
Josip Knezović, Hrvoje Mlinarić, Martin Žagar

Lossless Image Compression Exploiting Streaming Model for
Efficient Execution on Multicores

DOI
UDK
IFAC

10.7305/automatika.53-3.265
004.415.3.032.6:004.272.43.032.24
2.8.3; 4.0.5 Original scientific paper

Image and video coding play a critical role in present multimedia systems ranging from entertainment to special-
ized applications such as telemedicine. Usually, they are hand–customized for every intended architecture in order
to meet performance requirements. This approach is neither portable nor scalable. With the advent of multicores
new challenges emerged for programmers related to both efficient utilization of additional resources and scalable
performance. For image and video processing applications, streaming model of computation showed to be effec-
tive in tackling these challenges. In this paper, we report the efforts to improve the execution performance of the
CBPC, our compute intensive lossless image compression algorithm described in [1]. The algorithm is based on
highly adaptive and predictive modeling, outperforming many other methods in compression efficiency, although
with increased complexity. We employ a high–level performance optimization approach which exploits streaming
model for scalability and portability. We obtain this by detecting computationally demanding parts of the algo-
rithm and implementing them in StreamIt, an architecture–independent stream language which goal is to improve
programming productivity and parallelization efficiency by exposing the parallelism and communication pattern.
We developed an interface that enables the integration and hosting of streaming kernels into the host application
developed in general–purpose language.

Key words: Lossless image compression, Image coding, Stream programming, Parallel programming, Multicores

Kompresija slika bez gubitaka uz iskorištavanje tokovnog modela za izvod̄enje na višejezgrenim računal-
ima. Postupci obrade slikovnih podataka su iznimno zastupljeni u postojećim multimedijskim sustavima, počev od
zabavnih sustava pa do specijaliziranih aplikacija u telemedicini. Vrlo često, zbog svojih računskih zahtjeva, ovi
programski odsječci su iznimno optimirani i to na niskoj razini, što predstavlja poteškoće u prenosivosti i skal-
abilnosti konačnog rješenja. Nadolaskom višejezgrenih računala pojavljuju se novi izazovi kao što su učinkovito
iskorištavanje računskih jezgri i postizanje skalabilnosti rješenja obzirom na povećanje broja jezgri. U ovom radu
prikazan je novi pristup poboljšanja izvedbenih performansi metode za kompresiju slika bez gubitaka CBPC koja
se odlikuje adaptivnim modelom predvid̄anja koji omogućuje postizanje boljih stupnjeva kompresije uz povećanje
računske složenosti [1]. Pristup koji je primjenjen sastoji se u implementaciji računski zahtjevnog predikcijskog
modela u tokovnom programskom jeziku koji omogućuje paralelizaciju izvornog programa. Ovako projektiran
predikcijski model može se iskoristiti kroz sučelje koje smo razvili a koje omogućuje pozivanje tokovnih računskih
modula i njihovo paralelno izvod̄enje uz iskorištavanje više jezgri.

Ključne riječi: Kompresija slika bez gubitaka, kodiranje slikovnih podataka, tokovni računalni model, paralelni
sustavi, višejezgrena računala

1 INTRODUCTION

Many present–day applications rely on acquisition, pro-
cessing, archival and retrieval of visual data. Those data,
when transmitted and stored, require a vast amount of
storage space or communication bandwidth if processed
uncompressed. Compression is therefore desirable, espe-
cially in the embedded devices with sparse storage as well
as in internet–enabled devices with limited connectivity.
Many applications that deal with visual data, such as med-

ical imaging and diagnostics, geological imaging, satellite
and remote sensing, pre–press imaging, image archival and
biometrics based on visual data, require no loss in the com-
pression phase, thus utilizing lossless compression meth-
ods.

Past and recent research on lossless compression for
images has focused on the predictive contextual model-
ing in order to extract redundancy present in typical im-
ages [1–5]. Image is first treated by a prediction phase

Online ISSN 1848-3380, Print ISSN 0005-1144
ATKAFF 53(3), 272–283(2012)

272 AUTOMATIKA 53(2012) 3, 272–283

Lossless Image Compression Exploiting Streaming Model for Efficient Execution on Multicores J. Knezović, H. Mlinarić, M. Žagar

where pixels are predicted based on some information
about source, such as correlation among neighboring pix-
els, edges, planar structures, textures etc. Prediction accu-
racy is crucial in image decorrelation, and therefore has
been the main subject of extensive research in the field.
Some algorithms, such as CALIC [3], or JPEG–LS [6], use
simple static or switching predictors and therefore lack the
robustness in the cases of abrupt changes in image region
properties, or more complex image structures such as non-
trivial edges, textures with complex properties etc. Other
proposals deploy highly adaptive predictors such as the
least squares based predictors [5, 7], neural networks [8],
two pass linear prediction [9] etc. These approaches of-
fer improved compression efficiency with the compromise
in extremely high computational requirements. Predictive
modeling has also found applications in other image pro-
cessing areas such as edge detection [10], high dynamic
range image compression [11], image archival [12] etc.

Nowadays, computer–architecture has gone to the rev-
olutionary shift into the multicore and manycore era. The
reason for this change is due to the fact that the instruction–
level parallelism exploited thus far has reached the point of
diminishing returns increasing the power/performance ra-
tio beyond the acceptable level. The multicore and many-
core path brings a new set of challenges to the com-
puting system designer that were not present before: the
parallelism and efficient parallel implementation of pro-
grams. Since the number of cores on the chip is going
to raise as mandated by Moore’s law, automatic extrac-
tion of parallelism, either by hardware or software, with-
out a direct assistance of the programmer and program-
ming model will become a daunting and infeasible task.
Therefore, an increased interest in explicit parallel pro-
gramming models, languages and runtimes has emerged.
From the viewpoint of predictive lossless image compres-
sion, increased computational capability of multicores can
be efficiently used by parallel execution of parts of al-
gorithms that are parallelizable and computationally de-
manding, notably adaptive predictor modeling. Moreover,
streaming nature of these computations enable their im-
plementation in a high–level streaming language such as
StreamIt which exposes task, data and pipeline parallelism
and enables portability and scalability, features not possi-
ble with old–fashioned programming practices which opti-
mize in low level architecture–specific languages [13, 14].

