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Valence connectivity in molecular graphs is described by 10-tuples �ij where �ij denotes the

number of edges connecting vertices of valences i and j. A shorter description is provided by

4-tuples containing the number of vertices and values of Randi}, Zagreb and modified Zagreb

indices. Surprisingly, these two descriptions are in one-to-one correspondence for all acyclic

molecules of practical interest, i.e., for all those having no more than 100 atoms. This result

was achieved by developing an efficient algorithm that is linear in the number of 10-tuples.
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INTRODUCTION

One of the central notions in chemistry is that of the va-

lence of atoms. Atoms of various valences form chemi-

cal bonds. Let ni denote the number of vertices of degree

i and let �ij denote the number of bonds whose terminal

atoms are of valences i and j. The collection of all �ijs is

termed valence connectivity.1–4

Molecules are conveniently represented by molecu-

lar graphs where hydrogen atoms are usually omitted.5–6

In most molecules, like those of organic chemistry va-

lences are at most 4, and accordingly the valence

connectivities are conveniently represented by 10-tuples

of the form � = (�11, �12, �13, �14, �22, �23, �24, �33, �34,

�44). Of course, �11 � 0 is only rarely encountered, like

e.g. in a graph depicting ethylene. Graph theoretical

terms are parallel to the chemical ones, and instead of

molecules, atoms, bonds, valences, etc., one speaks re-

spectively of graphs, vertices, edges, vertex degrees, etc.

When the topology of bonding in molecules is con-

tracted to a number, one speaks of a molecular descrip-

tor or topological index.7 Thus far, hundreds of topologi-

cal indices have been defined and many of them have

found applications as means to model chemical, pharma-

ceutical and other properties of molecules.8–9

Here, we consider three indices, which are fully de-

fined by knowing only the valence connectivity in a

graph G. These are the Randi} index, �:10

� �
� �

c c
m

� �
�� � �

�G
Gij

i j1 4i j

, (1)

the Zagreb index, M2:
12
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� � �
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(2)

and the modified Zagreb index *M2:
12–13

� �
� �

* *M M
i j

2 2 G
G

� �
�� � �

�
mij

i j1 4

. (3)

The number of vertices, n, and the number of edges in

G, l, are simply related to �ijs as follows:

� � � �n n
i ji j

ij� � �
	



�
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� � �
�G G
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m (4)

� � � �l l ij

i j

� �
� � �
�G Gm

1 4

(5)

Besides, 10-tuples of �ijs, 4-tuples (n, �, M2, *M2) repre-

sent another way of describing the topology of molecular

graphs. Obviously, the knowledge of 10-tuples uniquely

determines 4-tuples, but the opposite does not hold. From

here on, we restrict ourselves to acyclic molecules, i.e.,

to trees, where l = n – 1 holds.

The main objective of this paper is to determine when

4-tuples uniquely determine 10-tuples in such graphs. In

order to do so, an algorithm is developed here, which for

fixed n checks whether there is one-to-one correspon-

dence between 4- and 10- tuples. Trivial checking would

require testing of all possible pairs of 10-tuples, i.e., it is

quadratic in the number of 10-tuples. The algorithm pre-

sented here (after all 10-tuples of mijs are generated) is

linear in that the number and the execution of this algo-

rithm take about three hours on a PC with Celeron 800

processor.

RESULTS

First, we start with a few auxiliary results. Using the the-

ory of the finite extensions of the field of rational num-

bers or simple, but tedious elementary calculation, it can

be shown that:

Lemma 1. – Let a, b, c, d � Q. If a + b 2 + c 3 + d 6

= 0, then a = b = c = d = 0, where Q is the set of ratio-

nal numbers.

For each molecular graph, denote:

a(G) = �11 (G) + 6�14 (G) + 6�22 (G) + 4�33 (G) +

3�44 (G)

b(G) = 2�12 (G) + �24 (G)

c(G) = �13 (G) + �34 (G)

d(G) = �23 (G).

