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Abstract. We study binary linear codes constructed from fifty-four Hadamard 2-(71, 35, 17)
designs. The constructed codes are self-dual, doubly-even and self-complementary. Since
most of these codes have large automorphism groups, they are suitable for permutation
decoding. Therefore we study PD-sets of the obtained codes. We also discuss the error-
correcting capability of the obtained codes by majority logic decoding. Further, we de-
scribe a construction of a 3-(72, 12, 11) design and a 3-(72, 16, 2010) design from a bi-
nary [72, 16, 12] code, and a construction of a strongly regular graph with parameters
(126, 25, 8, 4) from a binary [35, 8, 4] code related to a derived 2-(35, 17, 16) design.
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1. Introduction

Error-correcting codes that have large automorphism groups can be useful in appli-
cations as the group can be useful in decoding algorithms; see [9, Part 2, Chapter 17]
and [22] for a discussion of possibilities. Especially, codes with large automorphism
groups are suitable for permutation decoding, since permutation decoding can be
used when a code has a sufficiently large automorphism group to ensure the existence
of a set of automorphisms, called a PD-set, that has some specific properties (see
[11, 12, 13, 16]). In this paper we study doubly-even self-dual binary linear codes of
length 72, constructed from Hadamard designs with parameters 2-(71, 35, 17). The
obtained codes have large automorphism groups, hence they are possibly suitable
for permutation decoding. Moreover, the constructed codes are self-dual. The class
of self-dual codes is important in coding theory from both theoretical and practical
reasons. Self-dual codes are in particular of interest because many of the best codes
known are of this type. For example, self-dual ternary codes include among others
the ternary Golay code of length 12, the quadratic residue codes and the symmetry
codes. A comprehensive study of self-dual codes can be found in [18].
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A code C of length n over an alphabet Fq of size q is a subset C ⊆ Fn
q . A code

is binary if q = 2. Elements of a code are called codewords. For x = (x1, . . . , xn),
y = (y1, . . . , yn) ∈ Fn

q , the number d(x, y) = |{i |1 ≤ i ≤ n, xi ̸= yi}| is called a Ham-
ming distance. A minimum distance of a code C is a number d = min{d(x, y) |x, y ∈
C, x ̸= y}.

Two codes are equivalent if one of the codes can be obtained from the other by
permuting the coordinates in all codewords, and permuting the symbols within one
or more coordinate positions. Two codes are isomorphic if one can be obtained from
the other by permuting the coordinates only. An automorphism of a code C is an
isomorphism from C to C.

For x ∈ Fn
q we define the weight ω(x) of x by ω(x) = d(x, 0). The weight

enumerator of a code C is the polynomial A(x) =
∑n

i=0 Aix
i, where Ai is the number

of codewords of weight i. A code is even if all weights are even, and doubly-even if
all weights are divisible by 4.

Let q be a prime power and Fq the finite field of order q. A linear code of length
n is a linear subspace of the vector space Fn

q . A k-dimensional subspace of Fn
q is

called a linear [n, k] code over Fq. For a linear code C its minimum distance is equal
to its minimum weight min{ω(x) |x ∈ C, x ̸= 0}. A linear [n, k, d] code is a linear
[n, k] code with minimum distance (or weight) d.

An [n, k, d] linear code can correct up to
⌊
d−1
2

⌋
errors.

An information set for [n, k, d] code C is a set of k coordinate positions such that
the corresponding columns of the generator matrix are linearly independent.

Let C be a t-error-correcting code with information set I. A PD-set for C is a
set S of automorphisms of C which is such that every t-set of coordinate positions
is moved by at least one member of S out of the information set I.

A minimum size a PD-set can have is given by the following theorem by Gordon
(see [8]).

Theorem 1. If S is a PD-set for a t-error correcting [n, k, d] code C, and r = n−k,
then

|S| ≥
⌈
n

r

⌈
n− 1

r − 1

⌈
· · ·

⌈
n− t+ 1

r − t+ 1

⌉
· · ·

⌉⌉⌉
.

PD-sets are used for permutation decoding, an algorithm for decoding linear
codes. The algorithm was introduced by MacWilliams in 1964 and it can be found
in [15] and [16].

