
Siniša Srbljić, Dejan Škvorc, Daniel Skrobo

Programming Language Design for Event-Driven
Service Composition

UDK
IFAC

004.434:65
2.8.1 Original scientific paper

To adapt to rapidly changing market conditions and increase the return of investment, today’s IT solutions usually
combine service-oriented architecture (SOA) and event-driven architecture (EDA) that support reusability, flexibi-
lity, and responsiveness of business processes. Programming languages for development of event-driven service
compositions face several main challenges. First, a language should be based on standard service composition lan-
guages to be compatible with SOA-enabling technologies. Second, a language should enable seamless integration
of services into event-driven workflows. Third, to overcome a knowledge divide, language should enable seamless
cooperation between application developers with different skills and knowledge.

Since WS-BPEL is widely accepted as standard executable language in SOA, we extended WS-BPEL with su-
pport for event-driven workflow coordination. We designed event-handling mechanisms as special-purpose Coope-
tition services and augmented WS-BPEL with primitives for their invocation. Coopetition services augment SOA
with fundamental EDA characteristics: decoupled interactions, many-to-many communication, publish/subscribe
messaging, event triggering, and asynchronous operations. To make the application development familiar to wide
community of developers, we designed an application-level end-user language on top of WS-BPEL whose primi-
tives for invocation of regular Web services and Coopetition services resemble the constructs of typical scripting
and coordination language.

Key words: Service composition, Service-oriented event-driven programming, Programming language design

Oblikovanje programskih jezika za doga�ajima poticanu kompoziciju usluga. S ciljem prilagodbe promje-
njivim tržišnim uvjetima i povećanja isplativosti ulaganja, današnji informacijski sustavi grade se spregom uslužno
usmjerene i doga�ajima poticane arhitekture koje omogućuju oblikovanje višestruko iskoristivih i prilagodljivih
poslovnih procesa s mogućnošću odziva na pojavu doga�aja. Programski jezici za doga�ajima poticanu kompo-
ziciju usluga pokazuju nekoliko glavnih značajki. Prvo, jezik mora naslijediti svojstva standardnih jezika za kom-
poziciju usluga kako bi bio sukladan tehnologijama uslužno-usmjerene arhitekture. Drugo, jezik mora omogućiti
prirodni način povezivanja usluga u doga�ajima poticane poslovne procese. Treće, razvijateljima različitih znanja
i vještina potrebno je osigurati mogućnost udruženog sudjelovanja u razvoju primjenskih programa.

Budući da je WS-BPEL standardni jezik za kompoziciju usluga, izabran je kao osnovica za oblikovanje jezika
za doga�ajima poticanu kompoziciju usluga. Oblikovan je poseban skup usluga suradnje i natjecanja kojima je
uslužno-usmjerena arhitektura proširena elementima doga�ajima poticane arhitekture, kao što su me�udjelovanje
zasnovano na slaboj povezivosti, komunikacija u grupi, objava/pretplata, reakcija na pojavu doga�aja i asinkrone
operacije. Jezik WS-BPEL proširen je programskim primitivama za pozivanje tih usluga. Kako bi se razvoj pri-
mjenskih programa približio širokoj zajednici graditelja programske potpore, povrh jezika WS-BPEL oblikovan je
primjenski jezik za krajnjeg korisnika čije primitive za pozivanje primjenskih usluga te usluga suradnje i natjecanja
nalikuju naredbama skriptnih i koordinacijskih jezika.

Ključne riječi: kompozicija usluga, programiranje zasnovano na doga�ajima poticanoj kompoziciji usluga, obli-
kovanje programskih jezika

1 INTRODUCTION
During the last couple of years, there were a lot of

discussions related to how service-oriented architecture
(SOA) and event-driven architecture (EDA) fit together.
While some of disputants say that SOA and EDA go to-
gether nicely, others claim that they are competing soft-

ware architectures [1]. In latest discussions, however, soft-
ware architects agreed that SOA and EDA are two com-
plementary software design paradigms, which, when com-
bined together, may successfully address complex integra-
tion challenges [2, 3].

Today’s business applications are rarely deployed and

ISSN 0005-1144
ATKAFF 51(4), 374–386(2010)

374 AUTOMATIKA 51(2010) 4, 374–386

Programming Language Design for Event-Driven Service Composition S. Srbljić, D. Škvorc, D. Skrobo

used in isolation. Instead, they are connected with other
applications in order to create integrated business solu-
tions that span across organizational boundaries. To be
able to adapt to rapidly changing market conditions and
increase the return of investment, organizations require
IT infrastructure that supports reusability, flexibility, and
responsiveness. Therefore, organizations are seeking for
architectures and technologies that provide the ability to
break monolithic applications into reusable software com-
ponents, and to compose these components into flexible
business workflows that proactively respond to events from
inside and outside of the application.

Service-oriented architecture (SOA) is an architectural
concept that enables reuse of existing software functional-
ities in various types of business applications and integra-
tion of heterogeneous software components into coherent
business solutions. In SOA, software functionalities are
exposed to consumers and other applications as services
accessible over a network through standardized interfaces.
Through standardization, SOA enables seamless integra-
tion of heterogeneous software components, regardless of
the hardware platform, the operating system, and the pro-
gramming language used for their implementation. In an
environment where software components are exposed as
services, service composition is used as a design paradigm
to connect mutually independent services into business-
specific workflows [4]. Service composition languages are,
therefore, used as process description languages to define
business processes from which the execution of services is
orchestrated. To be SOA-ready, service composition lan-
guages should support the invocation of services through
which software functionalities are exposed to application
developers.

Although SOA provides good foundation for deve-
lopment and deployment of reusable and flexible busi-
ness processes, to support event-driven process execu-
tion, service-oriented architecture is combined with event-
driven architecture (EDA) [5-8]. EDA defines an architec-
tural pattern for designing and implementing applications
in which events transmit between decoupled software com-
ponents.

While our SOA- and EDA-ready languages along with
supporting service-oriented programming model and dis-
tributed language interpreters were presented in our previ-
ous papers [9-11, 14-18, 23], in this paper we discuss cha-
llenges that must be met while designing such languages.
In a proposed language design methodology, we identify
basic requirements that influence the language design de-
cisions. The basic set of requirements includes language
standardization, integration capabilities for heterogeneous
systems and services, event-driven workflow support, and
scripting-based simplicity. The requirements are derived
from properties of typical applications implemented in to-

day’s information systems. Languages designed by pro-
posed methodology were tested in a number of practical
usage scenarios. As a use-case in this paper, we are using
healthcare information system to show the applicability of
proposed methodology in a language design for such a de-
manding environment.

