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The signless Laplacian spectral radii of modified graphs
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Abstract. In this paper, various modifications of a connected graph G are regarded as
perturbations of its signless Laplacian matrix. Several results concerning the resulting
changes to the signless Laplacian spectral radius of G are obtained by solving intermediate
eigenvalue problems of the second type.
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1. Introduction

Let G be a simple graph with a vertex set V (G) = {v1, v2, . . . , vn} and an edge set
E(G). Let A(G) and D(G) be the adjacency matrix and the diagonal matrix of
vertex degrees of G, respectively. The signless Laplacian matrix of G is defined as
Q(G) = D(G) + A(G). The signless Laplacian eigenvalues of G are the eigenvalues
of Q(G); they are real numbers (since Q(G) is symmetric). As usual, θ1(G) ≥
θ2(G) ≥ · · · ≥ θn(G) are the signless Laplacian eigenvalues of G in non-increasing
order. The largest signless Laplacian eigenvalue of G, i.e. θ1(G), is also called
the signless Laplacian spectral radius of G. For a connected graph G, Q(G) is
non-negative (i.e., all entries are non-negative) and irreducible, and by the Perron-
Frobenius theorem for non-negative matrices, θ1(G) has multiplicity one and there
exists a unique positive unit eigenvector x corresponding to θ1(G). We shall refer to
such an eigenvector x = (x1, x2, . . . , xn)T as the Perron vector of Q(G), where the
positive real number xi corresponds to the vertex vi for i = 1, 2, . . . , n. Then the
following description is well-known:

θ1(G) = (x, Q(G)x) =
∑

vivj∈E(G)

(xi + xj)
2 (1)

The study of graph perturbations is concerned primarily with changes in eigen-
values which result from modifications of a graph. Maas [5], Rowlinson [3, 4] and
Zhou [7] obtained several results concerning the resulting changes to the spectral ra-
dius of G (the largest eigenvalue of A(G)) by solving intermediate eigenvalue prob-
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lems of the second type. In this paper, by applying the same techniques to the
signless Laplacian matrix of G, we obtain several results on the resulting changes to
the signless Laplacian spectral radius of G.

2. Intermediate eigenvalue problems of second type

We present the results required from [6] (also see [2]) in terms of an n-dimensional
Euclidean space V in which the inner product of vectors y and z is denoted by
(y, z) = yTz. Let Q̃ be a symmetric linear transformation of V, and let H̃ be a
positive transformation of V. For any symmetric transformation T of V, let λ1(T ) ≥
λ2(T ) ≥ · · · ≥ λn(T ) denote the eigenvalues of T . We also use λmin(T ) and λmax(T )
to denote the smallest and largest eigenvalues of T , respectively. The general problem
is to find lower bounds for the eigenvalues λi(Q̃+H̃) which can be readily calculated

from H̃ and appropriate invariants of Q̃.
A second inner product may be defined on V by [y, z] = (H̃y, z). Choose

any basis {v1, . . . ,vn} for V and, using the new inner product, let Pr be the or-
thogonal projection onto the subspace of V spanned by v1, . . . ,vr (r = 1, ..., n).
Thus Pn = I, and if we define P0 = 0, we have [Pr−1y,y] ≤ [Pry,y], whence

((Q̃ + H̃Pr−1)y,y) ≤ ((Q̃ + H̃Pr)y,y) for all y ∈ V (r = 1, . . . , n). Moreover,

for each r ∈ {0, 1, . . . , n}, H̃Pr is a symmetric transformation of the original inner
product space V. For any symmetric transformation T of V, λi(T ) is the minimum
of max{(Ty,y) : ‖y‖ = 1,y ∈ U} taken over all i-dimensional subspaces U of V. It

follows that λi(Q̃) ≤ λi(Q̃ + H̃P1) ≤ λi(Q̃ + H̃P2) ≤ · · · ≤ λi(Q̃ + H̃Pn−1) ≤
λi(Q̃ + H̃Pn) for i = 1, 2, . . . , n. The problem of determining the eigenvalues of

Q̃ + H̃Pr for some r is called an intermediate eigenvalue problem of the second
type.

