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Abstract 
 

 The protein folding problem has been one of the most challenging subjects in 

biological physics due to its complexity. Energy landscape theory based on statistical 

mechanics provides a thermodynamic interpretation of the protein folding process. We 

have been working to answer fundamental questions about protein-protein and protein-

water interactions, which are very important for describing the energy landscape surface 

of proteins correctly. 

 At first, we present a new method for computing protein-protein interaction 

potentials of solvated proteins directly from SAXS data.  An ensemble of proteins was 

modeled by Metropolis Monte Carlo and Molecular Dynamics simulations, and the 

global X-ray scattering of the whole model ensemble was computed at each snapshot of 

the simulation. The interaction potential model was optimized and iterated by a 

Levenberg-Marquardt algorithm. 

 Secondly, we report that terahertz spectroscopy directly probes hydration 

dynamics around proteins and determines the size of the dynamical hydration shell.  We 

also present the sequence and pH-dependence of the hydration shell and the effect of the 

hydrophobicity.  On the other hand, kinetic terahertz absorption (KITA) spectroscopy is 

introduced to study the refolding kinetics of ubiquitin and its mutants.  KITA results are 

compared to small angle X-ray scattering, tryptophan fluorescence, and circular 

dichroism results.  We propose that KITA monitors the rearrangement of hydrogen 

bonding during secondary structure formation. 

 Finally, we present development of the automated single molecule operating 

system (ASMOS) for a high throughput single molecule detector, which levitates a single 

protein molecule in a 10 µm diameter droplet by the laser guidance. I also have 

performed supporting calculations and simulations with my own program codes. 
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Chapter 1 Introduction 
 

1.1 The protein folding problem 
 

 Proteins are polymers made of amino acids, joined together by peptide bonds.  

Each protein has a specific sequence of amino acids, which is uniquely encoded in the 

genetic code.  Through the process of transcription and translation via RNA, genetic 

codes can be used for the construction of proteins. 

 

 DNA RNA Peptide chain Folded ProteinRibosome→ ⎯⎯⎯⎯→ →  (1.1) 

 

 Proteins are essential to the structure and function of living organisms.  Many 

proteins perform a wide variety of biological functions, such as catalysis of chemical 

reactions, while some other proteins play structural or mechanical roles.  Also, functions 

of many other proteins involve oxygen transport, immune function, muscle contraction, 

etc.[1] 

 In order to perform specific biological functions, proteins must have a particular 

native structure, the folded state.  If a protein lacks the correct structure, it might be 

inactive, functionless or misfolded and malfunctioning.  Misfolded protein or aggregation 

of protein causes thousands of diseases such as Parkinson's disease and Alzheimer’s.[2]  

The transformation from an inactive, denatured (unfolded) state to the native (folded) 

state is called the “protein folding”.  The amino acid sequence encoded in DNA 

determines how fast the protein folds and what structures the native protein will have 

eventually.[3] 

 

 However, how a protein folds still remains one of the most challenging problems 

in biology and biological physics [4], because it is a highly complex process, having 

almost infinite numbers of conformations.  In early 1960s, Anfinsen et al. published a 

pioneering work on the folding kinetics of RNase.[5]  Cyrus Levinthal pointed out in 

1968 that protein folding cannot be a random process because that would require too 
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large a time scale, so there must be shortcuts for the folding process.[6, 7]  In order to 

answer the fundamental questions of the protein folding, a lot of researchers have been 

working to combine the theory and the experimental results,[8, 9] and the energy 

landscape theory has been established since 1990s with great success. [10, 11]  

 

 

1.2 Energy landscape theory 
 

 The energy landscape theory based on statistical mechanics provides a 

thermodynamic interpretation of the protein folding process.  Thermodynamically, the 

protein folding process can be described as an energy landscape that looks like a funnel 

[10, 11], as briefly shown in [Figure 1.1]. 

 

 
Figure 1.1 : The funnel-like energy landscape model 

Nelson, D.L. and M.M. Cox, Lehninger Principles of Biochemistry. 4th ed. 2004. p149. 
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 The horizontal axis in [Figure 1.1] describes conformational entropy of the 

protein structure, while the vertical axis describes the level of energy, enthalpy.  Another 

vertical element, Q corresponds to the “percentage of residues of protein in the native 

conformation”. The unfolded states (Q~0%) are characterized by a high degree of 

conformational entropy and energy.  As the folding proceeds, the narrowing of the funnel 

represents a decrease in the number of conformations, and hence in entropy.  Small 

depressions along the sides of the energy funnel represent semi-stable intermediates that 

can briefly slow down the folding process.[1]  At the bottom of the funnel, the protein 

finally reaches the native, folded state (Q=100%) characterized by the lowest energy with 

minimum conformational entropy. 

 

 

1.3 Various experimental techniques for the protein folding 

problem 
 

 A number of experimental techniques have been developed to describe the energy 

landscape surface of the proteins in their probe-dependent coordinates.  So far, the current 

experimental techniques can be classified into the category of equilibrium and relaxation 

techniques. Equilibrium techniques include NMR, while relaxation includes a fast mixing 

(or a stopped-flow), temperature jump, pressure jump, etc.[8] 

  Combined with those techniques, Small Angle X-ray Scattering (SAXS), Circular 

Dichroism (CD), Terahertz spectroscopy, and Single Molecule Detection are essential 

probes for the investigation of the protein folding problem.  We can measure the radius of 

gyration of proteins by SAXS [12], which can be applied to study the time-resolved 

kinetics of the protein folding.[13]  SAXS kinetics combined with stopped-flow 

apparatus measures the radius of gyration to determine how fast proteins and their 

mutants collapse.  Circular dichroism is a useful technique to monitor secondary structure 

formation, such as alpha helix and beta sheet, by measuring the difference of clockwise 

and counterclockwise circular polarizations.[14]  Moreover, Terahertz spectroscopy is a 

perfect probe for investigating collective motions such as conformational changes and the 
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formation of hydration shells around the protein [13-15], while single molecule 

fluorescence is used to study the conformational change of the protein on the basis of a 

single molecule.[15, 16] 

 

 

1.4 Outline 
 

 I have been working with Dr. Martin Gruebele to answer fundamental questions 

about protein-protein and protein-water interactions, which are very important for 

describing the energy landscape surface of the proteins correctly.  My doctoral research 

has been balanced between experimental and computational work at the interdisciplinary 

interface of physics, chemistry and biology. 

 

 In Chapter 2, we present a new method for computing protein-protein interaction 

potentials of solvated proteins directly from SAXS data.  I have regularly visited BioCat-

18 of the Advanced Photon Source at Argonne National Lab, IL to perform SAXS 

experiments.  An ensemble of proteins was modeled by Metropolis Monte Carlo and 

Molecular Dynamics simulations, and the global X-ray scattering of the whole model 

ensemble was computed at each snapshot of the simulation. The interaction potential 

model was optimized and iterated by a Levenberg-Marquardt algorithm (Biophysical 

Journal, 2008). 

 

 In Chapter 3, we report that terahertz spectroscopy directly probes hydration 

dynamics around proteins and determines the size of the dynamical hydration shell.  In 

collaboration with the Havenith group in Ruhr-University-Bochum, Germany, we 

measured a non-linear concentration dependence of the Terahertz absorption coefficient 

of protein solutions, which indicated the overlap of hydration shells and how far 

hydration shells could eventually extend from the protein surface. This interesting 

behavior was in strong agreement with molecular dynamics simulations which showed 

that the dynamics of water molecules are affected by the protein at a distance out to ~10Å 

from the protein surface. (PNAS, 2007)  Also we probed the sequence and pH-
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dependence of hydration shells (JACS, 2008) and presented that exposed hydrophobic 

residues significantly affects the formation of the dynamical hydration shells. (Faraday 

Discussion, 2008, in press) 

 

 In Chapter 4, kinetic terahertz absorption (KITA) spectroscopy is introduced to 

study folding of solvated biomolecules.  Also in collaboration with the Havenith group, 

we applied KITA to the refolding kinetics of ubiquitin and of three side chain truncation 

mutants designed to disrupt the hydrophobic core and increase overall protein flexibility.  

KITA results are compared to small angle X-ray scattering, tryptophan fluorescence, and 

circular dichroism results.  The KITA signal rapidly relaxes to the native protein’s value, 

on the same millisecond time scale on which secondary structure formation is detected by 

circular dichroism.  Both processes are much faster than acquisition of native-like 

fluorescence.  We propose that KITA monitors the rearrangement of hydrogen bonding 

during secondary structure formation, and suggest future experimental tests and 

applications to folding dynamics with this new technique. (Angewandte Chemie, 2008, in 

press as a cover story) 

 

 Most of protein folding measurements have been conducted on the basis of bulk 

samples up to now.  What we get in a bulk system is just a statistical average of a protein 

ensemble.  In Chapter 5, I describe development of the automated single molecule 

operating system (ASMOS) for a high throughput single molecule detector, levitating a 

single protein molecule in a 10 µm diameter droplet by the laser guidance.  The highly 

automated data acquisition module provides fluorescence lifetime and photon spacing 

information for large numbers of single proteins, leading to the single molecule statistical 

analysis.  To improve the efficiency of single molecule detection, in Chapter 6, I 

performed supporting calculations and simulations of the laser light scattering by a small 

droplet as well as radiation forces in laser guidance based on Generalized Lorentz-Mie 

theory (GLMT).  The evaporation effect of a small droplet was added on the basis of 

fundamental statistical mechanics.  These calculations and simulations are performed 

with my own program codes in C language. 
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Chapter 2 Simulation-based fitting of protein-

protein interaction potentials to SAXS 

experiments 
 

2.1 Abstract 
 

 We present a new method for computing interaction potentials of solvated 

proteins directly from small angle X-ray scattering data.  An ensemble of proteins is 

modeled by Monte Carlo or molecular dynamics simulation.  The global X-ray scattering 

of the whole model ensemble is then computed at each snapshot of the simulation, and 

averaged to obtain the X-ray scattering intensity.  Finally, the interaction potential 

parameters are adjusted by an optimization algorithm, and the procedure is iterated until 

the best agreement between simulation and experiment is obtained.  This new approach 

obviates the need for approximations that must be made in simplified analytical models.  