The rest of the paper is organized as follows. In Section
2, we briefly describe our implementation of event-driven
service-oriented architecture upon which event-driven ser-
vice compositions are built. In Section 3, we describe
a language design methodology where event-driven ser-
vice composition languages are derived from standards-
based SOA languages and widely used scripting and co-
ordination languages. Section 4 gives a generic example
of an application based on event-driven service composi-
tion that is used throughout the paper. In Section 5, we
present Coopetition services as special-purpose services
for handling events in service-oriented applications. In
Section 6, we present standards-based service composition
language CL, while its simplified and coordination-based
counterpart language SSCL is described in Section 7. In
Section 8, we present a multi-stage translation framework
that enables translation of high-level SSCL programs into
low-level CL processes and supports collaborative work of
application developers with different knowledge and skills.
In Section 9, we compare the efficiency of application
development process using XML-based CL language and
compact and textual SSCL language. Section 10 concludes
the paper.

2 EVENT-DRIVEN SOA

Design of an event-driven service composition language
begins with an analysis of the relationships between the
language and the underlying software architecture. These
relationships determine how events are handled within user
programs, which in turn has an impact on design of the
language primitives.

Since basic SOA does not support event-driven work-
flows, it is augmented with special-purpose mechanisms
for handling events. While event-driven SOA platforms
presented in [5-8] are using event-handling components
integrated into the SOA middleware, we have exposed
them to application developers as special-purpose event-
handling services called Coopetition services (CS) [9-
11]. This provides greater flexibility of the architec-
ture and easier introduction of new event-handling mech-
anisms into the system. Furthermore, application devel-
opers are enabled to use services as basic building blocks
for application-specific functionalities as well as for inte-
gration of services into event-driven workflows. This uni-
formity allows seamless and simple integration of event-
driven mechanisms with application-level logic.

AUTOMATIKA 51(2010) 4, 374–386 375

Programming Language Design for Event-Driven Service Composition S. Srbljić, D. Škvorc, D. Skrobo

AS

AS

AS

CS

ASAS
AS

CS

Data

Data

Data

Data
Data

Data

publish subscribe

subscribe

send
message

receive
message

Event-driven

service

composition

Application-

specific

services

Event-

handling

services

(Coopetition

services)

Fig. 1. Event-driven service-oriented architecture

Our implementation of event-driven SOA is shown in
Fig. 1. A set of application-specific services (AS) is com-
posed into business-specific workflow using service com-
position language. The interaction between user programs
written in service composition language and application-
specific services relies mostly on synchronous request-
response paradigm. To augment SOA with event handling
properties, we have developed special-purpose Coopetition
services (CS) that implement fundamental EDA characteri-
stics, such as decoupled interactions, many-to-many com-
munication, publish/subscribe messaging, event trigger-
ing, and asynchronous operations. Since the complexity
of event processing is hidden behind the Coopetition ser-
vices, a service composition language is considered EDA-
ready if it supports the invocation of event-handling ser-
vices. Event-handling services are explained in details in
Section 3, while design of language primitives for their in-
vocation is presented in Sections 4 and 5.

3 LANGUAGE DESIGN METHODOLOGY

During design of a programming language for event-
driven service composition, we analyzed the adoption
of existing SOA-ready and general-purpose programming
languages in different programmer communities. Our
objective was not to design a new language from scratch,
but rather augment most representative existing language
with SOA&EDA-ready properties.

WS-BPEL [12, 13] and similar XML-based languages
are standardized languages for development of SOA-based
applications. On the other hand, wide population of soft-
ware developers today is using scripting and coordination
languages for rapid application development. Therefore,
we designed two programming languages with distinct fea-
tures. The influential languages that drove the design of
our event-driven service composition languages and key
features of each language are shown in Fig. 2. Languages
are presented in details in Sections 4 and 5.

To stay aligned with standardization in service-oriented
computing and enable data exchange in heterogeneous en-
vironment, we designed an XML-based service compo-
sition language named Coopetition Language (CL) [14-
16]. CL is derived from WS-BPEL and WSDL languages.
Since WS-BPEL and WSDL are standardized languages
for building SOA-based applications, CL inherits the SOA
properties from these languages. To be EDA-ready, CL is
extended with invocations of event-handling services.

We simplified the XML-based syntax of CL language
and made the programming more efficient and less error-
prone by designing Simple Service Composition Language
(SSCL) [17, 18]. SSCL is an application-level end-user
language inspired by scripting and coordination languages.
SSCL emphasizes application-specific properties of event-
driven service composition and hides XML markup from
application developers. To be SOA and EDA-ready, SSCL
consists of two types of programming primitives. To be
SOA-ready, language contains a generic primitive for in-
vocation of Web services. This primitive is used to invoke
application-specific services. To be EDA-ready, a set of
special-purpose primitives is used to invoke event-handling
services and to compose application-specific services into
event-driven workflows.

4 EVENT-DRIVEN SERVICE COMPOSITION
EXAMPLE

Contemporary complex cyber-physical, socio-technical,
and bio-medical systems rely on information technology
that integrates and coordinates various technical, finan-
cial, medical, biological, and social processes. Openness

Coopetition

Language

(CL)

BPEL

Simple Service

Composition

Language

(SSCL)

WSDL
Scripting and

coordination lang.

XML-based

Standards-

based

Minimal set of

constructs

Distributed

execution

Simple syntax

and semantics

Com. and sync.

mechanisms

Influential

languages

Event-driven

service

composition

languages

Language

features

Fig. 2. Design of event-driven service composition lan-
guages

376 AUTOMATIKA 51(2010) 4, 374–386

Programming Language Design for Event-Driven Service Composition S. Srbljić, D. Škvorc, D. Skrobo

to technical, social, and life environments requires online,
open-ended, interactive, concurrent, and event-driven in-
formation systems. As a result, the most suitable tech-
nology for development of such information systems is
based on service-oriented event-driven architecture. Since
healthcare application integrates cyber-physical, socio-
technical, and bio-medical systems, we use it as an exam-
ple to demonstrate the applicability of our methodology in
design of SOA- and EDA-ready languages.

Healthcare systems are subject to different demo-
graphic, legal, medical, and administrative practices. Even
basic business processes, such as electronic prescriptions,
may widely vary from country to country or even within
different administrative domains of the same country.
Therefore, it becomes mandatory to build e-Health solu-
tions that are reusable, flexible, and responsive. Figure 3
presents an example of event-driven service composition
that implements e-Prescription process within a typical e-
Health solution.

