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The stiffness model of highly extensible polyester mooring lines is studied. Mooring lines are 
considered within coupled dynamic model of a moored fl oating object. In more detail, deepwater 
mooring with taut polyester mooring lines is observed. In this case mooring line is modelled as an 
extensible cable without bending and torsional stiffness. Movements are assumed to be three-di-
mensional, so it is necessary to examine large displacement model. In longitudinal strain calculation 
the material of the mooring line is considered as nonlinear. A large elongation value is examined 
within the stiffness model. Inertial forces of the mooring line are also considered. Hydrodynamic 
loads due to surrounding fl uid are taken into account with the Morison equation. Due to nonlinear 
properties of mooring lines calculations have to be done in time domain. On these assumptions, 
derivation of a mooring line fi nite element is presented for static and dynamic analysis. A fl oating 
object is modelled as a rigid body with six degrees of freedom and with small displacements as-
sumption. Hydrodynamic coeffi cients are calculated in a specifi ed frequency domain; therefore, 
mapping from the frequency to the time domain is necessary. Comparison between the improved 
model developed in this paper and current equivalent model is done. A simple mooring line that 
can be analytically described was the base for comparison. The improved model achieved better 
agreement with the analytical result.

Keywords: coupled model, dynamic response, fi nite element method, large elongation value, 
mooring,time domain, polyester rope

Poboljšani model krutosti poliesterskih sidrenih linija

Izvorni znanstveni rad

U članku se proučava model krutosti jako rastezljivih sidrenih poliesterskih linija. Sidrene linije 
razmatraju se unutar spregnutog modela koji opisuje usidreni plutajući objekt. Iscrpnije, razmatra 
se sidreni sustav s nategnutim sidrenim linijama od poliestera za sidrenje na velikim dubinama. 
U ovom slučaju sidrena se linija modelira kao rastezljivo uže bez savojne i torzijske krutosti. Pret-
postavlja se da su gibanja trodimenzionalna, stoga treba ispitati model s velikim pomacima. Kod 
proračuna uzdužne deformacije uzima se u obzir nelinearnost materijala sidrene linije. Visoki iznos 
istezanja razmatra se u okviru modela krutosti. Inercijske sile koje djeluju na sidrenu liniju također 
se uzimaju u obzir. Hidrodinamička opterećenja koja nastaju zbog okolnoga fl uida proračunavaju 
se pomoću Morisonove jednadžbe. Zbog nelinearnih značajki sidrenoga sustava svi proračuni 
se moraju provesti u vremenskoj domeni. Na osnovi navedenih pretpostavki prikazan je izvod 
konačnog elementa sidrene linije za statički i dinamički slučaj. Plutajući objekt razmatra se kao 
kruto tijelo sa šest stupnjeva slobode i uz pretpostavku malih pomaka. Hidrodinamički koefi cijenti 
prvo se proračunavaju u frekvencijskoj domeni, a zatim se provodi preslikavanje iz frekvencijske 
u vremensku domenu. Provedena je usporedba između poboljšanog modela koji je razvijen u 
ovom radu i jednoga suvremenog modela. Osnova za usporedbu jedna je sidrena linija za koju se 
mogu dobiti analitički rezultati. Poboljšani model postigao je bolje slaganje rezultata s analitičkim 
modelom.

Ključne riječi: dinamički odziv, rastezljivost, poliestersko uže, sidrenje, spregnuti model, metoda 
konačnih elemenata, vremenska domena
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1 Introduction

Polyester mooring lines endure high elongation during exploita-
tion. Breaking point can be usually found at 15% elongation. Taut 
polyester lines can form a part of deep-water mooring solution. The 
characteristics of such mooring system are signifi cantly infl uenced 
by extensibility of polyester rope. The stiffness of mooring system 
is especially sensitive to elongation of mooring lines. A part of this 
problem is nonlinear stress-strain relation of polyester fi bres.

A coupled dynamic model is recommended way to solve a 
deep-water mooring problem. This model is composed of dynam-
ics of mooring lines and a fl oating body dynamics. Inertial and 
restoring forces of the mooring line as well as hydrodynamic 
loads are examined. Dynamics of the fl oating body incorporates 
environmental loads such as: wave loads of the fi rst and the 
second order, wind loads and sea current loads. Added mass, 
damping due to wave radiation and due drag resistance as well 
as hydrostatic forces are also considered. It should be noted that 
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the coupled model is solved in the time domain because of the 
nonlinear properties of mooring system.

