# Voronovskaja type theorem for the Lupaş $q$-analogue of the Bernstein operators 

Nazim Idrisoglu Mahmudov ${ }^{1}$ and Pembe Sabancigil ${ }^{1, *}$<br>${ }^{1}$ Eastern Mediterranean University, Gazimagusa, TRNC, Mersin 10, Turkey

Received October 18, 2010; accepted March 15, 2011


#### Abstract

In this paper, we estimate the third and the fourth order central moments for the difference of the Lupass $q$-analogue of the Bernstein operator and the limit $q$-Lupass operator. We also prove a quantitative variant of Voronovskaja's theorem for $R_{n, q}$.


AMS subject classifications: 65D10, 92C45
Key words: $q$-Bernstein polynomials, Lupaş $q$-analogue, limit $q$-Lupaş operator, Voronovskajatype formulas

## 1. Introduction

Let $q>0$. For any $n \in N \cup\{0\}$, the $q$-integer $[n]=[n]_{q}$ is defined by

$$
[n]:=1+q+\ldots+q^{n-1}, \quad[0]:=0
$$

and the $q$-factorial $[n]!=[n]_{q}!$ by

$$
[n]!:=[1][2] \ldots[n], \quad[0]!:=1 .
$$

For integers $0 \leq k \leq n$, the $q$-binomial coefficient is defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]:=\frac{[n]!}{[k]![n-k]!} \text { and }\left[\begin{array}{l}
n \\
k
\end{array}\right]=0 \text { for } k>n
$$

In the last two decades interesting generalizations of the Bernstein polynomials based on the $q$-integers were proposed by Lupaş [5]

$$
R_{n, q}(f, x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right)\left[\begin{array}{l}
n \\
k
\end{array}\right] \frac{q^{\frac{k(k-1)}{2}} x^{k}(1-x)^{n-k}}{(1-x+q x) \ldots\left(1-x+q^{n-1} x\right)}
$$

and by Phillips [12]

$$
B_{n, q}(f, x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right)\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) .
$$

*Corresponding author. Email addresses: nazim.mahmudov@emu.edu.tr (N.I.Mahmudov), pembe.sabancigil@emu.edu.tr (P.Sabancıgil)

The Phillips $q$-analogue of the Bernstein polynomials ( $B_{n, q}$ ) attracted a lot of interest and was studied widely by a number of authors, see [2]-[4], [6]-[9], [12][17]. A survey of the obtained results and references on the subject can be found in [9]. The Lupaş operators $\left(R_{n, q}\right)$ are less known, see $[1,10,11,18]$. However, they have an advantage of generating positive linear operators for all $q>0$, whereas Phillips polynomials generate positive linear operators only if $q \in(0,1)$. Lupaş [5] investigated approximating properties of the operators $R_{n, q}(f, x)$ with respect to the uniform norm of $C[0,1]$. In particular, he obtained some sufficient conditions for a sequence $\left\{R_{n, q}(f, x)\right\}$ to be approximating for any function $f \in C[0,1]$ and estimated the rate of convergence in terms of the modulus of continuity. He also investigated behavior of the operators $R_{n, q}(f, x)$ for convex functions. In [10], several results on convergence properties of the sequence $\left\{R_{n, q}(f, x)\right\}$ are presented. In particular, it is proved that the sequence $\left\{R_{n, q_{n}}(f, x)\right\}$ converges uniformly to $f(x)$ on $[0,1]$ if and only if $q_{n} \rightarrow 1$. On the other hand, for any $q>0$ fixed, $q \neq 1$, the sequence $\left\{R_{n, q}(f, x)\right\}$ converges uniformly to $f(x)$ if and only if $f(x)=a x+b$ for some $a, b \in R$. In [18], the estimates for the rate of convergence of $R_{n, q}(f, x)$ by the modulus of continuity of $f$ are obtained.

The paper is organized as follows. In Section 2, we estimate the third and the fourth order central moments for the difference of the Lupas $q$-analogue of the Bernstein operator and the limit $q$-Lupaş operator. In Section 3, we discuss Voronovskajatype theorems for the Lupaş $q$-analogue of the Bernstein operator for arbitrary fixed $q>0$. Moreover, for the Voronovskaja's asymptotic formula we obtain the estimate of the remainder term.

