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Summary 

This paper presents advantages of using open architecture for the real-time control of 
robot manipulators, parallel kinematics machine tools and other multi-axis machining 
systems. In order to increase their competitiveness, companies need to follow the global 
economy requirements. The constant incorporation of new technologies into existing 
controllers and reduction in the development time and costs are the main objectives. An open 
architecture control (OAC) concept appears as a solution to deal with these requirements. This 
article explains the rationale for the development of OAC systems, presents the major 
international activities which propose various approaches to OACs and a series of controllers 
that have been developed using this design philosophy at the Lola Institute. 
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1. Introduction 

Device-oriented, dedicated and heterogeneous systems where the application software, 
the system software, and the hardware are tightly coupled dominated in the past. This 
approach led to complexity and inflexibility, long development time, high design costs and 
very difficult way to introduce new functionalities into such systems. 

Due to the high innovation speed in the hardware and software technologies, it becomes 
necessary for companies to develop hardware-independent software as far as possible in order 
to stay competitive [1]. Companies have to take into account easy future system upgrades, 
modifications and extensions. These requirements are met using an open architecture-oriented 
structure. 

Significant efforts have been made to maintain and further develop the products 
according to these requirements. The early nineties are marked as the beginning years of 
initiatives for enabling control vendors, machine tool builders, and end users to benefit more 
from modular and flexible production facilities. At the start of using the open architecture 
approach, the goal was oriented to customer requirements and an as-easy-as possible 
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implementation of customer-specified controls. This related to open interfaces and 
configuration methods in a standardized, vendor neutral environment. Such systems were 
broadly accepted, which resulted in reducing costs and increasing flexibility. System 
integrators reused the software and implemented algorithms specified by the user, while users 
were able to design their own controls based on the given configurations. 

Modern approaches favor PC-based solutions with a homogenous, standardized 
environment, where the structure is software-oriented and configurable due to defined 
interfaces and software platforms. New advanced functionality has to be continuously 
integrated into control systems and reconfigurable manufacturing units have to be created. 
Open control interfaces enable these features. Hardware and software separation allows to 
profit from the short innovation cycles of the semiconductor industry and information 
technology. With the possibility for reusing software components, the performance of the 
overall system enhances simply by upgrading the hardware platform [2].  

According to the IEEE 1003.0 model, an open system is defined as a system which 
provides capabilities that enable properly implemented applications to run on a variety of 
platforms from multiple vendors, to interoperate with other system applications and to 
represent a consistent style of interaction with the user. 

The openness of a controller is defined through: 
 Portability, which indicates that application modules can be used on different 

platforms without any changes, while maintaining their capabilities. 
 Extendibility, which implies that a varying number of application modules can be 

run on a platform without any conflicts. 
 Interoperability, which indicates that application modules can work together in a 

consistent manner and can interchange data in a defined way. 
 Scalability, which implies that the functionality of the application modules, 

performance, and the size of the hardware can be adapted depending on the user 
requirements. 

According to the IEEE definition, an open control system must be: 
 Vendor-neutral, which guarantees the independence of single proprietary interests. 
 Consensus-driven, which means that it is controlled by a group of vendors and 

users (usually in the form of a user group or an interest group). 
 Standards-based, which ensures a wide distribution in the form of standards. 
 Freely available, which means it is free of charge to any interested party. 

2. Major international activities 

Many international organizations have done extensive research on the topic of open 
architectures around the world, but extra effort has been devoted to that topic in the USA, 
Germany and Japan. All these architectures have integrated equipment of several 
manufacturers and offer control solutions at a lower cost, while maintaining the same 
performance. The most significant activities and their main characteristics are presented in the 
following subsections. 

2.1 OSEC 

In December 1994, three machine tool builders, Toyoda Machine Works, Toshiba 
Machine, Yamazaki Mazak, two information system companies, IBM Japan, SML, and a 
controller builder, Mitsubishi Electric, established a project group, OSEC (Open system 
Environment for Controllers). The objective of the group was to develop an  open architecture 
platform for numeric control equipment. Since then, several companies and institutions have 
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joined OSEC. At one point, about twenty companies and organizations were promoting the 
project [3]. 

