GENERALIZATION OF PERTURBED TRAPEZOID FORMULA AND RELATED INEQUALITIES

S.KOVAČ AND J.PEČARIĆ

ABSTRACT. We derive some new inequalities for perturbed trapezoid formula and give some sharp and best possible constants.

1. INTRODUCTION

A.McD. Mercer has proved the following identity ([1])

$$\int_{-1}^{1} f(x) dx + \frac{2^{n} n!}{(2n)!} \sum_{q=0}^{n-1} (-1)^{q+1} \left\{ \left[f^{(q)}(1) + (-1)^{q} f^{(q)}(-1) \right] P_{n}^{(n-1-q)}(1) \right\}$$

$$(1.1) = \frac{(-1)^{k}}{(2n)!} \int_{-1}^{1} f^{(2n-k)}(x) D^{k} [(x^{2}-1)^{n}] dx,$$

with k = 0, 1, ..., n, where $f : [-1, 1] \to \mathbf{R}$ possesses continuous derivatives of all orders which appear, D denotes differentiation with respect to x, and $P_n(x)$ is the Legendre polynomial of degree n.

Pečarić and Varošanec ([3]) have considered the following. Let

$$\sigma = \{ a = x_0 < x_1 < \dots < x_m = b \}$$

be a subdivision of the interval [a, b] for some $m \in \mathbf{N}$. Set

(1.2)
$$S_n(t,\sigma) = \begin{cases} P_{1n}(t), & t \in [a,x_1] \\ P_{2n}(t), & t \in (x_1,x_2] \\ \vdots \\ P_{mn}(t), & t \in (x_{m-1},b], \end{cases}$$

where $\{P_{jn}\}_n$ are the sequences of harmonic polynomials, i.e. $P'_{jk}(t) = P_{j,k-1}(t)$, for k = 1, ..., n and $P_{j0}(t) = 1$. By successive integration by

²⁰⁰⁰ Mathematics Subject Classification. 26D15, 65D30, 65D32.

Key words and phrases. harmonic polynomials, Legendre polynomials, perturbed trapezoid inequalities.

parts they have proved that

$$(-1)^{n} \int_{a}^{b} S_{n}(t,\sigma) \mathrm{d}f^{(n-1)}(t) = \int_{a}^{b} f(t) \mathrm{d}t + \sum_{k=1}^{n} (-1)^{k} \Big[P_{mk}(b) f^{(k-1)}(b) + \sum_{j=1}^{m-1} (P_{jk}(x_{j}) - P_{j+1,k}(x_{j})) f^{(k-1)}(x_{j}) - P_{1k}(a) f^{(k-1)}(a) \Big]$$

whenever the integrals exist. Formula (1.3) is generalized in the following way in [2]. Let us consider subdivision

$$\sigma = \{ a = x_0 < x_1 < \dots < x_m = b \}$$

of the interval [a, b]. Further, set

(1.4)
$$T_n(t,\sigma) = \begin{cases} M_{1n}(t), & t \in [a,x_1] \\ M_{2n}(t), & t \in (x_1,x_2] \\ \vdots \\ M_{mn}(t), & t \in (x_{m-1},b], \end{cases}$$

where M_{jn} are monic polynomials of degree n, for j = 1, ..., m. The next theorem has been proved.

Theorem 1. Let $f : [a,b] \to \mathbf{R}$ be (n-1)-times differentiable function, for some $n \in \mathbf{N}$. Then the next identity holds

$$\int_{a}^{b} f(t) dt + \frac{1}{n!} \sum_{k=0}^{n-1} (-1)^{k+1} \cdot \left[M_{mn}^{(n-k-1)}(b) f^{(k)}(b) + \sum_{j=1}^{m-1} \left(M_{jn}^{(n-k-1)}(x_j) \right)$$

$$(1.5) - M_{j+1,n}^{(n-k-1)}(x_j) f^{(k)}(x_j) - M_{1n}^{(n-k-1)}(a) f^{(k)}(a) \right]$$

$$= \frac{(-1)^n}{n!} \int_{a}^{b} T_n(t,\sigma) df^{(n-1)}(t),$$

whenever the integrals exist.

If we put in (1.5) $M_{jn} = n! \cdot P_{jn}$, where $\{P_{jn}\}$ are harmonic polynomials with leading coefficient $\frac{1}{n!}$, then we will recover relation (1.3), since

$$P_{jn}^{(n-k-1)}(t) = P_{j,k+1}(t),$$

for $0 \le k \le n-1$.