From the last Lemma, it directly follows that:

Lemma 2. – Let G be any molecular graph. Then the

numbers a(G), b(G), c(G) and d(G) are uniquely deter-

mined by �(G).

Let us prove:

Lemma 3. – Let G1 and G2 be two molecular graphs such

that:

� � � �� � � � � �� �
� � � �� � � � � �� �

c cG G and G G and

G G and G G

1 2 1 2

1 2 1 2

� �

� �

	 M M

M M n n

2 2

2 2 2 2* *


�
�

�



�
�
�

� � � �� �m mG G1 2� , (6)

then

1) �11 (G1) = 0 and �11 (G2) = 0

2) n2 (G1) � 0 and n2 (G2) � 0

3) n3 (G1) � 0 and n3 (G2) � 0.

Proof. – Note that for each molecular graph G with at

least three vertices, we have �11 (G) = 0 and that single

graph with 2 vertices is a path of length one, and hence

indeed 1) holds.

Now, let us prove 2). Suppose, in contrast, that there

are graphs G1 and G2 that satisfy (6), but do not satisfy

relation 2). Denote a = a (G1) = a (G2), b = b (G1) = b

(G2) and analogously for c, d, M2, *M2 and n. Without

loss of generality, we may assume that n2 (G1) = 0. It fol-

lows that �12 (G1) = �22 (G1) = �23 (G1) = �24 (G1), hence

b = d = 0, and therefore �12 (G2) = �24 (G2) = �23 (G2) =

0. Note that for each i � �1, 2�, we have:

6�14 (Gi) + 6�22 (Gi) + 4�33 (Gi) + 3�44 (Gi) = a

��13 (Gi) + �34 (Gi) = c

� � � � � �
� � � � � �� �
� �

m m m

m m m

m m

13 14 22

13 33 34

14 3

2 2

2 3

G G G

G G G

G

i i i

i i i

i

� � �

� � �

�

/

/

� � � �� �4 442 4G Gi i

n
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�
�
�
�
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�
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� � � � � � � �
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� � *M2

i.e., a system of 6 equations in 6 unknowns �13 (Gi),

�14 (Gi), �22 (Gi), �33 (Gi), �34 (Gi) and �44 (Gi). Note

that the matrix of the system has a rank equal to 6;

hence, there is a unique solution to these equations, and

this is in contradiction with � (G1) � � (G2).

Let us prove 3). Suppose, in contrast, that there are

graphs G1 and G2 that satisfy (6), but do not satisfy rela-

tion 3). Denote a,b,c,d,M2,*M2 and n as above. Without

loss of generality, we may assume that n3 (G1) = 0. It fol-

lows that �13 (G1) = �23 (G1) = �33 (G1) = �34 (G1); hence

c = d = 0, and therefore �13 (G2) = �23 (G2) = �34 (G2) =

0. Note that for each i � �1, 2�, we have:

6�14 (Gi) + 6�22 (Gi) + 4�33 (Gi) + 3�44 (Gi) = a

��12 (Gi) + �24 (Gi) = b
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i.e., the system of 6 equations in 6 unknowns: �12 (Gi),

�14 (Gi), �22 (Gi), �24 (Gi), �33 (Gi) and �34 (Gi). Note that

the matrix of the system has a rank equal to 6; hence,

there is a unique solution to this equations, and this is in

contradiction with � (G1) � � (G2).

In our paper,2 it is shown that:

Theorem 4. – Let m = (m11, m12, m13, m14, m22, m23, m24,

m33, m34, m44,) � N0

10 where N0

10 is the set of 10-tuples

of nonnegative integers. Then, there is an acyclic molec-

ular graph G with at least two vertices such that � (G) =

m if and only if one of the following statements holds:

1) m = (1,0,0,0,0,0,0,0,0,0)

2) m = (0,2,0,0,m22,0,0,0,0)

3) (m11 = 0) and (n2,n3,n4 � N0) and (q � 0) and

(m33 + m34 + m44 + q = n3 + n4 – 1) and

�(m12 + m23 + m24 � �� or (m22 � ��� and

one of the following holds:

