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Abstract. In this paper, we introduce a new iterative scheme for finding a common element
of the set of a solution of an equilibrium problem and the set of fixed points of finite
family strict pseudo-contraction mappings in a real Hilbert space. Some strong convergence
theorems are established using the iterative scheme. In the meantime, we successfully apply
these Theorems to find a common element of the set of a solution of an equilibrium problem
and the set of fixed points of finite family of non-expansive mappings in a real Hilbert space.
The results in this paper improve the corresponding ones of [3, 6] and references therein.
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1. Introduction

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and induced norm ∥·∥. Let K
be a nonempty closed convex subset of H. A mapping T of K into itself is called a
k-strict pseudo-contraction mapping, if ∀ x, y ∈ K, ∥Tx−Ty∥2 ≤ ∥x− y∥2 + k∥(I −
T )x− (I − T )y∥2, here 0 ≤ k < 1, I denotes an identity operator. We use F (T ) to
denote the set of fixed points of T (i.e. F (T ) = {x ∈ K : Tx = x}).

In a real Hilbert space, it is clear that a k−strict pseudo-contraction mapping T
is equivalent to

⟨Tx− Ty, x− y⟩ ≤ ∥x− y∥2 − 1− k

2
∥(I − T )x− (I − T )y∥2, (1)

i.e.

1− k

2
∥(I − T )x− (I − T )y∥2 ≤ ⟨(I − T )x− (I − T )y, x− y⟩. (2)

Remark 1. Notice that a mapping T : K → K is called a non-expansive mapping,
if for all x, y ∈ K, ∥Tx− Ty∥ ≤ ∥x− y∥. Therefore, a non-expansive mapping T is
a 0−strict pseudo-contractive mapping.
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Let F be a bifunction of C ×C into R, where R is the set of real numbers. The
equilibrium problem for F : C × C → R is to find x ∈ K such that

F (x, y) ≥ 0, ∀ y ∈ K. (3)

We use EP (F ) to denote the set of solutions of problem (3). Many problems in
physics, optimization and economics require some elements of EP (F ); see [2, 4, 5, 8,
10 - 12].

If F (x, y) = ⟨Ax, y − x⟩, here A : K → K is a nonlinear operator, then problem
(3) becomes the following classical variational inequality problem:

Find x ∈ K such that

⟨Ax, y − x⟩ ≥ 0, ∀ y ∈ K. (4)

This shows that problem (4) is a special case of problem (3). Several iterative
methods have been proposed to solve the equilibrium problem; see [4, 5, 8, 10 - 12].

In 2009, L .C. Ceng et al. [3] constructed an iterative scheme for a k−strict
pseudo-contractive mapping as follows:{

F (un, y) +
1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀ y ∈ K,

xn+1 = αnun + (1− αn)Tun, n ≥ 1,
(5)

where {αn}, {rn} are two nonnegative real number sequences satisfying {αn} ⊂
[α, β](α, β ∈ (k, 1)) and lim infn→∞ rn > 0. Under approximative conditions, L.C.
Ceng et al. proved that {xn} and {un} converge strongly (or weakly) to an element
of F (T )

∩
EP (F ). To be more precise, they proved the following theorems:

Theorem 1. Let K be a nonempty closed convex subset of H and F a bifunction
from K × K to R satisfying (A1) − (A4). Let T be a k−strict pseudo-contraction
mapping of K into K such that F (T )

∩
EP (F ) ̸= ∅. Let {xn} and {un} be generated

initially by an arbitrary element x1 ∈ K and then by{
F (un, y) +

1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀ y ∈ K,

xn+1 = αnun + (1− αn)Tun, n ≥ 1,
(6)

where αn, rn satisfy the following conditions:

(i) {αn} ⊂ (α, β) for some α, β ∈ (k, 1);

(ii) lim infn→∞ rn > 0.

Then {xn} and {un} converge weakly to p ∈ Ω = F (T )
∩
EP (F ), respectively.

