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Abstract. A partially singularly perturbed linear system of second order ordinary differen-
tial equations of reaction-diffusion type with given boundary conditions is considered. The
leading terms of first m equations are multiplied by small positive singular perturbation
parameters which are assumed to be distinct. The rest of the equations are not singularly
perturbed. The first m components of the solution exhibit overlapping layers and the re-
maining n−m components have less-severe overlapping layers. Shishkin piecewise-uniform
meshes are used in conjunction with a classical finite difference discretisation, to construct
a numerical method for solving this problem. It is proved that the numerical approximation
obtained by this method is essentially second order convergent uniformly with respect to
all the parameters. Numerical illustrations are presented in support of the theory.
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1. Introduction

The following two-point boundary value problem is considered for the partially sin-
gularly perturbed linear system of second order differential equations

−E~u′′(x) +A(x)~u(x) = ~f(x) on Ω, ~u given on Γ, (1)

where Ω = {x : 0 < x < 1}, Ω = Ω ∪ Γ,Γ = {0, 1}. Here, for all x ∈ Ω, ~u(x) and
~f(x) are column n − vectors , E and A(x) are n × n matrices, E = diag (~ε), ~ε =
(ε1, . . . , εn). The parameters εi, i = 1, . . . ,m,m < n, are assumed to be distinct and,
for convenience, the ordering 0 < ε1 < · · · < εm < εm+1 = · · · = εn = 1 is assumed.
Clearly there are at most m singularly perturbed equations. The problem can also
be written in the operator form ~L~u = ~f on Ω, ~u given on Γ, where the operator ~L is
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defined by ~L = −ED2 +A and D2 = d2/dx2.
For all x ∈ Ω, it is assumed that the components aij(x) of A(x) satisfy the inequal-
ities

aii(x) >

n∑
j 6=i
j=1

|aij(x)|, for 1 ≤ i ≤ n and aij(x) ≤ 0, for i 6= j (2)

and, for some α

0 < α < min
x∈Ω
1≤i≤n

(

n∑
j=1

aij(x)). (3)

It is assumed that aij , fi ∈ C(2)(Ω) for i, j = 1, . . . , n. Then (1) has a solution
~u ∈ C(Ω) ∩ C(4)(Ω). It is also assumed that

√
εm ≤

√
α/6.

The norms ‖ ~V ‖= max1≤k≤n |Vk| for any n-vector ~V , ‖ y ‖= sup0≤x≤1 |y(x)|
for any scalar-valued function y and ‖ ~y ‖= max1≤k≤n ‖ yk ‖ for any vector-valued
function ~y are introduced. Throughout the paper C denotes a generic positive con-
stant, which is independent of x and of all singular perturbation and discretization
parameters. Furthermore, inequalities between vectors are understood in the com-
ponentwise sense.

In [8], the authors have suggested a parameter-uniform numerical method to solve a
system of n singularly perturbed ordinary differential equations of second order with
given boundary conditions. Motivated by [6] and [8], we have suggested a similar
method to solve the problem (1). Significant contributions to the development of the
techniques used here may be found in [1, 3, 4, 5, 6].

2. Standard analytical results

The operator ~L satisfies the following maximum principle.

Lemma 1. Let A(x) satisfy (2) and (3). Let ~ψ be any vector-valued function in the

domain of ~L such that ~ψ ≥ ~0 on Γ. Then ~L~ψ(x) ≥ ~0 on Ω implies that ~ψ(x) ≥ ~0 on
Ω.

Proof. Let i∗, x∗ be such that ψi∗(x
∗) = mini,x ψi(x) and assume that the lemma

is false. Then ψi∗(x
∗) < 0. From the hypotheses we have x∗ 6∈ Γ and ψ′′i∗(x

∗) ≥ 0.
Thus

(~L~ψ)i∗(x
∗) = −εi∗ψ′′i∗(x∗) +

n∑
j=1

ai∗,j(x
∗)ψj(x

∗) < 0,

which contradicts the assumption and proves the result for ~L.

Let Ã(x) be any principal sub-matrix of A(x) and ~̃L the corresponding operator. To

see that any ~̃L satisfies the same maximum principle as ~L, it suffices to observe that
the elements of Ã(x) satisfy a fortiori the same inequalities as those of A(x).



Numerical solution of a partial system of reaction-diffusion equations 273

Lemma 2. Let A(x) satisfy (2) and (3). If ~ψ is any vector-valued function in the

domain of ~L, then, for each i, 1 ≤ i ≤ n and x ∈ Ω,

|ψi(x)| ≤ max{‖ ~ψ ‖Γ, (1/α) ‖ ~L~ψ ‖}.

Proof. Define the two functions

~θ±(x) = max

{
‖ ~ψ ‖Γ,

1

α
‖ ~L~ψ ‖

}
~e± ~ψ(x)

where ~e = (1, . . . , 1)T is the unit column n−vector. Using the properties of A it is

not hard to verify that ~θ± ≥ ~0 on Γ and ~L~θ± ≥ ~0 on Ω. It follows from Lemma 1
that ~θ± ≥ ~0 on Ω as required.

Standard estimates of the exact solution and its derivatives are contained in the
following lemma.

Lemma 3. Let A(x) satisfy (2) and (3) and let ~u be the exact solution of (1). Then,
for all x ∈ Ω and each i = 1, . . . , n,

|ui(x)| ≤ C(||~u||Γ + ||~f ||),

|u(k)
i (x)| ≤ Cε

− k
2

i (||~u||+ ||~f ||), for k = 1, 2,

and

|u(k)
i (x)| ≤ Cε−(k−2)/2

1 ε−1
i (||~u||+ ||~f ||+ ε

(k−2)/2
1 ||~f (k−2)||), for k = 3, 4.

Proof. The bound on ~u is an immediate consequence of Lemma 2 and the differential
equation. Rewriting the differential equation (1) gives ~u′′ = E−1(A~u − ~f) and it is
not hard to see that the bounds on u′′i follow.

The bound of u′i(x), for i = 1, . . . ,m, can be derived as in [5, 8]. To bound u′i(x),
for i = m+ 1, . . . , n and any x, consider an interval Nx = [a, a+ t] where a ≥ 0 and
0 ≤ t ≤ 1−a such that x ∈ Nx. Then, by the mean value theorem, for some y ∈ Nx,

u′i(y) =
ui(a+ t)− ui(a)

t

and it follows that

|u′i(y)| ≤ 2

t
||ui||.

Now

u′i(x) = u′i(y) +

∫ x

y

u′′i (s)ds = u′i(y) + ε−1
i

∫ x

y

(−fi(s) +

n∑
j=1

aij(s)uj(s))ds

and so, for i = m+ 1, . . . , n,

|u′i(x)| ≤ |u′i(y)|+ C(‖ fi ‖ + ‖ ~u ‖)
∫ x

y

ds

≤ 2

t
||ui||+ Ct(‖ fi ‖ + ‖ ~u ‖)
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from which the required bound follows. Differentiating (1) once and twice give

~u(3) = E−1(A~u′ +A′~u− ~f ′),

~u(4) = E−1(A~u′′ + 2A′~u′ +A′′~u− ~f ′′)

and the bounds on u
(3)
i , u

(4)
i follow from those on u′i and u′′i .

