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Abstract 

Traditional approaches to characterization and modeling of fractured dolomite aquifers 
face many conceptual and technical challenges. One alternative strategy begins with the 
Generalized Radial Flow interpretation of hydraulic tests, which infers an additional parameter, 
the flow dimension, to describe the geometry of groundwater flow. This study examines the 
behavior and variability of the apparent flow dimension, n*, and advective transport for four 
stochastic models of heterogeneous transmissivity, T(x). This is accomplished through Monte 
Carlo analysis of numerical models simulating aquifer tests and converging flow tracer tests 
(CFTTs) in two-dimensional systems. For ln T(x) distributed as a multivariate Gaussian (mvG) 
variable of variance less than one, the apparent flow dimension of an aquifer test converges to n* 
= 2 if the scale of the test is large relative to the scale of correlation. The variability of the 
apparent flow dimension depends on the variance and integral scale of the transmissivity, 
suggesting that it may be possible to identify the variance and integral scale from a set of aquifer 
tests. For variances greater than one, the results suggest that the average of the apparent flow 
dimension is less than two initially, then converges to n* = 2, similar in some respects to a 
percolation network. The simulation of an uncorrelated log-Gaussian model suggests that the 
flow dimension of an aquifer test converges to n* = 2 even for large variances. For ln T(x) 
distributed as fractional Brownian motion (fBm), the apparent flow dimension averages to n* = 2 
and its variability increases with time. An approximation of a percolation network model showed 
an average apparent flow dimension stabilizing between n* = 1.4 to 1.6, followed by an 
increasing trend. These characteristics apparently are functions of the transmissivity contrast 
between the percolating and nonpercolating fractions. In the low-variance mvG, uncorrelated 
log-Gaussian, and fBm models, CFTTs influenced by matrix diffusion showed late-time 
breakthrough curves (BTCs) with log-log slopes of -3/2, the characteristic behavior of matrix 
diffusion. In the percolation network model, a simulated CFTT influenced by matrix diffusion 
had late-time BTC with log-log slopes of -5/4, attributed to slow advection through low 
transmissivity regions. This indicates that some heterogeneity models can systematically affect 
the late-time behavior of a BTC for a CFTT.  These results suggest that the flow dimension may 
be a useful diagnostic for selecting models of heterogeneity, and that flow dimensions n ≠ 2 may 
be associated with unique tracer behavior. Additional research is advocated to infer the general 
behavior of the flow dimension at various field sites, to assess a broader range of parameters, to 
examine other stochastic models, and to conduct a more detailed examination of transport 
behavior versus the flow dimension. 



Introduction 

The characterization and analysis of fluid flow and contaminant transport in fractured 
rocks is a common challenge faced by scientists and engineers worldwide. These rock formations 
form economically important aquifers and oil reservoirs throughout the world, ranging from the 
dolomite aquifers of Northeastern Illinois (NIPC, 2001); to carbonate oil reservoirs in South 
America, the North Sea, and the Mideast (Acuna and Yortsos, 1995; Raghavan, 2004; Sahimi 
and Mukhopadhyay, 1996); and to dolomite aquifers in the Southwestern United States that form 
pathways critical to the performance of nuclear waste disposal sites (Meigs and Beauheim, 
2001).  Despite their importance, the characterization and modeling of fluid flow and 
contaminant transport in fractured rocks continue to be a challenge because they tend to be 
highly heterogeneous.  This heterogeneity concentrates flow into erratic channels that are not 
addressed by traditional analysis techniques.  Responsible management requires reliable field 
characterization methods and modeling analyses to assess the impact of management options, yet 
currently available techniques are poorly suited to the analysis of flow and transport in fractured 
rocks (NRC, 1996). 

One such technique for field characterization is aquifer testing, where water level 
changes (drawdowns) are observed in the aquifer surrounding a pumped well.  These drawdowns 
over time are interpreted by fitting a simple model of flow to a well, yielding estimates of 
hydraulic properties that are used in subsequent assessments of water resources. However, 
fractured rock aquifers often have complex flow geometries that are ignored by traditional 
interpretation approaches that assume radial (two-dimensional) flow. Figure 1 is a log-log 
diagnostic plot of the drawdown, s, and drawdown derivative ( )tddss ln=′  versus time. The 
plot compares a traditional model for interpreting an aquifer test with data from an aquifer test in 
a fractured dolomite aquifer in Kankakee County, in northeastern Illinois. The producing zone of 
this aquifer is a few meters thick, parallel to the plane of bedding, and laterally extensive. In this 
circumstance, the traditional approach to interpreting an aquifer test would fit the Theis model of 
radial flow in an infinite, two-dimensional domain (Theis, 1935). However, the slope of the 
Theis model fits the data poorly, as evidenced by the mismatch of the derivatives of the data and 
the model. Alternative combinations of hydraulic properties result in equally poor fits to the data, 
translating into unreliable parameter estimates and increased uncertainties in managing this 
water resource. 

The characterization of fractured rocks requires an approach that addresses the complex, 
often non-radial flow geometry experienced by aquifer tests in these systems. One starting point 
is the Generalized Radial Flow (GRF) model for interpreting aquifer tests in fractured rocks 
(Barker, 1988), which includes an additional parameter, n, called the flow dimension. In the GRF 
approach, the cross-sectional area of flow for an aquifer test is given by  , so that 
the surface area of a unit sphere in n dimensions is 

1)( −= n
nrrA α

)(
2

2

2
3

n

n
n

n b
Γ

= − πα      (1) 

2 



where A(r) is the cross-sectional area of flow [L2], r is the radial distance from the borehole [L], 
b is the extent of the flow zone [L], n is the flow dimension [ ], and Γ( ) is the gamma function 
[ ]. The flow dimension n describes the geometry of the system by defining the rate that the 
cross-sectional area of flow changes with respect to distance from the test well, i.e., the flow 
dimension is the power by which the flow area changes with respect to radial distance, plus one. 
For example, in a homogeneous, radial system, the cross-sectional area of flow at any radius is 
proportional to r1, i.e., A(r) = 2πrb, so that the flow dimension is n = 2. Mishra (1991) examined 
the late-time slope of the log-log plot of the derivative for infinite-acting aquifers:  

   ( ) ( )[ ]td
ds

td
dv

t lnlog
log

lim
∞→

=      (2) 

and found that it is related to the flow dimension by vn ⋅−= 22 . Thus, for an aquifer test in a 
homogeneous, infinite, two-dimensional domain, the late-time slope of its derivative will be v = 
0, so that the flow dimension is 2022 =⋅−=n . Where strong heterogeneities restrict flow to a 
portion of the aquifer, the flow dimension can be less than the spatial (Euclidean) dimension of 
the aquifer. Figure 1 shows such an aquifer test in a fractured dolomite formation, where the 
pressure derivative has an upward slope of approximately v ≈ 0.15, so that n ≈ 1.7, even though 
the aquifer arguably is two dimensional. 

1.E-01

1.E+00

1.E+01

1.E+02 1.E+03 1.E+04 1.E+05

Time (sec)

s 
an

d 
s'

 

Figure 1. An aquifer test in a fractured dolomite aquifer in Kankakee County, Illinois, USA. 
Circles denote the observed decline in water levels (drawdown, s) vs. time; triangles denote the 
derivative, s′. The Theis model of radial flow in a two-dimensional domain is the solid line and 
its derivative is the dashed line. ISWS archival data for observation well number 4, April 19-20, 
1988, aquifer test of Hopkins Park Well #2 (Cravens et al., 1990).
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 Unlike the parameters inferred from traditional interpretations of aquifer tests, the 
relationship between the flow dimension and aquifer heterogeneity has received little attention.  
For example, many fractured dolomites arguably have a Euclidean dimension of two, yet their 
flow dimensions are often less than two (Figure 1). Barker (1988) noted that hydraulic tests in 
fractured media often show noninteger flow dimensions and conjectured that this was caused by 
a non-space-filling fracture network acting as a fractal object. Polek (1990) verified Barker’s 
conjecture using numerical simulations of flow in a percolation network.  Acuna and Yortsos 
(1995) confirmed that the GRF model could be viewed as radial diffusion on a fractal lattice, and 
that a perfectly connected lattice had a flow dimension equal to the fractal dimension. Doe 
(1991) noted that the interpreted flow dimension of a hydraulic test might be the consequence of 
either heterogeneity, variations in flow geometry, or some combination of both. Several studies 
suggest that flow and transport models should reproduce the flow dimensions inferred from 
aquifer tests, but they provide little advice on what behavior should be reproduced or how to 
achieve this (Borgne et al., 2004; Riemann et al., 2002).  Walker and Roberts (2003) used 
analytical and semianalytical approaches to determine the flow dimensions corresponding to 
several idealized hydrogeologic conditions in two-dimensional systems. They found that the flow 
dimension decreases initially but returns to 2=n  for a linear no-flow boundary, stabilizes to 

 for a linear constant-head boundary, and is  and increases without bound for the 
leaky-aquifer problem of Hantush (Hantush and Jacob, 1955). They also showed that a stationary 
(statistically homogeneous) field of transmissivity with a modest variance tended to show 

4=n 2≥n

2=n , 
but the flow dimension of a nonstationary heterogeneity depended on the form of nonstationarity. 
Determining the flow dimension of widely used stochastic models of heterogeneity requires 
Monte Carlo simulation using numerical models of aquifer tests (Walker and Roberts, 2003).  

Still scarcer are studies relating the flow dimension to transport behavior. Although not 
specifically examining the flow dimension, Moreno and Tsang (1994) used numerical models to 
examine flow and transport in three-dimensional lognormal (ln T distributed as a multivariate 
Gaussian (mvG) variable). They found that increasing the variance of these fields tended to 
increase the linearity of flow channels, and that this contributed to skewed breakthrough curves 
(BTCs). Doughty and Karasaki (2002) numerically modeled transport under uniform, two-
dimensional flow through a fractal geometry. They found that the flow dimensions were less 
than both the Euclidian fractal dimensions, and that transport was non-Fickian and consistent 
with flow channeling across a range of scales. There has been extensive research addressing 
diffusion on fractal lattices, suggesting that transport in such systems has unique behaviors that 
partially are related to the geometry of flow (Benson et al., 2004; Berkowitz et al., 2002; 
O'Shaughnessy and Procaccia, 1985). Such results suggest the possibility of using tracer data 
with the flow dimension to constrain models of heterogeneity and thus reduce uncertainties in 
aquifer characterization. 

The Illinois State Water Survey (ISWS) and the University of Illinois at Urbana-
Champaign (UIUC) have developed a Monte Carlo process to estimate flow dimensions 
corresponding to stochastic models of aquifer heterogeneity.  The approach is similar to that of 
Meier et al. (1998): create a synthetic aquifer with a particular stochastic model of spatially 
variable transmissivity, numerically simulate an aquifer test in the field, and then repeat the 
simulation to infer the behavior of the aquifer test for that stochastic model.  In this study, the 
flow dimension is approximated numerically for each realization of the simulated aquifer test. 
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Preliminary analyses have tentatively identified the characteristic flow dimensions of two 
stochastic models of heterogeneity and suggest that the variability of the flow dimension is a 
function of the variability and spatial scale of the heterogeneity. However, the simulations to date 
have been limited to small sets of realizations for a few stochastic models, and have not 
examined transport. 

Objectives and Tasks 

This report summarizes research conducted by the ISWS in collaboration with UIUC, the 
National Center for Supercomputing Applications (NCSA), and Purdue University to extend the 
capabilities of the Monte Carlo simulator and perform simulations of aquifer tests and tracer tests 
in heterogeneous aquifers. The objectives of this study are to establish the expected behavior and 
variability of the flow dimension for widely used stochastic models of aquifer heterogeneity, and 
to perform a preliminary assessment of the relationship between the flow dimension and the 
breakthrough curves (BTCs) of converging-flow tracer tests (CFTTs). This project includes the 
following specific tasks:  

Task 1: Extend the capabilities of the preliminary Monte Carlo simulator by 
incorporating the transport program THEMM, and thus permit the analysis of a CFTT influenced 
by matrix diffusion. 

Task 2: Conduct Monte Carlo simulations to determine flow dimensions, 
transmissivities, and BTCs in realizations of heterogeneous transmissivity. Evaluate two 
stochastic models of aquifer heterogeneity (fractional Brownian motion (fBm) and uncorrelated 
log Gaussian) to complement the two stochastic models (multivariate lognormal (mvG) and 
percolation network) being analyzed in parallel as part of a complementary NCSA-funded 
research project. 

Task 3: Construct animations for the evolution of a tracer test in heterogeneous media, 
using examples of single realizations from each stochastic model of heterogeneity. 

Task 4:  Report findings, including the present report and the preparation of manuscripts 
for publication in peer-reviewed journals. 

The combination of these research efforts will identify models of aquifer heterogeneity 
that produce the observed flow dimension and evaluate the consequences of these models for 
transport.  The products of Task 3, animation of tracer tests, are available separately on CD on 
request from the authors. This study uses parameter ranges from the inferred characteristics of 
the Culebra Dolomite at the Waste Isolation Pilot Plant (WIPP) site near Carlsbad, New Mexico.  
This enables the study to take advantage of the abundant, high quality hydraulic and tracer test 
data collected at the WIPP site, as well as augmenting the ongoing site characterization at the 
WIPP site. However, no attempt is made to calibrate or choose optimal model parameters to 
match the WIPP data, and the research results are broadly applicable to aquifer tests conducted in 
the fractured dolomite aquifers elsewhere, including those of northeastern Illinois.  
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Approach 

This study is a Monte Carlo analysis conducted on a massively parallel, distributed 
computing network, using a numerical approach similar to that of Butler (1991) and Meier et al. 
(1998). Starting from a Monte Carlo procedure previously developed by the research team, this 
project adds a model of advective transport influenced by matrix diffusion to analyze the 
relationship between tracer tests and the flow dimension. 

Figure 2 shows the sequence of programs used in this project to: 1) create a field of 
transmissivity using algorithms corresponding to specific stochastic models of spatial 
heterogeneity; 2) simulate a constant-rate aquifer test in the heterogeneous field using a finite-
difference model of transient groundwater flow; 3) determine the flow dimension from the 
simulated drawdowns of the aquifer test using finite difference approximations for the pressure 
derivative and its slope (Equation 2), and use least squares regression to apply a traditional    
two-dimensional interpretive model to infer the apparent transmissivity of the aquifer; 4) 
simulate steady, uniform flow across the domain under a known gradient to estimate the 
effective transmissivity; and 5) simulate a CFTT influenced by matrix diffusion, recording the 
arrival times of particles to obtain a BTC at the pumped well.  This sequence is repeated for 
many realizations of the transmissivity field, and the results from the set of realizations are used 
to infer the distribution of the flow dimension, the BTCs, and the effective transmissivities of 
each stochastic model of heterogeneity. The programs used in this simulation are well-
documented groundwater flow and transport codes taken from the public domain, augmented by 
several programs written and tested as part of this study (see the appendices for program 
development and testing). 