Theorem 2. Let K be a nonempty closed convex subset of H and F a bifunction
from K × K to R satisfying (A1) − (A4). Let T be a k−strict pseudo-contraction
mapping of K into K such that F (T )

∩
EP (F ) ̸= ∅. Let {xn} and {un} be generated

initially by an arbitrary element x1 ∈ K and then by{
F (un, y) +

1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀ y ∈ K,

xn+1 = αnun + (1− αn)Tun, n ≥ 1,
(7)

where αn, rn satisfy the following conditions:
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(i) {αn} ⊂ (α, β) for some α, β ∈ (k, 1);

(ii) lim infn→∞ rn > 0.

Then {xn} and {un} converge strongly to p ∈ Ω = F (T )
∩

EP (F ) if only if

lim inf
n→∞

d(xn, F (S)
∩

EP (F )) = 0,

where d(xn, F (S)
∩
EP (F )) = 0 denotes the metric distance from the point xn to

F (S)
∩
EP (F ).

It is necessary to point out that only a weak convergence theorem is obtained
via iterative scheme (6). In order to obtain the strong convergence theorem for a
k−strict pseudo-contraction mapping T , Jaiboo and Kumam [6] introduced a CQ
iterative scheme as follows:

F (un, y) +
1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀ y ∈ K,

yn = αnun + (1− αn)Tun,

Cn+1 = {z ∈ Cn : ∥yn − z∥2 ≤ ∥xn − z∥2},
xn+1 = PCn+1x0 n ≥ 1,

(8)

where x0 ∈ H, C1 = C,αn, rn satisfy the following conditions:

(i) {αn} ⊂ (α, β) for some α, β ∈ (k, 1);

(ii) lim infn→∞ rn > 0.

Then {xn} and {un} converge strongly to p = PF (T )
∩

EP (F )x0.

Remark 2. We notice that the control coefficient excludes the natural choice of
αn = 1/n in the above iterative schemes (6) and (8).

In this paper, we consult a new implicit iterative scheme (given in Section 3) for
finding a common element of the set of the solution of an equilibrium problem and
the set of fixed points of a finite family of strict pseudo-contraction mappings in a
real Hilbert space. The aim is to make the control coefficient include the natural
choice of αn = 1/n in the new iterative scheme and obtain strong convergence theo-
rems without using the metric projection method. Indeed, some strong convergence
theorems are established using the iterative scheme. In the meantime, we success-
fully apply these Theorems to find a common element of the set of the solution of an
equilibrium problem and the set of fixed points of a finite family of non-expansive
mappings in a real Hilbert space. The results in this paper improve the correspond-
ing ones of [3, 6] and references therein. Moreover, our requirements on the iterative
parameters are also different from those in [3, 6].

2. Some lemmas and conclusions

For the sequence {xn} in H, we write xn ⇀ x to indicate that the sequence {xn}
converges weakly to x. xn → x implies that {xn} converges strongly to x. In a real
Hilbert space H, we have

∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2
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for all x, y ∈ H and λ ∈ R. Let K be a closed convex subset of H, for each point
x ∈ H, there exists a unique nearest point in K denoted by PKx such that

∥x− PKx∥ ≤ ∥x− y∥, ∀ y ∈ K.

PK is called the metric projection of H to K. It is well-known that PK satisfies

⟨x− y, PKx− PKy⟩ ≥ ∥PKx− PKy∥2

for every x, y ∈ H. Moreover, PKx is characterized by the properties: for x ∈ H,
and z ∈ K,

z = PK(x) ⇔ ⟨x− z, z − y⟩ ≥ 0, ∀ y ∈ K. (9)

For solving the equilibrium problem (3) for a bifunction F : K ×K → R, let us
assume that F satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ K;

(A2) F is monotone, that is, F (x, y) + F (y, x) ≤ 0 for all x, y ∈ K;

(A3) for each x, y, z ∈ K,

lim sup
t↓0

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ K, y 7→ F (x, y) is convex and lower semi-continuous.

