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GENERAL QUADRATURE FORMULAE BASED ON
THE WEIGHTED MONTGOMERY IDENTITY AND

RELATED INEQUALITIES

M. KLARIČIĆ BAKULA, J. PEČARIĆ, AND M. RIBIČIĆ PENAVA

Abstract. In this paper two families of general two-point and
closed four-point weighted quadrature formulae are established. Ob-
tained formulae are used to present several Hadamard type and
Ostrowski type inequalities for α-L-Hölder functions. These results
are applied to establish error estimates for the Gauss-Chebyshev
quadratures.

1. Introduction

Let f : [a, b] → R be a differentiable function on [a, b] such that
f ′ : [a, b] → R is integrable on [a, b] and let w : [a, b] → [0,∞〉 be
some probability density function. In [1] J. Pečarić proved a weighted
generalization of the well known Montgomery identity (more about the
Montgomery identity can be found for example in [2]):

f (x) =
∫ b

a
w (t) f (t) dt +

∫ b

a
Pw (x, t) f ′ (t) dt,

where the weighted Peano kernel is defined by

Pw (x, t) =
{

W (t) , a ≤ t ≤ x
W (t) − 1, x < t ≤ b

.

This was used in the recent paper [3], where A. Aglić Aljinović and
J. Pečarić introduced two new extensions of the weighted Montgomery
identity.

In this paper we use one of those new weighted Montgomery identities
to establish for each x ∈ [a, (a + b) /2] a general two-point quadrature
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Let f : [a, b] → R be such that f (n) exists on [a, b] for some n ≥ 2.
We introduce the following notation for each x ∈ [

a, a+b
2

]

D (x) =
f (x) + f (a + b − x)

2
.

Further, we define

tn (x)

=
1
2

{
n−1∑

i=0

f (i+1) (b)
i!

[∫ b

x
(1 − W (t)) (t − b)i dt

+
∫ b

a+b−x
(1 − W (t)) (t − b)i dt

]

−
n−1∑

i=0

f (i+1) (a)
i!

[∫ x

a
W (t) (t − a)i dt +

∫ a+b−x

a
W (t) (t − a)i dt

]}

and

Tn (x) =
1
2

[
T a

n (x) + T b
n (x) + T a

n (a + b − x) + T b
n (a + b − x)

]
,

where

T a
n (x) =

1
(n − 2)!

∫ x

a
W (t)

[∫ t

a

(
f (n) (a) − f (n) (s)

)
(t − s)n−2 ds

]
dt,

T b
n (x)

=
1

(n − 2)!

∫ b

x
(1 − W (t))

[∫ b

t

(
f (n) (b) − f (n) (s)

)
(t − s)n−2 ds

]
dt.

In the next theorem we establish a general two-point quadrature for-
mula based on the extended Montgomery identity which plays the key
role in this section.

Theorem 1. Let I be an open interval in R, [a, b] ⊂ I, and let w :
[a, b] → [0,∞〉 be some probability density function. Let f : I → R be
such that f (n−1) is absolutely continuous for some n ≥ 2. Then for each
x ∈ [

a, a+b
2

]
the following identity holds

∫ b

a
w (t) f (t) dt = D (x) + tn (x) + Tn (x) (2.2)

Proof. We put x ≡ x and then x ≡ a + b− x in (2.1) to obtain two new
formulae. After adding these two formulae and multiplying by 1

2 , we get
(2.2). �

formula of the type
∫ b

a
w (t) f (t) dt =

1
2

[f (x) + f (a + b − x)] + R (f, w; x) , (1.1)

and also a general closed four-point quadrature formula of the type
∫ b

a
w (t) f (t) dt =

1
4

[f (a) + f (x) + f (a + b − x) + f (b)] + R (f, w;x) ,

(1.2)
with R (f, w;x) being the reminder. In the special case w (t) = 1

b−a ,

t ∈ [a, b] , (1.1) reduces to the family of two point quadrature formulae
which were considered by Guessab and Schmeisser in [4]. Obtained two-
point and four-point formulae are used to prove some Ostrowski-type
and Hadamard-type inequalities for α-L-Hölder functions. At the end
of the paper we show how these results can be applied to obtain some
error estimates for Gauss-Chebyshev two-point quadrature rules.

Before we go further let us recall that a function ϕ : [a, b] → R is
said to be of α-L-Hölder type if |ϕ (x) − ϕ (y)| ≤ L |x − y|α for every
x, y ∈ [a, b] , where L > 0 and α ∈ 〈0, 1] . We will also make use of the
Beta function of Euler type which is for x, y > 0 defined by B (x, y) =∫ 1
0 tx−1 (1 − t)y−1 dt.