We apply the method to lambda repressor fragment 6-85 ( 6 85*λ − ) and fyn-SH3.  With the 

increased availability of fast computer clusters, Monte Carlo and molecular dynamics 

analysis using residue-level or even atomistic potentials may soon become feasible. 

 

 

2.2 Introduction 
 

 Small angle X-ray scattering (SAXS) is a convenient tool for determining protein-

protein interaction potentials in solution.  A major driving force of this work has been the 

need for determining ideal conditions for protein crystallization.  Thus, the focus has been 

on the effect of the concentration of precipitation agents and co-solvents [17, 18]. 

 Two additional areas could benefit greatly from the effective potentials provided 

by SAXS studies.  One is the study of hydration shells around proteins.  Neutron 

scattering, NMR spectroscopy, simulation, and terahertz spectroscopy have shown that 
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solvent shells of substantial thickness exist around proteins [19-22].  Dynamical 

hydration effects studied by terahertz spectroscopy extend to > 10 Å from the protein 

surface [19].  Protein-protein interactions are mediated by such solvent shells, and thus 

contain information about the solvent shells when measured at sufficiently high 

concentrations.  The other area is the study of transient protein aggregation.  Very rapidly 

folding proteins  have folding time scales comparable to the lifetime of transient 

aggregates [20, 21].  Such transient aggregates can nucleate irreversible aggregation [22, 

23], a process linked with numerous diseases.  Protein-protein interaction potentials play 

a key role in defining how easily such nuclei form. 

 Effective interaction potentials are currently extracted from SAXS data with the 

aid of analytical approximations to speed up the calculation [17].  The random phase 

approximation treats each protein molecule as an independent scatterer characterized by a 

form factor.  The form factor can be obtained approximately by extrapolating SAXS 

measurements to infinite dilution [24].  The observed scattering intensity is then assumed 

to be a product of the form factor and of a scattering factor, an approximation strictly 

valid over the full range of scattering angles only for dilute particles.  From the scattering 

factor, a radial pair distribution function and corresponding radial effective potential are 

obtained.  Square well, and exponential potentials are used because they have simple 

Fourier transforms [18].  The commonly used DLVO form consists of a hard sphere 

cutoff, and two Yukawa potentials (~ exp [-(r-r0)/δ] / r ) for long-range repulsion and 

short range attraction between proteins. 

 Increases in computing power enable a more direct approach, which we introduce 

here.  Simulation of multi-protein ensemble dynamics is followed by evaluation of the X-

ray scattering of the whole ensemble.  Iteration can then be used to refine force fields “on 

the fly” without any low-concentration approximations or scattering analysis 

approximations. 

 [Figure 2.1] outlines our approach.  We first simulate the dynamics of an 

ensemble of dozens to hundreds of model proteins that interact via an adjustable 

interaction potential.  Either Monte Carlo or molecular dynamics simulations are used to 

sample configurations of the ensemble.  We then calculate the global X-ray scattering  
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Figure 2.1 : Method for extracting the protein-protein potential from SAXS data 

In step 1, a protein ensemble of up to 100 molecules is simulated by Monte Carlo or Molecular Dynamics.  
In step 2, the exact X-ray scattering for the model ensemble is evaluated at each simulation snapshot.  In 
step 3, the average X-ray scattering curve is obtained and compared with experimental data.  In step 4, the 
interaction potential is adjusted by steepest descent for the next round of simulation. 
 

intensity of the entire model ensemble at each configuration, eliminating the need for low 

concentration or random phase approximations.  The resulting series of scattering 

intensities is averaged to obtain the steady-state SAXS intensity as a function of 

scattering angle.  An optimization algorithm compares the computed signal with the 

experimental signal, and modifies the adjustable interaction potential for the next round 



 9 

 

of simulation.  The process repeats iteratively until the experimental data is matched with 

the smallest least-squares deviation.  Any form of potential can thus be fitted exactly for 

polydisperse model particles at any concentration.   

 In this first application, we determine isotropic interaction potentials, and hence 

assume spherical model protein monomers.  Aggregates can have any shape made from 

these monomer building blocks, up to the size of the box used for simulation, typically 20 

monomer diameters or more.  Thus the analysis must be truncated at large scattering 

angles, but it does not assume spherical aggregates or low monomer concentration.  We 

illustrate the method by fitting experimental data for the two proteins 6 85*λ −  and fyn-SH3 

to several potential models.  The ethylene glycol-water solvent we use is similar to the 

one used in recent SAXS studies of folding kinetics [13].  With the advent of interaction 

potentials based on sums of amino acid pair-interactions, the simulation-direct fitting 

approach could yield anisotropic interaction potentials in the near future, revealing 

potential aggregation sites, or local changes in the protein hydration shell. 

 

 

2.3 Materials and methods 
 

2.3.1 Proteins 
 

 The wild type of λ repressor is a DNA-binding phage regulatory protein, which 

controls the lambda switch in bacterial cells. The small engineered lambda repressor 

fragments, 6 85*λ −  is an 80-residue, five-helix globular protein of molecular mass 9.2 kDa 

[inset in Figure 2.5A].  The protein we used in SAXS experiments contained the 

mutations Tyr22Trp, Glu33Tyr, Gly46Ala, and Gly48Ala, engineered by site-directed 

mutagenesis (Stratagene Quickchange kit, La Jolla, CA) based on a wild-type plasmid 

donated by Terry Oas [25].  fyn-SH3 is a predominantly β-sheet protein (Molecular mass 

9.3 kDa) [inset in Figure 2.5B] with 78 residues and a tag of 6 histidine residues.  The 

sequence, donated by Alan Davidson, has mutations Val1Ser, Val5Glu, Ala39Val, and 

Val55Phe [26]. 
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 Genes for the two proteins were inserted into the PET-15b vector, expressed in 

Rosetta TM (DE3) pLysS cells (Novagen, San Diego, CA), and grown in LB broth at 

37 °C for 8 hours. After induction with IPTG (isopropyl-β-D-thiogalactopyranoside) at 

25 °C for 12 hours, cells were lysed with a French press, and the supernatant was 

collected after centrifugation.  Proteins were selectively bound to a nickel-agarose His-

tag binding column (Pharmacia) and eluted with a 250 mM imidazole buffer. The 6-

Histidine tag of 6 85*λ −  was cleaved by thrombin (VWR), and additional purification was 

performed with Amicon 3 kDa and 30 kDa membranes (Fisher Scientific). fyn-SH3 was 

used with the His tag.  The identity of 6 85*λ −  and fyn-SH3 was confirmed by 

electrospray ionization mass spectroscopy and their purity by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis. 

 Final protein concentrations in buffers used for experiments were determined by 

near-UV absorption spectroscopy at 280 nm of the tryptophan and tyrosine residues as 

described by Edelhoch [27].  We have found this procedure to yield similar results in 

aqueous and aqueous-osmolyte buffers.  We estimate a relative accuracy of ±1% for 

dilution series from the same sample, and an absolute accuracy of about ±5%.  Results 

are rounded to the nearest 10 μM. 

 

 

2.3.2 SAXS measurements  
 

 SAXS measurements were performed at the Biophysics Collaborative Access 

Team Beamline of the Advanced Photon Source at Argonne National Laboratory 

(Argonne, IL) [28].  As shown in [Figure 2.2], an Aviex CCD camera with an active area 

of approximately 160×80 mm2 (2084×1042 pixels, 78 μm gap between pixels), located 

1.9 m from sample, was used to collect data in the scattering angle range of Q = 4π sinθ / 

λ = 0.03-0.12 Å-1, at a nominal wavelength of 1 Å.  Low concentration data for fyn-SH3 

were also collected with a Pilatus CCD camera.  The X-ray beam was collimated to a spot 

size of 300×130 μm2 at the sample cell.  See [Appendix A] for more information in detail. 
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Figure 2.2 : SAXS setup on BioCAT-18 of APS at Argonne National Laboratory.1 

From ref. [29]: Larios, E., a Computational-Experimental Study of Small Globular Proteins, in Physics 
Ph.D. Thesis. 2005, University of Illinois at Urbana-Champaign. 