The reduced solution u0,i, i = 1, . . . , n, of (1) is the solution of the reduced
problem ∑n

j=1 aij(x)u0,j(x) = fi(x), i = 1, . . . ,m,

−u′′0,i(x) +
∑n
j=1 aij(x)u0,j(x) = fi(x),

u0,i = ui on Γ,

}
i = m+ 1, . . . , n.

(4)

The Shishkin decomposition of the exact solution ~u of (1) is ~u = ~v + ~w where the

smooth component ~v is the solution of ~L~v = ~f in Ω, ~v = ~u0 on Γ and the singular
component ~w is the solution of ~L~w = ~0 in Ω, ~w = ~u − ~v on Γ. For convenience, the
left and right boundary layers of ~w are separated using the further decomposition
~w = ~wL + ~wR where ~L~wL = ~0 on Ω, ~wL(0) = ~u(0) − ~v(0), ~wL(1) = ~0 and ~L~wR =
~0 on Ω, ~wR(0) = ~0, ~wR(1) = ~u(1)− ~v(1).
Bounds on the smooth component and its derivatives are contained in

Lemma 4. Let A(x) satisfy (2) and (3). Then the smooth component ~v and its
derivatives satisfy, for each x ∈ Ω and i = 1, . . . , n,

|v(k)
i (x)| ≤ C, for k = 0, 1, 2

and

|v(k)
i (x)| ≤ C(1 + ε

1−k/2
i ) for k = 3, 4.

Proof. The bound on ~v is an immediate consequence of the defining equations for
~v and Lemma 2. Differentiating twice the equation for ~v, it is not hard to see that
~v′′ satisfies

~L~v′′ = ~g, where ~g = ~f ′′ −A′′~v − 2A′~v′. (5)

Also the defining equations for ~v yield v′′i = 0 on Γ for i = 1, . . . ,m and v′′i (0)
= s0

i , v
′′
i (1) = s1

i for i = m + 1, . . . , n where s0
i and s1

i are definite constants for

each i = m+ 1, . . . , n. Using the same arguments as in [8], the estimates of v
(k)
i (x),

k = 1, 2, 3 and 4 follow.

3. Improved estimates

The layer functions BLi , B
R
i , Bi, i = 1, . . . ,m,, associated with the solution ~u, are

defined on Ω by

BLi (x) = e−x
√
α/εi , BRi (x) = BLi (1− x), Bi(x) = BLi (x) +BRi (x).
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The following elementary properties of these layer functions, for all 1 ≤ i < j ≤ m
and 0 ≤ x < y ≤ 1, should be noted:

Bi(x) = Bi(1− x).

BLi (x) < BLj (x), BLi (x) > BLi (y), 0 < BLi (x) ≤ 1.

BRi (x) < BRj (x), BRi (x) < BRi (y), 0 < BRi (x) ≤ 1. (6)

Bi(x) is monotone decreasing for increasing x ∈ [0,
1

2
]. (7)

Bi(x) is monotone increasing for increasing x ∈ [
1

2
, 1]. (8)

Bi(x) ≤ 2BLi (x) for x ∈ [0,
1

2
], Bi(x) ≤ 2BRi (x) for x ∈ [

1

2
, 1].

BLi (2

√
εi√
α

lnN) = N−2. (9)

The interesting points x
(s)
i,j are now defined.

Definition 1. For BLi , BLj , each i, j, 1 ≤ i 6= j ≤ m and each s, s > 0, the point

x
(s)
i,j is defined by

BLi (x
(s)
i,j )

εsi
=
BLj (x

(s)
i,j )

εsj
. (10)

It is remarked that
BRi (1− x(s)

i,j )

εsi
=
BRj (1− x(s)

i,j )

εsj
. (11)

In the next lemma the existence and uniqueness of the points x
(s)
i,j are shown. Various

properties are also established.

Lemma 5. For all i, j, such that 1 ≤ i < j ≤ m and 0 < s ≤ 3/2, the points x
(s)
i,j

exist, are uniquely defined and satisfy the following inequalities

BLi (x)

εsi
>
BLj (x)

εsj
, x ∈ [0, x

(s)
i,j ),

BLi (x)

εsi
<
BLj (x)

εsj
, x ∈ (x

(s)
i,j , 1]. (12)

Moreover,

x
(s)
i,j < x

(s)
i+1,j , if i+ 1 < j and x

(s)
i,j < x

(s)
i,j+1, if i < j. (13)

Also

x
(s)
i,j < 2s

√
εj√
α

and x
(s)
i,j ∈ (0,

1

2
) if i < j. (14)

Analogous results hold for the BRi , BRj and the points 1− x(s)
i,j .

Proof. The proof is similar to that in [8].

Bounds on the singular components ~wL, ~wR of ~u and their derivatives are contained
in
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Lemma 6. Let A(x) satisfy (2) and (3). Then there exists a constant C, such that,
for each x ∈ Ω and i = 1, . . . ,m,

|wLi (x)| ≤ C1B
L
m(x) + C2εm(1−BLm(x)),

|wL,(k)
i (x)| ≤ C

m∑
q=i

(BLq (x)/εk/2q ), k = 1, 2,

|wL,(3)
i (x)| ≤ C

m∑
q=1

(BLq (x)/ε3/2
q ),

|εiwL,(4)
i (x)| ≤ C

m∑
q=1

(BLq (x)/εq)

and for i = m+ 1, . . . , n,

|wLi (x)| ≤ C2εm(1−BLm(x)),

|wL,(k)
i (x)| ≤ C1B

L
m(x) + C2εm(1−BLm(x)), k = 1, 2,

|wL,(k)
i (x)| ≤ C

m∑
q=1

(BLq (x)/ε(k−2)/2
q ), k = 3, 4.

Analogous results hold for wRi and their derivatives.

Proof. The lemma is proved by induction. The initial case when n = 2 and m = 1
is dealt with in [6]. Assume the lemma to be true for a partially singularly perturbed
system of n−1 equations wherem, 1 ≤ m ≤ n−2, equations are singularly perturbed.

Now consider ~L~wL = ~0 on Ω, where ~wL is an n−vector and m equations where
0 ≤ m ≤ n− 1 are singularly perturbed. Inspired by [6], we define

θ±i (x) = C1B
L
m(x) + C2εm(1−BLm(x))± wLi (x), i = 1, . . . ,m

and

θ±i (x) = C2εm(1−BLm(x))± wLi (x), i = m+ 1, . . . , n.