In what follows, we shall make use of the following lemmas.

Lemma 1 (Demicloseness principle, see [7]). Let H be a real Hilbert space and K
a closed convex subset of H. Let T : K → K be a k−strict pseudo-contraction
mapping. Then the mapping I − T is demiclosed on K, where I is the identity
mapping, that is, xn ⇀ x in K and (I−T )xn → 0 implies that x ∈ K and (I−T )x =
0.

Lemma 2 (See [9]). Let {xn} and {yn} be bounded sequences in a Banach space E
and let {βn} be a sequence in [0,1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Suppose xn+1 = βnyn + (1− βn)xn for all integers n ≥ 0 and lim supn→∞(∥yn+1 −
yn∥ − ∥xn+1 − xn∥) ≤ 0, then, limn→∞ ∥yn − xn∥ = 0.

Lemma 3 (See [2]). Let K be a nonempty convex subset of H and F be a bifunction
of K ×K into R satisfying (A1) − (A4). Let r > 0 and x ∈ H. Then, there exists
z ∈ K such that

F (z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, for all y ∈ K.

Lemma 4 (See [4]). Assume that F is a bifunction of K × K into R satisfying
(A1)− (A4). For r > 0 and x ∈ H, define a mapping Tr : H → K as follows:

Tr(x) =

{
z ∈ K : F (z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀ y ∈ K }

for all x ∈ H. Then the following hold:
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(1) Tr is single-valued;

(2) Tr is firmly non-expansive, that is, for any x, y ∈ H,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩;

(3) F (Tr) = EP (F );

(4) EP (F ) is closed and convex.

Lemma 5 (See [13]). Let {an} be a sequence of nonnegative real number satisfying
the following relation:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 0.

If

(i) αn∈ [0, 1],
∑

αn=∞;

(ii) lim supσn ≤ 0;

(iii) γn ≥ 0,
∑

γn<∞,

then an→0, as n→∞.

Lemma 6. Let H be a real Hilbert space, then:

∥x+ y∥2 ≤ ∥y∥2 + 2⟨x, x+ y⟩, ∀ x, y ∈ H.

3. Strong convergence theorems

In this section, we establish some strong convergence theorems. Firstly, we give
Proposition 1 and Proposition 2. They appeared implicitly in [14] and they can also
be found in [1].

Proposition 1 (See [1, 14]). Let K be a nonempty closed convex subset of H. For
an arbitrary nonnegative integer r ≥ 1, let {Ti}ri=1 be a finite family of ki−strict
pseudo-contraction mappings of K into K, 0 ≤ ki < 1. Then for some nonnegative
real number λi, 0 ≤ λi < 1, i = 1, 2, · · · , r,

∑r
i=1 λi = 1,

∑r
i=1 λiTi : K → K is a

k−strict pseudo-contraction, where k = max{ki : i = 1, 2, · · · , r}.

Proposition 2 (See [1, 14]). Let K be a nonempty closed convex subset of H. For
an arbitrary nonnegative integer r ≥ 1, let {Ti}ri=1 be a finite family of ki−strict
pseudo-contraction mappings of K into K such that F =

∩r
i=1 F (Ti) ̸= ∅, 0 ≤ ki < 1.

Then for some nonnegative real number λi, 0 ≤ λi < 1, i = 1, 2, · · · , r,
∑r

i=1 λi = 1,
F (

∑r
i=1 λiTi) =

∩r
i=1 F (Ti).