A non-zero codeword is called normalized if the leftmost non-zero component
is 1. In a binary code, every codeword is normalized. The support of a nonzero
vector x = (x1 . . . , xn) ∈ Fn

q is the set of indices of its nonzero coordinates, i.e.
supp(x) = {i |xi ̸= 0}. A nonzero codeword c of a binary linear code C is called
minimal in C if supp(c) does not cover the support of another nonzero codeword.

Minimal codewords are important from a cryptographic point of view, since these
words are used in particular secret sharing schemes (see [17]).

Let G be a generator matrix of a linear code C. Given a codeword c ∈ C,
let Gc denote the submatrix consisting of the columns of G corresponding to the
components of c that have value 0, and let ρc denote the rank of Gc.

The following statement can be found in [14, Theorem 2]:
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Theorem 2. A codeword c is minimal if and only if c is normalized and ρc = k−1.

The dual code C⊥ of a code C is its orthogonal space with respect to the usual
dot product in Fn

q . The dual code of an [n, k] code is an [n, n− k] code. An [n, k]

code is called self-orthogonal if C ⊂ C⊥, and self-dual if C = C⊥. The length of a
self-dual code is even and n = 2k. A binary code is called self-complementary if it
contains the all-one vector.

A t-(v, k, λ) design is a finite incidence structure (P,B, I) satisfying the following
requirements:

1. |P| = v,

2. every element of B is incident with exactly k elements of P,

3. every t elements of P are incident with exactly λ elements of B.

The elements of a set P are called points and the elements of a set B are
called blocks. A 2-(v, k, λ) design is called a block design. If |P| = |B| = v and
2 ≤ k ≤ v − 2, then a 2-(v, k, λ) design is called a symmetric design. Given two
designs D1 = (P1,B1, I1) and D2 = (P2,B2, I2), an isomorphism from D1 onto D2 is
a bijection which maps points onto points and blocks onto blocks preserving the in-
cidence relation. An isomorphism from a symmetric design D onto itself is called an
automorphism of D. The set of all automorphisms of D forms its full automorphism
group denoted by Aut(D).

Let D = (P,B, I) be a symmetric 2-(v, k, λ) design. Excluding from D a block x
and all points that are not incident with that block, one obtains its derived design Dx

with parameters 2− (k, λ, λ− 1), provided that λ ≥ 2. Further, excluding from the
design D a block x and all points incident with that block, provided that k ≥ λ+2,
one obtains its residual design Dx with parameters 2− (v − k, k − λ, λ).

A Hadamard matrix of order m is an m ×m matrix H = (hi,j), hi,j ∈ {−1, 1},
satisfying HH⊤ = H⊤H = mIm, where Im is an m × m identity matrix. Two
Hadamard matrices are equivalent if one can be transformed into the other by a
series of row or column permutations and negations. From each Hadamard matrix
of order m one can obtain a symmetric (m− 1, 1

2m− 1, 1
4m− 1) design. Also, from

any symmetric (m− 1, 1
2m− 1, 1

4m− 1) design we can recover a Hadamard matrix.
Symmetric designs with parameters (m − 1, 1

2m − 1, 1
4m − 1) are called Hadamard

designs. Let (P,B, I) be a Hadamard (m− 1, 1
2m− 1, 1

4m− 1) design and let ∞ be
a new symbol. We construct a new design D∗ with the point set P∗ = P ∪{∞} and
a block set defined as follows: for the blocks containing ∞ we take all the blocks of
B with ∞ adjoined; for the blocks not containing ∞ we take the complements (in
P) of the blocks of B. Then D∗ is a 3-(m, 1

2m, 1
4m − 1) design. Any design with

parameters (m, 1
2m, 1

4m− 1) is called a Hadamard 3-design.

Definition 1. Let S = (P,B, I) be an incidence structure. The code of S over the
field F is the subspace CF (S) of FP spanned by the vectors corresponding to the
characteristic functions of the blocks of S.

The following statement can be found in [1, Corollary 7.4.1]:
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Theorem 3. For any prime p and any equivalence class of Hadamard matrices,
there is, up to code equivalence, only one p-ary code associated with the 3-design
from the equivalence class.

Definition 2. If H is a Hadamard matrix, then the p-ary code of H, denoted by
Cp(H), is a p-ary code associated with any 3-design defined by H.