We have m singular perturbation parameters unlike in [6] where there is only one pa-
rameter and we choose the largest parameter and use it in the appropriate definition.
Using Lemma 1 for ~θ±, we have∣∣wLi (x)

∣∣ ≤ C1B
L
m(x) + C2εm(1−BLm(x)) for i = 1, . . . ,m

and ∣∣wLi (x)
∣∣ ≤ C2εm(1−BLm(x)) for i = m+ 1, . . . , n,

with a suitable choice of the constants C1 and C2.
Using arguments analogous to those used to bound u′i(x), i = m + 1, . . . , n, in

Lemma 3, it can be proved that

|wL,′n (x)| ≤ C1B
L
m(x) + C2εm(1−BLm(x)). (15)
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To bound the second order derivative wL,′′n , we consider

−wL,′′n (x) +

n∑
j=1

anj(x)wLj (x) = 0 (16)

which implies that

|wL,′′n (x)| ≤ C1B
L
m(x) + C2εm(1−BLm(x)). (17)

Differentiating (16) once and twice and using the bounds of wLi (x), i = 1, . . . , n,

(15), (17) and the induction hypothesis for the bounds of w
L,(k)
i (x), i = 1, . . . , n− 1

and k = 1, 2, we have

|wL,(k)
n (x)| ≤ C

m∑
q=1

(BLq (x)/ε(k−2)/2
q ), k = 3, 4.

Consider the first n−1 equations satisfied by ~wL, it follows that −Ẽ ~̃wL,′′+Ã ~̃wL = ~g,
where Ẽ, Ã are the matrices obtained by deleting the last row and column from E,A
respectively, ~̃wL = (wL1 , . . . , w

L
n−1) and the components of ~g are gi = −ai,nwLn for

1 ≤ i ≤ n− 1.

Using the bounds already obtained for w
L,(k)
n , k = 0, . . . , 4, it is seen that ~g is

bounded by C2εm(1−BLm(x)), ~g′ and ~g′′ by C1B
L
m(x) +C2εm(1−BLm(x)) and ~g(k)

by C
∑m
q=1(BLq (x)/ε

(k−2)/2
q ), k = 3, 4.

The boundary conditions for ~̃wL are ~̃wL(0) = ~̃u(0)− ~̃u0(0), ~̃wL(1) = ~̃0, where ~̃u0

is the solution of the reduced problem (4) and are bounded by C(‖ ~u(0) ‖ + ‖ ~f(0) ‖)
and C(‖ ~u(1) ‖ + ‖ ~f(1) ‖).

Now decompose ~̃wL into smooth and singular components to get ~̃wL = ~z +
~r, ~̃wL,′ = ~z′+~r′. Applying Lemma 4 to ~z and using the bounds on the inhomogeneous
term ~g and its derivatives ~g(k), k = 1, . . . , 4, it follows that

|~z(k)(x)| ≤ C1B
L
m(x) + C2εm(1−BLm(x)), k = 1, 2

and

|~z(k)(x)| ≤ C
m∑
q=1

(BLq (x)/ε(k−2)/2
q ), k = 3, 4.

As ~r is the singular component of the solution of a system of n−1 equations, consider
the following two cases:

Case 1: All the n− 1 equations are singularly perturbed:
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Then from Lemma 7 of [8], the estimates are obtained as, for i = 1, . . . , n− 1,

|r(k)
i (x)| ≤ C

n−1∑
q=i

(BLq (x)/εk/2q ), k = 1, 2,

|r(3)
i (x)| ≤ C

n−1∑
q=1

(BLq (x)/ε3/2
q ),

|εir(4)
i (x)| ≤ C

n−1∑
q=1

(BLq (x)/εq).

Case 2: The n− 1 equations are partially singularly perturbed:
Then by induction on ~r, the estimates are obtained as:
for i = 1, . . . ,m,

|r(k)
i (x)| ≤ C

m∑
q=i

(BLq (x)/εk/2q ), k = 1, 2,

|r(3)
i (x)| ≤ C

m∑
q=1

(BLq (x)/ε3/2
q )

|εir(4)
i (x)| ≤ C

m∑
q=1

(BLq (x)/εq)

and for i = m+ 1, . . . , n− 1,

|r(k)
i (x)| ≤ C1B

L
m(x) + C2εm(1−BLm(x)), k = 1, 2,

|r(k)
i (x)| ≤ C

m∑
q=1

(BLq (x)/ε(k−2)/2
q ), k = 3, 4.

Combining the bounds for the derivatives of zi and ri, i = 1, . . . , n − 1, the

bounds of w
L,(k)
i (x), i = 1, . . . , n− 1 and k = 1, . . . , 4, follow.

Thus, the bounds on w
L,(k)
i (x), k = 1, . . . , 4, hold for a system with n equations,

as required. A similar proof of the analogous results for the right boundary layer
functions holds.

In the following lemma sharper estimates of the smooth component are presented.

Lemma 7. Let A(x) satisfy (2) and (3). Then the smooth component ~v of the
solution ~u of (1) satisfies for k = 0, 1, 2 and x ∈ Ω,

|v(k)
i (x)| ≤ C[1 +Bm(x)], for i = 1, . . . , n,

|v′′′i (x)| ≤ C(1 +

m∑
q=i

(Bq(x)/
√
εq)), for i = 1, . . . ,m,

and
|v′′′i (x)| ≤ C[1 +Bm(x)], for i = m+ 1, . . . , n.
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Proof. Define barrier functions

~ψ±(x) = C[1 +Bm(x)]~e± ~v(k)(x), k = 0, 1, 2 and x ∈ Ω.

Using the estimates of ~v(k)(x), k = 0, 1, 2 from Lemma 4, the required bounds for
~v(k)(x), k = 0, 1, 2 are obtained using Lemma 1.

Consider (5) from Lemma 4 and note that ‖ ~g′ ‖≤ C. For convenience let ~p
denote ~v′′. If ~z and ~r are the smooth and singular components of ~p, then for x ∈ Ω,

|v′′′i (x)| = |p′i(x)| ≤ |z′i(x)|+ |r′i(x)|

and using Lemmas 4 and 6, the required bound for ~v′′′ follows.

4. The Shishkin mesh

A piecewise uniform Shishkin mesh with N mesh-intervals is now constructed. Let

ΩN = {xj}N−1
j=1 ,Ω

N
= {xj}Nj=0

and ΓN = Γ. The mesh Ω
N

is a piecewise-uniform mesh on [0, 1] obtained by dividing
[0, 1] into 2m+ 1 mesh-intervals as follows

[0, σ1] ∪ · · · ∪ (σm−1, σm] ∪ (σm, 1− σm] ∪ (1− σm, 1− σm−1] ∪ · · · ∪ (1− σ1, 1].

The m parameters σr, which determine the points separating the uniform meshes,
are defined by σ0 = 0, σm+1 = 1

2 and, for r = m, . . . 1,

σr = min

{
σr+1

2
, 2

√
εr√
α

lnN

}
. (18)

Clearly

0 < σ1 < · · · < σm ≤
1

4
,

3

4
≤ 1− σm < · · · < 1− σ1 < 1.

