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An improved stability result for a heat equation backward in
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Abstract. We consider a nonlinear backward heat conduction problem in a strip. The
problem is ill-posed in the sense that the solution (if it exists) does not depend continuously
on the data. We shall use a modified integral equation method to regularize the nonlinear
problem. The error estimates of Hölder type of the regularized solutions are obtained.
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1. Introduction

Let T be a positive number. We consider the problem of finding the temperature
u(x, t), (x, t) ∈ R× [0;T ] such that{

ut − uxx = f(x, t, u(x, t)), (x, t) ∈ R× (0, T ),

u(x, T ) = φ(x), x ∈ R,
(1)

where φ(x) and f(x, t, z) are given. This problem is well-known to be severely
ill-posed and regularization methods for it are required. This problem is called
backward heat problem, backward Cauchy problem, and final value problem.

As is known, if the initial temperature distribution in a heat conducting body is
given, then the temperature distribution at a later time can be determined and the
problem is well-posed. This is the direct problem. In geophysical exploration, one
is often faced with the problem of determining the temperature distribution in the
Earth or any part of the Earth at a time t0 > 0 from the temperature measurement
at a time t1 > t0. This is the backward heat problem. The type of a problem is
severely ill-posed; i.e., solutions do not always exist, and in the case of existence,
these do not depend continuously on the given data. In fact, from small noise
contaminated physical measurements, the corresponding solutions have large errors.
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It makes difficult to perform numerical calculations. Hence, a regularization is in
order. In the simplest case f = 0, problem (1) becomes{

ut − uxx = 0, (x, t) ∈ R× (0, T ),

u(x, T ) = φ(x), x ∈ R.
(2)

Authors such as Lattes and Lions [7], Showalter [12] approximated problem (2) by
a quasi-reversibility method. Tautenhahn and Schröter [13] established an optimal
error estimate for (2). In [8], Liu introduced a group preserving scheme. A molifica-
tion method was studied by [6]. Some papers [3, 5] approximated (1) by truncated
methods. These methods were demonstrated to be very effective, and all of them
were devoted to computational aspects.

Although there are many works on the homogeneous problem (2), the literature
on the nonlinear case is quite scarce. In [10], Trong and Quan have established,
under the hypothesis that f is a global Lipschitzian function, the existence of a
unique solution for a well-posed problem as follows

uϵ(x, t) =
1√
2π

+∞∫
−∞

e−tp2

ϵ+ e−Tp2 φ̂(p)e
ipxdp

− 1√
2π

+∞∫
−∞

T∫
t

e−tp2

ϵ
s
T + e−sp2 f̂(p, s, u

ϵ)eipxdpds, (3)

where ϵ is a positive parameter and

ĝ(ξ) =
1√
2π

∫ +∞

−∞
g(x)e−iξxdx

is the Fourier transform of g. Under a strong smoothness assumption on the original
solution, namely

T∫
0

∞∫
−∞

∣∣∣∣ ∂∂t (esp2

û(p, t)
)∣∣∣∣2 dpdt <∞,

and

∞∫
−∞

∣∣∣eTp2

φ̂(p)
∣∣∣2 dp <∞,

they obtained the following error estimate

∥u(., t)− uϵ(., t)∥L2(R) ≤
√
M exp(

3k2T (T − t)

2
)ϵ

t
T , (4)

where M is a constant dependent on u. The right-hand side of (4) is not close to
zero if ϵ → 0 and t = 0. The convergence of the approximate solution is very slow
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when t is in a neighborhood of zero. This is an open point of the paper [10].
In the present paper, we use a modified integral equation method in order to improve
the results given in [10]. Under some assumptions on the exact solution, we obtain
some faster convergence error estimates. In a sense, this is an improvement of the
known result in [10], and it is our aim here is to obtain only a stability estimate.

This paper is organized as follows. In Section 2, we give some auxiliary results.
In Section 3, we outline the main results while the proofs are given in Section 4.

2. Some auxiliary results.

Let ĝ(ξ) denote the Fourier transform of function g ∈ L2(R) defined formally

ĝ(ξ) =
1√
2π

∫ +∞

−∞
g(x)e−iξxdx. (5)

Let H1 =W 1,2, H2 =W 2,2 be the Sobolev spaces defined by

H1(R) = {g ∈ L2(R), ξĝ(ξ) ∈ L2(R)},
H2(R) = {g ∈ L2(R), ξ2ĝ(ξ) ∈ L2(R)}.