Elastic rod theory is a cornerstone for the mooring line dy-
namics in this study. This theory was derived by Nordgen [1] 
and Garrett [2]. Nordgen described equation of large motions of 
elastic rod in terms of centreline position. Garrett incorporated 
large strain assumptions and suggested fi nite element method 
(FEM) for numerical calculation. Three papers concerning 
coupled dynamics of moored vessel attracted special attention 
of ISSC 2006 Technical Committee 1.2. [3]. Tahar & Kim [4] 
developed a computer program for hull/mooring/riser coupled dy-
namic analysis of a tanker based turret-moored FPSO. Garrett [5] 
performed a fully coupled global analysis of fl oating production 
system, including the vessel, the mooring and the riser system. 
Kim et al. [6] solved simultaneously the vessel and mooring 
line dynamics. The vessel global motions and mooring tension 
were tested at the wave basin of Offshore Technology Research 
Center (Texas, USA) for the non-parallel wind-wave-current 
100-year hurricane condition in the Gulf of Mexico. Stiffness 
nonlinearity of polyester mooring cables was studied by Fern-
andes et al.[7]. They examined acceptance tests performed with 
actual full scale cables. As a result they suggested a formula for 
specifi c modulus of polyester ropes in terms of dynamic analysis. 
Tjavaras et al. [8] studied numerically the mechanics of highly 
extensible cables. In this model a nonlinear stress-strain relation 
is employed. Numerical solution was based on fi nite difference 
scheme. Tahar & Kim [9] examined coupled dynamics analysis 
of fl oating structures with polyester mooring lines. Their math-
ematical model allowed relatively large elongation of polyester 
rope and nonlinear stress-strain relationship. The mooring line 
dynamics was based on elastic rod theory. Numerical calculations 
are done utilizing nonlinear FEM.

A novel procedure for the polyester mooring lines is presented 
in the paper. This procedure has an improved approximation of 
the mooring line stiffness, taking into account nonlinear ten-
sion-elongation relationship. Development of the procedure is 
done within the coupled dynamic analysis of the moored vessel. 
Therefore, a new kind of the coupled dynamic model is formed 
and it can be used for better evaluation of highly extensible 
polyester mooring lines.

2 Mathematical model

2.1 Dynamics of the mooring line

Elastic rod theory [1],[2] is a cornerstone for the mathematical 
model. The behaviour of a slender rod is expressed in terms of 
the centreline position. Movements are three-dimensional, so it is 
necessary to examine large displacement model. High elongation 
value of the mooring line is considered for the modelling of the 
stiffness. Nonlinearity of tension-elongation relationship is taken 
into account. The cross-section is assumed to be homogeneous 
and circular. Bending and torsional stiffness are neglected as well 
as shear deformation and rotary inertia terms. Governing equa-
tions are treated in global coordinate system, so there is no need 
for any kind of coordinate system transformation.

2.1.1 Motion equation

The centreline of a deformed rod is described by a space 
curve [10]. In governing equations the space curve is defi ned by 

a position vector r. Any point on the curve is defi ned by an arc-
length of the extended rod �s . In this case, a unit tangent vector 
of the space curve is given as

  
(1)

with

(2)

Within dynamic analysis the position vector r is also func-
tion of the time t. A segment of the mooring line is shown in n 
Figure 1 where:

�s  – arc-length of the extended mooring line
F – cross-section internal force
q – distributed load
p – hydrostatic pressure of the sea water
�m  – distributed mass of the extended mooring line
��r  – acceleration of the segment.

Figure 1 Segment of the mooring line
Slika 1 Diferencijalni element sidrene linije

Archimedes’ principle states that the buoyancy force exerted 
on an object completely enclosed by a fl uid is equal to the weight 

u
r= d

d �s

u = 1.
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of the fl uid displaced by the object. The segment of the mooring 
line is not completely enclosed by the sea water, since its ends 
are attached to rests of the mooring line, see Figure 1. In order 
to apply Archimedes’ force it is necessary to follow a derivation 
of Sparks [11], illustrated in Figure 2. 

Figure 2 Transformation of the hydrostatic pressure distribu-
tion

Slika 2 Transformacija rasporeda hidrostatskog tlaka

The real distribution of the hydrostatic pressure acting on the 
segment (a) is replaced by a sum of the hydrostatic pressure of 
the completely immersed segment or distributed buoyancy (b) 
and outward-pointing forces at the segment’s ends (c). Absolute 
value of the fi rst outward-pointing force is given as

(3)

where A is cross-section area of the mooring line. In the next step 
it is necessary to defi ne equivalent loads and forces acting on the 
segment. Distributed buoyancy q

B
 is added to distributed load of 

the segment, see Figure 2 part (b)

(4)

where q
E
 is effective distributed load. Force P must be added to 

the internal force F

(5)

where F
E
 represents cross-section effective force. According to 

(4) and (5) it is possible to defi ne an equivalent segment of the 
mooring line, presented in Figure 3.

