Valence Connectivity versus Randić, Zagreb and Modified Zagreb Index: A Linear Algorithm to Check Discriminative Properties of Indices in Acyclic Molecular Graphs

Damir Vukičevića,* and Ante Graovac ${ }^{\text {b,c }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Science, University of Split, Nikole Tesle 12, HR-21000 Split, Croatia
${ }^{\mathrm{b}}$ Department of Chemistry, Faculty of Science, University of Split, Nikole Tesle 12, HR-21000 Split, Croatia
${ }^{\text {c }}$ Ruđer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia
RECEIVED JANUARY 23, 2004; REVISED JULY 5, 2004; ACCEPTED JULY 22, 2004

Abstract

Valence connectivity in molecular graphs is described by 10 -tuples $\mu_{i j}$ where $\mu_{i j}$ denotes the number of edges connecting vertices of valences i and j. A shorter description is provided by

Key words valence connectivity acyclic molecular graphs topological indices

4-tuples containing the number of vertices and values of Randić, Zagreb and modified Zagreb indices. Surprisingly, these two descriptions are in one-to-one correspondence for all acyclic molecules of practical interest, i.e., for all those having no more than 100 atoms. This result was achieved by developing an efficient algorithm that is linear in the number of 10 -tuples.

INTRODUCTION

One of the central notions in chemistry is that of the valence of atoms. Atoms of various valences form chemical bonds. Let n_{i} denote the number of vertices of degree i and let $\mu_{i j}$ denote the number of bonds whose terminal atoms are of valences i and j. The collection of all $\mu_{i j} \mathrm{~s}$ is termed valence connectivity. ${ }^{1-4}$

Molecules are conveniently represented by molecular graphs where hydrogen atoms are usually omitted. ${ }^{5-6}$ In most molecules, like those of organic chemistry valences are at most 4 , and accordingly the valence connectivities are conveniently represented by 10 -tuples of the form $\mu=\left(\mu_{11}, \mu_{12}, \mu_{13}, \mu_{14}, \mu_{22}, \mu_{23}, \mu_{24}, \mu_{33}, \mu_{34}\right.$, μ_{44}). Of course, $\mu_{11} \neq 0$ is only rarely encountered, like e.g. in a graph depicting ethylene. Graph theoretical terms are parallel to the chemical ones, and instead of
molecules, atoms, bonds, valences, etc., one speaks respectively of graphs, vertices, edges, vertex degrees, etc.

When the topology of bonding in molecules is contracted to a number, one speaks of a molecular descriptor or topological index. ${ }^{7}$ Thus far, hundreds of topological indices have been defined and many of them have found applications as means to model chemical, pharmaceutical and other properties of molecules. ${ }^{8-9}$

Here, we consider three indices, which are fully defined by knowing only the valence connectivity in a graph G. These are the Randic index, $\chi:{ }^{10}$

$$
\begin{equation*}
\chi=\chi(\mathrm{G})=\sum_{1 \leq i \leq j \leq 4} \frac{\mu_{i j}(\mathrm{G})}{\sqrt{i \cdot j}}, \tag{1}
\end{equation*}
$$

the Zagreb index, $M_{2}:^{12}$

[^0]\[

$$
\begin{equation*}
M_{2}=M_{2}(\mathrm{G})=\sum_{1 \leq i \leq j \leq 4} i \cdot j \cdot \mu_{i j}(\mathrm{G}) \tag{2}
\end{equation*}
$$

\]

and the modified Zagreb index $* M_{2}:^{12-13}$

$$
\begin{equation*}
* M_{2}=* M_{2}(\mathrm{G})=\sum_{1 \leq i \leq j \leq 4} \frac{\mu_{i j}(\mathrm{G})}{i \cdot j} . \tag{3}
\end{equation*}
$$

The number of vertices, n, and the number of edges in G, l, are simply related to $\mu_{i j} \mathrm{~s}$ as follows:

$$
\begin{gather*}
n=n(\mathrm{G})=\sum_{1 \leq i \geq j \leq 4}\left(\frac{1}{i}+\frac{1}{j}\right) \cdot \mu_{i j}(\mathrm{G}) \tag{4}\\
l=l(\mathrm{G})=\sum_{1 \leq i \geq j \leq 4} \mu_{i j}(\mathrm{G}) \tag{5}
\end{gather*}
$$

Besides, 10-tuples of $\mu_{i j} \mathrm{~s}$, 4-tuples ($n, \chi, M_{2},{ }^{*} M_{2}$) represent another way of describing the topology of molecular graphs. Obviously, the knowledge of 10 -tuples uniquely determines 4-tuples, but the opposite does not hold. From here on, we restrict ourselves to acyclic molecules, i.e., to trees, where $l=n-1$ holds.

The main objective of this paper is to determine when 4 -tuples uniquely determine 10 -tuples in such graphs. In order to do so, an algorithm is developed here, which for fixed n checks whether there is one-to-one correspondence between 4 - and 10- tuples. Trivial checking would require testing of all possible pairs of 10 -tuples, i.e., it is quadratic in the number of 10 -tuples. The algorithm presented here (after all 10 -tuples of $m_{i j} \mathrm{~s}$ are generated) is linear in that the number and the execution of this algorithm take about three hours on a PC with Celeron 800 processor.

RESULTS

First, we start with a few auxiliary results. Using the theory of the finite extensions of the field of rational numbers or simple, but tedious elementary calculation, it can be shown that:

Lemma 1. - Let $a, b, c, d \in \mathrm{Q}$. If $a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}$ $=0$, then $a=b=c=d=0$, where Q is the set of rational numbers.