Proof. In order to have Proposition 2 more clear, we proceed to relate the proof
based on the method and technique of [14], but this method is different from the
one of [1]. Next, we start to prove it. It is clear that

∩r
i=1 F (Ti) ⊂ F (

∑r
i=1 λiTi).
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On the other hand, let p ∈ F (
∑r

i=1 λiTi), then for ∀ p1 ∈
∩r

i=1 F (Ti), by (1) and
k = max{ki : i = 1, 2, · · · , r},

∥p− p1∥2 = ⟨p− p1, p− p1⟩ = ⟨Σr
i=1λiTip− p1, p− p1⟩ = Σr

i=1λi⟨Tip− p1, p− p1⟩

≤ ∥p− p1∥2 −
1− k

2
Σr

i=1∥Tip− p∥2

Hence, Tip = p, i = 1, 2, · · · , r, i.e. p ∈
∩r

i=1 F (Ti) and
∩r

i=1 F (Ti) ⊃ F (
∑r

i=1 λiTi).
This completes the proof of Proposition 2.

Next we give a parallel algorithm for a finite family of strict pseudo-contraction
mappings and study its convergence property.

Theorem 3. Let K be a nonempty closed convex subset of H and F a bifunction
from K ×K to R satisfying (A1)− (A4). Let {Ti}ri=1 be a finite family of ki−strict
pseudo-contraction mappings of K into K such that Ω = EP (F )

∩
(
∩r

i=1 F (Ti)) ̸= ∅,
0 ≤ ki < 1. Suppose that v and x1 are arbitrary points in K, for some nonnegative
real number λi, 0 ≤ λi < 1, i = 1, 2, · · · , r,

∑r
i=1 λi = 1, let {xn} and {un} be

generated by 
F (un, y) +

1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀ y ∈ K,

xn+1 = αnv + (1− αn)yn,

yn = (1− βn)xn + βnzn,

zn = (1− σ)un + σ
∑r

i=1 λiTiun, n ≥ 1,

(10)

where σ ∈ (0, 1 − k), k = max{ki : 1 ≤ i ≤ r}, coefficients αn, βn, rn satisfy the
following conditions:

(i) {αn} ⊂ (0, 1), limn→∞ αn = 0,
∑∞

n=1 αn = ∞;

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(iii) lim infn→∞ rn > 0, limn→∞ |rn+1 − rn| = 0.

Then {xn} and {un} converge strongly to p ∈ Ω, respectively, where p = PΩ(v).

Proof. Firstly, defining a mapping S =
∑r

i=1 λiTi, then by Proposition 1 and
Proposition 2 , S is a k−strict pseudo-contraction mapping and F (S) = F (

∑r
i=1 λiTi) =∩r

i=1 F (Ti). Let p = PΩ(v) ∈ Ω, since S is a k−strict pseudo-contraction mapping,
it is true that

∥zn−p∥2 =(1−σ)∥un − p∥2 + σ∥Sun − p∥2 − σ(1− σ)∥Sun − un∥2

≤ (1−σ)∥un − p∥2 + σ∥un − p∥2 + σk∥Sun − un∥2 − σ(1− σ)∥Sun − un∥2

≤∥un − p∥2. (11)

On the other hand, from Lemma 4 we have

∥un − p∥ = ∥Trnxn − Trnp∥ ≤ ∥xn − p∥,
∥yn − p∥ = ∥(1− βn)(xn − p) + βn(zn − p)∥ ≤ ∥xn − p∥. (12)
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Consequently, the next inequality holds:

∥xn+1 − p∥ ≤ αn∥v − p∥+ (1− αn)∥yn − p∥
≤ αn∥v − p∥+ (1− αn)[(1− βn)∥xn − p∥+ βn∥zn − p∥]
≤ αn∥v − p∥+ (1− αn)∥xn − p∥
≤ max{∥v − p∥, ∥x1 − p∥}. (13)

Inequality (13) establishes that {xn} is bounded, so are {yn} and {zn} and {un}.
Take a constant M such that

{∥v∥, ∥zn∥, ∥un∥, ∥xn∥} ≤ M, ∀ n ≥ 1.