In this article we study 12 binary linear codes spanned by rows of block-by-point
incidence matrices of the symmetric (71, 35, 17) designs constructed in [6] and [7],
and the Hadamard design obtained via a cyclic difference set described in [10]. As far
as we know these are the only Hadamard 2-(71, 35, 17) designs explicitly constructed
up to now. The constructed codes are self-dual, doubly-even and self-complementary.
Self-dual doubly-even binary codes of length 72 have been extensively studied (see
[2, 3, 19]), since 72 is the smallest length of the code for which it is not known if
there is an extremal doubly-even self-dual code. Nevertheless, as far as we know,
this is the first study of PD-sets in these codes. We have also determined the number
of minimal words of constructed codes of weight up to 16. Further, we discuss the
error-correcting capability of the obtained codes by majority logic decoding. In
addition, we describe a construction of a 3-(72, 12, 11) design and a 3-(72, 16, 2010)
design from one of the constructed [72, 36, 12] codes, and a construction of a strongly
regular graph with parameters (126, 25, 8, 4) from a binary [35, 8, 4] code related to
a 2-(35, 17, 16) design, a derived design of a symmetric (71, 35, 17) design.

2. Codes constructed from Hadamard matrices of order 72

The following statements can be found in [23, Theorem 1.98]:

Theorem 4. Assume that D is a 2-(v, k, λ) design with block intersection numbers
s1, s2, . . . , sm. Denote by C the binary code spanned by the block-by-point incidence
matrix of D. Then the following properties hold:

1. If k, s1, s2, . . . , sm are all even, then C is self-orthogonal.

2. If v, k, s1, s2, . . . , sm are all even, then C is contained in a length v self-dual
code.

3. If v ≡ 0 (mod 8), k ≡ 0 (mod 4), and s1, s2, . . . , sm are all even, then C is
contained in a doubly-even self-dual code of length v.

4. The dual code C⊥ has minimum distance d⊥ ≥ r + λ

λ
.

Lemma 1. Let C be the binary code of a Hadamard matrix of order 72. Then C is
a self-orthogonal doubly-even code. Moreover, C is a self-complementary code.

Proof. Two blocks of a 3-(72, 36, 17) design intersect in 18 or 0 points. Properties
from Theorem 4 hold for every code of a Hadamard matrix of order 72, so these codes
are self-orthogonal linear codes. Further, for each block of a Hadamard 3-design its
complement is also a block of a design, hence the binary code of a Hadamard matrix
is self-complementary.
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Remark 1. All of the codes obtained in this article are [72, 36] linear codes. Since
they are self-orthogonal, they are self-dual.

Hadamard designs D1, . . . ,D45 described in [7], Hadamard designs described in
[6], which will be denoted by D46, . . . ,D53 and Hadamard design obtained via a
cyclic difference set described in [10], which will be denoted by D54, give rise to 24
inequivalent Hadamard matrices, that produce 12 inequivalent binary codes denoted
by C1, . . . , C12:

C1 constructed from D1,D2, D3,D4, D5,D6, D9,D10, D31,D32, D33, D34, D35,
D36, D37 and D38,

C2 constructed from D7,D8,D11,D13,D39,D40,D41 and D42,

C3 constructed from D12,D43,D46,D47,D48 and D49,

C4 constructed from D14,D15,D44 and D45,

C5 constructed from D16,D17,D18,D19,D20,D21,D22 and D23,

C6 constructed from D24,D25,D26 and D27,

C7 constructed from D28,

C8 constructed from D29 and D30,

C9 constructed from D50 and D51,

C10 constructed from D52,

C11 constructed from D53,

C12 constructed from D54.

In Table 1, we give parameters of the codes C1,. . . ,C12, and their weight enu-
merators written in the form

A(x) = x0+α1x
4+α2x

8+α3x
12 + α4x

16 + α5x
20 + α6x

24 + α7x
28 + α8x

32 + α9x
36

+α8x
40 + α7x

44 + α6x
48 + α5x

52 + α4x
56 + α3x

60 + α2x
64 + α1x

68 + x72.

Using Theorem 2, for these codes we found the number of minimal words of
weight 8, 12 and 16. These numbers are listed in Table 2.

In Table 3, orders of automorphism groups are listed for codes C1, . . . , C12, and
information about the structure of the automorphism group is given for codes C4,
C10, C11 and C12. For other codes we were not able to establish the structure of
their automorphism groups, due to the size of groups.