## 2. Auxiliary results

It will be convenient to use the following transformations for $x \in[0,1)$

$$
v\left(q^{j}, x\right):=\frac{q^{j} x}{1-x+q^{j} x}, \quad v\left(q, v\left(q^{j}, x\right)\right)=v\left(q^{j+1}, x\right), \quad j=0,1,2, \ldots
$$

Let $0<q<1$. We set

$$
\begin{aligned}
& b_{n k}(q ; x):=\left[\begin{array}{l}
n \\
k
\end{array}\right] \frac{q^{\frac{k(k-1)}{2}} x^{k}(1-x)^{n-k}}{(1-x+q x) \ldots\left(1-x+q^{n-1} x\right)}, \quad x \in[0,1] \\
& b_{\infty k}(q ; x):=\frac{q^{\frac{k(k-1)}{2}}(x / 1-x)^{k}}{(1-q)^{k}[k]!\prod_{j=0}^{\infty}\left(1+q^{j}(x / 1-x)\right)}, \quad x \in[0,1)
\end{aligned}
$$

It was proved in [5] and [10] that for $0<q<1$ and $x \in[0,1)$,

$$
\sum_{k=0}^{n} b_{n k}(q ; x)=\sum_{k=0}^{\infty} b_{\infty k}(q ; x)=1
$$

Definition 1 (See [5]). The linear operator $R_{n, q}: C[0,1] \rightarrow C[0,1]$ defined by

$$
R_{n, q}(f, x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right) b_{n k}(q ; x)
$$

is called the q-analogue of the Bernstein operator.
Definition 2. The linear operator defined on $C[0,1]$ given by

$$
R_{\infty, q}(f, x)= \begin{cases}\sum_{k=0}^{\infty} f\left(1-q^{k}\right) b_{\infty k}(q ; x) & \text { if } x \in[0,1) \\ f(1) & \text { if } x=1 .\end{cases}
$$

is called the limit $q$-Lupaş operator.
It follows directly from the definition that operators $R_{n, q}(f, x)$ possess the endpoint interpolation property, that is,

$$
R_{n, q}(f, 0)=f(0), \quad R_{n, q}(f, 1)=f(1)
$$

for all $q>0$ and all $n=1,2, \ldots$
Lemma 1. We have

$$
\begin{aligned}
& b_{n k}(q ; x)=\left[\begin{array}{c}
n \\
k
\end{array}\right] \prod_{j=0}^{k-1} v\left(q^{j}, x\right) \prod_{j=0}^{n-k-1}\left(1-v\left(q^{k+j}, x\right)\right), \quad x \in[0,1] \\
& b_{\infty k}(q ; x)=\frac{1}{(1-q)^{k}[k]!} \prod_{j=0}^{k-1} v\left(q^{j}, x\right) \prod_{j=0}^{\infty}\left(1-v\left(q^{k+j}, x\right)\right), \quad x \in[0,1] .
\end{aligned}
$$

It was proved in [5] and [10] that $R_{n, q}(f, x), R_{\infty, q}(f, x)$ reproduce linear functions and $R_{n, q}\left(t^{2}, x\right)$ and $R_{\infty, q}\left(t^{2}, x\right)$ were explicitly evaluated. Using Lemma 1 we may write formulas for $R_{n, q}\left(t^{2}, x\right)$ and $R_{\infty, q}\left(t^{2}, x\right)$ in the compact form.
Lemma 2. We have

$$
\begin{aligned}
R_{n, q}(1, x) & =1, R_{n, q}(t, x)=x, R_{\infty, q}(1, x)=1, R_{\infty, q}(t, x)=x \\
R_{n, q}\left(t^{2}, x\right) & =x v(q, x)+\frac{x(1-v(q, x))}{[n]} \\
R_{\infty, q}\left(t^{2}, x\right) & =x v(q, x)+(1-q) x(1-v(q, x))=x-q x(1-v(q, x)) .
\end{aligned}
$$