2. General two-point quadrature formula

Let I be an open interval in R, [a, b] ⊂ I and let f : I → R be such
that f (n−1) is absolutely continuous for some n ≥ 2. In the recent paper
[3] the following extension of the Montgomery identity has been proved
for each x ∈ [a, b] :

f (x) =
∫ b

a
w (t) f (t) dt +

n−1∑

i=0

f (i+1) (a)
i!

∫ x

a
W (t) (t − a)i dt

+
n−1∑

i=0

f (i+1) (b)
i!

∫ b

x
(W (t) − 1) (t − b)i dt

+
1

(n − 2)!

{∫ x

a
W (t)

[∫ t

a

(
f (n) (s) − f (n) (a)

)
(t − s)n−2 ds

]
dt

+
∫ b

x
(1 − W (t))

[∫ b

t

(
f (n) (s) − f (n) (b)

)
(t − s)n−2 ds

]
dt

}

(2.1)

where w : [a, b] → [0,∞〉 is some probability density function.
In this section we use (2.1) to study for each number x ∈ [

a, a+b
2

]
the

general two-point quadrature formula of the type (1.1) .
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Let f : [a, b] → R be such that f (n) exists on [a, b] for some n ≥ 2.
We introduce the following notation for each x ∈ [

a, a+b
2

]

D (x) =
f (x) + f (a + b − x)

2
.

Further, we define

tn (x)

=
1
2

{
n−1∑

i=0

f (i+1) (b)
i!

[∫ b

x
(1 − W (t)) (t − b)i dt

+
∫ b

a+b−x
(1 − W (t)) (t − b)i dt

]

−
n−1∑

i=0

f (i+1) (a)
i!

[∫ x

a
W (t) (t − a)i dt +

∫ a+b−x

a
W (t) (t − a)i dt

]}

and

Tn (x) =
1
2

[
T a

n (x) + T b
n (x) + T a

n (a + b − x) + T b
n (a + b − x)

]
,

where

T a
n (x) =

1
(n − 2)!

∫ x

a
W (t)

[∫ t

a

(
f (n) (a) − f (n) (s)

)
(t − s)n−2 ds

]
dt,

T b
n (x)

=
1

(n − 2)!

∫ b

x
(1 − W (t))

[∫ b

t

(
f (n) (b) − f (n) (s)

)
(t − s)n−2 ds

]
dt.

In the next theorem we establish a general two-point quadrature for-
mula based on the extended Montgomery identity which plays the key
role in this section.

Theorem 1. Let I be an open interval in R, [a, b] ⊂ I, and let w :
[a, b] → [0,∞〉 be some probability density function. Let f : I → R be
such that f (n−1) is absolutely continuous for some n ≥ 2. Then for each
x ∈ [

a, a+b
2

]
the following identity holds

∫ b

a
w (t) f (t) dt = D (x) + tn (x) + Tn (x) (2.2)

Proof. We put x ≡ x and then x ≡ a + b− x in (2.1) to obtain two new
formulae. After adding these two formulae and multiplying by 1

2 , we get
(2.2). �
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formula of the type
∫ b

a
w (t) f (t) dt =

1
2

[f (x) + f (a + b − x)] + R (f, w; x) , (1.1)

and also a general closed four-point quadrature formula of the type
∫ b

a
w (t) f (t) dt =

1
4

[f (a) + f (x) + f (a + b − x) + f (b)] + R (f, w;x) ,

(1.2)
with R (f, w;x) being the reminder. In the special case w (t) = 1

b−a ,

t ∈ [a, b] , (1.1) reduces to the family of two point quadrature formulae
which were considered by Guessab and Schmeisser in [4]. Obtained two-
point and four-point formulae are used to prove some Ostrowski-type
and Hadamard-type inequalities for α-L-Hölder functions. At the end
of the paper we show how these results can be applied to obtain some
error estimates for Gauss-Chebyshev two-point quadrature rules.

Before we go further let us recall that a function ϕ : [a, b] → R is
said to be of α-L-Hölder type if |ϕ (x) − ϕ (y)| ≤ L |x − y|α for every
x, y ∈ [a, b] , where L > 0 and α ∈ 〈0, 1] . We will also make use of the
Beta function of Euler type which is for x, y > 0 defined by B (x, y) =∫ 1
0 tx−1 (1 − t)y−1 dt.

2. General two-point quadrature formula

Let I be an open interval in R, [a, b] ⊂ I and let f : I → R be such
that f (n−1) is absolutely continuous for some n ≥ 2. In the recent paper
[3] the following extension of the Montgomery identity has been proved
for each x ∈ [a, b] :

f (x) =
∫ b

a
w (t) f (t) dt +

n−1∑

i=0

f (i+1) (a)
i!

∫ x

a
W (t) (t − a)i dt

+
n−1∑

i=0

f (i+1) (b)
i!

∫ b

x
(W (t) − 1) (t − b)i dt

+
1

(n − 2)!

