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Abstract. The aim of this work is to develop a simple nonlinear model of a wave energy
converter (WEC) for capturing power from ocean waves and converting it into electrical
power. A generic axisymmetric device is considered, which consists of a vertical circular
cylinder surrounded by a circular annulus. The nonlinear system of equations of motion of
this generic WEC are derived; these include the nonlinear term arising from viscous drag
due to boundary layer separation. The expressions for radiation damping and added mass
are determined by dimensional analysis. These equations are then solved numerically and
the results are displayed graphically in a number of figures. Consideration of these graphs
leads to conclusions that should be taken into account by the design engineer.
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1. Introduction

The generic axisymmetric wave energy converter (WEC) considered here consists of
a floating buoy-like device that is loosely moored to the seabed. It can freely move
up and down in response to the rising and falling of the waves. Since it is assumed
that the horizontal dimensions of the buoy are small compared to the wavelength of
the incident wave, it follows that it operates primarily in heave mode. It also has
a power take–off device, an electrical generator, a power electronics system and a
control system, all of which are sealed in the device. The WEC converts mechanical
energy, due to the heaving, into electrical energy, by means of an electrical genera-
tor. The power electronics system then conditions the output from the generator into
useable electric power. The heaving motion resonates with the ocean waves, which
is vitally important in a resonating energy absorber, if it is to recover useful power
from ocean wave energy. In the next section, the mathematical model is discussed
and the corresponding nonlinear system of two equations of motion are derived.
The treatment is novel, because viscous drag is taken into account. In Section 3,
dimensional analysis is used to derive, in a new manner, expressions for the added
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mass and the radiation damping coefficient. The second order equations of Section
2 may be reduced to first order equations in a standard manner, which is described
in Section 4. This results in a nonlinear system of four first order equations, which
can be solved by a standard numerical solver contained in, for example, Matlab. In
Section 5, graphs of the numerical results, obtained by a systematic exploration of
the parameter space of the buoy, are presented and discussed. The goal of this ex-
ploration is to determine optimal parameter values, which correspond approximately
to those required for maximum power output. Since the equations are nonlinear, an
analytic solution is not available. However, it should be emphasised that, even if an
analytic solution were available, the dimension of the parameter space is such that
it would not be feasible to determine analytically these optimal parameter values.

The present approach is made feasible by the careful formulation of the math-
ematical model and the availability of standard packages containing fast nonlinear
solvers. Because of the nonlinearity of the mathematical model, its solution is be-
yond the scope of standard approaches based on frequency domain models. The
approach described here enables the WEC designer to derive approximate optimal
values of the design parameters in a few minutes using a desktop computer. Each
point in the graphs presented in Section 5 requires the solution of the nonlinear
system. Nevertheless, the three-dimensional graphs can all be obtained in a few
minutes. This low cost rapid determination of approximate optimal values of the
parameters is a useful supplement, at the early stages of a WEC design, to the high
cost slow determination of accurate values by methods using a three-dimensional
boundary element or CFD techniques.

2. Mathematical model

Consider first the heaving motion of the cylinder in isolation. Let L be its total
length, d its draft, a its cross-sectional area, z the distance measured vertically
upwards from the draft level to the mean level of the water surface, so that z is
positive when the draft level is below the mean level of the water surface. In addition,
let x be the height of the wave above the mean water level and y the distance from
the wave to the top of the cylinder. It follows that

x + y + z + d = L,

and that

ẍ + ÿ + z̈ = 0.

Now the vertical acceleration of the top of the cylinder, referred to the constant
mean water level, is

ẍ + ÿ,

so that the vertical acceleration of the cylinder is

−z̈.
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Neglecting damping, the vertical forces on the cylinder consist of the upward pressure
force on the bottom of the cylinder, namely

ρga(x + z + d),

and the downward weight of the dead mass, m, of the cylinder,

mg,

where ρ is the density of the water and g is the gravitational acceleration. Now, the
dead weight of the cylinder is equal to the weight of the water displaced when the
cylinder is at rest, so that

mg = ρgad.

It follows that, neglecting damping, the net vertical force on the cylinder is

ρga(x + z).

Damping forces are of two types. First, the linear radiation damping force, which is
given by

−b(vertical velocity) = bż,

where b is a constant. The determination of its value is discussed in the next section.
Secondly, there is a nonlinear viscous drag force, which is caused by boundary layer
separation and is proportional to the square of the velocity. This force is

−cż|ż|,

where c is the constant of proportionality. The determination of its value is also
discussed in the next section. To summarise: taking damping into account, the net
vertical force on the cylinder is

ρga(x + z) + bż + cż|ż|.