In this paper we concentrate on performance improve-
ments of our proposed lossless image compression al-
gorithm named CBPC after the term Classification and
Blending Predictive Coding algorithm [1]. While our pre-
vious publications on CBPC compression concentrate on
the problem of highly adaptive predictive coding of im-
ages from the viewpoint of achieving high compression ra-
tio, here we address the execution time of the algorithm.

Moreover, our goal is to use a high–level streaming lan-
guage in the performance optimization in order to make a
portable and scalable implementation of the codec which
would scale well with the increase of number of the cores.
Additionally, our intention was to enable the portability
among different architectures, from symmetric multicores
with shared memory to heterogeneous multiprocessor ar-
chitectures which rapidly emerge in the embedded comput-
ing devices. In order to end up with a scalable and portable
implementation we exploit streaming compilation infras-
tructure that we described previously in [15], which we
further extended in order to generate reusable streaming
kernels in the form of static library. This approach enabled
us to obtain scalable performance improvement in regard
to increasing the number of processing cores without any
modifications to existing source. The only step required for
the whole program to be sped up was eventual recompila-
tion of the program targeting different number of process-
ing threads.

The rest of this paper is organized as follows. Sec-
tion 2 describes the CBPC compression algorithm. Sec-
tion 3 presents our approach where a high–level perfor-
mance aware implementation of the most demanding parts
of the algorithm in the StreamIt programming language is
described. Results are given in Section 4. Finally, we draw
the conclusions in Section 5.

2 CBPC COMPRESSION METHOD

In this section we briefly describe our proposed CBPC
compression method, details can be found elsewhere [1,
16]. Fig. 1 shows the basic steps of CBPC compression al-
gorithm. Image is treated as two-dimensional array I(x, y)
of pixel grey intensity values with the width W and the
height H , where 0 ≤ x < W and 0 ≤ y < H . Pixels
are observed sample by sample in raster scan order, from
top to bottom, left to right. In assumed backward adaptive
approach, the encoder is allowed to use only past infor-
mation that is also available to decoder. This means that
for forming the prediction only previously observed pix-
els are used. In fact, only a subset of previously encoded
pixels is used to form the causal template. In order to effi-
ciently model different image structures we propose adap-
tive predictor based on the idea of predictor blends [17].
The blending predictor is extended with dynamic determi-
nation of blending context on a pixel–by–pixel basis. The
set of predictors to be blended F = {f1, f2, · · · , fN} is
composed of N static predictors adjusted to predict well in
the presence of specific property. For example simple pre-
dictor fW = I(x − 1, y) is known to predict well in the
presence of sharp horizontal edge. The classification pro-
cess determines the set of neighboring pixels on which the
blending of F is performed. It is similar to initial step of

AUTOMATIKA 53(2012) 3, 272–283 273

Lossless Image Compression Exploiting Streaming Model for Efficient Execution on Multicores J. Knezović, H. Mlinarić, M. Žagar

R R

R

C
Ω

(,)I x y1
v

2
v

3
v

4 1
=v u (,)I uv

2
u

3
u

4
u

(,)I i j1
w

2
w

3
w 4

w 1
z

2
z 3

z 4
z

(,)I k l

w = v(i,j) z = v(k,l)

v = v(x,y)

u = v(u,v)

����������	
���� ������	
����

�������	

������

1
C

2
C

3
C

NC

),(yxs

),(yxp
01110110...

�
�������	

����

�����	

�
���

�� �� � �

������

���

Fig. 1. Basic blocks of the CBPC compression method

VQ design substantially simplified in order to be usable in
symmetric, backward adaptive algorithm [18].

As illustrated in Fig. 1 pixels are first processed by a
predictive model denoted by PM. As already said, the goal
of this step is to decorrelate image and thus remove statis-
tical redundancies in order to allow more efficient entropy
codes for image data, i.e. prediction errors. After predic-
tion step, remaining redundancies are removed by a con-
textual modeling CM step in which, a state, i.e. context for
probability estimation of prediction error is computed. The
state and the error are further sent to entropy coder step de-
noted by EC in order to produce a variable length code for
the current pixel. Finally, the code is sent out in the com-
pressed data stream. Predictor used in PM step uses causal
context of surrounding pixels for the prediction of the cur-
rent pixel:

Î(x, y) = f(Ω(x, y)) (1)

PM block in Fig. 1 depicts basic elements of proposed pre-
dictor employed in CBPC. ΩC denotes the causal context
of surrounding pixels which used by the predictor. We also
call this context the search window. It is a rectangular win-
dow of radius R composed of previously encoded pixels on
which the search procedure for classification is performed.
Current, unknown pixel I(x, y) and each pixel from the
ΩC have their own vector template v(x, y) composed of
d closest causal neighboring pixels as shown in the figure
where vectors of size d = 4 (v4(x, y)) are used. Euclidean
distance between associated vectors will be used for clas-
sifications of pixels into cells of similar elements similar
to vector quantization. In order to reduce the complexity
of proposed scheme some basic simplifications are intro-
duced. First, as shown by Slyz and Neuhoff, only the cur-
rent cell in which the current pixel lies needs to be calcu-
lated [18]. Next, the cell population, i.e. number of pixels
that go into the cell together with the current pixel’s vector,
is set as constant M at the beginning of the coding process.
Proposed prediction scheme operates as follows:

1. IN – Image Input: Currently our implementation of
CBPC supports grayscale or color images in RGB color
space. In case of color images, every component is inde-
pendently processed by each subsequent step.