Now define

$$
L_{n, q}(f, x):=R_{n, q}(f, x)-R_{\infty, q}(f, x)
$$

Theorem 1. The following recurrence formulae hold

$$
\begin{align*}
R_{n, q}\left(t^{m+1}, x\right)= & R_{n, q}\left(t^{m}, x\right)-(1-x) \frac{[n-1]^{m}}{[n]^{m}} R_{n-1, q}\left(t^{m}, v(q, x)\right)  \tag{1}\\
R_{\infty, q}\left(t^{m+1}, x\right)= & R_{\infty, q}\left(t^{m}, x\right)-(1-x) R_{\infty, q}\left(t^{m}, v(q, x)\right)  \tag{2}\\
L_{n, q}\left(t^{m+1}, x\right)= & L_{n, q}\left(t^{m}, x\right)+(1-x) \\
& \times\left(\left(1-\frac{[n-1]^{m}}{[n]^{m}}\right) R_{\infty, q}\left(t^{m}, v(q, x)-\frac{[n-1]^{m}}{[n]^{m}} L_{n-1, q}\left(t^{m}, v(q, x)\right)\right) .\right. \tag{3}
\end{align*}
$$

Proof. First we prove (1). We write explicitly

$$
R_{n, q}\left(t^{m+1}, x\right)=\sum_{k=0}^{n} \frac{[k]^{m+1}}{[n]^{m+1}}\left[\begin{array}{l}
n  \tag{4}\\
k
\end{array}\right] \prod_{j=0}^{k-1} v\left(q^{j}, x\right) \prod_{j=0}^{n-k-1}\left(1-v\left(q^{k+j}, x\right)\right)
$$

and rewrite the first two factors in the following form:

$$
\begin{align*}
\frac{[k]^{m+1}}{[n]^{m+1}}\left[\begin{array}{c}
n \\
k
\end{array}\right] & =\frac{[k]^{m}}{[n]^{m}}\left(1-q^{k} \frac{[n-k]}{[n]}\right)\left[\begin{array}{l}
n \\
k
\end{array}\right] \\
& =\frac{[k]^{m}}{[n]^{m}}\left[\begin{array}{l}
n \\
k
\end{array}\right]-\frac{[n-1]^{m}}{[n]^{m}} \frac{[k]^{m}}{[n-1]^{m}}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] q^{k} . \tag{5}
\end{align*}
$$

Finally, if we substitute (5) in (4) we get (1):

$$
\begin{aligned}
R_{n, q}\left(t^{m+1}, x\right)= & \sum_{k=0}^{n} \frac{[k]^{m}}{[n]^{m}}\left[\begin{array}{c}
n \\
k
\end{array}\right] \prod_{j=0}^{k-1} v\left(q^{j}, x\right) \prod_{j=0}^{n-k-1}\left(1-v\left(q^{k+j}, x\right)\right) \\
& -\frac{[n-1]^{m}}{[n]^{m}}(1-x) \sum_{k=0}^{n-1} \frac{[k]^{m}}{[n-1]^{m}}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] \\
& \times \prod_{j=0}^{k-1} v\left(q^{j}, v(q, x)\right) \prod_{j=0}^{n-k-2}\left(1-v\left(q^{k+j}, v(q, x)\right)\right) \\
= & R_{n, q}\left(t^{m}, x\right)-\frac{[n-1]^{m}}{[n]^{m}}(1-x) R_{n-1, q}\left(t^{m}, v(q, x)\right)
\end{aligned}
$$

Next we prove (3)

$$
\begin{aligned}
L_{n, q}\left(t^{m+1}, x\right)= & R_{n, q}\left(t^{m+1}, x\right)-R_{\infty, q}\left(t^{m+1}, x\right) \\
= & R_{n, q}\left(t^{m}, x\right)-(1-x) \frac{[n-1]^{m}}{[n]^{m}} R_{n-1, q}\left(t^{m}, v(q, x)\right) \\
& -R_{\infty, q}\left(t^{m}, x\right)+(1-x) R_{\infty, q}\left(t^{m}, v(q, x)\right) \\
= & L_{n, q}\left(t^{m}, x\right)+(1-x) \\
& \times\left(\left(1-\frac{[n-1]^{m}}{[n]^{m}}\right) R_{\infty, q}\left(t^{m}, v(q, x)\right)-\frac{[n-1]^{m}}{[n]^{m}} L_{n-1, q}\left(t^{m}, v(q, x)\right)\right) .
\end{aligned}
$$

Formula (2) can be obtained from (1), by taking the limit as $n \rightarrow \infty$.
Moments $R_{n, q}\left(t^{m}, x\right), R_{\infty, q}\left(t^{m}, x\right)$ are of particular importance in the theory of approximation by positive operators. In what follows we need explicit formulas for moments $R_{n, q}\left(t^{3}, x\right), R_{\infty, q}\left(t^{3}, x\right)$.

