty for each ground

motion along with the values T, determined using the equations proposed by Newmark and Hall
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Table 5.1: Periods (in s)

Ground motion | T, | 7y | Ty [T. (Ne-Hall) | T, (Vidic) |
WN87TMWLN.090 | 0.20 | 0.17 | 0.20 0.11 0.11
BB92CIVC.360 | 0.40 | 0.30 | 0.45 0.29 0.29
SP88GUKA.360 | 0.55 | 0.40 | 0.30 0.38 0.42
LP89CORR.090 | 0.85 | 0.77 | 0.55 0.46 0.46
NR94CENT.360 |1.00 | 0.73 | 0.70 0.52 0.52
CH85LLEO.010 | 0.30 | 0.41 | 0.55 0.26 0.38
CH85VALP.070 | 0.55 | 0.51 | 0.30 0.38 0.55
IV4A0ELCN.180 | 0.65 | 0.56 | 0.40 0.43 0.43
LN92JOSH.360 |1.30 | 0.86 | 0.60 0.46 0.46
MX85SCT1.270 | 2.00 | 2.00 | 2.15 1.63 2.53
LN92LUCN.250 | 0.20 | 0.41 | 0.30 0.89 0.89
LP89SARA.360 | 0.40 | 0.59 | 0.60 0.38 0.38
NR94NWHL.360 | 0.80 | 0.69 | 0.75 0.74 0.74
NR94SYLH.090 |0.90 | 0.75 | 1.10 0.59 0.59
KO95TTRI.360 | 1.40 | 1.25 | 0.75 0.89 1.00

and Vidic et al. for use with their R-factor relations (Egs. 1.9 and 1.13, respectively). The values of
T, determined for the Newmark-Hall and Vidic equations are similar, while there is greater spread

among the values of T,, Ty, and Ty, with T often intermediate between T} and T,.

The error Ef = E?_ , determined using the qua(2) pulse or the sin(5) pulse with T, = T}

gm,*

is taken as a reference to gauge the error obtained when the pulses are used with T, = T, and
T, = T;, and when the six R-factor models are applied. The normalized error, given by the

ratio NES_, = E:__./E? indicates how good the estimate is compared to the reference value. If

gm,x gm,*

NE® . < 1, the estimate is better than the one obtained with the pulses using T, = T}, and is

gm’*

worse if NE®

gm,*

OE* = NE: .

> 1. Finally, the overall error is the average of NE, , over all the ground motions,

5.3.2 Findings

Table 5.2 shows the normalized errors NEZ, , and the overall errors OE;, for the 5% damped
elasto-plastic systems. The errors were computed for the six contemporary R — pu — T relations

and for the pulse R-factors obtained using 7, = T, Ty, and T, where T is described in Section
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5.3.1. All the R-factor relations except the pulse R-factor and the Ordaz and Pérez-Rocha relation
give poor estimates of isoductile strengths for the MX85SCT1.270 record, where the largest NE, |
values occur (1.726 to 3.331). No clear difference in the error estimates emerges with respect to the
classification of SD, LD, and FD records. The best SD estimates are made using the pulses having
T, = Ty (1.000) and the Vidic et al. R~ u — T relation (0.978); the best LD and FD estimates are
made using the pulses having T, = Ty. The rest of the models do not present a consistent trend.
Considering all 15 ground motions, the smallest OE® occurs using the pulses with T, = 77, (1.000)
followed by the pulses with T, = Ty (1.111), Vidic et al. (1.157), the pulses with T, = T, (1.162),
and Ordaz and Pérez-Rocha (1.164) relations. The other models have OE® ranging from 1.209 to
1.389.

Each of the six contemporary R — u — T relations was developed for specific load-deformation
models, defined by particular values of «, 3, and the choice of hysteretic relation. Average errors,
AE® = E3,, determined using these R — p — T relations are reported in Table 5.4 for a variety of
load-deformation responses, along with the errors resulting when the pulse R-factors are determined
for each particular load-deformation response. For each case, the pulse R-factors are determined
for T, = T,, T, and T;. The periods T, obtained for the systems having a = 0% and 8 = 5%,
were used for systems having other hysteretic or damping characteristics. The largest errors in
the strength estimates occurred for systems having o = 0% and § = 2%, the smallest errors were
obtained for systems having o = 0% and 8 = 10%, and the errors are similar and intermediate
between the best and worst cases for the remaining systems (a = 0, 2, and 10% with § = 5%, and the
stiffness degrading systems). This result applies for each error measure and for each of the R-factor
models (including the pulses), indicating that damping has a greater influence in reducing scatter in
isoductile strengths than does the hysteretic behavior of the system (systems with negative values
of @ were not part of this study but also may be prone to large scatter in isoductile strengths).
Nevertheless, the errors given by the pulse estimates with T, = T,, Ty, and T5 are similar to or
smaller than the errors obtained using the other models for the six types of systems studied, for

each of the three error measures. Only the Vidic et al. relation gives similar accuracy. Both the
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Table 5.2: Errors NE; ., and OE*® using the pulses and 6 R-factor models. The pulse R-factors

m,*

are calculated with T, equal to T, Ty, and T,. The errors are computed for elasto-plastic SDOF
systems having 5% damping

G. M. Pulses Newm., | Riddell, | Nassar, | Miran* | Vidic Ordaz,
T,=T7 |T,=T; | T,=T, | Hall et al. Kraw. et al.* P-R
[ Records | E* [ NE ,[NE: ,[NE:..|NE: , |NE:,, | NEe [ NE: ., [NE: .|
1 0.067 0.904 1.000 0.851 1.388 1.776 1.373 0.881 0.657

0.069 1.184 1.000 1.116 0.986 1.159 1.261 0.957 0.841
3 0.067 1.209 1.269 1.254 1.119 1.299 1.418 1.030 1.537
4 0.090 1.244 1.344 1.144 1.300 1.133 1.122 1.000 1.233
5 0.094 1.040 1.330 1.170 1.234 0.968 1.064 1.021 1.128
6 0.073 1.200 1.356 1.301 1.178 0.890 0.877 1.315 1.178
7
8
9

0.103 1.291 1.311 1.049 1.068 1.058 1.097 1.126 1.175
0.086 1.121 1.105 1.186 1.209 1.023 1.058 0.895 1.395
0.105 1.041 1.171 1.133 1.333 1.067 1.152 1.181 0.629

10 0.133 | 1.063 | 1.060 | 2.165 | 3.331 | 3.008 | 1.887 | 1.726 | 1.105
11 0.127 | 1.039 | 1.039 | 1.559 | 1.016 | 1.008 | 0.961 | 1.433 | 1.819
12 0.076 0.991 1.276 1.079 1.132 0.947 1.053 1.211 1.237
13 0.079 [ 1.82 | 1.025 | 1.633 | 1.671 | 1.354 | 1.304 | 1.228 | 1.557
14 0.085 | 1.120 | 1.094 | 1.106 | 1.447 | 1129 | 1.459 | 1.341 | 1.035
15 0.137 | 1.027 | 1.044 | 1.000 | 1.431 | 1.175 | 1.051 | 0.993 | 0.942
[ Category | OE® | OE® | OE® | OE* | OE* | OE* | OE* | OE* | OFE® |
SD 1.000 | 1.116 | 1.189 [ 1.107 [ 1.205 | 1.267 [ 1.248 | 0.978 | 1.079
LD 1.000 | 1.143 | 1.201 | 1.367 | 1.624 [ 1409 | 1.214 | 1.250 | 1.096
FD 1.000 | 1.072 | 1.096 [ 1275 [ 1.339 | 1.123 | 1.165 | 1.241 | 1.318

[ Vgom. [ 1000 | 1.111 [ 1.162 [ 1.250 | 1.389 | 1.266 | 1.209 | 1.157 | 1.164 |

* Model not developed for elasto-plastic SDOF systems
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Table 5.4: Average errors AE* for the six types of hysteresis SDOF systems using 6 R-factor models
and the pulses with T,, = T7, T5, and T},

Bilinear model Stiff. Deg.
R—u-T a=0%|a=0%| a=0% |[a=2% | a=10%| a=2% Row
Relation B=5%|B8=2%|8=10%|8=5%| B8=5% | B=5% | Average

AE® AE® AFE® AFE® AFE® AE*
Newmark et al* | 0.119 0.173 0.093 0.119 0.125 0.125 0.126
Riddell et al® 0.135 0.173 0.112 0.132 0.126 0.139 0.136
Nassar et al 0.121 0.173 0.097 0.120 0.112 0.128 0.125
Mirandat 0.112 0.160 0.092 0.112 0.110 0.122 0.118
Vidic et al* 0.109 0.147 0.091 0.104 0.101 0.111 0.111
Ordaz et al® 0.108 0.158 0.082 0.113 0.132 0.113 0.118
Pulses, T, =7, | 0.107 0.164 0.077 0.105 0.107 0.115 0.113
Pulses, T, =Ty | 0.102 0.153 0.075 0.101 0.100 0.108 0.106
Pulses, T, =77 | 0.093 0.142 0.073 0.090 0.092 0.101 0.099

AE® AFEP AEP AE® AFE® AFE®
Newmark et al* | 0.188 0.283 0.146 0.189 0.197 0.194 0.200
Riddell et al® 0.187 0.255 0.154 0.184 0.177 0.187 0.191
Nassar et al 0.177 0.272 0.135 0.174 0.162 0.181 0.184
Miranda® 0.167 0.252 0.130 0.167 0.167 0.177 0.177
Vidic et alt 0.164 0.235 0.132 0.158 0.155 0.167 0.169
Ordaz et al® 0.171 0.262 0.125 0.182 0.210 0.178 0.189
Pulses, T, =7, | 0.161 0.257 0.111 0.159 0.164 0.174 0.171
Pulses, T, =T5 | 0.156 0.250 0.109 0.155 0.156 0.164 0.165
Pulses, T, =Ty | 0.143 0.230 0.107 0.139 0.141 0.156 0.153

AE° AE° AE° AFE° AFE° AE°
Newmark et al® | 0.155 0.300 0.110 0.158 0.168 0.165 0.176
Riddell et al® 0.162 0.246 0.128 0.159 0.152 0.169 0.169
Nassar et al 0.147 0.253 0.110 0.145 0.133 0.156 0.157
Miranda™ 0.131 0.217 0.102 0.131 0.131 0.144 0.143
Vidic et alt 0.129 0.207 0.101 0.123 0.122 0.133 0.136
Ordaz et al® 0.133 0.237 0.093 0.141 0.169 0.142 0.153
Pulses, T, = T, 0.124 0.217 0.084 0.122 0.125 0.135 0.135
Pulses, T, =T5 | 0.119 0.204 0.082 0.117 0.117 0.126 0.127
Pulses, T, =Ty | 0.106 0.182 0.079 0.103 0.105 0.117 0.115

*Model developed for elasto-plastic SDOF systems

+ Model developed for bilinear SDOF systems
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Vidic et al. relation and the pulse R-factor model depend on the frequency characteristics of the
ground motion (via the terms Ty, T, T, and T,), indicating the need to explicitly consider ground

motion frequency content in the specification of the strength-reduction factor.

The pulse R-factors only require specification of the pulse shape and a characteristic period of
the ground motion, whether described by T, or T5. The Vidic et al. relation requires specification
of T,, which is based on estimates of the pseudo-velocity and pseudo-acceleration derived from
peak ground velocity and peak ground acceleration. In many ways Ty, Ty, and T, describe similar
characteristics (note they vary together with the ground motions in Table 5.1) but are evaluated
by different procedures. Both T and T, depend on details of the ground motions that may not
be known well prior to the event, while the values of T, that are reported in FEMA-307 [46] were
determined by eye to match approximately the intersection of the constant acceleration and constant
velocity regions of a smoothed spectrum fit to the 5% damped elastic spectrum, with consideration
given to the equivalent velocity spectrum. The manner of defining T, and T3 make them correspond
approximately to the period T used in the NEHRP Provisions [2], where smoothed design spectra
are used. Both Ty and 7, may be determined easily when ground motion records are available.
Given the goodness of the bilinear relation used by Vidic et al., the precise curve described by the
pulse R-factor may not be of critical importance, and a bilinear approximation such as employed
by Vidic et al. may be appropiate given the uncertainties inherent in establishing future ground
motions and their response spectra. Compared with a bilinear approximation, the pulse R-factors,
however, are also applicable to soft soil sites, and because of their implicit definition, may be useful
for systems with load-deformation responses that differ from those studied in previous investigations.
Other contemporary approaches were less accurate and in some cases require posterior knowledge
of the ground motion characteristics (e.g. Newmark and Hall [21], Vidic et al [25], and Ordaz and

Pérez-Rocha [26]).
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5.4 Summary

Inelastic spectraL were estimated with reasonable accuracy using the quadratic pulse qua(2) for 14
of the 15 records studied. A sinusoidal pulse was needed for the soft soil SCT record of the 1985
Michoacan earthquake. The estimates of the strength response spectra using these pulses tended
to have less error relative to the estimates made using six contemporary R — p — T relations. The
pulse R-factors require the identification of a characteristic pulse period, T,, or pulse duration,
ty5. The isoductile strengths were estimated with greatest accuracy when the characteristic period
of the pulse, T,, was set equal to the period Ty. Estimates obtained by setting T, equal to the
characteristic period of the ground motion, Ty, or the period T} also proved to be acceptable, as
did the estimates made using the Vidic et al. relation. That the smallest errors in the estimates
of inelastic response spectra were obtained using the pulse R-factors and those recommended by
Vidic et al. suggest that R — y — T relations should be formulated in terms of T/T,, T/T5, or T/T,

rather than T alone, to explicitly address ground motion frequency characteristics.