Let Q̃ui = λ̃iui (i = 1, . . . , n), where λ̃1, λ̃2, . . . , λ̃n are the eigenvalues of Q̃

and u1,u2, . . . ,un are orthonomal. Choose vi = H̃−1ui (i = 1, . . . , n). Then

Pruj =
r∑
i=1

γijvi, where (γij) is the inverse of the r × r Gram matrix Tr whose

(i, j)-entry is [vi,vj ] (i, j = 1, . . . , r). Moreover, the matrix of Q̃+H̃Pr with respect
to the basis {u1, . . . ,un} is

λ̃1
λ̃2

. . .

λ̃n

+

[
T−1r 0
0 0

]
. (2)

In what follows, we take V = Rn, (y, z) = yTz and identify a linear transforma-
tion on Rn and its matrix with respect to the transformation of Rn. Let Jn be the
n× n matrix with all entries equal to 1, and In the n× n identity matrix. If Q and
Q+H are the signless Laplacian matrices of a graph G and its modified graph G′,
respectively, then we take

Q̃ = −Q− (λmax(H) + δ)I, and H̃ = (λmax(H) + δ)I −H, where δ > 0.



The signless Laplacian spectral radii of modified graphs 69

Thus H̃ is positive and Q̃+ H̃ = −Q−H. Hence, we have

θ1(G′) = λmax(Q+H) = −λmin(Q̃+ H̃) ≤ −λmin(Q̃+ H̃Pr).

For given r, we can choose δ to optimize the upper bound for θ1(G′).

3. The main results

In this section, we consider three types of modifications of a connected graph G:
the first one is obtained from G by relocating an edge, the second one is obtained
from G by adding edges between the vertices of an independent set such that it
induces a clique, and the third one is obtained from G by adding a new vertex with
a prescribed set of neighbors. Using the technique mentioned in Section 2, we obtain
upper bounds for the signless Laplacian spectral radii of the three types of modified
graphs just mentioned, respectively.

Let G be a connected graph. Here we apply the results of Section 2 with r = 1
and u1 the Perron vector x of Q(G). When the edge vivj of G is replaced by vkvl,
there are essentially two cases to consider:

(a) vi, vj , vk, vl are distinct,

(b) vi = vl and vi, vj , vk are distinct.

In case (a), without loss of generality, we take vi = v1, vj = v2, vk = v3, vl = v4,
so that

H =

[
H ′ 0
0 0

]
, where H ′ =


−1 −1 0 0
−1 −1 0 0

0 0 1 1
0 0 1 1

 .
Thus λmax(H) = 2. Let Q̃ = −Q− (2 + δ)In and H̃ = (2 + δ)In−H. Therefore we
have

H̃−1 =

[
H̃ ′ 0
0 1

2+δIn−4

]
, where H̃ ′ =


3+δ

(3+δ)2−1
−1

(3+δ)2−1 0 0
−1

(3+δ)2−1
3+δ

(3+δ)2−1 0 0

0 0 1+δ
(1+δ)2−1

1
(1+δ)2−1

0 0 1
(1+δ)2−1

1+δ
(1+δ)2−1

 .
Hence we find that

γ11 =
1

[H̃−1u1, H̃−1u1]

=
1

(u1, H̃−1u1)
=

δ(δ + 2)(δ + 4)

−δ(x1 + x2)2 + (δ + 4)(x3 + x4)2 + δ(δ + 4)
. (3)