Because each realization of the sequence is computationally independent, the problem is 
well suited to distributed computing environments.  In collaboration with NCSA, the Monte 
Carlo simulator was tested and the simulations were performed using computing resources from 
the TeraGrid project (http://www.teragrid.org/, funded by the National Science Foundation). The 
TeraGrid is a multi-year effort to build and deploy the world's largest and fastest distributed 
infrastructure for open scientific research. The TeraGrid has more than 20 teraflops of computing 
power distributed at nine sites, with capabilities for managing and storing nearly 1 petabyte of 
data and toolkits for grid computing. These heterogeneous components are connected with a 40 
gigabit per second network backbone, which is the fastest research network currently available. 

Using grid tools written by one of the authors permits running thousands of realizations 
on many different machines for the problems described herein.  The general strategy is to build, 
submit, and manage jobs from a local grid-enabled desktop workstation without logging into the 
remote machines.   A master host decides which remote resources to use, how many processors 
to use, and how many realizations should be assigned to each remote machine.  Each realization 
requires 6-10 hours on a Linux cluster with new IA32 processors and somewhat longer on most 
other architectures.  Approximately 100 or more of these 6-10 hour realizations can be 
completed each day using 20-40 processors on the largest TeraGrid clusters. Fewer processors 
are used on 3-6 other grid-enabled resources. 
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Figure 2. The Monte Carlo sequence of programs used in this study. The asterisk (*) denotes 
features added during this project, items in parentheses are computer codes. 

 

As shown in Figure 3, the finite difference grid used in this study consists of 3001 x 3001 
nodes with uniform one-meter spacing. Table 1 presents the aquifer parameters, chosen to be 
similar to those of the lower 4.4 m of the Culebra Dolomite, and the pumping rates similar to 
those used in tests at the H-11 hydropad (well cluster) (Beauheim and Ruskauff, 1998). The 
simulated aquifer has a uniform thickness of 4.4 m and a uniform storage coefficient of 4.7 x 10-5 
(4.7 x 10-6 is used at the pumping node to compensate for the otherwise overwhelming wellbore 
storage of the one-meter grid). For the aquifer test simulation (step 2) and the estimation of the 
flow dimension (step 3), a constant-rate well withdrawing at a rate of 0.228 L/sec is assigned to 
the central node of the grid. The aquifer test simulation consists of a single transient stress period 
of 345600 seconds, 44 time steps, and a multiplier of 1.3; this was sufficient to reproduce the 
analytical solution of Theis (1935) for a homogeneous aquifer (see Appendices A and B). Flow 
dimensions are reported for the pumping well, whose effective radius is approximately 0.1982 m 
(Peaceman, 1978).  The apparent transmissivity of the aquifer test is found using the Cooper-
Jacob interpretation method (Cooper and Jacob, 1946), applying linear regression to the linear 
portion of the drawdown data (between 1.2 ×104 and 5.5 x104 sec) for an observation well 20.6 
m distance from the pumped well. The effective transmissivity (step 4) is estimated by 
simulating uniform flow across the entire domain using constant-head boundaries on opposing 
sides to impose a gradient with no-flow boundaries parallel to the gradient. Steady-state flow is  
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C 

Constant-head BC 
h = 0 m 

Figure 3. Model schematic and grids. In each realization of transmissivity, grid A simulates 
transient flow (aquifer test and estimating flow dimension); grid B simulates uniform, steady 
flow (estimating effective transmissivity); and grid C simulates transport (CFTT). Grids A and B 
have the same extent, but the center of grid C is from the center of grid A. Figure not to scale.
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Table 1. Transport Parameters Used in Simulating the CFTT, after Meigs 
and Beauheim (2001). 

Parameter Value Comments 

Distance between injection and 
recovery wells 20.6 m Similar to H-11b3 to H-11b1 

pathway (20.9 m) 

Pumping well rate (tracer 
recovery) 0.233 L/sec Constant, for duration of 

simulation 

Tracer injection rate 0.0957 L/sec For 1974 sec, for injected 
volume of 189 L 

Chaser injection rate 0.0976 L/sec For 3810 sec, for chaser volume 
of 372 L 

Tracer concentration, C0      
(2,3,4,5-TFBA) 10.85 g/L Total injected mass of 2.049 kg 

Aqueous Diffusion Coefficient 
(2,3,4,5-TFBA) 7.9 × 10-10 m2/sec  

Formation thickness 4.4 m  

Apparent effective T  
(interpreted for H-11 b3 
(Beauheim and Ruskauff, 1998)) 

4.70 × 10-5 m2/sec 
After Sánchez-Vila et al. (1999) 
this study  assumes this is Tg, the 
geometric mean T of the field 

Matrix tortuosity 0.1 [ ]  

Matrix porosity 0.16 [ ]  

Fracture (flow) porosity 4 × 10-4 [ ]  

 

simulated over the domain to determine the one-dimensional flow rate, and the one-dimensional 
transmissivity estimated using Darcy’s law.  The exercise is conducted in x and y directions, and 
the effective transmissivity inferred from the geometric average of the one-dimensional 
transmissivities. 

Figure 3 also shows the grid used for simulating the CFTT (step 5) in a subregion of the 
heterogeneous field centered on the pumped well.  Similar to Altman et al. (2002), the transport 
grid is a 250 x 250 nodes with one-meter spacing, surrounded by a telescoping mesh of 11 nodes 
wide and uniform constant-head boundaries. The telescoping region has a homogeneous 
transmissivity equal to the geometric mean of the heterogeneous field. The transmissivities of the 
wellbores are multiplied by a factor of 10 for the steady-state flow fields of the CFTT simulation 
to improve numerical stability and for compatibility with THEMM. The simulations mimic the 
CFTT conducted at the WIPP site at the H-11 hydropad (well cluster), on February 15, 1996. 
That CFTT used H-11b1 as a pumping well and injected 2,3,4,5- tetrafluorobenzoic acid (TFBA) 
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into H-11b3 (approximately 20.6 m to the east-southeast).  Because the transport time of the test 
was relatively short, the infinite block approximation was used to represent matrix diffusion. The 
injected tracer mass was represented by 2,049,000 particles.  

Numerical models are susceptible to approximation errors and to artifacts of the finite 
domain. The flow balance error of MODFLOW-2000 was monitored carefully throughout the 
study, and in all cases was less than ±0.05 percent of outflow or inflow. The time discretization 
for the simulation of the aquifer test was evaluated and refined to match a comparable solution 
for the homogeneous case (see Appendix B). The impact of the finiteness of the domain was 
monitored using constant-head boundaries on the exterior of the model; as the cone of depression 
expands, the model calculates the flow induced from these constant-head nodes. In this study, the 
total flow from the exterior constant-head boundaries versus the well flow is generally less than 
the flow balance error of the model, with the exception of the last three or four time steps 
displayed. The flow dimension values for these last time steps are plotted in the figures to show 
the effects of the boundary on the flow dimension (an abrupt increase), but these last few values 
of the flow dimension should be disregarded otherwise. Grid effects can be nontrivial in 
percolation networks and can overwhelm the results. As suggested by Stauffer and Aharony 
(1994), the analysis presented herein was checked for grid effects by repeating the flow 
dimension analyses using a 2001 x 2001 grid of uniform 5-m spacing (h-grid cases).  The 
differences between the average flow dimensions for the 5-m and 1-m grids were typically 
±0.02, and are otherwise unremarkable. The results for the 5-m grid are not discussed further in 
this report.  

In addition to numerical accuracy, the relative scales of the grid, the stochastic model, 
and the simulated flow and transport processes have important ramifications for this study.  
Adequate representation of the stochastic models of heterogeneity requires that the grid be 
sufficiently dense and extensive with respect to the integral scale, I, the length scale of spatial 
correlation (Ababou et al., 1988). The (linear) integral scale of the variable u is defined by: 

dhhI uu∫ −= )/)(1( 2σγ     (3) 

where the spatial correlation is given by )(huγ , the semivariogram of u, h is the separation 
distance, and σu

2 is the variance of u (Dagan, 1989). For an mvG field of modest variance     
(σ2

lnT < 1.0), a grid spacing of Δx = 10I and an extent of L = 10I will yield estimates of the 
effective transmissivity with approximately 1 percent error (Meier et al., 1998). The grid spacing 
in this analysis is Δx = I/7, which should be sufficiently dense for mvG models of low variance 
but may be insufficient for larger variances (σ2

lnT > 1.0).  The domain used in this analysis is 
extensive to permit simulating aquifer tests without boundary effects, and is very large relative to 
the integral scale of the mvG model (L ≈ 429I). In practical terms, this extensive domain implies 
that each realization of the transmissivity field is a very large sample of the mvG model, thus the 
estimates of the geometric mean and semivariogram from each realization will approximate the 
input parameters (i.e., each realization will be strongly ergodic with respect to the field 
parameters).  Similarly, the aquifer test has a large area of investigation (nearly the entire 
domain) so that each realization will also be strongly ergodic with respect to the apparent 
effective T estimated via the Cooper-Jacob method. In contrast, Mishra et al. (1991) have pointed 
out that tracer tests typically are conducted over much smaller length scales than hydraulic tests, 
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so that aquifer and tracer tests experience much different kinds of variability. For this study, the 
representative length scale of the tracer test is 20.6 m, the travel distance from the injection well 
to the recovery well.  Because the integral scale of the mvG model is I = 7 m, realizations of the 
tracer test may not be ergodic and many realizations of the tracer test will be necessary for stable 
Monte Carlo estimates of the breakthrough curves. The fBm and percolation models also have 
characteristic length scales that will affect the accuracy and stability of the results; these are 
discussed in their respective sections of this report.  

The Monte Carlo approach is robust, but requires minimizing the computational expense 
of Monte Carlo realizations (trials) without compromising the stability of the Monte Carlo 
estimates.  This study used 100 realizations for the simulation case of the mvG, fBm, and 
uncorrelated lognormal models, and 200 realizations for each case of the percolation model. 
Appendix D shows that the realization arithmetic means, medians, and variances of the apparent 
flow dimension for mvG with σ2

lnT <1.0 and the percolation model change only slightly with 
additional realizations. The differences between the realization arithmetic means and the medians 
suggest that the flow dimension may have a slightly skewed distribution (to be investigated in 
future studies). As the duration of the aquifer test increases, the averaging effect of the test 
increases and the Monte Carlo estimates are stable with even fewer realizations. The median 
BTCs presented in the main body of the report differ little from the median BTC of 1000 
realizations. 
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Results 

Many stochastic models might be considered as possible representations of a 
heterogeneous field of transmissivity, but the current project considers only four models. As 
summarized in Table 2, these are the lognormal case, i.e., representing ln T(x) as a spatially 
correlated (multivariate) Gaussian (mvG) field; fractional Brownian motion (fBm), which is the 
mvG model using a power model for the semivariogram with an exponent of 0.5; an 
approximation of a site percolation network with a percolation probability near the critical 
threshold; and log Gaussian model, i.e., values of ln T(x) randomly taken from the normal 
(Gaussian) distribution with no spatial correlation between finite difference blocks. The research 
proposal for this project had originally suggested examining the sequential indicator (sIs) model 
of aquifer heterogeneity, as used by McKenna (2000) in analyses of the WIPP tracer tests.  The 
GSLIB sIs algorithm, sisim, is a memory-intensive algorithm whose demand for these large 
finite-difference grids exceeds that of most individual machines available on the TeraGrid. While 
it may be possible to modify sisim to use less memory or to switch to a more generous 
computational environment, this could not be accomplished within the project schedule. The log 
Gaussian model has been substituted in place of the sIs model. 

As noted by Neuman (1995), an unconditional fBm field has no defined mean and thus 
requires at least one conditioning value. For hydrogeologic investigations, this conditioning 
value logically is located at the pumped well where core testing would provide a transmissivity 
estimate.  For the sake of consistency, all stochastic models examined in this study use a 
conditioning datum at the pumped well of T = Tg = 4.70 × 10-5 m2/sec. The consequences of this 
assumption are discussed in the section summarizing the results for the fBm model. 

For some systems, the slope of the derivative in the log-log diagnostic plot varies over 
time, such that the flow dimension varies as the aquifer test evolves.  One approach is to plot the 
apparent flow dimension, , versus time, where: *22* vn ⋅−=

 

   ( ) ( )[ ]td
ds

td
dtv lnlog
log

)(* =     (4)    

An alternative perspective on the apparent flow dimension would be to plot  versus 
the radius of influence, (Strack, 1989). However, cited values for the constant 
β range widely (Horne, 1995; Oliver, 1990), and the apparent transmissivity, T*, is ambiguous 
since the T* varies with time in the heterogeneous case (Neuman and di Federico, 2003). For the 
purposes of this study, the apparent flow dimension will be plotted versus time, though we note 
that this is a topic for future investigation. The results for the flow dimension are presented using 
log-log diagnostic plots for two randomly selected realizations, and as plots summarizing the 
realizations with the average (sample arithmetic mean) and 95 percent normal confidence 
intervals (CI).

*n
( ) 2/1/** StTre β=
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Table 2. Summary of Models and Parameters Analyzed in This Study. I is the input linear 
integral scale, Tg is the input geometric mean of transmissivity, and σ2

lnT is the input variance of 
ln T. The asterisk (*) denotes the average (arithmetic mean) over all realizations, so that Tg

*
 is the 

average of the realization geometric means, Te
* is the average of the realization effective 

transmissivity, and TCJ
* is the average of the apparent transmissivity using the Cooper-Jacob 

interpretation. Altman et al. (2002) inferred values of 4.0 < σ2
lnT < 16.0 and 1.875 < I < 15 m for 

the Culebra Dolomite at the WIPP site in Carlsbad, New Mexico, USA.  

