CROATICA CHEMICA ACTA CCACAA 77 (3) 501–508 (2004) ISSN-0011-1643 *CCA*-2953

CCA-2953 Original Scientific Paper

# Valence Connectivity versus Randić, Zagreb and Modified Zagreb Index: A Linear Algorithm to Check Discriminative Properties of Indices in Acyclic Molecular Graphs

Damir Vukičević<sup>a,\*</sup> and Ante Graovac<sup>b,c</sup>

<sup>a</sup>Department of Mathematics, Faculty of Science, University of Split, Nikole Tesle 12, HR-21000 Split, Croatia <sup>b</sup>Department of Chemistry, Faculty of Science, University of Split, Nikole Tesle 12, HR-21000 Split, Croatia <sup>c</sup>Ruđer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia

RECEIVED JANUARY 23, 2004; REVISED JULY 5, 2004; ACCEPTED JULY 22, 2004

Key words valence connectivity acyclic molecular graphs topological indices Valence connectivity in molecular graphs is described by 10-tuples  $\mu_{ij}$  where  $\mu_{ij}$  denotes the number of edges connecting vertices of valences *i* and *j*. A shorter description is provided by 4-tuples containing the number of vertices and values of Randić, Zagreb and modified Zagreb indices. Surprisingly, these two descriptions are in one-to-one correspondence for all acyclic molecules of practical interest, *i.e.*, for all those having no more than 100 atoms. This result was achieved by developing an efficient algorithm that is linear in the number of 10-tuples.

#### INTRODUCTION

One of the central notions in chemistry is that of the valence of atoms. Atoms of various valences form chemical bonds. Let  $n_i$  denote the number of vertices of degree *i* and let  $\mu_{ij}$  denote the number of bonds whose terminal atoms are of valences *i* and *j*. The collection of all  $\mu_{ij}$ s is termed valence connectivity.<sup>1–4</sup>

Molecules are conveniently represented by molecular graphs where hydrogen atoms are usually omitted.<sup>5–6</sup> In most molecules, like those of organic chemistry valences are at most 4, and accordingly the valence connectivities are conveniently represented by 10-tuples of the form  $\mu = (\mu_{11}, \mu_{12}, \mu_{13}, \mu_{14}, \mu_{22}, \mu_{23}, \mu_{24}, \mu_{33}, \mu_{34}, \mu_{44})$ . Of course,  $\mu_{11} \neq 0$  is only rarely encountered, like *e.g.* in a graph depicting ethylene. Graph theoretical terms are parallel to the chemical ones, and instead of

molecules, atoms, bonds, valences, *etc.*, one speaks respectively of graphs, vertices, edges, vertex degrees, *etc.* 

When the topology of bonding in molecules is contracted to a number, one speaks of a molecular descriptor or topological index.<sup>7</sup> Thus far, hundreds of topological indices have been defined and many of them have found applications as means to model chemical, pharmaceutical and other properties of molecules.<sup>8–9</sup>

Here, we consider three indices, which are fully defined by knowing only the valence connectivity in a graph G. These are the Randić index,  $\chi$ :<sup>10</sup>

$$\chi = \chi(\mathbf{G}) = \sum_{1 \le i \le j \le 4} \frac{\mu_{ij}(\mathbf{G})}{\sqrt{i \cdot j}}, \qquad (1)$$

the Zagreb index,  $M_2$ :<sup>12</sup>

<sup>\*</sup> Author to whom correspondence should be addressed. (E-mail: vukicevi@pmfst.hr)

$$M_2 = M_2(\mathbf{G}) = \sum_{1 \le i \le j \le 4} i \cdot j \cdot \mu_{ij}(\mathbf{G})$$
(2)

and the modified Zagreb index  $*M_2$ :<sup>12-13</sup>

$${}^{*}M_{2} = {}^{*}M_{2}(\mathbf{G}) = \sum_{1 \le i \le j \le 4} \frac{\mu_{ij}(\mathbf{G})}{i \cdot j}.$$
 (3)

The number of vertices, *n*, and the number of edges in G, *l*, are simply related to  $\mu_{ij}$ s as follows:

$$n = n(\mathbf{G}) = \sum_{1 \le i \ge j \le 4} \left(\frac{1}{i} + \frac{1}{j}\right) \cdot \mu_{ij}(\mathbf{G}) \tag{4}$$

$$l = l(G) = \sum_{1 \le i \ge j \le 4} \mu_{ij}(G)$$
(5)

Besides, 10-tuples of  $\mu_{ij}s$ , 4-tuples  $(n, \chi, M_2, *M_2)$  represent another way of describing the topology of molecular graphs. Obviously, the knowledge of 10-tuples uniquely determines 4-tuples, but the opposite does not hold. From here on, we restrict ourselves to acyclic molecules, *i.e.*, to trees, where l = n - 1 holds.

The main objective of this paper is to determine when 4-tuples uniquely determine 10-tuples in such graphs. In order to do so, an algorithm is developed here, which for fixed *n* checks whether there is one-to-one correspondence between 4- and 10- tuples. Trivial checking would require testing of all possible pairs of 10-tuples, *i.e.*, it is quadratic in the number of 10-tuples. The algorithm presented here (after all 10-tuples of  $m_{ij}$ s are generated) is linear in that the number and the execution of this algorithm take about three hours on a PC with Celeron 800 processor.

#### RESULTS

First, we start with a few auxiliary results. Using the theory of the finite extensions of the field of rational numbers or simple, but tedious elementary calculation, it can be shown that:

Lemma 1. – Let a, b, c,  $d \in Q$ . If  $a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} = 0$ , then a = b = c = d = 0, where Q is the set of rational numbers.