3.1) (m44 � n4 – 1) and (m33 � n3 – 1) and

(q + m33 – m24 � n3 – 1) and

(q + m44 – m23 � n4 – 1)

3.2) n3 = 0

3.3) n4 = 0

where

n2 = (m12 + 2m22 + m23 + m24)/2

n3 = (m13 + m23 + 2m33 + m34)/3

n4 = (m14 + m24 + m34 + 2m44)/4

q = (m23 + m24 – m12)/2

Now, it readily follows that:

Lemma 5. – Let m = (m11, m12, m13, m14, m22, m23, m24,

m33, m34, m44,) � N0

10 . There are acyclic molecular

graphs G1 and G2, such that � (G1) = m, � (G1) = � (G2),

M2 (G1) = M2 (G2), *M2 (G1) = *M2 (G2), � (G1) =

� (G2) and � (G1) � � (G2) only if (m11 = 0) and (n2,n3 �
N ) and (n4 � N0) and (q � 0) and (m33 + m34 + m44 + q =

n3 + n4 – 1) and (m12 + m23 + m24 � �� and (m33 � n3 – 1)

and (q + m33 – m24 � n3 – 1) and one of the following

holds:

1) (m44 � n4 – 1) and (q + m44 – m23 � n4 – 1)

2) n4 = 0

where

n2 = (m12 + 2m22 + m23 + m24)/2

n3 = (m13 + m23 + 2m33 + m34)/3

n4 = (m14 + m24 + m34 + 2m44)/4

q = (m23 + m24 – m12)/2

Theorem 6. – Let A, B, C, D, n, M2, *M2 � N0. There

are acyclic molecular graphs G1 and G2, such that:

a(G1) = a(G2) = A; b(G1) = b(G2) = B;

c(G1) = c(G2) = C; d(G1) = d(G2) = D;

�(G1) = �(G2) = n; M2(G1) = M2(G2) = M2;

*M2(G1) = *M2(G2) = *M2; �(G1) � �(G2)

if and only if
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and

e � Z,

where

Q = 144 � *M2

� �
e

A B C M n Q
�

� � � � � �6 6 6 6 6

12

2

and �(R) is 1 if relation R holds and 0 otherwise. card

denotes the cardinality of the set and Z stands for the set

of integers.

Proof. From the previous results, it follows that graphs

G1 and G2 with the required properties exist if and only

if there are:

mi =

(m11,i, m12,i, m13,i, m14,i, m22,i, m23,i, m24,i, m33,i, m34,i, m44,i)

� N0

10 , i = 1, 2

such that:

i,1) muv,i �Z, for each 1 � u � v � 4

i,2) muv,i � 0 for each 1 � u � v � 4, m11,i = 0

i,3) n2,i �Z

i,4) n3,i �Z

i,5) n4,i �Z

i,6) qi �Z

i,7) qi � 0

i,8) A = 6m14,i + 6m22,i + 4m33,i + 3m44,i

i,9) B = 2m12,i + m14,i

i,10) C = 2m13,i + m34,i

i,11) D = m23,i

i,12) m33,i + m34,i + q = n3,i + n4,i – 1

i,13) n1,i + n2,i + n3,i + n4,i = n

i,14) 2m12,i + 3m13,i + 4m14,i + 4m22,i + 6m23,i + 8m24,i +

9m33,i + 12m34,i + 16m44,i = M2

i,15)
1

2
m12,i +

1

3
m13,i +

1

4
m14,i +

1

4
m22,i +

1

6
m23,i +

1

8
m24,i +

1

9
m33,i +

1

12
m34,i +

1

16
m44,i = *M2

i,16) m12,i + m23,i + m24,i > 0

i,17) m33,i � n3,i – 1

i,18) qi + m33,i – m24,i � n3,i – 1

i,19) n4,i = 0 or (m44,i � n4,i – 1 and q + m44,i – m23,i �
n4,i – 1)

20) m1 � m2
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where

n1,i = m12,i + m13,i + m14,i

n2,i = (m12,i + 2m22,i + m23,i + m24,i) / 2

n3,i = (m13,i + m23,i + 2m33,i + m34,i) / 3

n4,i = (m14,i + m24,i + m34,i + 2m44,i) / 4

q1 = (m23,i + m24,i – m12,i) / 2 .