Stochastic 
Model 

(algorithm) 

Case σ2
lnT I 

(m) 

Tg
*/Tg Te

*/Tg
* TCJ

*/Tg
* Comments 

kG2b3 0.0625 7 1.00 0.999 0.998 100 realizations 

kG3b3 0.25 7 1.00 0.995 0.993 100 realizations 

kG4b3 1.0 7 1.00 0.981 0.982 100 realizations (1000 for 
stability analysis) 

kG6b3 0.25 3.5 1.00 0.991 0.991 100 realizations 

kG5b3 4.0 7 1.00 0.936 0.926 100 realizations 

mvG    
(sgsim) 

kG8b3 9.0 7 1.00 0.883 0.852 100 realizations 

fBm    
(sgsim) 

kB1b3 NA NA 1.03 0.997 1.10 γ(h) = 0.027 h0.5                    

σ2
lnT ≈ 1.4 field wide    

100 realizations 

kPfb3 20.2 p = 0.61  2.75 ×10-2 0.880 1.06 nonpercolating =Tg/104        

200 realizations‡            
(654‡ of 1000 for stability 
analysis) 

kPeb3 45.4 p = 0.61 4.57 ×10-3 3.83  5.12  nonpercolating =Tg/106         

58‡ of 100 realizations 

kPcb3 NA p = 0.61  1.00 NA 0.849 Via no-flow cells; Tg* 
from flowing cells = Tg       
200 realizations‡

kPdb3 20.2 p = 0.61  2.75 ×10-2 0.879 1.09 nonpercolating =Tg/104          

No matrix diffusion         
200 realizations‡

Percolation  
(gsim) 

Percolating 
fraction =Kg

kPbb3 20.4 p = 0.60 2.51 ×10-2 0.595 0.839 nonpercolating =Tg/104        

200 realizations‡

kN1b3 1.0 < 1 m 1.00 0.875 0.875  Uncorrelated  
(sgsim) 

kN16b3 16.0 < 1 m 1.00 0.445 0.445  

‡ infinite-acting realizations (trimmed to 0.5 < n* < 2.5) 
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The results of the CFTT are presented as the median (sample median) and 95 percent 
nonparametric CI for the realizations of the BTC plotted as log relative concentration, C/C0 [ ], 
versus log time in seconds. Nonparametric statistics are used because the BTC distributions are 
skewed. It should be noted that simply taking the median of the realizations may be misleading; 
it may be more appropriate to normalize each realization of the BTC to the mean velocity of the 
realization before pooling the BTC, but this is left to future studies. Similar to other studies 
(Becker and Shapiro, 2000; Tsang, 1995), this study infers the late-time slope of the BTC by 
inspection. A procedure to evaluate the statistical significance of the slope estimates for the BTC 
is being developed, but is unavailable at the time of writing of this report. Except for case kPdb3, 
all transport simulations in this study include the influence of matrix diffusion. Tsang (1995) 
concluded that, in the case of matrix diffusion, a log-log BTC is expected to have late-time 
slopes of -3/2, although highly heterogeneous aquifers can obscure this distinctive behavior. 

Multivariate Gaussian (mvG) 

This stochastic model represents ln T(x) as a spatially correlated (multivariate) Gaussian 
variable, denoted mvG.  This model commonly is assumed for the spatial variability of 
transmissivity, and thus warrants a brief evaluation of the effects of its parameters (integral scale 
and variance). In this study, realizations of the mvG model are created using sgsim, a sequential 
algorithm taken from GSLIB (Deutsch and Journel, 1998), and an exponential model for the 
semivariogram.  The input geometric mean of the transmissivity is Tg = 4.70 × 10-5 m2/sec 
(Beauheim and Ruskauff, 1998). For a two-dimensional mvG field, Dagan (1989) (citing 
(Matheron, 1967)) gives the effective transmissivity as Te = Tg, the geometric mean of the field, 
which this study uses to check the adequacy of the representation of heterogeneity for this model. 
A series of scoping calculations showed that, for σ2

lnT = 1.0, approximately 7 finite difference 
nodes per linear integral scale are necessary to reproduce Matheron’s solution satisfactorily (i.e., 
Te/Tg ≈ 1).  Table 2 indicates that the average geometric mean of the realizations is a good match 
to the estimated effective transmissivity for modest variances (i.e., Te

*/Tg
* = 0.999 to 0.981 for 

σ2
lnT < 1.0), and degrades with increasing variance and decreasing integral scale. Likewise, the 

average apparent transmissivity of the Cooper-Jacob solution is a good estimator of the average 
geometric mean of the realizations for modest variances (i.e., TCJ

*/Tg
* = 0.998 to 0.982 for      

σ2
lnT < 1.0). 

The central case for the mvG model is kG3b3, with σ2
lnT = 0.25 and I = 7 m.  The 

apparent flow dimension of aquifer tests in this stochastic model gradually stabilizes to a value 
of n* = 2 (Figure 4a).  The variability between realizations decreases with time (Figure 4b), 
suggesting that any aquifer test in an mvG field will tend to show n = 2 if the test is of sufficient 
duration that the scale of the test (radius of investigation) is greater than the spatial scale of the 
heterogeneity (the integral scale). Comparing cases kG2b3, kG3b3, and kG4b3 (Figures 5, 4 and 
6, respectively, in order of increasing variance), the variability of the apparent flow dimension 
generally increases with the variance of ln T.  
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Figure 4a. Drawdown (closed symbols), derivative (open symbols with line), and flow 
dimension (open symbols without line) for two realizations of case kG3b3: mvG with σ2

lnT = 0.25 
and I = 7 m; symbol shapes denote realizations. 
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Figure 4b. Average (circle) and 95 percent normal CI for the population (solid lines) and for the 
mean (dashed lines) for 100 realizations of the flow dimension, case kG3b3: mvG with σ2

lnT = 
0.25 and I = 7 m. 
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Figure 4c. Relative concentration versus time for a CFTT in two realizations of case kG3b3: 
mvG with σ2

lnT = 0.25 and I = 7 m. 

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

time (sec)

C
/C

o

case kG3b3
 

Figure 4d. Relative concentration versus time for 100 realizations of a CFTT, median (solid 
line) and 95 percent nonparametric CI for the population (dashed lines), case kG3b3: mvG with 
σ2

lnT = 0.25 and I = 7 m.
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Figure 5a. Drawdown (closed symbols), derivative (open symbols with line), and flow 
dimension (open symbols without line) for two realizations of case kG2b3: mvG with σ2

lnT = 
0.0625 and I = 7 m; symbol shapes denote realizations. 
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Figure 5b. Average (circle) and 95 percent normal CI for the population (solid lines) and for the 
mean (dashed lines) for 100 realizations of the flow dimension, case kG2b3: mvG with σ2

lnT = 
0.0625 and I = 7 m. 
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Figure 5c. Relative concentration versus time for a CFTT in two realizations of case kG2b3: 
mvG with σ2

lnT = 0.0625 and I = 7 m. 
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Figure 5d. Relative concentration versus time for 100 realizations of a CFTT, median (solid 
line) and 95 percent nonparametric CI for the population (dashed lines), case kG2b3: mvG with 
σ2

lnT = 0.0625 and I = 7 m. 
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Figure 6a. Drawdown (closed symbols), derivative (open symbol with line), and flow dimension 
(open symbols without line) for two realizations of case kG4b3: mvG with σ2

lnT = 1.0 and I = 7 
m; symbol shapes denote realizations. 

 

0

1

2

3

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

time (sec)

n
*

case kG4b3
 

Figure 6b. Average (circle) and 95 percent normal CI for the population (solid lines) and for the 
mean (dashed lines) for 100 realizations of the flow dimension, case kG4b3: mvG with σ2

lnT = 
1.0 and I = 7 m. 
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Figure 6c. Relative concentration versus time for a CFTT in two realizations of case kG4b3: 
mvG with σ2

lnT = 1.0 and I = 7 m. 
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Figure 6d. Relative concentration versus time for 100 realizations of a CFTT, median (solid 
line) and 95 percent nonparametric CI for the population (dashed lines), case kG4b3: mvG with 
σ2

lnT  = 1.0 and I = 7 m.  
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Case kG6b3 (Figure 7) examines the effects of changing the integral scale of the mvG 
model while keeping σ2

lnT unchanged. Reducing the integral scale from I = 7 m (Figures 4b) to    
I = 3.5 m (Figure 7b) results in a more rapid decrease in the variability of the flow dimension. 
Comparing Figures 5b, 4b, and 6b, the maximum variability of the apparent flow dimension 
occurs at approximately the same time, regardless of σ2

lnT. Comparing Figures 4b and 7b, it can 
be seen that this maximum variability shifts earlier in time with a decrease in the integral scale. 

Figure 4c presents two realizations of the BTC for the CFTT of the central case of the 
mvG model (case kG3b3, with σ2

lnT = 0.25 and I = 7 m). Both realizations eventually approach 
the characteristic -3/2 slope of matrix diffusion (Tsang, 1995), although their early arrival times 
differ substantially.  Figure 4d presents the median and the upper and lower percentiles of the 95 
percent nonparametric CI for the BTC of 100 realizations.  The median BTC also approaches the 
characteristic -3/2 slope of matrix diffusion, and the confidence interval (CI) is widest for the 
early arrival times.  Figures 5d, 4d, and 6d show that increasing the variance tends to increase the 
width of the confidence intervals for the BTC, but Figure 7d shows that decreasing the integral 
scale has little affect on the appearance of the median BTC. Table 3 summarizes the peak median 
relative concentration, C/C0 p, and tp, the time to C/C0 p, for each case. These suggest that, as the 
variance of ln T increases, tp decreases ― that is, a higher variance yields earlier arrival times 
(cases kG2b3, kG3b3, and kG4b3). The decrease in tp with the integral scale (case kG3b3 versus 
kG6b3) is attributed to the combination of scale and variance: the CFTT scale (20.6 m) is only 
three times greater than the integral scale for the base case, and decreasing the integral scale to 
I = 3.5 m increases the variability sampled by the CFTT. The increasing level of heterogeneity 
adds regions of high transmissivity that become fast pathways that channel flow between the 
injection well to the pumping well, decreasing tp from 1.31 days to 1.09 days. 

Two cases are simulated for the mvG model for relatively high variances, examining  
σ2

lnT  = 4.0 (case kG5b3) and σ2
lnT  = 9.0 (case kG8b3). The apparent flow dimensions of aquifer 

tests in these cases (Figures 8a and 9a) have a higher variability than the mvG cases of lower 
variance, but the variability between realizations still decreases over time and the apparent flow 
dimension converges to a value of n* = 2 (Figures 8b and 9b).  Unlike the mvG cases of lower 
variances, the average of the apparent flow dimension is significantly less than n* = 2 at early 
time, and the degree of departure increases with the variance. Table 2 indicates that Matheron’s 
relationship is only weakly satisfied for σ2

lnT  = 4.0 where Te
*/Tg

* = 0.936, and is poorly satisfied 
for σ2

lnT  = 9.0 where Te
*/Tg

* = 0.883. The average apparent transmissivities of the Cooper-Jacob 
solution are poor estimators of the estimated effective transmissivities (i.e., TCJ

*/Te
*  = 0.926 and 

0.852 for σ2
lnT = 4.0 and σ2

lnT = 9.0, respectively).  

These high-variance cases continue the trend in the level of disagreement with 
Matheron’s relationship Te = Tg  that was established by cases kG2b3, kG3b3, and kG4b3 (Table 
2). As noted in the “Approach” section, this is comparable to the results of other investigators 
and with scoping calculations that suggest 7 to 10 nodes per integral scale and an extensive 
domain are necessary to estimate the effective transmissivity 1 percent error for modest 
variances (σ2

lnT < 1.0) (Meier et al., 1998). While modifying the grid or redesigning the problem 
to solve for a quadrant of the domain (under the assumption of radial symmetry) might reduce 
this error, these are extensive efforts and are outside the scope of this study. In the interim, we 
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Figure 7a. Drawdown (closed symbols), derivative (open symbols with line), and flow 
dimension (open symbols without line) for two realizations of case kG6b3: mvG with σ2

lnT = 0.25 
and I = 3.5 m; symbol shapes denote realizations. 

0

1

2

3

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

time (sec)

n
*

case kG6b3
 

Figure 7b. Average (circle) and 95 percent normal CI for the population (solid lines) and for the 
mean (dashed lines) for 100 realizations of the flow dimension, case kG6b3: mvG with σ2

lnT = 
0.25 and I = 3.5 m. 
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Figure 7c. Relative concentration versus time for a CFTT in two realizations of case kG6b3: 
mvG with σ2

lnT = 0.25 and I = 3.5 m. 
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Figure 7d. Relative concentration versus time for 100 realizations of a CFTT, median (solid 
line) and 95 percent nonparametric CI for the population (dashed lines), case kG6b3: mvG with 
σ2

lnT = 0.25 and I = 3.5 m. 
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Table 3. Summary of CFTT Results by Model. Note: I is the linear integral scale, σ2
lnT  is the 

variance of the natural logarithm of transmissivity, C/C0 p is the peak of the median relative 
concentration, and tp is the time to the peak of the median relative concentration. 

Stochastic 
Model 

(algorithm) 

Case σ2
lnT I       

(m) 
tp  

(days) 

C/C0
 
p Late-time slope of log-log 

median BTC  (Comments) 

kG2b3 0.0625 7 1.20 1.10 ×10-3 -3/2 

kG3b3 0.25 7 1.31 1.03 ×10-3 -3/2 

kG4b3 1.0 7 0.885 1.28 ×10-3 -3/2 

kG6b3 0.25 3.5 1.09 1.10 ×10-3 -3/2 

kG5b3 4.0 7 0.885 8.86 ×10-4 -5/4 

mvG    
(sgsim) 

kG8b3 9.0 7 0.260 2.00 ×10-3 -5/4 

fBm     
(sgsim) 

kB1b3 NA NA 1.09 1.19 ×10-3 -3/2 

kPfb3 20.2 p = 0.61 0.156 5.74 ×10-3 -5/4 

kPeb3 45.4 p = 0.61 0.156 7.45 ×10-3 -3/2 < slope <-5/4            
(Particles lost) 

kPcb3 NA p = 0.61  0.05‡ 1.01 ×10-2 -3/2 

kPdb3 20.2 p = 0.61  0.05‡ 7.69 ×10-2 -2                                              
(No matrix diffusion) 

Percolation 
(gsim) 

kPbb3 20.4 p = 0.60  0.156 5.27 ×10-3 > -5/4 

kN1b3 1.0 < 1 m 0.990 1.12 ×10-3 -3/2 Uncorrelated  
(sgsim) 

kN16b3 16.0 < 1 m 0.260 1.97 ×10-3 -3/2 < slope <-5/4 

          ‡ the peak relative concentration occurs on or before the first arrival time of this case 
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Figure 8a. Drawdown (closed symbols), derivative (open symbols with line), and flow 
dimension (open symbols without line) for two realizations of case kG5b3: mvG with σ2

lnT  = 4.0 
and I = 7 m; symbol shapes denote realizations. 
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Figure 8b. Average (circle) and 95 percent normal CI for the population (solid lines) and for the 
mean (dashed lines) for 100 realizations of the flow dimension, case kG5b3: mvG with σ2

lnT  = 
4.0 and I = 7 m. 
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Figure 8c. Relative concentration versus time for a CFTT in two realizations of case kG5b3: 
mvG with σ2

lnT  = 4.0 and I = 7 m. 
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Figure 8d. Relative concentration versus time for 100 realizations of a CFTT, median (solid 
line) and 95 percent nonparametric CI for the population (dashed lines), case kG5b3: mvG with 
σ2

lnT  = 4.0 and I = 7 m. 
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Figure 9a. Drawdown (closed symbols), derivative (open symbols with line), and flow 
dimension (open symbols without line) for two realizations of case kG8b3: mvG with σ2

lnT  = 8.0 
and I = 7 m; symbol shapes denote realizations. 
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Figure 9b. Average (circle) and 95 percent normal CI for the population (solid lines) and for the 
mean (dashed lines) for 100 realizations of the flow dimension, case kG8b3: mvG with σ2

lnT  = 
9.0 and I = 7 m. 
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Figure 9c. Relative concentration versus time for a CFTT in two realizations of case kG8b3: 
mvG with σ2

lnT  = 9.0 and I = 7 m. 
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Figure 9d. Relative concentration versus time for 100 realizations of a CFTT, median (solid 
line) and 95 percent nonparametric CI for the population (dashed lines), case kG8b3: mvG with 
σ2

lnT  = 9.0 and I = 7 m. 
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speculate that the decrease in the apparent flow dimension at early times in the high-variance 
cases quantifies the development of flow channeling with increasing variance as discussed by 
Moreno and Tsang (1994). The similarities between the apparent flow dimensions of the high-
variance mvG cases and the percolation network are discussed in subsequent sections of this 
report. 