For each molecular graph, denote:

 $d(G) = \mu_{23}(G).$ 

From the last Lemma, it directly follows that:

Lemma 2. – Let G be any molecular graph. Then the numbers a(G), b(G), c(G) and d(G) are uniquely determined by  $\chi(G)$ .

Let us prove:

Lemma 3. – Let  $G_1$  and  $G_2$  be two molecular graphs such that:

$$\begin{pmatrix} (\chi(G_1) = \chi(G_2)) \text{ and } (M_2(G_1) = M_2(G_2)) \text{ and } \\ (*M_2(G_1) = *M_2(G_2)) \text{ and } (n_2(G_1) = n_2(G_2)) \end{pmatrix} \Rightarrow \\ (\mu(G_1) = \mu(G_2)), \tag{6}$$

then

1) μ<sub>11</sub> (G<sub>1</sub>) = 0 and μ<sub>11</sub> (G<sub>2</sub>) = 0
 2) n<sub>2</sub> (G<sub>1</sub>) ≠ 0 and n<sub>2</sub> (G<sub>2</sub>) ≠ 0
 3) n<sub>3</sub> (G<sub>1</sub>) ≠ 0 and n<sub>3</sub> (G<sub>2</sub>) ≠ 0.

*Proof.* – Note that for each molecular graph G with at least three vertices, we have  $\mu_{11}$  (G) = 0 and that single graph with 2 vertices is a path of length one, and hence indeed 1) holds.

Now, let us prove 2). Suppose, in contrast, that there are graphs G<sub>1</sub> and G<sub>2</sub> that satisfy (6), but do not satisfy relation 2). Denote a = a (G<sub>1</sub>) = a (G<sub>2</sub>), b = b (G<sub>1</sub>) = b (G<sub>2</sub>) and analogously for c, d,  $M_2$ ,  $*M_2$  and n. Without loss of generality, we may assume that  $n_2$  (G<sub>1</sub>) = 0. It follows that  $\mu_{12}$  (G<sub>1</sub>) =  $\mu_{22}$  (G<sub>1</sub>) =  $\mu_{23}$  (G<sub>1</sub>) =  $\mu_{24}$  (G<sub>1</sub>), hence b = d = 0, and therefore  $\mu_{12}$  (G<sub>2</sub>) =  $\mu_{24}$  (G<sub>2</sub>) =  $\mu_{23}$  (G<sub>2</sub>) = 0. Note that for each  $i \in \{1, 2\}$ , we have:

$$6\mu_{14} \left( {{\rm{G}}_i} \right) + 6\mu_{22} \left( {{\rm{G}}_i} \right) + 4\mu_{33} \left( {{\rm{G}}_i} \right) + 3\mu_{44} \left( {{\rm{G}}_i} \right) = a$$

$$2\mu_{13} \,(\mathbf{G}_i) + \mu_{34} \,(\mathbf{G}_i) = c$$

$$\begin{pmatrix} \mu_{13}(G_i) + \mu_{14}(G_i) + 2\mu_{22}(G_i)/2 + \\ (\mu_{13}(G_i) + 2\mu_{33}(G_i) + \mu_{34}(G_i))/3 + \\ (\mu_{14}(G_i) + \mu_{34}(G_i) + 2\mu_{44}(G_i))/4 \end{pmatrix} = n$$

$$\mu_{13}(G_i) + \mu_{14}(G_i) + \mu_{22}(G_i) + \mu_{33}(G_i) + \mu_{34}(G_i) + \mu_{44}(G_i) = n - 1$$

Croat. Chem. Acta 77 (3) 501-508 (2004)

 $(\alpha)$ 

 $(\alpha)$ 

$$3\mu_{13}(G_i) + 4\mu_{14}(G_i) + 4\mu_{22}(G_i) + 9\mu_{33}(G_i) + 12\mu_{34}(G_i) + 16\mu_{44}(G_i) = M_2$$

$$\frac{1}{3}\mu_{13}(G_i) + \frac{1}{4}\mu_{14}(G_i) + \frac{1}{4}\mu_{22}(G_i) + \frac{1}{9}\mu_{33}(G_i) + \frac{1}{12}\mu_{34}(G_i) + \frac{1}{16}\mu_{44}(G_i) = *M_2$$

*i.e.*, a system of 6 equations in 6 unknowns  $\mu_{13}$  (G<sub>i</sub>),  $\mu_{14}$  (G<sub>i</sub>),  $\mu_{22}$  (G<sub>i</sub>),  $\mu_{33}$  (G<sub>i</sub>),  $\mu_{34}$  (G<sub>i</sub>) and  $\mu_{44}$  (G<sub>i</sub>). Note that the matrix of the system has a rank equal to 6; hence, there is a unique solution to these equations, and this is in contradiction with  $\mu$  (G<sub>1</sub>)  $\neq \mu$  (G<sub>2</sub>).

Let us prove 3). Suppose, in contrast, that there are graphs G<sub>1</sub> and G<sub>2</sub> that satisfy (6), but do not satisfy relation 3). Denote *a*,*b*,*c*,*d*,*M*<sub>2</sub>,\**M*<sub>2</sub> and *n* as above. Without loss of generality, we may assume that  $n_3$  (G<sub>1</sub>) = 0. It follows that  $\mu_{13}$  (G<sub>1</sub>) =  $\mu_{23}$  (G<sub>1</sub>) =  $\mu_{33}$  (G<sub>1</sub>) =  $\mu_{34}$  (G<sub>1</sub>); hence c = d = 0, and therefore  $\mu_{13}$  (G<sub>2</sub>) =  $\mu_{23}$  (G<sub>2</sub>) =  $\mu_{34}$  (G<sub>2</sub>) = 0. Note that for each  $i \in \{1, 2\}$ , we have:

$$6\mu_{14} (G_i) + 6\mu_{22} (G_i) + 4\mu_{33} (G_i) + 3\mu_{44} (G_i) = a$$
$$2\mu_{12} (G_i) + \mu_{24} (G_i) = b$$

$$\begin{pmatrix} \mu_{12}(G_i) + \mu_{14}(G_i) + \\ (\mu_{12}(G_i) + 2\mu_{22}(G_i) + \mu_{24}(G_i)) / 2 + \\ 2\mu_{33}(G_i) / 3 + (\mu_{14}(G_i) + \mu_{24}(G_i) + 2\mu_{44}(G_i)) / 4 \end{pmatrix} = n$$

$$\mu_{12}(G_i) + \mu_{14}(G_i) + \mu_{22}(G_i) + \mu_{24}(G_i) + \mu_{33}(G_i) + \mu_{44}(G_i) = n - 1$$

$$2\mu_{12}(G_{i}) + 4\mu_{14}(G_{i}) + 4\mu_{22}(G_{i}) + 8\mu_{24}(G_{i}) + 9\mu_{33}(G_{i}) + 16\mu_{44}(G_{i}) = M_{2}$$
$$\frac{1}{2}\mu_{12}(G_{i}) + \frac{1}{4}\mu_{14}(G_{i}) + \frac{1}{4}\mu_{22}(G_{i}) + \frac{1}{8}\mu_{24}(G_{i}) + \frac{1}{9}\mu_{33}(G_{i}) + \frac{1}{16}\mu_{44}(G_{i}) = *M_{2}$$

*i.e.*, the system of 6 equations in 6 unknowns:  $\mu_{12}$  (G<sub>i</sub>),  $\mu_{14}$  (G<sub>i</sub>),  $\mu_{22}$  (G<sub>i</sub>),  $\mu_{24}$  (G<sub>i</sub>),  $\mu_{33}$  (G<sub>i</sub>) and  $\mu_{34}$  (G<sub>i</sub>). Note that the matrix of the system has a rank equal to 6; hence, there is a unique solution to this equations, and this is in contradiction with  $\mu$  (G<sub>1</sub>)  $\neq \mu$  (G<sub>2</sub>).

#### In our paper,<sup>2</sup> it is shown that:

*Theorem 4.* – Let  $m = (m_{11}, m_{12}, m_{13}, m_{14}, m_{22}, m_{23}, m_{24}, m_{33}, m_{34}, m_{44}) \in \mathbb{N}_0^{10}$  where  $\mathbb{N}_0^{10}$  is the set of 10-tuples of nonnegative integers. Then, there is an acyclic molec-

ular graph G with at least two vertices such that  $\mu$  (G) = m if and only if one of the following statements holds:

3.1) 
$$(m_{44} \le n_4 - 1)$$
 and  $(m_{33} \le n_3 - 1)$  and  
 $(q + m_{33} - m_{24} \le n_3 - 1)$  and  
 $(q + m_{44} - m_{23} \le n_4 - 1)$   
3.2)  $n_3 = 0$ 

3.3) 
$$n_4 = 0$$

where

$$n_2 = (m_{12} + 2m_{22} + m_{23} + m_{24})/2$$
  

$$n_3 = (m_{13} + m_{23} + 2m_{33} + m_{34})/3$$
  

$$n_4 = (m_{14} + m_{24} + m_{34} + 2m_{44})/4$$
  

$$q = (m_{23} + m_{24} - m_{12})/2$$

Now, it readily follows that:

*Lemma* 5. – Let  $m = (m_{11}, m_{12}, m_{13}, m_{14}, m_{22}, m_{23}, m_{24}, m_{33}, m_{34}, m_{44}) \in \mathbb{N}_0^{10}$ . There are acyclic molecular graphs G<sub>1</sub> and G<sub>2</sub>, such that  $\mu$  (G<sub>1</sub>) = m, v (G<sub>1</sub>) = v (G<sub>2</sub>),  $M_2$  (G<sub>1</sub>) =  $M_2$  (G<sub>2</sub>),  $*M_2$  (G<sub>1</sub>) =  $*M_2$  (G<sub>2</sub>),  $\chi$  (G<sub>1</sub>) =  $\chi$  (G<sub>2</sub>) and  $\mu$  (G<sub>1</sub>)  $\neq \mu$  (G<sub>2</sub>) only if  $(m_{11} = 0)$  and  $(n_{2,n_3} \in \mathbb{N})$  and  $(n_4 \in \mathbb{N}_0)$  and  $(q \ge 0)$  and  $(m_{33} + m_{34} + m_{44} + q = n_3 + n_4 - 1)$  and  $(m_{12} + m_{23} + m_{24} > 0)$  and  $(m_{33} \le n_3 - 1)$  and  $(q + m_{33} - m_{24} \le n_3 - 1)$  and one of the following holds:

1) 
$$(m_{44} \le n_4 - 1)$$
 and  $(q + m_{44} - m_{23} \le n_4 - 1)$   
2)  $n_4 = 0$ 

where

$$n_2 = (m_{12} + 2m_{22} + m_{23} + m_{24})/2$$
  

$$n_3 = (m_{13} + m_{23} + 2m_{33} + m_{34})/3$$
  

$$n_4 = (m_{14} + m_{24} + m_{34} + 2m_{44})/4$$
  

$$q = (m_{23} + m_{24} - m_{12})/2$$

Theorem 6. – Let A, B, C, D, n,  $M_2$ ,  $*M_2 \in N_0$ . There are acyclic molecular graphs  $G_1$  and  $G_2$ , such that:

 $\begin{aligned} &a(G_1) = a(G_2) = A; \ b(G_1) = b(G_2) = B; \\ &c(G_1) = c(G_2) = C; \ d(G_1) = d(G_2) = D; \\ &v(G_1) = v(G_2) = n; \ M_2(G_1) = M_2(G_2) = M_2; \\ &*M_2(G_1) = *M_2(G_2) = *M_2; \ \mu(G_1) \neq \mu(G_2) \end{aligned}$ 

if and only if

$$\left\{ \begin{array}{l} \left\{ \begin{array}{l} \left\{ \begin{array}{l} 5/13+6B/13+5C/39-16D/39+\\ 9e/13-4M_2/13-9n/13+7Q/156,\\ -5/3-23B/12-2C-3D/2-2e-\\ 5M_2/3-4n/3-5Q/6,\\ 11/7+12B/7+9C/7+4D/21+\\ 15e/7+3M_2/7-3n/7+131Q/252,\\ -1/2-5B/12-2C/3-5D/6-\\ e/3-5M_2/6-5n/6-7Q/24,\\ -5/3-11B/9-2C-14D/9-2e-\\ 5M_2/3-4n/3-Q/3,\\ -3/2-2B-2C-5D/3-2e-\\ 5M_2/3-4n/3-5Q/6 \end{array} \right\} \right\} \\ \left\{ \begin{array}{l} \left\{ \begin{array}{l} -5/3-11B/6-2C-3D/2-2e-5M_2/3-\\ 4n/3-5Q/6,\\ 3/13+5B/26-3C/26-7D/13+5e/13-\\ 6M_2/13-9n/13-3Q/52,\\ 55/28+9B/4+25C/14+3D/7+\\ 39e/14+3M_2/4-9n/28+41Q/56,\\ 5/13+6B/13+11C/78-16D/39+\\ 9e/13-4M_2/13-9n/13+7Q/156,\\ 37/34+21B/17+29C/34-D34+\\ 27e/17+5M_2/34-9n/17+127Q/136,\\ 27/40+31B/40+17C/40-11D/40+\\ 21e/20-M_2/8-13n/20+143Q/160,\\ 1/5+11B/35-17D/35+18e/35-\\ 2M_2/5-24n/35-Q/5,\\ -23/53-23B/53-36C/53-44D/53-\\ 18e/53-44M_2/53-48n/53-13Q/53 \end{array} \right\} \\ \left\{ \begin{array}{l} \left\{ \begin{array}{l} 5/13+6B/13+5C/39-16D/39+\\ 9e/13-4M_2/13-9n/13+7Q/156,\\ -5/3-23B/12-2C-3D/2-2e-\\ 5M_2/3-4n/3-5Q/6,\\ 11/7+12B/7+9C/7+4D/21+\\ 15e/7+3M_2/7-3n/7+131Q/252,\\ -1/2-5B/12-2C/3-5D/6-\\ -5/3-5M_2/6-5n/6-7Q/24,\\ -5/3-17B/9-2C-14D/9-2e-\\ 5M_2/3-4n/3-6Q/6,\\ 3/13+5B/26-3C/26-7D/13+5e/13-\\ 6M_2/13-9n/13-3Q/52,\\ 5/28+9B/4+25C/14+3D/7+\\ 39e/14+3M_2/4-9n/28+41Q/56,\\ 5/13+6B/13+11C/78-16D/39+\\ 9e/13-4M/2/13-9n/13+7Q/156,\\ 3/13+5B/26-3C/26-7D/13+5e/13-\\ 6M_2/13-9n/13-3Q/52,\\ 5/28+9B/4+25C/14+3D/7+\\ 39e/14+3M_2/4-9n/28+41Q/56,\\ 5/13+6B/13+11C/78-16D/39+\\ 9e/13-4M/2/13-9n/13+7Q/156,\\ 3/13+2B/17+29C/34-D/34+\\ 27e/17+5M_2/4-9n/28+41Q/56,\\ 5/13+6B/13+11C/78-16D/39+\\ 9e/13-4M/2/13-9n/13+7Q/156,\\ 3/13+2B/17+29C/34-D/34+\\ 27e/17+5M_2/4-9n/28+41Q/56,\\ 5/13+6B/13+11C/78-16D/39+\\ 9e/13-4M/2/13-9n/13+7Q/156,\\ 3/74+21B/17+29C/34-D/34+\\ 27e/17+5M_2/4-9n/28+41Q/56,\\ 5/13+6B/13+11C/78-16D/39+\\ 9e/13-4M/2/13-9n/13+7Q/156,\\ 3/74+21B/17+29C/34-D/34+\\ 27e/17+5M_2/34-9n/13+7Q/156,\\ 3/74+21B/17+29C/34-D/34+\\ 27e/17+5M_2/34-9n/13+7Q/156,\\ 3/74+21B/17+29C/34-D/34+\\ 27e/17+5M_2/34-9n/13+7Q/156,\\ 3/13+21B/17+29C/34-D/34+\\ 27e/17+5M_2/34-9n/13+7Q/156,\\ 3/13+21B/17+29C/34-D/34+\\ 27e/17+5M_2/34-9n/13+7Q/156,\\ 3/13+21B/17-29/28+1420/140-91744,\\ 27e/20-M_2/8-13n/20+1430/160\\ \end{array}\right\} \right\}$$

and

where

е

$$Q = 144 \cdot *M_2$$
$$= \frac{A - (6 + 6B + 6C + 6M_2 + 6n + Q)}{12}$$

 $e \in \mathbb{Z}$ ,

and  $\alpha(R)$  is 1 if relation *R* holds and 0 otherwise. *card* denotes the cardinality of the set and *Z* stands for the set of integers.