For each molecular graph, denote:
$a(\mathrm{G})=\mu_{11}(\mathrm{G})+6 \mu_{14}(\mathrm{G})+6 \mu_{22}(\mathrm{G})+4 \mu_{33}(\mathrm{G})+$ $3 \mu_{44}$ (G)
$b(\mathrm{G})=2 \mu_{12}(\mathrm{G})+\mu_{24}(\mathrm{G})$
$c(\mathrm{G})=\mu_{13}(\mathrm{G})+\mu_{34}(\mathrm{G})$
$d(\mathrm{G})=\mu_{23}(\mathrm{G})$.

From the last Lemma, it directly follows that:

Lemma 2. - Let G be any molecular graph. Then the numbers $a(\mathrm{G}), b(\mathrm{G}), c(\mathrm{G})$ and $d(\mathrm{G})$ are uniquely determined by $\chi(\mathrm{G})$.

Let us prove:
Lemma 3. - Let G_{1} and G_{2} be two molecular graphs such that:

$$
\begin{gather*}
\binom{\left(\chi\left(\mathrm{G}_{1}\right)=\chi\left(\mathrm{G}_{2}\right)\right) \text { and }\left(M_{2}\left(\mathrm{G}_{1}\right)=M_{2}\left(\mathrm{G}_{2}\right)\right) \text { and }}{\left(* M_{2}\left(\mathrm{G}_{1}\right)=* M_{2}\left(\mathrm{G}_{2}\right)\right) \text { and }\left(n_{2}\left(\mathrm{G}_{1}\right)=n_{2}\left(\mathrm{G}_{2}\right)\right)} \Rightarrow \\
\left(\mu\left(\mathrm{G}_{1}\right)=\mu\left(\mathrm{G}_{2}\right)\right), \tag{6}
\end{gather*}
$$

then

1) $\mu_{11}\left(\mathrm{G}_{1}\right)=0$ and $\mu_{11}\left(\mathrm{G}_{2}\right)=0$
2) $n_{2}\left(\mathrm{G}_{1}\right) \neq 0$ and $n_{2}\left(\mathrm{G}_{2}\right) \neq 0$
3) $n_{3}\left(\mathrm{G}_{1}\right) \neq 0$ and $n_{3}\left(\mathrm{G}_{2}\right) \neq 0$.

Proof. - Note that for each molecular graph G with at least three vertices, we have $\mu_{11}(\mathrm{G})=0$ and that single graph with 2 vertices is a path of length one, and hence indeed 1) holds.

Now, let us prove 2). Suppose, in contrast, that there are graphs G_{1} and G_{2} that satisfy (6), but do not satisfy relation 2). Denote $a=a\left(\mathrm{G}_{1}\right)=a\left(\mathrm{G}_{2}\right), b=b\left(\mathrm{G}_{1}\right)=b$ $\left(\mathrm{G}_{2}\right)$ and analogously for $c, d, M_{2}, * M_{2}$ and n. Without loss of generality, we may assume that $n_{2}\left(\mathrm{G}_{1}\right)=0$. It follows that $\mu_{12}\left(\mathrm{G}_{1}\right)=\mu_{22}\left(\mathrm{G}_{1}\right)=\mu_{23}\left(\mathrm{G}_{1}\right)=\mu_{24}\left(\mathrm{G}_{1}\right)$, hence $b=d=0$, and therefore $\mu_{12}\left(\mathrm{G}_{2}\right)=\mu_{24}\left(\mathrm{G}_{2}\right)=\mu_{23}\left(\mathrm{G}_{2}\right)=$ 0 . Note that for each $i \in\{1,2\}$, we have:
$6 \mu_{14}\left(\mathrm{G}_{i}\right)+6 \mu_{22}\left(\mathrm{G}_{i}\right)+4 \mu_{33}\left(\mathrm{G}_{i}\right)+3 \mu_{44}\left(\mathrm{G}_{i}\right)=a$
$2 \mu_{13}\left(\mathrm{G}_{i}\right)+\mu_{34}\left(\mathrm{G}_{i}\right)=c$
$\left(\begin{array}{l}\mu_{13}\left(\mathrm{G}_{i}\right)+\mu_{14}\left(\mathrm{G}_{i}\right)+2 \mu_{22}\left(\mathrm{G}_{i}\right) / 2+ \\ \left(\mu_{13}\left(\mathrm{G}_{i}\right)+2 \mu_{33}\left(\mathrm{G}_{i}\right)+\mu_{34}\left(\mathrm{G}_{i}\right)\right) / 3+ \\ \left(\mu_{14}\left(\mathrm{G}_{i}\right)+\mu_{34}\left(\mathrm{G}_{i}\right)+2 \mu_{44}\left(\mathrm{G}_{i}\right)\right) / 4\end{array}\right)=n$
$\mu_{13}\left(\mathrm{G}_{i}\right)+\mu_{14}\left(\mathrm{G}_{i}\right)+\mu_{22}\left(\mathrm{G}_{i}\right)+\mu_{33}\left(\mathrm{G}_{i}\right)+\mu_{34}\left(\mathrm{G}_{i}\right)+$
$\mu_{44}\left(\mathrm{G}_{i}\right)=n-1$
$3 \mu_{13}\left(\mathrm{G}_{i}\right)+4 \mu_{14}\left(\mathrm{G}_{i}\right)+4 \mu_{22}\left(\mathrm{G}_{i}\right)+9 \mu_{33}\left(\mathrm{G}_{i}\right)+$
$12 \mu_{34}\left(\mathrm{G}_{i}\right)+16 \mu_{44}\left(\mathrm{G}_{i}\right)=M_{2}$
$\frac{1}{3} \mu_{13}\left(\mathrm{G}_{i}\right)+\frac{1}{4} \mu_{14}\left(\mathrm{G}_{i}\right)+\frac{1}{4} \mu_{22}\left(\mathrm{G}_{i}\right)+\frac{1}{9} \mu_{33}\left(\mathrm{G}_{i}\right)+$
$\frac{1}{12} \mu_{34}\left(\mathrm{G}_{i}\right)+\frac{1}{16} \mu_{44}\left(\mathrm{G}_{i}\right)=* M_{2}$
i.e., a system of 6 equations in 6 unknowns $\mu_{13}\left(\mathrm{G}_{i}\right)$, $\mu_{14}\left(\mathrm{G}_{i}\right), \mu_{22}\left(\mathrm{G}_{i}\right), \mu_{33}\left(\mathrm{G}_{i}\right), \mu_{34}\left(\mathrm{G}_{i}\right)$ and $\mu_{44}\left(\mathrm{G}_{i}\right)$. Note that the matrix of the system has a rank equal to 6 ; hence, there is a unique solution to these equations, and this is in contradiction with $\mu\left(\mathrm{G}_{1}\right) \neq \mu\left(\mathrm{G}_{2}\right)$.