Figures 8c and 9c present two realizations of the BTC for the CFTT of these higher-
variance cases of the mvG model. The early arrival times of the realizations show a high degree 
of variability. Figures 8d and 9d present the median and the upper and lower percentiles of the 95 
percent nonparametric CI for 100 realizations of the relative BTC. Although the process of 
matrix diffusion is included in these simulations, the slope of last log cycle of the median BTC 
has an approximate slope of -5/4, rather than the -3/2 slope that is characteristic of matrix 
diffusion. A comparison of Figures 5d, 4d, 6d, 8d and 9d shows that increasing the variance from 
σ2

lnT  = 0.0625 to σ2
lnT = 9.0 increases the width of the confidence intervals. Table 3 summarizes 

the peak median relative concentration, C/C0 p, and tp, the time to C/C0 p, for these cases. As with 
the low-variance cases, tp generally decreases with increasing variance. However, the previously 
noted inconsistencies with Matheron’s relationship suggest that the calculations for the high-
variance cases should be refined before further conclusions can be drawn. Additional statistical 
analysis is also warranted for the significance of the average flow dimension from n* = 2 at early 
time. 

Fractional Brownian Motion (fBm) 

This stochastic model represents ln T(x) as fractional Brownian motion (fBm), and can be 
viewed as a variant of the mvG model that uses a power model for the semivariogram: 

HhCh 2
1)( =γ      (5) 

where )(hγ is the semivariogram of ln T(x), h is the absolute separation (lag) distance between 
two points x1 and x2,  H is the Hurst coefficient, and C1 is a scaling constant. The fBm model also 
can be shown to be a special case of the fractional Levy motion model (Lu et al., 2003). Neuman 
(1990; 1994) has argued that the observed scale dependence of contaminant transport in the 
subsurface arises from hydraulic conductivities distributed as a fBm process, and has used 
observations and theory to argue that H = 0.25 and C1 = 0.027. The same model semivariogram 
with slightly different coefficients also has been proposed for the Culebra Dolomite at the WIPP 
site (Grindrod and Impey, 1993). 

 The distinguishing characteristic of fBm is that its variability increases with the size of 
the field to the power 2H, creating special challenges for numerical analysis.  Strictly speaking, 
fBm is an infinite fractal process that cannot be represented by a discretized, finite domain. 
Further, because the sequential simulation algorithm requires a finite variance, the distributed 
version of sgsim does not accept the power model (Equation 5) as a valid semivariogram 
(Deutsch and Journel, 1998). Similar to Meier et al. (1998), sgsim has been modified to accept a 
power semivariogram model with the maximum variance equal to Equation 5 at hmax  for the 
model domain, i.e., σ2

lnT  ≈ 1.4.   
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The numerical challenges in creating this field suggest that at least some checks are 
necessary to confirm that the variance scales appropriately. Figure 10 is a log-log plot of the 
resulting experimental semivariogram for one realization of sgsim using H = 0.25 and C1 = 0.027 
in a domain of 3001 m x 3001 m.  The departure from the ideal slope of  2H = 0.5 at the furthest 
lags may be as much a reflection of the finite field effect as it is the inefficiency of the 
experimental semivariogram for separations greater than hmax/3. Although the field truncates the 
fBm process at the smallest and largest scales, this method of generating an fBm process is 
consistent with previous investigations and approximately reproduces the required 
semivariogram. It would be useful to compare the effective transmissivity and the variance to the 
solutions of, e.g., di Federico and Neuman (1997), and should rerun the simulation using a more 
robust simulation algorithm designed for the fBm process, e.g., Lu et al. (2003), but such 
analyses are beyond the scope of the present study. 

As noted in the “Approach” section, one conditioning value is required for the fBm 
model to have a defined mean, and this value is located at the pumped well (and, for consistency, 
in all the stochastic models analyzed in this study).  This conditioning value and the shape of the 
semivariogram model force the variability of the fBm process to be small near the well and 
increase slowly and continuously with distance from the well.  This radial change in the 
variability of the fBm transmissivity field is reflected in the increasing variability of the 
drawdown and of the apparent flow dimension with time (Figures 11a and b). The increasing 
variability of the apparent flow dimension is the opposite of the behavior observed for the mvG 
model of roughly comparable field-wide variance (Figure 6b). For mvG model, the scale of  the 
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Figure 10. Experimental semivariogram for one realization of ln T as an fBm process, 
H = 0.25. 
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Figure 11a. Drawdown (closed symbols), derivative (open symbol with line), and flow 
dimension (open symbols without line) for two realizations of case kB1b3: fBm with H = 0.25; 
symbol shapes denote realizations. 
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Figure 11b. Average (circle) and 95 percent normal CI for the population (solid lines) and mean 
(dashed lines) for 100 realizations of the flow dimension, case kB1b3: fBm with H = 0.25. 
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Figure 11c. Relative concentration versus time for a CFTT in two realizations of case kB1b3: 
fBm with H = 0.25. 
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Figure 11d. Relative concentration versus time for 100 realizations of a CFTT, median (solid 
lines) and 95 percent nonparametric CI for the population (dashed lines), case kB1b3: fBm with 
H = 0.25. 

33 



aquifer test is much larger than the integral scale, so that the averaging effects of the aquifer test 
increase (and the variability of the apparent flow dimension decreases) with time. For the fBm 
model, the integral scale is infinite, and the aquifer test encounters increasing levels of 
heterogeneity with time. This difference between the models suggests that the variability of the 
apparent flow dimension with time might be useful in distinguishing between the fBm and mvG 
models, given a sufficiently large set of aquifer tests.  Further, because the mvG cases show that 
the variability of the apparent flow dimension depends on the variance of the transmissivity, it 
may be possible to infer the exponent of the power semivariogram (i.e., infer the Hurst 
coefficient of the fBm model) from the increasing variability with time of the apparent flow 
dimension. Table 2 indicates that the average geometric mean of the realizations for the fBm 
model is a good match to the estimated effective transmissivity (i.e., Te

*/Tg
* = 0.997). The 

average apparent transmissivity of the Cooper-Jacob solution is a relatively poor estimator of the 
average geometric mean of the realizations (i.e., TCJ

*/Tg
* = 1.10).  

The results of the CFTT for the fBm model are characteristic of transport influence by 
matrix diffusion in a transmissivity field of low variance.  Similar to the low-variance cases of 
the mvG model , the fBm model results in a BTC with a log-log slope at late time of 
approximately -3/2 for individual realizations (Figure 11c) and for the median BTC (Figure 11d). 
Figure 11d shows that the early arrival times of a CFTT in the fBm model have noticeably less 
variability than those of the mvG model with a comparable field-wide variance (e.g., Figure 6d). 
These differences between the CFTT in the mvG and fBm cases can be explained by noting that 
the conditional variance of the simulated transmissivity fields is, by definition, zero at a 
conditioning value (in this study, located at the withdrawal well). This variance increases with 
distance from the single conditioning value at a rate prescribed by their respective 
semivariogram models (Deutsch and Journel, 1998). At the scale of the CFTT (travel distance of 
20.6m), the power semivariogram for the fBm model reaches a maximum of 

, while the exponential semivariogram for the comparable 
mvG model (case kG4b3) reaches a maximum of 

12.021027.0)( )25.0(22
1 ≈⋅== HhChγ

( )[ ] [ ] 95.0)7/6.20exp(10.1/exp1)( 1 ≈−−⋅=−−= IhChγ . That is, the fBm model is less 
heterogeneous at the CFTT scale than the comparable mvG model, resulting in less flow 
channeling, later arrival times, and less variability between realizations. 

Percolation Network 

The third model considered in this study is a percolation network, a model sometimes 
used by physicists and petroleum engineers as a representation of a porous medium (Feder, 
1988). In its purest form, a percolation network has a single parameter, p, the probability that a 
location in a lattice is able to conduct flow. As the probability of being conductive increases to 
the critical probability, pc, the interconnected clusters of the network finally grow large enough 
to span the domain and flow can percolate across the system. Percolation clusters with p ≈ pc 
have been shown to have fractal geometries, and are the subject of much study (Isichenko, 1992; 
Saadatfar and Sahimi, 2002; Stauffer and Aharony, 1994).  Polek (1990) numerically simulated 
hydraulic tests in a percolation network and found that the flow dimension reaches a value 
slightly less than the mass fractal dimension of the percolation cluster, a result that is consistent 
with that of Acuna and Yortsos (1995). 
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MODFLOW-2000 uses a node-centered finite difference grid, which in percolation 
network terms is a quadratic, site-percolation network with pc ≈ 0.593 (Stauffer and Aharony, 
1994). A percolation network can be approximated by assigning a random proportion p of the 
grid to be percolating nodes with transmissivity Tp, and the remaining (nonpercolating) nodes set 
to the value T1-p << Tp. This renders the 1- p nonpercolating nodes as relatively impermeable, 
similar to the intact rock within a fractured rock aquifer. For this study, Tp = Tg = 4.70 x 10-5 
m2/sec and the nonpercolating nodes are set to T1-p = Tp /104, with p = 0.61. The resulting fields 
have a geometric mean T = 1.294 × 10-6 m2/sec and σ2

lnT  = 20.2. Because p = 0.61 is slightly 
greater than pc, the resulting field should have fractal characteristics. The choices of contrast in 
transmissivity and percolation probability are evaluated further through sensitivity cases. The 
gsim algorithm creates a percolation network as a categorical indicator simulation with a cutoff 
proportion p and no spatial correlation. The node representing the pumping well is always a 
percolating node in these simulations, but it is not a conditioning value in the same sense as a 
spatially correlated model of heterogeneity such as mvG. 

Feder (1988) and Stauffer and Aharony (1994) have noted that percolation networks also 
have a correlation length, ξp, defined for a two-dimensional lattice as: 

3/4−−⋅Δ= cp ppxξ      (6) 

At length scales between Δx and ξp, a percolation network has fractal properties; at scales greater 
than ξp , a percolation network appears to be homogeneous and behaves as a two-dimensional 
field (Polek, 1990). Substituting the constants used in this percolation network model yields      
ξp = 230 m, a distance that is much less than the radial distance from the well to the edge of the 
domain (1500 m). As noted earlier, the radius of influence of an aquifer test is poorly defined, 
making it difficult to use Equation 6 in practice. However, the mvG cases indicate that the 
drawdowns of the aquifer test are approaching the model boundaries, so it is possible that the test 
scale will be greater than ξp. This does not invalidate the percolation network model, but 
suggests that a transition might be observable in the apparent flow dimensions of the percolation 
network.  

Figure 12a presents the results for the apparent flow dimension of 1000 realizations of a 
percolation network simulated with the above parameters.  The variability of the apparent flow 
dimension among realizations is quite high, and some realizations show a wide range of values. 
Figure 12b illustrates two realizations whose apparent flow dimensions range from less than 0.5 
to over 6.0. These realizations are of wells pumped in small, finite percolation clusters, whose 
apparent flow dimensions are overwhelmed by the aquifer test contacting the limits of the 
cluster. Such finite clusters behave as small reservoirs with slightly permeable boundaries; the 
reservoir is rapidly drawn down, then registers the flow through the boundaries from the 
surrounding clusters. The apparent flow dimensions in these finite clusters are consistent with the 
analytical solutions for idealized impermeable boundaries and leaky systems (Walker and 
Roberts, 2003), and also are consistent with some aquifer tests in highly heterogeneous 
formations (R. Roberts, Personal Communication, 2005). 
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Figure 12a. Average (circle) and 95 percent normal CI for the population (solid lines) and mean 
(dashed lines) for 1000 realizations of the flow dimension, case kPfb3: percolation with p = 0.61, 
T1-p = Tp /104, no trimming; symbol shapes denote realizations.  
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Figure 12b. Drawdown (closed symbols), derivative (open symbols with line), and flow 
dimension (open symbols without line) for two realizations outside 0.5 < n* < 2.5, case kPfb3: 
percolation with p = 0.61, T1-p= Tp /104; symbol shapes denote realizations. 
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 The small, finite percolation clusters indicated by near-zero values of the flow dimension 
(Figure 12b) present several challenges to the application of this stochastic model to a real 
aquifer.  Realizations with the pumping well falling into a small, finite cluster are consistent with 
field experiments, since tracer tests sometimes fail to recover the injected tracer and observation 
wells sometimes fail to respond during an aquifer test. However, these isolated regions occur 
randomly in a percolation network, and the realizations dominated by internal boundaries of the 
cluster limits reveal little about the structure of a percolation cluster. Doughty et al. (1994) have 
experimented with adding connections to a fractal network, but this remains an area for further 
research. Feder (1988) notes that the probability of being in a finite cluster and can be estimated 
from p and pc, yet even a finite percolation cluster can yield valid estimates of the flow 
dimension if the cluster is larger than the radius of investigation of the aquifer test. For the 
present study, we use extreme values of the apparent flow dimension to identify finite clusters 
and omit them from the statistical summaries and plots.  Inspecting 1000 realizations, the lower 
and upper bounds of the 95 percent nonparametric confidence interval (CI) for the apparent flow 
dimension are approximately 0.5 and 2.5, respectively.  These values are used as trimming limits 
to filter out realizations of the well being pumped within finite clusters, i.e. the Monte Carlo 
analysis for this stochastic model is conducted until a sufficient number of realizations are 
accumulated with apparent flow dimensions inside the range 5.2*5.0 << n  for all time steps. As 
discussed in the “Approach” section and shown in Appendix D, 200 realizations are sufficient 
for the purposes of this study. 