Force equilibrium on the equivalent segment of the mooring 
line leads to the motion equation

(6)

where superposed dot denotes differentiation with respect to 
time. Moment equilibrium on the equivalent segment can be 
expressed as

(7)

where × denotes vector product. The vector product from the right 
hand side of (6) with dr/d �s  yields, after some manipulations of 
triple vector product [10]

(8)

where · denotes scalar product. According to (1) and (2) dr/d �s   
is the unit tangent vector u of the space curve, so the following 
equation can be formed

(9)

The term contained in the second parentheses of (8) represents 
scalar projection of F

E
 in the direction of the unit tangent vector 

u. Overview of Figure 4 leads to

(10)

Scalar variable T
E
 in the previous equation denotes effec-

tive tension force [11], [12]. Eq. (8) is simplifi ed using (9) and 
(10)

P = pA,

q q qE B= + ,

F F PE = + ,

Figure 3 Equivalent segment of the mooring line
Slika 3 Ekvivalentni diferencijalni element sidrene linije
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(11)

Next, combining (6) and (11) leads to

(12)

Figure 4 Effective tension force
Slika 4 Efektivna vlačna sila

Under applied internal and external forces the segment of the 
mooring line is extended to the length d �s . The elongation ε is 
defi ned, using a standard engineering defi nition

(13)

where ds is length of the non-extended segment. Relation between 
d�s  and ds now can be given as

(14)

Upon substitution of (14) into (12), the fi nal form of motion 
equation is obtained

(15)

In (15) there are three unknown variables: r, T
E
 and ε; there-

fore it is necessary to defi ne additional two equations.

2.1.2 Axial elongation condition

The centreline of the deformed mooring line is described by 
the space curve. Eqs. (1) and (2) defi ne the unit tangent vector 
u of the curve. Relationship between arc-length of the extended 
and the non-extended segment of the mooring line is given by 
(14). Based on these equations the axial elongation condition is 
formulated [13]

(16)

This condition interconnects the deformed position and the 
elongation of the mooring line.

2.1.3 Effective tension-elongation relation

The elongation ε of the mooring line can be given in classical 
form [11], involving Young’s modulus E and Poisson’s ratio ν 

(17)

where σ
A
, σ

C
 and σ

R
 are the axial, the circumferential and the 

radial stress, respectively. Dividing the real tension force T
R
 in the 

mooring line by the cross-section area A gives the axial stress

(18)

Both the circumferential and the radial stress vary as a func-
tion of a radial distance from the mooring line axis, but their 
sum is constant. At any point on the cross-section sum of these 
stresses is defi ned by Lamé’s formula

(19)

where p is hydrostatic pressure of the surrounding sea water.
The effective tension force T

E
 is decomposed into two com-

ponents, upon substitution of (5) in (10)

(20)

The fi rst component is scalar projection of the cross-area 
internal force F onto the unit tangent vector u = d dr �s . The 
obtained scalar variable is real tension force T

R
 and can be cal-

culated analogous to (10)

(21)

Similar, the second component is simplifi ed as

  
(22)

since vectors P and d dr �s  are parallel, see Figure 2. Using (3), 
the second component is even more simplifi ed

  
(23)

Upon substitution of (21) and (23) into (20), another equation 
is obtained that connects the real and the equivalent segment of 
the mooring line, see subsection: Motion equation

                
T

E
 = T

R
 + pA . (24)

Relationship between the real tension T
R
 and the effective ten-

sion T
E
 is defi ned in (24). Similar formula can be found in [12]. 

Next, the axial stress σ
A
 in (18) is given in the form suitable for 

further derivations using (24)

(25)

Based on (17), (19) and (25) a new defi nition of the elonga-
tion ε is obtained
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(26)

For synthetic ropes Poisson’s ratio is assumed to be [8]

(27)

The fi nal form of effective tension-elongation relationship is 
defi ned by (26) and (28)

(28)

2.1.4 Axial stiffness of polyester rope

The elongation of a polyester rope does not have linear re-
lationship with its tension. A direct simulation of the polyester 
rope dynamics is extremely complicated. To simplify numerical 
simulation an empirical formulation is used to model axial stiff-
ness AE of the polyester rope [9]

(29)

where B
S
 is minimum breaking strength, T

R
 is time dependant 

real tension, and RHOL is dry weight per unit length of the rope. 
Constants α and β depend on the type of polyester rope and they 
are obtained experimentally. The stiffness described by (29) is 
formulated in terms of the dynamics analysis but it is often used 
for static calculations. A similar defi nition of polyester Young’s 
modulus can be found in [7].