The idea for creating the OSEC architecture emerged from the need to provide end 
users, machine makers, control vendors, software vendors, system integrators and others with 
a standardized platform for industrial machine controllers which would enable them to add 
their own unique features to the industrial machines, and hence to promote the technical and 
commercial development of the industrial machines [2]. 

OSEC is focused only on the PC platform and Windows environment and it does not 
allow distributed control [3]. The purpose of creating a PC-based manufacturing equipment 
controllers of an open architecture is to develop a high-performance, low-cost and an easy-to-
maintain control system. Emergence of PC-based open controllers has made the construction 
and operation of these machines more efficient since they will be integrated into a networking 
application and will exchange information with remote machines. When this architecture 
becomes open, manufacturers will be able to integrate their own control systems with various 
combinations of PCs and control subsystems based on it. Since the architecture is based on 
PCs, high quality software can be expected in the area of factory automation. A PC can act 
not only as a controller of equipment, but also as the basis of an information system for plant 
operation.  

OSEC architecture is shown in Fig. 1. Reference model is structured in layers. The 
OSEC API (Application Programming Interface) is defined in the form of an interface 
protocol, which is used to exchange messages among controller software components 
representing the functionality and the real-time cycle. Programming interface between 
different layers is called Message Coordination Field. Each functional block can be 
encapsulated as an object, so it is not necessary to deal with how a functional block processes 
messages to it at the architecture level [3].  

 

Fig. 1  OSEC architecture 

OSEC architecture is abstract as a result of generalization to cover a wide range of 
control systems as much as possible. Although the structure of functional blocks can be 
defined uniquely by the OSEC architecture from a logical point of view, there are so many 
options for implementations. The following functions can be implemented: device driver, 
inter-process communication, installation mechanisms such as static library and DLL, 
hardware factors like selection of controller card and implementations of software modules 
added for execution control and/or monitoring of various software. In other words, the 
implementation model is not limited to a particular model and thus various ideas in the 
implementation model depending on the system size or its hardware implementation and/or 
utilization are made possible [3]. 
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2.2 OMAC 

OMAC (Organization for Machine Automation and Control) is formed as the “Open 
Modular Architecture Controls User's Group” to provide a global organization that supports 
machine automation and operational needs of manufacturing. It enables companies to work 
together and to [4]: 

 Cooperate in finding common solutions for both technical and non-technical 
problems in the development, implementation and commercialization of the open, 
modular architecture control technology. 

 Promote the open, modular architecture control development among control 
technology providers and its adoption among end users, OEMs (original equipment 
manufacturers) and system integrators. 

 Provide responses to the users of an open, modular architecture, using the 
experience of software developers, hardware builders and OEMs in manufacturing 
applications. 

 Enable collaboration with user groups worldwide to achieve common international 
technology guidelines. 

The OMAC API adopted a component-based approach to achieve plug-and-play 
modularization, using interface classes to specify the API [2]. For distributed communication, 
the component-based technology uses proxy agents to handle method invocations that cross 
process boundaries. OMAC API contains different sizes and types of reusable plug-and-play 
components: component, module, and task - each with a unique Finite State Machine (FSM) 
model so that the component collaboration is performed in a familiar way. The component is 
a reusable piece of software that serves as a building block within an application, while the 
term module refers to a container of components.   

 

Fig. 2  OMAC architecture 

Fig. 2 describes the OMAC API controller functionality. The HMI (Human Machine 
Interface) module is responsible for human interaction with a controller, such as presenting 
data, handling commands, and monitoring events. The Axis Group module coordinates the 
motions of individual axes, transforming an incoming motion segment specification into a 
sequence of equidistant time-spaced set points for the coordinated axes. The Axis Module 
performs servo control of axis motion, transforming incoming motion set points into set 
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points for the corresponding actuators. The Task Coordinator module is the highest level 
Finite State Machine in the controller and it performs sequencing operations and coordinates 
the various modules in the system based on programmable Tasks. A Task Generator module 
generates a series of application-neutral Transient Tasks based on the application-specific 
control [5].   