E-Prescription process begins with primary general
practitioner (GP), who obtains patient’s medical record
from electronic healthcare record system (EHCR) (1).
After obtaining patient’s medical record and consulting
with the patient, primary GP establishes the initial diag-
nosis and requests a second opinion from one of his colle-
ague GPs (2). One of the colleague GPs examines the case
and gives his own opinion back to primary GP (3). After
establishing the final diagnosis, primary GP updates pa-
tient’s EHCR and forwards the diagnosis to the Healthcare
Control Body (HCCB) for inspection (4). HCCB is gov-
ernmental agency that controls spending and utilization of
healthcare resources within the healthcare system. HCCB
inspects the diagnosis and associated prescription, and ap-
proves the issuance of prescribed medicine by sending a
notification to all the drugstores (DS) where patient can
obtain it (5).

The implementation of given e-Prescription process us-
ing event-driven service composition is presented in Fig.
4. E-Health subsystems, such as EHCR, GP application,
HCCB, and DS are exposed as application-specific ser-
vices. These services are interconnected using a set of
coordination tasks that invoke application-specific services
and coordinate themselves through event-handling mech-
anisms for event-triggered task execution, asynchronous
communication, and publish/subscribe messaging. In the
example shown in Fig. 4, we are using two different co-
ordination mechanisms: message queue (MQ1, MQ2) for
decoupled asynchronous communication and broker center
(BC1, BC2) for publish/subscribe messaging. Task logic is
expressed in a pseudo code resembling the constructs of a
typical scripting language.

The presented implementation consists of five tasks. At
the beginning, Task 1 obtains patient identifier from GP

GP
(primary)

GP
(secondary)

GP
(secondary)

GP
(secondary)

MCB

EHCR

DS

DS

DS

1) patient

medical record

3) second opinion

5) approval

for issuing

prescribed

medicine

4) final

diagnosis

2) initial

diagnosis

Fig. 3. Event-driven service composition for e-Prescri-
ption process

application, patient’s healthcare record from EHCR, and
initial diagnosis from primary GP, using generic Invoke
primitive to invoke application-specific services. After ob-
taining the initial diagnosis, Task 1 forwards the case to
any secondary GP by storing it to message queue MQ1
(Send Message (MQ1, diag)). Each secondary GP has
associated Task 2 that obtains the case stored in message
queue MQ1 (Receive Message (MQ1)) once the respec-
tive secondary GP becomes available, forwards the case
to the secondary GP for diagnosis (Invoke (GPx, getAlt-
Diag, diag)), and returns the alternative diagnosis back
to primary GP through MQ2 (Send Message (MQ2, alt-
Diag)). Once the alternative diagnosis becomes available,
Task 1 continues with the execution. It obtains the al-
ternative diagnosis from MQ2 (Receive Message (MQ2)),
invoke the primary GP to get the final diagnosis (Invoke
(GP1, getFinDiag, altDiag)), and announces this diagno-
sis through the publish/subscribe mechanism BC1 (Publish
(BC1, patID, finDiag)).

Task 3 and Task 4 are subscribed to receive announce-
ments published on BC1 (Subscribe (BC1, patID, finDiag,
INT1)). As part of the subscription, subscribing tasks pro-
vide the address of the interpreter service (INT1) responsi-
ble for matching published events with the subscriptions.
The details about three-tiered publish/subscribe system
that consists of publishers and subscribers as standard el-
ements, and interpreters as our extension of standard pub-
lish/subscribe system, are given in Section 3. Each time an
announcement occurs, the announced event is forwarded
to the interpreter service. If there is a match, Task 3 and
Task 4 start the associated event handlers. Task 3 invokes
the EHCR to update patient’s healthcare record with newly
established diagnosis (Invoke (EHCR, updateHCR, patID,

AUTOMATIKA 51(2010) 4, 374–386 377

Programming Language Design for Event-Driven Service Composition S. Srbljić, D. Škvorc, D. Skrobo

finDiag)). At the same time, Task 4 invokes the HCCB
to get the approval for issuing the prescribed medicine to
the patient (Invoke (HCCB, getApproval, patID, finDiag)).
The acknowledgment retrieved from HCCB is then broad-
casted to all the drugstores in the system through pub-
lish/subscribe mechanism BC2 (Publish (BC2, ack)). Each
drugstore service has associated Task 5 that is subscribed
to receive announcements from BC2 (Subscribe (BC2, ack,
INT2)) with INT2 as interpreter service. Task 5 invokes the
associated drugstore service each time such announcement
occurs (Invoke (DSx, setAck, ack)).

5 COOPETITION SERVICES
To compose services into event-driven service com-

positions, we need special-purpose mechanisms for han-
dling events in distributed and heterogeneous environ-
ment. These mechanisms implement fundamental fea-
tures of event-driven architecture (EDA), such as de-
coupled interactions, event-triggering, asynchronous com-
munication, many-to-many communication, and pub-
lish/subscribe messaging.

As fundamental components of event-driven SOA,
event-handling mechanisms should also be implemented as
services. Therefore, we developed a generic set of event-
handling mechanisms and expose them as Coopetition ser-
vices (cooperation + competition) [9-11]. Coopetition ser-
vices provide common set of event-driven interaction pat-
terns in distributed systems [17, 18]. Programming lan-
guages presented in the rest of this paper use these services
for implementation of event-driven service-oriented work-
flows.

Queue is a messaging service that implements FCFS
communication pattern. Although primarily designed for
decoupled one-to-one communication, it can be used for
different forms of one-to-many and many-to-many com-
munication. There are two modes of operation of the
Queue service: blocking and non-blocking mode. In
blocking mode, the task reading a message from an empty
queue remains blocked until at least one message becomes
available. In non-blocking mode, the task continues its ex-
ecution despite the empty queue and gets notified to con-
tinue with the communication when the message becomes
available. While non-blocking mode enables implemen-
tation of asynchronous communication of service compo-
sition tasks, blocking mode is used for implementation
of event-triggered communication. Putting a message to
a queue corresponds to raising an event, while reading a
message from a queue corresponds to consuming the event.
Furthermore, since each message sent to the queue con-
tains a piece of information, the Queue service may be
used for implementation of simple publish/subscribe sys-
tem and different forms of one-to-many and many-to-many
communication.