Figure 13a presents the drawdown, the derivative, and the apparent flow dimension for 
two of the 200 realizations for case kPfb3. The slopes and variability of these simulated tests are 
similar to those of aquifer tests observed in fractured dolomite aquifers (Figure 1). Figure 13b 
presents the statistics of the apparent flow dimension for the 200 realizations.  The average of the 
apparent flow dimension is similar to that of the full set of 1000 realizations (Figure 12a), but 
removes the extremes at early and late times.  The average apparent flow dimension appears to 
slowly increase, oscillates around the value 1.6, then steadily increases to approach the value n* 
= 2.0. Table 2 indicates that the estimated effective transmissivity of the field is a poor match to 
the average of the geometric mean of transmissivity (i.e., Te

*/Tg
* = 0.880). This is not necessarily 

cause to doubt the validity of these simulations, since Matheron’s solution of Te = Tg for a two-
dimensional domain also assumed the mvG model for transmissivity. The average apparent 
transmissivity of the Cooper-Jacob solution is a comparatively good match (i.e., TCJ

*/Tg
* = 

1.059). 

The CFTT simulation for this case (kPfb3) yields several results of note. Figure 13c 
presents two realizations of the BTC, which gradually settle into slopes > -3/2. These 
characteristics are also reflected in the statistics of the 200 realizations (Figure 13d), whose 
confidence intervals have a wide range at early times, and the median BTC reaches a slope of 
approximately -5/4. This slope is greater than the -3/2 slope that Tsang (1995) reported for 
transport influenced by matrix diffusion, indicating that the heterogeneity of this stochastic 
model is increasing the tailing behavior. Subsequent cases attempt to determine if the -5/4 slope 
is a hallmark of percolation networks in general or a consequence of the chosen parameters (e.g., 
the contrast in transmissivity). Arrival times tend to be shorter than in the mvG case, with tp =  
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Figure 13a. Drawdown (closed symbols), derivative (open symbols with line), and flow 
dimension (open symbols without line) for two realizations 0.5 < n* < 2.5, case kPfb3: 
percolation with p = 0.61, T1-p = Tp /104; symbol shapes denote realizations. 
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Figure 13b. Average (circle) and 95 percent normal CI for the population (solid lines) and mean 
(dashed lines) flow dimension for 200 realizations 0.5 < n* < 2.5, case kPfb3: percolation with p 
= 0.61, T1-p = Tp /104. 
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Figure 13c. Relative concentration versus time for a CFTT in two realizations with 0.5 < n* < 
2.5, case kPfb3: percolation with p = 0.61, T1-p = Tp /104. 

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

time (sec)

C
/C

o

case kPfb3
n=0.5-2.5

 

Figure 13d. Relative concentration versus time of a converging flow tracer test for 200 
realizations with 0.5 < n* < 2.5, median (solid line) and 95 percent nonparametric CI for the 
population (dashed lines), case kPfb3: percolation with p = 0.61, T1-p = Tp /104. 
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0.156 days. At the lower bound of the 95 percent confidence interval, some realizations show 
extremely slow tracer recoveries; if these were data from a field study, they might be overlooked 
and an observer would conclude that the tracer had been lost.  

The first variant case of the percolation network model, case kPgb3, simply turns off the 
constant-head boundaries on the exterior of the model to rule out boundary effects. Specifically, 
this case tests the hypothesis that contact with the constant-head boundaries is the cause of the 
increasing trend in the apparent flow dimensions (Figure 13b). This variant (case kPgb3, not 
presented) showed no change in the results, thus the increasing trend in the average of the 
apparent flow dimension is not caused by the constant-head boundaries. 

The next variant of the percolation network model, case kPeb3, increases the 
transmissivity contrast between the percolating and nonpercolating nodes from T1-p = Tp /104 (as 
in kPfb3) to T1-p = Tp /106. The reduced transmissivity for the nonpercolating nodes results in 
extremely slow simulations, with each realization requiring 25-43 hours of CPU time. As a 
consequence, only 100 realizations could be completed, with 58 of these within the trimming 
limits 0.5 < n* < 2.5. Figures 14a and 14b show that increasing the contrast reduces the apparent 
flow dimension in general. The average of the apparent flow dimension at early time oscillates 
around n* = 1.4, and the width of the confidence intervals is approximately the same as when 
using a contrast of 104 (case kPfb3). The reduced number of realizations make the late-time slope 
of the median BTC less obvious (Figures 14c and 14d), but the slope with this increased contrast 
is still noticeably less steep than the characteristic -3/2 slope of matrix diffusion alone (Tsang, 
1995). The lower bound for the nonparametric CI is below the scale of the plot for this case 
(Figure 14d) and warning messages are recorded in many realizations because particles have 
become trapped in cells with inflow but no outflow. In this instance, the advective particle 
tracking fails due to local mass balance errors (even though the global mass balance error is < 
0.05 percent). These nonexiting particles are only a small portion of the injected mass, but might 
be important at the lowest relative concentrations at late times. It may be possible to refine the 
particle tracking algorithm to address this problem, but such modifications are beyond the scope 
of this study. 

Variant case kPcb3 uses no-flow cells for the impermeable nodes rather than a contrast in 
transmissivity, making this case more like an idealized percolation network. This is done using 
the IBOUND array (part of the input parameters for MODFLOW-2000) to designate a 1- p 
proportion of the nodes as no-flow cells. Unfortunately, multigrid algorithms such as the GMG 
solver of MODFLOW-2000 are unsuited to discontinuous domains (S. Mehl, Personal 
Communication, 2004), requiring this case to use the less-efficient PCG2 solver. Despite the 
change of solvers, the transient solution becomes numerically unstable as radius of influence 
encounters the uniform constant-head boundaries. The problem is made tractable by reducing the 
simulated duration of the aquifer test (the pumping period length) by several time steps, and 
omitting the estimation of the effective transmissivity under uniform flow conditions. The 
analysis is otherwise unchanged relative to case kPfb3, with p = 0.61. 
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Figure 14a. Drawdown (closed symbols), derivative (open symbols with line), and flow 
dimension (open symbols without line) for two realizations with 0.5 < n* < 2.5, case kPeb3: 
percolation with p = 0.61, T1-p = Tp /106; symbol shapes denote realizations. 
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Figure 14b. Average (circle) and 95 percent normal CI for the population (solid lines) and mean 
(dashed lines) flow dimension for 58 realizations with 0.5 < n* < 2.5, case kPeb3: percolation 
with p = 0.61, T1-p = Tp /106. 
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Figure 14c. Relative concentration versus time for a CFTT in two realizations with 0.5 < n* < 
2.5, case kPeb3: percolation with p = 0.61, T1-p = Tp /106. 
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Figure 14d. Relative concentration versus time of a converging flow tracer test for 58 
realizations with 0.5 < n* < 2.5, median (solid line) and 95 percent nonparametric CI for the 
population (dashed lines), case kPeb3: percolation with p = 0.61, T1-p = Tp /106. 
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 Figure 15a presents the log-log diagnostic plot for two realizations of case kPcb3, and 
Figure 15b presents the apparent flow dimensions for 200 realizations within the trimming limits 
0.5 < n* < 2.5. Relative to an increased contrast in transmissivity (case kPeb3, shown in Figure 
14b), converting impermeable nodes to no-flow cells reduces the average apparent flow 
dimension and smoothes its trend. In the interval between 100 and 10,000 seconds, the average 
of the apparent flow dimension is approximately stable at n* = 1.5, then steadily increases. The 
relative BTCs in this case (Figures 15c and d) are highly variable, and the slope of the median 
relative BTC is approximately -3/2. This slope reflects the process of matrix diffusion that is 
included in this simulation, and suggests that eliminating slow advection through the 
nonpercolating nodes has decreased the tailing behavior. This indicates that the increased slope 
noted earlier for the percolation network is not a consequence of the fractal geometry. 

Case kPdb3 is a variant of the percolation network model that examines the affect of 
heterogeneity apart from the influence of matrix diffusion. This variant repeats the base case of 
the percolation network model (kPfb3, with p = 0.61, T1-p = Tp /104) but excludes matrix 
diffusion. The aquifer test is simulated for this case to permit trimming the realizations to those 
0.5 < n* < 2.5, but because flow is unaffected by matrix diffusion, the apparent flow dimensions 
are identical to those of kPfb3 (Figures 13a and 13b) and are not discussed further.  Figures 16a 
and 16b present the relative BTC for this case, which show a high degree of variability between 
realizations.  The median BTC forms an erratic line in this case, but appears to have an overall 
slope of -2. This slope agrees with the analytical solution of Becker and Shapiro (2003), who 
found that a late-time slope of -2 for the log-log BTC of a CFTT in a highly heterogeneous 
medium. 

The final variant of the percolation network model, case kPbb3, examines the sensitivity 
of the results to a decrease in the percolation probability from p = 0.61 to p = 0.60. Because this 
reduces the percolation probability closer to the threshold value of pc ≈ 0.593, this is expected to 
decrease the connectedness of the percolation network (i.e., decrease the probability of any node 
being connected to the domain-spanning cluster) (Feder, 1988). Substituting p = 0.60 into 
Equation 6 yields a percolation correlation length of ξp = 746 m, a distance that is less than the 
radial distance from the well to the limits of the model domain. This suggests that the flow 
dimension might reflect a transition from fractal to homogenous (two-dimensional) behavior, and 
the transition might occur later than in the base case (case kPfb3) where ξp = 230 m. This case is 
otherwise unchanged relative to case kPfb3, and 200 realizations within the trimming limits 0.5 
< n* < 2.5 are simulated. Figures 17a and 17b show that the apparent flow dimension oscillates 
around n* = 1.5, which is slightly lower than the base case. Although this decrease would be 
consistent with the conclusion of Polek (1990) that flow dimension decreases with the 
percolation probability, a comparison of the confidence intervals (Figures 13b and 17b) indicates 
that the change is not significant. It is not clear if the transition to the late-time increasing trend 
in the apparent flow dimension has been shifted as a consequence of the increase in ξp. Figures 
17b and 17c present log-log plots of the relative BTC for this case; the slope of the median BTC 
has been increased (> -5/4). This increased tailing reflects the decreased connectivity of the 
network that results from decreasing the percolation probability, and confirms the conclusion of 
Zinn and Harvey (2003), who found that both connectivity and slow advection could affect the 
late-time slope of the BTC. 
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Figure 15a. Drawdown (closed symbols), derivative (open symbols with line), and flow 
dimension (open symbols without line) for two realizations with 0.5 < n* < 2.5, case kPcb3: 
percolation with p = 0.61, no-flow cells; symbol shapes denote realizations. 
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Figure 15b. Average (circle) and 95 percent normal CI for the population (solid lines) and mean 
(dashed lines) flow dimension for 200 realizations 0.5 < n* < 2.5, case kPcb3: percolation with p 
= 0.61, no-flow cells. 
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Figure 15c. Relative concentration versus time for a CFTT in two realizations 0.5 < n* < 2.5, 
case kPcb3: percolation with p = 0.61 and no-flow cells. 
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Figure 15d. Relative concentration versus time of a converging flow tracer test for 200 
realizations 0.5 < n* < 2.5, median (solid line) and 95 percent nonparametric CI for the 
population (dashed lines), case kPcb3: percolation with p = 0.61 and no-flow cells. 
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Figure 16a. Relative concentration versus time for a CFTT in two realizations with 0.5 < n* < 
2.5 from case kPdb3: percolation with p = 0.61, no matrix diffusion; symbol shapes denote 
realizations. 
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Figure 16b. Relative concentration versus time for 200 realizations of a converging flow tracer 
test with 0.5 < n* < 2.5, median (solid line) and 95 percent nonparametric CI for the population 
(dashed lines), case kPdb3: percolation with p = 0.61, no matrix diffusion. 
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Figure 17a. Drawdown (closed symbols), derivative (open symbols with line), and flow 
dimension (open symbols without line) for two realizations with 0.5 < n* < 2.5, case kPbb3: 
percolation with p = 0.60, T1-p = Tp /104; symbol shapes denote realizations. 
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Figure 17b. Average (circle) and 95 percent normal CI for the population (solid lines) and mean 
(dashed lines) flow dimension for 200 realizations 0.5 < n* < 2.5, case kPbb3: percolation with 
p  = 0.60, T1-p = Tp /104. 
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Figure 17c. Relative concentration versus time for a CFTT in two realizations 0.5 < n* < 2.5, 
case kPbb3: percolation with p = 0.60, T1-p = Tp /104. 
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Figure 17d. Relative concentration versus time of a converging flow tracer test for 200 
realizations 0.5 < n* < 2.5, median (solid line) and 95 percent nonparametric CI for the 
population (dashed lines), case kPbb3: percolation with p = 0.60, T1-p = Tp /104. 
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Log Gaussian (Uncorrelated)  

The fourth model is a simple log Gaussian model, i.e., transmissivities are assigned to the 
finite difference blocks using values of ln T(x) randomly taken from the normal (Gaussian) 
distribution. This model is in a sense the limiting ‘uncorrelated’ case of the mvG model. 
Realizations of the log Gaussian model are created using sgsim with I << 1 m, i.e., no 
correlation between finite-difference blocks. As with the mvG model, the input geometric mean 
of the transmissivity is Tg = 4.70 x 10-5 m2/sec. Dagan (1981) found that random transmissivities 
assigned to homogeneous blocks of uniform size have an integral scale that is less than the block 
dimension. Since representing the spatial correlation of heterogeneity generally requires several 
nodes per integral scale, the weak correlation function of this stochastic model is poorly 
represented and the flow simulations will not necessarily satisfy Matheron’s relationship of 
Te/Tg = 1. However, this stochastic model does provide at least a heuristic check on variability of 
the apparent flow dimension when the spatial scale of the test is much larger than that of the 
heterogeneity.  

Two cases are simulated for the uncorrelated log Gaussian model, examining σ2
lnT = 1.0 

(case kN1b3) and σ2
lnT = 16.0 (case kN16b3). The apparent flow dimensions of aquifer tests in 

these cases rapidly stabilize to a value of n = 2 (Figures 18a and 19a). The variability between 
realizations decreases with time (Figures 18b and 19b) and does so more rapidly than in the 
comparable mvG stochastic model with σ2

lnT  = 1.0 and I = 7 m (case kG4b3, in Figure 6b).  
Increasing the variance to σ2

lnT  = 16.0 apparently has little effect on the stabilization of the 
apparent flow dimension to n = 2. Table 2 indicates that the average geometric mean of the 
realizations is a poor match to the estimated effective transmissivity for both variances (i.e., 
Te

*/Tg
* = 0.875 and 0.445). Likewise, the average apparent transmissivity of the Cooper-Jacob 

solution is a poor estimator of the average geometric mean of the realizations (i.e., TCJ
*/Tg

* = 
0.875 and 0.445). This is attributed to the poor representation of the small correlation inherent to 
this stochastic model. Several attempts were made to improve the agreement with Matheron’s 
relationship of Te/Tg = 1, including switching convergence tolerances, solvers, grids, stochastic 
simulation algorithms, and flow models; all attempts led to nearly identical numerical results. On 
the other hand, the average apparent transmissivities of the Cooper-Jacob solution are good 
estimators of the estimated effective transmissivities (i.e., TCJ

*/Te
* ≈ 1.000, calculated from 

Table 2). 