{∫ x

a
W (t)

[∫ t

a

(
f (n) (s) − f (n) (a)

)
(t − s)n−2 ds

]
dt

+
∫ b

x
(1 − W (t))

[∫ b

t

(
f (n) (s) − f (n) (b)

)
(t − s)n−2 ds

]
dt

}

(2.1)

where w : [a, b] → [0,∞〉 is some probability density function.
In this section we use (2.1) to study for each number x ∈ [

a, a+b
2

]
the

general two-point quadrature formula of the type (1.1) .
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+
∫ a+b−x

a
W (t)

[∫ t

a
(s − a)α (t − s)n−2 ds

]
dt

+
∫ b

x
(1 − W (t))

[∫ b

t
(b − s)α (s − t)n−2 ds

]
dt

+
∫ b

a+b−x
(1 − W (t))

[∫ b

t
(b − s)α (s − t)n−2 ds

]
dt

}
. (2.4)

The first integral over ds in (2.4) can be written as

∫ t

a
(s − a)α (t − s)n−2 ds

= (t − a)α+n−2
∫ t

a

(
s − a

t − a

)α (
t − s

t − a

)n−2

ds

= (t − a)α+n−1
∫ 1

0
uα (1 − u)n−2 du = (t − a)α+n−1 B (α + 1, n − 1) .

Similarly can be done with other integrals in (2.4) , so we obtain
∣∣∣∣
∫ b

a
w (t) f (t) dt − D (x) − tn (x)

∣∣∣∣

≤ B (α + 1, n − 1)
2 (n − 2)!

L

[∫ b

a
W (x, t)Un (x, t) dt (2.5)

+
∫ b

a
W (a + b − x, t)Un (a + b − x, t) dt

]
.

Since we have 0 ≤ W (t) ≤ 1, t ∈ [a, b] , from (2.5) we obtain

B (α + 1, n − 1)
2 (n − 2)!

L

[∫ b

a
W (x, t) Un (x, t) dt

+
∫ b

a
W (a + b − x, t) Un (a + b − x, t) dt

]

≤ B (α + 1, n − 1)
(α + n) (n − 2)!

L
[
(x − a)α+n + (b − x)α+n]

,

which completes the proof. �

Corollary 1. Let I be an open interval in R, [a, b] ⊂ I, and let f : I → R
be such that f (n−1) is absolutely continuous and that f (n) : [a, b] → R is
an α-L-Hölder type function for some n ≥ 2. Then for each x ∈ [

a, a+b
2

]

Remark 1. If in Theorem 1 we choose x = a, 2a+b
3 , 3a+b

4 , a+b
2 we obtain

trapezoid, two-point Newton-Cotes, two-point MacLaurin and midpoint
rule respectively.

Theorem 2. Suppose that all the assumptions of Theorem 1 hold and
additionally assume that f (n) : [a, b] → R is an α-L-Hölder type function.
Then for each x ∈ [

a, a+b
2

]
the following inequalities hold

∣∣∣∣
∫ b

a
w (t) f (t) dt − D (x) − tn (x)

∣∣∣∣

≤ B (α + 1, n − 1)
2 (n − 2)!

L

[∫ b

a
W (x, t) Un (x, t) dt

+
∫ b

a
W (a + b − x, t) Un (a + b − x, t) dt

]

≤ B (α + 1, n − 1)
(α + n) (n − 2)!

L
[
(x − a)α+n + (b − x)α+n]

,

where

W (x, t) =
{

W (t) , a ≤ t ≤ x,
1 − W (t) , x < t ≤ b

,

Un (x, t) =
{

(t − a)α+n−1 , a ≤ t ≤ x,

(b − t)α+n−1 , x < t ≤ b
.

Proof. From (2.2) we have that

∣∣∣∣
∫ b

a
w (t) f (t) dt − D (x) − tn (x)

∣∣∣∣

≤ 1
2

(
|T a

n (x)| + |T a
n (a + b − x)| +

∣∣∣T b
n (x)

∣∣∣ +
∣∣∣T b

n (a + b − x)
∣∣∣
)

. (2.3)

Since f (n) is of α-L-Hölder type, from (2.3) we obtain

∣∣∣∣
∫ b

a
w (t) f (t) dt − D (x) − tn (x)

∣∣∣∣

≤ L

2 (n − 2)!

{∫ x

a
W (t)

[∫ t

a
(s − a)α (t − s)n−2 ds

]
dt
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+
∫ a+b−x

a
W (t)

[∫ t

a
(s − a)α (t − s)n−2 ds

]
dt

+
∫ b

x
(1 − W (t))

[∫ b

t
(b − s)α (s − t)n−2 ds

]
dt

+
∫ b

a+b−x
(1 − W (t))

[∫ b

t
(b − s)α (s − t)n−2 ds

]
dt

}
. (2.4)

The first integral over ds in (2.4) can be written as

∫ t

a
(s − a)α (t − s)n−2 ds

= (t − a)α+n−2
∫ t

a

(
s − a

t − a

)α (
t − s

t − a

)n−2

ds

= (t − a)α+n−1
∫ 1

0
uα (1 − u)n−2 du = (t − a)α+n−1 B (α + 1, n − 1) .