Let us prove 3). Suppose, in contrast, that there are graphs G_{1} and G_{2} that satisfy (6), but do not satisfy relation 3). Denote $a, b, c, d, M_{2},{ }^{*} M_{2}$ and n as above. Without loss of generality, we may assume that $n_{3}\left(\mathrm{G}_{1}\right)=0$. It follows that $\mu_{13}\left(\mathrm{G}_{1}\right)=\mu_{23}\left(\mathrm{G}_{1}\right)=\mu_{33}\left(\mathrm{G}_{1}\right)=\mu_{34}\left(\mathrm{G}_{1}\right)$; hence $c=d=0$, and therefore $\mu_{13}\left(\mathrm{G}_{2}\right)=\mu_{23}\left(\mathrm{G}_{2}\right)=\mu_{34}\left(\mathrm{G}_{2}\right)=$ 0 . Note that for each $i \in\{1,2\}$, we have:
$6 \mu_{14}\left(\mathrm{G}_{i}\right)+6 \mu_{22}\left(\mathrm{G}_{i}\right)+4 \mu_{33}\left(\mathrm{G}_{i}\right)+3 \mu_{44}\left(\mathrm{G}_{i}\right)=a$
$2 \mu_{12}\left(\mathrm{G}_{i}\right)+\mu_{24}\left(\mathrm{G}_{i}\right)=b$
$\left(\begin{array}{l}\mu_{12}\left(\mathrm{G}_{i}\right)+\mu_{14}\left(\mathrm{G}_{i}\right)+ \\ \left(\mu_{12}\left(\mathrm{G}_{i}\right)+2 \mu_{22}\left(\mathrm{G}_{i}\right)+\mu_{24}\left(\mathrm{G}_{i}\right)\right) / 2+ \\ 2 \mu_{33}\left(\mathrm{G}_{i}\right) / 3+\left(\mu_{14}\left(\mathrm{G}_{i}\right)+\mu_{24}\left(\mathrm{G}_{i}\right)+2 \mu_{44}\left(\mathrm{G}_{i}\right)\right) / 4\end{array}\right)=n$
$\mu_{12}\left(\mathrm{G}_{i}\right)+\mu_{14}\left(\mathrm{G}_{i}\right)+\mu_{22}\left(\mathrm{G}_{i}\right)+\mu_{24}\left(\mathrm{G}_{i}\right)+\mu_{33}\left(\mathrm{G}_{i}\right)+$
$\mu_{44}\left(\mathrm{G}_{i}\right)=n-1$
$2 \mu_{12}\left(\mathrm{G}_{i}\right)+4 \mu_{14}\left(\mathrm{G}_{i}\right)+4 \mu_{22}\left(\mathrm{G}_{i}\right)+8 \mu_{24}\left(\mathrm{G}_{i}\right)+$
$9 \mu_{33}\left(\mathrm{G}_{i}\right)+16 \mu_{44}\left(\mathrm{G}_{i}\right)=M_{2}$
$\frac{1}{2} \mu_{12}\left(\mathrm{G}_{i}\right)+\frac{1}{4} \mu_{14}\left(\mathrm{G}_{i}\right)+\frac{1}{4} \mu_{22}\left(\mathrm{G}_{i}\right)+\frac{1}{8} \mu_{24}\left(\mathrm{G}_{i}\right)+$
$\frac{1}{9} \mu_{33}\left(\mathrm{G}_{i}\right)+\frac{1}{16} \mu_{44}\left(\mathrm{G}_{i}\right)=* M_{2}$
i.e., the system of 6 equations in 6 unknowns: $\mu_{12}\left(\mathrm{G}_{i}\right)$, $\mu_{14}\left(\mathrm{G}_{i}\right), \mu_{22}\left(\mathrm{G}_{i}\right), \mu_{24}\left(\mathrm{G}_{i}\right), \mu_{33}\left(\mathrm{G}_{i}\right)$ and $\mu_{34}\left(\mathrm{G}_{i}\right)$. Note that the matrix of the system has a rank equal to 6 ; hence, there is a unique solution to this equations, and this is in contradiction with $\mu\left(\mathrm{G}_{1}\right) \neq \mu\left(\mathrm{G}_{2}\right)$.

In our paper, ${ }^{2}$ it is shown that:
Theorem 4. - Let $m=\left(m_{11}, m_{12}, m_{13}, m_{14}, m_{22}, m_{23}, m_{24}\right.$, $\left.m_{33}, m_{34}, m_{44},\right) \in \mathbb{N}_{0}^{10}$ where \mathbb{N}_{0}^{10} is the set of 10 -tuples of nonnegative integers. Then, there is an acyclic molec-
ular graph G with at least two vertices such that $\mu(\mathrm{G})=$ m if and only if one of the following statements holds:

1) $m=(1,0,0,0,0,0,0,0,0,0)$
2) $m=\left(0,2,0,0, m_{22}, 0,0,0,0\right)$
3) $\left(m_{11}=0\right)$ and $\left(n_{2}, n_{3}, n_{4} \in \mathbb{N}_{0}\right)$ and $(q \geq 0)$ and $\left(m_{33}+m_{34}+m_{44}+q=n_{3}+n_{4}-1\right)$ and $\left[\left(m_{12}+m_{23}+m_{24} \neq 0\right)\right.$ or $\left.\left(m_{22}=0\right)\right]$ and one of the following holds:
3.1) $\left(m_{44} \leq n_{4}-1\right)$ and ($m_{33} \leq n_{3}-1$) and $\left(q+m_{33}-m_{24} \leq n_{3}-1\right)$ and $\left(q+m_{44}-m_{23} \leq n_{4}-1\right)$
3.2) $n_{3}=0$
3.3) $n_{4}=0$
where
$n_{2}=\left(m_{12}+2 m_{22}+m_{23}+m_{24}\right) / 2$
$n_{3}=\left(m_{13}+m_{23}+2 m_{33}+m_{34}\right) / 3$
$n_{4}=\left(m_{14}+m_{24}+m_{34}+2 m_{44}\right) / 4$
$q=\left(m_{23}+m_{24}-m_{12}\right) / 2$
Now, it readily follows that:
Lemma 5. - Let $m=\left(m_{11}, m_{12}, m_{13}, m_{14}, m_{22}, m_{23}, m_{24}\right.$, m_{33}, m_{34}, m_{44}) $\in \mathbb{N}_{0}^{10}$. There are acyclic molecular graphs G_{1} and G_{2}, such that $\mu\left(\mathrm{G}_{1}\right)=m, v\left(\mathrm{G}_{1}\right)=v\left(\mathrm{G}_{2}\right)$, $M_{2}\left(\mathrm{G}_{1}\right)=M_{2}\left(\mathrm{G}_{2}\right), * M_{2}\left(\mathrm{G}_{1}\right)={ }^{*} M_{2}\left(\mathrm{G}_{2}\right), \chi\left(\mathrm{G}_{1}\right)=$ $\chi\left(\mathrm{G}_{2}\right)$ and $\mu\left(\mathrm{G}_{1}\right) \neq \mu\left(\mathrm{G}_{2}\right)$ only if $\left(m_{11}=0\right)$ and $\left(n_{2}, n_{3} \in\right.$ $N)$ and $\left(n_{4} \in \mathbb{N}_{0}\right)$ and $(q \geq 0)$ and $\left(m_{33}+m_{34}+m_{44}+q=\right.$ $\left.n_{3}+n_{4}-1\right)$ and $\left(m_{12}+m_{23}+m_{24}>0\right)$ and ($\left.m_{33} \leq n_{3}-1\right)$ and ($q+m_{33}-m_{24} \leq n_{3}-1$) and one of the following holds:
4) $\left(m_{44} \leq n_{4}-1\right)$ and $\left(q+m_{44}-m_{23} \leq n_{4}-1\right)$
5) $n_{4}=0$
where
$n_{2}=\left(m_{12}+2 m_{22}+m_{23}+m_{24}\right) / 2$
$n_{3}=\left(m_{13}+m_{23}+2 m_{33}+m_{34}\right) / 3$
$n_{4}=\left(m_{14}+m_{24}+m_{34}+2 m_{44}\right) / 4$
$q=\left(m_{23}+m_{24}-m_{12}\right) / 2$

Theorem 6. - Let $A, B, C, D, n, M_{2},{ }^{*} M_{2} \in \mathbb{N}_{0}$. There are acyclic molecular graphs G_{1} and G_{2}, such that:

$$
\begin{aligned}
& a\left(\mathrm{G}_{1}\right)=a\left(\mathrm{G}_{2}\right)=A ; b\left(\mathrm{G}_{1}\right)=b\left(\mathrm{G}_{2}\right)=B ; \\
& c\left(\mathrm{G}_{1}\right)=c\left(\mathrm{G}_{2}\right)=C ; d\left(\mathrm{G}_{1}\right)=d\left(\mathrm{G}_{2}\right)=D ; \\
& v\left(\mathrm{G}_{1}\right)=v\left(\mathrm{G}_{2}\right)=n ; M_{2}\left(\mathrm{G}_{1}\right)=M_{2}\left(\mathrm{G}_{2}\right)=M_{2} ; \\
& * M_{2}\left(\mathrm{G}_{1}\right)=* M_{2}\left(\mathrm{G}_{2}\right)=* M_{2} ; \mu\left(\mathrm{G}_{1}\right) \neq \mu\left(\mathrm{G}_{2}\right)
\end{aligned}
$$

if and only if

$$
\left\{x \in Z: \max \left\{\begin{array}{l}
5 / 13+6 B / 13+5 C / 39-16 D / 39+ \\
9 e / 13-4 M_{2} / 13-9 n / 13+7 Q / 156, \\
-5 / 3-23 B / 12-2 C-3 D / 2-2 e- \\
5 M_{2} / 3-4 n / 3-5 Q / 6, \\
11 / 7+12 B / 7+9 C / 7+4 D / 21+ \\
15 e / 7+3 M_{2} / 7-3 n / 7+131 Q / 252, \\
-1 / 2-5 B / 12-2 C / 3-5 D / 6- \\
e / 3-5 M_{2} / 6-5 n / 6-7 Q / 24, \\
-5 / 3-17 B / 9-2 C-14 D / 9-2 e- \\
5 M_{2} / 3-4 n / 3-Q / 3, \\
-3 / 2-2 B-2 C-5 D / 3-2 e- \\
5 M_{2} / 3-4 n / 3-5 Q / 6
\end{array}\right\} \leq x \leq\right.
$$