2. PM – Predictive Modeling: The predictor is described
in following steps:

2.1.Classification: For each pixel I(i, j) ∈ ΩC compute
the Euclidean distance D(i, j) between its corresponding
vector v(i, j)=w and the current pixel’s vector v(x, y)=v:

D(i, j) = ||v(i, j)− v(x, y)||
= ||w − v||
=

∑d
k=1 |wk − vk|2 .

(2)

Based on the computed distances, determine M pixels from
ΩC that belong to the current cell, i.e. with the smallest
vector distances from the current pixel’s vector. The cur-
rent cell will be used as blending context ΩB for set of
static predictors F . This step is similar to nearest neighbor
selection in VQ design.

2.2.Blending: On the blending context ΩB perform the
blending of the set F = {f1, f2, · · · , fN} of static predic-
tors, as described in [17]. For every predictor fk the penalty
Gk is calculated by the following equation:

Gk =
∑

I(i,j)∈ΩB

(Îk(i, j)− I(i, j))2, (3)

where Îk = fk(i, j) is the prediction of fk ∈ F for the
pixel I(i, j) ∈ ΩB . Based on the penalties we form the
prediction for the current pixel Î(x, y) as:

Î(x, y) = F (x, y) =

(∑N
k=1

1
Gk
· Îk(x, y)

)

∑N
k=1 1/Gk

 . (4)

The prediction for the current pixel is the weighted sum
of predictions of all the predictors from F with weights

274 AUTOMATIKA 53(2012) 3, 272–283

Lossless Image Compression Exploiting Streaming Model for Efficient Execution on Multicores J. Knezović, H. Mlinarić, M. Žagar

inversely proportional to corresponding penalties. The
penalty of predictor reflects its accuracy on the blending
context. If the predictor predicts well, its contribution in
the final prediction will be higher. The predictors that do
not predict well on the current blending context will even-
tually be blended out by associated large penalties. The de-
nominator in (4) normalizes the final prediction so that the
sum of weights equals to 1. Our exhaustive tests had shown
that the set F should contain simple static predictors that
are suited to various regions, such as oriented edges, planar
regions, smooth regions etc [1]. Based on our experiments,
we fix the set F to be:

F = {fN , fW , fNW , fNE , , fGW , fGN , fPL}, (5)

where:

fN =I(x, y − 1)
fW =I(x− 1, y)
fNW =I(x− 1, y − 1)
fNE =I(x+ 1, y − 1)
fGW =2 · I(x, y − 1)− I(x, y − 2)
fGN =2 · I(x− 1, y)− I(x− 2, y)
fPL =I(x, y − 1) + I(x− 1, y)− I(x− 1, y − 1).

(6)

F includes simple edge predictors (fN , fW , fNW , fNE),
predictors with horizontal and vertical gradient modeling
(fGW , fGN), and one planar predictor (fPL). Border pix-
els for which the ΩC is not defined are predicted using one
of the simple predictors from F that has defined prediction
context, i.e. fW for the first row, fN for the first column
except for the I(0, 0) pixel which is PCM coded.

2.3.Error correction: On the blending context ΩB calculate
typical error of the final predictor as:

ē(ΩB) =
1

M

∑

I(i,j)∈ΩB

(F (i, j)− I(i, j)). (7)

Based on the typical error of blending predictor F the final
prediction for the current pixel is further refined as:

İ(x, y) = F (x, y) + ē = Î(x, y) + ē. (8)

This final step of proposed predictor captures typical bias
of the blending predictor F on the classified set of pixels
ΩB that are the part of similar structure as current pixel.

Through the classification and blending process, proposed
predictor adjusts itself to the dominant local property. The
blending allows other non–dominant properties to be mod-
eled in the prediction, although with less contribution. This
is crucial difference compared with switching predictors
that don’t have the capability to model nontrivial image
structures with mixture of properties. Note that pixels from
the search window that do not belong to the region with

the same dominant property as the region in which current
pixel resides will not be included in the current cell and
thus they will not be part of the blending context.

3. CM – Contextual Modeling: Although the prediction
step removes statistical redundancies within image data,
there are remaining structures in the error image which
cannot be completely removed using only previously ap-
plied prediction step [2]. Those structures are removed us-
ing contextual modeling of prediction error, where the con-
text or the state is the function of previously observed pix-
els, errors or any other relevant variables. As reported by
Wu, the heuristic method that uses both, previous pixels
template and causal error energy estimate is best suited for
this purpose [3]. Wu’s contextual model is composed of
two different submodels: (1) Model with large number of
states that is used for prediction error feedback; and (2)
Model with low number of states used for error probability
estimation. On the other hand, Wu’s predictor is a heuristic
predictor with low degree of adaptation and our proposal is
highly adaptive predictor with already built in error feed-
back mechanism (error correction step in the prediction).
This implies that our mechanism needs smaller and less
complex contextual model for estimation of symbol proba-
bilities. Therefore it is built as follows: Besides of the high
correlation with texture pattern, current prediction error is
also highly correlated with the errors on neighboring pix-
els. This is modeled with the error discriminant

∆ = dh + dv + 2|ew|, (9)

where

dh = |W −WW |+ |N −NN |+ |N −NE|, (10)

and

dv = |W −NW |+ |N −NN |+ |NE −NNE|, (11)

are horizontal and vertical gradients around the current
pixel, and ew is the prediction error on the west pixel W
from the current pixel. ∆ is uniformly quantized into eight
levels to produce the state of the model [3]. Every state
contains the histogram table which is used for probability
estimation of the prediction error in the current state. Be-
cause of the context dilution effect, this context is required
to have small number of states.

4. EC – Entropy Coding: The final step of proposed im-
age compression algorithm is entropy coding of the result-
ing prediction error. For the given error symbol and given
probability estimate computed from the contextual state,
the codeword is computed by the entropy coder. This code-
word is output as the final result of pixel compression pro-
cess. Our proposal uses highly efficient implementation of
arithmetic coding [19].

