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Abstract. In this paper, we prove some coupled fixed point theorems for contractive
mappings in partially ordered complete metric spaces under certain conditions to extend
and complement the recent fixed point theorems according to Lakshmikantham and Ćirić
[V. Lakshmikantham, L. Ćirić, Coupled fixed point theorems for nonlinear contractions
in partially ordered metric spaces, Nonlinear Anal. 70(2009), 4341–4349] and Luong and
Thuan [N. V. Luong, N. X. Thuan, Coupled fixed points in partially ordered metric spaces
and application, Nonlinear Anal. 74(2011), 983–992]. As an application, we give a result
of existence and uniqueness for the solutions of a class of nonlinear integral equations.
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1. Introduction and preliminaries

As a well-known classical and valuable theorem in nonlinear analysis the Banach
contraction principle [3] has been initially introduced by S. Banach and extended by
so many authors in various ways (see, for instance [2, 6, 7, 10, 12 - 14]). It should
be noted that Berinde and Borcut [4], Bhaskar and Lakshmikantham [5], Luong and
Thuan [9], Lakshmikantham and Ćirić [8], Agarwal et al. [1] and Samet [11] have
recently proved some new results for contractions in partially ordered metric spaces.
In [8], Lakshmikantham and Ćirić introduced the notions of mixed g-monotone
property and coupled coincidence point and proved coupled coincidence and cou-
pled common fixed point theorems for mappings with mixed g-monotone property
which are generalizations of the recent fixed point theorems according to Bhaskar
and Lakshmikantham [5].

Definition 1 (See [8]). Let (X,≤) be a partially ordered set and F : X ×X −→ X
and g : X −→ X. We say F has the mixed g-monotone property if F is monotone
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g-non-decreasing in its first argument and monotone g-non-increasing in its second
argument, that is, for any x, y ∈ X,

x1, x2 ∈ X, g(x1) ≤ g(x2) implies F (x1, y) ≤ F (x2, y)

and

y1, y2 ∈ X, g(y1) ≤ g(y2) implies F (x, y1) ≥ F (x, y2).

Note that if g is the identity mapping, then F is said to have the mixed monotone
property (see also [5]).

Definition 2 (See [8]). An element (x, y) ∈ X ×X is called a coupled coincidence
point of a mapping F : X ×X −→ X and g : X −→ X if

F (x, y) = g(x), F (y, x) = g(y).

We remark that if g is the identity mapping, then (x, y) is called a coupled fixed
point of the mapping F .

Definition 3 (See [8]). Let X be a non-empty set and F : X × X −→ X and
g : X −→ X. We say F and g are commutative if

g(F (x, y)) = F (g(x), g(y)) for all x, y ∈ X.

From now on, we say that a partially ordered set X which is endowed by a metric
d has the property (∗) if the following conditions hold:

(i) if a non-decreasing sequence {xn} −→ x, then xn ≤ x for all n,

(ii) if a non-increasing sequence {yn} −→ y, then y ≤ yn for all n.

Now we have the following coupled fixed point theorems as the main results of
Lakshmikantham and Ćirić [8] and Luong and Thuan [9], respectively.

Theorem 1 (See [8]). Let (X,≤) be a partially ordered set and suppose there is
a metric d on X such that (X, d) is a complete metric space. Assume there is a
function φ : [0,∞) −→ [0,∞) with φ(t) < t and limr→t+ φ(r) < t for each t > 0
and also suppose F : X ×X −→ X and g : X −→ X are such that F has the mixed
g-monotone property and

d(F (x, y), F (u, v)) ≤ φ

(
d(g(x), g(u)) + d(g(y), g(v))

2

)
for all x, y, u, v ∈ X which g(x) ≤ g(u) and g(y) ≥ g(v). Suppose F (X×X) ⊆ g(X),
g is continuous and commutes with F and suppose also either

(a) F is continuous or (b) X has the property (∗).
If there exist x0, y0 ∈ X such that

g(x0) ≤ F (x0, y0) and g(y0) ≥ F (y0, x0),

then there exist x, y ∈ X such that

g(x) = F (x, y) and g(y) = F (y, x),

that is, F and g have a coupled coincidence.
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Theorem 2 (See [9]). Let (X,≤) be a partially ordered set and suppose there is a
metric d on X such that (X, d) is a complete metric space. Let F : X ×X −→ X
be a mapping having the mixed monotone property on X such that there exist two
elements x0, y0 ∈ X with

x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0).