If the signless Laplacian eigenvalues of G are θ1 ≥ θ2 ≥ · · · ≥ θn, then the
eigenvalues of Q̃ are θ̃i = −θi − 2 − δ for i = 1, 2, . . . , n. Hence the eigenvalues of
Q̃+H̃P1 are −θ1−2−δ+γ11 and −θi−2−δ (i = 2, 3, . . . , n). Thus −λmin(Q̃+H̃P1)
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is θ1 + 2 + δ − γ11 if γ11 ≤ θ1 − θ2, and θ2 + 2 + δ if γ11 ≥ θ1 − θ2. As a function
of δ > 0, γ11 has range (0,∞) and so we may choose δ > 0 such that γ11 = θ1 − θ2.
Then θ1(G′) ≤ θ1(G) + 2 + δ − γ11, and to ensure that θ1(G′) < θ1(G), we require
γ11 > δ + 2. Now from (3) we have

γ−111 δ(δ + 4)(−γ11 + δ + 2) = α− δβ,

where α = 4(x3 + x4)2 and β = (x1 + x2)2 − (x3 + x4)2.
If β > 0 and δ > αβ−1 > 0, then γ11 > δ+2. If β ≤ 0, then by the Rayleigh-Ritz

Theorem, we have

θ1(G′) ≥ (x, Q(G′)x) =
∑

vivj∈E(G)

(xi + xj)
2 − β ≥

∑
vivj∈E(G)

(xi + xj)
2 = θ1(G).

These results can be summarized as follows.

Theorem 1. Let G be a connected graph of order n with distinct vertices vi, vj , vk, vl
such that vivj ∈ E(G) and vkvl /∈ E(G). Suppose that G′ is obtained from G by
replacing edge vivj with vkvl. Let θ1 ≥ θ2 ≥ · · · ≥ θn be the signless Laplacian
eigenvalues of G and let x = (x1, x2, . . . , xn)T be the Perron vector of Q(G).

(i) If (xi + xj)
2 ≤ (xk + xl)

2, then θ1(G′) ≥ θ1(G);

(ii) if (xi+xj)
2 > (xk+xl)

2 and θ1−θ2 > 2[(xi+xj)
2+(xk+xl)

2]
(xi+xj)2−(xk+xl)2

, then θ1(G′) < θ1(G).

To deal with case (b), without loss of generality, we assume that vi = vl = v1,
vj = v2 and vk = v3. Thus

H =

[
H ′ 0
0 0

]
, where H ′ =

 0 −1 1
−1 −1 0

1 0 1

 .
Note that λmax(H) =

√
3. Let Q̃ = −Q − (

√
3 + δ)In and H̃ = (

√
3 + δ)In − H.

Similarly, we find that

γ11 =
δ(δ +

√
3)(δ + 2

√
3)

α− (δ +
√

3)β + δ(δ + 2
√

3)
,

where α = (x1 + x2)2 + (x1 + x3)2 + (x2 − x3)2 and β = (x1 + x2)2 − (x1 + x3)2.

Hence the eigenvalues of Q̃ + H̃P1 are −θ1 −
√

3 − δ + γ11 and −θi −
√

3 − δ (i =
2, 3, . . . , n). Again we may choose δ > 0 such that γ11 = θ1 − θ2, and arguing as
before we find that γ11 > δ+

√
3 when β > 0 (i.e., x2 > x3) and θ1−θ2 > αβ−1+

√
3.

The corresponding theorem in this case is therefore as follows.

Theorem 2. Let G be a connected graph of order n with distinct vertices vi, vj , vk
such that vivj ∈ E(G) and vivk /∈ E(G). Suppose that G′ is obtained from G by
replacing edge vivj with vivk. Let θ1 ≥ θ2 ≥ · · · ≥ θn be the signless Laplacian
eigenvalues of G and x = (x1, x2, . . . , xn)T be the Perron vector of Q(G).

(i) If xj ≤ xk, then θ1(G′) ≥ θ1(G);
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(ii) if xj > xk and θ1−θ2 > (
√
3+1)(xi+xj)

2−(
√
3−1)(xi+xk)

2+(xj−xk)
2

(xi+xj)2−(xi+xk)2
, then θ1(G′) <

θ1(G).