 

 To reduce radiation damage, and to enable a direct comparison with our previous 

SAXS folding study of 6 85*λ − , we performed our experiments in a 45:55 vol. % ethylene 

glycol/water buffer. The ionic strength was 50 mM phosphate at pH 7.0.  The temperature 

in all experiments was –28 ± 1 °C, cooled by a Neslab ULT-80DD recirculator.  Steady-

state SAXS data were collected in a UNISOKU sample cell with 80 μl volume and 50 

μm thick sapphire windows.  The exposure time was 500 ms for 6 85*λ − , and 300 ms for 

fyn-SH3 (4 frames of 200 ms on the Pilatus detector), based on extensive 

exposure/concentration tests for protein damage.  We measured steady-state SAXS data 

of 6 85*λ −  up to 2.92 mM, and of fyn-SH3 up to 1.68 mM, without any visible aggregation 

at room temperature or at –28 °C. Each sample was filtered with a 0.2 μM pore syringe 

filter (Corning) before use.  The raw data were angle-averaged with logarithmic 

weighting in Q, and a reference buffer curve was subtracted. 

 

 

                                                 
1 By courtesy of Edgar Larios, an alumnus of the Gruebele group 
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2.3.3 Interaction potentials 
 

 To enable Monte Carlo or molecular dynamics simulations, a protein-protein 

interaction potential has to be chosen.  We tested several pair wise-additive isotropic 

interaction potentials not easily fitted by analytical methods.  At short distance an r12 

repulsive term was used instead of the commonplace hard sphere wall: 
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Past the potential minimum at D0, exponential, Gaussian and Yukawa forms were used in 

various combinations to model both attractive and repulsive-attractive potentials: 

 

 

0

2
0

0

0 0

exp

exp ( )

exp

E

G

Y

r DU

r DU r D

D r DU
r

ε
δ

ε
δ

ε
δ

⎫⎡ ⎤−⎛ ⎞= − − ⎪⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎪
⎪⎡ ⎤− ⎪⎛ ⎞= − − >⎢ ⎥ ⎬⎜ ⎟

⎝ ⎠⎢ ⎥ ⎪⎣ ⎦
⎪⎡ ⎤−⎛ ⎞ ⎛ ⎞ ⎪= − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎪⎝ ⎠ ⎝ ⎠⎣ ⎦⎭

 (2.2) 

 

, where ε  is the potential depth, 0D is the center-of-mass distance between proteins 

where the repulsive potential wall begins, and δ  is the attractive potential range.   

 The softer than hard-sphere potential wall, not easily amenable to the analytical 

treatment, highlights the fact that no reference potential assumptions need to be made.  In 

our first application, we assumed isotropically interacting particles and pair wise additive 

potentials, although nonspherical particles and n-body potentials could be implemented in 

the future because our approach requires only that the total potential energy for the multi-

protein system can be evaluated. 
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2.3.4 Configurational sampling 
 

 To avoid the need for low-concentration approximations, we sample a whole 

protein ensemble much larger than the typical aggregate size.  Protein configurations 

were sampled by two methods: Metropolis Monte Carlo sampling (MMC), which 

illustrates computation of the scattering curve from a thermal simulation, and Langevin 

molecular dynamics (LMD), to illustrate computation of scattering curves from real-time 

dynamics simulations.  In both approaches, we distributed n=25 to 100 spherically 

symmetric model protein particles in a spherical or cube-shaped volume, the latter with 

periodic boundary conditions.  The diameter of the simulation volume was determined by 

the experimental protein concentration.  To reduce oscillatory boundary artifacts in the 

SAXS calculation, the diameter of the volume was varied randomly about the average.  

Test runs with up to 20,000 protein particles confirmed that full convergence over the 

desired range of Q could be achieved rapidly with 25 particles for fyn-SH3 and with 100 

particles for 6 85*λ −  over the full experimental concentration range. 

 For MMC sampling, we started out with a random distribution of particles.  

Single particles were then chosen at random, and moved by random displacements inside 

the spherical volume.  Each move was accepted or rejected based on the Metropolis 

criterion by computing the change in total energy, ΔE [30].  When the net energy change 

was negative, the move was accepted, while a positive energy change was accepted with 

a probability of exp(-ΔE/kBT).  Equilibration of the total energy to within the statistical 

noise typically required 50n moves for 6 85*λ − .  This sampling was repeated until the 

scattering intensity (see below) was a smooth function of Q.  The longest runs provide 

estimated error bounds for the computed scattering curve. 

 For molecular dynamics sampling in real time, we used a Langevin-MD approach 

in a cubic volume with periodic boundary conditions.  Each protein particle was subject 

to a vectorial force resulting from the other protein particles, and to a random Brownian 

force simulating the implicit solvent dynamics.  In addition, the Brownian motion was 

countered by a vectorial damping term.  Inertial forces were neglected, resulting in 3n 

equations of motion 
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 For non-spherical particles subject to anisotropic interaction potentials, an 

additional set of 3n equations for rotational diffusion would have to be solved, but no 

additional complications are introduced by our approach.  In [Equation (2.3)], V is the 

interaction potential summed over all protein pairs ([Equation (2.1)] and [Equation (2.2)]).  

Protein particle m is at position m x,m y,m z,m= (r ,  r ,  r )r .  / ( , )kT D T Pγ =  denotes the 

velocity relaxation rate, which depends on the diffusion coefficient D, assumed 

independent of coordinate.   ξi(t) is Gaussian white noise with zero mean, and a variance 

set to satisfy the Onsager fluctuation-dissipation theorem that relates  ξ and γ [31].  The 

equations of motion were integrated by a standard integrator using finite-difference 

derivatives (thus Brownian noise or discontinuities in the potential derivative are not a 

problem).  Derivatives with respect to a single particle, like the energy change ΔE, could 

be evaluated efficiently.  The protein distribution was allowed to evolve to a mean 

particle deviation of at least 3.4 Rg before sampling the next configuration, to ensure that 

the scattering calculation did not needlessly sample very similar configurations.   

 

 



 15 

 

2.3.5 Scattering signal 
 

 For each multi-protein configuration from the MMC or LMD simulations, we 

calculated the exact X-ray scattering by evaluating 
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where Fm is the scattering amplitude for particle m.  Because we are determining 

isotropic interaction potentials here, we approximated each protein particle by a sphere 

and used the corresponding Fm  [32, 33].  The assumption of individual spherical particles 

sets an upper limit on the Q values that can be fitted.  A more realistic electron 

distribution based on diffraction data would have to be used if anisotropic potentials and 

large Q values are to be used in fitting.  [Equation (2.4)] treats the scattering of the model 

protein ensemble exactly at any concentration and for any aggregation state that is small 

compared to the size of the simulation box.  Thus, no extrapolations to dilute samples or 

analytical approximations usually needed for polydisperse systems need to be made.  The 

total scattering intensity is obtained from 

 

 
2

total( ) ( )I F=q q , (2.5) 

 

and averaged over all configurations sampled by the simulations to yields the average 

SAXS scattering intensity I(Q) for direct comparison with experiment. 

 Approximately 100,000 configurations were averaged for each concentration to 

obtain a smooth I(Q) for comparison with experiment.  To minimize boundary effects and 

oscillations of the intensity at low Q below the experimental noise level, either a 

spherical volume was chosen, and its volume was changed randomly about the average 

value required by each protein concentration  [34], or an spherical volume from the 

center of a periodic boundary condition box was chosen for the X-ray scattering 

calculation. 
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2.3.6 Data fitting 
 

 We fitted three potential parameters: potential depth ε , potential range δ and 

potential wall 0 02D R≡ .  An efficient Levenberg-Marquardt optimization algorithm [35, 

36] was applied to fit the potential parameters to the experimental concentration-

dependent scattering data.  Minimal evaluation of I(Q) is desirable because each 

concentration point requires a large number of MMC/LMD simulations to yield a smooth 

curve. 

 We also fitted a fourth parameter, the radius of gyration Rg of the model proteins, 

to account for the direct effect of particle size on the scattering data.  R0 measures 

monomer size from the point of view of the interaction potential, while Rg measures 

monomer size from the point of view of the scattering intensity.  Rg is not entirely 

independent of R0.  For an ideal hard sphere monomer, 0/ 3 / 5gR R = .  Deviations from 

spherical shape, and a tapering of the electron density distribution due to hydration or a 

soft potential wall [Equation (2.1)], both are effectively accounted for by allowing 

deviations from this ratio.  A large deviation would indicate that a better model for the 

monomeric proteins is needed. 

 

 

2.4 Results 
 

2.4.1 Concentration-dependent SAXS of 6 85*λ −  

 [Figure 2.3] shows the concentration dependence of the scattering intensity as a 

function of Q for the 6 85*λ −  Q33Y G46A G48A mutant.  A Guinier plot (ln(I) vs. Q2, not 

shown) deviates from linearity below Q2 = 0.006 Å–2, indicating some aggregation.  

Dilution of samples shows that this aggregation is reversible over the concentration range 

we studied.  No deviations were observed at concentrations below 100 μM or Q up to 

0.11 Å-1, indicating that the spherical approximation for protein monomers is good for 

6 85*λ −  over the range of scattering angles considered here. 
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Figure 2.3 : SAXS data and MMC simulation results 

Scattering intensity vs. magnitude of the scattering vector For 6 85*λ −  (A) and fyn-SH3 (B). The lines 
going through the experimental data points are fits from MMC (Metropolis Monte Carlo) simulation. 
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2.4.2 MMC fitting results for 6 85*λ −  

  

 Simulations were performed by the MMC method.  The best fit to experimental 

data [Figure 2.3A] was obtained with a UL+UE potential (Lennard-Jones wall (r12 

repulsive) + exponential attractive).  
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 The calculated radius of gyration is 13.52 Å, the potential depth is 1.5 kT0, with 

3.6 Å of potential range, and the potential wall beginning at D0≈31.8 Å ([Table 2.1] and 

[Figure 2.4A]; T0 = 245 K).  A total of 100 proteins were used in 5,000 Metropolis 

iterations to obtain equilibrated results for each configuration, and 100,000 configurations 

were sampled.  As one might expect, two parameters of this fit are somewhat correlated, 

the potential range and depth. 