We denote by ∥.∥, ∥.∥H1 , ∥.∥H2 the norms in L2(R),H1(R),H2(R) respectively,
namely

∥g∥2H1 = ∥g∥2 + ∥gx∥2 = ∥(1 + ξ2)
1
2 ĝ(ξ)∥2,

∥g∥2H2 = ∥g∥2 + ∥gx∥2 + ∥gxx∥2 = ∥(1 + ξ2 + ξ4)
1
2 ĝ(ξ)∥2.

Let us first make clear what a weak solution to problem (1) is.

Lemma 1. Let f ∈ L∞(R× [0, T ]×R) be a function such that f(x, y, 0) = 0 and

|f(x, t, u)− f(x, t, v)| ≤ K|u− v|,

for all (x, t) ∈ R× [0, T ] and for some constant K > 0 independent of x, t, u, v. Let
φ ∈ L2(R). Assume that u ∈ C([0, T ],H2(R)) ∩ C1([0, T ], L2(R)) is a solution of
the equation

û(ξ, t) = e(T−t)ξ2 φ̂(ξ)−
T∫
t

e−(t−s)ξ2 f̂(ξ, s, u)ds. (6)

Then ut, uxx ∈ C([0, T ], L2(R)).

Proof. First, it is easy to see that the Fourier transform of f with respect to x
belongs to L2(R). In fact, from the Lipschitzian of f , we get

|f(x, t, u(x, t))− f(x, t, 0)| ≤ K|u(x, t)|,

Since f(x, t, 0) = 0, we obtain

|f(x, t, u(x, t))| ≤ K|u(x, t)|.
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From u belonging to L2(R) with respect to x, we get f belonging to L2(R) with
respect to x.

By letting t = T in equation (6), we have immediately û(ξ, T ) = φ̂(ξ). Therefore,
we get u(x, T ) = φ(x) in L2(R).

Multiplying the above equation by etξ
2

we obtain

etξ
2

û(ξ, t) = eTξ2 φ̂(ξ)−
T∫
t

esξ
2

f̂(ξ, s, u)ds, t ∈ [0, T ].

Differentiating the latter equation w.r.t. the time variable t we get

etξ
2

(
ξ2û(ξ, t) +

d

dt
û(ξ, t)

)
= etξ

2

f̂(ξ, t, u),

namely (
ξ2û(ξ, t) +

d

dt
û(ξ, t)

)
= f̂(ξ, t, u), t ∈ [0, T ].

Since u ∈ C([0, T ],H2(R)) ∩ C1([0, T ], L2(R)), we have ξ2û(ξ, t) = ûxx(ξ) and
d
dt û(ξ, t) belongs to C([0, T ], L

2(R)). This gives ut, uxx ∈ C([0, T ], L2(R)).

3. The main results

Let

φ̂(ξ) =
1√
2π

∫ +∞

−∞
φ(x)e−iξxdx

be the Fourier transform of the function φ ∈ L2(R). As a solution of problem (1)
we understand a function u(x, t) satisfying (1) in the classical sense and for every
fixed t ∈ [0, T ], the function u(., t) ∈ L2(R). In this class of functions, if the solution
of problem (1) exists, then it must be unique (see [10]). In general, we have no
guarantee that the solution to problem (1) exists. We do not know any general
condition under which problem (1) is solvable. The main goal of this paper is to find
a computation method on the exact solution when it exists. Hence, regularization
techniques are required. Let u(x, t) be a unique solution of (1) (if it exists). Using
the Fourier transform technique to problem (1) with respect to the variable x, we
can get the Fourier transform û(ξ, t) of the exact solution u(x, t) of problem (1):

û(ξ, t) = e(T−t)ξ2 φ̂(ξ)−
T∫
t

e−(t−s)ξ2 f̂(ξ, s, u)ds. (7)