Automorphism groups of codes C1 and C2 are mutually isomorphic, and so are
automorphism groups of C5 and C6. In the structure of the automorphism group of
the code C4, H2 is a Sylow 2-subgroup of the full automorphism group.

We found PD-sets for codes C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 and C12.
In Table 4, we list Gordon bounds for PD-sets for these codes and sizes of PD-sets
found in these codes.



302 D.Crnković, S. Rukavina and L. Simčić

Parameters α1 α2 α3 α4

C1 [72, 36, 4] 18 425 13328 745892

C2 [72, 36, 4] 18 153 10608 590580

C3 [72, 36, 4] 630 58905 1947792 30260340

C4 [72, 36, 4] 18 153 13872 551412

C5 [72, 36, 8] 0 289 6256 374476

C6 [72, 36, 8] 0 153 4896 296820

C7 [72, 36, 4] 306 29529 973488 15131700

C8 [72, 36, 8] 0 153 6528 277236

C9 [72, 36, 4] 42 777 29904 1273284

C10 [72, 36, 8] 0 28 1078 256261

C11 [72, 36, 12] 0 0 462 244305

C12 [72, 36, 12] 0 0 2982 214065

α5 α6 α7 α8 α9

C1 25862712 495169812 4324680048 16466504606 26093523052

C2 26505720 495846276 4315865616 16489380078 26063078636

C3 254186856 1251677700 3796297200 7307872110 43434873668

C4 26721144 495128196 4317481296 16486794990 26066094572

C5 17645664 461503692 4408373904 16575744838 25792178496

C6 17967168 461841924 4403966688 16587182574 25776956288

C7 131807736 839757636 4144182480 11996428590 34462853804

C8 18074880 461482884 4404774528 16585890030 25778464256

C9 36774360 538436724 4221311664 16302189246 26519444732

C10 18093180 462717759 4398644778 16599729055 25760592456

C11 18137196 462861315 4397571090 16602349995 25757148008

C12 18303516 462306915 4398818490 16600354155 25759476488

Table 1: Parameters and weight enumerators of codes C1, . . . , C12

8 12 16
C1 272 8704 596224
C2 0 9792 470016
C3 0 0 0
C4 0 13056 391680
C5 289 6256 353600
C6 153 4896 293760
C7 0 0 0
C8 153 6528 274176
C9 224 17472 740352
C10 28 1078 255967
C11 0 462 244305
C12 0 2982 214065

Table 2: The number of minimal words of weights 8, 12 and 16 in codes C1, . . . , C12
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Code Automorphism group Order of the automorphism group
C1 17 · 238
C2 17 · 238
C3 31 · 29 · 23 · 19 · 172 · 132 · 113 · 75 · 58 · 317 · 269
C4 Z17 × Z9 ×H2 17 · 32 · 241
C5 17 · 220
C6 17 · 220
C7 172 · 132 · 112 · 74 · 56 · 316 · 267
C8 17 · 32 · 223
C9 72 · 5 · 33 · 246
C10 Frob21 : (Z4 : Z2) 168
C11 Z35 : (Z6 × Z4) 840
C12 L(2, 71) 71 · 7 · 5 · 32 · 23

Table 3: Automorphism groups for codes C1, . . . , C12

Code Gordon bound Size of the found PD-set
C1 2 3
C2 2 3
C3 2 3
C4 2 3
C5 14 42
C6 14 41
C7 2 3
C8 14 38
C9 2 2
C10 14 54
C12 62 402

Table 4: Sizes of found PD-sets for codes C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 and C12

Remark 2. The most interesting codes described in this paper are the [72, 36, 12]
codes C11 and C12, especially the code C12 that admits a simple automorphism group
L(2, 71). Binary doubly-even self-dual [72, 36, 12] codes have been studied in [2]. In
that paper, Bouyukliev, Fack and Winne described [72, 36, 12] codes constructed from
7238 Hadamard matrices of order 36. They obtained 522 inequivalent doubly-even
self-dual [72, 36, 12] codes and listed their weight distributions. Comparing the weight
distributions of codes C11 and C12 with weight distributions listed in [2] we conclude
that C11 and C12 are not equivalent to the [72, 36, 12] codes studied by Bouyukliev,
Fack and Winne. In Section 5, we describe a construction of 3-designs from the
code C12.