Suppose there exist φ,ψ : [0,∞) −→ [0,∞) such that

φ(d(F (x, y), F (u, v))) ≤ 1

2
φ(d(x, u) + d(y, v))− ψ

(
d(x, u) + d(y, v)

2

)

for all x, y, u, v ∈ X with x ≥ u and y ≤ v where

(i) φ is continuous and non-decreasing,

(ii) φ(t) = 0 if and only if t = 0,

(iii) φ(t+ s) ≤ φ(t) + φ(s) for all t, s ∈ [0,∞),

and the function ψ satisfies limt→r ψ(t) > 0 for all r > 0 and limt→0+ ψ(t) = 0.
Suppose either

(a) F is continuous or (b) X has the property (∗).
Then there exist x, y ∈ X such that

x = F (x, y) and y = F (y, x),

that is, F has a coupled fixed point in X.

The motivation of this work is to extend and develop the recent coupled fixed
point theorems ([8, 9]) and apply the obtained results to investigate the existence of
unique solutions to a class of nonlinear integral equations.

2. Main results

In order to proceed with developing of our work and obtain our results we need the
following definition inspired by the definition of commutativity.

Definition 4. Let (X, d) be a metric space, and let F : X×X −→ X and g : X −→
X. We say that F and g are w-commutative if

lim
n→∞

d(g(F (xn, yn)), F (g(xn), g(yn))) = 0

whenever g(xn) and g(yn) are convergent sequences in X such that

g(xn+1) = F (xn, yn) and g(yn+1) = F (yn, xn).

Note that if F and g are commutative, then they are w -commutative in metric
space (X, d).

Now let Φ denote all functions φ : [0,∞) −→ [0,∞) which satisfy
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(i) φ is lower semi-continuous and non-decreasing,

(ii) limn→∞ φ(tn) = 0 if and only if limn→∞ tn = 0 for tn ∈ [0,∞),

(iii) φ(t+ s) ≤ φ(t) + φ(s) for all t, s ∈ [0,∞),

and for φ ∈ Φ, Ψφ denote all functions ψ : [0,∞) −→ [0,∞) which satisfy

(iv) lim supn→∞ ψ(tn) <
1
2φ(r) if limn→∞ tn = r > 0,

(v) limn→∞ ψ(tn) = 0 if limn→∞ tn = 0 for tn ∈ [0,∞).

Now we are ready to prove our main result as follows.

Theorem 3. Let (X,≤) be a partially ordered set and there is a metric d on X such
that (X, d) is a complete metric space. Suppose F : X ×X −→ X and g : X −→ X
are such that F has the mixed g-monotone property and there exist two elements
x0, y0 ∈ X with

g(x0) ≤ F (x0, y0) and g(y0) ≥ F (y0, x0).

Assume there exist φ ∈ Φ and ψ ∈ Ψφ such that

φ(d(F (x, y), F (u, v))) ≤ ψ(d(g(x), g(u)) + d(g(y), g(v)))

for all x, y, u, v ∈ X with g(x) ≤ g(u), g(y) ≥ g(v). Suppose F (X ×X) ⊆ g(X), g
is continuous and w-commutative with F and suppose also either

(a) F is continuous or (b) X has the property (∗).
Then there exist x, y ∈ X such that

g(x) = F (x, y) and g(y) = F (y, x),

that is, F and g have a coupled coincidence point.

Proof. Consider x0, y0 ∈ X followed by assumptions. Since F (X × X) ⊆ g(X),
then there exist x1, y1 ∈ X such that

F (x0, y0) = g(x1) and F (y0, x0) = g(y1).

Again we can choose x2, y2 ∈ X such that F (x1, y1) = g(x2) and F (y1, x1) = g(y2).
Continuing the procedure above we have the sequence {xn} and {yn} recursively as
follows.