Since t < T, we know from (7) that, when |ξ| becomes large, exp{(T − t)ξ2} and
exp{(s− t)ξ2} increase rather quickly. Thus, these terms are the unstability cause.
Hence, to regularize the problem, we have to replace the terms by some better

terms. In our idea, we shall replace them by e−(t+m)ξ2

ϵ+e−(T+m)ξ2
and e(s−t−T−m)ξ2

ϵ+e−(T+m)ξ2
(m > 0),

respectively. The main conclusion of this paper is:
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Theorem 1. Let f be as Lemma 1. Let φ ∈ L2(R) and let φϵ ∈ L2(R) be a
measured data such that ∥φϵ − φ∥ ≤ ϵ. Suppose that problem (1) has a unique
solution u ∈ C([0, T ], H2(R)) ∩ C1([0, T ], L2(R)) such that

+∞∫
−∞

∣∣∣e(t+m)ξ2 û(ξ, t)
∣∣∣2 dξ <∞. (8)

Then, we construct a regularized solution wϵ such that

∥u(., t)− wϵ(., t)∥ ≤ Cϵ
t+m
T+m , ∀t ∈ [0, T ],

where wϵ is the function whose Fourier transform is defined by

ŵϵ(ξ, t) =
e−(t+m)ξ2

ϵ+ e−(T+m)ξ2
φ̂ϵ(ξ)−

T∫
t

e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2
f̂(ξ, s, wϵ)ds,(9)

for m ≥ 0 and

B = 2 sup
0≤t≤T

 +∞∫
−∞

∣∣∣e(t+m)ξ2 û(ξ, t)
∣∣∣2 dξ

 ,

C =
√
2eK

2(T−t)2 +
√
Be

3T2K2

2 .

Remark 1. a) Tautenhahn and Schröter [13] regularized the homogeneous problem
(f = 0) and obtained the following error estimate

∥u(., t)− uβ(., t)∥ ≤ 2E1− t
T ϵ

t
T ,

where E is a positive constant such that

∥u(., 0)∥ ≤ E. (10)

They also proved that it is an order optimal stability estimate in L2(R). If m = 0

and f = 0, then we have
+∞∫
−∞

∣∣∣e(t+m)ξ2 û(ξ, t)
∣∣∣2 dξ = ∥u(., 0)∥2. Thus, condition (8)

is similar to (10) and it may be acceptable. Moreover, in this case, our result is of
the same order as the results of Tautenhahn with the same condition.

b) If m = 0 and f = f(x, t, u), then the error is similar to the results obtained
by Trong and Quan [10]. However, the order ϵ

t
T is useful at t > 0, but useless at

t = 0. Moreover, when t → 0+, the accuracy of the regularized solution becomes
progressively lower. To improve this, we choose m > 0, then the error is of order
ϵ

m
T+m . This error estimate is not introduced in the ealier work of Quan and Trong

[10].
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4. Proof of the main results

First, we consider the Lemma which is useful to this paper.

Lemma 2. Let s, t, T, ϵ,m, ξ be real numbers such that 0 ≤ t ≤ s ≤ T and ϵ >
0,m ≥ 0. Then the following estimates hold

a)
e−(t+m)ξ2

ϵ+ e−(T+m)ξ2
≤ ϵ

t−T
T+m .

b)
e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2
≤ ϵ

t−s
T+m .

Proof. We have

e−(t+m)ξ2

ϵ+ e−(T+m)ξ2
=

e−(t+m)ξ2(
ϵ+ e−(T+m)ξ2

) t+m
T+m

(
ϵ+ e−(T+m)ξ2

) T−t
T+m

≤ 1

(ϵ+ e−(T+m)ξ2)
T−t
T+m

≤ ϵ
t−T
T+m .

and

e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2
=

e(s−t−T−m)ξ2(
ϵ+ e−(T+m)ξ2

)T+m−s+t
T+m

(
ϵ+ e−(T+m)ξ2

) s−t
T+m

≤ 1

(ϵ+ e−(T+m)ξ2)
s−t
T+m

≤ ϵ
t−s
T+m .

Next, we continue to prove the main Theorem. We divide the proof into three
steps.