Even though it was found necessary to use a harmonic pulse to generate suitable R-factors for the
Mexico City SCT record, R-factors clearly exhibit a degree of waveform independence that allows
R-factors determined for simple pulses to be used to estimate the inelastic response spectra of a
highly varied set of ground motions. Furthermore, the estimates tended to be slightly better than
those obtained using contemporary R — p — T relations. Since the R-factors are implicit once the
pulse shape and duration héve been identified, they can be generated for different load-deformation
and hysteretic relations, while the parameters that define contemporary R — u — T' relations require
numerical evaluation by considering the response of a specific load-deformation model for a large

number of ground motions.
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Chapter 6

HY
Buildings Using Pulse R-Factors

6.1 Introduction

This chapter applies pulse R-factors to estimate the peak response of multi-degree-of-freedom
(MDOF) systems. Previous chapters have shown that the response of inelastic SDOF systems
to ground motions can be estimated using pulse R-factors instead of the more precise R-factors
computed for each specific ground motion. This chapter é,ddresses whether this simplification ap-

plies to buildings with more than one degree-of-freedom.

The parameters by which the dynamic response of multistory buildings is assessed in this chap-
ter are the peak roof displacement and interstory drift index (IDI). These quantities are computed
by nonlinear dynamic analysis using the program DRAIN-2DX [61]. Estimates of peak roof dis-
placement and IDIs are determined using the “equivalent” SDOF modeling technique [62, 63] to
transform a MDOF system into an equivalent SDOF system. The nonlinear response of the equiva-
lent SDOF system is estimated using R— p —T relations determined from the pulse R-factor model,

the Vidic et al. [25] recommendations, and the actual response to each ground motion record. Four
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moment-resistant frame buildings originally designed by Black [64] are analyzed.
Three methods to estimate the interstory drift index are presented. One of the methods requires
only the first mode of vibration, and the other two utilize both the first and second modes of

vibration, as discussed by Black [64].

6.2 Equivalent SDOF Modeling of Multistory Buildings

Equivalent SDOF models of multistory buildings have become widely used during recent years.
Experimental and analytical studies have shown equivalent SDOF models to result in good estimates
of the displacement responses of buildings [33, 64, 54, 53]. Moreover, ATC-40 [62] and FEMA-
273/274 [63] have presented equivalent SDOF approaches for the evaluation of multistory buildings.

The assumptions involved in replacing a MDOF system with an equivalent SDOF system are
that the lateral displacement response is mainly in a single mode, and that the mode shape may be
assumed to remain constant throughout the response. The transformation of the MDOF system to

an equivalent SDOF system is derived in Chapter 3 of FEMA-274 and also in Black’s thesis [64].

Following the terminology used by several researchers [64, 7, 6], the MDOF system having mass
lumped at each story level is approximated by a SDOF system with a specified yield displacement

and yield strength. The equivalent SDOF yield displacement, u;“"’f , is given by

sdo Me ™mao
ugtel = Felytel (6.1)
eq

where:

o u;ndof = yield displacement of the MDOF system obtained with a nonlinear static (pushover)

analysis
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. ALTZ' = participation factor, given by

Leq — {é}TM{l}
M.~ (6)7M19) (62)

where:

— M., = mass of the equivalent SDOF system, with M., = {¢}* M{¢}, where {¢} is the
mode shape vector and M is the diagonal mass matrix of the MDOF system

— L., = modal earthquake excitation factor, with Le, = {¢}*M{1}. The column {1}
represents a unit static translation at the base of the structure producing directly a unit

displacement of all degrees of freedom [7].

The value Le,/M., depends on the manner in which {¢} is normalized. This thesis adopts
the common convention in which {¢} is normalized to have unit amplitude at the roof. This
quantity depends on the characteristics of the structure only. If the input motion has uniform
frequency content (white noise), L.,/M., represents the extent to which the motion excites

response in the assumed mode [7].

The equivalent SDOF yield strength parameter, n;d"f is given by

d
V;’m of g

sdof — .
Qe - VVt Qg,maz

My

where:

o Vymd"f = yield strength of the MDOF system
® G, mq.c = peak ground acceleration, given in Table 2.1

e g = gravity acceleration

o W, = total weight of the building, W; = M, - g, where M; = {1}TM{1} is the total mass of

the system
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o o, = effective modal mass coefficient, given by

L3 _ {8 M{{eY M{1) 6.
Moo M; ~ {STM{GHITMAL) |

Qe =

the term L2, /M., is called the effective modal mass and has dimensions of mass.

6.3 Methodology Using the Pulse R-Factors

This section describes the steps to be used to estimate peak roof displacements and interstory drift
indices of the building frames. These steps are applied to the 4-story and 12-story frames in Section
6.4. The first four steps to develop the estimates of peak roof displacements and interstory drift
indices consist of calculating the equivalent SDOF system corresponding to the MDOF system.

These four steps are:

1. Determine the first and second periods of vibration, 77 and T, the first and second mode
shapes of the MDOF system, {¢;} and {¢:}, normalized to unity at the top of the building,

based on elastic vibration properties (mass and stiffness).

2. Determine the yield displacement and yield strenéth of the MDOF system with a pushover
analysis, ul**/ and V%7, respectively. The building is subjected to either a monotonically
increasing set of lateral forces or a monotonically increasing set of lateral displacements un-
til a given target displacement is reached. Consistent with many researchers, lateral forces
proportional to the product of the modal amplitude and floor mass are applied at each floor
level in this thesis. Because mass was uniform over the height of the building, this happens to
coincide with applying lateral forces proportional to the mode shape. Thus, the lateral forces
have a shape similar to the deformed shape of the building when subjected to the ground
motion, that is, the first and second modes of vibration, which determine the yield strength
and yield displacement associated with each mode. A plot of roof displacement versus base

shear force is defined as the “capacity curve.”
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3. Determine the participation factor Le,/Meq (Eq. 6.2) and the effective modal mass coefficient

a. (Eq. 6.4) for each mode of vibration.

4. Determine the yield displacement and yield strength of the equivalent SDOF system using
Egs. 6.1 and 6.3, u;d"f and nzd"f , respectively, for the two modes of vibration. Often this
requires fitting a bilinear curve to the computed capacity curve, with the yield strength and

yield displacement determined by the break point in the bilinear curve

Accurate estimates of peak roof displacement often may be obtained using only the first mode of
vibration. Interstory drift index estimates often require data corresponding to two or more modes;

only the first two modes are considered here.

6.3.1 Estimating Peak Displacement Using the Pulse R-Factors

The buildings to be analyzed were designed assuming viscous damping equal to 5% of critical
damping in the first mode of vibration [64]. The pushover analyses of the buildings under study show
that the load-deformation capacity curves can be represented approximately as bilinear systems with
post-yield stiffness equal to approximately 10% of the initial stiffness. To achieve “equivalence” in
representing the response of a multistory structure responding in a single mode by a SDOF system,
the pulse R-factor response spectra used in estimating the responses of the multistory buildings
should have similar damping (5%) and post-yield stiffness (10%). Only the yield displacement
and yield strength of the building in the first mode of vibration are required to estimate the peak
roof displacement. After following steps 1 to 4 of Section 6.3, the next steps to estimate the
peak displacement of the MDOF system are the following, where each ground motion has the

characteristic period, T}, given in Table 2.1:

1. Calculate the equivalent SDOF elastic strength parameter, 7:%°f = n(u =1,T =T) .
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2. If nitef > n2def (Eq. 6.3), then, the strength reduction factor is the ratio

sdof

SA0 778
R = (6.5)
Ty

otherwise, the response is elastic and the strength reduction factor is given by R*%f = 1.

3. Determine the ductility demand of the SDOF system, using a SDOF system having period
T, and a strength reduction factor R*%/ for a specified pulse shape having a characteristic

period 7T}, equal to the characteristic period of the ground motion,

p=p(R=R% T=T,T,=T1,) (6.6)

4. Estimate the peak roof displacement of the MDOF system as

Le,

q

ymdol = - - maz(ul) (6.7)

el

S

s

*4of) is the maximum elastic displacement of the equivalent SDOF system. If

where maz(u

the response of the systems is elastic, (R*%°/ = 1), then maz(u3f*’) = us%/, where

T2
u = g i (65)

If the response is nonlinear, R*®/ > 1, then maa:(u:?"f ) = ui®f. Using Eq. 6.1, Eq. 6.7

: mdof __ ,, ., mdof
results in ul4/ = p - up®s,

6.3.2 Estimating Interstory Drift Index Using the Pulse R-Factors

The interstory drift index (IDI) is a measure used to quantify local damage in a building. It is
defined as the displacement of any floor relative to the floor immediately below, normalized by

the story height. Although the peak IDI of each story can be reached at different times during
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the response of the building, the equivalent SDOF methodology assumes that the deformed shape

remains constant during the response and the peak IDI of each story is reached with the same

deformed shape given.

According to several investigators that have studied the IDI over the last years [65, 55, 54], the
peak IDI can be related to the roof drift index (defined as the peak roof displacement normalized
by the building height) by a quantity known as the coefficient of distortion (COD). The coefficient
of distortion is, therefore, based on the deformed shape of the building when the maximum roof
displacement occurs. Estimates of IDI will be made using three different but related techniques,
following Black [64]. The estimates of IDI require independent estimates of the peak roof displace-
ment given by Eq. 6.7 for each of the first two modes of vibration. The following three techniques

and equations are employed for estimating the maximum IDI of all separate floor IDI maxima:

1. The IDI depends only on one deformed shape, corresponding to the fundamental mode of

vibration as follows

IDI? = um®f . IDI(¢1) (6.9)

2. Two IDI estimates that depend on two deformed shapes, associated with the first and second

mode of vibration

2
IDI? = JZ(uz;d"f - IDI;i(¢;))? (6.10)
j=1
2 .
IDIf =" | ul® . IDI'(4;) | (6.11)
i=1

where:

o IDI? = estimated interstory drift index for the i** story, where s = a, b, ¢ corresponds to the

techniques (a), (b), and (c). Each estimated IDI is named IDI®, IDI®, and IDI° to refer to

Egs. 6.9, 6.10, and 6.11, respectively.

. uumjd"f = peak roof displacement given by Eq. 6.7 for the j%* mode of vibration.
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e IDI;(¢;) = modal interstory drift index for the ith story, defined as the interstory drift index

calculated for the assumed deformed mode shape {¢;}.

6.4 Peak Roof Displacement and IDI Estimates for 4- and

12-Story Frames

6.4.1 Characteristic of the Frames

Four moment-resistant steel frame buildings having three bays were used for the MDOF systems;
two 4-story frames representing low-rise buildings and two 12-story frames representing medium-
height buildings. Each building of each pair was designed by Black [64] to achieve a roof drift of 1.5%
under a design earthquake ground motion, corresponding to the drift limit recommended in Vision
2000 [66] for the life safety performance objective. Relatively weak earthquake ground motions
were used for the design of buildings labeled “Flexible” while relatively strong ground motions
were used for the design of the buildings labeled “Rigid”. No gravity load was applied since the
frames were only designed and analyzed only for lateral force. The resulting buildings were named
Flexible-4, Rigid-4, Flexible-12, and Rigid-12, and were designed to resist the LN92LUCN.270,
NR94NWHL.360, MX85SCT1.270, and KO95TTRI.360 records (Table 2.1), respectively.

Mass- and stiffness- proportional damping factors were set to produce 5% damping in the 1%
and 4*" modes for the 4-story frames, and in the 1% and 6** modes for the 12-story frames. The

damping associated with the 2" mode of vibration was 2.8% for the 4- and 12-story frames.

All the buildings have uniform mass distribution, with columns fixed at the base, and a lower
story height of 5 meters and the remaining stories each 4 meters high. The total weight of each
4-story building was 2,204 kN, and each 12-story building weighed 6,612 kN. Each bay is 8 meters

wide from center to center of the columns. The steel is Grade A36. More details of the buildings

can be found in Black’s thesis [64].
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Table 6.1: Characteristics of the buildings for the 1** mode of vibration

| Flexible-4 | Rigid-4 | Flexible-12 | Rigid-12 |
]@—t 1.266 1.308 1.372 1.406
Q. 0.875 0.846 0.786 0.766
Vel (kN) 585 1500 1145 3100
u T (m) 0.129 0.133 0.353 0.335
T: (s) 1.16 0.71 2.17 1.25

Table 6.2: Characteristics of the buildings for the 2"¢ mode of vibration

Flexible-4 | Rigid-4 | Flexible-12 | Rigid-12 |
]{}—‘L 0.363 0.401 0.568 0.615
Qe 0.096 0.121 0.118 0.125
V7%l (kN) 575 1250 954 2150
w77 (m) 0.035 0.030 0.110 0.091
Ts (s) 0.38 0.25 0.80 0.48

Table 6.1 shows the values of the participation factor, Le;/M,,, the effective modal mass coef-
ficient, a., the MDOF yield strength and yield displacements obtained with a push-over analysis
in the first mode of vibration, and the fundamental period of vibration of each building. Table 6.2

shows the same information but for the second mode of vibration. Tables 6.3 and 6.4 show the first

and second mode shapes, normalized to unity at the top of the building, and the modal IDI for each
mode shape for the 4-story frames and 12-story frames, respectively. Figure 6.1 shows the first and
second modes of vibration of the 4- and 12-story buildings.