Similarly can be done with other integrals in (2.4) , so we obtain
∣∣∣∣
∫ b

a
w (t) f (t) dt − D (x) − tn (x)

∣∣∣∣

≤ B (α + 1, n − 1)
2 (n − 2)!

L

[∫ b

a
W (x, t) Un (x, t) dt (2.5)

+
∫ b

a
W (a + b − x, t)Un (a + b − x, t) dt

]
.

Since we have 0 ≤ W (t) ≤ 1, t ∈ [a, b] , from (2.5) we obtain

B (α + 1, n − 1)
2 (n − 2)!

L

[∫ b

a
W (x, t) Un (x, t) dt

+
∫ b

a
W (a + b − x, t) Un (a + b − x, t) dt

]

≤ B (α + 1, n − 1)
(α + n) (n − 2)!

L
[
(x − a)α+n + (b − x)α+n]

,

which completes the proof. �

Corollary 1. Let I be an open interval in R, [a, b] ⊂ I, and let f : I → R
be such that f (n−1) is absolutely continuous and that f (n) : [a, b] → R is
an α-L-Hölder type function for some n ≥ 2. Then for each x ∈ [

a, a+b
2

]
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Remark 1. If in Theorem 1 we choose x = a, 2a+b
3 , 3a+b

4 , a+b
2 we obtain

trapezoid, two-point Newton-Cotes, two-point MacLaurin and midpoint
rule respectively.

Theorem 2. Suppose that all the assumptions of Theorem 1 hold and
additionally assume that f (n) : [a, b] → R is an α-L-Hölder type function.
Then for each x ∈ [

a, a+b
2

]
the following inequalities hold

∣∣∣∣
∫ b

a
w (t) f (t) dt − D (x) − tn (x)

∣∣∣∣

≤ B (α + 1, n − 1)
2 (n − 2)!

L

[∫ b

a
W (x, t) Un (x, t) dt

+
∫ b

a
W (a + b − x, t) Un (a + b − x, t) dt

]

≤ B (α + 1, n − 1)
(α + n) (n − 2)!

L
[
(x − a)α+n + (b − x)α+n]

,

where

W (x, t) =
{

W (t) , a ≤ t ≤ x,
1 − W (t) , x < t ≤ b

,

Un (x, t) =
{

(t − a)α+n−1 , a ≤ t ≤ x,

(b − t)α+n−1 , x < t ≤ b
.

Proof. From (2.2) we have that

∣∣∣∣
∫ b

a
w (t) f (t) dt − D (x) − tn (x)

∣∣∣∣

≤ 1
2

(
|T a

n (x)| + |T a
n (a + b − x)| +

∣∣∣T b
n (x)

∣∣∣ +
∣∣∣T b

n (a + b − x)
∣∣∣
)

. (2.3)

Since f (n) is of α-L-Hölder type, from (2.3) we obtain

∣∣∣∣
∫ b

a
w (t) f (t) dt − D (x) − tn (x)

∣∣∣∣

≤ L

2 (n − 2)!

{∫ x

a
W (t)

[∫ t

a
(s − a)α (t − s)n−2 ds

]
dt
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T b
n (x)

=
1

(n − 2)!

∫ b

x
(1 − W (t))

[∫ b

t

(
f (n) (b) − f (n) (s)

)
(t − s)n−2 ds

]
dt

depends on the parity of n : if n is odd, that is n = 2k − 1, then
T b

n (x) ≤ 0 and analogously T b
n (a + b − x) ≤ 0. Hence, if n = 2k− 1 and

f (n) is nondecreasing we have
∫ b

a
w (t) f (t) dt − D (x) − tn (x) ≤ 0.

The reversed inequality in (2.6) can be obtained analogously. �

Corollary 2. Let I be an open interval in R, [a, b] ⊂ I, and let f : I → R
be such that f (n−1) is absolutely continuous for some n = 2k− 1, k ≥ 2.
If f is (2k)-convex, then for each x ∈ [

a, a+b
2

]
the following inequality

holds
1

b − a

∫ b

a
f (t) dt − f (x) + f (a + b − x)

2
− t̂n (x) ≤ 0. (2.7)

If f is (2k)-concave, then the inequality (2.7) is reversed.