 

 

 

Table 2.1 : Best fit of the 6 85*λ −  SAXS data to a UL + UE  (r12 repulsive + exponential attractive) 
potential 
Also shown are the root mean square errors (RMSE) for the best fit at individual concentrations.  All 
RMSEs of the fit lie within the experimental error.  kT0 corresponds to 245 K. 
 

Potential 
type Rg (Å) Potential 

depth ε (kT0)
Potential range 

δ  (Å) 
potential 

wall D0 (Å)  
RMSE 

UL+UE 13.5±0.2 1.5±0.5 3.6±0.5 31.8±3.0 0.0073 

 
 

Best 
fit 

2920 Mμ  2300 Mμ 1470 Mμ 750 Mμ 520 Mμ 210 Mμ  Weighted 
Average 

RMSE 0.0050 0.0049 0.0040 0.0048 0.0072 0.013 0.0073 
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Figure 2.4 : (A) Best-fit interaction potential and (B) Comparison of the MMC and analytical best-fit 

(A) Best-fit interaction potential for 6 85*λ −  and fyn-SH3 (in 45% ethylene glycol buffer at –28 °C).   

(B) Comparison of the MMC and analytical best-fit hard sphere + exponential potentials for 6 85*λ − . The 

greatest variation between the three 6 85*λ −  shown is in D0.  (MMC parameters: D0=35.5 Å, δ=4.14 Å, 
ε=1.65 kT0, Rg = 13.8 Å; analytical: D0=37.8 Å, δ=4.14 Å (fixed), ε=1.71 kT0, Rg=13.6 Å). 
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2.4.3 LMD simulation for 6 85*λ −  

 

 We also performed a LMD simulation with the same potential as MMC at 2920 

μM concentration, to confirm consistency of the MMC fitting results with molecular 

dynamics.  We tested a range of different time scales (500 ns, 50 ns, 5 μs, and 20 μs) for 

25 proteins in a cube having periodic boundary condition.  The resulting I(Q) is shown in 

[Figure 2.5A], and agrees with the experimental data within sampling uncertainty.  The 

sampling uncertainty of the molecular dynamics simulations is shown by the error bars.  

The time scale between successive configurations chosen for scattering calculations was 

estimated form the diffusion equation <r2> = 6Dt in 3-D, allowing the protein ensemble 

to move enough so that successive configurations were independent of one another. 

 

 

2.4.4 Concentration-dependent SAXS of fyn-SH3 
 

 [Figure 2.3B] shows the concentration dependence I(Q) for fyn-SH3.  The slope 

of a Guinier plot (not shown) deviates more strongly from linearity at low Q than for 

6 85*λ − , indicating more extensive aggregation and a stronger interaction potential.  As in 

the case of 6 85*λ − , the spherical monomer approximation works to the largest Q values 

for which data were collected. 
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Figure 2.5 : SAXS data and MD simulation results 

Experiment (circles with error bars) and molecular dynamics simulation (thick solid line) of the scattering 
intensity vs. magnitude of the scattering vector for  6 85*λ −  (A), and fyn-SH3 (B), confirming the quality of 
the parameter set obtained by MC modeling.  The estimated 1σ sampling error we achieved in the MD 
simulations is indicated by the envelopes.  Native PDB structures for the protein fragments, as visualized 
with VMD [37], are shown as insets. 
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2.4.5 Fitting results for fyn-SH3 
 

 Ensemble configurations were generated by MMC simulation.  The best fit 

[Figure 2.3B] was obtained with a UL + UY + UE potential (Lennard Jones r12 repulsive 

wall + attractive Yukawa potential well + repulsive exponential potential).   
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 (2.7) 

 

 Potentials without a repulsive long range interaction produced significantly worse 

fits (χ2/χ2
optimal

 > 2). For the three-term potential, the calculated radius of gyration is 

14.85 Å and the potential wall size is 42.0 Å.  The attractive Yukawa potential depth is 

11.2 kT0 with a 1 Å range, The repulsive exponential potential depth is 7.5 kT0 with a 

range of 2.0 Å, which results in a net potential depth of 3.65 kBT ([Table 2.2] and [Figure 

2.4A]).  We used 625,000 Metropolis iterations to obtain converged results, and 50,000 

final configurations were sampled.  Compared to 6 85*λ − , SH3 consistently produced fits 

with shorter range, but deeper potential wells. 

 

 

2.4.6 LMD simulation for fyn-SH3 
 

 We also performed a LMD simulation with the converged MMC potential at 1690 

μM concentration, to confirm consistency of the MMC fitting results and the molecular 

dynamics simulations.  Again, we tested a range of different time scales (from 50 ns to 5 

μs) for 25 proteins in a cube having periodic boundary condition.  The resulting I(Q) is 

shown in [Figure 2.5B], and also agrees with the experimental data within sampling 

uncertainty.  The time scale between successive configurations was chosen by the same 

criterion as for 6 85λ − . 
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Table 2.2 : Best fit of the fyn-SH3 SAXS data to a UL + UY + UE  (r12 repulsive + Yukawa attractive + 

exponential repulsive) potential 

Also shown are the root mean square errors (RMSE) for the best overall fit at individual concentrations.  
kT0 corresponds to 245 K. 
 

Attractive  
 

 
Repulsive 

 Potential 
type 

Rg 
(Å) 

ε 1 (kT0) δ 1 (Å) ε 2 (kT0) δ 2 (Å) 

D0 (Å) 

Net 
well 

depth 
ε 

(kT0) 

RMSE 
 

UL+UY+UE 14.85
±0.2 

11.2 
±0.5 1.0 7.5±0.2 2.0 42.0 

±4.0 3.7 0.035 

 

 

Best 
fit 

1680 Mμ  1020 Mμ 690 Mμ 470 μM 190 Mμ 60 Mμ  Weighted 
Average 

RMSE 0.016 0.0074 0.010 0.034 0.028 0.060 0.035 

 

 

2.5 Discussion 
 

 We have obtained interaction potentials for two proteins under identical buffer 

conditions by using the four-step procedure in [Figure 2.1].  First, Monte Carlo or 

molecular dynamics simulations of a model protein ensemble compute thermally 

averaged or time averaged particle distributions for up to 100 protein particles.  Next, X-

ray scattering functions ( )totalF q  are computed directly for the whole ensemble.  These 

are essentially exact for scattering angles corresponding to the size range from monomer 

particle to simulation box.  In the third step, the resulting scattering intensity is computed 

without further approximations and then compared to SAXS data.  In the last step, a 

least-squares algorithm refines the potential parameters, so that a new simulation can be 

started to iterate until the best fit is obtained.  The best fits are summarized in [Table 2.1] 

and [Table 2.2]. 
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 Although MMC sampling and MD simulations are computationally much more 

expensive than the analytical approximations commonly used, direct simulation provides 

a correct description of the scattering amplitude at any concentration, for any monomer 

size, and for any aggregate shape consistent with the model monomers and up to the size 

of the simulation box.  Any functional form of the potential, rather than a perturbing 

potential added to a hard sphere repulsion, can be fitted without additional effort simply 

by replacing the two-body interaction potential in the simulation. 

 The simplifying assumptions we retained in the present application are an 

isotropic interaction potential and hence an isotropic monomer shape, limiting the 

maximum Q values that could be fitted.  The ratio 0 0/ 2 /g gR R R D=  provides a 

connection between the interaction potential (characterized by D0) and how the protein 

scatters (characterized by Rg).  Both proteins had a ratio within 9% of the 3 / 5  ratio 

expected for spherical monomers ([Table 2.1] and [Table 2.2]).  Over the Q-range we 

examined, neither deviations of protein shapes from a sphere nor electron density 

variations are likely to fully account for the difference from the ideal 3 / 5  ratio.  More 

likely, hydration water that interacts strongly with the protein surface could explain the 

discrepancy between the fitted values of Rg and D0 because the effective size of the 

hydrated protein could simply be different for the two different physical processes of X-

ray scattering and protein-protein interaction.  

 Indeed, our fitted radii of gyration in [Table 2.1] and [Table 2.2] are larger than 

the values obtained by taking the bare protein structures from the Protein Data Bank.  For 

example, one would expect Rg = 11.85 Å for bare 6 85*λ − , not the 13.1-13.8 Å range 

obtained from our fits, the best of which has Rg = 13.5 Å [Table 2.1].  It has been shown 

previously that the hydration layer around proteins perturbs SAXS such as to increase the 

effective radius by 1-2 Å.  The program CRYSOL takes this effect into account [38, 39].  

Its predicted hydrated radius of gyration is 13.5-13.8 Å depending on the method used, in 

excellent agreement with the value we derived from fitting interaction potentials to the 

SAXS experiment. A similar result is obtained for fyn-SH3, although our experimentally 

fitted radius of gyration is yet another 0.5 Å larger than the one obtained from CRYSOL.  

This could be due to the histidine tag on our fyn-SH3 protein, which was not included in 
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the CRYSOL calculation (no structure is available for the tag).   