Table 6.3: Mode shapes and modal interstory drift indices of the 4-story buildings for the first and

second mode of vibration
Story | Story

No. | Height Flexible-4 Rigid-4

(m) {¢:} [IDI(¢1) | {¢s} [IDI(¢s) | {n} | IDI(¢1) | {o} |IDI(¢»)
4 1.0000 | 3.66% | 1.0000 | 27.74% | 1.0000 | 5.03% | 1.0000 | 31.14%

4 0.8536 | 6.45% |-0.1097 | 23.34% | 0.7989 | 7.08% |-0.2457 | 21.33%

4 0.5957 | 7.06% |-1.0432 | -3.35% | 0.5157 | 6.04% |-1.0989 | -5.88%

3 0.3134 | 6.27% |-0.9093 | -18.19% | 0.2743 | 5.49% |-0.8638 | -17.28%

= DD o Wi
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Figure 6.1: First and second mode shapes for the 4- and 12-story buildings
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Table 6.4: Mode shapes and modal interstory drift indices of the 12-story buildings for the first and
second mode of vibration

Story | Story
No. | Height Flexible-12 Rigid-12
(m) [ {¢} [IDI(¢1) | {#2} |IDI(¢2)| {1} |IDI(¢1) | {¢2} |IDI(¢5)
12 4 1.0000 | 1.13% 1.0000 | 7.23% | 1.0000 | 1.40% | 1.0000 | 8.24%
11 4 0.9546 | 1.70% | 0.7109 | 9.96% | 0.9442 | 2.09% | 0.6703 | 11.23%
10 4 0.8868 | 1.87% | 0.3124 | 9.04% | 0.8605 | 2.15% | 0.2211 9.15%
9 4 0.8120 | 2.17% [-0.0490 | 8.15% | 0.7747 | 2.35% |-0.1448 | 7.53%
8 4 0.7254 | 2.24% |-0.3751 | 5.77% | 0.6806 | 2.18% |-0.4460 | 4.39%
7 4 0.6356 | 2.37% |-0.6057 | 3.45% |0.5932 | 2.31% |-0.6215| 2.25%
6 4 0.5409 | 2.29% |-0.7437 | 0.86% | 0.5008 | 2.23% |-0.7113 | 0.04%
5 4 0.4492 | 2.34% |-0.7780 | -1.28% | 0.4117 | 2.28% |-0.7129 | -1.78%
4 4 0.3556 | 2.29% |-0.7267 | -3.08% | 0.3205| 2.22% |-0.6419 | -3.20%
3 4 0.2640 | 2.34% |-0.6034 | -4.58% | 0.2317 | 2.13% |-0.5138 | -4.13%
2 4 0.1704 | 2.19% |-0.4203 | -5.17% | 0.1465 | 1.84% |-0.3487 | -4.21%
1 5 0.0828 | 1.66% |-0.2136 | -4.27% | 0.0728 | 1.46% |-0.1804 | -3.61%

6.4.2 Peak Displacement Estimates

This section presents estimates of the peak roof displacement of the four frames, each subjected to
15 ground motions. Results are presented in Section 6.4.2.2 and discussed in Section 6.4.2.3. An

example, below, illustrates the calculation.

6.4.2.1 Example of Peak Displacement Estimation

The following example illustrates the estimation of the peak roof displacement of a MDOF system
using the pulse R-factors. Consider the Flexible-4 and Rigid-4 buildings subjected to the 1940 N-5
component of the El Centro earthquake (IV40ELCN.180), characterized by a peak acceleration,
Qg maz = 3.417 m/s? and characteristic period, T, = 0.65 s. Steps 1 to 3 of Section 6.3 result in the
values shown in Table 6.1. Step 4 consists of calculating the yield displacement and yield strength
of the equivalent SDOF systems (Egs. 6.1 and 6.3, respectively). Using the data of Table 6.1 for

Flexible-4,
sdof _ 0-129777,

Uy 1266 = 0.102m
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sdof _ 585 kN 9.807m /s?

= - = 0.871
= 0876 9204kN 3ATTm/s? O

Applying the same procedure to Rigid-4 results in w®%/ = 0.1017 m and 5%/ = 2.307.
& ¥ y

The four steps of Section 6.3.1 come next:

1. The elastic strength parameter for the fundamental period of vibration is obtained from the
strength spectrum of the bilinear SDOF systems having 5% damping and 10% post yield
stiffness, for the IV40ELCN.180 record. For the Flexible-4 frame, ni*/ =n(u=1,T =T, =
1.16s) = 1.01, and for the Rigid-4 frame, having T} = 0.71s, n3%/ = 1.757.

2. The Flexible-4 building behaves nonlinearly, since n:%/ > 2%/, therefore, the reduction factor

4

is given by R*%/ = 22. = 1.158. The Rigid-4 building behaves linearly in the first mode,

therefore, R*%/ = 1.

3. Once the fundamental period of vibration and the R-factor are known, the next step is to
calculate the ductility of the system associated with the first mode. The ductility is obtained
from the overall response of bilinear SDOF systems having 5% damping and 10% post yield
stiffness subjected to the qua(2) pulse (Fig. 4.2) having a strength reduction factor equal to
Rs#f . The characteristic period of the pulse is equated to the period of the ground motion,
T, = T, = 0.65 s. Figure 6.2 shows the R-factor spectrum for this pulse. The dotted lines
indicate the periods of vibration of the buildings. For the Flexible-4 frame, p = u(R =
Ro%f = 1.158,T = Ty = 1.16s) = 1.093, and for the Rigid-4 frame, u = 1 since it behaves

linearly.

4. The peak roof displacement of the MDOF system is now calculated using Eq. 6.7. For the

Flexible-4 frame,

u™f = 1.266 (1.093) (0.102m) = 0.141m (6.12)
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Figure 6.2: Ductility values associated with the first mode for the 4-story buildings subjected to

the IV40ELCN.180 record (T, = 0.65 s, o = 10%, 8 = 5%)

The Rigid-4 frame is elastic and the peak roof displacement is given by the elastic displacement
of the SDOF system (Eq. 6.8), us®/ = %%—2— (3.417) (1.757) = 0.76 m. Therefore, the estimated
peak roof displacement of the Rigid-4 building is u™%/ = 1.308 (1) (0.766m) = 0.100 m.

6.4.2.2 Numerical Results

Three methods to estimate peak displacement are evaluated with respect to the peak roof displace-
ment computed by nonlinear dynamic analysis with the DRAIN-2DX program. The results are
plotted and mean and standard deviation statistics are reported. The following tables and figures
show the peak roof displacement estimates that result from each of the methods and from nonlinear
dynamic analysis with DRAIN-2DX. The latter result is taken as the correct value, and was ob-
tained by applying the recorded ground motions in their natural state, that is, without any scaling

of amplitude or time. The methods consider the elastic spectrum of the ground motions and the

R-factors derived from:
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a) the ground motion R-factor, which is the most accurate implementation of an equivalent

SDOF system, but requires knowledge of ground motion history,

b) Vidic’s R—u—T relation which often is very accurate, based on Chapter 5, but requires

knowledge of @y mar and vgmaez, and,

c) the pulse R-factor, which only requires knowledge of the pulse shape and the character-

istic period 7.

It is expected that (c) will be least accurate, but less information is required, and hence (c) may
be more suitable for design situations in which only the elastic spectrum is known. The estimates
given by the methods (a) and (b) are obtained following processes similar to the example mentioned

in Section 6.4.2.

The R-factor that results from the overall response of SDOF systems having 5% damping and
10% post-yield stiffness subjected to the qua(2) pulse was used for all ground motions, except the
1985 Michoacan earthquake (MX85SCT1.270 record) for which the forced response of the sin(5)
pulse was used (see Chapter 4). Figure 5.1 plots the acceleration, velocity, and displacement time
histories of these two pulses. Two cases were considered when using the pulse R-factors. In one
case the period of the pulse is considered to be equal to the characteristic ground period, T, = T,.
In the other case, T, = T}, where T is the period that minimizes the error given in Eq. 4.4 (see

Table 4.3).

Tables 6.5 to 6.9 present the peak roof displacements computed and estimated for each of the
four buildings subjected to the 15 ground motions (Table 2.1). The first column shows the identifier
name of each ground motion. The second column shows the ductility of the building for each record,

given by the ratio uum'dD"}fM IN—2DX / up®! associated with the first mode. The following columns show

the result from the nonlinear analyses performed with DRAIN-2DX, u:z%’}éA IN—2Dx the estimates

calculated with Eq. 6.7 using the R-factor of the equivalent SDOF subjected to the record, uum,fzford,

the estimates given by Vidic’s R-factor, uzgfi-c, the estimates using the pulses R-factor having
T, =17, uzzf‘{(Tl.), and the estimates calculated for T, = T, u::iZ{(Tg). Tables 6.10 to 6.13 present
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Table 6.5: Peak roof displacements for Flexible-4 (cm)

Ground motion

*

mdof

mdo f

mdof

mdo f

mdof

H uu,DRAIN—2DX u,record u,vidic uu,pul(Tf) u,pul(Ty)
WN87MWLN.090 | Linear 0.96 0.91 0.91 0.91 0.91
BB92CIVC. 360 | Linear 8.63 7.18 7.18 7.18 7.18
SP88GUKA.360 | Linear 7.78 7.33 7.33 7.33 7.33
LP89CORR.090 1.40 18.11 15.94 16.22 15.90 16.57
NR94CENT.360 1.01 13.02 13.47 13.66 13.47 14.22
CHS85LLEO.010 1.38 17.75 17.88 19.77 19.11 21.78
CH85VALP.070 | Linear 5.16 5.91 5.91 5.91 5.91
IV40ELCN.180 1.01 12.99 14.32 14.41 14.58 14.11
LN92JOSH.360 1.20 15.55 17.04 19.18 18.23 24.13
MX85SCT1.270 | Linear 10.91 11.62 | 11.62 11.62 11.62
LN92LUCN.250 1.88 24.09 25.79 19.84 21.88 22.53
LP89SARA.360 1.38 17.80 18.04 19.10 18.15 19.81
NR94NWHL.360 | 2.27 29.35 32.32 | 41.75 39.10 39.50
NR94SYLH.090 1.53 19.78 22.02 17.85 21.60 20.05
KO95TTRI.360 4.02 51.82 60.98 67.59 70.38 81.93

*in the first mode, independent of the others

the ratios of the estimated peak roof displacements to the nonlinear DRAIN-2DX values for each

of the 15 records.
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Table 6.7: Peak roof displacements for Rigid-4 (cm)

Ground motion 1w uum,ngmm—wx u::f:gord um,gféfic u:;;f(zg) um,;Z{(Tg)
WN87MWLN.090 | Linear 0.57 0.53 0.53 0.53 0.53
BB92CIVC. 360 | Linear 5.34 4.97 4.97 4.97 4.97
SP88GUKA.360 | Linear 2.87 2.89 2.89 2.89 2.89
LP89CORR.090 1.48 19.70 18.03 | 19.77 22.71 24.78
NR94CENT.360 | Linear 7.49 7.20 7.20 7.20 7.20
CHS85LLEO.010 1.10 14.62 14.16 | 14.30 14.75 14.28
CH85VALP.070 | Linear 5.50 5.13 5.13 5.13 5.13
IVA0ELCN.180 | Linear 10.38 10.02 | 10.02 10.02 10.02
LN92JOSH.360 | Linear 11.26 10.94 | 10.94 10.94 10.94
MX85SCT1.270 | Linear 5.73 5.70 5.70 5.70 5.70
LN92LUCN.250 | Linear 11.37 10.92 | 10.92 10.92 10.92
LP89SARA.360 | Linear 9.96 9.83 9.83 9.83 9.83
NR94NWHL.360 | 1.68 22.29 25.92 | 29.21 33.36 34.39
NR94SYLH.090 1.01 13.41 14.11 | 13.73 13.95 14.03
KO95TTRI.360 1.62 21.51 24.62 | 24.12 27.81 33.86
*in the first mode, independent of the others
Table 6.8: Peak roof displacements for Flexible-12 (cm)
Ground motion p uztil)oléAIN—zDX UZf:gord Uum,jféc U:zZ{(T;) “T,zz{(rg)
WN87MWLN.090 | Linear 0.98 0.97 0.97 0.97 0.97
BB92CIVC. 360 | Linear 11.51 7.70 7.70 7.70 7.70
SP88GUKA.360 | Linear 7.14 5.95 5.95 5.95 5.95
LP89CORR.090 | Linear 23.62 14.65 | 14.65 14.65 14.65
NR94CENT.360 | Linear 17.86 17.07 | 17.07 17.07 17.07
CHS5LLEQ.010 | Linear 34.22 27.15 | 27.15 27.15 27.15
CH85VALP.070 | Linear 10.94 9.56 9.56 9.56 9.56
IV40ELCN.180 | Linear 33.64 29.96 | 29.96 29.96 29.96
LN92JOSH.360 | Linear 22.77 17.47 | 17.47 17.47 17.47
MX85SCT1.270 1.96 69.03 75.01 | 109.07 | 73.48 78.85
LN92LUCN.250 1.44 50.69 52.76 | 43.99 47.25 47.15
LP89SARA.360 1.08 38.14 38.94 | 39.03 39.98 40.48
NR94NWHL.360 | 1.47 51.80 5241 | 51.25 53.08 52.40
NR94SYLH.090 1.72 60.82 57.48 | 63.05 59.21 62.87
KO95TTRI.360 2.38 84.09 92.63 | 122.38 | 142.16 115.51

*in the first mode, independent of the others
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Table 6.9: Peak roof displacements for Rigid-12 (cm)

Ground motion I UT,}%AIN—zDX uum,f:;:ford u:ﬁ?fific UZ;Z{Z{}T;) UZZZ{(TQ)
WN87TMWLN.090 | Linear 0.98 0.93 0.93 0.93 0.93
BB92CIVC. 360 | Linear 10.04 7.92 7.92 7.92 7.92
SP88GUKA.360 | Linear 8.52 8.20 8.20 8.20 8.20
LP89CORR.090 | Linear 23.39 23.00 | 23.00 23.00 23.00
NR94CENT.360 | Linear 16.35 15.12 15.12 15.12 15.12
CHS85LLEOQ.010 | Linear 25.47 25.22 | 25.22 25.22 25.22
CH85VALP.070 | Linear 9.07 8.75 8.75 8.75 8.75
IV40ELCN.180 | Linear 17.50 15.25 | 15.25 15.25 15.25
LN92JOSH.360 | Linear 28.37 26.49 | 26.49 26.49 26.49
MX85SCT1.270 | Linear 14.3 15.61 15.61 15.61 15.61
LN92LUCN.250 | Linear 29.27 28.89 | 28.89 28.89 28.89
LP89SARA.360 | Linear 26.45 25.24 | 25.24 25.24 25.24
NR94NWHL.360 | 1.65 55.45 49.45 | 52.64 48.04 47.76
NR94SYLH.090 | Linear 28.47 28.30 | 28.30 28.30 28.30
KO95TTRI.360 1.94 65.01 73.19 | 93.47 85.13 103.79