Components defined in the OMAC API specification include: IO Point, Control Plan, 
Kinematics, Process Model, and Control Law. Interfaces define component functionality. A 
component may contain multiple interfaces, either through aggregation or inheritance. New 
components may extend functionality by means of aggregation or specialization [6]. 

Two Workgroups currently operate within OMAC: 
 OMAC Packaging Workgroup (OPW) has the objective to maximize the business 

value of packaging machinery by improving automation guidelines and standards. 
They work with automation suppliers, OEMs, and trade groups worldwide to 
encourage their support of the OMAC Packaging Guidelines throughout their 
products and practices, creating a mutually beneficial environment for the 
guidelines. 

 OMAC Machine Tool Workgroup (OMW) has the objective to create an 
environment that maximizes the machine automation choices of end-users and 
OEMs and increases their flexibility through greater openness and interoperability. 
They work with CNC controller vendors, CAD/CAM suppliers, and CNC OEMs to 
encourage their support of OMW "Connect and Manufacture" standards and best 
practices. 

2.3 OSACA 

The ESPRIT project OSACA (Open System Architecture for Controls within 
Automation Systems) started in 1992, with the aim of uniting European interests and creating 
a vendor-neutral standard for open control systems. It was supported by major European 
control vendors [7]. 

The basic technical approach of the OSACA architecture is the hierarchical 
decomposition of control functionality into functional units. For each of these functional units 
(e.g. motion control, axes control or logic control), the interfaces are specified by applying 
object-oriented information models. The process interface consists of several process objects 
that are used to describe the dynamic behaviour of the application modules by means of finite 
state machine (FSM). It can also be used to activate specific functions in the form of local or 
remote procedure calls [2]. 

The interoperability of distributed application modules is supported by an infrastructure 
OSACA platform. The platform is composed of hardware and program groups (operating 
system, communication system) that offer a uniform service for the functional unit control [7]. 
The API with the functional unit (FU) is based on a well-defined task. 

The three basic elements are: 
 Communication System: hardware and software are defined independently of the 

interface for information exchange among different modules of the controller 
application. The OSACA communication system allows the information exchange 
between the client and server applications to be carried out in a proper way. 

 Reference Architecture determines the control FU and specifies the external 
interface. This is done to enable the use and integration of external units through 
internal data in a well-defined way. FU examples are Man Machine Interface, 
Interlock Logical Control and Axis Motion Control. An external module using 
object-oriented communication for interfacing data with application modules is 
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defined for each identified FU. The interface for writing and reading data is located 
in the Architecture-Oriented Object and the access is available with the use of the 
Communication-Oriented Object. 

 System Configuration allows a controller to generate a dynamic configuration 
through a combination of different application modules. This does not only allow 
the determination of a specific topology of a given functionality, but also the 
synchronization among the distributed processes. 

Fig. 3 describes the platform of the OSACA system, where a configuration request 
generated by a microcomputer is sent to the system. The reconfiguration is based on object-
oriented programs and a class library. During the reconfiguration,  the functional units are 
used to interact with variables and internal data. The OSACA application protocol uses a 
client/server base mounted on the object-orientation principle. The functionality of all 
functional units has external access and it is configurable by the communication platform. 
From the customer's viewpoint, the server can be accessed through the shipping and reception 
of system communication messages. 

 

Fig. 3  OSACA architecture 

2.4 NIST 

The NIST (National Institute of Standards and Technology) has been working with a 
variety of industry representatives and organizations to investigate the application of open 
architecture concepts to machine tool controllers [8]. The first studies on Open Architecture 
Controller began when the NIST proposed the use of RCS (Real-time Control System), which 
is an architecture model of 15 years ago [7]. The first version of EMC (Enhanced Machine 
Controller) was originally developed by the Intelligent Systems Division at the NIST [9]. The 
current EMC version (LinuxCNC) [10] is an actively developed and community-maintained 
software package, presenting an effort to simplify, organize and continuously extend the 
original software. LinuxCNC is a descendant of the original NIST EMC software, which is in 
the Public Domain. LinuxCNC has a lot of new functionalities such as Hardware Abstraction 
Layer that allows adaption to many kinds of machinery, software PLC controller, and a new 
trajectory planner. 