To enable more user-friendly implementation of event-
triggering system that involves multiple parties, we de-
signed the TokenCenter service. The TokenCenter ser-
vice implements counting semaphore for mutual exclu-
sion and synchronization of two or more concurrent tasks.
Event-triggered execution of service composition tasks is
achieved through token passing. Putting tokens to a to-
ken center corresponds to raising an event, while retrieving
tokens from a token center corresponds to consuming the
event. In contrast to the Queue where messages are sent
and retrieved from the queue one at a time, TokenCenter
allows multiple tokens to be acquired or returned in a sin-
gle transaction. This allows better control over the system
when multiple tasks are competing for the limited num-
ber of shared resources. There are two modes of operation
of the TokenCenter service: blocking and non-blocking
mode. In blocking mode, the task requesting for tokens
from an empty token center or token center with insuffi-
cient number of tokens remains blocked until at least the
requested number of tokens becomes available. In non-
blocking mode, the task continues its execution despite the
insufficient number of tokens in the token center and gets
notified to continue with the critical section when the re-
quested number of tokens becomes available.

Since tokens and messages are delivered to the tasks on
a first-come first-served basis regardless of the informa-
tion contained within the message, both Queue and Token-
Center are limited to the serialized event triggering. To
enable out-of-order content-based event triggering, we de-
signed the BrokerCenter service. The BrokerCenter ser-
vice enables event-triggered execution of service compo-
sition tasks by using publish/subscribe messaging. We ex-
tended the basic two-tiered publish/subscribe model that
consists of publishers and subscribers to three-tiered pub-
lish/subscribe/interpret model that consists of publishers,
subscribers, and interpreters. First two parties, publishers
and subscribers, have the same roles as in regular pub-
lish/subscribe model. Publishers announce information,
while subscribers register terms of interest to the Broker-
Center. To keep the BrokerCenter application-independent
service, the third parties included into the model are inter-
preters that interpret published events in order to match
them with the subscriptions and notify the subscribers.
As part of the subscription process, subscribers provide
the BrokerCenter with address of the interpreter service
responsible for interpretation of the events they are in-
terested in. Interpreter services analyze information an-
nounced by publishers according to the subscribed terms.
If the announced information satisfies the terms, the inter-
preter service triggers the subscriber by sending a notifi-
cation. For example, in an e-Prescription application, the
terms could specify that only positive acknowledgments
from HCCB are accepted by drugstore services. Terms,

378 AUTOMATIKA 51(2010) 4, 374–386

Programming Language Design for Event-Driven Service Composition S. Srbljić, D. Škvorc, D. Skrobo

Task 1����� � ���	
� ���� ������������������ � �� !"# �$%&�� ���%&�� '�����(��� � �� !"# ���� �������� ������)#�* +#,,-.# �/0�� (�����1����� � 2#3#4 # +#,,-.# �/05�6������ � �� !"# ���� ���7������� �1������89:;4,< �=&�� '����� 6�������
Task 4>?@ABCD@EFGHIJ KLMNOJ PQROQLSJ NTUVWXY FKLMNOJ PQROQLSWLZ[\]Y^_`E FaHHGJ SbMcKKdefLgJ KLMNOJ PQROQLSWh?@iDAj FGHVJ LZ[W

Task 5klmnopqmrstuvw xyzw {|}v~�� sxyz~�����r s���w ����yzw xyz~Task 3�������������� ������ �� ���¡� �¢£�¤¥¦ ������� �� ���¡¤§¦¨©ª� �«¬�� ®�¯��°¬�� ������ �� ���¡¤
Task 2±²³´ µ ¶·¸·¹º· »·¼¼½¾· ¿ÀÁÂÃ³ÄÅÆ²³´ µ ÇÈºÉÊ· ¿ËÌÍÎ ´ÏÅÐÄÅÆ²³´Î ±²³´ÃÑ·ÈÒ »·¼¼½¾· ¿ÀÁÍÎ ³ÄÅÆ²³´Ã GP2

(secondary)

GP3
(secondary)

GP4
(secondary)

Task 2ÓÔÕÖ × ØÙÚÙÛÜÙ ÝÙÞÞßàÙ áâãäåÕæçèÔÕÖ × éêÜëìÙ áíîïð ÖñçòæçèÔÕÖð ÓÔÕÖåóÙêô ÝÙÞÞßàÙ áâãõð ÕæçèÔÕÖå
Task 2ö÷øù ú ûüýüþÿü�ü����ü �����ø	
�÷øù ú �ÿ��ü ����� ù�
�	
�÷øù� ö÷øù��ü� �ü����ü ����� ø	
�÷øù�MQ1

MQ2

GP1
(primary)

EHCR BC1

Task 5�������� !"#$% &'(%)*+$,-. /01234.5678 /9:;< =>?@12< 0123Task 5ABCDEFGCHIJKLM NOPM QRSLTUV INOPTWVXYZH I[\]M ^_`aOPM NOPT DS1

DS2

HCCB

DS3

BC2

INT2

INT1

Fig. 4. Implementation of event-driven e-Prescription process

announcements, and notifications are user-defined docu-
ments. Having the interpretation of the event implemented
as a separate interpreter service, rather than being an in-
tegral part of the application, provides great flexibility in
designing publish/subscribe systems. Interpreters are in-
dependent services developed by independent developers.
Different applications may use different interpreters, the
same interpreter may be used in multiple applications, and
multiple interpreters may be simultaneously used within
single application. Furthermore, the interpreters assigned
to particular subscriptions may dynamically change during
the run-time.

6 COOPETITION LANGUAGE (CL)

To make the development of event-driven applications
familiar to service-oriented programmer community, we
designed an event-driven service composition language
derived from XML-based service composition languages.
Since WS-BPEL [12] is widely accepted as standard ex-
ecutable language in SOA-based applications, our event-
driven service composition language is based on WS-
BPEL. The new SOA&EDA-ready language is called

Coopetition Language (CL) [14-16].
Standardized XML-based languages, such as WS-

BPEL [12] and WSDL [13], enable technology-transparent
process descriptions in hybrid environments comprised of
heterogeneous components. Since they were designed for
implementation of internet-based applications, they su-
pport advanced concepts like task-level concurrency, trans-
actions, and complex data integration. Furthermore, a lot
of interpreters and execution frameworks for these lan-
guages already exist on the market. Our goal was to
stay compliant with existing XML-based languages, reuse
the expressiveness of standard WS-BPEL and WSDL lan-
guages, and augment them with support for event-driven
workflows.

Coopetition Language (CL) [14-16] reuses basic WS-
BPEL constructs. Since WS-BPEL already supports the
invocation of Web services, the CL language inherits SOA-
ready properties from WS-BPEL. However, to make the
CL an EDA-ready service composition language, we aug-
ment the WS-BPEL process descriptions with WSDL de-
scriptions of Coopetition services. Being an integral part of
the CL language, WSDL descriptions of Coopetition ser-

AUTOMATIKA 51(2010) 4, 374–386 379

Programming Language Design for Event-Driven Service Composition S. Srbljić, D. Škvorc, D. Skrobo

vices enable the invocation of event handling mechanisms
directly from CL programs.