 Extrapolations of the scattering data in [Figure 2.1] to zero concentration are 

fitted well by CRYSOL with Protein Data Bank structural data as input, showing that the 

folded monomer shapes remain consistent throughout the concentration range.  Our 

fitting approach clearly does not require a low concentration extrapolation to yield 

reliable results. 

 This leads to the question: What range of concentrations is needed to reliably fit 

the potential parameters, and which parameters remain least reliably determined?  The 

fitting uncertainties are largest for D0.  We confirm in two ways that D0 is the least well 

constrained parameter in our fits of 6 85*λ −  and fyn-SH3.  First, we fixed it at the hard 

sphere value 2 5 / 3 gR .  This yielded radii of gyration Rg, well depths ε and potential 

ranges δ that agreed with [Table 2.1] and [Table 2.2] within the indicated uncertainties.   

D0 on the other hand shifted by up to 11%, showing that Rg is much more strongly 

constrained by the SAXS data than is D0.  Still, the χ2 of the fits did increase by up to 

70% when the constraint relating D0 and Rg was introduced.  Thus the differences 

between D0 and Rg cannot be explained just by parameter uncertainties.   

 To investigate how many concentrations are needed to determine parameters, we 

performed fits with as few as two of the concentration series.  For example, 2920 and 520 

μM for 6 85*λ −  yielded a very similar potential shape (ε = -1.6 kT0, δ = 3.8 Å for 

comparison with [Table 2.1]), but the parameter D0 varies greatly (as low as D0 = 25 Å).  

When more concentrations are added, D0 approaches values more consistent with Rg.  We 

conclude, at least for 6 85*λ −  and fyn-SH3, that two concentrations are sufficient to define 

the shape of the potential, but that D0 must either be constrained by Rg, or requires at least 

5-6 concentrations, including high concentrations, to be adequately constrained. 

 It is worth noting that analytical fitting methods also have problems determining 

D0 accurately.  For example, two studies of the lysozyme interaction potential had to fix 

D0 at values ranging from 28 to 36 Å in order to fit the other potential parameters [18, 40].  

The value for an ideal sphere is about 37 Å in that case.  Our numerical scattering method 

can be used to validate the analytical approximations usually used to obtain isotropic 

interaction potentials.  To do so, we compared an analytical potential for 6 85*λ −  to a 
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simulation-derived potential.  To make the comparison feasible within the limitations of 

the analytical approach, we used a hard sphere reference potential, coupled with an 

attractive exponential term, to yield a potential similar in shape to our best fit in [Table 

2.1].  We employed the analytical method described by Winter and coworkers [18], after 

verifying that our analytical code reproduced their experimental SAXS intensities from 

their potential parameters.  [Figure 2.4B] compares the numerical 6 85*λ −  potential with 

the analytical potential.  Either D0 or the potential range δ was highly correlated with 

potential depth in the analytical fit, so we had to fix one at the MMC value (δ  in [Figure 

2.4B]; the result looks even closer with D0 fixed).  With that restriction, reasonable 

agreement is obtained between the analytical and simulation result.  However, as already 

discussed above, the simulation yields a much more robust fit than the analytical model 

when more than 2 concentrations are used; it does not treat the potential as a small 

perturbation to a hard-sphere wall.  In particular, D0 can be floated as a free parameter 

and yields results consistent with Rg (<9% discrepancy) when enough concentrations are 

fitted.  To the best of our knowledge, we did not find any analytical treatments in the 

literature where adjusting D0 and Rg independently was possible, let alone yielded 

consistent results. 

 We examined a number of isotropic interaction potentials in addition to the best-

fit and hard-wall shapes, and found that Gaussian attractive potentials generally 

performed more poorly than the exponential or Yukawa forms used in the DLVO model.  

In all fits, the 6 85*λ −  potential was longer range than the fyn-SH3, which resembles a 

‘sticky sphere.’  A long range but weak attractive potential for 6 85*λ −  is compatible with 

recent terahertz measurements of hydration shells around the same mutant [19].  These 

measurements indicated that the dynamics of water molecules are affected by the protein 

to > 10 Å from the protein surface.  Such hydration water may significantly mediate 

protein-protein interactions.  It is even possible that the protein-protein interaction 

potential depends on protein-concentration because of concentration-induced changes in 

the hydration shell.  However, our current SAXS data was adequately modeled by a 

concentration-independent interaction potential. 

 6 85*λ −  has a significantly lower propensity for aggregation than fyn-SH3, but 
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only the latter requires a repulsive potential in the fit to match the data within 

experimental uncertainty [Figure 2.4].  Both proteins were examined in identical buffer 

solutions of 45%/55% by volume ethylene glycol/water, 50 mM phosphate at pH 7.0 and 

–28 °C.  As discussed by Winter and coworkers [18], the size of the repulsive potential is 

very sensitive to the ionic strength and ionic composition of the buffer.  Given the 

isoelectric points of pI = 8.25 ( 6 85*λ − ) and pI =4.84 (fyn-SH3), it is not surprising that 

there are differences between 6 85*λ −  and fyn-SH3 in the screening of the long-range 

electrostatic repulsion. 

 As measurements over wide Q-ranges become available with new high brightness 

synchrotron sources, the direct fitting approach will also be useful for determining 

anisotropic interaction potentials.  This requires two additions to our treatment: the 

potential itself must treat anisotropic interactions, and the scattering calculation can no 

longer assume spherical monomers.  Regarding the potential, Ha-Duong and coworkers 

have developed residue-residue pair potentials that can be applied to surface residues of 

interacting proteins [41].  To treat arbitrary protein shapes one adds a rotational diffusion 

term to [Equation (2.3)], and replaces Fm in [Equation (2.4)] by the orientation-dependent  

structure factor of the monomeric protein computed with a program such as CRYSOL 

[38].  It remains to be seen how much information might be extracted from scattering 

data at larger angles using this approach. 

 In conclusion, direct fitting of SAXS data to interaction potentials via Monte 

Carlo or molecular dynamics simulation of a model protein ensemble provides a useful 

alternative to analytical approximations.  The form of the potential is unrestricted and no 

approximations regarding the scattering amplitude of the model protein ensemble need to 

be made.  A range of concentrations still provides the best sampling of protein-protein 

distances to determine the potential (the potential wall location D0 in particular), but 

extrapolations to zero concentration are not necessary.  When the potential is restricted to 

have a hard sphere wall, our method validates the analytical methods used to date, but 

actually fits D0 more consistently with the protein size determined by the scattering 

amplitude (Rg).  With the advent of higher power computing, the numerical approach 

demonstrated here can be extended straightforwardly to include coarse-grained 

anisotropic interaction potentials, and randomly reorienting non-spherical protein shapes. 
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Chapter 3 The Terahertz dance of water with 

the proteins: The extended dynamical hydration 

shell probed by Terahertz spectroscopy 
 

3.1 Abstract 
 

 The focus in protein folding has been very much on the protein backbone and side 

chains.  However, hydration waters make comparable contributions to the structure and 

energy of proteins. The coupling between fast hydration dynamics and protein dynamics 

is considered to play an important role in protein folding. 

 We show here that Terahertz spectroscopy directly probes such hydration 

dynamics around proteins, and determines the width of the dynamical hydration shell.  

We observe an unexpected non-monotonic trend in the measured terahertz absorbance of 

the lambda repressor fragment as a function of concentration.  The trend can be explained 

by overlapping hydration layers around the proteins.  The experimental data suggest an 

influence on the correlated water network motion beyond 20 Å, greater than the pure 

structural correlation length usually observed so far. 

 We also use terahertz (far-infrared) spectroscopy to probe directly the effect of 

mutations and solvent pH on the hydration shell-protein interaction.  We find that the 

pseudo-wild-type has a much more pronounced effect on long distance hydration water 

than mutants that have decreased helix stability.  Disturbing the pseudo-wild-type at pH 2 

likewise reduces the long distance hydration effect, which indicates the hydrophobicity 

significantly affects hydration water structure.  

 

 

3.2 Introduction 
 

 Hydration water plays an integral role in the folding and function of proteins.  For 
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example, the expulsion of hydration water sheets from the hydrophobic core has been 

implicated as a major cause of the final folding barrier leading up to the native state.[42-

44]  Specific functional water molecules have been resolved by NMR spectroscopy and 

X-ray crystallography, for example mediating water transport through pores.[45, 46] 

 Water molecules interact (or are highly correlated) with proteins on many length 

and time scales.  Although the dynamics of the hydration water occurs on the picosecond 

time scale, ‘‘slaving’’ [47] to fast solvent modes profoundly affects the slower but larger-

scale protein motions [48].  In return the protein influences the structure and dynamics of 

surrounding water molecules.[49]  X-ray crystallography has revealed ordered water 

structure around polar and charged side chains [50], as well as cooperative insertion of 

water into hydrophobic cavities.[51]  Dielectric spectroscopy extends the time scale from 

microseconds down to 0.1 ns.[52]  Experiments have been extended to the Terahertz 

range in films and crystals, probing motions on the picosecond time scale.[53, 54]  

Hydrated protein powders probed by inelastic neutron scattering (0.1–100ps) or solid-

state NMR (nanoseconds) reveal that slower protein time scales and faster solvent time 

scales indeed show correlated dynamics.[55]  On the fastest time scales, 2D infrared 

spectroscopy and fluorescence of surface residues provide local probes of the dynamics 

in the femtosecond to picosecond range.[56, 57] 

 

 Terahertz absorption spectroscopy of biomolecules fully solvated in water yields 

direct information on the global dynamical correlations among solvent water molecules.  