Now, as the cylinder moves through the water, it drags a volume of water behind it
of mass µ, say, so that the total inertial mass of the cylinder is m + µ. The quantity
µ is called the added mass and its determination is discussed in the next section. It
follows that the equation of motion of the cylinder is

(m + µ)(−z̈) = ρga(x + z) + bż + cż|ż|,

or, rearranging,

(m + µ)z̈ + bż + cż|ż|+ ρgaz = −ρgax. (1)

Assuming that the water wave is monochromatic, x can be written in the form

x = αsin(ωt),
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where t is the time, ω the angular frequency and α the amplitude. The use of sin
rather than cos here permits the convenient choice in Section 4 of homogeneous
initial conditions for the numerical solutions. In deep water, where the depth is
much larger than the wavelength λ,

ω =

√
2πg

λ
.

See [1] for an introduction to the classical theory of monochromatic waves.
The equation of motion of the annulus in isolation is similar to (1). In isolation,

therefore, the two bodies of the WEC satisfy the following uncoupled system of two
second order nonlinear ordinary differential equations

(m1 + µ1)z̈1 + b1ż1 + c1ż1|ż1|+ ρga1z1 = −ρga1x, (2)
(m2 + µ2)z̈2 + b2ż2 + c2ż2|ż2|+ ρga2z2 = −ρga2x, (3)

where the subscript 1 refers to the cylinder and the subscript 2 to the annulus. The
undamped natural angular frequencies of the two separate bodies are then

f1 = 2π

√
m1 + µ1

ρga1
, f2 = 2π

√
m2 + µ2

ρga2
. (4)

However, to generate power, both cylinder and annulus must interact. For ex-
ample, electric power may be generated by constructing the cylinder out of a solid
magnet and the annulus containing a cylindrical coil of electrical conductor. In the
present case, the instantaneous force between the two parts of the device is propor-
tional to their relative velocity

ż1 − ż2,

the constant of proportionality being denoted by pto, an abbreviation for ”power
take–off”. It follows that the WEC satisfies the following coupled system of two
second order nonlinear ordinary differential equations

(m1 + µ1)z̈1 + b1ż1 + c1ż1|ż1|+ pto(ż1 − ż2) + ρga1z1 = −ρga1x, (5)
(m2 + µ2)z̈2 + b2ż2 + c2ż2|ż2| − pto(ż1 − ż2) + ρga2z2 = −ρga2x. (6)

Note that the instantaneous power output is equal to the product of instanta-
neous force and velocity.

pto(ż1 − ż2)2.

3. Added mass, radiation damping and drag

In this section expressions for the added mass and the radiation damping coefficient,
up to an unknown multiplicative constant, are derived using standard techniques of
dimensional analysis, see, for example, [5].
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Consider first the added mass µ; this is a function of ρ, g, a, λ and may be ex-
pressed in the form

f1(µ, ρ, g, a, λ) = 0. (7)

In the Table, the dimensions of these quantities are given in terms of the fundamental
dimensions mass M̃, length L̃ and time T̃ .

Quantity µ ρ g a λ

Dimensions M̃ M̃
L̃3

L̃
T̃ 2 L̃2 L̃

Thus, there emerge two dimensionless variables, namely µ
ρa3/2 and a1/2

λ . Conse-
quently, the functional relationship (7) reduces to

f2(
µ

ρa3/2
,
a1/2

λ
) = 0.

Solving for µ
ρa3/2 then gives

µ

ρa3/2
= f3(

a1/2

λ
).

In the limiting case of small acceleration, which corresponds to low frequency and
therefore large wavelength, the added mass remains finite; see, for example, [6].
Therefore, if a1/2

λ << 1,

µ

ρa3/2
≈ K,

where K is a dimensionless constant, which depends on the shape of the WEC. For
a cylinder, K can be uniquely determined by either analytic methods or experiment.
In the case of an annulus, the value of K depends on the ratio of the inner and outer
radii, and can be similarly determined.

On the other hand, the radiation damping coefficient b has dimensions of mass/time,
and there are again five dimensional quantities in the functional relationship, namely

b, ρ, g, a, λ.

Again, out of these five dimensional quantities emerge two dimensionless quantities,
which are related by

b

ρa3/2

√
λ

g
= F (

a1/2

λ
).