Lemma 3. We have

$$
\begin{aligned}
R_{n, q}\left(t^{3}, x\right) & =x v(q, x)+\frac{x(1-v(q, x))}{[n]^{2}}-\frac{[n-1][n-2] q^{2}}{[n]^{2}} x(1-v(q, x)) v\left(q^{2}, x\right), \\
R_{\infty, q}\left(t^{3}, x\right) & =x v(q, x)+(1-q)^{2} x(1-v(q, x))-q^{2} x(1-v(q, x)) v\left(q^{2}, x\right) .
\end{aligned}
$$

Proof. Note that explicit formulas for $R_{n, q}\left(t^{m}, x\right), R_{\infty, q}\left(t^{m}, x\right), m=0,1,2$ were proved in [5, 10]. Now we prove an explicit formula for $R_{n, q}\left(t^{3}, x\right)$, since the formula for $R_{\infty, q}\left(t^{3}, x\right)$ can be obtained by taking limit as $n \rightarrow \infty$. The proof is based on the recurrence formula (1). Indeed,

$$
\begin{aligned}
R_{n, q}\left(t^{3}, x\right)= & R_{n, q}\left(t^{2}, x\right)-(1-x) \frac{[n-1]^{2}}{[n]^{2}} R_{n-1, q}\left(t^{2}, v(q, x)\right) \\
= & x v(q, x)+\frac{x(1-v(q, x))}{[n]}-(1-x) \frac{[n-1]^{2}}{[n]^{2}} v(q, x) v\left(q^{2}, x\right) \\
& -(1-x) \frac{[n-1]}{[n]^{2}} v(q, x)+(1-x) \frac{[n-1]}{[n]^{2}} v(q, x) v\left(q^{2}, x\right) .
\end{aligned}
$$

Using the identity $(1-x) v(q, x)=q x(1-v(q, x))$ we obtain

$$
\begin{aligned}
R_{n, q}\left(t^{3}, x\right)= & x v(q, x)+\frac{x(1-v(q, x))}{[n]}\left(1-\frac{q[n-1]}{[n]}\right) \\
& -\frac{[n-1]}{[n]^{2}}([n-1]-1) q x(1-v(q, x)) v\left(q^{2}, x\right) \\
= & x v(q, x)+\frac{x(1-v(q, x))}{[n]^{2}}-\frac{[n-1][n-2] q^{2}}{[n]^{2}} x(1-v(q, x)) v\left(q^{2}, x\right) .
\end{aligned}
$$

In order to prove the Voronovskaja type theorem for $R_{n, q}(f, x)$ we also need explicit formulas and inequalities for $L_{n, q}\left(t^{m}, x\right), m=2,3,4$.

Lemma 4. Let $0<q<1$. Then

$$
\begin{align*}
L_{n, q}\left(t^{2}, x\right)= & \frac{q^{n}}{[n]} x(1-v(q, x))  \tag{6}\\
L_{n, q}\left(t^{3}, x\right)= & \frac{q^{n}}{[n]^{2}} x(1-v(q, x)) \\
& \times\left[2-q^{n}+[n-1](1+q) v\left(q^{2}, x\right)+[n] q v\left(q^{2}, x\right)\right],  \tag{7}\\
L_{n, q}\left(t^{4}, x\right)= & \frac{q^{n}}{[n]^{2}} x(1-v(q, x)) M\left(q, v\left(q^{2}, x\right), v\left(q^{3}, x\right)\right), \tag{8}
\end{align*}
$$

where $M$ is a function of $\left(q, v\left(q^{2}, x\right), v\left(q^{3}, x\right)\right)$.
Proof. First we find a formula for $L_{n, q}\left(t^{3}, x\right)$. To do this we use the recurrence formula (3):