*in the first mode, independent of the others

Table 6.10: Estimate peak roof displacement/Drain peak roof displacement ratio for Flexible-4

l Ground motion [ Ratiorecorqd | Ratioyigic | Ratiopu(rs J Ratiopyu(t,)
WNS87TMWLN.090 0.950 0.950 0.950 0.950
BB92CIVC. 360 0.832 0.832 0.832 0.832
SP88GUKA.360 0.941 0.941 0.941 0.941
LP89CORR.090 0.881 0.896 0.878 0.915
NR94CENT.360 1.035 1.049 1.035 1.092
CH85LLEO.010 1.008 1.114 1.077 1.227
CH85VALP.070 1.146 1.146 1.146 1.146
IV40ELCN.180 1.102 1.109 1.122 1.086
LN92JOSH.360 1.096 1.234 1.172 1.552
MX85SCT1.270 1.066 1.066 1.066 1.066
LN92LUCN.250 1.071 0.824 0.908 0.935
LP89SARA.360 1.014 1.073 1.020 1.113
NR94NWHL.360 1.101 1.422 1.332 1.346
NR94SYLH.090 1.113 0.902 1.092 1.013
KO95TTRI.360 1.177 1.304 1.358 1.581
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Table 6.11: Estimate peak roof displacement/Drain peak roof displacement ratio for Rigid-4

| Ground motion l Rati0record | Ratioyi4ic | Ratiopu(rr) | Ratioputy) ]
WNS7TMWLN.090 0.929 0.929 0.929 0.929
BB92CIVC. 360 0.930 0.930 0.930 0.930
SP88GUKA.360 1.005 1.005 1.005 1.005
LP89CORR.090 0.915 1.003 1.153 1.258
NR94CENT.360 0.961 0.961 0.961 0.961
CHS85LLEO.010 0.969 0.978 1.009 0.977
CHS85VALP.070 0.933 0.933 0.933 0.933
IV40ELCN.180 0.965 0.965 0.965 0.965
LN92JOSH.360 0.971 0.971 0.971 0.971
MX85SCT1.270 0.994 0.994 0.994 0.994
LN92LUCN.250 0.960 0.960 0.960 0.960
LP89SARA.360 0.987 0.987 0.987 0.987
NR94NWHL.360 1.162 1.310 1.496 1.542
NR94SYLH.090 1.052 1.024 1.040 1.047
KO95TTRI.360 1.145 1.121 1.293 1.574

Table 6.12: Estimate peak roof displacement/Drain peak roof displacement ratio for Flexible-12

[ Ground motion | Ratiorecord | Rat10vidgic | Ratiopuzs) | Ratiopu(ry) |
WN87TMWLN.090 0.998 0.998 0.998 0.998
BB92CIVC. 360 0.668 0.668 0.668 0.668
SP88GUKA.360 0.834 0.834 0.834 0.834
LP89CORR.090 0.620 0.620 0.620 0.620
NR94CENT.360 0.995 0.995 0.995 0.995
CHS85LLEQ.010 0.794 0.794 0.794 0.794
CH85VALP.070 0.874 0.874 0.874 0.874
IV40ELCN.180 0.891 0.891 0.891 0.891
LN92JOSH.360 0.767 0.767 0.767 0.767
MX85SCT1.270 1.087 1.580 1.064 1.142
LN92LUCN.250 1.041 0.868 0.932 0.930
LP89SARA.360 1.021 1.023 1.048 1.061
NR94NWHL.360 1.012 0.989 1.025 1.012
NR94SYLH.090 0.945 1.037 0.974 1.034
KO95TTRI.360 1.102 1.455 1.691 1.374
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Table 6.13: Estimate peak roof displacement/Drain peak roof displacement ratio for Rigid-12

[ Ground motion | Ratiorecord | Ratioyigic | Ratiopur») | Ratioyur,) ]
WN87MWLN.090 0.951 0.951 0.951 0.951
BB92CIVC. 360 0.789 0.789 0.789 0.789
SP88GUKA.360 0.962 0.962 0.962 0.962
LP89CORR.090 0.983 0.983 0.983 0.983
NR94CENT.360 0.925 0.925 0.925 0.925
CH85LLEO.010 0.990 0.990 0.990 0.990
CH85VALP.070 0.946 0.946 0.946 0.946
IV40ELCN.180 0.872 0.872 0.872 0.872
LN92JOSH.360 0.934 0.934 0.934 0.934
MX85SCT1.270 1.089 1.089 1.089 1.089
LN92LUCN.250 0.987 0.987 0.987 0.987
LP89SARA.360 0.954 0.954 0.954 0.954
NR94NWHL.360 0.892 0.949 0.866 0.861
NR94SYLH.090 0.994 0.994 0.994 0.994
KO95TTRI.360 1.126 1.438 1.309 1.597

123



Figures 6.3 to 6.6 provide a graphic comparison among the different methods used to estimate
the peak roof displacements and the results obtained by nonlinear dynamic analysis. The upper
part of these figures plots the estimated peak roof displacement versus the DRAIN-2DX peak
roof displacement. The diagonal line represents perfect estimation; points below the line indicate
underestimation, while points above indicate overestimation of the peak roof displacement. The
vertical dashed line indicates the separation between elastic displacements u;’jf;’é AIN—2DX < u;"d"f
and nonlinear displacements “Z?JQA IN—2DX > u;"dof based on first mode behavior. This plot shows
the accuracy of each estimate model with respect to the nonlinear displacement. Differences between
the “record” estimate and the DRAIN-2DX value represent the effects of higher modes. Differences
between the estimates (pulses and Vidic) and the “record” values represent errors in estimating
nonlinear response based on R-factors applied to an elastic response spectrum. The lower part of
each figure shows ratios of the estimated peak roof displacement and the DRAIN-2DX peak roof
displacement for each ground motion. In this case, the horizontal line represents perfect estimation;
points below iﬁdicate underestimation of peak displacement; points above indicate overestimation.

This plot shows the accuracy of each estimate with respect to each ground motion. Data to produce

these graphics are presented in Tables 6.5 to 6.13.

6.4.2.3 Analysis of Results

If the buildings have not reached their roof yield displacement, the estimated peak roof displacement
of each building is the same independently of the model used to estimate it. The reason is because
linear elastic response is identified in the first mode with the elastic spectrum of the SDOF systems
subjected to the considered ground motion. Therefore, the peak roof displacements, u™%/, given in
Tables 6.5 to 6.9 are the same using the equivalent SDOF systems subjected to the record, Vidic’s

model, and the pulse model.

However, if the response of the buildings is nonlinear, differences in ©™%°f appear among the esti-

mates. In general, the peak roof displacement estimates are less accurate when the R-factor obtained
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Figure 6.3: Peak roof displacement comparisons for the Flexible-4 building
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Figure 6.6: Peak roof displacement comparisons for the Rigid-12 building
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Table 6.14: Results for all cases
Record Vidic Pulse, T, = T7 Pulse, T, = T,

Frame | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev.
Flexible-4 | 1.035 0.098 1.057 0.173 1.062 0.152 1.120 0.223

Rigid-4 0.992 0.074 1.005 0.097 1.042 0.158 1.069 0.214
Flexible-12 | 0.907 0.147 0.957 0.260 0.942 0.246 0.930 0.190
Rigid-12 | 0.960 0.081 0.984 0.141 0.970 0.116 0.989 0.182

| Al Joo974] 0112 [1.001] 0177 [1.004 [ 0177 [1.027 [ 0211 |
from the ground motions is replaced by the R-factor given by Vidic or the pulses. The difference

between Vidic and the pulse estimates and the nonlinear response given by DRAIN-2DX is espe-

cially large in all buildings subjected to the 1995 Hyogo-Ken Nambu earthquake (KO95TTRI.360

record), where the largest peak roof displacements are found. The buildings subjected to this record

present the largest peak roof displacements, ranging from uzg’é 4IN—2px = 21.5 cm for Rigid-4 to
do

84.1 cm for Flexible-12, and the pulses, using T, = T, overestimate uzDéAIN_sz by 30, 12, 31,

and 38 cm for the Flexible-4, Rigid-4, Flexible-12, and Rigid-12, respectively.

There are 23 nonlinear cases out of the 15 records x 4 buildings = 60 cases under study. Among
these cases, the estimated peak displacements using the pulses having T, = T, are larger than using

the same pulses but having 7, = 77 in 16 cases, which corresponds to 70% of the nonlinear cases.

Table 6.14 shows the mean and standard deviations of the ratio of the estimated peak roof
displacement and the nonlinear DRAIN-2DX peak roof displacement, for each building, using the
record, Vidic, and the pulses having T, = T} and T, = T}, (the pulses consist of the sin(5) pulse for
the 1985 Michoacan earthquake and the qua(2) pulse for the rest of the records). The mean ratios
indicate that the peak roof displacement for the four-story buildings is overestimated in general,
while the 12-story building peak roof displacements are underestimated, for the set of linear and
nonlinear responses in Table 6.14. Often, the best results occur when the R-factor used to estimate
the response comes from Vidic or from the pulse having T, = T7. For both cases the dispersion
is larger than for the estimates given by the record R-factor. The standard deviation is smallest
for the record (0.112), followed by Vidic and the pulses having T, = T} (0.177). Using the pulses

with T, = T, leads to slightly greater dispersion. The accuracy of the record estimate, as reflected
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Table 6.15: Results for nonlinear cases
Record Vidic Pulse, T, = Tt Pulse, T, =T,

Frame Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev.
Flexible-4 | 1.060 0.081 1.093 0.190 1.099 0.158 1.186 0.238
Rigid-4 1.049 0.108 1.087 0.136 1.198 0.200 1.280 0.275
Flexible-12 | 1.034 0.056 1.159 0.287 1.122 0.283 1.092 0.154
Rigid-12 | 1.009 0.166 1.194 0.345 1.088 0.313 1.229 0.520
| All 1.046 [ 0.084 | 1.118 0.209 1.126 | 0.204 { 1.186 0.243 {

in the mean and standard deviation, indicate the first mode analogy captures nearly all of the
displacement response, that is, higher modes are seen to have little effect on the mean peak roof
displacement estimate. More significant are differences in the estimated R — y — T relationship

relative to the actual R — y — T relation computed for the ground motion.

Table 6.15 shows the mean and standard deviation values of the ratio of the displacement
estimate and the nonlinear DRAIN-2DX displacement of only the cases where the buildings behave
nonlinearly. The average is also presented. The mean ratios indicate that the record and estimate
methods tend to overestimate peak displacement response, albeit by less than 20% on average for
most of the building frames. The record estimates tend to be higher for the 4-story buildings than
the 12-story buildings, repeating a trend observed in Table 6.14. However, this pattern does not
extend to the Vidic and pulse estimates for the nonlinear cases. In general, the means and standard
deviations are larger than those presented in Table 6.14 where the linear and nonlinear cases where
mixed. The lowest mean (1.046) and standard deviation (0.084) correspond to the estimates given
by the record R-factor. Vidic and the pulse (T, = T7) have similar overall means (1.118 and 1.126)
and standard deviations (0.209 and 0.204). The pulse with T}, = T has a larger mean (1.186) and
standard deviation (0.243). The standard deviations are higher for the nonlinear estimates (Table
6.15) than for the set of all cases (Table 6.14), except for the record estimates. This reflects the

error introduced by using the estimates of R-factors.
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6.4.3 IDI Estimates

As described in Section 6.3.2, interstory drift indices are estimated using three techniques. One mode
of vibration is used in Eq. 6.9 and two modes are used in Eqgs. 6.10 and 6.11. Modal amplitudes are
estimated assuming independence, even when nonlinear response is known to develop. Thus, the
peak roof displacement is estimated for each mode independently of the response in the other modes.
These equations are used to estimate and compare the IDI obtained using the estimated ductility
responses of the systems subjected to the record, to the pulses having T, = 77 and T, = T}, and
using Vidic’s R — u — T relation. The modal interstory drift indices for each building are presented

in Table 6.3 for the 4-story buildings and in Table 6.4 for the 12-story buildings.

The peak roof displacement generated with the second mode of vibration was obtained for
equivalent SDOF systems having 10% post-yield stiffness and 2.8% of critical damping, which
corresponds to the damping assigned to the second mode of vibration of the MDOF system in the

nonlinear analysis generated by DRAIN-2DX, for the four buildings.

An example of how the IDI of a story of a MDOF system is estimated using the pulse R-factors
is now presented. The Flexible-4 building was subjected to the 1940 N-S component of the El
Centro record (IV40ELCN.180), characterized by a peak acceleration, agma; = 3.417 m/s® and
characteristic period, T, = 0.65 s. Following Section 6.4.2, the peak roof displacement associated
with the second mode is calculated by the same procedure used for the first mode. Table 6.2
contains the data needed for the second mode of vibration: -LME; = 0.363, . = 0.096, V™! = 575
kN, u¥f = 0.035 m, and T5 = 0.38 s. The yield displacement and yield strength of the equivalent

SDOF system is obtained with Eqgs. 6.1 and 6.3, respectively. In this case, u;d"f = % = 0.096 m,

sdof _ 575 . 9.807 __ 7.77.

and My " 0.096-2204 3.417

Following the four steps in Section 6.3.1:

1. The elastic response of a bilinear SDOF system having 2.8% damping and 10% post-yield

stiffness subjected to the IVA0ELCN.180 record is used to determine the elastic strength
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parameter. The result for the Flexible-4 building is n:%f = n(u = 1,T = T, = 0.38s) = 2.07.