card
$\left.\begin{array}{l}\left\{\begin{array}{l}-5 / 3-11 B / 6-2 C-3 D / 2-2 e-5 M_{2} / 3- \\ 4 n / 3-5 Q / 6, \\ 3 / 13+5 B / 26-3 C / 26-7 D / 13+5 e / 13- \\ 6 M_{2} / 13-9 n / 13-3 Q / 52, \\ 55 / 28+9 B / 4+25 C / 14+3 D / 7+ \\ 39 e / 14+3 M_{2} / 4-9 n / 28+41 Q / 56, \\ 5 / 13+6 B / 13+11 C / 78-16 D / 39+ \\ 9 e / 13-4 M_{2} / 13-9 n / 13+7 Q / 156, \\ 37 / 34+21 B / 17+29 C / 34-D 34+ \\ 27 e / 17+5 M_{2} / 34-9 n / 17+127 Q / 136, \\ 27 / 40+31 B / 40+17 C / 40-11 D / 40+ \\ 21 e / 20-M_{2} / 8-13 n / 20+143 Q / 160, \\ 1 / 5+11 B / 35-17 D / 35+18 e / 35- \\ 2 M_{2} / 5-24 n / 35-Q / 5, \\ -23 / 53-23 B / 53-36 C / 53-44 D / 53- \\ 18 e / 53-44 M_{2} / 53-48 n / 53-13 Q / 53\end{array}\right\}\end{array}\right\}$
and

$$
e \in \mathbb{Z}
$$

where

$$
\begin{gathered}
Q=144 \cdot * M_{2} \\
e=\frac{A-\left(6+6 B+6 C+6 M_{2}+6 n+Q\right)}{12}
\end{gathered}
$$

and $\alpha(R)$ is 1 if relation R holds and 0 otherwise. card denotes the cardinality of the set and \mathbb{Z} stands for the set of integers.

Proof. From the previous results, it follows that graphs G_{1} and G_{2} with the required properties exist if and only if there are:

$$
\begin{aligned}
& m_{i}= \\
& \left(m_{11, i}, m_{12, i}, m_{13, i}, m_{14, i}, m_{22, i}, m_{23, i}, m_{24, i}, m_{33, i}, m_{34, i}, m_{44, i}\right) \\
& \in \mathbb{N}_{0}^{10}, i=1,2
\end{aligned}
$$

such that:
i,1) $\quad m_{u v, i} \in \mathbb{Z}$, for each $1 \leq u \leq v \leq 4$
i,2) $\quad m_{u v, i} \geq 0$ for each $1 \leq u \leq v \leq 4, m_{11, i}=0$
i,3) $\quad n_{2, i} \in \mathbb{Z}$
i,4) $\quad n_{3, i} \in \mathbb{Z}$
i,5) $\quad n_{4, i} \in \mathbb{Z}$
i,6) $\quad q_{i} \in \mathbb{Z}$
i,7) $\quad q_{i} \geq 0$
i,8) $\quad A=6 m_{14, i}+6 m_{22, i}+4 m_{33, i}+3 m_{44, i}$
i,9) $\quad B=2 m_{12, i}+m_{14, i}$
i,10) $C=2 m_{13, i}+m_{34, i}$
i,11) $D=m_{23, i}$
i,12) $m_{33, i}+m_{34, i}+q=n_{3, i}+n_{4, i}-1$
$\mathrm{i}, 13) n_{1, i}+n_{2, i}+n_{3, i}+n_{4, i}=n$
$\mathrm{i}, 14) \quad 2 m_{12, i}+3 m_{13, i}+4 m_{14, i}+4 m_{22, i}+6 m_{23, i}+8 m_{24, i}+$ $9 m_{33, i}+12 m_{34, i}+16 m_{44, i}=M_{2}$
i,15) $\frac{1}{2} m_{12, i}+\frac{1}{3} m_{13, i}+\frac{1}{4} m_{14, i}+\frac{1}{4} m_{22, i}+\frac{1}{6} m_{23, i}+$

$$
\frac{1}{8} m_{24, i}+\frac{1}{9} m_{33, i}+\frac{1}{12} m_{34, i}+\frac{1}{16} m_{44, i}=* M_{2}
$$

i,16) $m_{12, i}+m_{23, i}+m_{24, i}>0$
$\mathrm{i}, 17) m_{33, i} \leq n_{3, i}-1$
$\mathrm{i}, 18) q_{i}+m_{33, i}-m_{24, i} \leq n_{3, i}-1$
i,19) $n_{4, i}=0$ or $\left(m_{44, i} \leq n_{4, i}-1\right.$ and $q+m_{44, i}-m_{23, i} \leq$ $\left.n_{4, i}-1\right)$
20) $\quad m_{1} \neq m_{2}$
where
$n_{1, i}=m_{12, i}+m_{13, i}+m_{14, i}$
$n_{2, i}=\left(m_{12, i}+2 m_{22, i}+m_{23, i}+m_{24, i}\right) / 2$
$n_{3, i}=\left(m_{13, i}+m_{23, i}+2 m_{33, i}+m_{34, i}\right) / 3$
$n_{4, i}=\left(m_{14, i}+m_{24, i}+m_{34, i}+2 m_{44, i}\right) / 4$
$q_{1}=\left(m_{23, i}+m_{24, i}-m_{12, i}\right) / 2$.