F (xn, yn) = g(xn+1) and F (yn, xn) = g(yn+1)

for all n ∈ {0, 1, 2, ...}. Now by induction, we prove that

g(xn) ≤ g(xn+1) and g(yn+1) ≤ g(yn) (1)

for all n ≥ 0. Since g(x0) ≤ g(x1) and g(y1) ≤ g(y0), so the initial step of the induc-
tion is true. Suppose that (1) holds. Then using the mixed g-monotone property of
F and (1) we obtain

g(xn+1) = F (xn, yn) ≤ F (xn+1, yn) ≤ F (xn+1, yn+1) = g(xn+2),
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and consequently g(xn+1) ≤ g(xn+2). Similarly, we can show that g(yn+2) ≤
g(yn+1). Generally, we conclude that

g(xn) ≤ g(xn+1) and g(yn+1) ≤ g(yn) for all n ≥ 0.

Hence for each n ∈ N

φ(d(g(xn), g(xn+1))) = φ(d(F (xn−1, yn−1), F (xn, yn)))

≤ ψ(d(g(xn−1), g(xn)) + d(g(yn−1), g(yn))).
(2)

On the other hand,

φ(d(g(yn), g(yn+1))) = φ(d(F (yn−1, xn−1), F (yn, xn)))

≤ ψ(d(g(yn−1), g(yn)) + d(g(xn−1), g(xn))).

This together with (2) and sub-additivity of φ implies that

φ(δn+1) ≤ 2ψ(δn) for all n, (3)

where δn := d(g(xn−1), g(xn))+d(g(yn−1), g(yn)). Now we show that {g(xn)}, {g(yn)}
are Cauchy sequences. To do this, first assume that δn = 0 for some n. Since
φ ∈ Φ, ψ ∈ Ψφ by using (3) we have

g(xm) = g(xn) and g(ym) = g(yn) for all m ≥ n

which shows that {g(xn)} and {g(yn)} are Cauchy sequences and there is nothing
to prove. Otherwise, let δn > 0 for all n. Then for any n we obtain

φ(δn+1) ≤ 2ψ(δn) < φ(δn). (4)

Since φ is non-decreasing, so (4) implies that {δn} is a nonnegative decreasing se-
quence in R. So we have limn→∞ δn = r for some r ≥ 0. If r > 0, then following the
properties of φ,ψ we get

φ(r) ≤ lim sup
n→∞

φ(δn+1) ≤ 2lim sup
n→∞

ψ(δn) < φ(r),

which is a contradiction. Hence r = 0 and so we have

lim
n→∞

d(g(xn), g(xn+1)) + d(g(yn), g(yn+1)) = 0. (5)

To show that {g(xn)} and {g(yn)} are Cauchy sequences, it suffices to prove that
subsequences {g(x2n)} and {g(y2n)} are Cauchy sequences followed by (5). Suppose
the opposite, that at least either {g(x2n)} or {g(y2n)} is not a Cauchy sequence.
Then there exists ϵ > 0 such that for some subsequences {n(k)}, {m(k)} of integers
with n(k) > m(k) ≥ k we have

d(g(x2n(k)), g(x2m(k))) + d(g(y2n(k)), g(y2m(k))) ≥ ϵ (6)
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for k ∈ {1, 2, ...}. Suppose rk = d(g(x2n(k)), g(x2m(k))) + d(g(y2n(k)), g(y2m(k))) and
n(k) is the smallest integer with n(k) > m(k) ≥ k for which (6) holds. This means
that

ϵ ≤ rk ≤d(g(x2m(k)), g(x2n(k)−2)) + d(g(x2n(k)−2), g(x2n(k)−1))

+ d(g(x2n(k)−1), g(x2n(k))) + d(g(y2m(k)), g(y2n(k)−2))

+ d(g(y2n(k)−2), g(y2n(k)−1)) + d(g(y2n(k)−1), g(y2n(k)))

<δ2n(k)−1 + δ2n(k) + ϵ.

Letting k −→ ∞ and using (5) we obtain that limk→∞ rk = ϵ. On the other hand,
we have

rk ≤d(g(x2n(k)), g(x2n(k)+1)) + d(g(x2n(k)+1), g(x2m(k)+1))

+ d(g(x2m(k)+1), g(x2m(k))) + d(g(y2n(k)), g(y2n(k)+1))

+ d(g(y2n(k)+1), g(y2m(k)+1)) + d(g(y2m(k)+1), g(y2m(k)))

≤δ2n(k)+1 + δ2m(k)+1 + d(g(x2n(k)+1), g(x2m(k)+1))

+ d(g(y2n(k)+1), g(y2m(k)+1)).