2. The Flexible-4 building behaves linearly, since 7%/ < n;d°f , therefore, the reduction factor is

given by Rs%f =1,

3. Since the response is elastic, the ductility is 4 = 1.

sdof
e

4. The peak roof displacement of the MDOF system is now calculated using Eq. 6.8 as u

038%5* (3 417m/s?) (2.07) = 0.026 m. Therefore, the estimated peak roof displacement associ-

472

ated with the second mode of vibration of the building is

um™f = 0.363 (1) (0.026m) = 0.01m (6.13)
The peak roof displacement associated with the first mode is 0.141 m, from Eq. 6.12.

Having estimated the maximum modal responsves (assuming the modes to respond independently),

interstory drift indices can now be estimated. For example, for the top story of Flexible-4, Egs.

6.9 to 6.11 result in IDI4(¢;) = 3.66% and IDI4(¢,) = 27.74%, as shown in Table 6.3. Therefore,

using Eq. 6.9,
IDI? = 0.141 - 3.66% = 0.52% (6.14)
Eq. 6.10 leads to
DI = /(0.141 - 3.66%)? + (0.01 - 27.74%)? = 0.58% (6.15)
and Eq. 6.11,
IDI{ =|0.141 - 3.66% | + | 0.01 - 27.74% |= 0.79% (6.16)

Similar calculations were done for each story of each building and for each of the 15 ground

motion records.
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Figure 6.7: Ratio IDI*/IDIprain-2px for Flexible-4 building subjected to each ground motion
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Figure 6.8: Mean ratio IDI*/IDIpraiN-2px, S = a,b,c, per story for Flexible-4 building over all
records
6.4.3.1 Numerical Results

Figure 6.7 shows for Flexible-4, the ratio for each story of the IDI estimated using Eq. 6.9 to the
IDI obtained with the nonlinear analysis of the MDOF buildings using the DRAIN-2DX program
(IDIpgrain-2px)- The estimates are labeled, Record, Vidic, Pul(T}), and Pul(T,) for the estimates
using the record R — u — T relation, Vidic’s R — y — T relation, and the pulse R — p — T relation
having T, = Ty and T, = Ty, respectively. The IDI* is based on combinations of individual modal
peaks, while IDIprarn—2px is the maximum IDI at each story over all time. The peak IDI obtained

in the nonlinear dynamic analysis for each story, in general, occurred at different instants in time.

Appendix B presents figures containing the ratio IDI°/IDIprain-20x, s = a,b, ¢ for each story
using Eq. 6.9 (Figs. B.1 to B.4), Eq. 6.10 (Figs. B.5 to B.8), and Eq. 6.11 (Figs. B.9 to B.12) for
the Flexible-4, Rigid-4, Flexible-12, and Rigid-12 buildings.

Figures 6.8 to 6.11 show, for each building, the mean ratio IDI*/IDIpraiN-2Dx, $ = a,b,c

for each story over all ground motions using Eqs. 6.9, 6.10, and 6.11, respectively. The vertical

dashed line represents perfect correlation. Values to the right means the IDI for a given story
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Figure 6.9: Mean ratio IDI°/IDIprain-2px, S = a,b,c, per story for Rigid-4 building over all
records
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Figure 6.10: Mean ratio IDI°/IDIprain-2Dx , $ = a,b, ¢, per story for Flexible-12 building over
all records
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Figure 6.11: Mean ratio IDI*/IDIprain-2px , $ = a,b, ¢, per story for Rigid-12 building over all
records
is overestimated, and values to the left means the IDI is underestimated. Ratios less than unity

obtained using the “Record” indicate that higher modes play a more significant role in the peak

IDI than is represented in the technique applied.

Figure 6.12 shows the mean and standard deviation statistics of the IDIratios IDI°/IDIprarn-20x,
s = a,b,c, computed for each building over all the ground motions, with the IDI ratios computed
for each floor. If the IDI estimates were perfect, the average of the IDI ratios would be precisely
equal to unity, represented by the horizontal dashed line of Figure 6.12. However, systematic over
and underestimation could also lead to mean ratios equal to unity (values of unity are a necessary
but not sufficient condition to indicate perfect estimation).The horizontal dashed line at zero on
the standard deviation plot represents similar condition. Vertical dashed lines divide the results for
each estimate model, given by the record, Vidic, pulse at T}, and pulse at T,. The data for these

plots are in Table 6.16.

Figure 6.13 shows the mean and standard deviation of the IDI ratios, IDI*/IDIpprain-2pDx,

s = a,b,c, calculated over all the buildings, stories, and ground motions. If the IDI estimates
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Figure 6.12: Mean and standard deviation of the IDI ratios, for each building and IDI model over
all stories and ground motions

Table 6.16: Mean and standard deviation of the IDI ratios, IDI*/IDIpgrain-20x, $ = a,b,c for
each building averaged for all stories and ground motions
Frame Record Vidic Pulse T} Pulse T
IDI° | IDI® | IDI¢ | IDI® | IDI® | IDI | IDI® | IDI® | IDI° | IDI* | IDI® | IDI*
Mean
Flexible-4 0.97 1.04 | 1.25 | 0.99 1.06 | 1.27 1.00 | 1.06 1.28 1.05 1.12 | 1.33
Rigid-4 0.94 | 0.99 1.17 | 0.95 1.00 1.18 | 0.98 | 1.04 | 1.22 1.01 1.06 | 1.24
Flexible-12 || 0.71 | 0.87 { 1.12 | 0.75 | 0.91 1.16 | 0.73 | 6.90 | 1.16 | 0.73 | 0.90 | 1.16
Rigid-12 0.82 0.92 1.14 | 0.85 094 | 1.16 | 0.83 | 0.92 | 1.15 | 0.85 0.94 | 1.17
Standard Deviation
Flexible-4 0.27 | 0.25 | 0.33 0.30 | 0.28 | 0.36 | 0.30 | 0.28 | 0.36 | 0.36 0.34 | 041
Rigid-4 0.16 0.12 { 0.17 | 6.17 | 0.13 | 0.18 | 0.21 | 0.18 | 0.21 0.26 | 0.22 | 0.24
Flexible-12 || 0.25 | 0.19 | 0.26 | 0.33 | 0.26 | 0.30 | 0.29 | 0.23 | 0.30 | 0.27 | 0.22 | 0.28
Rigid-12 0.19 | 0.15 | 022 | 0.22 | 0.18 | 0.24 | 0.21 | 0.16 | 0.23 | 0.24 | 0.20 | 0.25
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Table 6.17: Mean and standard deviation of the IDI ratios, IDI*/IDIpgrain—2Dx, S = a,b, ¢, over
all buildings, stories, and ground motions
Record Vidic Pulse T} Pulse T,

IDI*[IDIP]IDI* | IDI* | IDI° [ IDI° [ IDI* | IDI° | IDI° | IDI* | IDI° | IDI°
Mean
0.81 [ 0.92 [ 1.15 [ 0.84 [ 0.95 [ 1.18 [ 0.84 | 0.95 | 1.18 | 0.85 | 0.96 | 1.19

Standard Deviation
0.24 ] 0.19 [ 025 ] 0.28 [ 0.23 [ 0.27 [ 0.27 [ 0.22 | 0.28 | 0.30 | 0.24 [ 0.29
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Figure 6.13: Mean and standard deviation of the IDI ratios for each IDI model, over all buildings,
stories, and ground motions
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were perfect, the average of the IDI ratios would be precisely equal to unity, represented by the
horizontal dashed line of Figure 6.13. The horizontal dashed line at zero on the standard deviation

plot represents similar condition. Table 6.17 shows the values of the means and standard deviations

depicted in Fig. 6.13.

6.4.3.2 Analysis of Results

Figures 6.8 to 6.11 show that the top and lower story IDIs of the 4- and 12-story buildings are
underestimated when using only one mode of vibration (Eq. 6.9, IDI?), are overestimated when
summing the absolute values given by two modes (Eq. 6.11, IDI®), and are intermediate between
these values when using the SRSS combination (Eq. 6.10, IDI¢). For intermediate stories (2"
story for 4-story buildings and 6" story for 12-story buildings), the IDI are of similar accuracy

regardless of the equation used.

Figure 6.12 represents the mean over all the peak IDI of each story for each building given by
the four estimates. For each estimate, /DI?, the same pattern of underestimating using only one
mode, overestimating using the absolute sum, and estimating intermediate between these two using
the SRSS equation is found. Peak IDIs for the 4-story buildings are accurately estimated using
only one mode of vibration; they are highly overestimated when using two modes, especially using
the absolute sum technique. Peak IDIs for the 12-story buildings are highly underestimated when
using only one mode (IDI?), slightly underestimated when using the SRSS combination (IDI°),
and overestimated when using the absolute sum (IDI¢). The dispersion is somewhat smaller for
all buildings and R-factor models using 7 DI°. The smallest dispersion is obtained using the record
R-factor.

Mean IDI values are similar for the buildings whether estimated by Record, Vidic, or the pulses
R — i — T relations. IDI estimates tend to be low for the taller (12-story) buildings than the
4-story buildings, regardless of the strength of the buildings (“rigid” vs. “flexible”). Within this

overall trend, estimates made by /DI tend to be high, those made by IDI® tend to be low, and
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IDI® tends to result in the most accurate estimates of IDI. Standard deviation statistics for the
estimates are nearly equal to those obtained for the record, indicating that most of the deviation in
IDI estimates (relative to computed peaks) results from higher modes and/or lack of independence
in modal combinations. Approximating nonlinear response using Vidic or pulse at Tf R —u —T
relations does little to the standard deviation statistics. There is a lot of dispersion in IDI estimates

by a, b, and ¢, and adding dispersion in R is of little consequence.

Figure 6.13 shows the mean and standard deviation of the the estimated peak IDI ratios
IDI*/IDIpraiN-2Dx, over all buildings, stories, and ground motions. While Eq. 6.9 (IDI%)
underestimates interstory drifts for the three R-factor models, Eq. 6.11 (/DI¢) overestimates the
drifts. The SRSS combination (IDI® Eq. 6.10) gives the best results of the three models. The
dispersion is smallest for the estimate using the record R-factor, followed by the estimate using the
pulse R-factor having T, = T}. Estimates using T, = T were not computed but are expected to

be in the vicinity of the T} and T} estimates.

In Fig. 6.13 the effect of estimating R-factors can be seen as the increase in standard deviation
results relative to the record values (circle symbols). The pulse R-factors (T7) are seen to be as
good as the Vidic R-factors, with the largest errors coming from the inability to estimate modal
contributions well. Potential sources of inaccuracy in the estimates include (1) the phasing of modal
peaks, (2) the assumptions that the modal responses are independent and may be superposed, and
(3) the contributions of the 3™ and higher modes. The errors associated with modal combinations
are dominant and are likely to persist since it is unlikely that the timing of modal peaks will ever

be described accurately in site-specific hazard evaluations.

6.5 Inelastic Response of the Flexible-4 Building

Previous sections in this chapter have described the estimates o
peak interstory drift indices of two 4-story and two 12-story moment-resistant frame buildings

subjected to 15 ground motion records based on equivalent SDOF models using various combinations
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of the first and second modal responses.

As noted in Section 6.4, in many cases, the buildings responded elastically. For these cases,
the estimated elastic response of the building is independent of the R-factor model because R(u =
1,7) = 1. Only 23 out of 60 cases produced nonlinear response and these were precisely the cases
where the scatter between the estimates of peak roof displacements and IDIs, and the nonlinear
DRAIN-2DX values were the largest. The equivalent SDOF system technique assumes that the first
mode is dominant. Knowing that higher modes affect the response as the number of stories and
fundamental period of the building increase, it is clear that the estimates for the 12-story buildings
should be less accurate than those obtained for the 4-story buildings. For the sake of completeness,
the nonlinear response of the Flexible-4 building described in Section 6.4.1 is now studied in more
detail, knowing beforehand that the estimates will worsen, not only for the approximate R-factor
relations given by Vidic and the pulses instead of the record R-factor, but also for the record R-factor

since modal peaks are assumed to be independent and then combined.

Rather than subjecting different buildings to a set of recorded motions, producing varied ductility
responses, as was done in Section 6.4, this section studies the response of only one building (Flexible-
4) to the 15 ground motions scaled to produce ductility responses of approximately 2, 4, and 8 in the
first mode. The building frame is invariant throughout this process, and the period of the building

remains constant.

6.5.1 Scaling the acceleration records.

The equivalent SDOF yield strength parameter corresponding to a given building is given in Eq. 6.3
as a function of the peak ground acceleration. The yield strength parameter can also be determined
as the ratio of the elastic strength parameter to the R-factor (Eq. 6.5). Combining both definitions,
the peak ground acceleration can be expressed as

a — Vymef Re# (u, T)
g,maz — aem n:dof(T)

- g (6.17)
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The parameters of the Flexible-4 building associated with the first mode, found in Table 6.1, are
Vmdof = 585 kN, a, = 1.266, and Ty = 1.16 s. The total weight of the building, W3, is 2,204 kN,
and the acceleration of gravity, g, is 9.81 m/s%. Considering the isoductile strength spectra of SDOF
systems having 10% post-yield stiffness, 5% damping, and ductility demands of x = 1, 2, 4, and 8,
for the 15 ground motion records, the elastic strength is given by 72%°f(u = 1,T1). The necessary
R-factor to obtain a desired ductility is obtained by setting the period of the system equal to the
first mode of vibration of Flexible-4, (I = T1). The acceleration scale factors, x, to be applied to

the ground motion (Table 6.18), are given by the ratio

a
y = Somae (6.18)
ag,ma.a:
where
o a;,mw is the required peak ground accelerations to achieve the R-factor for the ductility

demands of 2, 4, and 8 (Eq. 6.17).