*Proof.* From the previous results, it follows that graphs  $G_1$  and  $G_2$  with the required properties exist if and only if there are:

 $m_i =$ 

 $\begin{array}{l} (m_{11,i}, m_{12,i}, m_{13,i}, m_{14,i}, m_{22,i}, m_{23,i}, m_{24,i}, m_{33,i}, m_{34,i}, m_{44,i}) \\ \in \mathbb{N}_0^{10}, \ i = 1, \ 2 \end{array}$ 

such that:

- i,1)  $m_{uv,i} \in \mathbb{Z}$ , for each  $1 \le u \le v \le 4$
- i,2)  $m_{uv,i} \ge 0$  for each  $1 \le u \le v \le 4$ ,  $m_{11,i} = 0$
- i,3)  $n_{2,i} \in \mathbb{Z}$
- i,4)  $n_{3,i} \in \mathbb{Z}$
- i,5)  $n_{4,i} \in \mathbb{Z}$
- i,6)  $q_i \in \mathbb{Z}$
- i,7)  $q_i \ge 0$
- i,8)  $A = 6m_{14,i} + 6m_{22,i} + 4m_{33,i} + 3m_{44,i}$
- i,9)  $B = 2m_{12,i} + m_{14,i}$
- i,10)  $C = 2m_{13,i} + m_{34,i}$
- i,11)  $D = m_{23,i}$
- i,12)  $m_{33,i} + m_{34,i} + q = n_{3,i} + n_{4,i} 1$
- i,13)  $n_{1,i} + n_{2,i} + n_{3,i} + n_{4,i} = n$
- i,14)  $2m_{12,i} + 3m_{13,i} + 4m_{14,i} + 4m_{22,i} + 6m_{23,i} + 8m_{24,i} + 9m_{33,i} + 12m_{34,i} + 16m_{44,i} = M_2$

i,15) 
$$\frac{1}{2}m_{12,i} + \frac{1}{3}m_{13,i} + \frac{1}{4}m_{14,i} + \frac{1}{4}m_{22,i} + \frac{1}{6}m_{23,i} + \frac{1}{8}m_{24,i} + \frac{1}{9}m_{33,i} + \frac{1}{12}m_{34,i} + \frac{1}{16}m_{44,i} = *M_2$$

- i,16)  $m_{12,i} + m_{23,i} + m_{24,i} > 0$
- i,17)  $m_{33,i} \leq n_{3,i} 1$
- i,18)  $q_i + m_{33,i} m_{24,i} \le n_{3,i} 1$
- i,19)  $n_{4,i} = 0$  or  $(m_{44,i} \le n_{4,i} 1 \text{ and } q + m_{44,i} m_{23,i} \le n_{4,i} 1)$

(7) 20) 
$$m_1 \neq m_2$$

#### where

 $\begin{array}{l} n_{1,i} = m_{12,i} + m_{13,i} + m_{14,i} \\ n_{2,i} = (m_{12,i} + 2m_{22,i} + m_{23,i} + m_{24,i}) \; / \; 2 \\ n_{3,i} = (m_{13,i} + m_{23,i} + 2m_{33,i} + m_{34,i}) \; / \; 3 \\ n_{4,i} = (m_{14,i} + m_{24,i} + m_{34,i} + 2m_{44,i}) \; / \; 4 \\ q_1 = (m_{23,i} + m_{24,i} - m_{12,i}) \; / \; 2 \; . \end{array}$ 

Note that relations i,3 and i,8 – i,15 are equivalent to:

$$\begin{split} \text{i},1^*) \ m_{11,i} &= 0 \\ \text{i},2^*) \ m_{12,i} &= (-24 - 10A - 42B - 36C - 48D + 24n + Q) / 12 - m_{44,i} / 4 \\ \text{i},3^*) \ m_{13,i} &= (-348 - 80A - 342B - 264C - 396D - 12M_2 + 348n + 5Q) / 24 + 13m_{44,i} / 8 \\ \text{i},4^*) \ m_{14,i} &= (348 + 56A + 234B + 180C + 276D + 12M_2 - 204n - 5Q) / 36 - 13m_{44,i} / 12 \\ \text{i},5^*) \ m_{22,i} &= (456 + 131A + 558B + 450C + 636D + 12M_2 - 528n - 8Q) / 18 - 7m_{44,i} / 6 \\ \text{i},6^*) \ m_{23,i} &= D \\ \text{i},7^*) \ m_{24,i} &= (24 + 10A + 48B + 36C + 48D - 24n - Q) / 6 + m_{44,i} / 2 \\ \text{i},8^*) \ m_{33,i} &= (-420 - 104A - 450B - 360C - 516D - 12M_2 + 420n + 7Q) / 8 + 21m_{44,i} / 8 \\ \text{i},9^*) \ m_{34,i} &= (348 + 80A + 342B + 276C + 396D + 12M_2 - 348n - 5Q) - 13m_{44,i} / 4 \\ \end{split}$$

Note that  $m_{13,i} \in \mathbb{N}$ , hence:

 $\begin{array}{l} -348-80A-342B-264C-396D-12M_2+348n+\\ 5Q\equiv 0 \pmod{3} \end{array}$ 

or equivalently,

$$A \equiv Q \pmod{3}.$$

Note also that  $33n_3 + 87n_4 \in \mathbb{Z}$ , hence:

$$-270 - 137A - 582B - 474C - 672D + 6M_2 + 618n + 5Q \equiv 0 \pmod{4}$$

or equivalently:

$$A \equiv 2 + 2B + 2C + 2M_2 + 2n + Q \pmod{4}$$

We can rewrite (8)-(9) as:

$$4A \equiv 4Q \pmod{12}$$

$$3A \equiv 6 + 6B + 6C + 6M_2 + 6n + 3Q \pmod{12}$$

It follows that:

$$A \equiv 6 + 6B + 6C + 6M_2 + 6n + Q \pmod{12}$$

therefore  $e \in \mathbb{Z}$ . Substituting this in relations  $i, 1^*) - i, 8^*$ ),

$$n_{3,i} = \frac{1}{24} \left( 1740 + 1906B + 1744C + 908D + 2216e + \\ 1124M_2 + 380n + 173Q - 25m_{44,i} \right).$$