In this paper we will use the Gamma function

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \mathrm{d}t,$$

where $x \in \mathbf{R}_+$ and the incomplete Beta function

$$B(x, a, b) = \int_0^x t^{a-1} (1-t)^{b-1} \mathrm{d}t,$$

where x, a, b > 0. In this paper we will show that identity (1.1) is a special case of Theorem 1. Further, we will obtain some sharp and best possible L_p inequalities for quadrature formula in (1.1).

2. Perturbed trapezoid identity

Let us define polynomial

(2.1)
$$M_{1n}(t) = \frac{(n!)^2}{(2n)!} 2^n P_n(t), \quad t \in [-1, 1].$$

Since the leading coefficient of $P_n(t)$ equals to $\frac{(2n)!}{2^n(n!)^2}$, the polynomial M_{1n} is monic, so we can apply Theorem 1 with m = 1 for some function $f : [-1, 1] \to \mathbf{R}$ with continuous n-th derivative. Using the property of the Legendre polynomials

$$P_n^{(k)}(-t) = (-1)^{n+k} P_n^{(k)}(t),$$

and Rodrigues formula

$$D^{n}[(t^{2}-1)^{n}] = 2^{n}n!P_{n}(t),$$

we get from the relation (1.5)

$$\int_{-1}^{1} f(x) dx + \frac{2^{n} n!}{(2n)!} \sum_{q=0}^{n-1} (-1)^{q+1} \left\{ \left[f^{(q)}(1) + (-1)^{q} f^{(q)}(-1) \right] P_{n}^{(n-1-q)}(1) \right\}$$

(2.2)
$$= \frac{(-1)^{n}}{(2n)!} \int_{-1}^{1} f^{(n)}(x) D^{n} [(x^{2}-1)^{n}] dx.$$

In ([1]) is obtained that

$$(-1)^k \int_{-1}^1 f^{(2n-k)}(x) D^k[(x^2-1)^n] \mathrm{d}x = \int_{-1}^1 f^{(2n)}(x)(x^2-1)^n \mathrm{d}x,$$

for k = 0, 1, ..., n, so (2.2) becomes (1.1).

3. Some inequalities

Theorem 2. Let us suppose $f : [-1,1] \rightarrow \mathbf{R}$ is (2n-k)-times differentiable function for some $n \in \mathbf{N}$ and some k = 0, 1, 2, ..., n. Further,

let us assume that $f^{(2n-k)} \in L_p[-1,1]$, for some $1 \le p \le \infty$. Then the following inequality holds

$$\left| \int_{-1}^{1} f(x) dx + \frac{2^{n} n!}{(2n)!} \sum_{j=0}^{n-1} (-1)^{j+1} \left\{ \left[f^{(j)}(1) + (-1)^{j} f^{(j)}(-1) \right] P_{n}^{(n-1-j)}(1) \right\} \right|$$

$$\leq C(n,k,q) \| f^{(2n-k)} \|_{p},$$

where $\frac{1}{p} + \frac{1}{q} = 1$ and

(3.

$$C(n,k,q) = \begin{cases} \frac{1}{(2n)!} \left[\int_{-1}^{1} \left| D^{k} [(x^{2}-1)^{n}] \right|^{q} dx \right]^{\frac{1}{q}}, & 1 \le q < \infty \\\\ \frac{1}{(2n)!} \sup_{x \in [-1,1]} |D^{k} [(x^{2}-1)^{n}]|, & q = \infty. \end{cases}$$

The inequality is the best possible for p = 1 and sharp for 1 .In the last case equality is attained for the functions of the form

$$f(x) = Mf_*(x) + r_{2n-k-1}(x),$$

where $M \in \mathbf{R}$, r_{2n-k-1} is an arbitrary polynomial of degree at most 2n-k-1 and function $f_*: [-1,1] \to \mathbf{R}$ is defined by

(3.2)
$$f_*(x) := \int_{-1}^x \frac{(x-\xi)^{2n-k-1}}{(2n-k-1)!} \operatorname{sgn} D^k[(\xi^2-1)^n] \mathrm{d}\xi, \text{ for } p = \infty$$

and for 1

(3.3)
$$f_*(x) := \int_{-1}^x \frac{(x-\xi)^{2n-k-1}}{(2n-k-1)!} \operatorname{sgn} D^k[(\xi^2-1)^n] |D^k[(\xi^2-1)^n]|^{\frac{1}{p-1}} d\xi$$