$$
\begin{aligned}
L_{n, q}\left(t^{3}, x\right)= & L_{n, q}\left(t^{2}, x\right)+(1-x) \\
& \times\left[\left(1-\frac{[n-1]^{2}}{[n]^{2}}\right) R_{\infty, q}\left(t^{2}, v(q, x)\right)-\frac{[n-1]^{2}}{[n]^{2}} L_{n-1, q}\left(t^{2}, v(q, x)\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{q^{n}}{[n]} x(1-v(q, x))+(1-x)\left(1-\frac{[n-1]^{2}}{[n]^{2}}\right)\left[(1-q) v(q, x)+q v(q, x) v\left(q^{2}, x\right)\right] \\
& -(1-x) \frac{[n-1]^{2}}{[n]^{2}} \frac{q^{n-1}}{[n-1]} v(q, x)\left(1-v\left(q^{2}, x\right)\right) \\
= & \frac{q^{n}}{[n]^{2}} x(1-v(q, x)) \\
& \times\left[[n]+\left(\frac{[n]^{2}-[n-1]^{2}}{q^{n-1}}\right)\left(1-q+q v\left(q^{2}, x\right)\right)-[n-1]\left(1-v\left(q^{2}, x\right)\right)\right] \\
= & \frac{q^{n}}{[n]^{2}} x(1-v(q, x)) \\
& \times\left[[n]+([n-1]+[n])\left(1-q+q v\left(q^{2}, x\right)\right)-[n-1]\left(1-v\left(q^{2}, x\right)\right)\right] \\
= & \frac{q^{n}}{[n]^{2}} x(1-v(q, x)) \\
& \times\left[[n]+1-q^{n-1}+1-q^{n}+[n-1](1+q) v\left(q^{2}, x\right)+[n] q v\left(q^{2}, x\right)-[n-1]\right] \\
= & \frac{q^{n}}{[n]^{2}} x(1-v(q, x))\left[2-q^{n}+[n-1](1+q) v\left(q^{2}, x\right)+[n] q v\left(q^{2}, x\right)\right] .
\end{aligned}
$$

The proof of equation (8) is also elementary, but tedious and complicated. Just notice that we use the recurrence formula for $L_{n, q}\left(t^{4}, x\right)$ and clearly each term of the formula contains $\frac{q^{n}}{[n]^{2}} x(1-v(q, x))$.

Lemma 5. We have

$$
\begin{align*}
L_{n, q}\left((t-x)^{2}, x\right)= & \frac{q^{n}}{[n]} x(1-v(q, x)),  \tag{9}\\
L_{n, q}\left((t-x)^{3}, x\right)= & \frac{q^{n}}{[n]^{2}} x(1-v(q, x))  \tag{10}\\
& \times\left[2-q^{n}+[n-1](1+q) v\left(q^{2}, x\right)+[n] q v\left(q^{2}, x\right)-3[n] x\right], \\
L_{n, q}\left((t-x)^{4}, x\right) \leq & K_{1}(q) \frac{q^{n}}{[n]^{2}} x(1-v(q, x)), \tag{11}
\end{align*}
$$

where $K_{1}(q)$ is a positive constant which depends on $q$.
Proof. Proofs of (10) and (11) are based on (7), (8) and on the following identities:

$$
\begin{aligned}
& L_{n, q}\left((t-x)^{3}, x\right)=L_{n, q}\left(t^{3}, x\right)-3 x L_{n, q}\left((t-x)^{2}, x\right) \\
& L_{n, q}\left((t-x)^{4}, x\right)=L_{n, q}\left(t^{4}, x\right)-4 x L_{n, q}\left((t-x)^{3}, x\right)-6 x^{2} L_{n, q}\left((t-x)^{2}, x\right)
\end{aligned}
$$

## 3. Voronovskaja type results

Theorem 2. Let $0<q<1, f \in C^{2}[0,1]$. Then there exists a positive constant $K(q)$ such that

$$
\begin{gather*}
\left|\frac{[n]}{q^{n}}\left(R_{n, q}(f, x)-R_{\infty, q}(f, x)\right)-\frac{f^{\prime \prime}(x)}{2} x(1-v(q, x))\right| \\
\leq K(q) x(1-v(q, x)) \omega\left(f^{\prime \prime},[n]^{-\frac{1}{2}}\right) . \tag{12}
\end{gather*}
$$

Proof. Let $x \in(0,1)$ be fixed. We set

$$
g(t)=f(t)-\left(f(x)+f^{\prime}(x)(t-x)+\frac{f^{\prime \prime}(x)}{2}(t-x)^{2}\right)
$$

It is known that (see [5]) if the function $h$ is convex on $[0,1]$, then

$$
R_{n, q}(h, x) \geq R_{n+1, q}(h, x) \geq \ldots \geq R_{\infty, q}(h, x)
$$

and therefore,

$$
L_{n, q}(h, x):=R_{n, q}(h, x)-R_{\infty, q}(h, x) \geq 0
$$

Thus $L_{n, q}$ is positive on the set of convex functions on $[0,1]$. But in general $L_{n, q}$ is not positive on $C[0,1]$.