Figures 18c and 19c present two realizations of the breakthrough curve (BTC) for the 
CFTT of these models. Both realizations eventually approach the characteristic -3/2 slope of 
matrix diffusion (Tsang, 1995), although their early arrival times differ substantially. Figures 12d 
and 13d present the median and the upper and lower percentiles of the 95 percent nonparametric 
confidence interval for the BTC of 100 realizations. The confidence intervals are widest for the 
early arrival times, and the median of the BTC also approach the characteristic -3/2 slope of 
matrix diffusion (although the slope of kN16 is arguably between -3/2 and -5/4).  Comparing 
Figures 16d and 17d indicates that increasing the variance tends to increase the width of the 
confidence intervals in general. Table 3 shows that tp, the time to the peak of the median of the 
relative BTC, is somewhat longer (0.990 seconds) for the uncorrelated log Gaussian case 
(kN1b3) relative to the mvG case with a comparable variance (kG4b3).  
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Figure 18a. Drawdown (closed symbols), derivative (open symbols with line), and flow 
dimension (open symbols without line) for two realizations of case kN1b3: log Gaussian with 
σ2

lnT = 1.0; symbol shapes denote realizations. 
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Figure 18b. Average (circle) and 95 percent normal CI for the population (solid lines) and for 
the mean (dashed lines) for 100 realizations of the flow dimension, case kN1b3: log Gaussian 
with σ2

lnT = 1.0. 
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Figure 18c. Relative concentration versus time for a CFTT in two realizations of case kN1b3: 
log Gaussian with σ2

lnT = 1.0. 
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Figure 18d. Relative concentration versus time for 100 realizations of a CFTT, median (solid 
line) and 95 percent nonparametric CI for the population (dashed lines), case kN1b3: log 
Gaussian with σ2

lnT = 1.0. 
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Figure 19a. Drawdown (closed symbols), derivative (open symbols with line), and flow 
dimension (open symbols without line) for two realizations of case kN16b3: log Gaussian with 
σ2

lnT = 16.0; symbol shapes denote realizations. 
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Figure 19b. Average (circle) and 95 percent normal CI for the population (solid lines) and for 
the mean (dashed lines) for 100 realizations of the flow dimension, case kN16b3: log Gaussian 
with σ2

lnT = 16.0. 
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Figure 19c. Relative concentration versus time for a CFTT in two realizations of case kN16b3: 
log Gaussian with σ2

lnT = 16.0. 
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Figure 19d. Relative concentration versus time for 100 realizations of a CFTT, median (solid 
line) and 95 percent nonparametric CI for the population (dashed lines), case kN16b3: log 
Gaussian with σ2

lnT = 16.0. 
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Summary 

This study has examined the behavior of aquifer tests and tracer tests in fractured rock 
aquifers from the perspective of the Generalized Radial Flow (GRF) approach to hydraulic test 
interpretation. The GRF approach infers the flow dimension, n, a parameter which describes the 
geometry of the flow paths in the tested aquifer. The study incorporated an algorithm for 
transport influenced by matrix diffusion into an existing series of programs, then executed the 
series in Monte Carlo fashion to determine the flow dimension, effective transmissivities, and 
break-through curves in realizations of heterogeneous transmissivity. Four widely used 
stochastic models were considered for the logarithm of transmissivity, ln T(x): the lognormal, or 
spatially correlated (multivariate) Gaussian distribution (mvG); fractional Brownian motion 
(fBm); uncorrelated lognormal (simple random); and an approximation of a percolation network. 
Although the parameter ranges considered in this study are taken from hydraulic and tracer tests 
performed at the Waste Isolation Pilot Plant site near Carlsbad, New Mexico, USA, the results of 
the study are broadly relevant to the characterization and modeling of flow and transport in 
fractured rocks in Illinois and world-wide. 

For the mvG model, the apparent flow dimension of an aquifer test converges to n* = 2 if 
the scale of the test is large relative to the scale of correlation. The variability of the apparent 
flow dimension around n* = 2 diminishes as the radius of investigation increases. Simulations 
with variances ranging from σ2

lnT = 0.0625 to 9.0 demonstrate that the variability of the apparent 
flow dimension increases with the variance of the field. Decreasing the integral scale decreases 
the time required to reach the maximum variability of the apparent flow dimension. These 
dependencies suggest that it may be possible to identify the variance and integral scale of a 
stationary mvG field from a set of aquifer tests, similar to the approach of Copty and Findikakis 
(2004). For a mvG model of low variance (σ2

lnT  < 1.0), the average (arithmetic mean of 
realizations) of the apparent flow dimension is n* = 2. The breakthrough curves (BTC) of a 
converging-flow tracer test (CFTT) influenced by matrix diffusion in the low-variance mvG 
model yielded a log-log plot with a late-time slope of -3/2. Although the variability of early 
arrival times increases as the variance increases from σ2

lnT = 0.0625 to 1.0, the late-time slopes of 
median of the BTC retained a late-time slope of -3/2, consistent with published studies of CFTT 
influenced by matrix diffusion.  

Numerical inconsistencies limit the conclusiveness of the results for an mvG model of 
moderate variance (σ2

lnT  = 4.0 and 9.0), but the results are still noteworthy. For either variance, 
the average of the apparent flow dimension converges to n* = 2 at late-time. The average of the 
apparent flow dimension is significantly less than 2.0 at early time and has short periods when it 
is not significantly different from n* = 1.75 and 1.6 (for σ2

lnT  = 4.0 and 9.0, respectively). These 
results suggest that a mvG model of moderate variance has short periods where it is not 
inconsistent with the observed flow dimensions of fractured dolomite aquifers. The BTC of a 
CFTT in the moderate-variance mvG model do not appear to be consistent with published studies 
for CFTT influenced by matrix diffusion, yielding a log-log plot with a late-time slope of -5/4 or 
greater. This suggests that the effect of heterogeneity on a CFTT is additive and predictable, 
rather than simply incorporating variability into the BTC. Inconsistencies with Matheron’s 
solution for the effective transmissivity of a two-dimensional mvG field (i.e., Te*/ Tg* = 0.936 
for σ2

lnT  = 4.0 and 0.880 for σ2
lnT  = 9.0) suggest that the calculations be refined for the mvG 

model at moderate variances. 
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The second stochastic model of heterogeneous transmissivity studied was that of ln T(x) 
distributed as a fractional Brownian motion (fBm), a fractal variant of the mvG model that uses a 
power model for the semivariogram with an exponent of 0.5. The average of the apparent flow 
dimension of this model had a value of n* = 2 and the variability of the apparent flow dimension 
increases with time. This increase in variability is consistent with the power semivariogram that 
characterizes the fractal nature of this model and is the opposite of the behavior found for the 
mvG model. This difference suggests that the variability of the apparent flow dimension with 
time might be useful in distinguishing between the fBm and mvG models, given a sufficiently 
large set of aquifer tests. This effect may be exaggerated by the necessity of providing a 
conditioning value for transmissivity at the well. Because the variability of the apparent flow 
dimension appears to depend on the variance of the field, it may be possible to infer H, the Hurst 
coefficient, from the increasing variability of the apparent flow dimension. The BTC of a CFTT 
in this model yielded a log-log plot with a late-time slope of -3/2, which is consistent with 
transport in a transmissivity field of low variance influenced by matrix diffusion. Relative to the 
cases of the mvG model with comparable field-wide variances, the early arrival times of the fBm 
model have lower variability. 

This study also examined an approximate percolation network as a stochastic model of 
heterogeneous transmissivity, setting the percolating nodes to T g, the geometric mean of 
transmissivity, and the nonpercolating nodes to T g /104. The chosen value of the percolation 
probability, p = 0.61, is near the critical value of pc for this system so that the network has fractal 
characteristics. The apparent flow dimensions indicate that some realizations are of wells 
pumped in small percolation clusters that behave as small, closed reservoirs with slightly 
permeable barriers. Although such flow dimensions are consistent with percolation networks and 
with highly heterogeneous formations, they limit inferences that can be drawn regarding the 
apparent flow dimension and are trimmed from the set of realizations. The remaining realizations 
have log-log diagnostic plots and a range of apparent flow dimensions that are similar to those 
observed for aquifer tests in fractured dolomites. The average of the apparent flow dimension 
oscillates around n = 1.6, then steadily increases to n* = 2 over time. The relative BTC of the 
CFTT are highly variable but the median BTC eventually settles down to a log-log slope of -5/4. 
Reducing the transmissivity of the nonpercolating nodes reduces the flow dimension and reduces 
the slope of the BTC. Converting the nonpercolating nodes to no-flow nodes reduces the flow 
dimension and creates a stable period of n* = 1.5 and reduces the slope of the BTC to -3/2. 
Reducing the percolation probability decreases the flow dimension and increases the slope of the 
BTC. These variations on the percolation model indicate that slow advection through the 
nonpercolating nodes systematically adds to the tailing behavior of matrix diffusion. None of 
these parameter variations or changes to the boundary conditions changed the tendency of the 
flow dimension to converge to n* = 2.0 at late times. We conclude that this tendency toward n* 
= 2.0 is the consequence of the radius of influence growing larger than the correlation length of 
the network (re > ξp) and the network becoming effectively two dimensional at large scales. 
Removing matrix diffusion results in a log-log BTC with a late-time slope of -2, confirming the 
solution of Becker and Shapiro (2003) for a CFTT in highly heterogeneous media. 

The fourth stochastic model was intended to be the zero-correlation limiting case of the 
mvG model, here referred to as an uncorrelated log Gaussian transmissivity field. The inability 
of these cases to reproduce Matheron’s relationship of Te = Tg for the effective transmissivity of 
a lognormal field indicates that this simulation is confounded by the effect of the poorly modeled 
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correlation within a finite difference block. However, the simulations suggest that the decreasing 
variability of the apparent flow dimension with time is not a boundary effect. The BTC 
associated with this case show late-time slopes similar to those of the mvG model, i.e., -3/2 for 
low variances, and the slope increases with increasing variance of ln T.
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Discussion 

As noted in the “Introduction”, the GRF approach to hydraulic test interpretation was 
developed because traditional methods of test interpretation do not address the complex 
geometry of flow in highly heterogeneous aquifers. The GRF approach does this by introducing 
another fitting parameter, the flow dimension, to describe how the flow geometry changes over 
the course of the test. This study has attempted to interpret the flow dimension in the context of 
stochastic modeling, examining several stochastic models of aquifer heterogeneity to sketch out 
the relationships between the flow dimension, model parameters, and transport behavior. 

Relatively few investigations have reported the flow dimension for their study site, 
leaving a gap in the current knowledge. With the notable exceptions of several studies of 
fractured crystalline rocks (Borgne et al., 2004; Doe and Geier, 1991; Geier et al., 1996; 
Kuusela-Lahtinen et al., 2003), studies that have inferred the flow dimension have small sets of 
hydraulic tests, limiting confidence in the conclusions regarding the general behavior of the flow 
dimension (Bangoy et al., 1992).  Preliminary analyses of fractured dolomites in Illinois (e.g., 
Figure 1) and in New Mexico show flow dimensions between 1.4 and 2.0 (R. Roberts, Personal 
Communication, 2005), suggesting that flow does not fill the available volume of the aquifer. 
These few studies do not clearly define the distribution of the flow dimension associated with a 
particular site or for this rock type, yet these are necessary if a calibration exercise is to be 
successful. This indicates a need to reanalyze existing data and infer the distributions of flow 
dimensions in a variety of settings. Such an exercise is the objective of an ongoing study of 
aquifer tests in the fractured dolomite aquifers of in northeastern Illinois, jointly conducted by 
the ISWS, UIUC, and NCSA. 

Figure 20 summarizes the flow dimension results for the stochastic models, plotting the 
arithmetic average of the apparent flow dimension at the pumped well versus time since the start 
of the test.  The apparent flow dimensions of the mvG and fBm cases appear to stabilize to 
approximately n* = 2, while that of the percolation network oscillates around n* = 1.6. The 
variability of the apparent flow dimension decreases over time for the mvG model, is roughly 
constant for the percolation network, and steadily increases for the fBm model. These differences 
suggest that it may be possible to use the variability and average of the flow dimension of a set 
of aquifer tests to differentiate between alternative models of heterogeneity and estimate their 
parameters.  The confidence intervals for the apparent flow dimensions indicate that, while short 
intervals of individual aquifer tests might have n* < 2, the low-variance mvG and fBm models 
do not consistently produce flow dimensions less than the Euclidean dimension of the aquifer. 
Among the models examined in this study, only the percolation model consistently produces 
flow dimensions less than two, thus it is the best choice among these models for representing 
fractured dolomite aquifers. However, flow dimensions observed in the field can be stable for 
many log cycles of an aquifer test, while those simulated by the percolation model in this study 
are not. The duration of the stable interval of the mean flow dimension has been attributed to the 
correlation length of the percolation network, thus we speculate that models with variable lattice 
lengths might overcome this limitation.  Such models include Boolean models for discrete 
features with length distributions following a power law, and might possibly be combined with 
the above models. 
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Figure 20. Apparent flow dimensions for a constant-rate aquifer test in a two-dimensional 
domain.  The average and 95 percent normal confidence interval for the mean for three cases:  
× = 100 realizations of mvG with σ2

lnT = 1.0 and I = 7 m (case kG4b3); o = 100 realizations of 
fBm with H = 0.25 (case kB1b3); and + = 200 realizations of a percolation network with p = 0.61 
(case kPfb3). 

 

Much of the analysis has focused on the multivariate Gaussian (mvG) model and the 
percolation network model. At low variances of the mvG model (σ2

lnT < 1.0), these models are 
quite different: the mvG model has an average apparent flow dimension of n* = 2, and the 
variability around this value is related to the variance and integral scale of the mvG model. The 
percolation network model shows apparent flow dimensions with an arithmetic average n * < 2 
at early times, then slowly increasing toward n* = 2 (e.g., Figure 13b). As the variance increases 
to σ2

lnT  = 4.0 and 9.0, the mvG model develops apparent flow dimensions with an arithmetic 
average n* < 2 at early times, then slowly increases toward n* = 2 (Figures 8b and 9b). This 
tendency of the mvG model at higher variances to behave like a percolation network also is 
reflected in the tracer test results: at low variances, the mvG model shows extended tailing due to 
matrix diffusion (log-log BTC with late-time slope of -3/2, see e.g., Figure 6d); at variances of 
σ2

lnT  = 4.0 and 9.0, slow advection pathways add to the tailing behavior until it resembles that of 
a percolation network with matrix diffusion (a late-time slope of -5/4 or greater; see Figures 8d 
and 9d). While these results for the high-variance mvG cases require confirmation with refined 
grids, other investigators have noted the tendency of porous media to develop behavior similar to 
a percolation network.  Katz and Thompson (1986) found that steady flow in sandstones could be 
modeled by a percolation network, and Acuna et al. (1995) speculated that transient flow in 
porous media also behaves like a percolation network. On the other hand, the present study 
shows that many realizations of the mvG model have flow dimensions greater than 2 (Figure 9b), 
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and very few of the percolation network realizations produce flow dimensions greater than two 
(even if no realizations are trimmed). 