AUTOMATIKA 53(2012) 3, 272–283 275

Lossless Image Compression Exploiting Streaming Model for Efficient Execution on Multicores J. Knezović, H. Mlinarić, M. Žagar

86.53

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

IN P
M

C
M E
C

O
U

T

P
M

+
C

M

T
im

e
 [

%
]

Function

6.71

84.69

1.84
5.05 1.71

 0

Fig. 2. Execution time breakdown of CBPC encoder

5. OUT – Compressed Data Output: Variable length
code generated by entropy coder is put into compressed
bitstream.

2.1 Computational Complexity

In order to investigate our algorithm performance, we
profiled its execution with the resulting breakdown shown
in Fig. 2. Each bar shows the contribution of the block (in
percentage) from the Fig. 1 to the overall time. Predictive
modeling (PM) block is computationally most demanding
occupying almost 85% of total execution time. This step
is tightly connected to the contextual modeling step CM
in the algorithm. Therefore we show their joint contribu-
tion as the last bar in the figure. Therefore, PM and CM
will be our target for performance improvements using the
streaming model due to their computational requirements.
In addition, they are characterized with the properties that
make them a good fit for streaming abstraction: indepen-
dent and dataflow–like operations on a large stream of data.
The details of streaming optimizations of these two blocks
are given in Section 3.

On a pixel–by-pixel basis, it takes

Nop = C1 · (2R2 +R) · d+ C2 ·M (12)

arithmetic operations to compute the predicted value. Con-
stants C1 and C2 depend on the size of the vector template
v(x, y) and the size and complexity of the set of predic-
tors F , respectively. In order to more thoroughly under-
stand the sensitivity of our PM step we measured the bi-
trate and the execution time when varying radius R and
cell size M . Vector size d was fixed to five. Summary of
the results are shown in Fig. 3 where we show the average
bitrate and execution time obtained on the set of popular
8–bit grayscale test images. The set will also be used to
demonstrate the compression efficiency of our algorithm
(Table 2). Fig. 3(a) shows the entropy of the prediction er-
ror vs. the radius of search window R with the cell size M
as a parameter, while Fig. 3(b) shows the execution time

2 3 4 5 6 7
4.02

4.04

4.06

4.08

4.1

4.12

4.14

4.16

R

M = 3
M = 4
M = 5
M = 6

E
rr

o
r

e
n

tr
o

p
y
 [
b

p
s
]

(a) Entropy of prediction error

2 3 4 5 6 7
2

3

4

5

6

7

8

9

10

R

M = 3
M = 4
M = 5
M = 6

E
x
e
c
u

ti
o
n

 t
im

e
 (

n
o
rm

a
liz

e
d

)

(b) Execution time

Fig. 3. Entropy and execution time versus algorithm pa-
rameters

Table 1. CBPC algorithm parameters
Parameter Radius R Vector size d Cell size M

Value 5 5 6

measurements. We see near quadratic dependency of the
execution time with radius of the search window, while in-
creasingR above 5 andM above 6 reached the point of di-
minishing returns in terms of minimizing the entropy. Fol-
lowing the insights from our experiments we fixed the pa-
rameters of the PM step to values shown in Table 1. These
values will be further used for the rest of the paper, where
we report the compression efficiency of our proposal.

In terms of computational complexity, our predictor lies
somewhere between simple predictors and highly adap-
tive LS–based predictors. However, in order to make our
proposal more practical, we investigated and report an ap-
proach to improve the whole program execution time. Rea-
sonably, we chose the predictive modeling step PM as the
main target for performance optimization. Therefore we
will concentrate on it and try to scalably improve its ex-
ecution on the multicore machine in order to improve the
overall program response time. We will leverage its proper-
ties and show its implementation in the streaming domain
as a stream graph in the StreamIt programming language.

276 AUTOMATIKA 53(2012) 3, 272–283

Lossless Image Compression Exploiting Streaming Model for Efficient Execution on Multicores J. Knezović, H. Mlinarić, M. Žagar

Table 2. Bit-rate of a complete coder (bps)
Image JP–LS JP2KR CALIC TMW CBPC
Balloon 2.90 3.04 2.83 2.60 2.78
Barb1 4.69 4.61 4.41 3.83 4.13
Barb2 4.69 4.80 4.53 4.24 4.47
Board 3.68 3.78 3.56 3.27 3.49
Boats 3.93 4.07 3.83 3.53 3.77
Girl 3.93 4.07 3.77 3.47 3.69
Gold 4.48 4.61 4.39 4.22 4.39
Hotel 4.39 4.59 4.25 4.01 4.24
Zelda 4.01 4.00 3.86 3.50 3.72
Average (bps) 4.08 4.17 3.94 3.63 3.85

2.2 Compression Efficiency

In this section we report the compression results ob-
tained with our proposed scheme. Table 2 compares the
compression efficiency of the complete CBPC encoder
with other popular lossless compression schemes. Aside
for already described predictive modeling PM, our en-
coder employs contextual modeling CM and integer im-
plementation of the arithmetic entropy encoder, as previ-
ously described. We present the results as the bit–rates ob-
tained with the algorithm on the set of popular test im-
ages used in JPEG standard benchmarking. First column
shows the results of a JPEG–LS standard coder [6], sec-
ond column shows the results of the JPEG 2000 coder with
the reversible wavelet transform [20], next two columns
gives the results of the CALIC scheme [3] and a TMW
scheme [9] respectively. The last column shows the re-
sults of our proposed CBPC scheme. Compared to JPEG–
LS, JPEG 2000 and CALIC, our CBPC obtains lower bit–
rates. Compared to the TMW compression scheme, our
coder is outperformed. However, extreme complexity of
the TMW scheme requiring two passes over image and
hours to encode it, prohibits is practical use. Our CBPC
scheme is on the other hand in the range of seconds to
encode the image, albeit substantially more complex than
other schemes such as JPEG–LS or CALIC which employ
heuristic–based switching among several static prediction
functions.

As previously said, the improvements in the compres-
sion efficiency of proposed scheme are paired with the
increase on the computational demands. The goal of this
paper is to show the approaches we took in order to im-
prove the execution performance of the algorithm in or-
der to make it more usable and luring for real applications.
These efforts are described in the rest of the paper.