® a;mas is the recorded peak ground acceleration, given in Table 2.1

Notice that the record scale factor is determined to obtain the R-factor associated with obtaining
target ductilities of 2, 4, or 8 based on the response of the equivalent SDOF system to the ground
motion. The nonlinear response of Flexible-4 building subjected to the scaled records computed
using the DRAIN-2DX program can result in larger or smaller roof displacements, depending on
higher mode contributions. The data presented in the next figures and tables are described in
terms of the nominal ductility values of u ~ 2, u ~ 4, and yu ~ 8, reflecting the expected ductility

responses if response was entirely in the first mode.

6.5.2 Peak displacement estimates

Peak roof displacement estimates were made following the steps in Section 6.3.1. The following

figures show the peak roof displacement resulting from a) the ground motion R — p — T relation,
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Table 6.18: Acceleration scale factor, x
[ Ground motion [pu=2[pu=4]pu=28|
WNS7TMWLN.090 | 46.43 | 90.16 | 228.64

BB92CIVC.360 3.45 | 11.04 | 19.10
SP88GUKA.360 | 4.66 | 11.00 | 19.84
LP8YCORR.090 | 1.83 | 2.677 | 6.954
NRO4CENT.360 | 2.57 | 6.30 | 11.51
CH85LLEOQ.010 | 1.65 | 4.22 8.04
CH85VALP.070 | 4.59 | 9.07 | 19.18
IV40ELCN.180 2.10 | 3.93 7.73
LN92JOSH.360 1.84 | 3.91 8.80
MX855CT1.270 | 1.64 | 2.08 2.89
LN92LUCN.250 | 1.00 | 1.50 2.37
LP89SARA.360 | 1.59 | 3.78 6.47
NR94NWHL.360 | 0.72 | 1.83 2.91
NR94SYLH.090 | 1.14 | 1.65 3.59
KO95TTRI.360 0.40 | 0.83 1.63

b) the Vidic et al.’s R — u — T relation, and c) the pulse R — yu — T relation having 7, = T} and

T, = T,. Figures 6.14 to 6.16 depict a graphic comparison among the different methods used to
estimate the peak roof displacements with the results obtained by nonlinear dynamic analysis. The
upper part of these figures plots the estimated peak roof displacement versus the DRAIN-2DX peak
roof displacement. The diagonal line represents perfect estimation; points below the line indicate
underestimation, while points above indicate overestimation of the peak roof displacement. The
results obtained indicate that most of the estimated peak roof displacements using the Vidic R-
factor and the pulse R-factors highly overestimate the nonlinear peak roof displacement. Meanwhile,
the results using the record R-factor are rather constant for all ground motions, with a tendency to

slightly overestimate the peak roof displacement.

The more or less horizontal line described by the record (circle symbol) results from specifying x
to achieve a peak roof displacement estimate based on the first mode equal to x times the first mode
yield displacement. The variation in peak roof displacement computed in DRAIN-2DX indicates the
influence of higher modes. The higher modes are seen to bias the peak roof displacement towards
values less than the first mode response. That the circles do not describe a perfectly horizontal

line reflect minor round off errors and minor differences in the precision of the response calculations
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made by the various software programs.

The lower part of each figure shows ratios of the estimated peak roof displacement and the
DRAIN-2DX peak roof displacement for each ground motion. In this case, the horizontal line
represents perfect estimation; points below indicate underestimation of peak displacement, and
above, overestimation. These plots shows the record R-factor tends to estimate the peak roof
displacement best since there is no error in the R-factor, while some scatter results for the Vidic
and the pulse R-factors. The scatter increases with ductility, and no difference is aparent among

AN TN an
DLy LS, dil

d FD moti

Figure 6.17 plots the mean and standard deviation statistics of the peak roof displacement ra-
tios over all ductility values and stories, for each ground motion. The mean values indicate that
the peak roof displacement is overestimated except for the MX855CT1.270, LN92LUCN.250, and
NR94SYLH.360 records using the Vidic and the pulse R-factor models. In general, the smallest
means and standard deviations correspond to the record R-factor model, the largest values corre-
sponding to the pulse R-factor models, and intermediate values are obtained for the Vidic R-factor

model. This is sensible because the record R-factors are exact, causing differences in peak displace-

ments to be due to higher mode contributions.

Table 6.19 presents the mean and standard deviation of the estimated peak roof displacements
to the nonlinear peak roof displacement ratios computed over all 15 ground motions and 4 stories
for the target ductilities 2, 4, and 8, and the average over all ductilities. The average mean using
the record R-factor is very good (1.092) compared with Vidic’s (1.181) and the pulses (1.334 and
1.359). The average dispersion obtained with the record R-factor (0.097) is significantly lower
than for the R-factor models, which have standard deviations ranging from 0.396 to 0.513. All
methods are seen to systematically overestimate the peak roof displacement. Because peak roof
displacements are overestimated even when the record R-factor is used, it appears that higher modes

may systematically reduce the peak roof displacement relative to the estimate made using the first

mode.
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Figure 6.14: Peak roof displacement comparisons for the Flexible-4 building, u ~ 2
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Figure 6.15: Peak roof displacement comparisons for the Flexible-4 building, p ~ 4
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Figure 6.16: Peak roof displacement comparisons for the Flexible-4 building, x4 ~ 8
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Figure 6.17: Mean and standard deviations for the peak roof displacement ratio over all ductility
value
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Table 6.19: Estimate peak roof displacement/Drain peak roof displacement ratio for Flexible-4,

over all ground motion records and stories

Target Ratio,ecord Ratioy;4:c Ratiopu(rs) Ratiopu(T,)
Ductility | Mean | St. Dev. | Mean | St. Dev. | Mean | St. Dev. | Mean | St. Dev.
po~ 2 1.089 0.083 1.158 0.260 1.187 0.245 1.247 0.305
u~4 1.073 0.089 1.186 0.456 1.365 0.495 1.358 0.565
u~8 1.115 0.118 1.197 0.465 1.450 0.542 1.471 0.624
[ Vup [1.092] 0097 [1.181] 0396 [1.334 [ 0450 |1.359 | 0513 |

6.5.3 IDI estimates

Tt anatarntr Arift imAiras ars actimatad 1iaina +ha

o
ALLUCLOUVL Yy Mlaau INQICES arc eovimated uu;.u.a [FsTw u.u..nvv vvuu.u..n.

mode of vibration is used in Eq. 6.9 and the first two modes are combined in Eqs. 6.10 and 6.11.

Peak roof displacements associated with the first and second mode of vibration are computed
according to Section 6.3.1 using the record, Vidic, and the pulse (having T, = T, and T, = TY)
R-factor models to estimate the peak roof displacements. The peak roof displacement in the first
and second mode of vibration was estimated for equivalent SDOF systems having 10% post-yield
stiffness, the first mode having 5% of the critical damping, and the second mode having 2.8% of
the critical damping, which corresponds to the damping assigned to the first and second modes of

vibration of the MDOF system in the nonlinear analysis computed with DRAIN-2DX.

Figures 6.18 to 6.20 shows the ratios /DI° /IDIprain-2px averaged for all ductility values for
each story of the Flexible-4 building subjected to the 15 ground motions scaled to get ductilities p
= 2, 4, and 8. The ratios are calculated for each story of the building using three estimates and
then averaged. The estimates are: a) the record R-factor, b)the Vidic R-factor, and c) the pulse

R-factor having T, = 77 and T, = T,. These are labeled Record, Vidic, Pul(Ty), and Pul(Ty),

respectively in the figures.

Appendix B shows the figures of the ratios IDI® /IDIprain-2px (Figs. B.13 to B.15 for u ~ 2),
IDIb /[DIDRAIN—ZDX (Figs. B.16 to B.18, for B~ 4), and IDI° /IDIDRAIN_2DX (Figs. B.19 to
B.21, for u ~ 8) for each story of the Flexible-4 building subjected to the 15 ground motions scaled

to get ductilities 4 = 2,4,8. The general tendency in each figure (for any ductility and their average)
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Figure 6.18: Ratio IDI®/IDIprain-2px for Flexible-4 building subjected to each ground motion
scaled, over all ductility value using Eq. 6.9
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Figure 6.19: Ratio IDI*/IDIprarn—2px for Flexible-4 building subjected to each scaled ground

Lt [N RS LV S T e T 21N
1071011, OVET aill Auctulllty vaiues usiig Lg. 0.1u

151



WN87MWLN.090 BB92CIVIC.360 SP88GUKA.360 LP89CORR.080 NR94CENT.360
1 O FX ] 1fF . OFx 1F . O 1. = 1 (@371
08} o4 08| ‘g 0.8 iza 08} & 0.8} oa
X . X . N
£ 0.6} : 0.6} : 0.6} : 0.6} : 0.6} :
2 oA O G 2 Ga
© ; : ; . ‘
204} ° 0.4} : 0.4} ° 0.4} : {04} :
@ on & Gx @ e
0.2} : 0.2} : 0.2f 0.2} : 0.2} :
0— 0 0 0 0
0 5 0 5 0 5 0 5 0 5
CHB85LLEO.010 CH85VALP.070 IV40ELCN.180 LN92JOSH.360 MX85S8CT1.270
1. O FZX 1. & 1 & 1Ff O 57AY 1 —F&X O
08} om 0.8 3 0.8 i 0.8} om 0.8 o
X : . : . .
£ 0.6} : 0.6} : 0.6} : 0.6} : 10.6} :
2 Ko » 8 o 4O
< - : ; : :
g‘ 04} - 045 - 04} - 04; - 0.4 -
@ Gk ® é o D
0.2} : 0.2} : 0.2t : 0.2} : 0.2} :
0 0= (e 0 0
0 5 0 5 0 5 0 5 0 5
LNS2LUCN.250 LP89SARA.360 NR94NWHL.360 NRO4SYLH.090 KO95TTRI.360
1 e e 1f . O+ 1 — OR 1. & O 1 [ 7N
08} 4o 0.8} ‘on 0.8} 0.8} 4 0.8f ‘g
X . . . . .
£ 06} : 0.6} : 06} : 0.6} : 0.6} :
27w ah Gh £ N
o ; ; . . .
204} © oRecod 0.4} ' 0.4} : 0.4} 0.4} !
» | +Vidic. @& @& & @
- xPul(T)) : : : :
0.2 8 PuT) 0.2} : 0.2} : 0.2} : 0.2}
0 04— 0— 0— 0—
0 5 0 5 0 5 0 5 0 5
Ratio (IDIIDI .\ »o.)

Figure 6.20: Ratio IDI°/IDIprarn-2px for Flexible-4 building subjected to each scaled ground
motion, over all ductility values using Eq. 6.11
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Table 6.20: Mean and standard deviation of the ratios IDI*/IDIprarn-2px over all ground motions
and ductility values

Record Vidic Pulse, T, = 17 Pulse, T, = T,
Story | Mean | Std. Dev. | Mean | Std. Dev. MeanJ Std. Dev. | Mean | Std. Dev.
4 2.26 1.33 2.19 1.01 2.55 1.33 2.57 1.36
3 1.15 0.23 1.22 0.45 1.39 0.52 1.42 0.59
2 0.96 0.10 1.04 0.35 1.17 0.40 1.19 0.44
1 0.64 0.20 0.70 0.32 0.79 0.36 0.80 0.37
[ A [ 125 ] 091 [1.20] 081 [147 ] 100 [149 ] 1.03 |

Table 6.21: Mean and standard deviation of the ratios IDI°/IDIprarn—2px over all ground motions

and ductility values

Record Vidic Pulse, T, = T} Pulse, T, = T,
Story | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev.
4 2.52 1.29 2.47 1.12 2.85 1.48 2.88 1.51
3 1.20 0.26 1.27 0.51 1.43 0.60 1.47 0.65
2 1.00 0.11 1.08 0.36 1.23 0.42 1.24 0.45
1 0.72 0.18 0.79 0.31 0.89 0.35 0.89 0.36
AL | 1.36 | 096 | 140 | 092 ] 1.60 | 112 | 1.62 | 115 |

is that the IDI ratio of the top story is highly overestimated compared to the IDI ratios of the other

stories. Estimates in the lowest story are low, even for IDI° in some cases. Since the absolute sum

of the two modal IDIs may be considered a reasonable upper bound, underestimation of the lowest

story IDI using IDI° requires some explanation. A possible explanation is that rapid reversals of

the ground may concentrate large interstory drifts in the lowest stories. This result is present more

or less equally in the elastic and inelastic IDI responses, in the SD, LD, and FD motions, and for

different T,.

Tables 6.20, 6.21, and 6.22 present the values of the means and standard deviations of the ratios

Table 6.22: Mean and standard deviation of the ratios IDI¢/IDIpgrarn-2px for all ground motions

and ductility values

Record Vidic Pulse, T, = T} Pulse, T, =T,
Story | Mean | Std. Dev. [ Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev,
4 3.14 1.37 3.14 1.43 3.63 1.88 3.66 1.91
3 1.38 0.37 1.48 0.69 1.66 0.82 1.70 0.87
2 1.13 0.20 1.23 0.43 1.40 0.53 1.41 0.53
1 0.91 0.23 0.99 0.38 1.11 0.44 1.12 0.43
AN | 164 | 114 [ 171 ] 110 | 195 ] 146 | 107 | 148 |
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Figure 6.21: Mean ratios IDI*/IDIprain-20x, 8 = a,b, c for Flexible-4 building, for each story,
over all scaled ground motions and ductility values
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Figure 6.22: Mean and standard deviation of the IDI ratios, IDI*/IDIprain-20x, S = a,b,c for
Flexible-4 building, over all scaled ground motions, stories, and ductility values
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IDI*/IDIprarN-2Dx, 8 = a,b,c for each story over all ground motions and ductility values using
Egs. 6.9 (s = a), 6.10 (s = b), and 6.11 (s = ¢), respectively, for the four estimates: the record,
Vidic, and the pulses having T}, = T, and 7, = T7. Figure 6.21 is the graphic representation of the
mean values for each story and for each IDI equation. The vertical dashed line represents perfect
correlation. Values to the right indicate the IDI for a given story is overestimated, and values to the
left indicate underestimation. The three IDI ratios give similar results for all estimates and for each
story: the first story IDI is underestimated, the second and third stories are slightly overestimated,
and the top story is highly overestimated. The first story IDI is better estimated with 7DI® and

IDI¢, and the second, third, and top stories are better estimated by IDI®.