Therefore,

rk ≤ δ2n(k)+1+δ2m(k)+1+d(g(x2n(k)+1), g(x2m(k)+1))+d(g(y2n(k)+1), g(y2m(k)+1)).

Since φ is sub-additive, so by using (1) we have the following

φ(d(g(x2n(k)+1), g(x2m(k)+1))) = φ(d(F (x2m(k), y2m(k)), F (x2n(k), y2n(k))))

≤ ψ(d(g(x2m(k)), g(x2n(k))) + d(g(y2m(k)), g(y2n(k)))).

So we obtain

φ(d(g(x2n(k)+1), g(x2m(k)+1))) ≤ ψ(rk). (7)

Similarly, we can show that φ(d(g(y2n(k)+1), g(y2m(k)+1))) ≤ ψ(rk). This together
with (7) implies that

φ(d(g(x2n(k)+1), g(x2m(k)+1)) + d(g(y2n(k)+1), g(y2m(k)+1))) ≤ 2ψ(rk),

and so we have

φ(rk) ≤ φ(δ2n(k)+1) + φ(δ2m(k)+1) + 2ψ(rk)

for all k. Since φ is lower semi-continuous, by taking the limit as k −→ ∞ we get

φ(ϵ) ≤ lim sup
k→∞

φ(rk)

≤ lim
k→∞

φ(δ2n(k)+1) + lim
k→∞

φ(δ2m(k)+1) + 2lim sup
k→∞

ψ(rk) < φ(ϵ)

which is a contradiction. Thus {g(xn)} and {g(yn)} are Cauchy sequences in com-
plete metric space X and hence

lim
n→∞

g(xn) = x and lim
n→∞

g(yn) = y
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for some x, y ∈ X. Since g is continuous, so we get

lim
n→∞

g(g(xn)) = g(x) and lim
n→∞

g(g(yn)) = g(y).

Now using the fact that g is w -commutative with F we have the following two
possible cases.

(i) If F is continuous, then we obtain

lim
n→∞

d(g(x), g(g(xn+1))) = lim
n→∞

d(g(x), g(F (xn, yn)))

= lim
n→∞

d(g(x), F (g(xn), g(yn)))

= d(g(x), F (x, y)),

lim
n→∞

d(g(y), g(g(yn+1))) = lim
n→∞

d(g(y), g(F (yn, xn)))

= lim
n→∞

d(g(y), F (g(yn), g(xn)))

= d(g(y), F (y, x)),

which implies that g(x) = F (x, y) and g(y) = F (y, x).

(ii) If X has the property (∗), then for any n we get g(xn) ≤ x and y ≤ g(yn)
which yields the following.

φ(d(g(x), F (x, y))) ≤ φ(d(g(x), g(g(xn+1)))) + φ(d(g(g(xn+1)), F (x, y)))

= φ(d(g(x), g(g(xn+1)))) + φ(d(g(F (xn, yn)), F (x, y))).

Since F and g are w -commutative, by letting n −→ ∞ we have

φ(d(g(x), F (x, y))) ≤ lim sup
n→∞

φ(d(F (g(xn), g(yn)), F (x, y)))

≤ lim sup
n→∞

ψ(d(g(xn), g(x)) + d(g(yn), g(y))) = 0

Hence, we obtain g(x) = F (x, y). On the other hand,

φ(d(g(y), F (y, x))) ≤ φ(d(g(y), g(g(yn+1)))) + φ(d(g(g(yn+1)), F (y, x)))

= φ(d(g(y), g(g(yn+1)))) + φ(d(g(F (yn, xn)), F (y, x))).

Again since F and g are w -commutative, by taking the limit as n −→ ∞ we have

φ(d(g(y), F (y, x))) ≤ lim sup
n→∞

φ(d(F (g(yn), g(xn)), F (y, x)))

≤ lim
n→∞

ψ(d(g(yn), g(y)) + d(g(xn), g(x))) = 0.

Hence, we get g(y) = F (y, x). Therefore, F and g have a coupled coincidence point
(x, y).