Step 1. Construct a regularized solution wϵ.
We consider the following problem

ŵϵ(ξ, t) =
e−(t+m)ξ2

ϵ+ e−(T+m)ξ2
φ̂ϵ(ξ)−

T∫
t

e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2
f̂(ξ, s, wϵ)ds,

or

wϵ(x, t) =
1√
2π

+∞∫
−∞

e−(t+m)ξ2

ϵ+ e−(T+m)ξ2
φ̂ϵ(ξ)e

iξxdξ

− 1√
2π

+∞∫
−∞

T∫
t

e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2
f̂(ξ, s, wϵ)e

iξxdsdξ. (11)
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First, we prove problem (11) has a unique solution wϵ ∈ C([0, T ];L2(R)). Denote

G(w)(x, t) =
1√
2π
ψ(x, t)− 1√

2π

+∞∫
−∞

T∫
t

e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2
f̂(ξ, s, w)eiξxdsdξ

for all w ∈ C([0, T ];L2(R)) and

ψ(x, t) =

+∞∫
−∞

e−(t+m)ξ2

ϵ+ e−(T+m)ξ2
φ̂ϵ(ξ)e

iξxdξ.

Since f(x, y, 0) = 0, and the Lipschitzian property of f(x, y, w) with respect to w,
we get G(w) ∈ C([0, T ];L2(R)) for every w ∈ C([0, T ];L2(R)). We claim that, for
every w, v ∈ C([0, T ];L2(R)), n ≥ 1, we have

∥Gn(w)(., t)−Gn(v)(., t)∥2 ≤
(
K

ϵ

)2n
(T − t)nCn

n!
|||w − v|||2, (12)

where C = max{T, 1} and |||.||| is the sup norm in C([0, T ];L2(R)). We shall prove
the latter inequality by induction.
When n = 1, we have

∥G(w)(., t) − G(v)(., t)∥2 = ∥Ĝ(w)(., t)− Ĝ(v)(., t)∥2

=

+∞∫
−∞

∣∣∣∣∣∣
T∫
t

e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2

(
f̂(ξ, s, w)− f̂(ξ, s, v)

)
ds

∣∣∣∣∣∣
2

dξ

≤
+∞∫

−∞

 T∫
t

(
e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2

)2

ds

∫ T

t

∣∣∣f̂(ξ, s, w)− f̂(ξ, s, v)
∣∣∣2 ds

2

dξ

≤ 1

ϵ2
(T − t)

T∫
t

∥f̂(., s, w(., s))− f̂(., s, v(., s))∥2ds =

=
1

ϵ2
(T − t)

T∫
t

∥f(., s, w(., s))− f(., s, v(., s))∥2ds

=
K2

ϵ2
(T − t)

T∫
t

∥w(., s)− v(., s)∥2ds

≤ C
K2

ϵ2
(T − t)|||w − v|||2.

Therefore (12) holds.

Suppose that (12) holds for n = p. We prove that (12) holds for n = p+ 1. We
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have

∥Gp+1(w)(., t) − Gp+1(v)(., t)∥2 = ∥Ĝ(Gp(w))(., t)− Ĝ(Gp(v))(., t)∥2

=

+∞∫
−∞

∣∣∣∣∣∣
T∫
t

e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2

(
f̂(ξ, s,Gp(w))− f̂(ξ, s,Gp(v))

)
ds

∣∣∣∣∣∣
2

dξ

≤
+∞∫

−∞

 T∫
t

(
e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2

)2

ds

×
∫ T

t

∣∣∣f̂(ξ, s,Gp(w))− f̂(ξ, s,Gp(v))
∣∣∣2 ds)2

dξ.

Hence

∥Gp+1(w)(., t) − Gp+1(v)(., t)∥2

≤ 1

ϵ2
(T − t)

T∫
t

∥f(., s, Gp(w)(., s))− f(., s, Gp(v)(., s))∥2ds

≤ K2

ϵ2
(T − t)

T∫
t

∥Gp(w)(., s)−Gp(v)(., s)∥2ds

≤ K2

ϵ2
(T − t)

(
K

ϵ

)2p
T∫
t

(T − s)p

p!
dsCp|||w − v|||2

≤
(
K

ϵ

)2(p+1)
(T − t)(p+1)C(p+1)

(p+ 1)!
|||w − v|||2.

Therefore, by the induction principle, (12) holds for every m.

|||Gm(w)−Gm(v)||| ≤
(
K

ϵ

)m
Tm/2

√
m!