And the Terahertz absorption coefficient is even more sensitive to fast water dynamics 

than dielectric spectroscopy or IR spectral changes.[58]  Yet, Terahertz spectroscopy is 

experimentally challenging,[59] because of the strong Terahertz absorption of water.   

 The Havenith group at Ruhr-University-Bochum, Germany has devised table-top 

Terahertz sources capable of penetrating the bulk of aqueous solutions.[60]  With the 

advent of powerful table-top Terahertz sources, a new window between microwaves and 

the infrared is opening up onto the interaction of water molecules with proteins.  Even 

more, THz radiation is safe for biological samples because it is non-ionizing, unlike X-

rays.  Terahertz spectroscopy has been demonstrated as a new probe of the coupling 

between biomolecules and their hydration shells [19, 61-63], because key large  
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Figure 3.1 : The electromagnetic spectrum and typical resonant molecular transitions2 

The Terahertz region is located between microwaves and mid-infrared. Molecular transitions within this 
region were difficult to probe, the region has therefore been termed the “Terahertz-gap”. The experimental 
setups, the p-germanium laser (p-Ge laser, red) and the Terahertz time domain spectrometer (Terahertz-
TDS, blue), are developed by the Havenith group at Ruhr-University-Bochum, Germany. They are used to 
probe rotational transitions and hydration dynamics within this frequency region. The p-Ge laser is tunable 
from 1 Terahertz to 4.5 Terahertz and the Terahertz-TDS is suitable for Terahertz spectroscopy in the 
region from 0.1 Terahertz to 2 Terahertz. From ref.[64]: Ebbinghaus, S., THz Spectroscopy of Biomolecules, 
in Ph.D. Thesis in Chemistry and Biochemistry. 2007, Ruhr-University-Bochum: Bochum, Germany. 
                                                 
2 By courtesy of Simon Ebbinghaus, Ruhr-University-Bochum, Germany 
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amplitude motions of water and biomolecules occur on the picosecond timescale – the 

typical characteristic time of Terahertz spectroscopy.  [Figure 3.1] briefly describes the 

electromagnetic spectrum and typical resonant molecular transitions monitored by 

Terahertz spectroscopy.  

 

 Terahertz frequency range probes the intermolecular collective modes of the 

hydrogen bonding network and some collective modes of the protein, such as skeletal and 

breathing modes.  Using a free electron laser, Plaxco, Allen and co-workers showed that 

terahertz absorption decreases linearly when large concentrations of protein are added to 

the solution.[62]  Such behavior indicates that the solute molecules replacing the water 

have a lower absorption within this frequency range. A coupling of Terahertz hydration 

dynamics and protein dynamics was also suggested by spectroscopy of hydrated 

bacteriorhodopisin films.[65]  We use Terahertz spectroscopy of lambda repressor 

fragments and ubiquitins to study the correlation between protein structural flexibility 

and the absorption properties of the extended dynamical hydration shell around the 

protein.  Such studies can now be carried out systematically in the laboratory thanks to 

the advent of table-top Terahertz radiation sources with sufficient output power to 

penetrate aqueous solutions of proteins.[60]  To tune the protein flexibility, we various 

mutations known to decrease structural rigidity of the protein, as probed by fluorescence 

anisotropy.[66]   

 

 

3.3 Materials and methods 
 

3.3.1 Lambda repressor mutants 
 

 The lambda repressor fragment 6-85 Tyr22Trp mutant gene, a gift from Terry Oas, 

was expressed in Escherichia coli BL-21 cells and purified, as described in ref. [20]. 

(Also see Chapter 2.3.1 and Appendix B)  The resulting 6 85*λ −  protein was buffered in 

50 mM magnesium acetate (pH 7.3) at the concentrations of up to 2.3 mM, where data 
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could be taken without signs of precipitation in the 15–22°C range. Small-angle x-ray 

scattering data have shown that the protein does not cluster up to twice this concentration 

in aqueous ethylene glycol solvents, as described in ref [13]. 

 The protein we used in Terahertz spectroscopy contained the mutations 

([Tyr22Trp, Glu33Tyr, Gly46Ala, and Gly48Ala] and [Tyr22Trp, Glu33Tyr, Ala37Gly, 

and Ala49Gly]) as shown in [Figure 3.2].  They are engineered by site-directed 

mutagenesis (Stratagene Quickchange kit, La Jolla, CA) based on a wild-type plasmid 

donated by Terry Oas [25]. 

 

 
Figure 3.2 : Lambda repressor mutants 

Left: Mutants of Tyr22Trp (green), Glu33Tyr (brown), Gly46Ala (gray1), and Gly48Ala (gray2) 
Right: Mutants of Tyr22Trp (green), Glu33Tyr (brown), Ala37Gly (blue1), and Ala49Gly (blue2) 

These pictures are generated by VMD to show its 3D shapes.[37] 
 

   6 85*λ −  displaces 16,000 Å3 of buffer, based on the hydration-free radius of 

gyration ( gR ) of 12.1 Å, which is estimated from small angle x-ray scattering data by 

Dumont et al.[13].  Assuming a homogenous hard sphere, one can calculate a surface 

radius (Rsurface) [67] as  

 

 5 15.6 
3surface gR R= ≈ Å  (3.1) 
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3.3.2 Ubiquitin mutants 
 

 Ubiquitin is a small α/β protein with one α-helical segment and a short 310 helical 

segment.[68]  We studied the wild-type human sequence, obtained from Sigma.  In 

addition, we introduced a Phe45Trp mutation to have a strongly fluorescent residue as an 

independent probe of protein flexibility.[69]  We call this pseudo-wild-type Ub*, and the 

wild-type Ub.  

 Each ubiquitin molecule, with a bare radius of gyration of Rg = 11.7 Å estimated 

from the X-ray crystal structure and different MD simulations,[70] has a surface radius of 

5 / 3 gR ≈ 15.1 Å and displaces ca. 14400 Å3 of buffer. 

 

 
Figure 3.3 : Ubiquitin structure and fluorescence profiles of its mutants 

Left: structural model of Ub* V26A I61V, obtained by making side chain substitutions with XPLOR, using 
the SOLVATE feature of VMD to add TIP3P water, then relaxing the structure at 298 K for 8 ps in an NVT 
ensemble.  Right: fluorescence intensities of mutants compared to Ub* and denatured Ub*.  Note that 
despite different fluorescence intensity maxima, all mutants have peak shifts close to native Ub*.  Data  are 
from refs. [66, 71] 
 

 [Figure 3.3] shows the two sites we chose for single- and double-point mutations 

to increase protein flexibility.  Ile61 is in van der Waals contact with Trp45, and Val26 

has at least one intervening residue to Trp45.[66]  The three mutants of Ub* represent 
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two single and one double truncation and are summarized in [Table 3.1].  All mutations 

truncated aliphatic side chain residues to shorter aliphatic side chains, to avoid direct 

effects on the tryptophan fluorescence quenching via introduction or elimination of 

electron transfer, proton transfer, or Förster mechanisms.  We use the abbreviation 

Ub*X##Y, where * indicates the tryptophan, X is the original amino acid before mutation, 

in position of residue number ##, and Y is the amino acid after mutation. 

 
Table 3.1 : Parameters for the ubiquitin mutants 

Mutant Abbreviation ΔG, kJ/mole fratio 

Wild-type Ub  1.0 

Pseudo-WT (F45W) Ub* -34±1.5 1.0 

F45W / Ile61Ala Ub* I61A -18±1 2.0 

F45W / Val26Ala Ub* V26A -20±1.5 1.0 

F45W / Val26Ala / 

Ile61Val 
Ub* V26A I61V -14±1 1.4 

 
ΔG is the folding free energy at 0 M GuHCl, 25 °C, pH 5.9 in 40 mM phosphate buffer from ref. [66].  fratio 
is the peak ratio of fluorescence intensity compared to Ub*. 
 

 The plasmids for Ub* I61A, Ub* V26A and Ub* V26A I61V were obtained by 

single point mutations of the original Ub* plasmid (provided by Tracy Handel) using site-

directed mutagenesis (Stratagene).  Proteins were over-expressed in E. coli (BL21) and 

purified as indicated elsewhere.[72]  Purity was checked by gel electrophoresis (SDS-

PAGE) and protein identity by low resolution mass spectroscopy.  Samples were 

lyophilized and kept at -20 °C before use. 

  

 Ubiquitin mutants were re-suspended in buffer for terahertz (Terahertz) absorption 

studies at (20 ±0.5) °C. Unless otherwise indicated, all solvents were buffered with 50 

mM magnesium acetate buffered at pH 4.8.  Protein concentration was varied between 0 

and 3.6 mM. The actual concentration was measured with an uncertainty of 3% using UV 

absorption at 280 nm, and assuming an extinction coefficient of 6970 M–1cm-1.[27] We 
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did not observe any aggregation below a concentration of 3.8 mM.  

 

 [Figure 3.3] summarizes the effect of the side chain truncations studied here on 

protein flexibility, relative to Ub*.  As shown in reference,[66] local flexibility of the 

ubiquitin structure is directly correlated with tryptophan fluorescence intensity.  The Ub* 

I61A and Ub* V26A I61V mutants with a truncation adjacent to Trp45 have greatly 

increased fluorescence intensity compared to Ub*.  The truncation mutant Ub* V26A 

looks very similar to Ub* because tryptophan is not in contact with residue 26 and probes 

flexibility only locally, but molecular dynamics simulations showed that the Val26Ala 

core truncation induces a local increase in flexibility greater than the Ile61Ala near-

surface truncation.  Such truncations typically decreased the anisotropy parameter 
2cos θ< >  of the tryptophan side chain from 0.95 to 0.85, with excursions as low as 0.55 

(isotropic: 0.5) for the Ub* V26A I61V double mutant. 