3 STREAMING IMPLEMENTATION OF CBPC

In this section we describe a portable and scalable per-
formance optimization on the CBPC compression method

that we call SCBPC. We improve the execution perfor-
mance of CBPC utilizing the streaming model of com-
putation and expressing compute intensive part of the al-
gorithm in the StreamIt programming language. Follow-
ing the observations from our previous work on integrat-
ing streaming computations we modified our experimen-
tal tool reported in [15], which resulted in STREAMGATE
interface and runtime. The main purpose of the interface
is to provide existing applications the easy way to inte-
grate high–level and optimized streaming computations as
reusable kernels. In this sense, the interface also provides
a runtime which manages threads used in parallelized exe-
cution of streaming kernels, their creation, execution and
finally their termination. Moreover, encapsulation of the
streaming kernel through the interface fosters portability
and scalability which will be demonstrated in Section 4.

We have been motivated by the following two observa-
tions:

1. CBPC encoder and decoder are impossible to imple-
ment entirely as a set of streaming computations. This
is because the streaming is a domain-specific model
requiring some specific properties of the computa-
tions to be expressed such as regular, data–oriented
processing. Some parts of the algorithm exhibit prop-
erties that are better described in other abstractions.
Examples are user input handling, error handling,
control–oriented flows etc. Additionally, aggressive
streaming compiler optimizations are possible only
for static–rate filters, i.e. filters that have their rates
defined at the compile time.

2. Stream–oriented parts are usually computationally
the most demanding parts of typical image compres-
sion algorithms. Therefore, they are naturally selected
for performance optimizations. This fact holds true
for CBPC as well, an execution profile shown in Fig. 2
is dominated by the PM and CM parts which could be
efficiently and naturally expressed as streaming com-
putations.

AUTOMATIKA 53(2012) 3, 272–283 277

Lossless Image Compression Exploiting Streaming Model for Efficient Execution on Multicores J. Knezović, H. Mlinarić, M. Žagar

1: void ->void pipeline pmcm
2: {
3: add MemoryReader<int>(in_buffer, IMAGE_SIZE);
4: add VectorContextProducer();
5: add VectorContext->VectorContext pipeline ComputeCell
6: {
7: add DistanceComputation();
8: add SelectCell();
9: }

10: add VectorContext->int pipeline BlendPredictors
11: {
12: add VectorContext->int splitjoin ComputePredictorPenalties
13: {
14: split roundrobin;
15: add VectorContextForward();
16: for(int i=0; i < M; i++)
17: add PredictorPenalty();
18: join roundrobin;
19: }
20: add ComputeErrorAndContext();
21: }

22: add MemoryWriter<int>(out_buffer, 2 * IMAGE_SIZE);
23: }

1: #include "pmcm.h"
2: int main()
3: {
4: // IN
5: PGMImage image(image_name);
6: load_image(input_buffer, image);
7: // PM + CM
8: // create thread and start streaming
9: pmcm_streamit_fire(input_buffer, image_size);
10:
11: // ENC + OUT
12: load_results(output_buffer);
13: CBPFile encoded_file(cbp_name);
14: encode_symbols(output_buffer, encoded_file);
15:
16: //shutdown pmcm threads
17: pmcm_streamit_exit();
18: }

Fig. 4. Implementation flow of CBPC encoder

Fig. 4 shows the design flow with the STREAMGATE
interface we developed in order to integrate the stream-
ing computations into the CBPC algorithm. First, based
on our profile from Fig. 2, we selected PM (predictive
modeling) and CM (contextual modeling) steps to be
implemented in StreamIt. Those steps exhibit streaming
nature and contribute nearly 87% of total encoder ex-
ecution time. StreamIt source file pmcm.str contain-
ing streaming description of these two steps is com-
piled with the high–level StreamIt compiler which we
modified in order to compile its input into a library
(libpmcm_streamit.a) and connect to the STREAM-
GATE interface. This library exposes, among the routines
that manage interface, an entry routine for our stream-
ing kernel pmcm_streamit_fire(). The kernel is
asynchronously called from the host application written
in C/C++ language (cbpc.cpp) and it performs spec-
ified streaming computations in parallel. Host applica-
tion code in cpbc.cpp can require to eventually syn-
chronize with spawned streaming kernel which is also
provided through the STREAMGATE interface. The final
CBPC encoder executable is the result of the compila-
tion and linkage of the host application code cbpc.cpp
and the libpmcm_streamit.a library which is further
linked with cluster and pthreads libraries. The for-
mer is the part of StreamIt infrastructure for parallel ex-
ecution of StreamIt programs on multicores and clusters,
while the latter is a standard POSIX threading library. Re-
sulting executable cbpc performs PM and CM steps in
multiple threads as streaming kernel, while the rest of the
application consisting of IN, EC and OUT steps is serial,
i.e. performed in single, main program thread implemented
in the host code.

The source code of PM and CM steps in pmcm.str

file with the high–level overview is shown in Fig. 5. At
the boundaries of the top–level pmcm pipeline are the
MemoryReader and MemoryWriter filters that we in-
tegrated into the StreamIt language and compiler infras-
tructure, lines 3 and 22. These filters are reusable, built–
in filters which perform data exchange between streaming
kernel and the host application. They are parameterized
with the data–type they exchange, the name and the size
of the external host buffer used to get from or fill the data.
Filters can exchange primitive and user–defined types. As
shown in Fig. 4, MemoryReader pops the input pix-
els from the in_buffer array, while MemoryWriter
pushes the data into the out_buffer array. The
exchange arrays are allocated in the host program
cbpc.cpp source outlined in Fig. 6. After the pixels are
read and pushed forward, VectorContextProducer
stream generates the vector template v(x, y) for each of
them, as illustrated in Fig. 1. Next, generated vector tem-
plates are processed by the ComputeCell pipeline that
classifies the set of M pixels from the Ω into a current cell
(lines 5 through 9). A set of static predictors is blended in
the BlendPredictors pipeline (lines 10 through 19)
in order to produce the prediction value for the current
pixel. Finally, ComputeErrorAndContext filter (line
20) calculates the prediction error together with the context
in which the error probability is estimated, a work done in
the CM step of the algorithm. Generated symbol data are
placed in the out_buffer by MemoryWriter. These
data are ready for entropy coding by the EC step, which is
implemented in the host code.