Note that relations i,3) and i,8) – i,15) are equivalent to:

i,1*) m11,i = 0

i,2*) m12,i = (–24 – 10A – 42B – 36C – 48D + 24n +

Q) / 12 – m44,i / 4

i,3*) m13,i = (–348 – 80A –342B – 264C – 396D –

12M2 + 348n + 5Q) / 24 + 13m44,i / 8

i,4*) m14,i = (348 + 56A + 234B + 180C + 276D +

12M2 – 204n – 5Q) / 36 – 13m44,i / 12

i,5*) m22,i = (456 + 131A + 558B + 450C + 636D +

12M2 – 528n – 8Q) / 18 – 7m44,i / 6

i,6*) m23,i = D

i,7*) m24,i = (24 + 10A + 48B +36C + 48D – 24n –

Q) / 6 + m44,i / 2

i,8*) m33,i = (–420 – 104A – 450B – 360C – 516D –

12M2 + 420n + 7Q) / 8 + 21m44,i / 8

i,9*) m34,i = (348 + 80A + 342B + 276C + 396D +

12M2 – 348n – 5Q) – 13m44,i / 4

Note that m13,i �N , hence:

–348 – 80A – 342B – 264C – 396D – 12M2 + 348n +

5Q ! 0 (mod 3)

or equivalently,

A ! Q (mod 3) .

Note also that 33n3 + 87n4 �Z , hence:

–270 – 137A – 582B – 474C – 672D + 6M2 + 618n +

5Q ! 0 (mod 4)

or equivalently:

A ! 2 + 2B + 2C + 2M2 + 2n + Q (mod 4) .

We can rewrite (8)–(9) as:

4A ! 4Q (mod 12)

3A ! 6 + 6B + 6C + 6M2 + 6n + 3Q (mod 12)

It follows that:

A ! 6 + 6B + 6C + 6M2 + 6n + Q (mod 12)

therefore e �Z. Substituting this in relations i,1*) – i,8*),

we get:

n3,i =
1

24
(1740 + 1906B + 1744C + 908D + 2216e +

1124M2 + 380n + 173Q – 25m44,i) .

This implies that:

m44,i ! 12 + 10B + 16C + 20D + 8e + 20M2 + 20n +

5Q (mod 24) .

Hence, there are numbers such that:

m44,i ! 12 + 10B + 16C + 20D + 8e + 20M2 + 20n +

5Q + 24xi .

It readily follows that relations i,1*) – i,8*) can be

replaced by:

i,1#) m11,i = 0

i,2#) m12,i = –10 – 11B – 12C – 9D –12e – 10M2 – 8n –

2Q – 6xi

i,3#) m13,i = –15 – 18B – 5C + 16D –27e + 12M2 +

27n + 5Q + 39xi

i,4#) m14,i = 5B – 3C – 2(–3 + 7D – 5e + 6M2 + 9n +

2Q + 13xi)

i,5#) m22,i = 55 + 63B + 50C + 12D + 78e + 21M2 – 9n

+ Q – 28xi

i,6#) m23,i = D

i,7#) m24,i = 23B + 2(10 + 12C + 9D + 12e + 10M2 +

8n + 2Q + 6xi)

i,8#) m33,i = –99 – 108B – 81C – 12D – 135e – 27M2 +

27n + Q + 63xi

i,9#) m34,i = 36B + 11C –2(–15 + 16D – 27e + 12M2 +

27n + 5Q +39xi)

i,10#)m44,i = 12 + 10B + 16C + 20D + 8e + 20M2 +

20n + 5Q + 24xi

i,11#) xi �Z

where

xi =
1

24
(m44,i – (12 + 10B + 16C + 20D + 8e +

20M2 + 20n + 5Q)) .