2.5 JOP 

The aim of JOP (Japanese Open Promotion Group) was to provide the opportunities for 
various companies to discuss and work together on the standardization of open controller 
technologies [2]. They published an API between the NC kernel and the HMI that is called 
PAPI (Principal API). The specification of the PAPI was defined and has become a new 
Japanese standard. 
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2.6 NGC 

The Next Generation Workstation/Machine Controller (NGC) program based on the 
RCS reference model, co-sponsored by the National Center for Manufacturing Sciences 
(NCMS), the U.S. Air Force and Martin Marietta, organized industry requirements and 
prepared a specification for an Open System Architecture Standard (SOSAS) [11]. 

2.7 HOAM-CNC 

The HOAM-CNC architecture (Hierarchical Open System Architecture Multi-Processor 
for CNC machines) covers the machine hardware, offering the advantages of having two 
buses, the CNC control bus, and another bus to allow the introduction of new components [7]. 
The following research centres have participated in this research: 

 The University of Michigan, Ann Arbor, USA – which studies the open architecture 
controller in real-time for machine tools of high performance. They execute the 
implementation of several types of hardware control with net communications to 
study the difference in machine performance depending on the adopted architecture. 

 The British Columbia University, Vancouver, Canada - They use this architecture 
seeking the regulating adaptive control. Modules that detect tool damage and 
vibration are inserted using acoustic sensors for the control execution. A primary 
bus is used to execute the machine control process and to monitor the tasks and a 
secondary bus of higher performance is used to communicate with the CNC. 

3. Using OAC in a series of controllers at the Lola Institute 

Open architecture benefits are used for the development of series of controllers at the 
Lola Institute. The main goal is to develop an OAC system that can be easily reconfigured in 
order to control various types of robot manipulators, machine tools, and other multi-axis 
systems, such as: 6-axis robot manipulator, 5-axis machining robot, 3-axis parallel kinematic 
milling machine, 3-axis DELTA robot or 3-axis human centrifuge. 

This design philosophy is implemented on two distributed PCs using CORBA: User PC (U-
PC) and System PC (S-PC). CORBA is an acronym of Common Object Request Broker 
Architecture, defined by the Object Management Group (OMG). It is a vendor-independent 
specification that has been implemented by numerous hardware and software system 
manufactures, creating a rich and robust framework that successfully operates across 
heterogeneous computing platforms [12]. The distributed architecture also offers many benefits, 
such as openness, dynamical extensibility, and mobility. Robot controllers can be very complex 
systems that have to deal with a number of tasks in real-time. In a distributed system, demanding 
tasks are run on different platforms, so they do not have to compete for one processor time [13].  

Both PC architectures are based on the real-time Linux platform, where OROCOS 
(Open RObot COntrol Software) is set. OROCOS is a European project started in 2001, with 
the aim to develop a general-purpose, free software and modular framework for robot and 
machine control. Three laboratories were participating: Katholieke Universiteit Leuven from 
Belgium as a project contractor, Centre National de la Recherche Scientifique (CNRS) from 
France and Kungliga Tekniska Högskolan (KTH) from Sweden. Many other European 
laboratories were participating in the discussions and design. OROCOS is one of the most 
comprehensive systems which has a similar approach to OACs as that described in this paper. 

The control architecture used for the development of Lola controllers can be configured 
statically or dynamically during two stages: 

 Off-line architecture configuration stage (off-line ACS). 
 On-line architecture reconfiguration stage (on-line ARS). 
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3.1 Off-line ACS 

At the beginning of the off-line ACS, the architecture requirements are defined for a 
particular robot manipulator, machine tool or some other multi-axis system. During the off-
line ACS, the system integrator can modify and configure the architecture, if changes in 
requirements occur, by adding or modifying instructions, real-time state machine, calibration 
methods, some of modules (i.e. kinematics or PID controller) or by adding new interfaces 
from PC to the chosen multi-axis system. At this stage, more than one configuration can be 
defined for the selected controlled system. 