Original stream graph of the pmcm.str is shown in
Fig. 5. This graph is a high–level view of the algorithm as
perceived by the programmer. The resulting stream graph,
as generated by streaming compiler is usually not iden-

278 AUTOMATIKA 53(2012) 3, 272–283

Lossless Image Compression Exploiting Streaming Model for Efficient Execution on Multicores J. Knezović, H. Mlinarić, M. Žagar

Fig. 5. High–level source of PM and CM steps in StreamIt

Fig. 6. Host–application code and thread activity

tical to the original, as the compiler performs transfor-
mations in order to target the underlying cores to obtain
a balanced set of computational threads. These transfor-
mations are transparent and automated into the streaming
compiler, thus freeing the programmer from the exhaus-
tive task of load balancing. Additionally, automation of the
stream graph transformations into the compiler helps the
portability across both, increasing number of cores and dif-
ferent computer architectures.

Fig. 6 illustrates the host source code in cbpc.cpp.
Additionally, right side of the figure illustrates the gen-

eral thread activity associated with the execution of the
final cbpc executable. Line 1 declares the fire routine
which invokes parallel execution of the streaming kernel
pmcm. Lines 2, 5 and 6 allocate the space for exchange
buffers that link the host application and the streaming
kernel using MemoryReader and MemoryWriter fil-
ters. The host application also reclaims the buffers when
they are no longer needed on lines 22 and 23. Lines 8 and
9 load the image from the file and fill the in_buffer
with the pixels which MemoryReader filter from Fig. 5
passes to the streaming kernel. Line 12 invokes the
pmcm_streamit_fire routine. At this point, the num-
ber of threads determined by the streaming compiler are
created and streaming computations start the execution in
parallel. The call to the routine is synchronous in terms
that the code after the call will continue only after the
streaming threads complete. We also allow asynchronous
calls of streaming kernels. When the kernel is executed,
the threads terminate and exit reducing the execution to
single thread of the host application. Threading support
which includes thread creation, execution and termination,
is realized with the pthreads library [21] and is encapsu-
lated in the STREAMGATE interface as well as synchro-
nization routine which is not shown. This removes the bur-
den of tedious low–level multithreaded programming from
the programmer. Line 16 loads the resulting symbols from
the output_buffer array into statistical encoder which
encodes the symbols on line 18. Compressed image bit-
stream is written into the file on the line 21.

AUTOMATIKA 53(2012) 3, 272–283 279

Lossless Image Compression Exploiting Streaming Model for Efficient Execution on Multicores J. Knezović, H. Mlinarić, M. Žagar

4 EXPERIMENTAL RESULTS

In order to validate our proposal we measured the exe-
cution time of our modified CBPC encoder with streaming
kernel for predictive and error modeling steps on three dif-
ferent sets of test images:

• Jpeg: A set of natural grayscale images which are
widely used for benchmarking the compression effi-
ciency in the literature and in the JPEG standard, as
shown in Table 2.

• Jpeg (RGB): The same set of images as previous set
in RGB color format. We chose this set of images to
demonstrate the scalability of proposed scheme. Our
algorithm independently processes each color chan-
nel equivalent to processing a luminance channel in
grayscale images.

• Satellite: A set of satellite images in high resolution.
Images were obtained in various spectral bands. Be-
cause of high resolution and visual properties, satel-
lite images present a challenge to efficient lossless
compression which diminishes the benefits of poten-
tial heuristics incorporated into adaptive predictors.

• Medical: A set of grayscale medical images obtained
with various methods which range from high resolu-
tion MR images to computerized tomography images.

Our final SCBPC compression method consists of a
host code written in C++ and a streaming kernel written
in the StreamIt programming language. Streaming kernel
consists of PM (Predictive Modeling) and CM (Contextual
Modeling) steps, while the host performs all other steps
as described in the Fig. 4. We performed our benchmarks
on two different platforms which resemble the increase of
processing cores in upcoming computational trends:

• 2 Cores: A system containing a 2.66GHz Intel Core
2 Duo CPU with 4GB of RAM, running a Ubuntu
10.04 operating system with Linux 2.6.32 kernel. The
system had gcc version 4.4.3 installed.

• 4 Cores: A system containing a 2.66GHz Intel Core
2 Quad CPU with 8GB of RAM, running Fedora 15
operating system with Linux 2.6.41 kernel. For C++
source compilation we used gcc version 4.6.1.

Streaming kernel pmcm.str was first processed by
streaming compiler as shown in Fig. 4. We did not use any
stream–specific optimizations in this step, and the only op-
tion we used was the target number of threads for the ker-
nel. Streaming compiler produces a C++ code which was
compiled and packaged in the library and exposed through
the STREAMGATE.

pmcm (top level)

SplitJoin_PredictorPenalties_Hier

MemoryReader

VectorContextProducer

DistanceComputation

SelectRegionsForCell

WEIGHTED_ROUND_ROBIN(4,3)

Fused_PredictorPenalties Fused_PredictorPenalties

WEIGHTED_ROUND_ROBIN(4,3)

ComputeErrorAndContext

MemoryWriter

Fig. 7. Resulting stream graph for 2 cores

For the host part of the SCBPC code and for the C++
code generated by StreamIt compiler we used gcc with
-O3 optimization flag. We also used this setting for com-
pilation of original, serial CBPC C++ code so that we can
provide a fair comparison between parallelized (SCBPC)
and sequential (CBPC) implementation of the compression
method.