It is obvious that relation i,1) is satisfied and since

the following holds:

n2,i = 60 + 69B + 56C + 17D + 84e + 26M2 – 5n +

2Q – 25xi

n3,i = –61 – 66B – 52C – 13D – 81e – 22M2 + 9n –

Q + 29xi

n4,i = 20 + 21B + 16C + 3D + 26e + 6M2 – 4n – 11xi

qi = 30 + 34B + 36C + 28D + 36e + 30M2 + 24n +

6Q + 18xi
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relations i,3) – i,6) are satisfied, too. Relations i,2), i,7)

and i,16) – i,18) are equivalent to i,12#):

max

/ / / / /
/ / /

5 13 6 13 5 39 16 39 9 13
4 13 9 13 7 12

� � � � �
� �
B C D e

M n Q 56

5 3 23 12 2 3 2 2
5 3 4 3 5 6

11 7 12

2

,

/ / /
/ / / ,

/

� � � � � �
� �

�

B C D e

M n Q

B / / / /
/ / / ,

/ /

7 9 7 4 21 15 7
3 7 3 7 131 252

1 2 5 12

2

� � � �
� �

� �

C D e

M n Q

B � � � �
� �

� � � �

2 3 5 6 3
5 6 5 6 7 24

5 3 17 9 2 14

2

C D e

M n Q

B C D

/ / /
/ / / ,

/ / / 9 2 5
3 4 3 3

3 2 2 2 5 3 2 5 3

4 3

2

2

� �
� �

� � � � � � �
�

e

M n Q

B C D e M

n

/ / / ,

/ / /

/ 5 6Q

x i

/

�

�

�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

 

�
�
�
�
�
�
�

�

�

� � � � � � �
�

�

min

/ / / /

/ / ,

/ /

5 3 11 6 2 3 2 2 5 3

4 3 5 6

3 13 5

2B C D e M

n Q

B 26 3 26 7 13 5 13
6 13 9 13 3 52

55 28 9 4

2

� � � �
� �

�

C D e

M n Q

B

/ / /
/ / / ,

/ / � � � �
� �

� �

25 14 3 7 39 14
3 4 9 28 41 56

5 13 6 13

2

C D e

M n Q

B

/ / /
/ / / ,

/ / 11 78 16 39 9 13

4 13 9 13 7 156

37 34 21

2

C D e

M n Q

B

/ / /

/ / / ,

/ /

� � �
� �

� 17 29 34 34
27 17 5 34 9 17 127 136

27 40

2

� � �
� � �

�

C D

e M n Q

/ /
/ / / / ,

/ 31 40 17 40 11 40
21 20 8 13 20 143 1602

B C D

e M n Q

/ / /
/ / / /

� � �
� � �

�

�

�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

 

�
�
�
�
�
�
�

Note that statements (connected by or) in i,19) are

mutually exclusive, i.e., i,19) is equivalent to:

i,13#) exactly one of the following statements is true:

i,13#a) x = (20 + 21B + 16C +3D + 26e + 6M2 – 4n) / 11

i,13#b) x � min

1 5 11 35 17 35
18 35 2 5 24 35 5

23 53 2

2

/ / /
/ / / / ,

/

� � �
� � �

� �

B D

e M n Q

3 53 36 53
44 53 18 53 44 53

48 53 13 53
2

B C

D e M

n Q

/ /
/ / /

/ /

� �
� � �
�

�

�

�
��

�

�
�
�

�

�

�
��

 