Figure 5 shows the implementation of Task 1 from Fig.
4 in CL language. Since both application-specific func-
tionalities and event-handling mechanisms are exposed as
services, the CL program consists of a sequence of invoke
statements, which is a standard WS-BPEL construct for
invoking Web services. First three statements are used to
invoke the getPatientID, getHCR, and getDiag operations
of application-specific services GP1, EHCR, and GP1, re-
spectively. Next two statements are used to send a mes-
sage to Task 2 through Queue service MQ1 and read a re-
sponse from Task 2 through Queue service MQ2. Finally,
the program invokes application-specific service GP1 and
publishes the results of its execution to the BrokerCenter
service BC1.

7 SIMPLE SERVICE COMPOSITION LANGUAGE
(SSCL)

Building XML-based process descriptions requires the
use of complex lexical and syntax patterns. XML markup
becomes unpractical for complex processes since their de-
scriptions become too large and unmanageable. The usual
way to manage complex XML syntax while building ser-
vice compositions are visual editors, such as BPEL Project
for Eclipse [19] and BPEL Editor for the .NET Framework
[20]. These tools provide a form-based GUI for definition
of application-specific XML parameters and automatically
generate XML markup on behalf of application developer.

Instead of using form-based XML editors, we designed
text-based language called Simple Service Composition
Language (SSCL) [17, 18]. SSCL was inspired by script-
ing and coordination languages which, when specialized
for given domain, enable rapid and simple application de-
velopment. On one side, the objective of the SSCL lan-
guage is to make the programming more efficient and less
error-prone. On the other side, the objective is to design a
language that resembles the process where set of concur-
rent tasks is mutually coordinated through event-handling
EDA mechanisms.

During the design of the SSCL language, we reused
the XML-based CL language constructs and designed their
textual counterparts. SSCL notation is based on sim-
ple human-readable lexical and syntax features with state-
ments that have simple semantics and usage patterns.

Figure 6 shows the implementation of Task 1 from Fig.
4 in SSCL language. SOA and EDA-ready properties of
SSCL language are accomplished through two types of
language primitives. To be SOA-ready, SSCL contains
a generic invoke statement for invocation of application-
specific services. To be EDA-ready, a set of special-
purpose statements for invocation of Coopetition services

<sequence>

 <invoke partnerLink="GP1"

 operation="getPatientID"

 portType="GP"

 requestVariable="patIDReq"

 responseVariable="patID"/>

 <invoke partnerLink="EHCR"

 operation="getHCR"

 portType="EHCR"

 requestVariable="patID"

 responseVariable="hcRec"/>

 <invoke partnerLink="GP1"

 operation="getDiag"

 portType="GP"

 requestVariable="hcRec"

 responseVariable="diag"/>

 <invoke partnerLink="MQ1"

 operation="Put"

 portType="MessageQueue"

 requestVariable="diag"/>

 <invoke partnerLink="MQ2"

 operation="Get"

 portType="MessageQueue"

 requestVariable="msgReq"

 responseVariable="altDiag"/>

 <invoke partnerLink="GP1"

 operation="getFinDiag"

 portType="GP"

 requestVariable="altDiag"

 responseVariable="finDiag"/>

 <invoke partnerLink="BC1"

 operation="Publish"

 portType="BrokerCenter"

 requestVariable="pat_diag"/>

</sequence>

Fig. 5. CL implementation of Task 1

is designed. For example, putmessage and getmessage
statements are used to handle messages stored in the
Queue, while publish statement is used to publish events
to the BrokerCenter.

8 SSCL-TO-CL TRANSLATION AND EXECU-
TION FRAMEWORK

SSCL applications are executed in distributed environ-
ment by translating SSCL programs to CL code [14, 17].
Figure 7 presents the basic elements of SSCL-to-CL trans-
lation and execution environment.

SSCL programs that make event-driven SOA applica-

380 AUTOMATIKA 51(2010) 4, 374–386

Programming Language Design for Event-Driven Service Composition S. Srbljić, D. Škvorc, D. Skrobo

tions are translated by specialized SSCL Compiler. The
SSCL Compiler uses Service description repository to
fetch WSDL interface descriptions of each service in-
voked in SSCL programs. The logic of SSCL programs
is translated using predefined template code snippets writ-
ten in CL language and stored in Snippets repository.
Once CL snippets are filled-in and merged into com-
plete CL programs, the resulting CL programs are de-
ployed and executed by CL Interpreter. CL Interpreter
is a lightweight WS-BPEL-based engine that supports ex-
ecution of CL programs. During their execution, CL
programs invoke Application-specific services that per-
form application-specific computations and Coopetition
services that handle events.

Translation and execution environment for SSCL and
CL languages has been built using PIE (Programmable In-
ternet Environment, http://www.pie.fer.hr). PIE is a dis-
tributed service-oriented platform for deployment and ex-
ecution of Web services. PIE has been developed as a part
of the CroGrid national poly-project supported by the Min-
istry of Science, Education, and Sports of the Republic of
Croatia in cooperation with Ericsson Nikola Tesla, Zagreb,
Croatia.

9 EVALUATION OF CL AND SSCL
To compare the efficiency of application development

process using XML-based CL language and compact and

reuse the

BPEL and WSDL

nt-

] reuses basic

BPEL already

supports the invocation of Web services, the CL

ready properties from WS-

ready

language, we augment the WS-

BPEL process descriptions with WSDL descriptions

. Being an integral part of the

Coopetition

enable the invocation of event handling

program Task1

 variable patID, hcRec, diag, altDiag,

 finDiag

 invoke "http://eh.com/GP1",

 "getPatID", patID

 invoke "http://eh.com/EHCR",

 "getHCR", patID, hcRec

 invoke "http://eh.com/GP1",

 "getDiag", hcRec, diag

 putmessage "http://eh.com/Queue",

 "MQ1", diag

 getmessage "http://eh.com/Queue",

 "MQ2", altDiag

 invoke "http://eh.com/GP1",

 "getFinDiag", altDiag, finDiag

 publish "http://eh.com/BrokerCenter",

 "BC1", "permanent", patID,

 finDiag, eventHandleID

endprogram

Fig. 6. SSCL implementation of Task 1

SSCL-to-CL Translation and Execution

Environment
Service Description

Repository

Execution Environment

App-specific

services
Coopetition

services

CL

Interpreter

SSCL

Compiler

SSCL

Programs

CL Snippets

Repository

Fig. 7. SSCL translation and execution

textual SSCL language, we made a series of experiments
with computer science PhD students from University of
Zagreb attending the Ericsson Nikola Tesla summer camp.
Based on given set of services and service composition
workflows, students were required to apply the languages
to compose these services into applications for distributed
algebraic computations, as well as simple e-Health, finan-
cial, and GIS applications [21, 22]. We evaluated the two
languages against two criteria: code size reduction and
application development time reduction [23]. The results
of experiments are summarized in Table 1.