Before we illustrate Theorems 1 and 2 with an example, the following lemma is
needed.

Lemma 1 ([1]). Let A be a Hermitian matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn
and B a principal sub-matrix of A. Let B have eigenvalues ρ1 ≥ ρ2 ≥ · · · ≥ ρm
(m ≤ n). Then the inequalities λn−m+i ≤ ρi ≤ λi hold for i = 1, 2, . . . ,m.

Example 1. Let G be the wheel K1∇Cn (n > 10) with vertex v0 adjacent to
each vertex of the cycle v1v2 · · · vnv1. Then the signless Laplacian spectral radius

of K1∇Cn is θ1(K1∇Cn) = n+5+
√
n2−6n+25
2 . Lemma 1 implies that θ2(K1∇Cn) ≤

λmax(Qv0(K1∇Cn)) = 5, where Qv0(K1∇Cn) is the sub-matrix of Q(K1∇Cn) ob-
tained by deleting the row and column corresponding to the vertex v0. Thus θ1 −
θ2 > θ1 − 5. The Perron vector of Q(K1∇Cn) is (α, β, . . . , β︸ ︷︷ ︸

n

), where α, β > 0,

θ1α = nα + nβ, θ1β = 5β + α and α2 + nβ2 = 1. Let G′ be the graph obtained
from K1∇Cn by replacing edge v0v2 with v1v3. To apply Theorem 1, with i = 0,

j = 2, k = 1 and l = 3, we require θ1 − θ2 > 2 (α+β)2+4β2

(α+β)2−4β2 . It suffices to establish

that θ1 − 5 > 2
θ21+4(θ1−n)2
θ21−4(θ1−n)2

, which holds for n > 10 since n + 1 < θ1 < n + 2 and

(θ1 + 2)(2n − θ1)(3θ1 − 2n) − 4θ21 > 0 for n > 10. Then θ1(G′) < θ1(K1∇Cn)
by Theorem 1. Now, let G′′ be the graph obtained from K1∇Cn by replacing edge
v1v0 with v1v3. To apply Theorem 2 with i = 1, j = 0 and k = 3, we require

θ1 − θ2 > (
√
3+2)α2+3(2−

√
3)β2+2

√
3αβ

α2+2αβ−3β2 , and this condition holds for n > 10. Then

θ1(G′′) < θ1(K1∇Cn) by Theorem 2.

Let G be a connected graph, and let S ⊂ V (G) be any independent set with
|S| ≥ 2. Let GS be the graph obtained from G by adding edges between the vertices
in S such that it induces a clique. For any independent set S ⊂ V (G) with |S| ≥ 2,
the following theorem gives an upper bound for θ1(GS).

Theorem 3. Let G be a connected graph of order n with signless Laplacian eigen-
values θ1 ≥ θ2 ≥ · · · ≥ θn. Let x = (x1, x2, . . . , xn)T be the Perron vector of Q(G),
and let S ⊂ V (G) be an independent set with s = |S| ≥ 2. Then

θ1(GS) ≤ θ1 + 2(s− 1) + δ − γ11,

where

γ11 =
δ(s+ δ)[2(s− 1) + δ]

δ(s− 2)
s∑
i=1

x2i + [2(s− 1) + δ]

(
s∑
i=1

xi

)2

+ δ(s+ δ)

= θ1 − θ2.

Proof. Without loss of generality, suppose that S = {v1, . . . , vs}. Let Q and Q+H
be the signless Laplacian matrices of G and GS , respectively. Note that the largest
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eigenvalue ofH is 2(s−1). Let Q̃ = −Q−[2(s−1)+δ]In and H̃ = [2(s−1)+δ)]In−H.