This implies that:

we get:

$$\begin{split} m_{44,i} \equiv 12 \,+\, 10B \,+\, 16C \,+\, 20D \,+\, 8e \,+\, 20M_2 \,+\, 20n \,+\, \\ 5Q \pmod{24} \,. \end{split}$$

Hence, there are numbers such that:

$$m_{44,i} \equiv 12 + 10B + 16C + 20D + 8e + 20M_2 + 20n + 5Q + 24x_i.$$

It readily follows that relations  $i,1^*) - i,8^*$  can be replaced by:

$$\begin{split} \text{i},1^{\#}) \quad m_{11,i} &= 0 \\ \text{i},2^{\#}) \quad m_{12,i} &= -10 - 11B - 12C - 9D - 12e - 10M_2 - 8n - 2Q - 6x_i \\ 2Q - 6x_i \\ \text{i},3^{\#}) \quad m_{13,i} &= -15 - 18B - 5C + 16D - 27e + 12M_2 + 27n + 5Q + 39x_i \\ \text{i},4^{\#}) \quad m_{14,i} &= 5B - 3C - 2(-3 + 7D - 5e + 6M_2 + 9n + 2Q + 13x_i) \\ \text{i},5^{\#}) \quad m_{22,i} &= 55 + 63B + 50C + 12D + 78e + 21M_2 - 9n + Q - 28x_i \\ \text{i},6^{\#}) \quad m_{23,i} &= D \\ \text{i},7^{\#}) \quad m_{24,i} &= 23B + 2(10 + 12C + 9D + 12e + 10M_2 + 8n + 2Q + 6x_i) \\ \text{i},8^{\#}) \quad m_{33,i} &= -99 - 108B - 81C - 12D - 135e - 27M_2 + 27n + Q + 63x_i \\ \text{i},9^{\#}) \quad m_{34,i} &= 36B + 11C - 2(-15 + 16D - 27e + 12M_2 + 27n + 5Q + 39x_i) \\ \text{i},10^{\#})m_{44,i} &= 12 + 10B + 16C + 20D + 8e + 20M_2 + 20n + 5Q + 24x_i \\ \text{i},11^{\#}) x_i &\in \mathbb{Z} \\ \end{split}$$

$$x_i = \frac{1}{24} \left( m_{44,i} - (12 + 10B + 16C + 20D + 8e + 20M_2 + 20n + 5Q) \right)$$

It is obvious that relation i,1) is satisfied and since the following holds:

$$\begin{split} n_{2,i} &= 60 + 69B + 56C + 17D + 84e + 26M_2 - 5n + \\ &= 2Q - 25x_i \\ n_{3,i} &= -61 - 66B - 52C - 13D - 81e - 22M_2 + 9n - \\ &= Q + 29x_i \\ n_{4,i} &= 20 + 21B + 16C + 3D + 26e + 6M_2 - 4n - 11x_i \end{split}$$

 $q_i = 30 + 34B + 36C + 28D + 36e + 30M_2 + 24n + 6Q + 18x_i$ 

relations i,3) – i,6) are satisfied, too. Relations i,2), i,7) and i,16) – i,18) are equivalent to i,12<sup>#</sup>):

$$\\ \leq \min \begin{cases} 5/13 + 6B/13 + 5C/39 - 16D/39 + 9e/13 - 4M_2/13 - 9n/13 + 7Q/156, \\ -5/3 - 23B/12 - 2C - 3D/2 - 2e - 5M_2/3 - 4n/3 - 5Q/6, \\ 11/7 + 12B/7 + 9C/7 + 4D/21 + 15e/7 + 3M_2/7 - 3n/7 + 131Q/252, \\ -1/2 - 5B/12 - 2C/3 - 5D/6 - e/3 - 5M_2/6 - 5n/6 - 7Q/24, \\ -5/3 - 17B/9 - 2C - 14D/9 - 2e - 5M_2/3 - 4n/3 - Q/3, \\ -3/2 - 2B - 2C - 5D/3 - 2e - 5M_2/3 - 4n/3 - 5Q/6, \\ 3/13 + 5B/26 - 3C/26 - 7D/13 + 5e/13 - 6M_2/13 - 9n/13 - 3Q/52, \\ 55/28 + 9B/4 + 25C/14 + 3D/7 + 39e/14 + 3M_2/4 - 9n/28 + 41Q/56, \\ 5/13 + 6B/13 + 11C/78 - 16D/39 + 9e/13 - 4M_2/13 - 9n/13 + 7Q/156, \\ 37/34 + 21B/17 + 29C/34 - D/34 + 27e/17 + 5M_2/34 - 9n/17 + 127Q/136, \\ 27/40 + 31B/40 + 17C/40 - 11D/40 + 21e/20 - M_2/8 - 13n/20 + 143Q/160 \end{cases}$$

Note that statements (connected by *or*) in i,19) are mutually exclusive, *i.e.*, i,19) is equivalent to:

i,13<sup>#</sup>) exactly one of the following statements is true: i,13<sup>#</sup>a)  $x = (20 + 21B + 16C + 3D + 26e + 6M_2 - 4n) / 11$ 

i,13<sup>#</sup>b) 
$$x \le \min \begin{cases} 1/5 + 1B/35 - 17D/35 + \\ 18e/35 - 2M_2/5 - 24n/35 - Q/5, \\ -23/53 - 23B/53 - 36C/53 - \\ 44D/53 - 18e/53 - 44M_2/53 - \\ 48n/53 - 13Q/53 \end{cases}$$