 

 

3.3.3 Terahertz p-type Germanium laser spectrometer 
 

 Using a novel Terahertz p-type Germanium laser spectrometer [60] built by the 

Havenith group (Ruhr-University-Bochum, Germany), we have measured the change of 

the absorption coefficient of the proteins in the spectral range from 2.1-2.8 Terahertz.  

The Havenith group has built two different configurations for a Terahertz p-type 

Germanium laser spectrometer.  The first one is a single beam configuration at a varying 

layer thickness [Figure 3.4, on the right], and it was used for the measurement of an 

extended dynamical hydration shells [see Chapter 3.4].  The other improved 

configuration is a double beam configuration at a fixed layer thickness [Figure 3.4, on the 

left], and it was used for the measurements in [Chapter 3.5] and [Chapter 3.6]. 

 By using both configurations, we determined the protein absorption relative to the 

buffer, showing a non-linear behaviour of the integrated Terahertz absorption with 

increasing protein concentrations for all samples. 
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Double beam configuration (at a fixed layer thickness): 

 

 To measure the difference in absorption between protein solution and buffer 

blanks accurately, we set up a Terahertz difference spectrometer [Figure 3.4, on the left].  

This approach also minimized any additional systematic errors due to temperature drifts 

or changes in the air humidity as would be present in case of subsequent measurements.  

Specifically, we determine:  

 

 probe buffer(c) = (c) - (c)α α α  (3.2) 

 

with αprobe(c) and αbuffer(c) being the integrated absorption coefficients (2.1-2.8 Terahertz) 

of the probe and buffer at a given concentration c. 

 Using the double beam configuration, the pulse train is splitted by a chopper (5) 

into one part probing the sample absorption and a second part probing the reference 

absorption.  Both beams are recombined by a second chopper (7) and detected.  The 

transmitted intensities were measured at a fixed layer thickness using a standard Bruker 

liquid sample cell with teflon spacers and z-cut quartz windows. The layer thickness of 

the aqueous sample was determined to be (52.6 0.3) mμ±  using FTIR-spectroscopy.  The 

temperature of the sample was kept at (20±0.5) °C by using a Peltier element. The 

measured humidity near the purged sample cell was below 8%. 

 Each signal was detected by a gated integrator. In order to further minimize 

systematic errors, we interchanged the sample and reference channel at each 

concentration.  Measurements were repeated five times at each concentration to provide 

an error estimate for the absorbance difference.  Each point corresponds then to the 

average of 10,000 pulses.   The main error source was found to be the manual refilling of 

the sample cell, which leads to slight sample-to-sample, cell positioning, or pathlength 

variations. 
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Figure 3.4 : Terahertz p-type Germanium laser spectrometer3 

Two configurations of the transmission spectrometer are shown. A double beam configuration (left) using a 
sample cell (6) with constant sample layer thickness and a single beam experiment using a sample cell with 
variable sample thickness (right). The elements of the spectrometers are: p-Ge laser (1), mirror or blazed 
grating (2), pinhole (3), polyethylene lens (4), reflecting chopper (5, 7), detector (8). For the single beam 
experiment, the complete pulse train emitted from the p-Ge laser (illustrated in black, not to scale) is 
transmitted through the sample. Using the double beam configuration, the pulse train is splitted by a 
chopper (5) into one part probing the sample absorption and a second part probing the reference absorption. 
Both beams are recombined by a second chopper (7) and detected. From ref. [64]: Ebbinghaus, S., THz 
Spectroscopy of Biomolecules, in Ph.D. Thesis in Chemistry and Biochemistry. 2007, Ruhr-University-
Bochum: Bochum, Germany.  
 

 By data evaluation with Beer’s law the absorption coefficient of the sample and 

the reference in the two separate channels were determined.   

  

 ( )( , ) ( ,0) exp ( )I v d I v v dα= −  (3.3) 

 

where α is an absorption coefficient, v  is a Terahertz frequency, and d is a layer 

thickness. 

 

 

Single beam configuration (a varying layer thickness): 
                                                 
3 By courtesy of Simon Ebbinghaus, Ruhr-University-Bochum, Germany 
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 The experimental setup is described in [Figure 3.4, on the right]. [64]  For the 

single beam experiment, the complete pulse train emitted from the p-Ge laser is 

transmitted through the sample.  The frequency separation is achieved by a blazed 

aluminum grating (2). The sample solution is sealed in a polyethylene (PE) bag and 

placed in the sample chamber with a variable thickness.  

 The transmitted intensity was measured as a function of the layer thickness d 

(which was varied in steps of 5 mμ ).  The Terahertz absorption coefficient is obtained by 

scanning a variable-pathlength (d) cell and fitting the transmitted Terahertz power I 

according to Beer’s law [Equation (3.3)], after subtracting a constant baseline. 

 

 

3.4 An extended dynamical hydration shell around 6 85*λ −  

 

3.4.1 Two component excluded volume model 
 

 If the proteins were completely transparent or much less absorbing ( Protein

Buffer
1α

α ) at 

1.1-2.8 Terahertz, we would expect a linear decrease of the Terahertz absorption 

coefficient α with increasing protein concentration Proteinc  in a solvent volume V [Figure 

3.5].  The two component excluded volume model would fit the absorption coefficient α 

as a function of the concentration, Proteinc . 
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 In this equation, the protein has concentration Proteinc  in total solution volume V 

and Proteinρ  is the protein density of ca. 1.4~1.5 g/cm3. [73]  The approximation in the 

fourth line ( Protein

Buffer
1α

α , such as plotted in [Figure 3.5], corresponds to the limit where 

protein absorption is negligible compared to the buffer absorption. 

 

 
Figure 3.5 : Two component excluded volume model 

Terahertz absorption decreases linearly as transparent or much less absorbing proteins replace the bulk 
water. 
 

 Any two-component model which considers only the absorption of the buffer and 

the ubiquitin wild-type would lead to the linear concentration dependence, although the 

slope would differ from [Equation (3.4)] in a more sophisticated dielectric cavity model.   

 

 

α 

concentration 
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3.4.2 Non-linear concentration dependence of 6 85*λ −  

 

 [Figure 3.6] displays the absorption coefficient relative to bulk water as a function 

of the concentration of 6 85*λ −  at 2.25 Terahertz 4 .  The proteins were dissolved in 

magnesium acetate buffer at pH 7.32. 

 

 
Figure 3.6 : Difference in the Terahertz absorption coefficient relative to bulk water 

Plotted against concentration to 3 mM at 15°C, 20°C, and 22°C (more extensive averaging was done at 
22°C because of the slightly smaller effect) in pH 7.3. The absorbance depends nonlinearly on 
concentration in this region. Note that the Terahertz absorption for bulk water (zero point) increases with 
increasing temperature. (Inset) The frequency dependence of the absorption coefficient is linear between 
2.25 and 2.55 Terahertz (22°C: comparison of buffer and at a protein concentration of 860 µM). 
 

  The absorption coefficient increases before dropping, leading to the non-

monotonic, non-linear concentration dependence. The 0.5–1.0 mM concentration at the 

turnaround in [Figure 3.6] corresponds to a water volume decrease of 1%.  The measured 

Terahertz absorption deviates strongly from a linear decrease as predicted according to 

[Equation (3.4)].  Although at higher concentrations it will decrease quasi-linearly as 
                                                 
4 All protein samples are carefully prepared and provided by the author, and the Terahertz data were 
collected by Simon Ebbinghaus in the Havenith group, at Ruhr-University-Bochum, Germany. 
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discussed in [Chapter 3.4.1] and in ref. [62], such a non-monotonic, nonlinear behavior 

observed in [Figure 3.6] cannot be explained just by a two component excluded volume 

model. 

 We have measured the concentration dependence of the Terahertz absorption at 

three different temperatures.  We have a less error bar at higher temperature, since the 

absolute overall Terahertz absorption increases. [58] Although the absolute differences 

relative to the bulk value differ for the three temperatures, the overall variation in the 

absorbance with concentration is the same at each temperature.  When we compare the 

three curves one has to keep in mind that the zero point (the bulk water value at the given 

temperature) decreases with decreasing temperature. [58]  This partially explains the 

offset between the three curves.  Whereas the absolute Terahertz absorption coefficient of 

water (c=0) is increased by approximately a factor of two for a temperature increase of 

20°C at 2.0 Terahertz [58], a less pronounced change of the Terahertz absorption of the 

protein is expected.  In this case ( ) (0),cα α αΔ = −  where ( )cα , the Terahertz absorption 

coefficient for a given concentration c, is expected to deviate at higher concentrations for 

different temperatures.  The offset reflects the difference between the decrease for bulk 

water and protein + hydration water.  

 In addition, within our measurement uncertainty, the absorption of the solvated 

protein increased linearly with frequency in this rather narrow frequency range (see Inset 

in [Figure 3.6]).  Therefore we used a linear fit in the measured frequency to obtain 

accurate absorption coefficients at a given frequency.  This procedure, together with 

averaging over multiple measurements, minimizes noise and allows a reliable comparison 

between the different Terahertz absorption spectra for different protein concentrations.  