Then, on the sub-interval (σm, 1 − σm] a uniform mesh with N/2 mesh-intervals is
placed, on each of the sub-intervals (σr, σr+1] and (1 − σr+1, 1 − σr], r
= 1, . . . ,m− 1, a uniform mesh of N/2m−r+2 mesh-intervals is placed and on both
of the sub-intervals [0, σ1] and (1− σ1, 1] a uniform mesh of N/2m+1 mesh-intervals
is placed. In practice it is convenient to take

N = 2m+p+1 (19)

for some natural number p. It follows that, for 2 ≤ r ≤ m, in the sub-interval
[σr−1, σr] there are N/2m−r+3 = 2r+p−2 mesh-intervals and in each of [0, σ1] and
[σ1, σ2] there are N/2m+1 = 2p mesh-intervals. This construction leads to a class of

2m piecewise uniform Shishkin meshes Ω
N

.
From the above construction it is clear that the transition points {σr, 1−σr}mr=1

are the only points at which the mesh-size can change and that it does not necessarily
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change at each of these points. The following notation is introduced: if xj = σr,
then h−r = xj − xj−1, h

+
r = xj+1 − xj , J = {σr : h+

r 6= h−r }. In general, for each
point xj in the mesh-interval (σr−1, σr],

xj − xj−1 = 2m−r+3N−1(σr − σr−1). (20)

Also, for xj ∈ (σm,
1
4 ], xj − xj−1 = N−1(1− 4σm) and for xj ∈ (0, σ1], xj − xj−1 =

2m+1N−1σ1. Thus, for 1 ≤ r ≤ m, the change in the mesh-size at the point xj = σr
is

h+
r − h−r = 2m−r+3N−1(dr − dr−1), (21)

where

dr =
σr+1

2
− σr (22)

with the convention d0 = 0. Notice that dr ≥ 0, that ΩN is a classical uniform mesh
when dr = 0 for all r = 1 . . .m and, from (18), that

σr ≤ C
√
εr lnN, 1 ≤ r ≤ m. (23)

It follows from (20) and (23) that for r = 1, . . . ,m,

h−r + h+
r ≤ C

√
εr+1N

−1 lnN. (24)

Also

σr = 2−(s−r+1)σs+1 when dr = · · · = ds = 0, 1 ≤ r ≤ s ≤ m. (25)

The results in the following lemma are used later.

Lemma 8. Assume that dr > 0 for some r, 1 ≤ r ≤ m. Then the following inequal-
ities hold

BLr (1− σr) ≤ BLr (σr) = N−2, (26)

x
(s)
r−1,r ≤ σr − h−r for 0 < s ≤ 3/2, 1 < r ≤ m, (27)

BLq (σr − h−r ) ≤ CBLq (σr) for 1 ≤ r ≤ q ≤ m, (28)

BLq (σr)√
εq

≤ C
1√

εr lnN
for 1 ≤ q ≤ m, 1 ≤ r ≤ m. (29)

Analogous results hold for BRr .

Proof. The proof is similar to that in [8].

Remark 1. It is not hard to verify that the different properties of the geometry
of the mesh and the relationship between the transition points σr’s and the layer

interaction points x
(s)
i,j , established here also hold good for the mesh considered in

[3]. Hence, the entire numerical analysis holds good for the mesh in [3] also.
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5. The discrete problem

In this section a classical finite difference operator with an appropriate Shishkin mesh
is used to construct a numerical method for (1), which is shown later to be essentially
second order parameter-uniform convergent. It is assumed that the problem data
satisfy whatever smoothness conditions are required.
The discrete two-point boundary value problem is now defined on any mesh by the
finite difference method

−Eδ2~U(x) +A(x)~U(x) = ~f(x) on ΩN , ~U = ~u on ΓN . (30)

This is used to compute numerical approximations to the exact solution of (1). It
is assumed henceforth that the mesh is a Shishkin mesh, as defined in the previous
section. Note that (30) can also be written in the operator form

~LN ~U = ~f on ΩN , ~U = ~u on ΓN ,

where
~LN = −Eδ2 +A

and δ2, D+ and D− are the difference operators

δ2~U(xj) =
D+~U(xj)−D−~U(xj)

(xj+1 − xj−1)/2
,

D+~U(xj) =
~U(xj+1)− ~U(xj)

xj+1 − xj
and

D−~U(xj) =
~U(xj)− ~U(xj−1)

xj − xj−1
.

For any function ~Z defined on the Shishkin mesh Ω
N

, we define

||~Z|| = max
i,j
|Zi(xj)|.

The following discrete results are analogous to those for the continuous case.

Lemma 9. Let A(x) satisfy (2) and (3). Then, for any vector-valued mesh function
~Ψ, the inequalities ~Ψ ≥ ~0 on ΓN and ~LN ~Ψ ≥ ~0 on ΩN imply that ~Ψ ≥ ~0 on Ω

N
.

Proof. Let i∗, j∗ be such that Ψi∗(xj∗) = mini,j Ψi(xj) and assume that the lemma
is false. Then Ψi∗(xj∗) < 0. From the hypotheses we have j∗ 6= 0, N and

Ψi∗(xj∗)−Ψi∗(xj∗−1) ≤ 0,

Ψi∗(xj∗+1)−Ψi∗(xj∗) ≥ 0,

so δ2Ψi∗(xj∗) > 0. It follows that

(~LN ~Ψ)i∗(xj∗) = −εi∗δ2Ψi∗(xj∗) +

n∑
k=1

ai∗,k(xj∗)Ψk(xj∗) < 0,

which is a contradiction, as required.
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An immediate consequence of this is the following discrete stability result.

Lemma 10. Let A(x) satisfy (2) and (3). Then, for any vector-valued mesh function
~Ψ on Ω

N
and i = 1, . . . , n,

|Ψi(xj)| ≤ max

{
||~Ψ||ΓN ,

1

α
||~LN ~Ψ||

}
, 0 ≤ j ≤ N.

Proof. Define the two functions

~Θ±(xj) = max{||~Ψ||ΓN ,
1

α
||~LN ~Ψ||}~e± ~Ψ(xj)

where ~e = (1, . . . , 1) is the unit n−vector. Using the properties of A it is not hard

to verify that ~Θ± ≥ ~0 on ΓN and ~LN ~Θ± ≥ ~0 on ΩN . It follows from Lemma 9 that
~Θ± ≥ ~0 on Ω

N
.

The following comparison principle will be used in the proof of the error estimate.

Lemma 11. Assume that, for each i = 1, . . . , n, the vector-valued mesh functions
~Φ and ~Z satisfy

|Zi| ≤ Φi on ΓN and |(~LN ~Z)i| ≤ (~LN ~Φ)i on ΩN .

Then, for each i = 1, . . . , n,

|Zi| ≤ Φi on Ω
N
.

Proof. Define the two mesh functions ~Ψ± by

~Ψ± = ~Φ± ~Z.

Then, for each i = 1, . . . , n,Ψ±i satisfies

Ψ±i ≥ 0 on ΓN and (~LN ~Ψ±)i ≥ 0 on ΩN .

The result follows from an application of Lemma 9.