The U-PC provides application services at the off-line ACS as well as at the on-line 
ARS. During the off-line ACS, this application is intended for the system integrator to define 
the system configuration and robot-specific parameters. The system integrator, as well as the 
end user, can write programs in L-IRL (Lola Industrial Robot Language) or use CAD/CAM 
applications to generate three-dimensional models and tool paths. The application from the U-
PC calculates kinematic chains of a selected multi-axis system and its configuration. The U-
PC also provides data analysis, joint constraints, and graphical simulation of robot motions. In 
the end, the object code is generated, P or XML code, depending on the selected one. This is a 
case if L-IRL code has been used to program the robot motion path. If machining operations 
have been developed using the CAD/CAM (computer-aided design/computer-aided 
manufacturing) application, an appropriate G-code is generated for a specific machine tool. 

L-IRL is a procedural, high-level language for the programming and control of robot 
manipulators or for the cooperative work of multiple robots. It is based on DIN 66312 
standard for industrial robots. Programs written in the L-IRL language are compiled and then 
executed on the real-time robot controller. L-IRL contains all general structures such as data 
processing, expressions, program flow control, procedures and operations, as well as robot 
specific structures, geometric data types and expressions, motion statements, etc.  

During the off-line ACS, the S-PC is intended for the system integrator to define an 
appropriate interpreter of the object code selected at the U-PC, to set sampling rates, modify 
real-time state machine, calibration methods, to add new functionality to existing modules, 
make new modules and configure interface modules to robot joints and sensor devices. 

If more than one configuration is defined, the user chooses one particular configuration 
of the selected configuration family at the beginning of the on-line ARS. During the on-line 
ARS, the architecture can be dynamically reconfigured by selecting another configuration 
from the selected family. It is implemented in the defined state for the reconfiguration of the 
state machine by deactivating the system configuration file, robot specification and modules 
of the current configuration and by activating appropriate files and modules of the desired 
configuration. 

3.2 On-line ARS 

When the on-line ARS is entered, all components operate in real-time. The reference 
architecture is shown in Fig. 4. In this case, the Lola 50 6-axis robot manipulator is controlled 
and its virtual model is used. The real-time control logic is implemented by using one 
supervisory finite state machine (FSM). The control system consists of different modules that 
are previously constructed and verified independently of other modules at the off-line ACS. 
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Fig. 4  OAC approach used in Lola controllers 

The U-PC provides an interactive user interface. The user can personalize the user 
interface by including the desired parameters he would like to monitor, two or three-
dimensional simulation of robot motions, information regarding the robot state, etc. The U-PC 
is implemented in an integrated environment using Qt, OpenGL and OROCOS. Qt libraries 
are used to create a GUI that includes the display of current positions, two or three-
dimensional robot motions, and appropriate control buttons. OpenGL libraries are used for the 
drawing and linking of elementary primitives such as box, cylinder or sphere, and for the 
translation and rotation of robot parts in order to implement a virtual model of a real robot. 
OROCOS libraries are included to handle commands. The command handle is entered after a 
new command from S-PC is received and then the function for setting the positions of the 
virtual robot axes is called. As a final result, a real-time application is obtained. The 
application is able to accept S-PC commands, to run virtual robot functions, to display two or 
three-dimensional robot motions, to change the current program flow or configuration and to 
send commands to the S-PC [14]. 

The S-PC provides the loading of a chosen configuration and the execution of the object 
code generated on the U-PC at the off-line ACS, the control of a robot manipulator or 
machine tool, the acceptance of user commands for the direct control of the manipulator, the 
change of configuration requested from instructions in the application code or by user 
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command, the feedback to the U-PC using CORBA in the form of robot positions, velocities, 
logical states, etc.  

The S-PC control system is structured in layers. The bottom layer is the real-time Linux 
operating system whose kernel is patched with an open source real-time framework, 
Xenomai. The OROCOS Real-Time Toolkit (RTT) is referred to as a middleware lying 
between the operating system and the application level. The RTT provides the infrastructure 
and the functionalities to build robotics real-time applications in C++. The RTT allows the 
setup, distribution and building of the real-time components, which are the top layer of the 
control system. Besides RTT, OROCOS is composed of OCL (OROCOS Component 
Library), KDL (Kinematics and Dynamics Library), and BFL (Bayesian Filtering Library). 