�
�
�

Note that all numbers m11,i,..., m44,i are uniquely de-

termined by the value of xi, and hence relation 20) is

equivalent to:

i,14#) xi � xj

We can conclude that there are graphs G1 and G2

with the required properties if and only if there are inte-

gers x1 and x2, such that i,12#)– i,14#) hold. The existence

of these numbers is equivalent to:

card(S) � 2

where

S =

x

B C D
e M n

�

� � � �
� � �

Z:max

/ / / /
/ / /

5 13 6 13 5 39 16 39
9 13 4 13 9 132 7 156

5 3 23 12 2 3 2 2
5 3 4 3 5 6

11 7

2

Q

B C D e
M n Q

/ ,

/ / /
/ / / ,

/

� � � � � �
� �

� � � �
� � �

� �

12 7 9 7 4 21
15 7 3 7 3 7 131 252

1 2 5

2

B C D
e M n Q

/ / /
/ / / / ,

/ B C D
e M n Q

B C

/ / /
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/ /

12 2 3 5 6
3 5 6 5 6 7 24

5 3 17 9 2

2

� � �
� � �

� � � �14 9 2
5 3 4 3 3

3 2 2 2 5 3 2
5 3 4

2

2

D e
M n Q

B C D e
M

/
/ / / ,

/ /
/

� �
� �

� � � � � �
� n Q

x

/ /

min

3 5 6

5

�

�

�

�
�
�
�
�
�
�

�

�
�
�
�
�
�
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�
�
�
�
�

�

�
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/ / / ,
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3 11 6 2 3 2 2
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2

� � � � �
� �

� �

B C D e
M n Q

B C 26 7 13
5 13 6 13 9 13 3 52

55 28 9 4 25 1

2

� �
� � �

� �

D
e M n Q

B C
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/ / / / ,

/ / / 4 3 7
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5 13 6 13 11 78

2

� �
� � �

� �

D
e M n Q

B C

/
/ / / / ,

/ / / � �
� � �

� �

16 39
9 13 4 13 9 13 7 156

37 34 21 17 29

2

D
e M n Q

B C

/
/ / / / ,

/ / / /
/ / / / ,

/ /

34 34
27 17 5 34 9 17 127 136

27 40 31 40

2

� �
� � �

�

D
e M n Q

B � � �
� � �

�

�

�
�
�
�
�
�

17 40 11 40
21 20 8 13 20 143 1602
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�

�

�
�
�
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(x B C D e
1

11
20 21 16 3 26 � �

�
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�

6 4

1 5 11 35 17 35 18 35
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2

2

M n

x

B D e
M n

)
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/ / / /
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From here, the theorem readily follows.

ALGORITHM

Now we utilize Theorem 6 to check whether the follow-

ing holds for acyclic graphs:

( ( ) ( )) ( ( ) ( ))

(* ( ) * ( )

c cG G and G G and

G G

2 2

2 2

1 2 1 2

1 2

� �

�

M M

M M ) ( ( ) ( ))and G Gn n n� �

	



��

�


��

	



��

�


��

1 2

�

(�(G1)) = �(G2))

i.e., for which values of n 4-tuples uniquely determine

10-tuples. An algorithm is given in Ref. 2 that for given

n generates the set Gn of all 10-tuples m = (m11, m12, m13,

m14, m22, m23, m24, m33, m34, m44), which are 10-tuples

(i.e., �(G) = m) of acyclic graphs with n vertices. We use

this algorithm in the first line of the pseudocode of the

algorithm developed here.

Let us denote the left hand side of inequality (7) by

T(A, B, C, D, n, M2, *M2). Now, we demonstrate our al-

gorithm:
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1) Input n

2) For each (m11, m12, m13, m14, m22, m23, m24, m33,

m34, m44) �(n

2.1) A = m11 + 6m14 + 6m22 + 4m33 + 3m44

2.2) B = 2m12 + m24

2.3) C = 2m13 + m34

2.4) D = m23

2.5) M2 = m11 + 2m12 + 3m13 + 4m14 + 4m22 + 6m23 +

8m24 + 9m33 + 12m34 + 16m44

2.6) *M2 = m11 +
1

2
m12 +

1

3
m13 +

1

4
m14 +

1

4
m22 +

1

6
m23 +

1

8
m24 +

1

9
m33 +

1

12
m34 +

1

16
m44

2.7) Calculate T(A, B, C, D, n, M2, *M2)