Note that relations $i, 3$) and $i, 8)-i, 15$) are equivalent to:

$$
\begin{aligned}
& \left.\mathrm{i}, 1^{*}\right) m_{11, i}=0 \\
& \left.\mathrm{i}, 2^{*}\right) m_{12, i}=(-24-10 A-42 B-36 C-48 D+24 n+ \\
& \text { Q) / } 12-m_{44, i} / 4 \\
& \left.\mathrm{i}, 3^{*}\right) m_{13, i}=(-348-80 A-342 B-264 C-396 D- \\
& \left.12 M_{2}+348 n+5 Q\right) / 24+13 m_{44, i} / 8 \\
& \left.\mathrm{i}, 4^{*}\right) m_{14, i}=(348+56 A+234 B+180 C+276 D+ \\
& \left.12 M_{2}-204 n-5 Q\right) / 36-13 m_{44, i} / 12 \\
& \left.\mathrm{i}, 5^{*}\right) m_{22, i}=(456+131 A+558 B+450 C+636 D+ \\
& \left.12 M_{2}-528 n-8 Q\right) / 18-7 m_{44, i} / 6 \\
& \text { i,6*) } m_{23, i}=D \\
& \left.\mathrm{i}, 7^{*}\right) m_{24, i}=(24+10 A+48 B+36 C+48 D-24 n- \\
& \text { Q) } / 6+m_{44, i} / 2 \\
& \left.\mathrm{i}, 8^{*}\right) m_{33, i}=(-420-104 A-450 B-360 C-516 D- \\
& \left.12 M_{2}+420 n+7 Q\right) / 8+21 m_{44, i} / 8 \\
& \left.\mathrm{i}, 9^{*}\right) m_{34, i}=(348+80 A+342 B+276 C+396 D+ \\
& \left.12 M_{2}-348 n-5 Q\right)-13 m_{44, i} / 4
\end{aligned}
$$

Note that $m_{13, i} \in \mathbb{N}$, hence:

$$
\begin{array}{r}
-348-80 A-342 B-264 C-396 D-12 M_{2}+348 n+ \\
5 Q \equiv 0(\bmod 3)
\end{array}
$$

or equivalently,

$$
A \equiv Q(\bmod 3)
$$

Note also that $33 n_{3}+87 n_{4} \in \mathbb{Z}$, hence:

$$
\begin{array}{r}
-270-137 A-582 B-474 C-672 D+6 \mathrm{M}_{2}+618 n+ \\
5 Q \equiv 0(\bmod 4)
\end{array}
$$

or equivalently:

$$
A \equiv 2+2 B+2 C+2 M_{2}+2 n+Q(\bmod 4)
$$

We can rewrite (8)-(9) as:

$$
4 A \equiv 4 Q(\bmod 12)
$$

$3 A \equiv 6+6 B+6 C+6 M_{2}+6 n+3 Q(\bmod 12)$
It follows that:

$$
A \equiv 6+6 B+6 C+6 M_{2}+6 n+Q(\bmod 12)
$$

therefore $e \in \mathbb{Z}$. Substituting this in relations $\left.\left.\mathrm{i}, 1^{*}\right)-\mathrm{i}, 8^{*}\right)$, we get:

$$
\begin{array}{r}
n_{3, i}=\frac{1}{24}(1740+1906 B+1744 C+908 D+2216 e+ \\
\left.1124 M_{2}+380 n+173 Q-25 m_{44, i}\right)
\end{array}
$$

This implies that:

$$
\begin{array}{r}
m_{44, i} \equiv 12+10 B+16 C+20 D+8 e+20 M_{2}+20 n+ \\
5 Q(\bmod 24) .
\end{array}
$$

Hence, there are numbers such that:

$$
\begin{array}{r}
m_{44, i} \equiv 12+10 B+16 C+20 D+8 e+20 M_{2}+20 n+ \\
5 Q+24 x_{i} .
\end{array}
$$

It readily follows that relations $\left.\mathrm{i}, 1^{*}\right)-\mathrm{i}, 8^{*}$) can be replaced by:

$$
\begin{aligned}
& \left.\mathrm{i}, 1^{\#}\right) \quad m_{11, i}=0 \\
& \left.\mathrm{i}, 2^{\#}\right) m_{12, i}=-10-11 B-12 C-9 D-12 e-10 M_{2}-8 n- \\
& 2 Q-6 x_{i} \\
& \text { i,3\#) } m_{13, i}=-15-18 B-5 C+16 D-27 e+12 M_{2}+ \\
& 27 n+5 Q+39 x_{i} \\
& \left.\mathrm{i}, 4^{\#}\right) m_{14, i}=5 B-3 C-2\left(-3+7 D-5 e+6 M_{2}+9 n+\right. \\
& \left.2 Q+13 x_{i}\right) \\
& \left.\mathrm{i}, 5^{\#}\right) m_{22, i}=55+63 B+50 C+12 D+78 e+21 M_{2}-9 n \\
& +Q-28 x_{i} \\
& \text { i, } \left.\mathbf{6}^{\#}\right) \quad m_{23, i}=D \\
& \left.\mathrm{i}, 7^{\#}\right) m_{24, i}=23 B+2\left(10+12 C+9 D+12 e+10 M_{2}+\right. \\
& \left.8 n+2 Q+6 x_{i}\right) \\
& \left.\mathrm{i}, 8^{\#}\right) \quad m_{33, i}=-99-108 B-81 C-12 D-135 e-27 M_{2}+ \\
& 27 n+Q+63 x \\
& \left.\mathrm{i}, 9^{\#}\right) \quad m_{34, i}=36 B+11 C-2\left(-15+16 D-27 e+12 M_{2}+\right. \\
& \left.27 n+5 Q+39 x_{i}\right) \\
& \left.\mathrm{i}, 10^{\#}\right) m_{44, i}=12+10 B+16 C+20 D+8 e+20 M_{2}+ \\
& 20 n+5 Q+24 x_{i} \\
& \left.\mathrm{i}, 11^{\#}\right) x_{i} \in \mathbb{Z}
\end{aligned}
$$

where
$x_{i}=\frac{1}{24}\left(m_{44, i}-(12+10 B+16 C+20 D+8 e+\right.$
$\left.\left.20 M_{2}+20 n+5 Q\right)\right)$.
It is obvious that relation $i, 1$) is satisfied and since the following holds:

$$
\begin{array}{r}
n_{2, i}=60+69 B+56 C+17 D+84 e+26 M_{2}-5 n+ \\
2 Q-25 x_{i} \\
n_{3, i}=-61-66 B-52 C-13 D-81 e-22 M_{2}+9 n- \\
Q+29 x_{i} \\
n_{4, i}=20+21 B+16 C+3 D+26 e+6 M_{2}-4 n-11 x_{i} \\
q_{i}=30+34 B+36 C+28 D+36 e+30 M_{2}+24 n+ \\
6 Q+18 x_{i}
\end{array}
$$

relations i,3) - i,6) are satisfied, too. Relations i,2), i,7) and $i, 16)-i, 18$) are equivalent to $\left.i, 12^{\#}\right)$:

Note that statements (connected by or) in $\mathrm{i}, 19$) are mutually exclusive, i.e., $\mathrm{i}, 19$) is equivalent to:
$\left.\mathrm{i}, 13^{\#}\right)$ exactly one of the following statements is true: $\left.\mathrm{i}, 13^{\#} \mathrm{a}\right) x=\left(20+21 B+16 C+3 D+26 e+6 M_{2}-4 n\right) / 11$

1/5 + 11B/35-17D/35+ 18e/35-2M / $5-24 n / 35-Q / 5$,
$\left.\mathrm{i}, 13^{\#} \mathrm{~b}\right) x \leq \min$ -23/53-23B / 53-36C / 53$44 D / 53-18 e / 53-44 M_{2} / 53-$ 48n/53-13Q/53

Note that all numbers $m_{11, i}, \ldots, m_{44, i}$ are uniquely determined by the value of x_{i}, and hence relation 20) is equivalent to:
$\left.\mathrm{i}, 14^{\#}\right) x_{i} \neq x_{j}$
We can conclude that there are graphs G_{1} and G_{2} with the required properties if and only if there are integers x_{1} and x_{2}, such that $\left.\mathrm{i}, 12^{\#}\right)-\mathrm{i}, 14^{\#}$) hold. The existence of these numbers is equivalent to:

$$
\operatorname{card}(S) \geq 2
$$

where

From here, the theorem readily follows.

ALGORITHM

Now we utilize Theorem 6 to check whether the following holds for acyclic graphs:
$\left(\binom{\left(\chi\left(\mathrm{G}_{1}\right)=\chi\left(\mathrm{G}_{2}\right)\right)\right.$ and $\left(M_{2}\left(\mathrm{G}_{1}\right)=M_{2}\left(\mathrm{G}_{2}\right)\right)$ and }{$\left(* M_{2}\left(\mathrm{G}_{1}\right)=* M_{2}\left(\mathrm{G}_{2}\right)\right)$ and $\left.\left(n=n\left(\mathrm{G}_{1}\right)=n\left(\mathrm{G}_{2}\right)\right)}\right) \Rightarrow$

$$
\left.\left(\mu\left(\mathrm{G}_{1}\right)\right)=\mu\left(\mathrm{G}_{2}\right)\right)
$$

i.e., for which values of n 4-tuples uniquely determine 10-tuples. An algorithm is given in Ref. 2 that for given n generates the set Γ_{n} of all 10-tuples $m=\left(m_{11}, m_{12}, m_{13}\right.$, $m_{14}, m_{22}, m_{23}, m_{24}, m_{33}, m_{34}, m_{44}$), which are 10 -tuples (i.e., $\mu(\mathrm{G})=m$) of acyclic graphs with n vertices. We use this algorithm in the first line of the pseudocode of the algorithm developed here.

Let us denote the left hand side of inequality (7) by $T\left(A, B, C, D, n, M_{2}, * M_{2}\right)$. Now, we demonstrate our algorithm:

1) Input n
2) For each $\left(m_{11}, m_{12}, m_{13}, m_{14}, m_{22}, m_{23}, m_{24}, m_{33}\right.$, $\left.m_{34}, m_{44}\right) \in \Gamma_{n}$
2.1) $A=m_{11}+6 m_{14}+6 m_{22}+4 m_{33}+3 m_{44}$
2.2) $\quad B=2 m_{12}+m_{24}$
2.3) $\quad C=2 m_{13}+m_{34}$
2.4) $D=m_{23}$
2.5) $\quad M_{2}=m_{11}+2 m_{12}+3 m_{13}+4 m_{14}+4 m_{22}+6 m_{23}+$ $8 m_{24}+9 m_{33}+12 m_{34}+16 m_{44}$
$* M_{2}=m_{11}+\frac{1}{2} m_{12}+\frac{1}{3} m_{13}+\frac{1}{4} m_{14}+\frac{1}{4} m_{22}+$ $\frac{1}{6} m_{23}+\frac{1}{8} m_{24}+\frac{1}{9} m_{33}+\frac{1}{12} m_{34}+\frac{1}{16} m_{44}$
2.7) Calculate $T\left(A, B, C, D, n, M_{2}, * M_{2}\right)$
2.8) If $T\left(A, B, C, D, n, M_{2}, * M_{2}\right)<1$ then Error
2.9) If $T\left(A, B, C, D, n, M_{2}, * M_{2}\right) \geq 2$
2.9.1) Output: There are graphs G_{1} and G_{2} with n vertices such that
$\left(\binom{\left(\chi\left(\mathrm{G}_{1}\right)=\chi\left(\mathrm{G}_{2}\right)\right)\right.$ and $\left(M_{2}\left(\mathrm{G}_{1}\right)=M_{2}\left(\mathrm{G}_{2}\right)\right)$ and }{$\left(* M_{2}\left(\mathrm{G}_{1}\right)=* M_{2}\left(\mathrm{G}_{2}\right)\right)$ and $\left.\left(n=n\left(\mathrm{G}_{1}\right)=n\left(\mathrm{G}_{2}\right)\right)}\right)$ and

$$
\left.\left(\mu\left(\mathrm{G}_{1}\right)\right) \neq \mu\left(\mathrm{G}_{2}\right)\right)
$$

2.9.2) Output $A, B, C, D, M_{2}, * M_{2}$ and exit
3) Output:
$\left(\binom{\left(\chi\left(\mathrm{G}_{1}\right)=\chi\left(\mathrm{G}_{2}\right)\right)\right.$ and $\left(M_{2}\left(\mathrm{G}_{1}\right)=M_{2}\left(\mathrm{G}_{2}\right)\right)$ and }{$\left(* M_{2}\left(\mathrm{G}_{1}\right)=* M_{2}\left(\mathrm{G}_{2}\right)\right)$ and $\left.\left(n=n\left(\mathrm{G}_{1}\right)=n\left(\mathrm{G}_{2}\right)\right)}\right) \Rightarrow$

$$
\left.\left(\mu\left(\mathrm{G}_{1}\right)\right)=\mu\left(\mathrm{G}_{2}\right)\right)
$$

Note that line 2.8) does not solve the required problem, but it is a useful control, which verifies that the algorithm works correctly.