Cm|||w − v|||,

for every w, v ∈ C([0, T ];L2(R)). Consider G : C([0, T ];L2(R)) → C([0, T ];L2(R)).
Since

lim
m→∞

(
K

ϵ

)m
Tm/2Cm

√
m!

= 0,

there exists a positive integer number m0 such that Gm0 is a contraction. It follows
that Gm0(w) = w has a unique solution wϵ ∈ C([0, T ];L2(R)).

We claim that G(wϵ) = wϵ. In fact, one has G(Gm0(wϵ)) = G(wϵ). Hence
Gm0(G(wϵ)) = G(wϵ). By the uniqueness of the fixed point of Gm0 , one has G(wϵ) =
wϵ, i.e., the equation G(w) = w has a unique solution wϵ ∈ C([0, T ];L2(R)). The
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main purpose of this paper is to estimate the error ∥wϵ−u∥. To do this, we consider
two next steps.

Step 2. Let uϵ be the solution of problem (11) corresponding to the final value
φ. We shall estimate the error ∥wϵ − uϵ∥.

From the formula of wϵ and uϵ, we have

ŵϵ(ξ, t) =
e−(t+m)ξ2

ϵ+ e−(T+m)ξ2
φ̂ϵ(ξ)−

T∫
t

e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2
f̂(ξ, s, wϵ)ds, (13)

and

ûϵ(ξ, t) =
e−(t+m)ξ2

ϵ+ e−(T+m)ξ2
φ̂(ξ)−

T∫
t

e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2
f̂(ξ, s, uϵ)ds, (14)

Using the Parseval equality and the inequality (a+ b)2 ≤ 2a2 + 2b2, we get

∥wϵ(., t)− uϵ(., t)∥2 = ∥ŵϵ(., t)− ûϵ(., t)∥2

≤ 2

+∞∫
−∞

∣∣∣∣∣ e−(t+m)ξ2

ϵ+ e−(T+m)ξ2
(φ̂ϵ(ξ)− φ̂(ξ))

∣∣∣∣∣
2

dξ

+2

+∞∫
−∞

∣∣∣∣∣∣
T∫
t

e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2

(
f̂(ξ, s, wϵ)− f̂(ξ, s, uϵ)

)
ds

∣∣∣∣∣∣
2

dξ.

(15)

Term (15) can be estimated as follows

J1 = 2

+∞∫
−∞

∣∣∣∣∣ e−(t+m)ξ2

ϵ+ e−(T+m)ξ2
(φ̂ϵ(ξ)− φ̂(ξ))

∣∣∣∣∣
2

dξ

≤ 2ϵ
2t−2T
T+m ∥φ̂ϵ − φ̂∥2 ≤ 2ϵ

2t−2T
T+m ∥φϵ − φ∥2. (16)

Term (15) can be estimated as follows

J2 = 2

+∞∫
−∞

∣∣∣∣∣∣
T∫
t

e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2

(
f̂(ξ, s, wϵ)− f̂(ξ, s, uϵ)

)
ds

∣∣∣∣∣∣
2

dξ

≤ 2(T − t)

+∞∫
−∞

T∫
t

ϵ
2t−2s
T+m

∣∣∣f̂(ξ, s, wϵ)− f̂(ξ, s, uϵ)
∣∣∣2 dsdξ

≤ 2(T − t)K2

T∫
t

ϵ
2t−2s
T+m ∥wϵ(., s)− uϵ(., s)∥2 ds. (17)
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Combining (15), (16) and (17) we have

∥wϵ(., t)− uϵ(., t)∥2 ≤ 2ϵ
2t−2T
T+m ∥φϵ − φ∥2

+2(T − t)K2

T∫
t

ϵ
2t−2s
T+m ∥wϵ(., s)− uϵ(., s)∥2 ds.

Hence

ϵ
−2t
T+m ∥wϵ(., t)− uϵ(., t)∥2 ≤ 2ϵ

−2T
T+m ∥φϵ − φ∥2

+2K2(T − t)

∫ T

t

ϵ
−2s
T+m ∥wϵ(., s)− uϵ(., s)∥2ds.