2.1.5 Finite element for the static analysis

The effective distributed load q
E
 for the static analysis of the 

mooring line is formulated according to (4)

(30)

where q
G
 is distributed weight of dry mooring line. Distributed 

buoyancy q
B
 is given as

(31)

where ρ is density of the sea water, and g is gravitational accel-
eration. Similarly, q

G
 is expressed as

(32)

In the above equations, variables �A  and �m  are related to the 
extended case of the mooring line, so they depend on the elon-
gation ε. Already in this paper, the Poisson’s ratio of polyester 
rope is assumed to be 0.5, see (27). Therefore, the volume of any 
deformed segment is conserved [8]. The cross-section area �A  
and the distributed mass �m  are formulated as

(33)

(34)

where A and m are related to the non-extended case, so they are 
constant. Finally, by omitting inertial term in the motion equation 
(15) and combining with from (30) to (34), the static equation 
is defi ned as

 (35)

The elongation ε formulated by (28) is included in the static 
equation (35) and the axial elongation condition (16) in incon-
venient way for further derivations. Simplifi cation is obtained by 
using Taylor series [10] for (35)

(36)

and for (16)

(37)

The fi nal form of governing equations for the static analysis 
is composed of (16), (28) and (35) with simplifi cations accord-
ing to (36), (37)

(38)

and

(39)

It should be noted that (39) is intentionally defi ned in ap-
proximate form. By observing (16) and (28) an exact form of the 
axial elongation condition can be obtained, simply by multiplying  
(16) with (1 + ε)2. As it will be written below, this approximate 
form of eq. (39) provides a symmetric equation set for numeri-
cal calculations.

In (38) and (39) there are two unknown variables: effec-
tive tension T

E
 and the position vector of mooring line r. This 

equation set is solved utilizing fi nite element method (FEM). 
The application of FEM starts from describing (38) and (39) in 
index notation

(40)

and

(41)

with

i, j = 1, 2, 3 (42)

where prime denotes differentiation with respect to s. Here un-
known variables T

E
 and r

i
 are approximated as [14]

r
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T
E
 (s) = P

m
 (s) λ 

m
 (44)

with

m = 1, 2, 3;   l = 1, ..., 4 (45)

where A
l
 and P

m
 are shape functions defi ned in the interval 0 ≤ s ≤ 

L, where L is length of fi nite element, see Appendix A. Unknown 
coeffi cients U

il
 and λ

m
 can be expresed as

  
(46)

and

(47)

Galerkin method [15] combining with (43) and (44) is used 
for the fi nite element discretization of the static equation (40) 
as follows

(48)

with

(49)

(50)

(51)

(52)

and

n, p = 1, 2, 3;  k = 1, ..., 4. (53)

where δ
ij
 is Kronecker delta. Eq. (48) is the static equation of 

fi nite element, where F
il
 denotes total nodal forces that incor-

porate external nodal forces Fil
C  as well as nodal forces from 

distributed dry weight and buoyancy of the mooring line. Knijkl
0  

is geometric stiffness matrix of the non-extended mooring line. 
Additional stiffness matrices Knmijkl

1  and Knmpijkl
2  can be con-

sidered as change coeffi cients of the geometric stiffness due to 
the elongation of the mooring line. To clarify, these additional 
matrices are direct consequence of the simplifi cation used in 
the mooring line static (35). The simplifi cation is carried out 
by Taylor series defi ned in (36). Obtained simplifi ed form is 
shown in (40) using index notation. By close inspection of (40) 
and (48) the origin of each stiffness matrix can be determined. 
Thus, the geometric stiffness Knijkl

0  in (48) derives from T rE i′[ ]'  
in (40). In the same way, additional stiffness matrices Knmijkl

1 and 

Knmpijkl
2  are derived from T T AE rE E i( ) ′⎡⎣ ⎤⎦

'  and T T AE rE E i( ) ′⎡
⎣

⎤
⎦

2 '
 

respectively. Further, heaving in mind that the term T
E
 /AE is 

the mooring line elongation ε according to (28), Knmijkl
1  can be 

considered as linear and Knmpijkl
2  quadratic change coeffi cient 

of the geometric stiffness.
Axial elongation condition (41) is also discretized using 

Galerkin’s method [15] and combining with (43) and (44) as 
follows

(54)

with

(55)

(56)

(57)

(58)

Finite element static equation (48) and discretized axial 
elongation condition (54) are highly nonlinear. Therefore, this 
equation system is solved using the Newton-Rapson iterative 
method [10] as follows

(59)

with

(60)

(61)

(62)

(63)

(64)

(65)
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11 12 21, ,  , Jmn

22  and denote parts of a Jacobian 
matrix while Ril

1  and Rm
2  compose a residual vector. Label (k) 

in superscripts denotes number of iteration. Simplifi ed form of 
eq. (59) for a single fi nite element is given as

(66)
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(68)

Calculations are carried out iteratively according to the fol-
lowing algorithm

(69)

(70)

where {Y} is global “nodal displacement” vector, [K] global 
“stiffness” matrix and {F} is global “nodal force” vector.