6. The local truncation error

From Lemma 10, it is seen that in order to bound the error ~U − ~u, it suffices to
bound ~LN (~U − ~u). But this expression satisfies, for xj ∈ ΩN ,

~LN (~U − ~u) = ~LN (~U)− ~LN (~u) = ~f − ~LN (~u) = ~L(~u)− ~LN (~u)

= (~L− ~LN )~u = −E(δ2 −D2)~u

which is the local truncation of the second derivative. Let ~V , ~WL, ~WR be the discrete
analogues of ~v, ~wL, ~wR respectively. Then, similarly,

~LN (~V − ~v) = −E(δ2 −D2)~v,

~LN ( ~WL − ~wL) = −E(δ2 −D2)~wL,

~LN ( ~WR − ~wR) = −E(δ2 −D2)~wR.
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By the triangle inequality,

‖ ~LN (~U − ~u) ‖≤‖ ~LN (~V − ~v) ‖ + ‖ ~LN ( ~W − ~w) ‖ . (31)

Thus, the smooth and singular components of the local truncation error can be
treated separately. In view of this it is noted that, for any smooth function ψ and
for each xj ∈ ΩN , the following distinct estimates of the local truncation error hold:

|(δ2 −D2)ψ(xj)| ≤ C max
s∈Ij
|ψ′′(s)|, (32)

|(δ2 −D2)ψ(xj)| ≤ C(xj+1 − xj−1) max
s∈Ij
|ψ(3)(s)|. (33)

Furthermore, if xj /∈ J , then

|(δ2 −D2)ψ(xj)| ≤ C(xj+1 − xj−1)2 max
s∈Ij
|ψ(4)(s)|. (34)

Here Ij = [xj−1, xj+1].

7. Error estimate

The proof of the error estimate is split into two parts. In the first, a theorem
concerning the smooth part of the error is proved. Then the singular part of the
error is considered. A barrier function is now constructed, which is used in both
parts of the proof.

For each xj = σr ∈ J , introduce a piecewise linear polynomial θr on Ω, defined
by

θr(x) =


x

σr
, 0 ≤ x ≤ σr,

1, σr < x < 1− σr.
1− x
σr

, 1− σr ≤ x ≤ 1.

It is not hard to verify that for any xj ∈ ΩN

(~LNθr~e)i(xj) ≥

αθr(xj), if xj /∈ J
α+

2εi

σr(h
−
r + h+

r )
, if xj ∈ J, xj ∈ {σr, 1− σr}. (35)

Now, define the barrier function ~Φ by

~Φ(xj) = C[(N−1 lnN)2 + (N−1 lnN)2
∑

{r:σr∈J}

θr(xj)]~e, (36)

where C is any sufficiently large constant.
Then, on ΩN , ~Φ satisfies

0 ≤ Φi(xj) ≤ C(N−1 lnN)2, 1 ≤ i ≤ n. (37)
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Also, for xj /∈ J ,

(~LN ~Φ)i(xj) ≥ C(N−1 lnN)2 (38)

and, for xj ∈ J, xj ∈ {σr, 1− σr}, using (23), (24) and (35),

(~LN ~Φ)i(xj) ≥ C((N−1 lnN)2 +
εi√

εr
√
εr+1

N−1). (39)

The following theorem gives the estimate for the smooth component of the error.

Theorem 1. Let A(x) satisfy (2) and (3). Let ~v denote the smooth component of

the exact solution from (1) and ~V the smooth component of the discrete solution
from (30). Then

||~V − ~v|| ≤ C(N−1 lnN)2. (40)

Proof. By the comparison principle in Lemma 11, it suffices to show that, for all
i, j and some C,

|(~LN (~V − ~v))i(xj)| ≤ (~LN ~Φ)i(xj). (41)

For each mesh point xj there are two possibilities: either xj /∈ J or xj ∈ J .
If xj /∈ J , apply Lemma 4 and (34) to get

|(~LN (~V − ~v))i(xj)| ≤ C(xj+1 − xj−1)2

≤ C(N−1 lnN)2.
(42)

Then (38) and (42) imply (41).
On the other hand, if xj ∈ J , then xj ∈ {σr, 1−σr}, for some r, 1 ≤ r ≤ m. Here

the argument for xj = σr is given. For xj = 1− σr, it is analogous.
If xj = σr ∈ J , apply Lemma 7 and (33) to get

|(~LN (~V − ~v))i(xj)| ≤ Cεi(xj+1 − xj−1)(1 +

m∑
q=i

Bq(xj−1)√
εq

),

so, since xj−1 = σr − h−r ,

|(~LN (~V − ~v))i(xj)| ≤ CεiN−1(1 +

m∑
q=i

Bq(σr − h−r )√
εq

). (43)

For each r, 1 ≤ r ≤ m, there are at most two possibilities: either i ≥ r or i ≤ r − 1.
If i ≥ r, then

m∑
q=i

Bq(σr − h−r )√
εq

≤ C√
εi
≤ C√

εr
.

Substituting this into (43) gives

|(~LN (~V − ~v))i(xj)| ≤ C
εi√
εr
N−1. (44)

(39) and (44) imply (41).
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If i ≤ r−1, which arises only if r ≥ 1, there are two possibilities: either dr > 0 or
dr = 0 and dr−1 > 0, because the case dr = dr−1 = 0 cannot occur for xj = σr ∈ J .
Since xj−1 = σr − h−r and σr − h−r < 1

2 ,

Bq(xj−1) = Bq(σr − h−r ) = BLq (σr − h−r ) +BRq (σr − h−r ) ≤ 2BLq (σr − h−r ).

Then
m∑
q=i

Bq(σr − h−r )√
εq

≤ 2

m∑
q=i

BLq (σr − h−r )
√
εq

.

If dr > 0, then using (12) in Lemma 5 and (27) in Lemma 8 give

BLq (σr − h−r )
√
εq

≤ BLr (σr − h−r )√
εr

for 1 ≤ q ≤ r. Hence
m∑
q=i

Bq(σr − h−r )√
εq

≤ C√
εr
.

Substituting this into (43) gives

|(~LN (~V − ~v))i(xj)| ≤ C
εi√
εr
N−1. (45)

(39) and (45) imply (41).

If dr = 0 and dr−1 > 0 then using (12) and the fact that σr − h−r ≥ σr−1

≥ xq,r−1, 1 ≤ q ≤ r − 2 give

BLq (σr − h−r )
√
εq

≤
BLr−1(σr − h−r )
√
εr−1

for 1 ≤ q ≤ r − 1. Hence

m∑
q=i

BLq (σr − h−r )
√
εq

≤ C
m∑

q=r−1

BLq (σr−1)
√
εq

≤ C[
BLr−1(σr−1)
√
εr−1

+
1√
εr

]C[
N−2

√
εr−1

+
1√
εr

].

Substituting this into (43) gives

|(LN (~V − ~v))i(xj)| ≤ C[ εi√
εr
N−1 + εi√

εr−1
N−3]

≤ C εi√
εr−1

N−1.
(46)

(39) and (46) imply (41). This completes the proof.

In order to estimate the singular component of the error the following four lemmas
are required.



286 M. Paramasivam, J. J. H. Miller and S. Valarmathi

Lemma 12. Assume that xj /∈ J . Let A(x) satisfy (2) and (3). Then, on ΩN , for
each 1 ≤ i ≤ n, the following estimates hold

|(~LN ( ~WL − ~wL))i(xj)| ≤ C
(xj+1 − xj−1)2

ε1
. (47)

An analogous result holds for the ~WR − ~wR.