Fig. 7 shows the resulting, partitioned stream graph of
our streaming kernel. The original stream graph shown in
Fig. 5 was finally partitioned to 9 threads. For RGB im-
ages from Jpeg (RGB) set the streaming compiler was in-
structed to target 17 threads which practically duplicate the
pipelines from Fig. 7 for each color channel.

We measured the speedup of SCBPC obtained on our
test sets normalized to two realizations:

1. Optimized sequential realization of original CBPC al-
gorithm from our previous publications [1, 16]. This real-
ization doesn’t incorporate any stream–specific code and is
written in C++. As noted, the executable is compiled with
respective gcc compiler with -O3 optimization switch. It
represents a highly optimized serial implementation of the
algorithm.

2. Sequential realization of SCBPC with the streaming
kernel compiled with the target number of threads equal
to one. This gives a realization of our algorithm with

280 AUTOMATIKA 53(2012) 3, 272–283

Lossless Image Compression Exploiting Streaming Model for Efficient Execution on Multicores J. Knezović, H. Mlinarić, M. Žagar

 1.50

 2.00

 2.50

 3.00

 3.50
Jp

eg

Jp
eg

(R
G

B
)

S
at

el
li

te

M
ed

ic
al

G
eo

m
.M

ea
n

S
p

ee
d

u
p

Benchmark

2 Cores
4 Cores

 0.00

 0.50

 1.00

Fig. 8. Speedup normalized to optimized serial implemen-
tation

stream–specific implementation of PM and CM steps, but
compiled for sequential execution. Speedup of parallelized
SCBPC (to specific number of threads for streaming ker-
nel) relative to this serial streaming realization gives a fair
comparison of benefits obtained through the incorporation
of high–level streaming abstraction into the design flow.

Fig. 8 shows the average speedup obtained on our sets
of images normalized to the first realization of the algo-
rithm. The last pair of bars shows the geometric mean. For
each set we obtained comparative results which increase
with the number of cores. For RGB images the speedup
of 3.05 is especially noticeable for a four core machine.
This is because of increased amount of data–parallelism
available through independent color channels. This spe-
cific case clearly demonstrates the portability and scala-
bility of our approach. However, in order to have this ef-
fect in other applications, we would have to rely on ex-
ploiting not only data parallelism, but other types of paral-
lelism as well. We also see here an opportunity to exploit a
high–level pipeline parallelism between the host code and
streaming kernel. On overall, we obtained mean speedup
of 1.6 for two cores and 2.2 for four cores.

Fig. 9 shows the speedup normalized to the second,
serial streaming realization of the algorithm. This figure
gives a fair comparison of scalability over the increasing
number of cores (and parallelizing the streaming kernel)
when we concentrate solely on the effects of scalable im-
plementation of streaming kernel. As illustrated, increas-
ing the number of processing cores improves the execution
time without any modifications of the source code, either
host or kernel code. Interestingly, we obtained superlinear
speedup for both test configurations (3.26 for two cores,
4.08 for four cores) on satellite images. We attribute this to
cache effects with the current implementation of tapes in
generated streaming kernel code, which are implemented

 1.50

 2.00

 2.50

 3.00

 3.50

 4.00

 4.50

Jp
eg

Jp
eg

(R
G

B
)

S
at

el
li

te

M
ed

ic
al

G
eo

m
.M

ea
n

S
p

ee
d

u
p

Benchmark

2 Cores
4 Cores

 0.00

 0.50

 1.00

Fig. 9. Speedup normalized to serial implementation of
pmcm kernel

as FIFO buffers [13]. Placing large amount of data on the
tapes between filters can potentially cause cache misbe-
havior for coarse grained stream graphs, such as the graph
which the streaming compiler produces when instructed
to compile the kernel code for serial execution (or insuf-
ficient number of threads). On average, we obtained linear
speedup when the number of cores is increased.

5 CONCLUSION

Current and upcoming processor architectures are char-
acterized with the increased number of processing cores.
Another trend in computing landscape is the emergence
of data–intensive applications that require high processing
power. In that sense, those data–intensive applications are
natural targets for performance optimizations.

In this paper we demonstrated the benefits of using
streaming programming model for high–level implemen-
tation of computational kernels for data–intensive appli-
cations such as predictive lossless image coding. We pro-
posed an interface and tool which can provide portable
and scalable performance with the increase of processing
cores. This is obtained through a high–level implemen-
tation of performance hungry computations as kernels in
streaming model and their integration into existing code as
reusable modules.

Our approach is demonstrated in our adaptive
prediction–based lossless image coding algorithm
which clearly benefited from streaming implementation of
its computational kernels. These kernels are run in parallel
using available processing resources. Our approach can
be extended to heterogeneous platforms where compute–
intensive and data–parallel parts can be mapped into
graphical processing units without tedious programming
at the level of graphical libraries.

AUTOMATIKA 53(2012) 3, 272–283 281

Lossless Image Compression Exploiting Streaming Model for Efficient Execution on Multicores J. Knezović, H. Mlinarić, M. Žagar

REFERENCES

[1] J. Knezović, M. Kovač, and H. Mlinarić, “Clas-
sification and blending prediction for lossless im-
age compression,” in Electronic Proceedings 13th
IEEE Mediterranean Electrotechnical Conference,
(Malaga, Spain), 2006.

[2] N. Memon, X. Wu, “Recent Developments in
Context-Based Predictive Techniques for Lossless
Image Compression,” The Computer Journal, vol. 40,
no. 2/3, pp. 127–136, 1997.

[3] X. Wu, “Lossless Compression of Continuous-tone
Images via Context Selection, Quantization, and
Modeling,” IEEE Transactions On Image Processing,
vol. 6(5), pp. 656–664, 1997.

[4] G. Motta, J.A. Storer, B. Carpentieri, “Lossless
Image Coding via Adaptive Linear Prediction and
Classification,” Proceedings of The IEEE, vol. 88,
pp. 1790–1796, November 2000.

[5] X. Li, M.T. Orchard, “Edge–Directed Prediction for
Lossless Compression of Natural Images,” IEEE
Transactions on Image Processing, vol. 10(6),
pp. 813–817, 2001.