Table 1. Evaluation of CL and SSCL

 is a

lightweight WS-BPEL-based engine that supports

L

 that

perform application-specific computations and

Translation and execution environment for SSCL

Table 1. Evaluation of CL and SSCL

 CL SSCL

Code

Size

5000 – 10000

lines of code

30 – 50

lines of code

Man

Power

3 – 5

developers
1 developer

Development

Effort
Time 5 – 10 days 2 days

As Table 1 shows, typical application based on event-
driven service composition requires several thousands
of lines of code if CL language is used. Relatively
large amount of code is required due to extensive XML
markup used in CL language and WSDL descriptions of
application-specific and Coopetition services embedded
into the CL programs. On the other hand, an equivalent
application written in SSCL requires only few dozens of
lines of code. Therefore, SSCL reduces the amount of code
for two orders of magnitude, making the application main-
tenance far easier.

AUTOMATIKA 51(2010) 4, 374–386 381

Programming Language Design for Event-Driven Service Composition S. Srbljić, D. Škvorc, D. Skrobo

Second criterion we used during the language evalua-
tion is application development time reduction. As Table
1 shows, typical application based on event-driven service
composition written in CL requires approximately 30 man-
days of development effort. On the other hand, an equiv-
alent application written in SSCL requires approximately
two man-days. Therefore, SSCL reduces the application
development time by at least an order of magnitude.

10 CONCLUSION

This paper describes methodology for design of SOA-
and EDA-ready programming languages. In our language
design methodology, we identify four main requirements.
First, a language should be based on standard service com-
position languages to be compatible with SOA-enabling
technologies. Second, a language should enable seam-
less integration of services into event-driven workflows.
Third, a language should resemble scripting and coordi-
nation languages, which are today widely used in applica-
tion/software development. Fourth, to overcome a knowl-
edge divide, language should enable seamless cooperation
between application developers with different skills and
knowledge.

Since it is hard to satisfy all design requirements in a
single language, our methodology span two different ab-
straction levels, ranging from system level XML languages
to application level coordination languages, which targets
two different groups of application developers with differ-
ent skills and knowledge, ranging from professional pro-
grammers familiar with XML-based service composition
technologies to end-users and business analysts familiar
with business processes.

To stay aligned with SOA community and Web ser-
vices, we choose standardized XML-based WS-BPEL lan-
guage as a basis for new event-driven service composi-
tion language. Since basic SOA does not support event-
driven workflows, we upgraded the WS-BPEL with su-
pport for event-driven application design. We have de-
signed special-purpose Coopetition services for event trig-
gering, decoupled interactions, synchronization, many-to-
many communication, publish/subscribe messaging, and
asynchronous operations. We augmented the WS-BPEL
process descriptions with WSDL descriptions of Coopeti-
tion services. Being an integral part of a newly developed
CL language (Coopetition Language), WSDL descriptions
of Coopetition services enable the invocation of event-
handling mechanisms directly from the CL programs.

While upgraded WS-BPEL is convenient for use by
a community of professional programmers familiar with
service-oriented architecture and Web services, end-users
and business analysts familiar with business processes
still find this language complex and intractable. They

prefer high-level descriptions of business processes by
using scripting and coordination languages. Therefore,
we designed textual coordination language SSCL (Simple
Service Composition Language) with simple syntax struc-
ture and convenient semantics and usage patterns. The core
elements of SSCL are programming primitives for invoca-
tion of Web services and handling events through Coopeti-
tion services.

We found the SSCL language more productive for busi-
ness process designers than WS-BPEL based CL language.
During summer internships in Ericsson Nikola Tesla Za-
greb, we examined the productivity of SSCL and CL lan-
guages within different groups of students. Our experience
shows that SSCL reduces the code size and application de-
velopment time by one to two orders of magnitude if com-
pared to WS-BPEL-based CL language.

To enable a seamless cooperation between application
developers with different skills and knowledge, we de-
fined a multistage process for translation of service com-
position logic from high to low level of abstraction. This
process translates the SSCL language into the CL lan-
guage, which is then executed by WS-BPEL interpreter
augmented with WSDL descriptions of Coopetition ser-
vices. Multistage translation enables cooperation between
end-users and professional programmers. For example,
an end-user who understands the logic of business pro-
cess may define the core application logic in the high-level
SSCL language. After being translated into the low-level
and more expressive CL language, professional program-
mers may augment the core process with additional logic,
such as conversion and adaptation of service parameter
data formats, which is required for correct execution of ser-
vice compositions.

ACKNOWLEDGMENT
The authors acknowledge the support of the Ministry of

Science, Education, and Sports of the Republic of Croa-
tia through research project Computing Environments for
Ubiquitous Distributed Systems (036-0362980-1921). Fur-
thermore, the authors wish to thank Ivan Zuzak, Miroslav
Popovic, Klemo Vladimir, Marin Silic, Goran Delac,
Jakov Krolo, Ivan Budiselic, and Josko Radej from School
of Electrical Engineering and Computing, University of
Zagreb, Ivan Skuliber and Ivan Benc from Ericsson Nikola
Tesla Zagreb, Ivan Gavran from Calyx Zagreb, Franjo
Plavec and Ivan Matosevic from University of Toronto, Ivo
Krka from University of Southern California Los Ange-
les, and Boris Debic from Google, Inc. for their help with
preparing this paper. Finally, many thanks to student mem-
bers of our research project who participated in the imple-
mentation of the PIE framework.