Proof. This is a special case of Theorem 3 for w (t) = 1
b−a , t ∈ [a, b] . �

3. General four-point quadrature formula

In this section we use (2.1) to study for each number x ∈ [
a, a+b

2

]
the

general four-point quadrature formula of the type (1.2) . For x ∈ [
a, a+b

2

]
and f, w, D (x) , Tn (x), tn (x) as in Section 2 we introduce the following
notation:

D̃ (x) =
D (x) + D (a)

2
=

f (a) + f (x) + f (a + b − x) + f (b)
4

,

T̃n (x) =
Tn (x) + Tn (a)

2
, t̃n (x) =

tn (x) + tn (a)
2

.

Theorem 4. Suppose that all the assumptions of Theorem 1 hold. Then
for each x ∈ [

a, a+b
2

]
the following identity holds

∫ b

a
w (t) f (t) dt = D̃ (x) + t̃n (x) + T̃n (x) . (3.1)

Proof. We put x ≡ x , x ≡ a + b−x, x ≡ a and x ≡ b in (2.1) to obtain
four new formulae. After adding these four formulae and multiplying by
1
4 , we obtain (3.1). �

the following inequality holds
∣∣∣∣

1
b − a

∫ b

a
f (t) dt − D (x) − t̂n (x)

∣∣∣∣

≤ B (α + 1, n − 1)
(b − a) (α + n + 1) (n − 2)!

L
[
(x − a)α+n+1 + (b − x)α+n+1

]
,

where

t̂n (x) =
1
2

n−1∑

i=0

[
(−1)i f (i+1) (b) − f (i+1) (a)

] (x − a)i+2 + (b − x)i+2

i! (i + 2) (b − a)

Proof. This is a special case of Theorem 2 for w (t) = 1
b−a , t ∈ [a, b] . �

Theorem 3. Suppose that all the assumptions of Theorem 1 hold for
some n = 2k − 1, k ≥ 2. If f is (2k)-convex, then for each x ∈ [

a, a+b
2

]
the following inequality holds

∫ b

a
w (t) f (t) dt − f (x) + f (a + b − x)

2
− tn (x) ≤ 0. (2.6)

If f is (2k)-concave, then the inequality (2.6) is reversed.

Proof. First note that if f is (2k)-convex the derivative f (2k−1) = f (n)

is nondecreasing, and if f is (2k)-concave the derivative f (n) is nonin-
creasing.

From (2.2) we have that
∫ b

a
w (t) f (t) dt − D (x) − tn (x)

=
1
2

[
T a

n (x) + T a
n (a + b − x) + T b

n (x) + T b
n (a + b − x)

]
.

Let us consider the sign of the integral

T a
n (x) =

1
(n − 2)!

∫ x

a
W (t)

[∫ t

a

(
f (n) (a) − f (n) (s)

)
(t − s)n−2 ds

]
dt

when f (n) is nondecreasing. We have
∫ t

a

(
f (n) (a) − f (n) (s)

)
(t − s)n−2 ds ≤ 0,

hence we may conclude that T a
n (x) ≤ 0. Analogously we obtain

T a
n (a + b − x) ≤ 0. On the other hand, the sign of the integral
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T b
n (x)

=
1

(n − 2)!

∫ b

x
(1 − W (t))

[∫ b

t

(
f (n) (b) − f (n) (s)

)
(t − s)n−2 ds

]
dt

depends on the parity of n : if n is odd, that is n = 2k − 1, then
T b

n (x) ≤ 0 and analogously T b
n (a + b − x) ≤ 0. Hence, if n = 2k− 1 and

f (n) is nondecreasing we have
∫ b

a
w (t) f (t) dt − D (x) − tn (x) ≤ 0.

The reversed inequality in (2.6) can be obtained analogously. �

Corollary 2. Let I be an open interval in R, [a, b] ⊂ I, and let f : I → R
be such that f (n−1) is absolutely continuous for some n = 2k− 1, k ≥ 2.
If f is (2k)-convex, then for each x ∈ [

a, a+b
2

]
the following inequality

holds
1

b − a

∫ b

a
f (t) dt − f (x) + f (a + b − x)

2
− t̂n (x) ≤ 0. (2.7)

If f is (2k)-concave, then the inequality (2.7) is reversed.

Proof. This is a special case of Theorem 3 for w (t) = 1
b−a , t ∈ [a, b] . �

3. General four-point quadrature formula

In this section we use (2.1) to study for each number x ∈ [
a, a+b

2

]
the

general four-point quadrature formula of the type (1.2) . For x ∈ [
a, a+b

2

]
and f, w, D (x) , Tn (x), tn (x) as in Section 2 we introduce the following
notation:

D̃ (x) =
D (x) + D (a)

2
=

f (a) + f (x) + f (a + b − x) + f (b)
4

,

T̃n (x) =
Tn (x) + Tn (a)

2
, t̃n (x) =

tn (x) + tn (a)
2

.