By detailed inspection of (59) it can be found that formulation 
of the Jacobian matrix is symmetrical. As it is known, the Jacobian 
matrix in most causes is not symmetric when a nonlinear equation 
system is considered. In this study special effort is invested to 
achieve this symmetrical form. The symmetry is mainly realized 
by selecting appropriate form of the axial elongation condition 
(16). As already written, by Taylor series in (37) and (28) an 
approximate form of axial elongation condition is given in (39). 
This form provided a requested basis for the symmetry. Further-
more, during formulation of the Newton-Rapson procedure (59), 
discretized axial elongation condition (54) is multiplied by -1/2 
to achieve the complete symmetry. This symmetric form of the 
Jacobian matrix enables easier numerical implementation utiliz-
ing classical FEM codes.

2.1.6 Finite element for the dynamic analysis

Distributed hydrodynamic load q
H
 on the mooring line is 

derived utilizing Morison equation [14] as follows

(71)

with

(72)

where ˙            ˙    denotes the length of a vector; A and D are cross-
section area and diameter of the non-extended mooring line 
respectively; C

A
, C

M
 and C

D
 are added mass, inertial and 

drag coeffi cients. In (72), r̈ n is a component of the mooring 
line acceleration normal to the mooring line, see Figure 5. 
Analogously, r. n is the normal component of the mooring line 
velocity. Motion of the surrounding sea water is considered 
through normal components of water particle acceleration v. n 
and velocity vn. In the next step, hydrodynamic load needs to 
be considered within the motion equation (15). Therefore, the 
effective distributed load q

E
 for dynamic analysis is formulated 

according to (4) and (30)

(73)

The fi nal form of motion equation is derived using (15), (31), 
(32), (33), (34) and (73) as follows

 

(74)

It should be noted that in the previous chapter the formulation 
of the distributed buoyancy q

B
 is based on the cross-section area

�A of the extended mooring line, see (31). In (33), the relation 
of the cross-section area for extended and non-extended state 
is formulated based on the elongation ε. For sake of simplicity, 
the elongation ε is not considered in the derivation of distributed 
hydrodynamic load in (71), so the cross-section area A as well as 
the diameter D are assumed to be constant. With same intention, 
the elongation is neglected in the formulation of acceleration 
and velocity normal components in (72), where the unit tangent 
vector dr/d �s of the extended mooring line is replaced by dr/ds, 
see (1) and (14). The elongation is also neglected in the deriva-
tion of motion equation (74), so that the term (1 + ε) that should 
multiply q

H
 is dropped, see (15) and (73).

Figure 5 Normal component of the mooring line acceleration
Slika 5 Normalna komponenta ubrzanja sidrene linije

The axial elongation condition given by (16) must be fulfi lled 
during dynamic analysis. To obtain symmetric equation set for 
numeric calculation an approximate form of the condition is 
chosen as follows

(75)

The fi nal form of governing equations for dynamic analysis 
is composed of (28), (74) and (75) with simplifi cation according 
to (36), given in index notation

(76)
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and

(77)

Note that in the above equations there is new label qH
i
 for the 

hydrodynamic load to avoid confusion when using index nota-
tion. Unknown variables T

E
 and r

i
 are approximated in the same 

way as for static calculations by (43) and (44), in this case here 
unknown coeffi cients U

il
 and λ

m
 are time dependent.

Finite element discretization of the motion equation (76) is 
based on Galerkin’s method [15] as follows

(78)

with

(79)

(80)

(81)

and

(82)

where e
ijk

 is Levi-Civita symbol. Eq. (78) is the dynamic equation 
of fi nite element, where M

ijkl
 denotes mass matrix due to own 

mass; MA
ijkl

 is added mass matrix and FH
il
 is nodal force vector 

due to hydrodynamic load. Stiffness matrices Knijkl
0 , Knmijkl

1  and  
Knmpijkl

2 as well as nodal force vector F
il
 are the same as for the 

static case, see (48). The (78) is a second order differential equa-
tion. The order of this equation is derated using the fi rst derivate 
of displacements. As a result, two fi rst order differential equations 
are obtained, as follows

(83)

(84)

with substitutions

(85)

(86)

(87)

where V
jk
 is nodal velocity vector. For the sake of simplicity, 

time integration is based on trapezoidal integration [10], with 
sequential formulas

  
(88)

(89)

where ∆t is time step size and n in superscripts denotes time step 
number. To achieve time integration of dynamic equation (78) it 
is necessary to combine (83) with the above formulas

 

(90)

Discretization of the axial extension condition (77) is also 
achieved using Galerkin’s method and combining with (43) and 
(44), as follows:

  
(91)
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(93)
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(95)

Vector C
m
 is the same as for eq. (54).