Simple calculation gives

$$
L_{n, q}(g, x)=\left(R_{n, q}(f, x)-R_{\infty, q}(f, x)\right)-\frac{q^{n}}{[n]} \frac{f^{\prime \prime}(x)}{2} x(1-v(q, x))
$$

In order to prove the theorem, we need to estimate $L_{n, q}(g, x)$. To do this, it is enough to choose a function $S(t)$ such that functions $S(t) \pm g(t)$ are convex on $[0,1]$. Then $L_{n, q}(S \pm g, x) \geq 0$, and therefore,

$$
\left|L_{n, q}(g(t), x)\right| \leq L_{n, q}(S(t), x) .
$$

So the first thing to do is to find such function $S(t)$. Using the well-known inequality $\omega(f, \lambda \delta) \leq\left(1+\lambda^{2}\right) \omega(f, \delta)(\lambda, \delta>0)$, we get

$$
\begin{aligned}
\left|g^{\prime \prime}(t)\right| & =\left|f^{\prime \prime}(t)-f^{\prime \prime}(x)\right| \leq \omega\left(f^{\prime \prime},|t-x|\right) \\
& =\omega\left(f^{\prime \prime}, \frac{1}{[n]^{\frac{1}{2}}}[n]^{\frac{1}{2}}|t-x|\right) \leq \omega\left(f^{\prime \prime}, \frac{1}{[n]^{\frac{1}{2}}}\right)\left(\left(1+[n](t-x)^{2}\right)\right)
\end{aligned}
$$

Define $S(t)=\omega\left(f^{\prime \prime},[n]^{-\frac{1}{2}}\right)\left[\frac{1}{2}(t-x)^{2}+\frac{1}{12}[n](t-x)^{4}\right]$. Then

$$
\left|g^{\prime \prime}(t)\right| \leq \frac{1}{6} \omega\left(f^{\prime \prime},[n]^{-\frac{1}{2}}\right)\left(3(t-x)^{2}+\frac{1}{2}[n](t-x)^{4}\right)_{t}^{\prime \prime}=S^{\prime \prime}(t)
$$

Hence functions $S(t) \pm g(t)$ are convex on $[0,1]$, and therefore,

$$
\left|L_{n, q}(g(t), x)\right| \leq L_{n, q}(S(t), x)
$$

and

$$
L_{n, q}(S(t), x)=\frac{1}{6} \omega\left(f^{\prime \prime},[n]^{-\frac{1}{2}}\right)\left(\frac{3 q^{n}}{[n]} x(1-v(q, x))+\frac{1}{2}[n] L_{n, q}\left((t-x)^{4}, x\right)\right)
$$

Since by formula (11)

$$
\begin{equation*}
L_{n, q}\left((t-x)^{4}, x\right) \leq K_{1}(q) \frac{q^{n}}{[n]^{2}} x(1-v(q, x)) \tag{13}
\end{equation*}
$$

we have

$$
\begin{align*}
L_{n, q}(S(t), x) \leq & \frac{1}{6} \omega\left(f^{\prime \prime},[n]^{-\frac{1}{2}}\right) \\
& \times\left(3 \frac{q^{n}}{[n]} x(1-v(q, x))+\frac{1}{2}[n] K_{1}(q) \frac{q^{n}}{[n]^{2}} x(1-v(q, x))\right) \tag{14}
\end{align*}
$$

By (13) and (14), we obtain (12). The theorem is proved.
When $q>1$, the following relations (see [10], Theorem 3) allow us to reduce to the case $q \in(0,1)$.

$$
R_{n, q}(f, x)=R_{n, \frac{1}{q}}(g, 1-x)
$$

where $g(x)=f(1-x)$. For $q>1$, the limit $q$-Lupaş operator is defined by

$$
R_{\infty, q}(f, x)= \begin{cases}\sum_{k=0}^{\infty} f\left(1 / q^{k}\right) b_{\infty k}(1 / q ; 1-x) & \text { if } \quad x \in(0,1] \\ f(0) & \text { if } \quad x=0\end{cases}
$$