Theorem 4. Suppose that all the assumptions of Theorem 1 hold. Then
for each x ∈ [

a, a+b
2

]
the following identity holds

∫ b

a
w (t) f (t) dt = D̃ (x) + t̃n (x) + T̃n (x) . (3.1)

Proof. We put x ≡ x , x ≡ a + b−x, x ≡ a and x ≡ b in (2.1) to obtain
four new formulae. After adding these four formulae and multiplying by
1
4 , we obtain (3.1). �
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the following inequality holds
∣∣∣∣

1
b − a

∫ b

a
f (t) dt − D (x) − t̂n (x)

∣∣∣∣

≤ B (α + 1, n − 1)
(b − a) (α + n + 1) (n − 2)!

L
[
(x − a)α+n+1 + (b − x)α+n+1

]
,

where

t̂n (x) =
1
2

n−1∑

i=0

[
(−1)i f (i+1) (b) − f (i+1) (a)

] (x − a)i+2 + (b − x)i+2

i! (i + 2) (b − a)

Proof. This is a special case of Theorem 2 for w (t) = 1
b−a , t ∈ [a, b] . �

Theorem 3. Suppose that all the assumptions of Theorem 1 hold for
some n = 2k − 1, k ≥ 2. If f is (2k)-convex, then for each x ∈ [

a, a+b
2

]
the following inequality holds

∫ b

a
w (t) f (t) dt − f (x) + f (a + b − x)

2
− tn (x) ≤ 0. (2.6)

If f is (2k)-concave, then the inequality (2.6) is reversed.

Proof. First note that if f is (2k)-convex the derivative f (2k−1) = f (n)

is nondecreasing, and if f is (2k)-concave the derivative f (n) is nonin-
creasing.

From (2.2) we have that
∫ b

a
w (t) f (t) dt − D (x) − tn (x)

=
1
2

[
T a

n (x) + T a
n (a + b − x) + T b

n (x) + T b
n (a + b − x)

]
.

Let us consider the sign of the integral

T a
n (x) =

1
(n − 2)!

∫ x

a
W (t)

[∫ t

a

(
f (n) (a) − f (n) (s)

)
(t − s)n−2 ds

]
dt

when f (n) is nondecreasing. We have
∫ t

a

(
f (n) (a) − f (n) (s)

)
(t − s)n−2 ds ≤ 0,

hence we may conclude that T a
n (x) ≤ 0. Analogously we obtain

T a
n (a + b − x) ≤ 0. On the other hand, the sign of the integral
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which hold for any convex function f defined on [a, b] , were first proved
by Bullen in [5]. His results were generalized for (2k)-convex functions
(k ∈ N) in [6]. Further generalizations for (2k)-convex functions (k ∈ N)
and x ∈

[
a, a+b

2 − b−a
4
√

6

]
∪{

a+b
2

}
(of the same type as in Corollary 3) were

obtained in [7].

4. Applications

Gaussian quadrature rules are formulae of the following type
∫ b

a
� (t) f (t) dt ≈

k∑

i=1

Aif (xi) , k ∈ N. (4.1)

Without any loss of generality we may restrict ourselves to the special
case [a, b] = [−1, 1] . Further, if in (4.1) the function � is defined by

� (t) =
1√

1 − t2
, t ∈ (−1, 1)

we obtain Gauss-Chebyshev quadrature rule of the first kind. In
this case ∫ 1

−1

1√
1 − t2

f (t) dt ≈
k∑

i=1

Aif (xi) , (4.2)

where the weights Ai are defined by Ai = π/k, i = 1, . . . , k and xi are
zeros of the Chebyshev polynomials of the first kind defined by Ck (x) =
cos (k arccos (x)) . Each Ck (x) has exactly k distinct zeros

xi = cos
(

(2i − 1) π

2k

)

all of which lie in the interval (−1, 1) (see for instance [8]).
Error of the approximation formula (4.2) is

Ek (f) =
π

22k−1 (2k)!
f (2k) (ξ) , ξ ∈ (−1, 1) .

In case k = 2 (4.1) reduces to
∫ 1

−1

1√
1 − t2

f (t) dt

=
π

2

[
f

(
−
√

2
2

)
+ f

(√
2

2

)]
+

π

192
f (4) (ξ) , ξ ∈ (−1, 1) .

Next we show how to apply the results of Section 2 to obtain some
error estimates for Gauss-Chebyshev quadrature rules of the first kind
involving α-L-Hölder type functions.

Theorem 5. Suppose that all the assumptions of Theorem 2 hold. Then
for each x ∈ [

a, a+b
2

]
the following inequalities hold

∣∣∣∣
∫ b

a
w (t) f (t) dt − D̃ (x) − t̃n (x)

∣∣∣∣

≤ B (α + 1, n − 1)
4 (n − 2)!