382 AUTOMATIKA 51(2010) 4, 374–386

Programming Language Design for Event-Driven Service Composition S. Srbljić, D. Škvorc, D. Skrobo

APPENDIX A

Coopetition service API

Service Service API Description

Create(bsemURL, instID) Creates an instance of a binary semaphore

Destroy(bsemURL, instID) Destroys an instance of a binary semaphore

Obtain(bsemURL, instID) Obtains token from a binary semaphore

B
in

a
ry

 S
em

a
p

h
o

re

(t
o
k

en
 c

en
te

r
w

it
h

ex
ac

tl
y

 o
n
e

to
k

en
)

Release(bsemURL, instID) Returns token to a binary semaphore

Create(csemURL, instID, capacity)
Creates an instance of a counting semaphore with

capacity tokens

Destroy(csemURL, instID) Destroys an instance of a counting semaphore

Obtain(csemURL, instID, N) Obtains N tokens from a counting semaphore

C
o

u
n

ti
n

g
 S

em
a

p
h

o
re

(t
o
k

en
 c

en
te

r
w

it
h

 a
rb

it
ra

ry

n
u

m
b
er

 o
f

to
k
en

s)

Release(csemURL, instID, N) Returns N tokens to a counting semaphore

Create(mqURL, instID) Creates an instance of a message queue

Destroy(mqURL, instID) Destroys an instance of a message queue

Put(mqURL, instID, msg) Sends a message to a message queue

M
es

sa
g

e
Q

u
eu

e

Get(mqURL, instID) Retrieves a message from a message queue

Create(ecURL, instID) Creates an instance of an event channel

Destroy(ecURL, instID) Destroys an instance of an event channel

Publish(ecURL, instID, eventType, eventDoc) Publishes an event to an event channel

Republish(ecURL, instID, eventType, eventID,

 eventDoc)
Republishes an event to an event channel

Unpublish(ecURL, instID, eventID) Revokes the event published to an event channel

Subscribe(ecURL, instID, interpreterURL,

 callback, subscriptionDoc)
Starts listening for events published to an event channel

E
v
en

t
C

h
a

n
n

el

(b
ro

k
er

 c
en

te
r)

Unsubscribe(ecURL, instID, subscriptionID) Cancels an active subscription with an event channel

 !"#$%&'(%')#*+,-,.,/)0

"%&'(%')#*+,-,.,/) 1)02+,*.,3&

createBinarySemaphore bsemURL, instID Creates an instance of a binary semaphore

destroyBinarySemaphore bsemURL, instID Destroys an instance of a binary semaphore

obtainBinarySemaphore bsemURL, instID Obtains token from a binary semaphore

releaseBinarySemaphore bsemURL, instID Returns token to a binary semaphore

createCountingSemaphore csemURL, instID, capacity
Creates an instance of a counting semaphore with

capacity tokens

destroyCountingSemaphore csemURL, instID Destroys an instance of a counting semaphore

obtainCountingSemaphore csemURL, instID, N Obtains N tokens from a counting semaphore

releaseCountingSemaphore csemURL, instID, N Returns N tokens to a counting semaphore

AUTOMATIKA 51(2010) 4, 374–386 383

Programming Language Design for Event-Driven Service Composition S. Srbljić, D. Škvorc, D. Skrobo

createMailbox mqURL, instID Creates an instance of a message queue

destroyMailbox mqURL, instID Destroys an instance of a message queue

putMessage mqURL, instID, msg Sends a message to a message queue

getMessage mqURL, instID, msg Retrieves a message from a message queue

createEventChannel ecURL, instID Creates an instance of an event channel

destroyEventChannel ecURL, instID Destroys an instance of an event channel

publish ecURL, instID, eventType, eventDoc, eventID Publishes an event to an event channel

republish ecURL, instID, eventType, eventID,

 eventDoc, newEventID
Republishes an event to an event channel

unpublish ecURL, instID, eventID, result Revokes the event published to an event channel

subscribe ecURL, instID, interpreterURL,

 callback, subscriptionDoc, subscriptionID
Starts listening for events published to an event channel

unsubscribe ecURL, instID, subscriptionID, result Cancels an active subscription with an event channel

invoke serviceURL, operationName, parameterList Invokes a stateless application-specific service

invoke serviceURL, instID, operationName,

 parameterList

Invokes an instance of a stateful application-specific

service

 !"!#$"%&'"&%($#)*#"+(#,-#.%)/%!0s

384 AUTOMATIKA 51(2010) 4, 374–386

Programming Language Design for Event-Driven Service Composition S. Srbljić, D. Škvorc, D. Skrobo

12#(3'(%."#)*#,-#4!2/&!/(#.%505"56($

(!""#$!%&'!'! coopetition service + generic application-specific service)

Languag(#.%505"56(($'%5."5)2

<invoke partnerLink ="messageQueuePartnerLinkRef"

 Operation ="Create"

 portType ="messageQueuePortTypeRef"

 requestVariable ="mqInstanceNameVarRef"

 responseVariable ="mqCreateResVarRef" />

Creates an instance of a message queue

<invoke partnerLink ="messageQueuePartnerLinkRef"

 Operation ="Destroy"

 portType ="messageQueuePortTypeRef"

 requestVariable ="messageQueueInstanceRef"

 responseVariable ="mqDestroyResVarRef" />

Destroys an instance of a message queue

<invoke partnerLink ="messageQueuePartnerLinkRef"

 Operation ="Get"

 portType ="messageQueuePortTypeRef"

 requestVariable ="messageQueueInstanceRef"

 responseVariable ="outputMsgVarRef" />

Retrieves a message from a message queue

<invoke partnerLink ="messageQueuePartnerLinkRef"

 Operation ="Put"

 portType ="messageQueuePortTypeRef"

 requestVariable ="messageQueueInstanceRef" />

Sends a message to a message queue

<invoke partnerLink ="servicePartnerLinkRef"

 Operation ="serviceOperationRef"

 portType ="servicePortTypeRef"

 requestVariable ="inputParamsVarRef"

 responseVariable ="outputDataVarRef" />

Generic primitive for invocation of an
application-specific service

REFERENCES
[1] R. W. Schulte, “The Growing Role of Events in En-

terprise Applications”, Gartner Research, July 2003,
http://www.gartner.com/resources/116100/116129/116129.pdf,
accessed 17 Sep 2010.

[2] Z. Laliwala, S. Chaudhary, “Event-driven Service-Oriented
Architecture”, International Conference on Service Systems
and Service Management, pp. 1-6, Melbourne, VIC, Aus-
tralia, July 2008.

[3] “Event-Driven SOA: A Better Way to SOA”, TIBCO
Software Inc., 2006, http://www.tibco.com/multimedia/wp-
event-driven-soa_tcm8-803.pdf, accessed 14 Dec 2010.

[4] N. Milanovic, “Service Engineering Design Patterns”, Pro-
ceedings of the 2nd IEEE International Symposium on Ser-
vice Oriented System Engineering, pp. 19-26, Shanghai,
China, 2006.