Corollary 1. Let $q>1, f \in C^{2}[0,1]$. Then there exists a positive constant $K(q)$ such that

$$
\begin{aligned}
\left\lvert\, q^{n}[n]_{\frac{1}{q}}\left(R_{n, q}(f, x)-R_{\infty, q}(f, x)\right)-\frac{f^{\prime \prime}(1-x)}{2}\right. & v(q, x)(1-x) \mid \\
\leq & K(q) v(q, x)(1-x) \omega\left(g^{\prime \prime},[n]_{\frac{1}{q}}^{-\frac{1}{2}}\right)
\end{aligned}
$$

Remark 1. For the function $f(t)=t^{2}$, the exact equality

$$
\begin{aligned}
\frac{[n]_{q}}{q^{n}}\left(R_{n, q}\left(t^{2}, x\right)-R_{\infty, q}\left(t^{2}, x\right)\right) & =x(1-v(q, x)), & 0<q<1, \\
q^{n}[n]_{\frac{1}{q}}\left(R_{n, q}\left(t^{2}, x\right)-R_{\infty, q}\left(t^{2}, x\right)\right) & =v(q, x)(1-x), & q>1,
\end{aligned}
$$

takes place without passing to the limit, but in contrast to the Phillips q-analogue of the Bernstein polynomials, the right-hand side depends on $q$. In contrast to classical Bernstein polynomials and the Phillips q-analogue of the Bernstein polynomials, the exact equality

$$
[n]\left(B_{n, q}\left(t^{2}, x\right)-x^{2}\right)=\left(x^{2}\right)^{\prime \prime} x(1-x) / 2
$$

does not hold for the Lupas $q$-analogue of the Bernstein polynomials.

## Acknowledgments

The authors would like to thank the referees for their helpful suggestions.

## References

[1] O. Agratini, On certain q-analogues of the Bernstein operators, Carpathian J. Math. 24(2008), 281-286
[2] T.n. T. Goodman, H. Oruc, G. M. Phillips, Convexity and generalized Bernstein polynomials, Proc. Edinb. Math. Soc. (2) 42(1999), 179-190.
[3] A. Ilinskit, S. Ostrovska, Convergence of generalized Bernstein polynomials, J. Approx. Theory 116(2002), 100-112.
[4] S. Lewanowicz, P. Wozny, Generalized Bernstein polynomials, BIT 44(2004), 6378.
[5] A. Lupa, A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on numerical and statistical calculus, 1987.
[6] N. I. Mahmudov, Korovkin-type Theorems and Applications, Cent. Eur. J. Math. 7(2009), 348-356.
[7] F. Meng, H. Wang, The rate of convergence of $q$-Bernstein polynomials for $0<q<$ 1, J. Approx. Theory 136(2005), 151-158.
[8] H. Oruc, G. M. Phillips, A generalization of the Bernstein polynomials, Proc. Edinb. Math. Soc. (2) 42(1999), 403-413.
[9] S. Ostrovska, The first decade of the $q$-Bernstein polynomials: results and perspectives, J. Math. Anal. Approx. Theory 2(2007), 35-51.
[10] S. Ostrovska, On the Lupaş q-analogue of the Bernstein operator, Rocky Mountain J. Math. 36(2006), 1615-1629.
[11] S. Ostrovska, On the Lupas q-trnasform, Comput. Math. Appl. 61(2011), 527-532.
[12] G. M. Phillips, Bernstein polynomials based on the $q$-integers, Ann. Numer. Math. 4(1997), 511-518.
[13] G. M. Phillips, On generalized Bernstein polynomials, in: Numerical analysis: A. R. Mitchell 75th Birthday Volume, (World Sci. Publ., River Edge, NJ, 1996) 263-269.
[14] V.S. Videnskir, On some classes of $q$-parametric positive linear operators, Oper. Theory Adv. Appl. 158(2005), 213-222.
[15] H. WANG, Voronovskaya-type formulas and saturation of convergence for $q$-Bernstein polynomials for $0<q<1$, J. Approx. Theory 145(2007), 182-195.
[16] H. Wang, Properties of convergence for the $q$-Meyer-König and Zeller operators, J. Math. Anal. Appl. 335 (2007), 1360-1373.
[17] H. Wang, Korovkin-type theorem and application, J. Approx. Theory 132 (2005), 258-264.
[18] H. Wang, Y. Zhang, The rate of convergence for the Lupas $q$-analogue of the Bernstein operator, Preprint 08/312, Middle East Technical University, Ankara, Turkey, 2008.