Using the Gronwall inequality, we obtain

ϵ
−2t
T+m ∥wϵ(., t)− uϵ(., t)∥2 ≤ 2e2K

2(T−t)2ϵ
−2T
T+m ∥φϵ − φ∥2.

Therefore

∥wϵ(., t)− uϵ(., t)∥ ≤
√
2ϵ

t−T
T+m eK

2(T−t)2∥φϵ − φ∥

≤
√
2ϵ

t−T
T+m eK

2(T−t)2ϵ

=
√
2eK

2(T−t)2ϵ
t+m
T+m .

Step 3. Let u be the exact solution of problem (1) corresponding to the final
value φ. We shall estimate the error ∥uϵ − u∥.
Let uϵ be the function which is defined in Step 2. We recall the Fourier transform
of u and uϵ from (7) and (14)

û(ξ, t) = e(T−t)ξ2 φ̂(ξ)−
T∫
t

e(s−t)ξ2 f̂(ξ, s, u)ds. (18)

and

ûϵ(ξ, t) =
e−(t+m)ξ2

ϵ+ e−(T+m)ξ2
φ̂(ξ)−

T∫
t

e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2
f̂(ξ, s, uϵ)ds, (19)

Combining (18) and (19) and by direct transform, we get

û(ξ, t)− ûϵ(ξ, t) =

(
e(T−t)ξ2 − e−(t+m)ξ2

ϵ+ e−(T+m)ξ2

)
φ̂(ξ)−

T∫
t

e−(t−s)ξ2 f̂(ξ, s, u)ds

+

T∫
t

e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2
f̂(ξ, s, uϵ)ds
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=
ϵe(T−t)ξ2

ϵ+ e−(T+m)ξ2
φ̂(ξ) +

T∫
t

e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2

(
f̂(ξ, s, u)− f̂(ξ, s, uϵ)

)
ds

−
T∫
t

e(s−t)ξ2ϵ

ϵ+ e−(T+m)ξ2
f̂(ξ, s, u)ds.

Using the Parseval equality, we obtain

∥u(., t) − uϵ(., t)∥2 =

+∞∫
−∞

|û(ξ, t)− ûϵ(ξ, t)|2dξ

=

+∞∫
−∞

∣∣∣∣∣∣ ϵe(T−t)ξ2

ϵ+ e−(T+m)ξ2
φ̂(ξ) +

T∫
t

e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2
(f̂(ξ, s, u)− f̂(ξ, s, uϵ))ds

−
T∫
t

e(s−t)ξ2ϵ

ϵ+ e−(T+m)ξ2
f̂(ξ, s, u)ds

∣∣∣∣∣∣
2

dξ

=

+∞∫
−∞

∣∣∣∣∣∣ ϵ

ϵ+ e−(T+m)ξ2
û(ξ, t) +

T∫
t

e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2
(f̂(ξ, s, u)− f̂(ξ, s, uϵ))ds

∣∣∣∣∣∣
2

dξ

≤ 2

+∞∫
−∞

∣∣∣∣∣ ϵe−(t+m)ξ2

ϵ+ e−(T+m)ξ2
e(t+m)ξ2 û(ξ, t)

∣∣∣∣∣
2

dξ

+2

+∞∫
−∞

∣∣∣∣∣∣
T∫
t

e(s−t−T−m)ξ2

ϵ+ e−(T+m)ξ2
|f̂(ξ, s, u)− f̂(ξ, s, uϵ)|ds

∣∣∣∣∣∣
2

dξ.

Using Lemma 1, we get

∥u(., t)− uϵ(., t)∥2 ≤ 2ϵ
2t+2m
T+m

+∞∫
−∞

∣∣∣e(t+m)ξ2 û(ξ, t)
∣∣∣2 dξ+

+2

+∞∫
−∞

∣∣∣∣∣∣
T∫
t

ϵ
t−s
T+m

∣∣∣f̂(ξ, s, u)− f̂(ξ, s, uϵ)
∣∣∣ds
∣∣∣∣∣∣
2

dξ

= 2Ã1 + 2Ã2,

where the term Ã1 is equal to

Ã1 = ϵ
2t+2m
T+m

+∞∫
−∞

∣∣∣e(t+m)ξ2 û(ξ, t)
∣∣∣2 dξ.
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We estimate Ã2 as follows