Hence the eigenvalues of Q̃ are θ̃i = −θi − 2(s− 1)− δ (i = 1, . . . , n) and

H̃−1 =

[
1
s+δ In + 1

δ(s+δ)Js 0

0 1
2(s−1)+δIn−s

]
.

We use the results in Section 2 with r = 1 and u1 = x = (x1, x2, . . . , xn)T . The

matrix of the transformation Q̃+ H̃P1 with respect to the basis {u1,u2, . . . ,un} is

diag(θ̃1 + γ, θ̃2, . . . , θ̃n), where

γ11 =
1

[H̃−1u1, H̃−1u1]
=

1

(u1, H̃−1u1)

=
δ(s+ δ)[2(s− 1) + δ]

δ(s− 2)
s∑
i=1

x2i + [2(s− 1) + δ]

(
s∑
i=1

xi

)2

+ δ(s+ δ)

.

Then λmin(Q̃+ H̃P1) = min{θ̃1 + γ, θ̃2} and so

θ1(GS)=−λmin(Q̃+H̃) ≤ −λmin(Q̃+H̃P1)=max{θ1+2(s−1)+δ−γ, θ2+2(s−1)+δ}.

As a function of δ (δ > 0), γ11 has range (0,∞) and so we may choose δ > 0 such
that γ11 = θ1 − θ2. This completes the proof.

Example 2. Let G be a complete bipartite graph Km,m with m ≥ 2. Note that
θ1(Km,m) = 2m and θ2(Km,m) = m. Let S be any independent set of G with s = 2.
Then θ1(GS) ≤ m + 2 + δ, where δ > 0 satisfies δ2 − (m − 2)δ − 2 = 0. If m = 5,
then θ1(GS) < 10.5616, while θ1(GS) = 10.5367 by direct computations.

Let G be a connected graph of order n, and let S be a non-empty subset of V (G).
Let GS be the graph obtained from G by adding a new vertex whose neighbors are
the vertices in S. Using the same argument as Theorem 3 in [7], the following upper
bounds on θ1(GS) for any S ⊆ V (G) can be obtained.

Theorem 4. Let G be a connected graph of order n with signless Laplacian eigen-
values θ1 ≥ θ2 ≥ · · · ≥ θn. Let x = (x1, x2, . . . , xn)T be the Perron vector of Q(G),

and let S be a non-empty subset of V (G) with |S| = s. Let a =
s∑
i=1

xi and b =
s∑
i=1

x2i .

If

s+ b

s+ 1
θ1 <

a2 + s2

s
+ 2

s+ b

s+ 1
θ2 <

s+ b

s+ 1
θ1 +

√
4a2 +

(
s2 − a2

s
− s+ b

s+ 1
θ1

)2

, (4)

then θ1(GS) ≤ θ1 + ε, where ε > 0 and ε = 1− (θ1 − θ2), ε = 1− b− (θ1 − θ2), or ε
satisfies the equation

ε3+(2θ1−θ2−1)ε2+[(θ1−b)(θ1−θ2)−θ1−a2−s(1−b)]ε−(θ1−θ2)[θ1b+a
2+s(1−b)]=0;

otherwise, θ1(GS) ≤ θ2 + s+ 1.
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Example 3. Let G = K1∇C6 with vertex v0 adjacent to each vertex of the cycle
v1v2v3v4v5v6v1 and S = {v0}. Note that θ1(G) = 8 and θ2(G) = 4. It is easy to
check that (4) holds. Then by Theorem 4, we have θ1(GS) ≤ 8+ ε, where ε3 +11ε2 +
103
5 ε− 116

5 = 0. Clearly, ε < 0.75, and we have θ1(GS) ≤ 8.75, while θ1(GS) = 8.7355
by direct computation.

Example 4. Let G be a 4-cycle C4 = v1v2v3v4v1 and S = {v1, v3}. Then θ1 =
4 and θ2 = 2. Theorem 4 implies that θ1(GS) ≤ 5, while by direct computation, we
have θ1(GS) = 5.
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