Figure 6.22 plots the mean and standard deviations of the sum of each ratio IDI° /IDIprain-20x ,
s = a,b, c obtained for each ground motion, ductility value, and story using Egs. 6.9 (s = a), 6.10
(s = b), and 6.11 (s = c), respectively, for the four R-factor estimates: the record, the Vidic, and
the pulses having T, = Ty and T, = T} (values displayed also in Tables 6.20 to 6.22). This figure
shows that the means and deviations, although very large for all IDI ratios, are best estimated with
the IDI® ratio. The estimated IDI are better using the record and the Vidic R-factor relations

compared with the estimates given by the pulses, but, in any case, none is very accurate.

6.6 Summary

An approach of using pulse R-factors instead of the record R-factors has been presented to esti-
mate the peak roof displacement and interstory drift indices (IDI) of two 4-story and two 12-story
buildings.

Peak displacement estimates were obtained with four R-factor models and compared with the
response computed by nonlinear dynamic analysis using the DRAIN-2DX program. Three estimates
of IDI were calculated using various combinations of the first and second modes of vibration. Results

of the estimates were also compared using simple statistics.
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With regard to estimates of peak roof displacement, when the two 4-story and the two 12-
story buildings behave linearly, the peak roof displacement is generally estimated well (Table 6.14)
using the equivalent SDOF system technique. A tendency to slightly overestimate the peak roof
displacement was observed when using a first mode equivalent SDOF system when response was
linear. When the buildings respond nonlinearly, the estimates given by the record R-factor are
still good (Table 6.15), although the overestimation of the peak roof displacement response is
reduced and more scatter is observed as ductility increases. The estimates obtained using the R-
factor models (Vidic and the pulses) get worse, often highly overestimating the roof displacement
response as ductility increases, with dispersion increasing considerably with respect to the dispersion
associated with the record R-factor. Thus, accurate estimates of the peak roof displacement of the
4- and 12-story buildings can be obtained using a first mode equivalent SDOF system if the R—py—T

relation for the ground motion record is known.

With regard to estimates of peak interstory drift, when linear and nonlinear responses are mixed,
the peak IDIs of the four-story buildings are best estimated using only one mode of vibration,
indicating that the response is mainly controlled by the first mode of vibration, for the four R-
factor models. The peak IDIs of the 12-story buildings are best estimated with the SRSS technique

considering the first and second modes of vibrations (/DI°).

The study of the nonlinear response of the Flexible-4 building showed that:

e The peak IDIs for the first, second, and third story are well estimated using only the first

mode of vibration.

e The peak IDI of the top story is highly overestimated (Fig. 6.21), independent of the R-factor
model used. This effect is larger whe response is nonlinear, as compared with the mixed linear
and nonlinear responses. The overestimation of the peak IDI of the top story increases as the

ductility demand of the system increases.

e The peak IDI of the first story is systematically underestimated using the three estimates (the

record, Vidic et al and the pulse R-factors). This may be due to rapid reversals of the ground
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that may concentrate large interstory drifts in the lowest stories.

These observations suggest that estimates of IDI are prone to significant errors for buildings be-
having nonlinearly, due to assumptions that: a) response is predominantly in a single mode, and b)
the mode shape remains constant throughout the response. These errors are larger when the record
R-factor is approximated with other relations such as Vidic or the pulse R-factor relations. Higher
mode effects appear to significantly effect the interstory drifts in the 4- and 12-story buildings. The
goodness of the estimate of peak roof displacement using a single mode of vibration shows that
nonlinear MDOF response can be estimated using an equivalent SDOF system with all nonlinearity

represented in the R-factor determined for the SDOF oscillator responding to a simple pulse.
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Chapter 7

Conclusions and Future Research

7.1 Conclusions

This thesis investigates the possibility of estimating the nonlinear response of SDOF and MDOF
systems to strong ground motion records of short and long duration as well as records with near-
fault forward directivity features, using information provided by the response of SDOF systems

subjected to simple pulses having different shapes and durations.

Observations of the computed response of elasto-plastic SDOF systems subjected to 15 ground
motions (Chapter 2) indicate that typically only one or several cycles of ground motion cause yielding
in many of the systems studied. These cycles, characterized by their short duration and complex
and irregular shape, produce maximum response displacements in the systems at occurrence times
that are not known a priori. This observation suggests that the inelastic response to simple pulses
may be capable of representing response to more complex earthquake ground motions using the
strength associated with the pulses. In general, a simple pulse cannot contain the relatively rich
range of frequencies that often are present in earthquake ground motions. The R-factor, however,
relates to the ductility that develops in just one or several cycles of ground motion, and thus it is

observed that the R-factors for ground motions often are similar to those determined for pulses.
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For pulse R-factors to work, an accurate estimate of elastic spectra is needed, since elastic spectral

amplitudes are strongly affected by resonance.

Sewell [45] found that the damaging characteristics of numerous ground motions can be separated
into two distinct components: (1) an elastic contribution, given by the elastic pseudo-acceleration
response, and (2) a strength reduction factor, R, (given by the ratio of the strength required for
elastic response to the strength required for a given ductility demand) applied to the elastic spectrum

to determine the strengths of nonlinear oscillators that result in constant ductility responses.

In order to determine if simple pulses might lead to proper estimates of the required strengths
of the systems, isoductile strengths and strength reduction (R) factors were determined for elasto-
plastic SDOF systems, defined by the initial period of the system (7") and ductility response (x) to
24 idealized pulse waveforms (Chapter 3). A characteristic period of each pulse, T}, was identified,
which separates the regions of the spectra where peak strengths (to the left of T = T},) and peak
R-factors (to the right of T = T,) are located. The study of a large number of elasto-plastic
SDOF oscillator responses to the 24 simple pulses allowed the following conclusions and trends to

be identified:

1. Isoductile strengths of short period systems are higher for shock loading than for gradual

loading pulses. Strengths are sensitive to the shape of the pulse for T' < T,,.

2. The impulse-momentum principle is applicable to the elastic and inelastic response of long

period systems, which experience the pulse as an impulse, independent of pulse shape.

3. Within any one family of pulses, R-factors depend on the number of incursions, since this

number affects the elastic response substantially but has little effect on inelastic isoductile

strengths.

4. Previous studies that focused on a subset of the pulses considered herein led to the preservation
of force, equal energy, and equal displacement rules that are widely accepted in earthquake

engineering. The applicability and limitations of these rules for the set of 24 pulses are as
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follows:

e The equal displacement rule applies to systems with high 7'/T, ratios. The rule is valid
for all pulses considered and for forced response (peak response at ¢ < tg, where t5 =
pulse duration) and overall response (peak response at any time), consistent with prior
findings.

e The equal energy rule applies only to the overall response of intermediate period systems
subjected only to unbalanced pulses over a relatively narrow period range. The equal
displacement rule is applicable to intermediate period systems subjected to balanced
pulses (overall response) and to both balanced and unbalanced forced vibration responses.
These observations are counter to conventional views, which hold that the equal energy

rule is generally applicable to intermediate period systems.

e Short period systems subjected to shock pulses can be considered to be subject to an

instantaneous acceleration change, consistent with prior findings.

e The strength required for short period elasto-plastic systems subjected to gradual loading
pulses is approximately m-ag mq. regardless of the ductility level, for the cases considered.
This is consistent with prior findings that force is preserved in short period systems, and
relates to the observation that R-factors tend to unity as period tends to zero. Systems
with post yield stiffness equal to o times the initial stiffness subjected to gradual pulses
must have yield strengths equal to m-ag mqez/(1+a(p—1)) to limit the ductility response

to u, as discussed in Chapter 5.

In Chapter 4, inelastic spectra of SDOF systems subjected to strong ground motions are estimated
by applying strength reduction factors determined for a simple pulse to the elastic response spectrum
of the ground motion. This approach relies upon similarities in the strength reduction factors

computed for earthquake ground motions and for short duration pulses.

Three measures of the error in the estimated dimensionless strength parameters were developed.

The three measures of error were used so that any conclusions made with respect to the pulses that
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minimize error are robust with regard to the error metric. These measures are particularly sensitive
to the differences in the strengths associated with the ground motion and the estimated strengths
in the short period range, where the strengths are largest. Using these error measures it was found

that:

1. The quadratic pulses qua(2) (overall response for systems with 4 = 4 and 8) and qua(3)
(forced response for systems with p = 2) are adequate for 14 of the 15 records studied, while
the sinusoidal pulse sin(5) is necessary to estimate the inelastic spectra for the soft soil SCT

record of the 1985 Michoacan earthquake (MX85SCT1.270).

2. For simplicity and with little increase in error, the R-factor for the overall response to the
qua(2) pulse may be used for ductilities of 2, 4, and 8 for all records except the 1985 Michoacan

record.

The goodness of the pulse R-factors appears to be independent of the classification of the records

into the SD, LD, and FD categories. This result is particularly useful because:

1. A single pulse shape may be useful for generating the R-factors suitable for different load-
deformation and hysteretic characteristics, rather than requiring separate B — y — 7' relations

to be developed along traditional lines for each case of interest, and,

2. Features of waveform independence demonstrated in Chapter 4 suggest that pulse R-factors
and R — u— T relations may be used for estimating the inelastic response spectra of unknown
future ground motions, an issue of particular interest where recorded ground motions are
not available because historic seismicity preceded the relatively recent deployment of strong

motion instrumentation.

In Chapter 5, isoductile strengths of bilinear and stiffness-degrading SDOF systems having ductility
demands p = 2, 4, and 8, subjected to the 15 ground motions, were compared with the estimated

isoductile strengths, given by the ratio between the strength required for elastic response of the
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system subjected to the ground motion and the strength reduction (R) factor of the same system
subjected to a simple pulse. While the R-factors determined for earthquakes are dependent on
the period of the system 7', the R-factors determined for pulses depend on the dimensionless time
parameter 1'/T,, where T, is the characteristic period of the pulse. The success in approximately
reproducing the R-factors of the ground motions depends in large degree on the relation between T,
and the “frequency content” of the ground motion. A characteristic period of the ground motion,
T,, is defined as the intersection period of the constant acceleration and constant velocity portions of
a smoothed elastic response spectrum for damping equal to 5% of critical damping. Results indicate
that very good estimates of inelastic response spectra can be obtained when the pulse R-factor is
applied to the elastic spectrum computed for the ground motion if the characteristic period of the
pulse T}, was set equal to the characteristic period of the ground motion, T, (Table 2.1). The period
T; (Eq. 5.7), at the intersection of the constant acceleration and constant velocity portions of the
spectrum, also resulted in very good estimates of the inelastic spectra. While the period T, was
determined by eye, the period T3 gave a consistant and useful definition for all ground motions,
and is also valid for harmonic pulses (T, = T5). These periods, T, and T, are nearly equal to
the characteristic periods of the pulses, 7}, that minimized the errors of the estimated isoductilie

strengths using the qua(2), qua(3), and sin(5) pulses.

Good estimates of the inelastic response spectra were also obtained using the Vidic et al. relation.
This relation is a function of the ratio T'/7,, where Ty, is also related to an estimate of this intersection
period (Section 1.2.2). Together these two results strongly suggest that R — p — T relations instead
should be formulated in terms of T'/T,, rather than T alone, to explicitly address ground motion
frequency characteristics. Conveniently, T, is readily discerned from typical code spectra [67, 2,
68], for example, as the period T, used to define smoothed elastic design spectra in the NEHRP
Provisions [2].

Among all the pulses considered in this study, a pulse called qua(2) (see Fig. 5.1), with duration
equal to 7, and pulse shape having quadratic components in the acceleration history, represented

well the R-factors of bilinear and stiffness-degrading systems subjected to 14 of the 15 earthquake
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ground motions. A sinusoidal pulse was needed for the soft soil SCT record of the 1985 Michoacan
earthquake. Even though it was found necessary to use a harmonic pulse to generate suitable R-
factors for the Mexico City SCT record, the overall finding supports the idea that R-factors exhibit
a sufficient degree of waveform independence that R-factors determined from simple pulses can be
used to estimate the inelastic response spectra of a highly varied set of earthquake ground motions,
when used in conjunction with the elastic response spectra computed for these ground motions.
Based on Sewell [45] this finding should be equally applicable to records obtained from sites at
varied distances and for earthquakes of varied magnitudes. Furthermore, the estimates of isoductile
strength response spectra using these pulses tended to have less error relative to the estimates made
using six contemporary R — u — T relations (Chapter 5 applies the Newmark and Hall [21], Riddell,
Hidalgo, and Cruz [22], Nassar and Krawinkler [23], Miranda [24], Vidic, Fajfar, and Fischinger
[25], and Ordaz and Pérez-Rocha [26] relations). The Vidic et al. relation was found to be similar
in accuracy to the qua(2) pulse. Other contemporary approaches were less accurate and in some
cases also require posterior knowledge of ground motion characteristics. Given the goodness of the
bilinear relation used by Vidic et al., the precise curve described by the pulse R-factor does not
appear to be of critical importance, and a bilinear approximation such as employed by Vidic et al.
appears suitable, given the uncertainties inherent in future ground motions. The pulse R-factors,
however, are also applicable to soft soil sites, and because of their implicit definition (once the pulse
shape and duration have been identified), they can be generated for different load-deformation
and hysteretic relations, while the parameters that define contemporary R — u — T relations can
be established only by extensive numerical computations for a large number of ground motions
for the set of parameter values that characterize the specific load-deformation (hysteretic) model
of interest. This implicit specification may allow the effects of different hysteretic responses to
be evaluated by considering the response of such oscillators to a simple pulse such as the qua(2)
pulse. The implications of these findings are significant for the determination of future B — p — T
relations. These findings indicate that ground motion frequency characteristics should be explicitly

reflected in the R-factor formulations, and that the pulses are conceptually sufficient to represent
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the phenomenon of yielding when the peak response to earthquake ground motions develops.