Finite element dynamic equations with implemented time inte-
gration given by eq. (90) and discretizied axial elongation condition 
(91) are highly nonlinear. Therefore, the Newton-Rapson iterative 
method [10] is used to solve this equation set, as follows
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(102)

where k in superscripts denotes iteration number within a time 
step. In (96) ˆ , ˆ , ˆJ J Jijkl nil mjk

11 12 21  and Ĵmn
22  compose a Jacobian matrix 

while R̂il
1  and R̂m

2  are parts of a residual vector. Simplifi ed form 
of (96) for a single fi nite element is given as

(103)

Algorithm for iterative calculations has the form

(104)

Detailed inspection of (96) reveals symmetric form of the 
Jacobian matrix. The symmetry is mostly achieved by selecting 
appropriate form of the axial elongation condition in (75). Also, 
during derivation of the Newton-Rapson method given by (96), 
discretized axial elongation condition (91) is multiplied by -1/2 
to fully realize the symmetry.

2.2 Time domain hydrodynamics of a fl oating body

Hydrodynamics of a fl oating body in the time domain is 
defi ned by Cummins [16], in the following form

(105)

where

{ξ (t)} – displacement vector of a fl oating body dependant 
  on time

M m⎡⎣ ⎤⎦  – mass matrix due to own mass of a fl oating body

A∞⎡⎣ ⎤⎦  – added mass independent of frequency (or added 
  mass for the time domain)

Ch⎡⎣ ⎤⎦  – hydrostatic stiffness matrix 

K t( )[ ]  – matrix of impulse response function (memory 
  function)
{F (t)} – excitation force vector, 

It is shown in [16] that the impulse response function can 
be calculated from frequency dependant damping coeffi cients 
[B(ω)]

(106)

Added mass in (105) is defi ned by Ogilvie [17] as fol-
lows

(107)

where

[A(ω)] – frequency dependant added mass
ω

AC
 – arbitrary chosen frequency

Considering a moored fl oating object, excitation force vector 
{F (t)} is calculated as

(108)

where

F tW
( ) ( )1{ }  – wave loads of the fi rst order on a fl oating object 

  (in the time domain)
F tW

( ) ( )2{ }  – wave loads of the second order 
 F tWN ( ){ }  – wind loads

F tCR ( ){ }   – sea current loads
 F tVD ( ){ }  – viscous drag loads.

Calculation procedures of the above listed loads are shown 
in Appendix B.

2.3 Coupled model

For complete description of the moored object response it is 
necessary to develop a coupled model. In this study, the coupling 
is achieved on the fl oating object’s connection points with the 
mooring lines. At each connection point, two conditions must 
be fulfi lled.

The fi rst condition requires that the upper end of the moor-
ing line has the same displacement in time as the connection 
point on the fl oating object. This condition is usually called a 
displacement compatibility and in this case is formulated using 
Figure 6, where

0xyz  – fi xed Cartesian coordinate system
G x y z  – coordinate system of the fl oating object
G G,  – initial and current centre of gravity of the fl oating 
  object, respectively
P P,  – initial and current connection point on the fl oating 
  object, respectively
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Figure 6 The displacement compatibility of P
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Slika 6 Kompatibilnost pomaka točke P
—
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xG, α – translational and angular displacement vector of 
  the fl oating object, respectively
p – position vector of P in regard to G
yML – position vector of the upper end of the mooring 
  line.

According to Figure 6, the displacement compatibility is 
formulated for P

—
as follows

(109)

The second condition is based on the equilibrium of forces 
at the connection point defi ned as

(110)

where
FFC – force on the fl oating object due to the mooring line
FMC – force on the mooring line due to the fl oating object.

To carry out calculation of the coupled model, the force FMC  
must be taken into account when defi ning the global force vector 
of the corresponding mooring line, see (69). Similar, the force FFC 
should be considered when defi ning governing equation (105) of 
the fl oating object. In this case, the moment regarding the centre 
of gravity caused by FFC should also be considered.

3 Case study I - single mooring line

This case study is based on observation of Tahar & Kim 
[9] who have considered a single polyester mooring line. The 
mooring line is placed vertically, and it is used for a buoy, see 
Figure 7.

Figure 7 Single mooring line
Slika 7 Jednostruka sidrena linija

It is assumed that the buoy is fl oating at calm free surface 
of the sea. Hydrodynamic loads as well as environmental loads 
are not taken into account. Properties of the mooring line are 
given in Table 1.