Proof. We apply Hölder inequality to the relation (1.1) to get

$$\left| \int_{-1}^{1} f(x) dx + \frac{2^{n} n!}{(2n)!} \sum_{j=0}^{n-1} (-1)^{j+1} \left\{ \left[f^{(j)}(1) + (-1)^{j} f^{(j)}(-1) \right] P_{n}^{(n-1-j)}(1) \right\} \right|$$

$$\leq \frac{1}{(2n)!} \| D^{k} [(x^{2}-1)^{n}] \|_{q} \| f^{(2n-k)} \|_{p}$$

Obviously, $C(n, k, q) = \frac{1}{(2n)!} \|D^k[(x^2-1)^n]\|_q$, so we obtain relation (3.1). For the proof of sharpness we need to find function f such that

$$\frac{1}{(2n)!} \left| \int_{-1}^{1} D^{k} [(x^{2} - 1)^{n}] f^{(2n-k)}(x) \mathrm{d}x \right| = C(n, k, q) \cdot \|f^{(2n-k)}\|_{p},$$

where $1 . The function <math>f_*$ defined by (3.2) and (3.3) is (2n - k)-times differentiable and $f_*^{(2n-k)} \in L_p[-1, 1]$. Further, f_* is a solution of the differential equation

$$D^{k}[(x^{2}-1)^{n}]f^{(2n-k)}(x) = |D^{k}[(x^{2}-1)^{n}]|^{q},$$

so the above identity holds. For p = 1 we shall prove that (3.4) $\left| \int_{-1}^{1} D^{k} [(x^{2} - 1)^{n}] f^{(2n-k)}(x) dx \right| \leq \sup_{x \in [-1,1]} |D^{k}[(x^{2} - 1)^{n}]| \cdot \int_{-1}^{1} |f^{(2n-k)}(x)| dx$

is the best possible inequality. Suppose that $|D^k[(x^2-1)^n]|$ attains its maximum at point $x_0 \in [-1, 1]$. First, let us assume that $D^k[(x_0^2-1)^n] > 0$. For ϵ small enough define $f_{\epsilon}^{(2n-k-1)}(x)$ by

$$f_{\epsilon}^{(2n-k-1)}(t) = \begin{cases} 0, & x \le x_0\\ \frac{x-x_0}{\epsilon}, & x \in [x_0, x_0 + \epsilon] \\ 1, & x \ge x_0 + \epsilon. \end{cases}$$

Then, for ϵ small enough,

$$\left| \int_{-1}^{1} D^{k} [(x^{2} - 1)^{n}] f_{\epsilon}^{(2n-k)} dx \right|$$

= $\left| \int_{x_{0}}^{x_{0} + \epsilon} D^{k} [(x^{2} - 1)^{n}] \frac{1}{\epsilon} dx \right| = \frac{1}{\epsilon} \int_{x_{0}}^{x_{0} + \epsilon} D^{k} [(x^{2} - 1)^{n}] dx.$

Now, relation (3.4) implies

$$\frac{1}{\epsilon} \int_{x_0}^{x_0+\epsilon} D^k[(x^2-1)^n] \mathrm{d}x \le \frac{1}{\epsilon} D^k[(x_0^2-1)^n] \int_{x_0}^{x_0+\epsilon} \mathrm{d}t = D^k[(x_0^2-1)^n].$$

Since

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{x_0}^{x_0 + \epsilon} D^k [(x^2 - 1)^n] \mathrm{d}x = D^k [(x_0^2 - 1)^n],$$

the statement follows. The case $D^k[(x_0^2 - 1)^n] < 0$ follows similarly.

Remark 1. For $n \in \mathbf{N}$ we have by direct calculation

$$C(n,0,q) = \frac{1}{(2n)!} \left[\frac{\sqrt{\pi}\Gamma(nq+1)}{\Gamma(\frac{3}{2}+nq)} \right]^{\frac{1}{q}}, \quad 1 \le q < \infty, \quad C(n,0,\infty) = \frac{1}{(2n)!}$$

and

$$C(n, n, 2) = \frac{2^{n+1}n!}{(2n+1)!}, \quad C(n, n, \infty) = \frac{2^n n!}{(2n)!}.$$

Further,

$$C(1,1,q) = \left(\frac{2}{q+1}\right)^{\frac{1}{q}}, \quad 1 \le q < \infty, \quad C(1,1,\infty) = 1,$$

$$C(2,1,q) = \frac{1}{3 \cdot 2^{1/q}} \left(\frac{\Gamma(\frac{1+q}{2})\Gamma(1+q)}{\Gamma(\frac{3(1+q)}{2})} \right)^{\frac{1}{q}}, \quad 1 \le q < \infty, \quad C(2,1,\infty) = \frac{\sqrt{3}}{27}$$

and

$$C(2,2,q) = \frac{1}{6} \left(\frac{(-1)^q \left((-1+(-1)^q) \sqrt{\pi} \Gamma(1+q) + B(3,\frac{1}{2},1+q) \Gamma(\frac{3}{2}+q) \right)}{\sqrt{3} \Gamma(\frac{3}{2}+q)} \right)^{\frac{1}{q}},$$