L

[∫ b

a
W (x, t) Un (x, t) dt +

∫ b

a
W (a, t) Un (a, t) dt

+
∫ b

a
W (a + b − x, t) Un (a + b − x, t) dt +

∫ b

a
W (b, t)Un (b, t) dt

]

≤ B (α + 1, n − 1)
2 (α + n) (n − 2)!

L
[
(x − a)α+n + (b − x)α+n + (b − a)α+n]

.

Proof. Similarly as in Theorem 2. �

Theorem 6. Suppose that all the assumptions of Theorem 1 hold for
some n = 2k − 1, k ≥ 2. If f is (2k)-convex, then for each x ∈ [

a, a+b
2

]
the following inequality holds

∫ b

a
w (t) f (t) dt − f (x) + f (a + b − x)

2
− tn (x)

≤ f (a) + f (b)
2

−
∫ b

a
w (t) f (t) dt + tn (a) . (3.2)

If f is (2k)-concave, then the inequality (3.2) is reversed.

Proof. Similarly as in Theorem 3 starting from (3.1) . �

Corollary 3. Let I be an open interval in R, [a, b] ⊂ I, and let f : I → R
be such that f (n−1) is absolutely continuous for some n = 2k− 1, k ≥ 2.
If f is (2k)-convex, then for each x ∈ [

a, a+b
2

]
the following inequality

holds

1
b − a

∫ b

a
f (t) dt − f (x) + f (a + b − x)

2
− t̂n (x)

≤ f (a) + f (b)
2

− 1
b − a

∫ b

a
f (t) dt + t̂n (a) . (3.3)

If f is (2k)-concave, then the inequality (3.3) is reversed.

Proof. This is a special case of Theorem 6 for w (t) = 1
b−a , t ∈ [a, b] . �

Remark 2. Inequalities

f (a) + f (b)
2

− 1
b − a

∫ b

a
f (t) dt ≥ 1

b − a

∫ b

a
f (t) dt − f

(
a + b

2

)
≥ 0,
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which hold for any convex function f defined on [a, b] , were first proved
by Bullen in [5]. His results were generalized for (2k)-convex functions
(k ∈ N) in [6]. Further generalizations for (2k)-convex functions (k ∈ N)
and x ∈

[
a, a+b

2 − b−a
4
√

6

]
∪{

a+b
2

}
(of the same type as in Corollary 3) were

obtained in [7].

4. Applications

Gaussian quadrature rules are formulae of the following type
∫ b

a
� (t) f (t) dt ≈

k∑

i=1

Aif (xi) , k ∈ N. (4.1)

Without any loss of generality we may restrict ourselves to the special
case [a, b] = [−1, 1] . Further, if in (4.1) the function � is defined by

� (t) =
1√

1 − t2
, t ∈ (−1, 1)

we obtain Gauss-Chebyshev quadrature rule of the first kind. In
this case ∫ 1

−1

1√
1 − t2

f (t) dt ≈
k∑

i=1

Aif (xi) , (4.2)

where the weights Ai are defined by Ai = π/k, i = 1, . . . , k and xi are
zeros of the Chebyshev polynomials of the first kind defined by Ck (x) =
cos (k arccos (x)) . Each Ck (x) has exactly k distinct zeros

xi = cos
(

(2i − 1) π

2k

)

all of which lie in the interval (−1, 1) (see for instance [8]).
Error of the approximation formula (4.2) is

Ek (f) =
π

22k−1 (2k)!
f (2k) (ξ) , ξ ∈ (−1, 1) .

In case k = 2 (4.1) reduces to
∫ 1

−1

1√
1 − t2

f (t) dt

=
π

2

[
f

(
−
√

2
2

)
+ f

(√
2

2

)]
+

π

192
f (4) (ξ) , ξ ∈ (−1, 1) .

Next we show how to apply the results of Section 2 to obtain some
error estimates for Gauss-Chebyshev quadrature rules of the first kind
involving α-L-Hölder type functions.
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Theorem 5. Suppose that all the assumptions of Theorem 2 hold. Then
for each x ∈ [

a, a+b
2

]
the following inequalities hold

∣∣∣∣
∫ b

a
w (t) f (t) dt − D̃ (x) − t̃n (x)

∣∣∣∣

≤ B (α + 1, n − 1)
4 (n − 2)!

L

[∫ b

a
W (x, t) Un (x, t) dt +

∫ b

a
W (a, t) Un (a, t) dt

+
∫ b

a
W (a + b − x, t) Un (a + b − x, t) dt +

∫ b

a
W (b, t)Un (b, t) dt

]

≤ B (α + 1, n − 1)
2 (α + n) (n − 2)!

L
[
(x − a)α+n + (b − x)α+n + (b − a)α+n]

.