Proof. Since xj /∈ J , from (34) and Lemma 6, it follows that

|(~LN ( ~WL − ~wL))i(xj)| = |εi(δ2 −D2)wLi (xj)|

≤ C(xj+1 − xj−1)2 max
s∈Ij

m∑
q=1

BLq (s)

εq

≤ C
(xj+1 − xj−1)2

ε1

as required.

The following decompositions of the singular components wLi are used in the next
lemma

wLi =

r+1∑
q=1

wi,q, (48)

where the components wi,q are defined by

wi,r+1 =

{
p

(s)
i , on [0, x

(s)
r,r+1)

wLi , otherwise

and, for each q, r ≥ q ≥ 2,

wi,q =


p

(s)
i , on [0, x

(s)
q−1,q)

wLi −
r+1∑
k=q+1

wi,k, otherwise

and

wi,1 = wLi −
r+1∑
k=2

wi,k on [0, 1].

Here the polynomials p
(s)
i , for s = 3/2 and s = 1, are defined by

p
(3/2)
i (x) =

3∑
k=0

w
L,(k)
i (x

(3/2)
r,r+1)

(x− x(3/2)
r,r+1)k

k!

and

p
(1)
i (x) =

4∑
k=0

w
L,(k)
i (x

(1)
r,r+1)

(x− x(1)
r,r+1)k

k!
.
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Notice that the decomposition (48) depends on the choice of the polynomials p
(s)
i

and that the x
(s)
i,j are defined by (10). The following lemma provides estimates of

the derivatives of the components in the decomposition (48).

Lemma 13. Assume that dr > 0 for some r, 1 ≤ r ≤ m. Let A(x) satisfy (2) and
(3). Then, for each q and r, 1 ≤ q ≤ r, and all xj ∈ ΩN , the components in the
decomposition (48) satisfy the following estimates for each 1 ≤ i ≤ m,

|w′′i,q(xj)| ≤ C min{ 1

εi
,

1

εq
}BLq (xj),

|w′′′i,q(xj)| ≤ C min{ 1

εi
√
εq
,

1

ε
3/2
q

}BLq (xj),

|w′′′i,r+1(xj)| ≤ C min{
m∑

k=r+1

BLk (xj)

εi
√
εk

,

m∑
k=r+1

BLk (xj)

ε
3/2
k

},

|w(4)
i,q (xj)| ≤ C

BLq (xj)

εiεq
,

|w(4)
i,r+1(xj)| ≤ C

m∑
k=r+1

BLk (xj)

εiεk

and, for each m+ 1 ≤ i ≤ n,

|w′′i,q(xj)| ≤ CBLq (xj),

|w′′′i,q(xj)| ≤ C
BLq (xj)√

εq
,

|w′′′i,r+1(xj)| ≤ C

m∑
k=r+1

BLk (xj)√
εk

,

|w(4)
i,q (xj)| ≤ C

BLq (xj)

εq
,

|w(4)
i,r+1(xj)| ≤ C

m∑
k=r+1

BLk (xj)

εk
.

Analogous results hold for the wRi and their derivatives.

Proof. Consider first the decomposition (48) corresponding to the polynomials

p
(3/2)
i . From the above definitions it follows that, for each q, 1 ≤ q ≤ r,

wi,q = 0 on [x
(3/2)
q,q+1, 1].

To establish the bounds on the third derivatives, for i = 1, . . . ,m, it is seen that:

for x ∈ [x
(3/2)
r,r+1, 1], Lemma 6 and x ≥ x(3/2)

r,r+1 imply that

|w′′′i,r+1(x)| = |wL,′′′i (x)| ≤ C
m∑
k=1

BLk (x)

ε
3/2
k

≤ C
m∑

k=r+1

BLk (x)

ε
3/2
k

;
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for x ∈ [0, x
(3/2)
r,r+1], Lemma 6 and x ≤ x(3/2)

r,r+1 imply that

|w′′′i,r+1(x)| = |wL,′′′i (x
(3/2)
r,r+1)| ≤ C

∑m
k=1

BL
k (x

(3/2)
r,r+1)

ε
3/2
k

≤ C
∑m
k=r+1

BL
k (x

(3/2)
r,r+1)

ε
3/2
k

≤ C
∑m
k=r+1

BL
k (x)

ε
3/2
k

;

and for each q = r, . . . , 2, it follows that

for x ∈ [x
(3/2)
q,q+1, 1], w′′′i,q = 0;

for x ∈ [x
(3/2)
q−1,q, x

(3/2)
q,q+1], Lemma 6 implies that

|w′′′i,q(x)| ≤ |wL,′′′i (x)|+
r+1∑
k=q+1

|w′′′i,k(x)| ≤ C
m∑
k=1

BLk (x)

ε
3/2
k

≤ C
BLq (x)

ε
3/2
q

, using (12);

for x ∈ [0, x
(3/2)
q−1,q], Lemma 6 and x ≤ x(3/2)

q−1,q imply that

|w′′′i,q(x)| = |wL,′′′i (x
(3/2)
q−1,q)| ≤ C

m∑
k=1

BLk (x
(3/2)
q−1,q)

ε
3/2
k

≤ C
BLq (x

(3/2)
q−1,q)

ε
3/2
q

≤ C
BLq (x)

ε
3/2
q

, using (10) and (12);

for x ∈ [x
(3/2)
1,2 , 1], w′′′i,1 = 0;

for x ∈ [0, x
(3/2)
1,2 ], Lemma 6 implies that

|w′′′i,1(x)| ≤ |wL,′′′i (x)|+
r+1∑
k=2

|w′′′i,k(x)| ≤ C
m∑
k=1

BLk (x)

ε
3/2
k

≤ CB
L
1 (x)

ε
3/2
1

.

The required bounds for |w′′′i,q(x)|, for i = m + 1, . . . , n and q = r + 1, . . . , 1,

are obtained using the above steps with the appropriate bound of |wL,′′′i (x)|, i
= m+ 1, . . . , n, from Lemma 6.

For the bounds on the second derivatives note that, for i = 1, . . . ,m and each q,
1 ≤ q ≤ r:

for x ∈ [x
(3/2)
q,q+1, 1], w′′i,q = 0;

for x ∈ [0, x
(3/2)
q,q+1],∫ x

(3/2)
q,q+1

x

w′′′i,q(ψ)dψ = w′′i,q(x
(3/2)
q,q+1)− w′′i,q(x) = −w′′i,q(x)

and so

|w′′i,q(x)| ≤
∫ x

(3/2)
q,q+1

x

|w′′′i,q(ψ)|dψ ≤ C

ε
3/2
q

∫ x
(3/2)
q,q+1

x

BLq (ψ)dψ ≤ C
BLq (x)

εq
.
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Similarly, for i = m + 1, . . . , n and each q, 1 ≤ q ≤ r, |w′′i,q(x)| ≤ CBLq (x). This
completes the proof of the estimates for s = 3/2.