Claim 1: ∥xn+1 − xn∥ → 0 (n → ∞). For this purpose, let γn = 1 − (1 −
αn)(1− βn), vn = xn+1−xn+γnxn

γn
= αnv+(1−αn)βnzn

γn
. Then

vn+1 − vn =

(
αn+1

γn+1
− αn

γn

)
v +

1− αn+1

γn+1
βn+1zn+1 −

1− αn

γn
βnzn

=

(
αn+1

γn+1
− αn

γn

)
v +

1− αn+1

γn+1
βn+1(zn+1 − zn)

+

(
1− αn+1

γn+1
βn+1 −

1− αn

γn
βn

)
zn, (14)

which yields that

∥vn+1 − vn∥ ≤
∣∣∣∣αn+1

γn+1
− αn

γn

∣∣∣∣M +
(1− αn+1)βn+1∥zn+1 − zn∥

γn+1

+

∣∣∣∣ (1− αn+1)βn+1

γn+1
− (1− αn)βn

γn

∣∣∣∣M, (15)

Now computing ∥zn+1 − zn∥, from (10), we have

∥zn+1 − zn∥2 =∥(1− σ)(un+1 − un) + σ(Sun+1 − Sun)∥2

=(1− σ)∥un+1 − un∥2 + σ∥Sun+1 − Sun∥2

− σ(1− σ)∥un+1 − un − (Sun+1 − Sun)∥2

≤∥un+1 − un∥2 − σ(1− σ − k)∥un+1 − un − (Sun+1 − Sun)∥2

≤∥un+1 − un∥2. (16)

By Lemma 4, we have un = Trnxn and

F (un, y) +
1

rn
⟨y − un, un − xn⟩ ≥ 0, (17)

F (un+1, y) +
1

rn+1
⟨y − un+1, un+1 − xn+1⟩ ≥ 0, (18)

Taking y = un+1 in (17) and y = un in (18), then because F admits monotonicity,
we add (17) to (18) and obtain

⟨un − un+1, un+1 − xn+1 −
rn+1

rn
(un − xn)⟩ ≥ 0.
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Thus

⟨un − un+1, un+1 − un + un + xn − xn − xn+1 −
rn+1

rn
(un − xn)⟩ ≥ 0,

which implies that

∥un+1 − un∥ ≤ ∥xn+1 − xn∥+
|rn+1 − rn|

rn
2M, (19)

Substituting (19) and (16) into (15), then

∥vn+1 − vn∥ ≤
∣∣∣∣αn+1

γn+1
− αn

γn

∣∣∣∣M +
(1− αn+1)βn+1∥xn+1 − xn∥

γn+1

+
(1−αn+1)βn+1|rn+1−rn|2M

rnγn+1
+

∣∣∣∣ (1− αn+1)βn+1

γn+1
− (1− αn)βn

γn

∣∣∣∣M.

(20)

It follows from (20) that lim supn→∞{∥vn+1− vn∥−∥xn+1−xn∥} ≤ 0, which shows
that ∥vn − xn∥ = 0 by Lemma 2. Again from the definition of vn, we obtain

∥xn+1 − xn∥ → 0(n → ∞). (21)

From the conditions limn→∞ αn = 0, 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1 and
(10), (21), next conclusion holds:

lim
n→∞

∥xn+1 − yn∥ = lim
n→∞

∥xn − yn∥ = lim
n→∞

∥xn − zn∥ = 0. (22)

Let p = PΩ(v) ∈ Ω. Since

∥un − p∥2 = ∥Trnxn − p∥2 ≤⟨un − p, xn − p⟩

=
1

2
(∥un − p∥2 + ∥xn − p∥2 − ∥xn − un∥2),

we have

∥un − p∥2 ≤ ∥xn − p∥2 − ∥xn − un∥2.

Notice that∥zn − p∥2 ≤ ∥un − p∥2, hence ∥zn − p∥2≤∥xn − p∥2 − ∥xn − un∥2 and

∥xn − un∥2 ≤∥xn − p∥2 − ∥zn − p∥2

≤(∥xn − p∥+ ∥zn − p∥)(∥xn − p∥ − ∥zn − p∥)
≤(∥xn − p∥+ ∥zn − p∥)∥xn − zn∥.