Proof. Similarly as in Theorem 2. �

Theorem 6. Suppose that all the assumptions of Theorem 1 hold for
some n = 2k − 1, k ≥ 2. If f is (2k)-convex, then for each x ∈ [

a, a+b
2

]
the following inequality holds

∫ b

a
w (t) f (t) dt − f (x) + f (a + b − x)

2
− tn (x)

≤ f (a) + f (b)
2

−
∫ b

a
w (t) f (t) dt + tn (a) . (3.2)

If f is (2k)-concave, then the inequality (3.2) is reversed.

Proof. Similarly as in Theorem 3 starting from (3.1) . �

Corollary 3. Let I be an open interval in R, [a, b] ⊂ I, and let f : I → R
be such that f (n−1) is absolutely continuous for some n = 2k− 1, k ≥ 2.
If f is (2k)-convex, then for each x ∈ [

a, a+b
2

]
the following inequality

holds

1
b − a

∫ b

a
f (t) dt − f (x) + f (a + b − x)

2
− t̂n (x)

≤ f (a) + f (b)
2

− 1
b − a

∫ b

a
f (t) dt + t̂n (a) . (3.3)

If f is (2k)-concave, then the inequality (3.3) is reversed.

Proof. This is a special case of Theorem 6 for w (t) = 1
b−a , t ∈ [a, b] . �

Remark 2. Inequalities

f (a) + f (b)
2

− 1
b − a

∫ b

a
f (t) dt ≥ 1

b − a

∫ b

a
f (t) dt − f

(
a + b

2

)
≥ 0,
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Theorem 7. Let I be an open interval in R, [−1, 1] ⊂ I, and let f :
I → R be such that for some n ≥ 2 the derivative f (n−1) is absolutely
continuous and f (n) is an α-L-Hölder function. Then

∣∣∣∣∣
∫ 1

−1

1
π
√

1 − t2
f (t) dt − 1

2

[
f

(
−
√

2
2

)
+ f

(√
2

2

)]
− tn

(
−
√

2
2

)∣∣∣∣∣

≤ B (α + 1, n − 1)
(α + n) (n − 2)!

L

[(
1 −

√
2

2

)α+n

+

(
1 +

√
2

2

)α+n]
,

where tn is defined as in Section 2 and W (t) = 1
π

(
arcsin t + π

2

)
.

Proof. This is a special case of Theorem 2 for [a, b] = [−1, 1] , x =
−√

2/2 and

w (t) =
1

π
√

1 − t2
, t ∈ (−1, 1) .

�
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Theorem 7. Let I be an open interval in R, [−1, 1] ⊂ I, and let f :
I → R be such that for some n ≥ 2 the derivative f (n−1) is absolutely
continuous and f (n) is an α-L-Hölder function. Then

∣∣∣∣∣
∫ 1

−1

1
π
√

1 − t2
f (t) dt − 1

2

[
f

(
−
√

2
2

)
+ f

(√
2

2

)]
− tn

(
−
√

2
2

)∣∣∣∣∣

≤ B (α + 1, n − 1)
(α + n) (n − 2)!

L

[(
1 −

√
2

2

)α+n

+

(
1 +

√
2

2

)α+n]
,

where tn is defined as in Section 2 and W (t) = 1
π

(
arcsin t + π

2

)
.

Proof. This is a special case of Theorem 2 for [a, b] = [−1, 1] , x =
−√

2/2 and

w (t) =
1

π
√

1 − t2
, t ∈ (−1, 1) .
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CERTAIN BINARY RELATIONS AND OPERATIONS

AND THEIR USE IN RESEARCH OF BICENTRIC

POLYGONS

MIRKO RADIĆ

Abstract. In the article we consider certain binary relations
and operations and their use in research of bicentric n-gons
where n ≥ 3 is an odd integer. The considered binary rela-
tions and operations are defined on the set whose elements are
integers 1, 2, . . . , n−1

2 which are relatively prime to n. We have
found that some properties concerning bicentric n-gons can be
a source or generator for many useful ideas and procedures in
number theory and theory of groups. So using partition and
ordering concerning bicentric n-gons, where n is an odd integer
we have found some interesting relations concerning number
theory.

2010 Mathematics Subject Classification. 51E12, 05A18, 06A05.
Key words and phrases. binary relation, bicentric polygon, binary
operations, partition, ordering.

1. Introduction

The article is closely connected with the articles [5] and [6]. The
most part of the article deals with some kinds of binary relations and
operations closely connected with bicentric n-gons where n ≥ 3 is an
odd integer. Some of the obtained results can be interesting not only
in theory of bicentric n-gons but also in number theory and theory of
groups.

First we state some results from [6] which will be used in the following.
Let n ≥ 3 is an odd integer and let S denotes the set given by

(1.1) S =

{
x : x ∈

{
1, 2, . . . ,

n− 1

2

}
and GCD(x, n) = 1

}
.

Definition A. Let f : S → S be function defined by

(1.2) f(x) =

{
2x if 2x ∈ S
n− 2x if 2x ̸∈ S
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