Secondly, consider the decomposition (48) corresponding to the polynomials p
(1)
i .

From the above definitions it follows that, for each q, 1 ≤ q ≤ r, wi,q = 0 on

[x
(1)
q,q+1, 1]. To establish the bounds on the fourth derivatives it is seen that:

for x ∈ [x
(1)
r,r+1, 1], Lemma 6 and x ≥ x(1)

r,r+1 imply that

|εiw(4)
i,r+1(x)| = |εiwL,(4)

i (x)| ≤ C
m∑
k=1

BLk (x)

εk
≤ C

m∑
k=r+1

BLk (x)

εk
;

for x ∈ [0, x
(1)
r,r+1], Lemma 6 and x ≤ x(1)

r,r+1 imply that

|εiw(4)
i,r+1(x)| = |εiwL,(4)

i (x
(1)
r,r+1)| ≤ C

m∑
k=1

BLk (x
(1)
r,r+1)

εk

≤ C

m∑
k=r+1

BLk (x
(1)
r,r+1)

εk
≤ C

m∑
k=r+1

BLk (x)

εk
;

and for each q = r, . . . , 2, it follows that

for x ∈ [x
(1)
q,q+1, 1], w

(4)
i,q = 0;

for x ∈ [x
(1)
q−1,q, x

(1)
q,q+1], Lemma 6 implies that

|εiw(4)
i,q (x)| ≤ |εiwL,(4)

i (x)|+
r+1∑
k=q+1

|εiw(4)
i,k (x)| ≤ C

m∑
k=1

BLk (x)

εk
≤ C

BLq (x)

εq
, using (12);

for x ∈ [0, x
(1)
q−1,q], Lemma 6 and x ≤ x(1)

q−1,q imply that

|εiw(4)
i,q (x)| = |εiwL,(4)

i (x
(1)
q−1,q)| ≤ C

m∑
k=1

BLk (x
(1)
q−1,q)

εk

≤ C
BLq (x

(1)
q−1,q)

εq
≤ C

BLq (x)

εq
, using (10) and (12);

for x ∈ [x
(1)
1,2, 1], w

(4)
i,1 = 0;

for x ∈ [0, x
(1)
1,2], Lemma 6 implies that

|εiw(4)
i,1 (x)| ≤ |εiwL,(4)

i (x)|+
r+1∑
k=2

|εiw(4)
i,k (x)| ≤ C

m∑
k=1

BLk (x)

εk
≤ CB

L
1 (x)

ε1
.

For the bounds on the second and third derivatives note that, for each q,
1 ≤ q ≤ r :

for x ∈ [x
(1)
q,q+1, 1], w′′i,q = 0 = w′′′i,q;
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for x ∈ [0, x
(1)
q,q+1],

∫ x
(1)
q,q+1

x

εiw
(4)
i,q (ψ)dψ = εiw

′′′
i,q(x

(1)
q,q+1)− εiw′′′i,q(x) = −εiw′′′i,q(x)

and so

|εiw′′′i,q(x)| ≤
∫ x

(1)
q,q+1

x

|εiw(4)
i,q (ψ)|dψ ≤ C

εq

∫ x
(1)
q,q+1

x

BLq (ψ)dψ ≤ C
BLq (x)
√
εq

.

In a similar way, it can be shown that

|εiw′′i,q(x)| ≤ CBLq (x).

The proof for the wRi and their derivatives is similar.

Lemma 14. Assume that dr > 0 for some r, 1 ≤ r ≤ m. Let A(x) satisfy (2) and
(3). Then, if xj /∈ J,

|(~LN ( ~WL − ~wL))i(xj)| ≤ C[BLr (xj−1) +
(xj+1 − xj−1)2

εr+1
] (49)

and if xj ∈ J

|(~LN ( ~WL − ~wL))i(xj)| ≤ C[N−2 +
εi√

εr
√
εr+1

N−1]. (50)

Analogous results hold for the ~WR − ~wR.

Proof. Suppose first that xj /∈ J . Then, by (32), (34) and Lemma 13

|εi(δ2 −D2)wLi (xj)|

≤ C[
∑r
q=1 max

s∈Ij
|εiw′′i,q(s)|+ (xj+1 − xj−1)2 max

s∈Ij
|εiw(4)

i,r+1(s)|]

≤ C[
∑r
q=1 min{1, εiεq }B

L
q (xj−1) + (xj+1 − xj−1)2

∑m
q=r+1

BL
q (xj−1)

εq
]

≤ C[BLr (xj−1) +
(xj+1−xj−1)2

εr+1
].

(51)

Suppose now that xj = σr ∈ J (an analogous argument holds if xj = 1 − σr ∈ J).
Then, by Lemma 13 and expressions (32) and (33),

|εi(δ2 −D2)wLi (xj)|
≤ C[

∑r
q=1 max

s∈Ij
|εiw′′i,q(s)|+ (xj+1 − xj−1) max

s∈Ij
|εiw′′′i,r+1(s)|]

≤ C[
∑r
q=1 min{1, εiεq }B

L
q (σr − h−r ) + (h−r + h+

r )
∑m
q=r+1 min{1, εiεq }

BL
q (σr−h−r )
√
εq

].
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When i ≥ r + 1 replace both minima by the upper bound 1 and get, using (6),
(28),(29),(26) and (24),

|εi(δ2 −D2)wLi (xj)| ≤ C[BLr (σr − h−r ) + (h−r + h+
r )

m∑
q=r+1

BLq (σr)√
εq

]

≤ C[BLr (σr) +
h−r + h+

r√
εr lnN

] ≤ C[N−2 +

√
εr+1√
εr

N−1]

≤ C[N−2 +
εi√

εr
√
εr+1

N−1],

which is (50) for this case. On the other hand, when i ≤ r replace both minima by
the upper bound εi

εq
and get, using Lemma 8,

|εi(δ2 −D2)wLi (xj)|

≤ C[εi
BL

r (σr−h−r )
εr

+ (h−r + h+
r )εi

∑m
q=r+1

BL
q (σr)

ε
3/2
q

]

≤ C[ εiεrN
−2 + εi√

εr
√
εr+1

N−1] ≤ C[N−2 + εi√
εr
√
εr+1

N−1],

which is (50) for this case. The proof for ~WR − ~wR is similar.

Lemma 15. Let A(x) satisfy (2) and (3). Then, on ΩN , for each i = 1, . . . , n, the
following estimates hold

|(~LN ( ~WL − ~wL))i(xj)| ≤ CBLm(xj−1). (52)

An analogous result holds for ~WR − ~wR.

Proof. From (32) and Lemma 6, for each i = 1, . . . ,m, it follows that on ΩN ,

|(~LN ( ~WL − ~wL))i(xj)| = |εi(δ2 −D2)wLi (xj)|

≤ Cεi

m∑
q=i

BLq (xj−1)

εq
)

≤ CBLm(xj−1)

and for each i = m+ 1, . . . , n, it follows that on ΩN ,

|(~LN ( ~WL − ~wL))i(xj)| = |(δ2 −D2)wLi (xj)|
≤ CBLm(xj−1).