APPLICATIONS

The number of 10 -tuples grows rapidly with n. Therefore, we have tested n from 3 up to 100 and have found that for all these values 4 -tuples uniquely determine 10 -tuples of acyclic graphs. The procedure could be continued for higher values of n, but for some of these values 4 -tuples cannot determine uniquely 10 -tuples. That it is so shows the following example of two graphs G_{1} and G_{2} with $n=n\left(\mathrm{G}_{1}\right)=n\left(\mathrm{G}_{2}\right)=241$:

$$
\begin{gathered}
a\left(\mathrm{G}_{1}\right)=a\left(\mathrm{G}_{2}\right)=684 ; b\left(\mathrm{G}_{1}\right)=b\left(\mathrm{G}_{2}\right)=12 \\
c\left(\mathrm{G}_{1}\right)=c\left(\mathrm{G}_{2}\right)=150 ; d\left(\mathrm{G}_{1}\right)=d\left(\mathrm{G}_{2}\right)=6 ; \\
* M_{2}\left(\mathrm{G}_{1}\right)=* M_{2}\left(\mathrm{G}_{2}\right)=7344 / 144 ; \\
M_{2}\left(\mathrm{G}_{1}\right)=M_{2}\left(\mathrm{G}_{2}\right)=1548 ; \\
\mu\left(\mathrm{G}_{1}\right)=(0,6,36,78,36,6,0,0,78,0) \neq \\
\mu\left(\mathrm{G}_{2}\right)=(0,0,75,52,8,6,12,63,0,24) .
\end{gathered}
$$

We represent these two graphs by the following figures:

There may be some lower values of n where such a situation is encounteres, but we leave it as an open problem.

CONCLUSIONS

Here, we consider two kinds of objects able to model valence connectivities: 10-tuples and 4-tuples containing the Randić, Zagreb, modified Zagreb indices and the number of vertices. A question is raised here whether there is one-to-one correspondence among 4- and 10-tuples for acyclic molecular graphs with a fixed number of vertices, and an algorithm is developed here which is able to answer this question. The algorithm is linear in the number of 10 -tuples. The exhaustive computations have shown that the above one-to-one correspondence holds at least for all acyclic graphs with up to 100 vertices.

REFERENCES

1. I. Gutman, Croat. Chem. Acta 75 (2002) 357-369
2. D. Vukičević and A. Graovac, Croat. Chem. Acta 77 (2004) 313-319
3. D. Veljan and D. Vukičević, unpublished work.
4. D. Vukičević and N. Trinajstić, unpublished work.
5. A. Graovac, I. Gutman, and N. Trinajstić, Topological Approach to the Chemistry of Conjugated Molecules, Sprin-ger-Verlag, Berlin, 1977.
6. N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1983; 2nd revised edition 1992.
7. H. Hosoya, Bull. Chem. Soc. Jpn. 44 (1971), 2332-2339.
8. R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
9. M. V. Diudea, I. Gutman, and L. Jantschi, Molecular Topology, Nova, Huntington, 2001.
10. M. Randić, J. Am. Chem. Soc. 97 (1975), 6609-6615.
11. I. Gutman and N. Trinajstić, Chem. Phys. Lett. 17 (1972) 535-538.
12. B. Lučić, A. Miličević, S. Nikolić, and N. Trinajstić, On Modified Zagreb Indices, in: A. Graovac, B. Pokrić, and V. Smrečki (Eds.), MATH/CHEM/COMP 2002 Book of Abstracts, ISBN 953-6690-22-5, Zagreb, 2002, p. 39.
13. S. Nikolić, G. Kovačević, A. Miličević, and N. Trinajstić, Croat. Chem. Acta 76 (2003) 113-124.

Acknowledgement. - Partial support of the Ministry of Science and Technology of the Republic of Croatia (Grant No. 0037117 and Grant No. 0098039) is gratefully acknowledged.

SAŽETAK

Odnos susjednosti valencija i Randićevoga, Zagrebačkoga i modificiranoga Zagrebačkoga indeksa: Linearni algoritam za provjeru diskriminativnih svojstava indeksa u acikličkim grafovima

Abstract

Damir Vukičević i Ante Graovac Susjednost valencija u molekularnim grafovima opisana je desetorkama $\mu_{i j}$ gdje $\mu_{i j}$ označava broj bridova koji povezuju čvorove valencija i i j. Kraći opis susjednosti daju četvorke čiji su elementi broj vrhova u grafu i vrijednosti Randićevoga, Zagrebačkoga i modificiranoga Zagrebačkoga indeksa. Iznenađuje da su ova dva opisa u obostrano jednoznačnoj korespondenciji za sve acikličke molekule od praktičnog interesa, tj. za sve one koje sadrže najviše do 100 atoma. Ovaj rezultat je dobiven primjenom ovdje razvijenoga i opisanoga algoritma koji je linearan u broju desetorki $\mu_{i j}$.

[^0]: * Author to whom correspondence should be addressed. (E-mail: vukicevi@pmfst.hr)