In the next section, we discuss decoding of codes C1, . . . , C12 by another decoding
algorithm, majority logic decoding, which is suitable for decoding linear codes whose
dual codes support the blocks of a t-design.
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3. Majority logic decoding

A linear code whose dual code supports the blocks of a t-design admits one of
the simplest decoding algorithms, majority logic decoding (see [21] and [23]). If a
codeword x = (x1, . . . , xn) ∈ C is sent over a communication channel and a vector

y = (y1, . . . , yn) is received, for each symbol yi a set of values y
(1)
i , . . . , y

(ri)
i of ri

linear functions defined by the blocks of the design are computed, and yi is decoded

as the most frequent among the values y
(1)
i , . . . , y

(ri)
i . The following result has been

obtained by Rudolph [21].

Theorem 5. If C is a linear [n, k] code such that C⊥ contains a set S of vectors
of weight w whose supports are the blocks of a 2-(n,w, λ) design, the code C can
correct up to

e =

⌊
r + λ− 1

2λ

⌋
errors by majority logic decoding, where r = λ

n− 1

w − 1
.

Rahman and Blake [20] improved the Rudolph’s bound in the case when C⊥

supports a t-design with t ≥ 2.

Theorem 6. Assume that the dual code of a linear code C supports a t-(n,w, λ)
design D, where t ≥ 2. Let

Al =

l−1∑
j=0

(−1)j
(
l − 1

j

)
λj+2,

where

λi = λ

(
n− i

t− i

)
/

(
w − i

t− i

)
, (0 ≤ i ≤ t),

is the number of blocks of D containing a set of i fixed points. Define further

A′
l =

{
Al, if l ≤ t− 1,
At−1, if l > t− 1.

Then C can correct up to l errors by majority logic decoding, where l is the largest
integer that satisfies the inequality

l∑
i=1

A′
i ≤ ⌊(λ1 +A′

l − 1)/2⌋.

An easy way to construct a p-ary code whose dual code supports a design is to
start with a t-design D, and consider the dual code of the code spanned by the block-
by-point incidence matrix of D. We are interested in finding the error-correcting
capability of codes C1, . . . , C12 by majority logic decoding.

Theorem 7. Let H be a Hadamard matrix of order m, where m ≥ 4, and Cp(H) be
the p-ary code of the matrix H. Then Cp(H)⊥, the dual code of Cp(H), can correct
up to one error by majority logic decoding.
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Proof. Cp(H) is the p-ary code associated with a 3-(m, 1
2m, 1

4m−1) design defined
by H. This 3-design is also a 2-(m, 1

2m, 1
2m− 1) design with r = λ1 = m− 1. One

can easily verify that
e = ⌊(r + λ2 − 1)/2λ2⌋ = 1.

By Theorem 5 the code Cp(H)⊥ can correct up to one error by majority logic
decoding.

The following statement is a direct consequence of Theorem 7.

Corollary 1. Let H be a Hadamard matrix of order m, where m ≥ 4, and Cp(H)
the p-ary code of the matrix H. If Cp(H) is self-dual, then it can correct up to one
error by majority logic decoding.

We conclude that codes C1, . . . , C12 can correct one error by majority logic de-
coding. Note that this is the full error-correcting capability of the codes C1, C2, C3,
C4, C7 and C9, while the codes C5, C6, C8, C10, C11 and C12 can correct up to three
or five errors.

4. Construction of strongly regular graphs

In this section we describe a construction of some strongly regular graphs from codes
that are related to Hadamard (71, 35, 17) designs and their derived and residual
designs. From the 54 Hadamard (71, 35, 17) designs we obtain up to isomorphism
261 derived designs with parameters 2-(35, 17, 16), and 302 residual 2-(36, 18, 17)
designs.

The derived designs produce 26 linear codes with parameters

[35, 35, 1], [35, 33, 1], [35, 31, 1], [35, 27, 1], [35, 19, 1], [35, 30, 1], [35, 25, 1] and [35, 26, 1],

and their dual codes with parameters

[35, 0, 5], [35, 2, 8], [35, 4, 4], [35, 2, 4], [35, 8, 4], [35, 16, 4], [35, 8, 12], [35, 2, 16], [35, 5, 4],

[35, 1, 12], [35, 2, 8], [35, 1, 16], [35, 1, 8], [35, 10, 4], [35, 9, 4], [35, 2, 12], [35, 4, 8],

[35, 4, 12] and [35, 5, 12].