Remark 1. In Theorem 3, let g be the identity mapping. Then substituting 1
2φ(x)−

ψ(x2 ) for ψ(x) implies the main result of Luong and Thuan in [9] (Theorem 2 of the
present paper). Note that the function 1

2φ(x) − ψ(x2 ) satisfies all the conditions of
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our result. In order to verify this, since in Theorem 2 φ is a continuous function
and limt→r ψ(t) > 0 for all r > 0, we obtain

lim sup
n→∞

(
1

2
φ(tn)− ψ(

tn
2
)) ≤ 1

2
φ(r)− lim inf

n→∞
ψ(
tn
2
) <

1

2
φ(r),

for all tn ∈ [0,∞) such that limn→∞ tn = r > 0. On the other hand,

lim
t→0+

ψ(t) = 0 implies lim
n→∞

ψ(tn) = 0

if limn→∞ tn = 0 for tn ∈ [0,∞).

Remark 2. In Theorem 3, let φ be the identity mapping. Then it is easy to see that
replacing ψ(x) by φ(x2 ) yields the main result of Lakshmikantham and Ćirić in [8].

Now we prove the uniqueness of the coupled fixed point by defining a partial
ordering on X ×X. We remark that if (X,≤) is a partial ordered set then X ×X
can be endowed with the following partial ordering:

for (x, y), (u, v) ∈ X ×X, (x, y) ≤ (u, v) ⇐⇒ x ≤ u, y ≥ v.

Theorem 4. Let all the conditions of Theorem 3 be fulfilled and for every (x, y), (u, v)
in X ×X, there exists a (z, t) in X ×X such that (g(z), g(t)) is comparable to both
(g(x), g(y)) and (g(u), g(v)). Then F and g have a unique coupled common fixed
point, that is, there exists a unique (x, y) in X ×X such that

x = g(x) = F (x, y) and y = g(y) = F (y, x).

Proof. From Theorem 3 the set of coupled coincidence point is non-empty. Assume
that (x, y) and (u, v) are two coupled coincidence points, that is,

g(x) = F (x, y), g(y) = F (y, x),

g(u) = F (u, v), g(v) = F (v, u).

By hypotheses, there exists a (s, t) ∈ X ×X such that (g(s), g(t)) is comparable to
both (g(x), g(y)) and (g(u), g(v)). Take s0 = s and t0 = t and define sequences {sn}
and {tn} as follows

g(sn+1) = F (sn, tn) and g(tn+1) = F (tn, sn)

for all n ≥ 0. Since (g(s), g(t)) is comparable to (g(x), g(y)), we may assume that
(g(s0), g(t0)) = (g(s), g(t)) ≤ (g(x), g(y)) (the other case is similar). Now, by using
the induction and the mixed g-monotone property of F we obtain (g(sn), g(tn)) ≤
(g(x), g(y)) for all n. Hence we get

φ(d(g(x), g(sn+1))) = φ(d(F (x, y), F (sn, tn)))

≤ ψ(d(g(sn), g(x)) + d(g(tn), g(y))),

and

φ(d(g(y), g(tn+1))) = φ(d(F (y, x), F (tn, sn)))

≤ ψ(d(g(tn), g(y)) + d(g(sn), g(x))).
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Thus, we have φ(δn+1) ≤ 2ψ(δn), where δn = d(g(x), g(sn))+d(g(y), g(tn)). Inspired
by the proof of Theorem 3 we can conclude that δn converges to r for some r ≥ 0.
If r > 0, then we have

φ(r) ≤ lim sup
n→∞

φ(δn+1) ≤ 2lim sup
n→∞

ψ(δn) < φ(r),

which shows a contradiction. Hence we get

lim
n→∞

d(g(x), g(sn)) = lim
n→∞

d(g(y), g(tn)) = 0. (8)

Similarly, we can prove that

lim
n→∞

d(g(u), g(sn)) = lim
n→∞

d(g(v), g(tn)) = 0.

This together with (8) implies that

g(x) = g(u) and g(y) = g(v). (9)

Since g(x) = F (x, y) and g(y) = F (y, x), by w -commutativity of F and g we get

g(g(x)) = g(F (x, y)) = F (g(x), g(y)), g(g(y)) = g(F (y, x)) = F (g(y), g(x)).

By replacing g(x) and g(y) by p and q, respectively, we get

g(p) = F (p, q) and g(q) = F (q, p).

Hence (p, q) is a coupled coincidence point. So u and v can be replaced by p and q
in (9), respectively, which implies that g(p) = g(x) and g(q) = g(y), that is,

p = g(p) = F (p, q) and q = g(q) = F (q, p).