[6] M.J. Weinberger, G. Seroussi, G. Sapiro, “The
LOCO–I Lossless Image Compression Algorithm:
Principles and Standardization into JPEG–LS,” HP
Laboratories Technical Report, vol. HPL-98-198,
1998.

[7] V. P. Baligar, L. M. Patnaik, and G. R. Nagabhushana,
“High compression and low order linear predictor for
lossless coding of grayscale images,” Image Vision
Comput., vol. 21, no. 6, pp. 543–550, 2003.

[8] S. Marusic and G. Deng, “Adaptive prediction
for lossless image compression,” Image Commun.,
vol. 17, no. 5, pp. 363–372, 2002.

[9] B. Meyer, P. Tischer, “TMW – a New Method for
Lossless Image Compression,” in Proc. of the 1997
International Picture Coding Symposium, (Berlin,
Germany), VDE–Verlag, 1997.

[10] Y. Yu and C. Chang, “A new edge detection approach
based on image context analysis,” vol. 24, pp. 1090–
1102, October 2006.

[11] T. Fang, “On performance of lossless compression
for HDR image quantized in color space,” Image
Commun., vol. 24, no. 5, pp. 397–404, 2009.

[12] A. Kingston and F. Autrusseau, “Lossless im-
age compression via predictive coding of discrete
radon projections,” Image Commun., vol. 23, no. 4,
pp. 313–324, 2008.

[13] W. Thies, Language and Compiler Support for
Stream Programs. Phd thesis, Massachusetts Insti-
tute Of Technology, Cambrige, MA, 2009.

[14] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S.
Meli, C. Leger, A. A. Lamb, J. Wong, H. Hoffman,
D. Z. Maze, and S. Amarasinghe, “A Stream Com-
piler for Communication-Exposed Architectures,” in
Proc. ASPLOS 02 International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems.

[15] J. Knezović, M. Kovač, and H. Mlinarić, “Integrat-
ing streaming computations for efficient execution on
novel multicore architectures,” Automatika – Jour-
nal for Control, Measurement, Electronics, Comput-
ing and Communications, vol. 51, no. 4, pp. 387–396,
2010.

[16] J. Knezović, M. Kovač, I. Klapan, H. Mlinarić,
v. Vranješ, J. Lukinović, and M. Rakić, “Applica-
tion of novel lossless compression of medical im-
ages using prediction and contextual error modeling,”
Collegium antropologicum, vol. 31, no. 4, pp. 1143–
1150, 2007.

[17] T. Seemann, P. Tischer, “Genralized Locally Adap-
tive DPCM,” in Proc. 1997 Data Compression Con-
ference, (Snowbird, UT), pp. 473–488, IEEE, March
25–27 1997.

[18] M.J. Slyz, D.L. Neuhoff, “A Nonlinear VQ–based
Lossless Image Coder,” in Proc. 1994 Data Com-
pression Conference, (Snowbird, UT), pp. 491–500,
IEEE, March 1994.

[19] P.G. Howard, J.S. Vitter, “Arithmetic Coding for
Data Compression,” in Proceedings of the IEEE,
vol. 82(6), pp. 857–865, June 1994.

[20] D. Santa–Cruz, T. Ebrahimi, J. Askelof, M. Lars-
son, C. Christopoulos, “JPEG 2000 still image cod-
ing versus other standards,” in Proc. of the SPIE’s
45th annual meeting, Applications of Digital Image
Processing XXIII, vol. 4115, (San Diego, California),
pp. 446–454, August 2000.

[21] B. Nichols, D. Buttlar, and J. P. Farrell, Pthreads Pro-
gramming. 101 Morris Street, Sebastopol, CA 95472:
O’Reilly, 1998.

282 AUTOMATIKA 53(2012) 3, 272–283

Lossless Image Compression Exploiting Streaming Model for Efficient Execution on Multicores J. Knezović, H. Mlinarić, M. Žagar

Josip Knezović received his B.Sc., M.Sc. and
Ph.D. degree in Computer Science from the Fac-
ulty of Electrical Engineering and Computing,
University of Zagreb in 2001, 2005 and 2009, re-
spectively. Since 2001 he has been affiliated with
Faculty of Electrical Engineering and Computing
as a research assistant at the Department of Con-
trol and Computer Engineering. His research in-
terests include programming models for parallel

systems in multimedia, image and signal processing. He is the member of
IEEE and ACM.

Hrvoje Mlinarić received his B.Sc., M.Sc. and
Ph.D. degree in Computer Science from the Fac-
ulty of Electrical Engineering and Computing,
University of Zagreb in 1996, 2002 and 2006,
respectively. Since 1997 he has been with Fac-
ulty of Electrical Engineering and Computing
currently holding the assistant professorship po-
sition. He is also the vice-head of the Depart-
ment of Control and Computer Engineering. His
research interests include data compression, pro-
grammable logic and advanced hardware and

software design. He is the member of Croatian Academy of Engineering.

Martin Žagar received his Ph.D.C.S. in 2009,
and B.S.C.S. in 2004 at the Faculty of Electri-
cal Engineering, University of Zagreb, Croatia.
Currently he is a teaching assistant at the Depart-
ment of Control and Computer Engineering, Uni-
versity of Zagreb. His main areas of interest are
data compression and multimedia architectures.
He published a numerous papers in journals and
proceedings.

AUTHORS’ ADDRESSES
Josip Knezović, Ph.D.
Asst. Prof. Hrvoje Mlinarić, Ph.D.
Martin Žagar, Ph.D.
Departement of Control and Computer Engineering
Faculty of Electrical Engineering and Computing
University of Zagreb
Unska 3, HR-10000, Zagreb, Croatia
email: {josip.knezovic, hrvoje.mlinaric,
martin.zagar}@fer.hr

Received: 2012-04-26
Accepted: 2012-05-11

AUTOMATIKA 53(2012) 3, 272–283 283