The application layer consists of tasks (components). Every component has a specific 
function defined at the off-line ACS (i.e. kinematics, interpolator or servo controller). Real-
time state machines as well as program scripts (Calibrate Program in this case) can be 
integrated into the component. There is a supervisory component with a FSM loaded into it 
together with all the peer components defined at the off-line ACS. The peer components can 
be configured, started, stopped and interfaced by the FSM and can also communicate with 
each other through their interfaces: Properties, Events, Methods, Commands, and Data Ports. 
The FSM contains a collection of states whose number is defined at the off-line ACS. That 
way, the entire control system is represented as a single FSM at the highest hierarchical point 
[15].  

4. Advantages of using OAC 

Open control systems have a lot of advantages for control vendors, robot manipulators, 
machine tool builders, and end users . The main benefits are shown in Fig. 5 [16]. 

 

Fig. 5  Advantages of using the OAC approach 
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Designers of robots and multi-axis machining systems benefit from a high degree of 
openness covering also the internal interfaces. The external openness is much more important 
for users. It provides the methods and utilities for integrating the user-specific applications into 
the existing controls and for adapting to user-specific requirements, adaptable user interfaces or 
to the collection of machine and production data, for instance. The external openness is mainly 
based on the internal openness but has functional or performance limitations. 

5. Conclusion 

In this paper, various types of open architecture concepts for the control of robot 
manipulators, machine tools and multi-axis machining systems have been described through 
major international activities, (OSEC, OMAC, OSACA, NIST, JOP, NGC, and HOAM-CNC) 
and a series of controllers that have been developed using the OAC concept at the Lola 
Institute. All proposed architectures have integrated equipment of several manufacturers in 
order to obtain control solutions at a lower cost, while maintaining the same performance. 

The short review can be summarized through the following points. Open architecture 
approach provides a wide range of benefits in the control of robots and multi-axis machining 
systems. This was the main reason for significant efforts that have been made all around the 
world in order to develop open architecture platforms. The resulting benefits include the 
software-oriented approach which leads to a reduction in the number of  hardware modules, 
PC-based solutions with a homogenous, standardized environment, reusable software 
possibility, system reconfigurability, configuration and implementation of new applications 
and requirements, hardware changeability, adaptable interface, less time for development, and 
reduction in overall system costs. 

At the very beginning of OAC development, the NIST proposed the use of a RCS 
model. The RCS model was the base to the NGC program which tried to meet the industrial 
needs for the next generation controllers. JOP has been designed based on the standardization 
of open controller technologies. In the meantime, several teams from Japan, USA and Europe 
have started to develop their own open architecture platforms. The OSACA architecture has 
been used mostly in the software area, while the OMAC architecture has been mainly active 
in industrial applications. The OSEC architecture has been used in automation in industrial 
field, logistics and support, while the HOAM-CNC architecture has been mainly oriented to 
the hardware area in terms of new sensors and special module implementation [7].  

The basic ideas of OACs were quite similar, but the levels of abstraction were different. 
OMAC has been developed in more details than the others. OMAC and OSACA API 
properties are based on the object-oriented model and the API definition through C++ and 
IDL mapping to C, C++ or Java respectively, while JOP and OSEC use function calls and the 
C language. OMAC and OSACA provide better methods for the system configuration in 
comparison with NGC. On the other hand, NGC provides a full description for the interaction 
between components and the platform, while OMAC and OSACA do not define this 
interaction in detail [17]. Only OMAC is really open towards many software platforms. 
OSACA needs its own platform to run, so software development is needed to move to a new 
environment. OSEC is limited in the PC/Windows world [18]. 

Development of controllers at the Lola Institute based on the OAC approach has also 
been presented. The main aim was to develop a distributed, reconfigurable OAC system that 
can be easily adopted in order to control various types of robot manipulators, machine tools 
and other multi-axis systems. Currently, controllers for the 6-axis robot manipulators, Lola 15 
and Lola 50, have been fully implemented, while the controllers for a 3-axis human centrifuge 
and a 4-axis spatial disorientation trainer are under development. Future research will be 
related to the implementation of OACs to a 3-axis parallel kinematic milling machine and a 3-
axis DELTA robot.  
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