2.8) If T(A, B, C, D, n, M2, *M2) < 1 then Error

2.9) If T(A, B, C, D, n, M2, *M2) � 2

2.9.1) Output: There are graphs G1 and G2 with n verti-

ces such that

( ( ) ( )) ( ( ) ( ))

(* ( ) * ( )

c cG G and G G and

G G

2 2

2 2

1 2 1 2

1 2

� �

�

M M

M M ) ( ( ) ( ))and G Gn n n� �

	



��

�


��

	



��

�


��

1 2

and

(�(G1)) � �(G2))

2.9.2) Output A, B, C, D, M2, *M2 and exit

3) Output:

( ( ) ( )) ( ( ) ( ))

(* ( ) * ( )

c cG G and G G and

G G

2 2

2 2

1 2 1 2

1 2

� �

�

M M

M M ) ( ( ) ( ))and G Gn n n� �

	



��

�


��

	



��

�


��

1 2

�

(�(G1)) = �(G2))

Note that line 2.8) does not solve the required prob-

lem, but it is a useful control, which verifies that the al-

gorithm works correctly.

APPLICATIONS

The number of 10-tuples grows rapidly with n. There-

fore, we have tested n from 3 up to 100 and have found

that for all these values 4-tuples uniquely determine

10-tuples of acyclic graphs. The procedure could be con-

tinued for higher values of n, but for some of these val-

ues 4-tuples cannot determine uniquely 10-tuples. That

it is so shows the following example of two graphs G1

and G2 with n = n(G1) = n(G2) = 241:

a(G1) = a(G2) = 684; b(G1) = b(G2) = 12;

c(G1) = c(G2) = 150; d(G1) = d(G2) = 6;

*M2(G1) = *M2(G2) = 7344/144;

M2(G1) = M2(G2) = 1548;

�(G1) = (0, 6, 36, 78, 36, 6, 0, 0, 78, 0) �
�(G2) = (0, 0, 75, 52, 8, 6, 12, 63, 0, 24).

We represent these two graphs by the following fig-

ures:

There may be some lower values of n where such a

situation is encounteres, but we leave it as an open prob-

lem.

CONCLUSIONS

Here, we consider two kinds of objects able to model va-

lence connectivities: 10-tuples and 4-tuples containing

the Randi}, Zagreb, modified Zagreb indices and the num-

ber of vertices. A question is raised here whether there is

one-to-one correspondence among 4- and 10-tuples for

acyclic molecular graphs with a fixed number of verti-

ces, and an algorithm is developed here which is able to

answer this question. The algorithm is linear in the num-

ber of 10-tuples. The exhaustive computations have

shown that the above one-to-one correspondence holds

at least for all acyclic graphs with up to 100 vertices.
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SA@ETAK

Odnos susjednosti valencija i Randi}evoga, Zagreba~koga i modificiranoga Zagreba~koga indeksa:
Linearni algoritam za provjeru diskriminativnih svojstava indeksa u acikli~kim grafovima

Damir Vuki~evi} i Ante Graovac

Susjednost valencija u molekularnim grafovima opisana je desetorkama �ij gdje �ij ozna~ava broj bridova

koji povezuju ~vorove valencija i i j. Kra}i opis susjednosti daju ~etvorke ~iji su elementi broj vrhova u grafu i

vrijednosti Randi}evoga, Zagreba~koga i modificiranoga Zagreba~koga indeksa. Iznena|uje da su ova dva

opisa u obostrano jednozna~noj korespondenciji za sve acikli~ke molekule od prakti~nog interesa, tj. za sve one

koje sadr`e najvi{e do 100 atoma. Ovaj rezultat je dobiven primjenom ovdje razvijenoga i opisanoga algoritma

koji je linearan u broju desetorki �ij.

508 D. VUKI^EVI] AND A. GRAOVAC

Croat. Chem. Acta 77 (3) 501¿508 (2004)