While similarities in the nonlinear response of SDOF systems to earthquake ground motions and
to simple pulse waveforms have been known for several decades [41, 34], only very recently have
researchers recommended that pulses be used in place of near-fault records to represent forward
directivity effects [38, 35, 36, 39] in earthquake-resistant design. The use of pulses as substitutes

for near-fault records must contend with several difficulties, including:

1. Simple pulses cannot reproduce the elastic spectra generated by earthquake ground motions.

2. The use of shock loading pulses leads to inappropiate values of the R-factor for short period
systems. The shock pulses produce larger isoductile strength demands in short period sys-
tems than occur with gradual pulses and the earthquake records considered herein, and have

reduction factors R = (2u — 1) /u that exceed unity (see Section 3.4).

3. The phas-ing of higher modes with a pulse is unlikely to be consistent with the phasing as-

sociated with richer, more complex, and longer duration motions such as earthquake ground

motions.

Table 4.2 shows that responses to FD records are best estimated with the quadratic family of pulses
(which have R = 1 for short period systems) rather than with shock pulses. This result is also
supported by Baez and Miranda [59], who state that for extremely short period systems R = 1
for all ground motions regardless of near-fault effects. Shock loading pulses are not necessary to
generate pulses in the velocity histories. The recommended gradual pulse qua(2) has a velocity
pulse in the time history, as shown in Fig. A.l, as do many other pulses (see Appendix A). The
qua(2) pulse R-factor was found to be equally valid for the SD, LD, and FD records; there was no

indication in this study that suggested different R-factors were necessary for the FD records.

Although this study is mainly focused on the response of SDOF systems, the nonlinear response

of a limited number of MDOF systems was estimated using pulse R-factors. The technique employed
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consisted of reducing a MDOF system to an equivalent SDOF system and approximating the R-
factor associated with SDOF response to the ground motion with the pulse R-factor. Results
indicated that good estimates of the peak roof displacements and IDI can be obtained using the
pulse R-factor, but these estimates worsen as the ductility demand of the systems increases. Often
the single mode estimates of peak roof displacement exceeded the peak roof displacements computed

by nonlinear analysis of the MDOF structure.

Equivalent SDOF representations of MDOF response were accurate when the R-factor is de-
termined precisely for the equivalent SDOF system and the ground motion. The use of the pulse
R-factor reduces accuracy somewhat. Even so, the two simplifications indicate that peak roof dis-
placements occurring in the nonlinear response of a MDOF structure to an earthquake ground
motion can be represented approximately by the nonlinear response of an equivalent SDOF system,
where the nonlinearity is contained in the R — u — T relation associated with response to a simple
pulse. While some inaccuracy in peak roof displacements and IDIs is associated with uncertainty
in the R-factor, other sources of dispersion in these estimates appear to be more significant. These
include (1) variability in the phasing of modal peaks, (2) the assumption that modal contributions

are independent and may be superposed, and (3) the contributions of the 3" and higher modes.

7.2 Future Research

Despite the magnitude of the effort represented in the present work, further research may be fruitful

in the following areas:

1. A deeper study of the pulses that best characterize the R-factor for a larger number of
ground motions should be performed. The present study only considered bilinear and stiffness-
degrading systems. SDOF systems having stiffness and strength degradation, negative post-

yield stiffness, and pinching should also be investigated.
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2. The comparison of the isoductile strengths of SDOF systems with the estimated strengths
resulted in very good results even though two simplifications were undertaken. The first
simplification was to consider a single pulse for all ductility values, although the optimal pulse
differs for each ductility demand. The second simplification was to consider the characteristic
period T, to be fixed for all ductilities, knowing that the period T}, that improves the estimated
strengths for any given pulse and ground motion also depends on the ductility demand of the
system. These two simplifications should be confirmed using a broader set of ground motion

records and pulses.

3. Optimal pulses and the possibility of bilinear simplifications similar to those done by Vidic
et al. should be further explored, along with the use of parameters such as T to characterize

the ground motion frequency content and the characteristic period of the pulse.
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Appendix A

Description of the 24 Simple Pulse

Waveforms

Tables A.1 to A.6 present the acceleration equations of the 24 pulses used in the thesis. Each table
describes one pulse family, identifying the names of the pulses and the equations of the time history

of pulse acceleration normalized by peak ground acceleration:

Qg

Qg maz

where:

e a, = pulse acceleration, as a function of the dimensionless time parameter %
® a,mas= peak pulse acceleration
o t = time

tq = duration of the pulse

The acceleration, velocity, and displacement of the pulse families are plotted versus t/t4, in Figs.

A.1lto A.5.
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Table A.2: Sinusoidal family

r Pulse name

Acceleration Equation

sin(A)A=1,...,5

—al—zsin(Avré) OS;tgﬁl

Qg,max

Table A.3: Triangular trh family

| Pulse name | Acceleration equation |
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Table A.4: Triangular trl family
| Pulse name Acceleration equation
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Table A.5: Rectangular family
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Table A.6: Triangular tr0 family

Pulse name | Acceleration equation ‘
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Figure A.1: Normalized acceleration, velocity, and displacement time histories of the quadratic

family of pulses
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Figure A.2: Normalized acceleration, velocity, and displacement time histories of the sinusoidal
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families of pulses trh and trl, having rise times, ¢, equal to 1/2 and 1 times the duration of the
first incursion
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Figure A.4: Normalized acceleration, velocity, and displacement time histories of the rectangular

family of pulses
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Appendix B

IDI Figures

This appendix includes:

1. The figures of the ratios 1—137—5—‘51210——— (Figs. B.1 to B.4) ——IBL__ (Figs. B.5 to B.8),

RAIN-2DX ’ IDIppraIN—2DX

and t5—2L—— (Figs. B.9 to B.12) for the Flexible-4, Rigid-4, Flexible-12, and Rigid-12
DRAIN-2DX

buildings subjected to each ground motion. The ratios are calculated for each story of the

building using four estimates: a) the record R-factor, b) Vidic R-factor, c) the pulse R-factor

having 7, = 77, and d) the pulse R-factor having T}, = T,.

2. The figures of the ratios TD'I'B'%—— (Figs. B.13 to B.15) ——IDI' ___ (Figs. B.16 to

RAIN-2DX » IDIprAIN-2DX
B.18), and -ITD—I——IDIC— (Figs. B.19 to B.21) for the Flexible-4 building subjected to the 15
DRAIN=-2DX
ground motions scaled to get ductilities p = 2,4,8 as explained in Section 6.5. The ratios are
calculated for each story of the building using four estimates: a) the record R-factor, b) Vidic

R-factor, c) the pulse R-factor having T, = T, and d) the pulse R-factor having T,, = T,
labeled Record, Vidic, Pul(T}), and Pul(Ty), respectively.
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Figure B.1: Ratio IDI*/IDIprarn-2px for Flexible-4 building subjected to each ground motion

using Eq. 6.9
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Figure B.2: Ratio IDI*/IDIprain-2px for Rigid-4 building subjected to each ground motion using
Eq. 6.9
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Figure B.3: Ratio IDI*/IDIprain-20x for Flexible-12 building subjected to each ground motion
using Eq. 6.9
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Figure B.4: Ratio IDI°/IDIpgrain—2px for Rigid-12 building subjected to each ground motion
using Eq. 6.9
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Figure B.5: Ratio IDI */IDIprain-20x for Flexible-4 building subjected to each ground motion

using Eq. 6.10
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Figure B.6: Ratio IDI*/IDIprain-2px for Rigid-4 building subjected to each ground motion using

Eq. 6.10
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Figure B.7: Ratio IDI b/IDIprarn-2px for Flexible-12 building subjected to each ground motion

using Eq. 6.10
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Figure B.8: Ratio IDI*/IDIprarn-2px for Rigid-12 building subjected to each ground motion
using Eq. 6.10
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Figure B.9: Ratio IDI¢/IDIprain-2px for Flexible-4 building subjected to each ground motion

using Eq. 6.11
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Figure B.10: Ratio IDI¢/IDIprain-20x for Rigid-4 building subjected to each ground motion

using Eq. 6.
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Figure B.11: Ratio IDI°/IDIprain-2px for Flexible-12 building subjected to each ground motion

using Eq. 6.11
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Figure B.12: Ratio IDI¢/IDIprain-2px for Rigid-12 building subjected to each ground motion

using Eq. 6.

11

186



WNSTMWLN.090 BB92CIVIC.360 SP88GUKA.360 LP89CORR.090 NR94CENT.360
IfeE ] 1f® 1 & S 1
08} o 08} & 08} & 08 @ 08} i
s : : : : :
=06 0.6 0.6 0.6t 0.6
- ® @x @ &
3 : ! ; ; ;
204 04 04f 04 04}
5 | om o e . -
02t : 02 : 02f 102t 02} :
0 0 0 0 0
o 2 4 0 2 4 0 2 4 0 2 4 0 2 4
CHBSLLEO.010 CHB5VALP.070 TV40ELCN.180 LN92JOSH.360 MX85SCT1.270
1O 1f® 1= 1O e
08} g 08} 4 08 4 08| e 08| 4o
9 : : : : :
=206 0.6 0.6 06 0.6t
2 e & & on «©
£ > . ; ; .
204 04t 04f 04} 04|
7| £ 8 oa v
02f 02} 02} 02f 02|
0 0 0 0 0
o 2 4 0 2 4 0 2 4 0 2 4 0 2 4
LN92LUCN.250 LP89SARA.360 NR94NWHL.360 NR94SYLH.090 KO95TTRI.360
1% e 1 & T T
08| ‘wo 08| e 08| & 08| i 08| ga
€ : : : : :
206 06t 06t 06 06
2700 ® oa & ® @A
g . . . . ;
204| | oRecord| 04} 04} 04t 04}
7 : Vidic . . i :
? ’QI ;pm('%‘ ) @Z G- & . &\‘
02} spumy]02f 02| : 02} : 02} :
0 0 0 0 0
o 2 4 0 2 4 0 2 4 0 2 4 0 2 4

: a
Ratio (IDI/IDL )

Figure B.13: Ratio IDI®/IDIprain-2px for Flexible-4 building subjected to each ground motion
scaled to get p ~ 2, using Eq. 6.9

187



WNETMWLN. 090 BB92CIVIC.360 SPREGUKA 360 LPESCORR.09%0 NR94CENT 360

| o 1o 1O 1 o] 1 O
08 a 08} ‘o 08| o 08} & 08} on
z : .
£06 06} 0.6 0.6 0.6
3 ol @& G o ok
Fo4l 04 04 04
o a G Ty G
02 0.2 02 02
0 0= 0— 0 0
0 5 0 5 0 5 0 5 0 5
CHSSLLEO.010 CHESVALP.070 IV4DELCN.180 LN92JOSH.360 MX85SCT1.270
1 ows i 1. & 1 o= 1§ Fo¥ 0
_ O8] g 08 4 08l & 08| ca 08} 40
& : : 2 .
_5 06¢ : 06} 0.6 06} 06
1 o . ot “
§ 04; : 041 - 04} 041 04
(e ® LH O g
ozt ¢ 02} : 02} : 02} 02
0= 0 0 0 0
0 5 0 5 0 5 0 5 0 5
LN92LUCN.250 LPBISARA. 360 NRY4NWHL.360 NRO4SYLH.090 KO95TTRI360
1 RNl 1 [oJEAY 1 o& 1 & O 1 fe
o8 08 ‘om 05] oa 08} 4o 08 ga
& ; :
£06 06} - 06} - 06} - 06
3 (% o ca 40 @®
£041 © oRecors |04 04 04} ° 04
@ o ;g}gﬁ ) 3 ok o @
02 © spu) 102 02f : 02} : 02
0 0 0 0 0
0 5 0 5 0 5 0 5 0 5
Ratio (IDIIDI, )

DRAIN-1D'

Figure B.14: Ratio /DI°/IDIprain-2px for Flexible-4 building subjected to each ground motion
scaled to get p ~ 4, using Eq. 6.9
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Figure B.15: Ratio IDI*{IDIpgrarn—2px for Flexible-4 building subjected to each ground motion
scaled to get p ~ 8, using Eq. 6.9
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Figure B.16: Ratio IDI*/IDIppain-2px for Flexible-4 building subjected to each ground motion
scaled to get pu ~ 2 using Eq. 6.10
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Figure B.17: Ratio .’le,fIDIDR,u_av_mx for Flexible-4 building subjected to each ground motion
scaled to get p ~ 4 using Eq. 6.10
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Figure B.18: Ratio IDI*/IDIprarn—apx for Flexible-4 building subjected to each ground motion
scaled to get i ~ 8 using Eq. 6.10
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Figure B.19: Ratio /DI°/IDIprain-20x for Flexible-4 building subjected to each ground motion
scaled to get ¢ ~ 2 using Eq. 6.11
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Figure B.20: Ratio IDI°/IDIppain-apx for Flexible-4 building subjected to each ground motion
scaled to get jt ~ 4 using Eq. 6.11
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Figure B.21: Ratio IDI°/IDIpgain-2px for Flexible-4 building subjected to each ground motion
scaled to get p ~ 8 using Eq. 6.11
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