We speculate that a fractured dolomite aquifer might be represented well by some 
combination of stochastic models in a single domain, creating a hybrid stochastic model of 
heterogeneity. This hybrid approach to stochastic models of aquifer heterogeneity has an 
intuitive appeal: use a discrete model to represent the observed jointing, and a continuous model 
to represent the unfractured rocks (NRC, 1996). Although this approach has seen successful 
applications (McKenna et al., 2003), it increases the number of parameters that must be inferred 
and thus increases difficulty in applying the model. Unlike mvG models of low variance 
(Indelman and Dagan, 1993) and idealized percolation networks (Feder, 1988), there are no 
analytical solutions for upscaling arbitrary combinations of models. We speculate that each 
application of the hybrid modeling approach will require an analysis of upscaling for creating 
coarse-grid models that can address a domain of any useful size for evaluating management 
alternatives.  

A key to understanding the transport results for the percolation model is that, except for 
one case (kPcb3), this study does not examine an idealized percolation network. In this study, the 
nonpercolating nodes are assigned a very small transmissivity value to simulate the unfractured 
rocks in the aquifer. Decreasing the transmissivity (case kPeb3) or using no-flow cells to 
represent the nonpercolating nodes (case kPcb3) showed that eliminating the small amount of 
flow in the nonpercolating nodes stabilizes the apparent flow dimension at somewhat lower 
values than the base case model (kPfb3). Eliminating this slow advection also decreases the late-
time slope of the log-log BTC to -3/2, the characteristic behavior of matrix diffusion in the 
absence of strong heterogeneity. These results agree with Zinn and Harvey (2003), who 
concluded that both the connectivity and slow advection contributed to tailing behavior. It should 
be noted that all the percolation cases had flow dimensions in similar range (1.4 to 1.6), thus 
flow dimensions less than the Euclidean dimension are not necessarily correlated with tailing 
behavior.  On the other hand, Doughty and Karasaki (2002) found that flow dimensions less than 
the Euclidean dimension are associated with earlier arrival times and other anomalous transport 
behaviors. The investigation of transport behavior under other flow conditions is left to future 
studies. 

 Except for a single variant case of the percolation network model (case kPdb3), all 
simulations of the CFTT in this study included the effects of matrix diffusion. The results 
generally confirm the conclusions of Tsang (1995) that transport influenced by matrix diffusion 
tends to have a log-log BTC with a late-time slope of -3/2, even for heterogeneous models. 
Tsang (1995) also noted that high heterogeneity tended to obscure the differences in late-time 
slopes of BTC with and without matrix diffusion. This effect of heterogeneity may be why the 
observed BTC for the CFTT for WIPP wells H-11 and H-19 show a range of log-log slopes from 
approximately -1 to less than -2 (see Figures 2 and 3 of McKenna et al. (2001)). However, rather 
than simply adding randomness to the BTC, this study has found that slow advection through 
areas of low transmissivity adds to the tailing systematically, increasing the late-time slope 
(Figure 21).  This confirms the conclusion of Haggerty et al.(2000) that advective velocities with 
a high degree of variability would invalidate the direct relationship between matrix diffusion and 
the late-time slope of the BTC. Tsang (1995) also found that heterogeneity had varying effects 
depending on the type of tracer test, which suggests that follow-up studies should examine other
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Figure 21. Relative concentration versus time for a CFTT influenced by matrix diffusion. The 
median BTCs for: mvG with σ2

lnT = 1.0 and I = 7 m (case kG4b3); fBm with H = 0.25 (case 
kB1b3); and a percolation network with p = 0.61 (case kPfb3). The heavy line with -3/2 slope is 
for reference only. 

 

test types, e.g., single-well injection-withdrawal tracer tests. It should be noted that all slopes 
discussed in this study were determined ‘by inspection’, in a manner similar to previous 
investigators. The comparison of slopes would be greatly clarified by statistical analysis and 
hypothesis testing. This is an area for further analysis, and is not included in the present report. 

This study has used Monte Carlo simulation to infer the flow dimension and tracer test 
behavior of stochastic models, but it is important to place these Monte Carlon results in a 
practical context.  The individual realizations for a particular stochastic model (e.g., Figure 6a) 
are analogous to non-overlapping aquifer tests scattered throughout a large aquifer, and the 
averages taken over the set of realizations are analogous to the inferred properties of that large 
aquifer (e.g., Figure 6b). Looking at the confidence intervals for the population (Figure 6b), we 
can see that individual aquifer tests at early times might have apparent flow dimensions ranging 
from 1.3 to 2.5. The narrow confidence intervals for the average of the apparent flow dimension 
indicate that, on average, the flow dimension observed for tests in this mvG aquifer would be 
n* = 2. If the average flow dimension inferred from all aquifer tests in a field is, for example, 
n* = 1.6, then the mvG model with σ2

lnT = 1.0 is a poor choice for representing the heterogeneity 
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of transmissivity of that aquifer.  As aquifer test durations increase (and the radius of 
investigation grows much larger than the integral scale) the confidence intervals for the 
population (Figure 6b) indicate that flow dimension of individual aquifer tests approaches n* = 
2.  That is, even individual aquifer tests of sufficient duration will have an apparent flow 
dimension close to n* = 2 for an mvG aquifer with σ2

lnT = 1.0. An apparent flow dimension of, 
e.g., n* = 1.6 for an individual aquifer test of long duration indicates that the mvG model of low 
variance is a poor choice for representing the heterogeneous transmissivity of that aquifer. 

The results for the effective transmissivity of the mvG model have an important 
implication for numerical modeling of spatially correlated transmissivities. Although the low-
variance mvG cases showed good agreement with Matheron’s solution for the effective 
transmissivity (i.e., Te = Tg), they also showed that the ability to reproduce the effective 
transmissivity decreases with increasing variance and decreasing number of nodes per integral 
scale (Table 2). This result is consistent with that of previous investigators (Ababou et al., 1988; 
Meier et al., 1998)) and suggests that numerical models may not be able to reproduce the 
effective transmissivities of highly heterogeneous, spatially correlated fields with currently 
available computers.  Results reported by studies based on high-variance models with coarsely 
discretized grids may not be representative because they incorrectly model the mean transport 
velocity. 

As noted in the report, there are several opportunities to improve the statistical analysis 
and to refine the calculations. These include: 

• Reevaluate the high-variance cases of the mvG model using greater resolution to 
confirm the tendency of the flow dimension to n* < 2 at early time; 

• Address the impact of skewness on the confidence intervals for the apparent flow 
dimension, using nonparametric approaches to confirm the results; 

• Similar to Desbarats (1992), plot the specific flux as a visual analysis of the 
emergence of flow channeling; 

• Similar to the present results for the Cooper-Jacob solution, evaluate the n-
dimensional (GRF) interpretation for the transmissivity and compare this to other 
parameters, e.g., the effective transmissivity;  

• Normalize each realization of the BTC to the mean velocity, and develop statistical 
analyses for the significance of the slope estimates; and 

• Further evaluate the relationship between the flow dimension and tracer transport, 
e.g., examining the spatial moments of tracer plumes. 

 
Recommendations for future study include simply expanding the range of the parameter 

values and stochastic models examined, such as: 

• Cases for the low-variance mvG model with I = 14 m and 28 m, to help establish the 
relationship between the time to the maximum variability of the apparent flow 
dimension and the integral scale of the field; 

• Use an alternative simulation algorithm for the fBm stochastic model to verify the 
creation of the fBm process and evaluate a range of parameters for this and the related 
fractional Levy motion model; 
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• Evaluate the Sequential Indicator model after creating a more memory-efficient 
simulation algorithm; and  

• Evaluate additional models of aquifer heterogeneity, including Transition Probability 
simulation of facies changes, and Boolean models of discrete linear features. 
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Conclusions 

The objectives of this study were to establish the behavior of the flow dimension for 
widely used stochastic models of aquifer heterogeneity, and to perform a preliminary assessment 
of the relationship between the flow dimension and the BTCs of CFFTs. With regard to those 
objectives, the conclusions of this study are as follows: 

• For ln T(x) distributed as an mvG variable with σ2
lnT < 1.0, the apparent flow 

dimension of an aquifer test converges to n* = 2 if the scale (duration) of the test is 
large relative to the scale of correlation. The variability of the apparent flow 
dimension depends on the variance and integral scale of the transmissivity, suggesting 
that it may be possible to identify the variance and integral scale of a heterogeneous 
aquifer given a set of aquifer tests.  

• The study results for σ2
lnT > 1.0 suggest that the average of the apparent flow 

dimension is less than two initially, then converges to n* = 2, similar in some respects 
to a percolation network. This result requires confirmation with a refined grid. 

• Although problematic, the simulation of an uncorrelated log-Gaussian model suggests 
that the flow dimension of an aquifer test converges to    n* = 2 for variances of ln 
T(x) up to 16.0. 

• For ln T(x) distributed as fractional Brownian motion (fBm), the apparent flow 
dimension averages to n* = 2 and its variability increases with time.  

• An approximation of a percolation network model showed an average apparent flow 
dimension stabilizing between n* = 1.4 to 1.6, and is followed by an increasing trend. 
These characteristics apparently are functions of the transmissivity contrast between 
the percolating and nonpercolating fractions.  

• In the low-variance mvG, uncorrelated log-Gaussian, and fBm models, simulations of 
CFTT influenced by matrix diffusion showed BTC with late-time log-log slopes of -
3/2, the characteristic behavior of matrix diffusion.  

• In the percolation network model, a simulated CFTT influenced by matrix diffusion 
had late-time BTC with log-log slopes of -5/4, attributed to slow advection through 
low transmissivity regions. This indicates that some heterogeneity models can 
systematically affect the late-time behavior of a BTC for a CFTT. 
 

 Taken as a whole, these results suggest that the flow dimension is a useful diagnostic for 
selecting models of heterogeneity, and that flow dimensions n ≠ 2 may be associated with unique 
tracer behavior. Additional research is advocated to infer the general behavior of the flow 
dimension at various field sites, to assess a broader range of parameters, to examine other 
stochastic models, and to conduct a more detailed examination of transport behavior versus the 
flow dimension. 
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Appendix A. Code Description and Performance Requirements 
 

The Monte Carlo simulations performed in this study use a sequence of programs to 
simulate a field of heterogeneous transmissivity, simulate an aquifer test, simulate steady 
regional flow, simulate a tracer test, and analyze the results of these simulations (Figure 2). With 
the exceptions MODFLOW-2000, the programs are written in FORTRAN 77 and thus may 
require redimensioning arrays and recompilation depending on the size of the particular problem. 
The sequence is controlled by scripts in DOS, Bash, or Perl, depending on the operating system 
of the computing platform. Each program has an associated file with a name of the form 
program_name.par which provides the input parameters and brief definitions. The input 
parameters are fully discussed and documented in the user manuals of the individual programs. 
With the exceptions noted below, the programs were taken from the public domain and were 
modified for the purposes of this study by adapting the input/output: 

sgsim v3.100: This algorithm is developed from the GSLIB suite of geostatistical 
programs (Deutsch and Journel, 1998). sgsim simulates a spatially correlated normal 
variable (multivariate Gaussian, or mvG). For the purposes of this project, sgsim v3.100 
was modified from the distributed version of sgsim (v2.000) to reduce memory 
requirements, accept a random seed from standard input, and to accommodate the power 
semivariogram model used when simulating fractional Brownian motion (fBm). 

gsim v1.004: This program was written for this project to simulate a site percolation 
network.  It was developed from programs by Press et al. (1992).  

con2mod v2.008: This program rescales, transforms, and reformats the variables created 
by sgsim or gsim, and outputs files of transmissivity values for use in the groundwater 
flow and transport models. It was developed by one of the principal investigators and was 
enhanced for this project to permit exporting a subregion of the simulated field and 
surrounding it with a uniform region as required by THEMM2.  

MODFLOW-2000 v1.12gmg: This widely used finite-difference model of groundwater 
flow (Harbaugh et al., 2000) reads the transmissivity field written by con2mod, simulates 
a transient hydraulic test in two dimensions and also simulates steady, uniform flow over 
the domain using parallel boundary conditions.  MODFLOW-2000 does not use a *.par 
file, but rather an elaborate series of files organized by a control file named modflow.bf. 
MODFLOW-2000 uses FORTRAN 90 extensions for dynamic memory allocation. This 
particular version of MODFLOW-2000 includes the GMG package, an efficient multi-
grid solver (Wilson and Naff, 2004) written in C.  

postmod v1.201: This program scans the output drawdown file of MODFLOW-2000 and 
estimates the derivative and flow dimension using a finite difference approximation.  For 
this project, it was enhanced to include the Cooper-Jacob interpretation approach to infer 
the corresponding apparent transmissivity. 

effmod v1.201: This program scans the cell-by-cell output file of MODFLOW-2000 for 
the regional, uniform-flow simulation and determines the effective transmissivity. 
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THEMM2 v2.007: This program reads steady-state flow fields corresponding to pumping 
stresses and simulates advective transport of solutes influenced by single-rate, matrix 
diffusion. During the present project, THEMM2 was developed from the themmb, the 
transport algorithm used by THEMM v1.0 (Transport in HEterogeneous Medium with 
Matrix diffusion) (Hale and Tsang, 1996; Tsang and Tsang, 2001). The modifications 
included changing the input stream to read the output *.hds file of heads from 
MODFLOW-2000 and to match the THEMM2 representation of constant-head 
boundaries to that of MODFLOW-2000. Prior to running THEMM2, con2mod must be 
run to pick out a subregion of the transmissivity field, and surround it with a telescoping 
grid of homogeneous transmissivity. This subregion is picked up by MODFLOW-2000, 
which solves for the steady-state head distribution, one for each flow regime (injection, 
chase, recovery). Unlike THEMM v1.0 which used the flow model themma to solve for 
the distribution of steady-state heads, THEMM2 reads the steady-state heads created by 
MODFLOW-2000. THEMM2 uses particle tracking to model advective transport (no 
microdispersion) and simulates matrix diffusion using a random wait time to delay the 
transit of particles. The output of THEMM2 includes maps of particle distributions at 
specific times and particle arrival data. 

THEMMBTC v2.007: This program reads the THEMM2 output of particle arrivals 
versus time and computes the BTC.  THEMMBTC was adapted from themmc, part of the 
original THEMM v1.0, by modifying the input formats to support THEMM2. 