Note that all numbers  $m_{11,i},..., m_{44,i}$  are uniquely determined by the value of  $x_i$ , and hence relation 20) is equivalent to:

i,14<sup>#</sup>)  $x_i \neq x_i$ 

We can conclude that there are graphs  $G_1$  and  $G_2$  with the required properties if and only if there are integers  $x_1$  and  $x_2$ , such that  $i,12^{\#})-i,14^{\#}$  hold. The existence of these numbers is equivalent to:

$$card(S) \ge 2$$

where

$$S = \begin{cases} 5/13 + 6B/13 + 5C/39 - 16D/39 + 9e/13 - 4M_2/13 - 9n/13 + 7Q/156, \\ -5/3 - 23B/12 - 2C - 3D/2 - 2e - 5M_2/3 - 4n/3 - 5Q/6, \\ 11/7 + 12B/7 + 9C/7 + 4D/21 + 15e/7 + 3M_2/7 - 3n/7 + 131Q/252, \\ -1/2 - 5B/12 - 2C/3 - 5D/6 - e/3 - 5M_2/6 - 5n/6 - 7Q/24, \\ -5/3 - 17B/9 - 2C - 14D/9 - 2e - 5M_2/3 - 4n/3 - Q/3, \\ -3/2 - 2B - 2C - 5D/3 - 2e - 5M_2/3 - 4n/3 - 5Q/6 \end{cases} \leq x$$

$$S = \begin{cases} -5/3 - 11B/6 - 2C - 3D/2 - 2e - 5M_2/3 - 4n/3 - 5Q/6, \\ 3/13 + 5B/26 - 3C/26 - 7D/13 + 5e/13 - 6M_2/13 - 9n/13 - 3Q/52, \\ 55/28 + 9B/4 + 25C/14 + 3D/7 + 39e/14 + 3M_2/4 - 9n/28 + 41Q/56, \\ 5/13 + 6B/13 + 11C/78 - 16D/39 + 9e/13 - 4M_2/13 - 9n/13 + 7Q/156, \\ 37/34 + 21B/17 + 29C/34 - D/34 + 27e/17 + 5M_2/34 - 9n/17 + 127Q/136, \\ 27/40 + 31B/40 + 17C/40 - 11D/40 + 21e/20 - M_2/8 - 13n/20 + 143Q/160 \end{cases}$$

$$\begin{bmatrix} x = \frac{1}{11}(20 + 21B + 16C + 3D + 26e + 6M_2 - 4n) \text{ xor} \\ 1/5 + 11B/35 - 17D/35 + 18e/35 - 2M_2/5 - 24n/35 - Q/5, \\ -23/53 - 23B/53 - 36C/53 - 44D/53 - 18e/53 - 44M_2/53 - 48n/53 - 13Q/53 \end{bmatrix}$$

From here, the theorem readily follows.

#### ALGORITHM

Now we utilize Theorem 6 to check whether the following holds for acyclic graphs:

$$\begin{pmatrix} (\chi(\mathbf{G}_1) = \chi(\mathbf{G}_2)) \text{ and } (M_2(\mathbf{G}_1) = M_2(\mathbf{G}_2)) \text{ and} \\ (*M_2(\mathbf{G}_1) = *M_2(\mathbf{G}_2)) \text{ and } (n = n(\mathbf{G}_1) = n(\mathbf{G}_2)) \end{pmatrix} \Rightarrow$$

$$(\mu(\mathbf{G}_1)) = \mu(\mathbf{G}_2))$$

*i.e.*, for which values of *n* 4-tuples uniquely determine 10-tuples. An algorithm is given in Ref. 2 that for given *n* generates the set  $\Gamma_n$  of all 10-tuples  $m = (m_{11}, m_{12}, m_{13}, m_{14}, m_{22}, m_{23}, m_{24}, m_{33}, m_{34}, m_{44})$ , which are 10-tuples (*i.e.*,  $\mu(G) = m$ ) of acyclic graphs with *n* vertices. We use this algorithm in the first line of the pseudocode of the algorithm developed here.

Let us denote the left hand side of inequality (7) by  $T(A, B, C, D, n, M_2, *M_2)$ . Now, we demonstrate our algorithm:

- 1) Input *n*
- 2) For each  $(m_{11}, m_{12}, m_{13}, m_{14}, m_{22}, m_{23}, m_{24}, m_{33}, m_{34}, m_{44}) \in \Gamma_n$
- 2.1)  $A = m_{11} + 6m_{14} + 6m_{22} + 4m_{33} + 3m_{44}$

2.2) 
$$B = 2m_{12} + m_{24}$$

- 2.3)  $C = 2m_{13} + m_{34}$
- 2.4)  $D = m_{23}$
- 2.5)  $M_2 = m_{11} + 2m_{12} + 3m_{13} + 4m_{14} + 4m_{22} + 6m_{23} + 8m_{24} + 9m_{33} + 12m_{34} + 16m_{44}$
- 2.6)  $*M_2 = m_{11} + \frac{1}{2}m_{12} + \frac{1}{3}m_{13} + \frac{1}{4}m_{14} + \frac{1}{4}m_{22} + \frac{1}{6}m_{23} + \frac{1}{8}m_{24} + \frac{1}{9}m_{33} + \frac{1}{12}m_{34} + \frac{1}{16}m_{44}$
- 2.7) Calculate  $T(A, B, C, D, n, M_2, *M_2)$
- 2.8) If  $T(A, B, C, D, n, M_2, *M_2) < 1$  then Error
- 2.9) If  $T(A, B, C, D, n, M_2, *M_2) \ge 2$
- 2.9.1) Output: There are graphs G<sub>1</sub> and G<sub>2</sub> with *n* vertices such that

$$\begin{pmatrix} (\chi(G_1) = \chi(G_2)) \text{ and } (M_2(G_1) = M_2(G_2)) \text{ and} \\ (*M_2(G_1) = *M_2(G_2)) \text{ and } (n = n(G_1) = n(G_2)) \end{pmatrix} \text{ and} \\ (\mu(G_1)) \neq \mu(G_2) \end{pmatrix}$$