Table 1 Properties of the single mooring line 
Tablica 1 Značajke sidrene linije

Designation Quantity Unit

Pretension 412.8 kN

Length 914.4 m

Segment 1 (ground section): chain

Length 12.19 m

Diameter 70 mm

Distributed mass 30.2 kg/m

Wet weight 258 N/m

Stiffness AE 1.08 · 105 kN

Minimum breaking load (MBL) 11.8 · 103 kN

Segment 2: wire (polyester)

Length 856.49 m

Diameter 85 mm

Distributed mass - RHOL 5.06 kg/m

Wet weight 12.3 N/m

Linearized stiffness 2.429 · 104 kN

Stiffness parameters:

 α 2.5

 β 2.0

Minimum breaking load (MBL) 1.97 · 103 kN

Segment 3: chain

Length 45.72 m

Other parameters are the same as for the segment 1.

Static case

Initial state is characterized by a pretension force and associ-
ated elongation of the mooring line. This force is applied at the 

y r x p pML G G= + + + ×α .

F F 0FC MC+ = ,

Figure 8 The relation vertical force-elongation of single mooring 
line with linearized material properties

Slika 8 Odnos vertikalne sile i istezanja sidrene linije s linear-
iziranim značajkama materijala
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upper end of the mooring line. At the same position additional 
vertical force is applied with the maximum value of 103 kN. Mate-
rial of the mooring line is assumed to be linear. The relationship 
between the vertical force and the elongation obtained by the 
improved model developed in this paper is shown in Figure 8. 
Within this model 22 fi nite elements were used. Out of these ele-
ments one element is used for each chain segment. For this case 
it is possible to obtain an analytical solution, see Appendix C. 
The analytical result is also shown in Figure 8 for comparison, 
alongside with result from Tahar & Kim [9].

Next, the nonlinear properties of the polyester rope are con-
sidered, see (29). The results of these calculations are presented 
in Fig. 9.

Figure 9 The relation vertical force-elongation of single mooring 
line with nonlinear material properties 

Slika 9 Odnos vertikalne sile i istezanja sidrene linije s nelin-
earnim značajkama materijala

4 Case study II - spar platform

Input data for this case study are found in Arcandra [14]. 
A spar platform moored by polyester ropes is considered. The 
sea depth is 1 830 m. Characteristics of the platform are given 
in Table 2. A taut mooring system consisting of four identical 
mooring lines is used, see Figure 10. Properties of the mooring 
lines are shown in Table 3. Wind, wave and sea current loads are 
coming from different directions, see Table 4.

Table 2 Characteristics of the spar platform
Tablica 2 Značajke spar platforme

Designation Quantity Unit

Length 214.88 m

Draught 198.12 m

KB 164.59 m

KG 129.84 m

Displacement 220 740 t

Pitch radius of gyration in air 67.36 m

Yaw radius of gyration in air 8.69 m

Drag force coeffi cient 1.15

Wind force coeffi cient 2 671.59 N/(m/s)2

Table 3 Properties of mooring lines for the spar platform
Tablica 3 Značajke sidrenih linija spar platforme

Designation Quantity Unit

Pretension 2357 kN

Length 2590.8 m

Fairlead location above base line 91.44 m

Segment 1 (ground section): chain

Length 121.92 m

Diameter 245 mm

Distributed mass 287.8 kg/m

Wet weight 2 485 N/m

Stiffness AE 1.03 · 106 kN

Minimum breaking load (MBL) 11.8 · 103 kN

Distributed added mass 37.4 kg/m

Drag force coeffi cient 2.45

Segment 2: wire (polyester)

Length 2 377.44 m

Diameter 210 mm

Distributed mass - RHOL 36.52 kg/m

Wet weight 75.5 N/m

Linearized stiffness AE 3.18 · 105 kN

Minimum breaking load (MBL) 12.79 · 103 kN

Distributed added mass 28.8 kg/m

Drag force coeffi cient 1.2

Segment 3: chain

Length 91.44 m

Other parameters are the same as for the segment 1.

Table 4 Environmental conditions for the spar platform
Tablica 4 Opterećenje okoliša na spar platformu

Designation Quantity Unit

Waves

H
s
: 6.19 m

T
p
: 14 s

Wave spectrum JONSWAP (γ = 2.5)

Wave direction 180 degree

Wind

Wind speed (1 h): 16.28 m/s @ 10 m

Wind spectrum API RP 2A-WSD

Wind direction 210 degree

Sea current

Profi le:

              depth        : 0 m 0.0668 m/s

                : 60.96 m 0.0668 m/s

                               : 91.44 m 0.0014 m/s

                seabed 0.0014 m/s

Current direction 150 degree

Dynamic case

Each mooring line is modelled by 7 fi nite elements, and one 
of them is used for each chain segment. Length of the time step 
is 0.2 s, see (83) to (90). Within each time step 3 iterations are 
carried out, see (96) to (104). Hydrodynamic calculations are 
done using HYDROSTAR [18]. The obtained numerical results 
are shown in the following fi gures.