The residual designs generate 23 linear codes with parameters

[36, 35, 2], [36, 33, 2], [36, 31, 2], [36, 27, 2], [36, 19, 2], [36, 30, 2], [36, 34, 2], [36, 25, 2]

and [36, 26, 2],

and their dual codes with parameters

[36, 1, 36], [36, 3, 4], [36, 5, 4], [36, 9, 4], [36, 17, 4], [36, 9, 12], [36, 3, 4], [36, 6, 4], [36, 2, 8],

[36, 3, 8], [36, 2, 16], [36, 2, 12], [36, 11, 4], [36, 10, 4], [36, 3, 12], [36, 5, 12] and [36, 6, 12].

The support design of a code of length n for a given nonzero weight ω is the design
with points the n coordinate indices and blocks the supports of all codewords of
weight ω.
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Let K1 be the linear code with parameters [35, 8, 4] with weight distribution

A(x) = x0 + 36x4 + 126x8 + 84x12 + 9x16.

This code is the dual code of the [35, 27, 1] linear code obtained from a derived
design. Let S1 be the support design of the code K1 for the weight 8. The design S1

has 72 points and 126 blocks, and any two blocks intersect in 0, 2, 4 or 6 points. Let
us define the graph G1 whose vertices are blocks of the design S1, two vertices being
adjacent if and only if corresponding blocks intersect in 0 or 6 points. The graph
G1 is a strongly regular graph with parameters (126, 25, 8, 4) having the symmetric
group S10 as the full automorphism group. This strongly regular graph has been
previously known (see [4]), and it can be constructed from Johnson scheme J(9, 4),
where two quadruples are adjacent if and only if they have either zero or three points
in common.

Let K2 be a linear code with parameters [36, 9, 4] with weight distribution

A(x) = x0 + 36x4 + 126x8 + 84x12 + 9x16 + 9x20 + 84x24 + 126x28 + 36x32 + x36.

This code is a dual code of the [36, 27, 2] linear code obtained from residual designs.
Let S2 be the support design of the code K2 for the weight 8. That design has 126
blocks, and any two blocks intersect in 0, 2, 4 or 6 points. Define the graph G2 with
126 vertices, two vertices being adjacent if and only if corresponding blocks intersect
in 6 points, or if they are disjoint. That graph is isomorphic to the graph G1.

Beside the strongly regular graph with parameters (126, 25, 8, 4), we have con-
structed several triangular graphs from the codes studied in this paper.

From the support design of the code C2 for weight 8 we obtain a strongly regular
graph with parameters (153, 32, 16, 4), i.e. the triangular graph

(
18
2

)
. From the code

C3 for weight 4 we get a strongly regular graph with parameters (630, 68, 34, 4), i.e.
the triangular graph

(
36
2

)
.

Support designs of dual codes of codes obtained from derived and residual designs
led us to strongly regular graphs with parameters (136, 30, 15, 4), (28, 12, 6, 4) and
(36, 14, 7, 4), i.e. triangular graphs

(
17
2

)
,
(
8
2

)
and

(
9
2

)
.

5. Construction of 3-designs

We have already pointed out that the [72, 36, 12] code C12 admitting the simple auto-
morphism group L(2, 71) is the most interesting of the twelve [72, 36] codes described
in this paper. This code possesses one more interesting property, its codewords of
weight 12 and 16 support 3-designs. The support design of the code C12 for weight
12 is a 3-design with parameters 3-(72, 12, 11), having the full automorphism group
of order 178920, isomorphic to the linear group L(2, 71). The support design of C12

for weight 16 is a 3-design with parameters 3-(72, 16, 2010), having the full automor-
phism group isomorphic to L(2, 71). Cameron, Maimani, Omidi and Tayfeh-Rezaie
[5] determined all 3-designs admitting an automorphism group isomorphic to L(2, q)
with block size not congruent to 0 and 1 modulo p, where q = pn is a prime power
congruent to 3 modulo 4. However, a construction of a 3-(72, 12, 11) design and a
3-(72, 16, 2010) design from a code have not been described so far.
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Symmetric (71, 35, 17) designs used for the construction of codes, as well as their
derived and residual designs, can be found at

http://www.math.uniri.hr/∼sanjar/structures/.

Codes K1 and K2 are related to the symmetric (71, 35, 17) design D43 from [7], that
can also be found on the web site given above.
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