 To accomplish the study goals stated in the introduction of this report, the sequence of 
programs must accomplish certain functions. For each of the functions listed below, one or more 
requirements must be met and these are the performance criteria for verifying this software. 
These criteria are listed after each function below:  

1. Simulate an infinite-acting aquifer test and analyze the results. 
a) Match the transient drawdowns for infinite-acting radial flow without wellbore 

storage, as simulated by nSIGHTS (or similar well-test analysis software). 
b) Yield flow dimension n = 2 for infinite-acting radial flow. 
c) Satisfy TCJ/ Tg ≈ 1 for homogeneous transmissivity and for ln T  distributed as a 

mvG variable of modest variance (after (Sánchez-Vila et al., 1999)) 
2. Simulate steady, regional flow across the full domain to estimate the effective 

transmissivity.  
a) Te/ Tg ≈ 1 for mvG of zero and modest variance. 

3. Simulate a simple injection test influenced by matrix diffusion. 
a) Match (within ergodic fluctuations) the analytical solution of Chen (1986) 
b) Match (within ergodic fluctuations) the THEMM v1.0 solution for finite blocks 

(Rasmuson and Neretnieks, 1981) 
4. Simulate a converging flow tracer test influenced by matrix diffusion 

a) Match (within ergodic fluctuations) the THEMM v1.0 solution for infinite blocks 
/ early time. 

b) Produce BTC with late-time log-log slope of -3/2. 
5. Flow balance error less than 0.1 percent (all simulations).
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6. Simulate transmissivity fields with particular stochastic models of heterogeneity. 

a) Match (within ergodic fluctuations) the input parameters (model semivariogram 
and Tg). 

b) Satisfy Te/Tg ≈ 1 for mvG of modest variance. 
 
These criteria are addressed by the two verification problems provided in appendices B and C. 
The source codes, driver scripts, and all input and output are available on request from the 
authors, but are not included with this report.
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Appendix B. Code Verification Problem mip_V2 

 This verification problem examines the performance of the program sequence described 
in Appendix A for the case of a homogeneous realization of transmissivity. The purpose is to 
demonstrate the general functionality of the codes and verify the ability of the code to simulate a 
simple aquifer test and radial transport using the finite-block solution (Rasmuson and Neretnieks, 
1981). It also verifies that THEMM2 works no worse than THEMM v1.0 (Hale and Tsang, 1996) 
for this transport problem.  Because the flow problem is deterministic and the transport problem 
is deterministic (except for the random effects of matrix diffusion), this verification problem is 
run using a single realization. 

The problem configuration and parameters are given in the bulleted lists below. Note 
that, because the transmissivity field is homogeneous and sgsim generates a standard normal 
variable, N(0,1), the mean of the input field is transformed for each run of con2mod. This allows 
us to use different values of Tg and grid spacing for the aquifer test simulation than for the 
transport simulation. 

 The aquifer test simulation imitates MODFLOW Instructional Problem #1 (Anderson, 
1993): transient drawdown to a point sink in a confined, infinite-acting homogeneous aquifer 
(i.e., the Theis problem). The following grid and parameters are used: 

• Finite difference grid of 1001 x 1001 nodes, uniform 10 m spacing. 

• Withdrawal well at row 501, column 501, pumping at Q = -4.0 x 10-3 m3/sec. 

• 40 time steps, time step multiplier of 1.3, maximum time of 2.07 x 106 seconds, starting 
head of 0.0 m, uniform constant-head boundaries of 0.0 m. 

• Uniform transmissivity of 2.3 x 10-3 m2/sec, thickness of 1 m, and storage coefficient of 
7.5 x 10-4. 

• Wellbore storage is controlled by multiplying by a factor of ¼ the storage coefficient in 
the node representing the well. 

• For estimating the effective transmissivity, constant-head boundaries are used to impose a 
gradient of 9.99 x 10-4 (such that the effmod.par parameter ‘afactor’ is    0.10 m). 

 The tracer test imitates Verification Problem 2 of Hale and Tsang (1996): a constant rate 
of tracer injection in an infinite aquifer influenced by matrix diffusion (i.e., the Chen (1986) 
problem). It uses the following grid and parameters: 

• Uniform 1 m fine grid of 251 x 251 nodes, surrounded by a telescoping region 10 nodes 
wide (plus 2 more in the MODFLOW-2000 grid for the exterior constant-head boundary 
cells). 

• Tracer injection at x = 126 m, y = 126 m on the fine grid (MODFLOW-2000 row 137, 
column 137), at a rate of Q = 1.157 x 10-7 m3/sec, and concentration of 0.273881 kg/m3. 
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• Uniform transmissivity of 1.0 x 10-4 m2/sec, thickness 1 m, aqueous diffusivity of 1.6 x 
10-9 m2/sec, fracture porosity of 1.0 x 10-4, matrix porosity of 0.01, and tortuosity of 0.01. 

• Matrix diffusion into spherical blocks with λ = 2rb = 3.0 m. 

• One steady-state flow regime, starting head of 0.0 m, uniform constant-head boundaries 
of 0.0m, observed at time = 3.15576 x 107 sec. 

Problem mip_V2 was run on a P4 2.2 Ghz desktop PC with 512 Mb of RAM, and 
required approximately 25 min. Two MODFLOW-2000 solvers are used to provide testing 
coverage: LMG for the transient aquifer test and PCG for the steady-state tracer test are used. An 
example DOS script to drive the program sequence is given below; note that programs sgsim, 
con2mod, postmod, effmod, THEMM2, and THEMM2BTC wait for the user to provide a large 
integer as a random seed (used for stochastic simulation in sgsim and THEMM2, but only as an 
identifier in the other programs). 

 
Script ‘mcsim.bat’: 
 

echo "here we go" 
sgsim.exe 
copy con2mod.parF con2mod.par 
con2mod.exe 
copy modflow.bfF modflow.bf 
mf2k.exe 
postmod.exe 
effmod.exe 
echo "****DONE WITH FLOW*****" 
copy con2mod.parT con2mod.par 
con2mod.exe 
copy modflow.bfT modflow.bf 
mf2k.exe 
themm2.exe 
themmbtc.exe 
torus.exe 
echo "all done" 
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 The results of the simulation clearly demonstrate that the sequence of programs is 
sufficiently accurate for the purposes of this study. Specifically: 

• In MODFLOW-2000, output file mip1.lst, the flow balance error for all time steps was 
0.00 percent (satisfies criterion 5). 

• In comparison to a solution using comparable conditions from nSIGHTS, the Sandia 
well-test analysis program, the solutions are nearly exact (Figure B.1). Note that the 
inverse parameter match is nearly exact (satisfies criterion 1a). 

• In postmod output files mip1_OW1.dpp (pumped well, effective radius of 1.982 m) and 
mip1_OW2.dpp (60 m radius), the flow dimension vs. time is n = 2 for the entire latter 
half of the simulation (satisfies criterion 1b). 

• In postmod output file tcj.out, the Cooper-Jacob solution yields an apparent 
transmissivity of 2.3 x 10-3 m2/sec, storage coefficient of 8.0 x 10-4 for the pumped well, 
and nearly identical for the observation well at a radius of 60 m (satisfies criterion 1c). 

• In effmod output file teff.out, the estimated effective transmissivity is 2.3 x 10-3 m2/sec 
(partially satisfies criterion 2a). 

• In MODFLOW-2000 output file mf_V2.lst (head solution for the transport problem), the 
flow balance error for all time steps was 0.00 percent (satisfies criterion 5). 

• In THEMM2 output file themm2.dbg the maximum head of the field is at the well and the 
value is 13.77420 m; comparable calculations using THEMM v1.0 yield 13.77137 m 
(partially satisfies criterion 3b). 

• THEMM2 output file V2_100.pmp provides the distribution of particles surrounding the 
injection well at time = 3.15576 x 107 sec. A separate program written by the authors, 
torus.f, reads the *.pmp file and computes the average concentration in a cylinder 
surrounding the well (Figure B.2). Note that torus.f is not part of the program sequence, 
but rather is only a statistical summary of the output for the purposes of this verification 
problem. MSExcel is used to solve the analytical solution and plot the results. (satisfies 
criterion 3b). 

• Figure B.2 also plots the analytical solution of Chen [1986] and THEMM v1.0 for 
comparison, which shows very good agreement. Variations near the injection well are in 
part due to the coarseness of the finite difference grid and the use of random wait times to 
simulate matrix diffusion (satisfies criterion 3a). 
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Figure B.1. Drawdowns at the pumped well for verification problem mip_V2.  nSIGHTS 
solution for drawdown (lines) versus drawdowns simulated by MODFLOW-2000 (points) in the 
sequence of programs used in this study. The nSIGHTS inverse solution for the aquifer test 
parameters is given in the box. 
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Figure B.2. Comparison of solutions for tracer injection influenced by matrix diffusion: 
verification problem mip_V2. 
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Appendix C. Code Verification Problem h11_S1 

 This verification problem examines the performance of the program sequence described 
in Appendix A for the case of ln T distributed as an mvG process of low variance, and a 
converging flow tracer test in a homogeneous medium. The purpose is to verify the ability of the 
code to simulate an aquifer test and CFTT in a stochastic simulation to infer ensemble results. It 
also verifies that THEMM2 is no less accurate than THEMM v1.0 (Hale and Tsang, 1996) using 
the early-time, infinite-block solution for this transport problem.  Because both problems are 
stochastic, this verification problem is run using 100 realizations. 

The problem configuration and parameters are given in the bulleted lists below. As in 
verification problem mip_V2, the sequence takes advantage of the fact that sgsim generates a 
standard normal variable, N(0,1), to transform the mean of the simulated transmissivity field for 
each realization using con2mod. This allows us to use a homogeneous field, a different value of 
Tg, and a different grid spacing for the transport simulation. 

 The aquifer test simulation imitates the H-11 hydropad aquifer test (Beauheim and 
Ruskauff, 1998).  Because skin effects and dual porosity are not included, it cannot be directly 
compared to the field data. However, we can verify that the ensemble averages yield the results 
of Matheron (1967) and Sánchez-Vila et al. (1999) . The following grid and parameters are used: 

• Finite difference grid of 2001 x 2001 nodes, uniform 2 m spacing. 

• Withdrawal well at row 1001, column 1001, pumping at Q = -0.228 L/sec. 

• 44 time steps, time step multiplier of 1.3, maximum time of 5.08 x 105 seconds, starting 
head of 0.0 m, uniform constant-head boundaries of 0.0 m. 

• Transmissivity simulated as an mvG process, with Tg = 4.70 x 10-5 m2/sec, σ2
lnT = 0.25, 

exponential model semivariogram with integral scale of 20m, thickness 4.4 m, storage 
coefficient of 4.7 x 10-5. 

• Wellbore storage is controlled by multiplying by a factor of ¼ the storage coefficient in 
the node representing the well. 

• For estimating the effective transmissivity, constant-head boundaries are used to impose a 
gradient of 9.99 x 10-4 (such that the parameter afactor in file effmod.par is 0.10 m). 

The tracer test imitates Sample Problem 2 of Hale and Tsang (1996): a preliminary 
interpretation of the CFTT conducted at the WIPP H-11b hydropad, using the path from H-11b3 
to H-11b1 and a homogeneous transmissivity field.  It uses the following grid and parameters: 

• Uniform 1 m fine grid of 250 x 250 nodes, surrounded by a telescoping region 10 nodes 
wide (plus 2 more in the MODFLOW-2000 grid for the exterior constant-head boundary 
cells). 

• Recovery well at x = 125 m, y = 125 m on the fine grid (MODFLOW-2000 row 137, 
column 136), pumping at Q = -0.38 x 10-3 m3/sec. 
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• Tracer injection at x = 154 m, y = 118 m on the fine grid (MODFLOW-2000 row 144, 
column 165), injecting tracer at Q = 9.84 x 10-5 m3/sec and 10.55 kg/m3 concentration, 
followed by chaser injection at Q = 10.3 x 10-5 m3/sec. 

• Uniform transmissivity of 4.5 x 10-6 m2/sec, thickness 7.62 m, aqueous diffusivity of 7.4 
x 10-10 m2/sec, fracture porosity of 5.0 x 10-4, matrix porosity of 0.16, tortuosity of 0.11. 

• Three steady-state flow regimes, starting head of 0.0 m, uniform constant-head 
boundaries of 0.0 m. 

Problem h11_S1 was run on a P4 3.3 Ghz desktop PC with 2Gb of RAM, and required 
approximately 72 hours for 100 realizations. This was a Linux platform, and the program 
sequence was controlled using a Bash shell script (similar to the DOS script shown in Appendix 
B). The script, mcsim5.sh, is available on request. The MODFLOW-2000 GMG solver is used 
for both the transient aquifer test and for the steady-state tracer test. The results of the simulation 
clearly demonstrate that the sequence of programs is sufficiently accurate for the purposes of this 
study. Specifically: 

• In MODFLOW-2000, output file h11_s1.lst, the flow balance error for all time steps was 
0.00 percent (satisfies criterion 5) 

• As an average over all realizations, Tg
*/Tg = 0.998, Te

*/Tg = 0.9965, TCJ
*/Tg = 0.9953. The 

related calculations for the power model semivariogram (Figure 8) show that the model 
semivariogram is reproduced by the experimental semivariogram (satisfies criteria 1c, 6a, 
and 6b).  

• In MODFLOW-2000 output file mf_V2.lst (head solution for the transport problem), the 
flow balance error for all flow regimes was 0.00 percent (satisfies criterion 5) 

• THEMMBTC output file S1_3.btc provides one realization of the relative concentrations 
that are plotted in Figure C.1, along with one realization of THEMM v1.0 for comparison. 
The late-time slope of the log-log plot has a slope of -3/2 (satisfies criteria 4a and 4b). 
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Figure C.1. Breakthrough curves for the H-11 CFTT (verification problem h11_S1). 
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Appendix D. Monte Carlo Stability Analyses 
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Figure D.1. Apparent flow dimension versus number of realizations at time 1.82 x 103 sec, case 
kG4b3: mvG with σ2

lnT = 1.0 and I = 7 m.  
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Figure D.2. Apparent flow dimension versus number of realizations at time 1.93 x 104 sec, case 
kG4b3: mvG with σ2

lnT = 1.0 and I = 7 m.  
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Figure D.3. Relative concentration versus time of a converging flow tracer test for 1000 
realizations, median (solid line) and 95 percent nonparametric CI for the population (dashed 
lines), case kG4b3: mvG with σ2

lnT = 1.0 and I = 7 m.  
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Figure D.4. Apparent flow dimension versus number of realizations at time 1.82 x 103 sec, case 
kPfb3: percolation with p = 0.61, T1-p = Tp /104.  
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Figure D.5. Apparent flow dimension versus number of realizations at time 1.93 x 104 sec, case 
kPfb3: percolation with p = 0.61, T1-p = Tp /104.  
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Figure D.6. Relative concentration versus time of a converging flow tracer test for 654 
realizations with 0.5 < n* < 2.5, median (solid line) and 95 percent nonparametric CI for the 
population (dashed lines), case kPfb3: percolation with p = 0.61, T1-p = Tp /104.  
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