The proof for ~WR − ~wR is similar.

The following theorem gives the estimate of the singular component of the error.

Theorem 2. Let A(x) satisfy (2) and (3). Let ~w denote the singular component of

the exact solution from (1) and ~W the singular component of the discrete solution
from (30). Then

|| ~W − ~w|| ≤ C(N−1 lnN)2. (53)
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Proof. Since ~w = ~wL+ ~wR, it suffices to prove the result for ~wL and ~wR separately.
Here it is proved for ~wL; a similar proof holds for ~wR.

By the comparison principle in Lemma 11 it suffices to show that, for all i, j and
some constant C,

|(~LN ( ~WL − ~wL))i(xj)| ≤ (~LN ~Φ)i(xj). (54)

This is proved for each mesh point xj ∈ (0, 1) by considering separately the 4
kinds of subintervals (a) (0, σ1), (b) [σ1, σ2), (c) [σq, σq+1) for some q, 2 ≤ q ≤ m− 1
and (d) [σm, 1).
(a) Clearly xj /∈ J and

xj+1 − xj−1 ≤ C
√
ε1N

−1 lnN.

Then, Lemma 12 and (38) give (54).
(b) There are 2 possibilities: (b1) d1 = 0 and (b2) d1 > 0.
(b1) Since σ1 = σ2/2 and the mesh is uniform in (0, σ2) it follows that xj /∈ J, and

xj+1 − xj−1 ≤ C
√
ε1N

−1 lnN.

Then Lemma 12 and (38) give (54).
(b2) Either xj /∈ J or xj ∈ J. If xj /∈ J then

xj+1 − xj−1 ≤ C
√
ε2N

−1 lnN

and by Lemma 8

BL1 (xj−1) ≤ BL1 (σ1 − h−1 ) ≤ CN−2,

so Lemma 14 (49) with r = 1 and (38) give (54). On the other hand, if xj ∈ J , then
Lemma 14 (50) with r = 1 and (39) give (54).
(c) There are 3 possibilities: (c1) d1 = d2 = · · · = dq = 0, (c2) dr > 0 and
dr+1 = · · · = dq = 0 for some r, 1 ≤ r ≤ q − 1 and (c3) dq > 0.
(c1) Since σ1 = Cσq+1 and the mesh is uniform in (0, σq+1), it follows that xj /∈ J
and

xj+1 − xj−1 ≤ C
√
ε1N

−1 lnN.

Then Lemma 12 and (38) give (54).
(c2) Either xj /∈ J or xj ∈ J. If xj /∈ J then

σr+1 = Cσq+1, xj+1 − xj−1 ≤ C
√
εq+1N

−1 lnN

and by Lemma 8

BLr (xj−1) ≤ BLr (σq − h−q ) ≤ BLr (σr − h−r ) ≤ CN−2.

Thus Lemma 14 (49) and (38) give (54). On the other hand, if xj ∈ J , then xj = σq,
so Lemma 14 (50) with r = q and (39) give (54).
(c3) Either xj /∈ J or xj ∈ J. If xj /∈ J then

xj+1 − xj−1 ≤ C
√
εq+1N

−1 lnN
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and by Lemma 8

BLq (xj−1) ≤ BLq (σq − h−q ) ≤ CN−2,

so Lemma 14 (49) with r = q and (38) give (54). On the other hand, if xj = σq, so
Lemma 14 (50) with r = q and (39) give (54).

(d) There are 3 possibilities: (d1) d1 = · · · = dm = 0, (d2) dr > 0 and dr+1

= · · · = dm = 0 for some r, 1 ≤ r ≤ m− 1 and (d3) dm > 0.

(d1) Since σ1 = C and the mesh is uniform in (0, 1), it follows that xj /∈ J ,

1√
ε1

≤ C lnN

and

xj+1 − xj−1 ≤ CN−1.

Then Lemma 12 and (38) give (54).

(d2) Either xj /∈ J or xj ∈ J. If xj /∈ J then

σr+1 = C,

1√
εr+1

≤ C ln N,

xj+1 − xj−1 ≤ CN−1

and, by Lemma 8,

BLr (xj−1) ≤ BLr (σm − h−m) ≤ BLr (σr − h−r ) ≤ CN−2.

Thus Lemma 14 (49) and (38) give (54). On the other hand, if xj ∈ J , then
xj ∈ {σm, 1− σm, . . . , 1− σ1}. Thus, Lemma 14 (50) and (39) give (54).

(d3) By Lemma 8 with r = m,

BLm(xj−1) ≤ BLm(σm − h−m) ≤ CN−2.

Then Lemma 15 and (38) give (54).

The following theorem gives the required essentially second order parameter-
uniform error estimate.

Theorem 3. Let A(x) satisfy (2) and (3). Let ~u denote the exact solution of (1)

and ~U the discrete solution of (30). Then

||~U − ~u|| ≤ C(N−1 lnN)2. (55)

Proof. An application of the triangle inequality and the results of Theorems 1 and
2 lead immediately to the required result.
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8. Numerical results

The above numerical method is applied to the following partially singularly per-
turbed boundary value problem

Example 1.

−ε1u
′′
1(x) + 5u1(x)− u2(x)− u3(x) = x2

−ε2u
′′
2(x)− u1(x) + (5 + x)u2(x)− u3(x) = exp−x

−u′′3(x)− (1 + x)u1(x)− u2(x) + (5 + x)u3(x) = 1 + x


for x ∈ Ω and ~u = ~0 on Γ. For various values of ε1 and ε2 with α = 2.0 and N
= 2r, r = 8, . . . , 13, the computed order of ~ε–uniform convergence and the computed
~ε–uniform error constant are found using the general methodology from [2]. The
results are presented in Table 1.

η Number of mesh points N
256 512 1024 2048 4096

0.100E+01 0.284E-05 0.709E-06 0.177E-06 0.431E-07 0.291E-06
0.100E-02 0.485E-03 0.235E-03 0.106E-03 0.408E-04 0.145E-04
0.100E-05 0.485E-03 0.235E-03 0.106E-03 0.408E-04 0.145E-04
0.100E-08 0.485E-03 0.235E-03 0.106E-03 0.408E-04 0.145E-04
0.100E-11 0.485E-03 0.235E-03 0.106E-03 0.408E-04 0.145E-04
0.100E-14 0.485E-03 0.235E-03 0.106E-03 0.408E-04 0.145E-04
0.100E-17 0.485E-03 0.235E-03 0.106E-03 0.407E-04 0.145E-04

DN 0.485E-03 0.235E-03 0.106E-03 0.408E-04 0.145E-04
pN 0.105E+01 0.115E+01 0.138E+01 0.149E+01
CNp 0.311E+00 0.311E+00 0.290E+00 0.231E+00 0.169E+00

Computed order of ~ε-uniform convergence = 0.105E + 01
Computed ~ε-uniform error constant = 0.311E + 00

Table 1: Numerical results of Example 1 for ε1 =
η

16
, ε2 = η
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