2.9.2) Output A, B, C, D, M<sub>2</sub>, \*M<sub>2</sub> and exit
3) Output:

$$\begin{pmatrix} (\chi(G_1) = \chi(G_2)) \text{ and } (M_2(G_1) = M_2(G_2)) \text{ and} \\ (*M_2(G_1) = *M_2(G_2)) \text{ and } (n = n(G_1) = n(G_2)) \end{pmatrix} \Rightarrow$$

 $(\mu(G_1)) = \mu(G_2))$ 

Note that line 2.8) does not solve the required problem, but it is a useful control, which verifies that the algorithm works correctly.

#### APPLICATIONS

The number of 10-tuples grows rapidly with *n*. Therefore, we have tested *n* from 3 up to 100 and have found that for all these values 4-tuples uniquely determine 10-tuples of acyclic graphs. The procedure could be continued for higher values of *n*, but for some of these values 4-tuples cannot determine uniquely 10-tuples. That it is so shows the following example of two graphs G<sub>1</sub> and G<sub>2</sub> with  $n = n(G_1) = n(G_2) = 241$ :

$$a(G_1) = a(G_2) = 684; b(G_1) = b(G_2) = 12;$$
  
 $c(G_1) = c(G_2) = 150; d(G_1) = d(G_2) = 6;$ 

$$*M_2(G_1) = *M_2(G_2) = 7344/144;$$
  
 $M_2(G_1) = M_2(G_2) = 1548;$ 

$$\mu(G_1) = (0, 6, 36, 78, 36, 6, 0, 0, 78, 0) \neq \mu(G_2) = (0, 0, 75, 52, 8, 6, 12, 63, 0, 24).$$

We represent these two graphs by the following figures:



There may be some lower values of n where such a situation is encounteres, but we leave it as an open problem.

#### CONCLUSIONS

Here, we consider two kinds of objects able to model valence connectivities: 10-tuples and 4-tuples containing the Randić, Zagreb, modified Zagreb indices and the number of vertices. A question is raised here whether there is one-to-one correspondence among 4- and 10-tuples for acyclic molecular graphs with a fixed number of vertices, and an algorithm is developed here which is able to answer this question. The algorithm is linear in the number of 10-tuples. The exhaustive computations have shown that the above one-to-one correspondence holds at least for all acyclic graphs with up to 100 vertices.

#### REFERENCES

- 1. I. Gutman, Croat. Chem. Acta 75 (2002) 357-369
- D. Vukičević and A. Graovac, *Croat. Chem. Acta* 77 (2004) 313–319
- 3. D. Veljan and D. Vukičević, unpublished work.
- 4. D. Vukičević and N. Trinajstić, unpublished work.
- A. Graovac, I. Gutman, and N. Trinajstić, *Topological Approach to the Chemistry of Conjugated Molecules*, Springer-Verlag, Berlin, 1977.
- N. Trinajstić, *Chemical Graph Theory*, CRC Press, Boca Raton, 1983; 2nd revised edition 1992.
- 7. H. Hosoya, Bull. Chem. Soc. Jpn. 44 (1971), 2332-2339.
- R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
- 9. M. V. Diudea, I. Gutman, and L. Jantschi, *Molecular Topology*, Nova, Huntington, 2001.
- 10. M. Randić, J. Am. Chem. Soc. 97 (1975), 6609-6615.

- 11. I. Gutman and N. Trinajstić, *Chem. Phys. Lett.* **17** (1972) 535–538.
- B. Lučić, A. Miličević, S. Nikolić, and N. Trinajstić, On Modified Zagreb Indices, in: A. Graovac, B. Pokrić, and V. Smrečki (Eds.), MATH/CHEM/COMP 2002 Book of Abstracts, ISBN 953-6690-22-5, Zagreb, 2002, p. 39.
- S. Nikolić, G. Kovačević, A. Miličević, and N. Trinajstić, Croat. Chem. Acta 76 (2003) 113–124.

Acknowledgement. – Partial support of the Ministry of Science and Technology of the Republic of Croatia (Grant No. 0037117 and Grant No. 0098039) is gratefully acknowledged.

## SAŽETAK

### Odnos susjednosti valencija i Randićevoga, Zagrebačkoga i modificiranoga Zagrebačkoga indeksa: Linearni algoritam za provjeru diskriminativnih svojstava indeksa u acikličkim grafovima

#### Damir Vukičević i Ante Graovac

Susjednost valencija u molekularnim grafovima opisana je desetorkama  $\mu_{ij}$  gdje  $\mu_{ij}$  označava broj bridova koji povezuju čvorove valencija *i* i *j*. Kraći opis susjednosti daju četvorke čiji su elementi broj vrhova u grafu i vrijednosti Randićevoga, Zagrebačkoga i modificiranoga Zagrebačkoga indeksa. Iznenađuje da su ova dva opisa u obostrano jednoznačnoj korespondenciji za sve acikličke molekule od praktičnog interesa, tj. za sve one koje sadrže najviše do 100 atoma. Ovaj rezultat je dobiven primjenom ovdje razvijenoga i opisanoga algoritma koji je linearan u broju desetorki  $\mu_{ij}$ .