Let n → ∞, then ∥xn − un∥ → 0 and ∥zn − un∥ ≤ ∥zn − xn∥ + ∥xn − un∥ → 0.
Consequently, from (10) we have that

∥un − Sun∥ → 0 as n → ∞. (23)
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Since {un} is bounded, there exists a subsequence {uni} of {un} such that {uni}
converges weakly to a point q ∈ K. By Lemma 1, q ∈ F (S) =

∩r
i=1 F (Ti). We claim

q ∈ EP (F ), too. In order to see this, by un = Trnxn, we know that

F (uni , y) +
1

rni

⟨y − uni , uni − xni⟩ ≥ 0, ∀ y ∈ K. (24)

It follows from (A2) that

1

rni

⟨y − uni
, uni

− xni
⟩ ≥ F (y, uni

), ∀ y ∈ K. (25)

Notice the following facts un−xn

rn
→ 0 and uni ⇀ q as n → ∞, and for each x ∈

K, y 7→ F (x, y) is lower semi-continuous. Then let i → ∞ in inequality (25) and
the next inequality holds immediately:

F (y, q) ≤ 0, ∀ y ∈ K. (26)

For all y ∈ K, let t ∈ (0, 1) and yt = ty + (1− t)q, then yt ∈ K(y ∈ K, q ∈ K) and
F (yt, q) ≤ 0. So by (A1) and (A4), we have

0 = F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, q) ≤ tF (yt, y), ∀ y ∈ K,

i.e. 0 ≤ F (yt, y), ∀ y ∈ K. Letting t → 0+, then

F (q, y) ≥ 0, ∀ y ∈ K. (27)

Inequality (27) shows that q ∈ EP (F ).
Choosing a subsequence {xnj} of {xn} such that

lim sup
n→∞

⟨v − p, xn − p⟩ = lim
n→∞

⟨v − p, xnj − p⟩

= lim
n→∞

⟨v − p, xnj − unj ⟩+ lim
n→∞

⟨v − p, unj − p⟩

= lim
n→∞

⟨v − p, unj − p⟩ (28)

Since {unj} is bounded, from what we have discussed above, we know that there
exists a subsequence of {unj} such that it converges weakly to a point of Ω. Without
loss of generality, we may assume that {unj} converges weakly to q ∈ Ω. Then for
p = PΩ(v), from (9) and (28)

lim sup
n→∞

⟨v − p, xn − p⟩ = lim
n→∞

⟨v − p, unj − p⟩ = lim
n→∞

⟨v − p, q − p⟩ ≤ 0. (29)

Now, we start to prove that {un} and {xn} converge strongly to p = PΩ(v). It
follows from (10), (12) and Lemma 6 that

∥xn+1 − p∥2 =∥αn(v − p) + (1− αn)(yn − p)∥2

≤(1− αn)∥yn − p∥2 + 2αn⟨v − p, xn+1 − p⟩
≤(1− αn)∥xn − p∥2 + 2αn⟨v − p, xn+1 − p⟩. (30)

Applying Lemma 5 and condition (i) to (30) implies that {xn} converges strongly to
p = PΩ(v), so is {un} by ∥un−p∥ ≤ ∥xn−p∥. This completes the proof of Theorem
3.



420 Z.He

If r = 1, then the next Corollary 1 is obtained immediately by Theorem 3.

Corollary 1. Let K be a nonempty closed convex subset of H and F a bifunction
from K × K to R satisfying (A1) − (A4). Let T : K → K be a k−strict pseudo-
contractive mapping such that Ω = F (T )

∩
EP (F ) ̸= ∅. Suppose that v and x1 are

two arbitrary points in K. Let {xn}, {un} and {yn} be generated by
F (un, y) +

1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀ y ∈ K,

xn+1 = αnv + (1− αn)yn,

yn = (1− βn)xn + βnzn,

zn = (1− σ)un + σTun, n ≥ 1,

(31)

where σ ∈ (0, 1− k), coefficient {αn}, {βn}, {γn} and {rn} satisfy

(i) {αn} ⊂ (0, 1), limn→∞ αn = 0,
∑∞

n=1 αn = ∞;

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(iii) lim infn→∞ rn > 0, limn→∞ |rn+1 − rn| = 0.