Ã2 =

+∞∫
−∞

∣∣∣∣∣∣
T∫
t

ϵ
t−s
T+m

∣∣∣f̂(ξ, s, u)− f̂(ξ, s, uϵ)
∣∣∣ds
∣∣∣∣∣∣
2

dξ

≤ ϵ
2t+2m
T+m (T − t)

+∞∫
−∞

T∫
t

ϵ
−2s−2m

T+m

∣∣∣f̂(ξ, s, u)− f̂(ξ, s, uϵ)ds
∣∣∣2 dξ

= ϵ
2t+2m
T+m (T − t)

T∫
t

ϵ
−2s−2m

T+m ∥f(., s, u(., s))− f(., s, uϵ(., s))∥2 ds

≤ ϵ
2t+2m
T+m K2(T − t)

T∫
t

ϵ
−2s−2m

T+m ∥u(., s)− uϵ(., s)∥2 ds.

Hence

∥u(., t)− uϵ(., t)∥2 ≤ 2ϵ
2t+2m
T+m

+∞∫
−∞

∣∣∣e(t+m)ξ2 û(ξ, t)
∣∣∣2 dξ

+ 2ϵ
2t+2m
T+m K2(T − t)

T∫
t

ϵ
−2s−2m

T+m ∥u(., s)− uϵ(., s)∥2 ds.

Thus

ϵ
−2t−2m

T+m ∥u(., t)− uϵ(., t)∥2 ≤ B + 3K2T

T∫
t

ϵ
−2s−2m

T+m ∥u(., s)− uϵ(., s)∥2 ds.

Applying the Gronwall inequality, we obtain

ϵ
−2t−2m

T+m ∥u(., t)− uϵ(., t)∥2 ≤ Be3K
2T (T−t).

Hence, we conclude that

∥u(., t)− uϵ(., t)∥ ≤
√
B.e

3T2K2

2 ϵ
t+m
T+m .

Due to Step 2 and Step 3, we get the following estimate by using the triangle
inequality

∥wϵ(., t)− u(., t)∥ ≤ ∥wϵ(., t)− uϵ(., t)∥+ ∥uϵ(., t)− u(., t)∥

≤
√
2eK

2(T−t)2ϵ
t+m
T+m +

√
B.e

3T2K2

2 ϵ
t+m
T+m

≤ Cϵ
t+m
T+m

where

C =
√
2eK

2(T−t)2 +
√
B exp{3T

2K2

2
},

for all t ∈ [0, T ]. This completes the proof of the theorem.



An improved stability result for a heat equation backward in time 125

Acknowledgments

This work is supported by the Vietnam National Foundation for Science and Technol-
ogy Development (NAFOSTED). The authors would like to thank the editor and the
referees for their valuable comments leading to the improvement of our manuscript.
The first author thanks Professor Dang Duc Trong in VietNam National University
at Ho Chi Minh city, VietNam and Phan Thanh Nam in the University of Copen-
haghen for his most helpful comments on this paper.

References

[1] G.W.Clark, S. F.Oppenheimer, Quasireversibility methods for non-well posed
problems, Elect. J. Diff. Eqns. 8(1994), 1–9.

[2] M.Denche, K.Bessila, A modified quasi-boundary value method for ill-posed prob-
lems, J. Math. Anal. Appl 301(2005), 419–426.

[3] C.-L. Fu, X.-T.Xiong, Z.Qian, On three spectral regularization method for a back-
ward heat conduction problem, J. Korean Math. Soc. 44(2007), 1281–1290.

[4] C.-L.Fu, Z.Qian, R. Shi, A modified method for a backward heat conduction problem,
Appl. Math. Comput. 185(2007), 564–573.

[5] C.-L. Fu, X.-T.Xiong, Z.Qian, Fourier regularization for a backward heat equation,
J. Math. Anal. Appl. 331(2007), 472–480.

[6] D.N.Hao, N.V.Duc, Stability results for the heat equation backward in time, J.
Math. Anal. Appl. 353(2009), 627–641.

[7] R.Lattès, J.-L. Lions, Méthode de Quasi-réversibilité et Applications, Dunod, Paris,
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