The above formulae are in agreement with the work of [2] for the case of a sphere
half submerged in water. Havelock shows that, when a1/2

λ is small, then the latter
relationship is linear, that is

b

ρa3/2

√
λ

g
= β

a1/2

λ
,
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where β is a constant which depends on whether the shape is a solid cylinder or an
annulus. The value of β can be determined by analogous methods to those used to
determine K.

Next, the coefficient c is considered. It can be shown (see [6]) that, in developed
turbulent flows for which the Reynolds number is greater than 106, c = 1

2ρaCD,
where CD is the non-dimensional drag coefficient. CD depends on the body shape
and for a sphere it is of order 10−1.

4. Numerical solution

Observe that the nonlinear system of two second order differential equations (5), (6)
can be written in the form

MZ̈ + BŻ + PTO.Ż + C.diag(|Ż|).Ż + DZ = F, (8)

where Z and F are the column 2-vectors

Z =
(

z1

z2

)
, F =

(−ρga1x
−ρga2x

)

and M,B,C, D, PTO, diag|Ż| are the 2× 2 matrices

M =
(

m1 + µ1, 0
0, m2 + µ2

)
, B =

(
b1, 0
0, b2

)
, C =

(
c1, 0
0, c2

)
,

D =
(

ρga1, 0 0
0, ρga2

)
, PTO = pto

(
1, −1
−1, 1

)
, diag|Ż| =

( |ż1|, 0
0, |ż2|

)
.

Introducing the derivatives Ż of the displacements Z as new dependent variables, the
second order system (8) can be rewritten as a first order system of four first order
equations in a standard way. Specifying homogeneous initial values the resulting
initial-value problem is then solved numerically with the ODE45 code in Matlab.

In the following section some results of extensive numerical experiments are de-
scribed. Values of the parameters are chosen, which reflect typical values arising
from typical WEC.

5. Discussion of the results

In the graphs of this section all quantities are made dimensionless by using the
physical parameters of the WEC device. The four components of the numerical
solution, as functions of the dimensionless time T , are shown in Fig.1. Y (1), Y (2) are
the dimensionless displacements and Y (3), Y (4) are the corresponding dimensionless
velocities of the cylinder and annulus respectively. Similarly the dimensionless stroke
and dimensionless power versus T are seen in Fig.2. In Fig.3, it is seen that the WEC
resonates with the waves at a particular frequency, which is close, but not equal,
to the frequency of the waves. It is observed that the dimensionless mean power
generated by the WEC falls off rapidly on both sides of the resonant frequency.
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In Fig.4, the dimensionless mean power is plotted against the frequency and the
pto. It is easy to see that mean power at the resonant frequency increases with
increasing pto. In Fig.5, the dimensionless mean power is plotted against the fre-
quency and the dimensionless mass of the cylinder. It can be seen that the mean
power does not change significantly with varying mass. Fig.6 shows the dependence
of the dimensionless mean power on the frequency and the dimensionless cross sec-
tional area of the annulus. This demonstrates that there are significant variations
in the power output with changing cross section. In Fig.7, the dimensionless mean
power is plotted against the frequency and the dimensionless mass of the cylinder. It
is clear from this graph that the resonant frequency depends strongly on this mass.

Finally, Fig.8 shows clearly that the mean power output is highly dependent
on the position of the WEC in its parameter space. The power output changes
rapidly due to small variations in the parameter values. Indeed it can be seen that a
catastrophic fall-off in power occurs in certain regions of the parameter space. The
designer of a WEC must take such properties into account in order to ensure that
the device is not constructed in such a way that it lies within or near such a region
of parameter space.

The simple mathematical model discussed here provides qualitative guidance to
the design engineer, because it identifies finite regions of the parameter space in
which the design parameters should lie. This is important at the early stages of the
design process, since it gives rapid, inexpensive guidance, which protects the engineer
from gross design errors. Later, if more accurate values of the design parameters
are required, more complex, mathematical models may be employed, which involve
boundary element techniques or full three-dimensional CFD methods. These are,
of course, orders of magnitude slower and more expensive than the simple models
employed in the present paper.
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Figure 1: Numerical solution of the initial value problem
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Figure 2: Stroke and power versus time
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Figure 3: Mean power versus frequency

0.5
1

1.5
2

2.5
3

3.5

x 10
6

0.05

0.1

0.15

0

5

10

15

x 10
5

PTOFrequency

M
ea

n 
po

w
er

Figure 4: Mean power versus frequency and pto
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Figure 5: Mean power versus frequency and annulus mass
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Figure 6: Mean power versus frequency and cylinder cross section
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Figure 7: Mean power versus frequency and cylinder mass
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Figure 8: Mean power versus annulus cross section and cylinder mass
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