Then {xn} and {un} converge strongly to p ∈ Ω, respectively, where p = PΩ(v).

4. Application of Theorem 3

Applying Theorem 3, we may consult a parallel algorithm for a finite family of non-
expansive mappings and use it to find a common element of the set of the solution
of the equilibrium problem (3) and the set of fixed points of a finite family of non-
expansive mappings. Please see the following Theorem 4.

Theorem 4. Let K be a nonempty closed convex subset of H and F a bifunction
from K × K into R satisfying (A1) − (A4). {Ti}ri=1 are a finite family of non-
expansive mappings of K into K such that Ω = EP (F )

∩
(
∩r

i=1 F (Ti)) ̸= ∅. Suppose
that v and x1 are two arbitrary points in K, for some nonnegative real number λi,
0 ≤ λi < 1, i = 1, 2, · · · , r,

∑r
i=1 λi = 1, let {xn} and {un} be generated by

F (un, y) +
1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀ y ∈ K,

xn+1 = αnv + (1− αn)yn,

yn = (1− βn)xn + βnzn,

zn = (1− σ)un + σ
∑r

i=1 λiTiun, n ≥ 1,

(32)

where σ ∈ (0, 1), coefficients αn, βn, rn satisfy the following conditions:

(i) {αn} ⊂ (0, 1), limn→∞ αn = 0,
∑∞

n=1 αn = ∞;

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(iii) lim infn→∞ rn > 0, limn→∞ |rn+1 − rn| = 0.

Then {xn} and {un} converge strongly to p ∈ Ω, respectively, where p = PΩ(v).
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Proof. Since a non-expansive mapping is a 0−strict pseudo-contractive mapping,
from Proposition 1 we know that

∑r
i=1 λiTi is a 0−strict pseudo-contractive map-

ping. Hence Theorem 4 holds immediately by Theorem 3. This completes the proof
of Theorem 4.

If r = 1, then the next Corollary 2 holds immediately:

Corollary 2. Let K be a nonempty closed convex subset of H and F a bifunction
from K×K to R satisfying (A1)−(A4). T is a non-expansive mapping of K into K
such that Ω = EP (F )

∩
F (T ) ̸= ∅. Suppose that v and x1 are two arbitrary points

in K. Let {xn} and {un} be generated by
F (un, y) +

1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀ y ∈ K,

xn+1 = αnv + (1− αn)yn,

yn = (1− βn)xn + βnzn,

zn = (1− σ)un + σTun, n ≥ 1,

(33)

where σ ∈ (0, 1), coefficients αn, βn, rn satisfy the following conditions:

(i) {αn} ⊂ (0, 1), limn→∞ αn = 0,
∑∞

n=1 αn = ∞;

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(iii) lim infn→∞ rn > 0, limn→∞ |rn+1 − rn| = 0.

Then {xn} and {un} converge strongly to p ∈ Ω, respectively, where p = PΩ(v).

Example 1. Let H = R and K = [0, 1]. Let F (x, y) = y − x,∀ x, y ∈ [0, 1], and
T1 = 1

2x
2, T2x = 1

3x
3 for all x ∈ [0, 1]. It is easy to verify that F satisfies (A1)-(A4)

and EP (F ) = F (T1) = F (T2) = {0}. Hence, EP (F )
∩

F (T1)
∩
F (T2) ̸= ∅. Also, it

is easy to verify that T1, T2 are two nonexpansive mappings. Thus, we may use the
algorithm from Theorem 4 to find their common element in EP (F )

∩
F (T1)

∩
F (T2).
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