Thus (p, q) is a coupled fixed point of F and g. To prove the uniqueness, let (z, w)
be another coupled fixed point. Then (9) implies that p = g(p) = g(z) = z and
q = g(q) = g(w) = w.

Remark 3. Comparing the conditions in Theorem 4 and the conditions in Theorem
2.4 of Luong and Thuan [9], we see that our result is a generalization of Theorem
2.4 in [9].

Theorem 5. Let all the conditions of Theorem 3 be fulfilled and for x0, y0 in The-
orem 3 let us further suppose that g(x0), g(y0) are comparable. Then we have

g(x) = F (x, x) for some x ∈ X.

Proof. Following the aspects of the proof of Theorem 3, without loss of generality
let g(x0) ≤ g(y0). By taking g(xn+1) = F (xn, yn), g(yn+1) = F (yn, xn) for n ≥ 0
and using the mixed g-monotone property of F we conclude that

g(xn) ≤ g(yn) for all n ≥ 0.



506 A.Aghajani, M.Abbas and E.Pourhadi Kallehbasti

Then sub-additivity φ implies that

φ(d(x, y)) ≤ φ(d(x, g(xn+1))) + φ(d(g(xn+1), g(yn+1))) + φ(d(g(yn+1), y))

= φ(d(x, g(xn+1))) + φ(d(F (xn, yn), F (yn, xn))) + φ(d(g(yn+1), y))

≤ φ(d(x, g(xn+1))) + ψ(2d(g(xn), g(yn)))) + φ(d(g(yn+1), y)).

By taking the limit as n −→ ∞ since, g(xn) −→ x and g(yn) −→ y, we obtain

φ(d(x, y)) ≤ lim sup
n→∞

ψ(2d(g(xn), g(yn))).

Now if x ̸= y, then

φ(d(x, y)) < φ(d(x, y)),

which is a contradiction. So x = y and g(x) = F (x, x).

Remark 4. Note that by substituting the identity mapping for g in the preceding
theorem Theorem 2.6 in [9] will be concluded.

3. Application

In this section, Theorem 5 is used to guarantee the existence of a unique solution of
the following integral equation

g(u(t)) =

∫ b

a

(K1(s, t)−K2(s, t))(f1(s, u(s)) + f2(s, u(s)))ds+ h(t), (10)

where g is a strictly increasing function and t ∈ I = [a, b].
Suppose that

K1(s, t),K2(s, t) ≥ 0, for all t, s ∈ [a, b],

0 ≤ f1(t, x)− f1(t, y) ≤ λψ(g(x)− g(y)),

−µψ(g(x)− g(y)) ≤ f2(t, x)− f2(t, y) ≤ 0,

(11)

for some λ, µ > 0 and x, y ∈ R, y ≤ x, t ∈ [a, b] and ψ is an increasing function such
that

lim supn→∞ ψ(tn) <
1
2αr if limn→∞ tn = r > 0,

limn→∞ ψ(tn) = 0 if limn→∞ tn = 0
(12)

for tn ∈ [0,∞) and some α > 0 such that αβ ≤ 1
2 where

β = max{λ, µ} sup
t∈I

∫ b

a

(K1(s, t) +K2(s, t))ds.

Note that by taking ψ(t) = γt for 0 < γ < 1
2α condition (12) holds.
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Definition 5. We say that an element (u, v) ∈ C(I)×C(I) is a coupled lower and
upper solution of the integral equation (10) if u(t) ≤ v(t) and

g(u(t)) ≤
∫ b

a

K1(s, t)(f1(s, u(s)) + f2(s, v(s)))ds

−
∫ b

a

K2(s, t)(f1(s, v(s)) + f2(s, u(s)))ds+ h(t)

and

g(v(t)) ≥
∫ b

a

K1(s, t)(f1(s, v(s)) + f2(s, u(s)))ds

−
∫ b

a

K2(s, t)(f1(s, u(s)) + f2(s, v(s)))ds+ h(t)

for all t ∈ I = [a, b].

Theorem 6. Consider integral equations (10). Suppose that Ki, fi ∈ C(I × I) for
i = 1, 2 such that conditions (11) and (12) are satisfied. Also, let h, g ∈ C(I) and g
be a strictly increasing function on C(I). Then the existence of a coupled lower and
upper solution for (10) provides the existence of a unique solution (10) in C(I).