[5] J.-L. Marechaux, “Combining Service-Oriented Archi-
tecture and Event-Driven Architecture using an En-
terprise Service Bus”, IBM DeveloperWorks, March
2006, http://www.ibm.com/developerworks/library/ws-soa-
eda-esb/, accessed 14 Dec 2010

[6] place S. Bharti, et al., “Fine Grained SEDA Architecture for
Service Oriented Network Management Systems”, Interna-
tional Journal of Web Services Practices, Vol. 1, No. 1-2,
2005, pp. 158-166

[7] “Service Component Architecture – Unifying SOA and
EDA”, Whitepaper, Fiorano Software Technologies,
2010, http://www.fiorano.com/products/bca_overview.php,
accessed 14 Dec 2010.

[8] J. Hanson, “Event-Driven Services in SOA: Design an
Event-Driven and Service-Oriented Platform with Mule”,
JavaWorld.com, January 2005, http://www.javaworld.com/
javaworld/jw-01-2005/jw-0131-soa.html, accessed 14 Dec
2010.

[9] A. Milanovic, S. Srbljic, D. Skrobo, D. Capalija, S.
Reskovic, “Coopetition Mechanisms for Service-Oriented
Distributed Systems”, Proceedings of 3rd International
Conference on Computing, Communications and Control
Technologies, Cybernetics and Informatics (CCCT’05), pp.
118–123, Austin, Texas, USA, July 2005.

[10] S. Reskovic, Synchronization and Communication Mech-
anisms for Service-Oriented Applications, B.Sc. Thesis,
School of EE & Computing, University of Zagreb, Septem-
ber 2005 (in Croatian).

[11] D. Capalija, Publish/Subscribe Mechanisms for Implemen-
tation of Content-Based Networking, B.Sc. Thesis, School
of EE & Computing, University of Zagreb, June 2005 (in
Croatian).

[12] A. Alves, et al., Web Services Business Process Ex-
ecution Language (WS-BPEL) 2.0, OASIS, August
2006, http://www.oasis-open.org/committees/wsbpel, ac-
cessed 12 Feb 2010.

[13] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana,
Web Services Decription Language (WSDL) 1.1, World
Wide Web Consortium (W3C) Note, February 2001,
http://www.w3.org/TR/wsdl, accessed 12 Feb 2010.

AUTOMATIKA 51(2010) 4, 374–386 385

Programming Language Design for Event-Driven Service Composition S. Srbljić, D. Škvorc, D. Skrobo

[14] D. Skrobo, A. Milanovic, S. Srbljic, “Distributed Pro-
gram Interpretation in Service-Oriented Distributed Sys-
tems”, Proceedings of the WMSCI’05, pp. 193-197, Or-
lando, Florida, USA, July 2005.

[15] A. Milanovic, Service-Oriented Programming Model,
Ph.D. Thesis, School of EE & Computing, University of
Zagreb, December 2005 (in Croatian).

[16] D. Skrobo, Distributed Program Interpretation in Service
Oriented Architectures, M.Sc. Thesis, School of EE &
Computing, University of Zagreb, January 2006 (in Croa-
tian).

[17] I. Gavran, A. Milanovic, S. Srbljic, “End-User Program-
ming Language for Service-Oriented Integration”, Proceed-
ings of 7th Workshop on Distributed Data and Structures,
Santa Clara, California, USA, January 2006.

[18] I. Gavran, End-User Language for Service-Oriented Pro-
gramming Model, M.Sc. Thesis, School of EE & Comput-
ing,University of Zagreb, March 2006 (in Croatian).

[19] BPEL Project, http://www.eclipse.org/bpel, accessed 12
Feb 2010.

[20] M. Buckle, C. Abela, M. Montebello, “A BPEL Engine
and Editor for the .NET Framework”, Proceedings of the
3rd IEEE European Conference on Web Services (ECOWS
2005), Vaxjo, Sweden, November 2005.

[21] I. Krka, Personalized Service-Oriented Navigation System,
B.Sc. Thesis, School of EE & Computing, University of Za-
greb, May 2007 (in Croatian).

[22] M. Zulj, Service-Oriented Application for Accounting Man-
agement, B.Sc. Thesis, School of EE & Computing, Univer-
sity of Zagreb, April 2007 (in Croatian).

[23] S. Srbljic, “PIE: End-user Programmable Internet Environ-
ment”, Google Technical Talk, Mountain View, California,
USA, January 2006.

Siniša Srbljić is currently a professor at the
School of Electrical Engineering and Computing,
University of Zagreb, and head of the Consumer
Computing Laboratory. His career also spans Sil-
icon Valley where he worked on large-scale dis-
tributed systems at AT&T Labs. He was visiting
the University of Toronto, where he worked on
the NUMAchine multiprocessor project, and the
University of California, Irvine. His research in-
terests include consumer computing and widget-
oriented architecture. In teaching, he is involved

in the theory of computing, programming language translation, service-
oriented computing, and network middleware systems.

Dejan Škvorc is a research and teaching assis-
tant, and member of the Consumer Computing
Laboratory at School of Electrical Engineering
and Computing, University of Zagreb, Croatia.
He received his B.Sc. degree in 2003, M.Sc. de-
gree in 2006, and PhD in 2010 from School of
Electrical Engineering and Computing, Univer-
sity of Zagreb. During 2007, Dejan Skvorc spent
four months as a software engineering intern in
Google’s Mountain View office, CA, USA, with
Google Gadgets group. He is a coauthor and one

of the architects of the Google’s inter-gadget communication framework.
His research interests include serviceoriented architectures, programming
language design, end-user development, and consumer programming.

Daniel Skrobo is a solution architect at Erics-
son Nikola Tesla d.d., Zagreb, Croatia. He re-
ceived his Ph.D., M.Sc., and B.Sc. degrees from
School of Electrical Engineering and Computing,
University of Zagreb. Currently he is working
on design and development of healthcare applica-
tions and systems. He held research assistantship
position at School of Electrical Engineering and
Computing, University of Zagreb and was a re-
search engineering intern at Google’s Mountain
View office in CA, USA. His engineering and

research interests are program translation systems and service-oriented
computing systems.

AUTHORS’ ADDRESSES
Prof. Siniša Srbljić, Ph.D.
Dejan Škvorc, Ph.D.
School of Electrical Engineering and Computing,
University of Zagreb,
Unska 3, 10000, Zagreb, Croatia
email: sinisa.srbljic@fer.hr, dejan.skvorc@fer.hr
Daniel Skrobo, Ph.D.
Ericsson Nikola Tesla d.d.
Krapinska 45, p.p. 93, 10002, Zagreb, Croatia
email: daniel.skrobo@ericsson.com

Received: 2010-10-07
Accepted: 2011-01-24

386 AUTOMATIKA 51(2010) 4, 374–386