for $1 \leq q < \infty$, and

$$C(2,2,\infty) = \frac{1}{3}.$$

Specially,

$$C(2,2,1) = \frac{4\sqrt{3}}{27},$$

which coincides with constants obtained in [4]. For n = 3 we have the following constants

$$C(3,1,q) = \frac{1}{120} \left(\frac{\Gamma(\frac{1+q}{2})\Gamma(1+q)}{\Gamma(\frac{3+3q)}{2}} \right)^{\frac{1}{q}}, \quad 1 \le q < \infty$$

and $C(3, 1, \infty) = \frac{2\sqrt{5}}{1875}$.

The case k = 0 in (1.1) is of special interest since function $(x^2 - 1)^n$ doesn't change sign on [-1, 1] for every $n \in \mathbb{N}$. More precisely, $(x^2 - 1)^n \ge 0$ for even n and $(x^2 - 1)^n \le 0$ for odd n. So we have the following

Theorem 3. Let us suppose $f : [-1,1] \to \mathbf{R}$ is such that $f^{(2n)}$ is continuous function on [-1,1] for some $n \in \mathbf{N}$. Then there exists $\eta \in (-1,1)$ such that

$$\int_{-1}^{1} f(x) dx + \frac{2^{n} n!}{(2n)!} \sum_{q=0}^{n-1} (-1)^{q+1} \left\{ \left[f^{(q)}(1) + (-1)^{q} f^{(q)}(-1) \right] P_{n}^{(n-1-q)}(1) \right\}$$

(3.5)
$$= \frac{(-1)^{n} \sqrt{\pi} n!}{(2n)! \Gamma(\frac{3}{2}+n)} \cdot f^{(2n)}(\eta).$$

Proof. The proof follows from the integral mean value theorem applied to the right-hand side of (1.1) with k = 0, since $(x^2-1)^n$ does not change sign on [-1, 1]. So there exists some $\eta \in (-1, 1)$ such that

$$\frac{1}{(2n)!} \int_{-1}^{1} f^{(2n)}(x) (x^2 - 1)^n dx = \frac{f^{(2n)}(\eta)}{(2n)!} \cdot \int_{-1}^{1} (x^2 - 1)^n dx$$
$$= \frac{(-1)^n \sqrt{\pi} n!}{(2n)! \Gamma(\frac{3}{2} + n)} \cdot f^{(2n)}(\eta).$$

Remark 2. Applying previous theorem for n = 1, 2, 3 respectively, we get the following identities:

(3.6)
$$\int_{-1}^{1} f(x) dx - [f(1) + f(-1)] = -\frac{2}{3} f''(\eta),$$

which is identity related to the famous trapezoid formula,

(3.7)
$$\int_{-1}^{1} f(x) dx - [f(1) + f(-1)] + \frac{1}{3} [f'(1) - f'(-1)] = \frac{2}{45} f^{(4)}(\eta),$$

and

$$\int_{-1}^{1} f(x) dx - [f(1) + f(-1)] + \frac{2}{5} [f'(1) - f'(-1)]$$
$$- \frac{1}{15} [f''(1) + f''(-1)] = -\frac{2}{1575} f^{(6)}(\eta).$$

References

- A.McD.MERCER, On perturbed trapezoid inequalities, J.Ineq.Pure and Appl. Math., 7 (4) (2006), Art.118.
- S. KOVAČ, J. PEČARIĆ AND A. VUKELIĆ, A generalization of general two-point formula with applications in numerical integration, Nonlinear Analysis Series A - Theory, Methods and Applications, 68 (2008), 2445-2463
- J. PEČARIĆ AND S. VAROŠANEC, Harmonic Polynomials and Generalization of Ostrowski Inequality with Applications in Numerical Integration, *Nonlinear Analysis*, 47 (2001) 2365–2374.
- [4] ZHENG LIU, Some inequalities of perturbed trapezoid type, J.Ineq.Pure and Appl. Math., 7 (2)(2006), Art.47.

FACULTY OF GEOTECHNICAL ENGINEERING, VARAŽDIN, UNIVERSITY OF ZAGREB, HALLEROVA ALEJA 7, 42000 VARAŽDIN, CROATIA *E-mail address*: skovac@gfv.hr

FACULTY OF TEXTILE TECHNOLOGY, UNIVERSITY OF ZAGREB, PRILAZ BARUNA FILIPOVIĆA 30, 10000 ZAGREB, CROATIA

E-mail address: pecaric@hazu.hr

 \square