Proof. Define a partially ordering on C(I) as follows.

u, v ∈ C(I), u ≤ v ⇐⇒ u(t) ≤ v(t), for all t ∈ I = [a, b].

Using the metric

d(u, v) = sup
t∈I

|u(t)− v(t)|, u, v ∈ C(I),

C(I) is clearly a complete metric space. It is easy to verify that condition (b) in
Theorem 3 holds on the complete metric space C(I). We also define a partially
ordering on C(I)× C(I) by

(x, y), (u, v) ∈ C(I)× C(I), (x, y) ≤ (u, v) ⇐⇒ x(t) ≤ u(t), y(t) ≥ v(t)

for all t ∈ I = [a, b]. We easily see that for every (x, y), (u, v) ∈ C(I)× C(I),

(g(x), g(y)) ≤ (g(max{x, u}), g(min{y, v})),
(g(u), g(v)) ≤ (g(max{x, u}), g(min{y, v})).

So (max{x, u},min{y, v}) ∈ C(I) × C(I) is comparable to both (x, y) and (u, v).
Now we define F : C(I)× C(I) −→ C(I) by

F (x, y)(t) =

∫ b

a

K1(s, t)(f1(s, x(s)) + f2(s, y(s)))ds

−
∫ b

a

K2(s, t)(f1(s, y(s)) + f2(s, x(s)))ds+ h(t)
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for all t ∈ I = [a, b].

At first, we prove that F has the mixed g-monotone property. To do this, let
x1, x2 ∈ C(I) and g(x1) ≤ g(x2), that is, g(x1(t)) ≤ g(x2(t)) for all t ∈ [a, b]. So
x1(t) ≤ x2(t) for all t ∈ [a, b]. Then using condition (11) for any y ∈ C(I) and all
t ∈ [a, b] we obtain

F (x1, y)(t)− F (x2, y)(t) =

∫ b

a

K1(s, t)(f1(s, x1(s))− f1(s, x2(s)))ds

−
∫ b

a

K2(s, t)(f2(s, x1(s))− f2(s, x2(s)))ds ≤ 0,

which implies that F (x1, y) ≤ F (x2, y). Similarly, if y1, y2 ∈ C(I) and g(y1) ≤ g(y2),
then F (x, y2) ≤ F (x, y1) for any x ∈ C(I). Now, let α > 0 be as given in (12). Then
for x, y, u, v ∈ C(I) such that g(x) ≥ g(u) and g(y) ≤ g(v) we get

αd(F (x, y), F (u, v)) =α sup
t∈I

∣∣∣∣∣
∫ b

a

K1(s, t)[f1(s, x(s))− f1(s, u(s))

+ f2(s, y(s))− f2(s, v(s))]ds

+

∫ b

a

K2(s, t)[f2(s, u(s))− f2(s, x(s))

+ f1(s, v(s))− f1(s, y(s))]ds

∣∣∣∣∣.
This together with condition (11) implies that

αd(F (x, y), F (u, v)) ≤α sup
t∈I

∣∣∣∣∣
∫ b

a

K1(s, t)[λψ(g(x(s))− g(u(s)))

+ µψ(g(v(s))− g(y(s)))]ds

+

∫ b

a

K2(s, t)[µψ(g(x(s))− g(u(s)))

+ λψ(g(v(s))− g(y(s)))]ds

∣∣∣∣∣
≤αβ[ψ(d(g(x), g(u))) + ψ(d(g(y), g(v)))]

≤2αβψ[d(g(x), g(u)) + d(g(y), g(v))].

So we obtain

αd(F (x, y), F (u, v)) ≤ ψ[d(g(x), g(u)) + d(g(y), g(v))].

Now by taking φ(t) = αt and assuming (r, s) ∈ C(I)×C(I) as a coupled lower and
upper solution of (10) we have g(r) ≤ F (r, s) and g(s) ≥ F (s, r). Therefore, since
g(r) ≤ g(s), so all conditions in Theorem 5 are satisfied and there exists a unique
u ∈ C(I) such that g(u(t)) = F (u, u)(t) for all t ∈ [a, b], that is, the integral equation
(10) has a unique solution in C(I).
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