Elongation [%]
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Figure 10 Arrangement of mooring lines of the spar platform
Slika 10 Raspored sidrenih linija spar platforme

Figure 11 Displacements of the spar platform
Slika 11 Pomaci spar platforme

Figure 12 Real tension force on the upper end of the fi rst mooring 
line (of the spar platform)

Slika 12 Realna vlačna sila na gornjem kraju prve sidrene linije 
(spar platforme)

5 Conclusion

In this study, high elongation of polyester mooring lines is 
considered within a stiffness model in a new, improved way. The 
nonlinear tension-elongation relation of a polyester rope is a part 
of the improved stiffness model. Development of the model is done 
considering the coupled dynamic analysis of a moored vessel.

Special effort is invested to achieve symmetrical forms of 
equation sets for static and dynamic analysis. These symmetrical 
forms enable easier numerical implementation utilizing classical 
FEM codes.

Comparison between the improved model and the current 
equivalent model is done, see Case study I. The single mooring 
line that can be analytically described was a base for comparison. 
The improved model achieved better matching with analytical 
results. Satisfactory stability and results of the improved model 
are found in the coupled dynamic analysis of a moored deepwater 
spar, see Case study II. Therefore, the mooring line model from 
this paper is a good cornerstone for future research.
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Appendix A

Shape functions

Hermite polynomials are used for shape functions A
l
 and P

m
 

during derivation of FEM, as follows [14]
 

 (A1)

and

  
(A2)

with

(A3)

where L is length of fi nite element.

Appendix B

Loads on a moored fl oating object

Wave loads of the fi rst order on the fl oating object are defi ned 
by linear transfer function (LTF), according to [18]

(B1)

where 

i – imaginary unit
ex – exponential function of x
R{} – denotes real part of complex quantity

f
j

( )1{ }  – linear transfer function (LTF) for wave loads of 
  the fi rst order
a

j
 – complex amplitude of a wave component

ω
j
 – frequency of a wave component

N – total number of wave components.

Wave loads of the second order are defi ned using quadratic 
transfer function (QTF), according to [18] and [19]

(B2)

where

f
jk

( )2{ }  – quadratic transfer function (QTF) for wave loads 
  of the second order
a* – complex conjugate of a.

The amplitude of each wave component is determined based 
on a wave spectrum that describes a sea state

(B3)

where
Sηη – wave spectrum 
θ

j
 – phase of a wave component (determined on the 

  basis of a random number)
∆ω

j
 – frequency step size.

Wind load on the hull of a fl oating object can be calculated 
using simplifi ed engineering approximation

(B4)
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where

F
WN

 – wind load
C

WN
 – wind load coeffi cient dependant on the type of 

  fl oating object and the exposed projected area.

The wind speed is defi ned on the basis of wind spectrum, 
see [20].

It can be assumed that the load due a sea current has only 
constant component. To determine the amount of load the fol-
lowing formula is used

(B5)

where

F
CR

 – sea current load
C

CR
 – coeffi cient of sea current load (or drag force 

  coeffi cient)
ρ – density of the sea water
V

CR
 – speed of the sea current

A
UP

 – underwater projected area.

Appendix C

Analytical solution for the case study I

The analytical solution of a single mooring line in the Case 
study I (see Fig. 7) is based on a classical equation for rod 
deformation

(C1)

where 

AE – axial stiffness of a rod
u – longitudinal displacement
x – local longitudinal coordinate axis
N – cross-sectional force.

Eq. (C1) is used for each segment of the mooring line. The 
origin of the local coordinate system is set up at the end of the 
segment that is closer to the seabed. In the case of a single moor-
ing line the cross-section force N and the real tension force T

R
 

are the same.
Since the segments of the mooring line are vertical, the force 

T
R
 is simply formed for each segment in the local coordinate 

system

T x R q xR E( ) = + 1 , for Segment 1 (C2)

T x R q l q x g l l x AR E E( ) = +( ) + − + −( )1 1 2 2 3ρ , for Segment 2 
(C3)

T x R q l q l q xR E E E( ) ,= + +( ) +1 1 2 2 3 , for Segment 3 (C4)

with

(C5)

where R is reaction force at the seabed; q
E1

, q
E2

 and q
E3

 are ef-
fective distributed loads of segments, see (30); l

1
, l

2 
and l

3 
are 

lengths of segments; F
V
 is the vertical force on the top of the 

mooring line which contains initial pretension. During formula-
tion of (C3) for Segment 2 it is necessary to consider (24). For 
the nonlinear case of polyester rope material axial stiffness is 
calculated using (29).

F C V ACR CR CR UP= 1

2
2ρ ,

AE
u

x
N

d

d
= ,

R F q l q l q lV E E E= − − −1 1 2 2 3 3