 

 

3.4.3 Three component excluded volume model: Explanation of the 

nonlinearity 
 

 The minimum fitting model required to even qualitatively explain this deviation 

must incorporate at least a third component, attributed to water in the dynamical 

hydration shell around the protein, whose absorption coefficient is increased compared to 
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bulk water by the presence of the protein: 

 

 Protein Shell Protein Shell
Protein Shell Buffer = V V V V V

V V V
α α α α − −

+ +   (3.5) 

 

 Thus, the hydration water around the protein must contribute in a nontrivial way 

to the total Terahertz absorption [Figure 3.7]. 

 
Figure 3.7 : Three component excluded volume model 

The absorbance of the hydration shells depends on the distance between protein molecules.  In general, the 
hydration shells absorb more than bulk water in Terahertz frequency. 
 

   Note that in this model, the volume of the hydration shell increases linearly with 

protein concentration at low concentrations.  If the absorbance of the dynamical 

hydration shell exceeds the absorbance of the bulk water displaced by the shell and 

protein, the overall absorption will at first increase linearly with protein concentration.  

Eventually, the dynamical hydration shells overlap and get saturated, and their volume 

α 

concentration 

Two Component Excluded Volume Model 

Starts to overlap No overlap Saturated 
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actually decreases relative to the increasing volume of protein.  As a result, there is a 

turnover (deviation from the linearity) in the absorption coefficient.  

 In the extreme limit of hexagonal packing of proteins and negligible protein 

absorption compared to the solvent, Shell 0.29α α→  if the shell is wide enough to 

displace all bulk water in the interstitial spaces.  Thus unless the shell absorption 

coefficient exceeds bulk water by a factor of at least three, absorption will drop below the 

bulk value if we assume αProtein is much smaller than αBuffer. 

 

 

3.4.4 A dynamical hydration shell extends to more than 20 Å 
 

According to the three component excluded volume model, we can expect a 

turnover at the concentration where the hydration shell starts to overlap.  [Figure 3.6] 

indicates that the cross over to the plateau is observed at the concentration of less than 1.0 

mM, for all three temperatures.  At the concentration of 1.0 mM, an average protein - 

protein center of mass distance D of ≈ 73.5 Å.  

 

 
3 3

3
23

4 10
3 0.001 (6.02 10 )

mDπ −

× ×
 (3.6) 

 

 If we take a surface radius of 15.6 Å for the bare ubiquitin [Equation (3.1)], the 

average distance between the protein surfaces at 1.0 mM is ~21.2 Å. 

 

 
( ) ( )shell surface

73.5
2R ~ 21.2 2R ~ 15.6 

D =

= +

Å

Å Å
 (3.7) 

 

 We can then directly deduce the average size of the hydration shell, which 

corresponds to Rshell at the concentration at the point of turnaround in the Terahertz 

absorption to be ~21.2 Å.  This corresponds to ca. 6 hydration water shells (ca. 3 Å 

average extension per water molecule), a significant range beyond just hydration waters 

interacting directly with the protein surface, and similar to values that have been reported 
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for carbohydrates by Terahertz spectroscopy.[74]  Such long range interactions imply that 

cytoplasmic water, at concentrations of protein, RNA and carbohydrates in the 300 mg/ml 

range, is mostly ‘biological water,’ and not bulk water, at least by the Terahertz criterion. 

 

 

3.4.5 Supported by MD simulation: The Terahertz absorbance of the 

hydration shell depends on the distance between proteins 
 

 However, even this three component model is unable to describe accurately the 

experimentally observed concentration dependence in the Terahertz absorption coefficient, 

unless the absorbance of the hydration water depends on the distance between protein 

molecules.  In order to come to a microscopic understanding of the observed results, our 

collaborators, M. Heyden, X. Yu, and D. Leitner have carried out accompanying 

molecular modeling calculations, which reveal and quantify the protein distance 

dependence of the absorbance of the hydration shell. [19] 

 I’ll present their methods and results briefly here. In molecular modeling 

calculations, the absorption coefficient ( )vα  is computed from the dipole autocorrelation 

obtained from MD simulations as 

 

 
/416 1

( ) ( )
3 ( )

Bhv k Tv e
v I v

hcn v
π

α
−⎡ ⎤−⎣ ⎦=  (3.8) 

where 

 21
2( ) (0) ( )i vtI v dt e M M tπ
π

∞
−

−∞

= < ⋅ >∫  (3.9) 

 

( )M t  is a total dipole moment of the system at a given time t, and I(v) is the 

dipole autocorrelation function, which compares the dipole moment (0)M  at time t=0 

with the dipole moment ( )M t at later times t.  n(v) is index of refraction (taken as 

constant over the frequency range of the experiment), c is the speed of light, kB is the 

Boltzmann’s constant, and h is the Planck’s constant.  The absorption coefficients ( )vα  
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were calculated with the dipole correlation time averaged over 2,000, 25-ps segments of 

each MD trajectory.  

 

 
Figure 3.8 : Calculated Terahertz absorbance of 6 85*λ − and the first hydration shell 

The plot against distance between the protein surfaces shows a non-monotonic trend at 300K. (Upper 
Right Inset) Frequency dependence of the protein-hydration layer absorbance at low (6 Å) and high (18 Å) 
protein–protein separation, together with the absorbance computed for the same volume of bulk water. 
(Lower Left Inset) Total computed Terahertz absorption against effective concentration of protein. The 
quasi-linear region at large protein concentration (area III, c>15 mM) reproduces the known behavior, and 
the nonlinearity at small protein concentration matches the experimental trend measured here (the dashed 
line is the linear fit to the low concentration trend) [19].  These calculations to interpret our experiments 
were performed by Matthias Heyden, Xin Yu, and David Leitner. 

 

[Figure 3.8] shows the computed absorbance of the protein and first hydration 

layer at 2.5 Terahertz as a function of the distance between protein surfaces. Absorption 

coefficients reported for protein and a hydration shell correspond to the protein and the 

nearest 3 Å of water molecules.  In accord with experiment, we find that the distance 

between the proteins significantly influences the absorbance of the protein and its first 

hydration shell (and shells beyond, see [Chapter 3.6.2]).  First, the absorbance decreases 

as the proteins are brought closer together from 24 Å to 18 Å by ~15%.  Then the 

absorbance increases by ~40% when the distance between the protein surfaces shrinks to 

12 Å.  Finally the absorbance turns over and flattens for the shortest distances, changing 

little with inter-protein distance, mimicking the concentration-dependent turnover 

observed experimentally.  (There is still a modest increase in the absorbance when the 

protein–protein separation is reduced further still to 6 Å.)  The variation in the absorbance 
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beyond a protein–protein separation of 18 Å also supports that the hydration shell around 

each protein extends to at least 9 Å.  

This trend is especially strongly pronounced in the calculation because the bulk 

water, which contributes most at the measured protein concentration, is not included. The 

trend is less evident if we include the bulk water in the predicted total absorption because 

the simulation predicts water to have a higher absorbance than low concentrations of 

protein in water. 

Therefore, molecular dynamics simulations of the dipole correlation function of 

the hydration water supported the hypothesis that the Terahertz absorption of the 

hydration shell could depend on the distance between the proteins, in agreement with 

studies by Pettitt and co-workers that show retarded dynamics for water between nearby 

solutes.[75]   

 

 

3.4.6 The total Terahertz absorption decreases linearly at moderate and 

higher concentration 
 

 We can computationally estimate the dependence of the total Terahertz absorption 

coefficient on protein concentration by using the surface-to-surface distances in [Figure 

3.8]. A given concentration c corresponds to a distribution of surface-to-surface distances.  

By considering the concentration dependence of the absorbance of protein and the 

hydration layer with the bulk water, Monte Carlo sampling of hard-sphere proteins (12.1 

Å radius of gyration) yields an estimate for the total absorption as a function of effective 

concentration [Figure 3.8, Lower Left Inset]. 

 It shows the result, which qualitatively matches the trend in the experimental data 

at moderate and high protein concentrations: absorbance drops off approximately linearly 

with increasing concentration, as observed in earlier measurements over a wide range of 

concentrations [62]. Only by precise measurements of changes at low concentrations does 

the nonlinear variation, which is a direct probe of the dynamical hydration shell, become 

apparent. As discussed below, the appearance of a change in the slope of the absorbance 

vs. concentration at low concentration implies a broad hydration water shell around each 
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protein, despite the a priori assumption of a single hydration layer made in the preceding 

computational analysis. 

 

 

3.4.7 Other evidences of an extended dynamical hydration shell 
 

 The unexpected nonlinear absorbance vs. concentration is a collective dynamical 

property of the protein - hydration water system. Protein–protein distance-dependent 

changes in the collective dipole moment are evident upon examining the dipole 

autocorrelation function [Chapter 3.4.5].  While the cross over to the plateau is expected 

at the concentration of much more than 2.5 mM in the simulation, it actually occurs at 

less than 1.0 mM for the Terahertz measurements.  In the simulation, the hard sphere 

model was assumed, which does not account for an attractive potential between the 

proteins.  Although lambda repressor shows no signs of irreversible aggregation at 

concentrations below 20 mM, a nonzero attractive interaction potential between proteins 

(transient aggregation calculated by simulation based fitting to SAXS experiments, as 

described in [Chapter 2]) can shift the peak in absorbance toward smaller concentrations, 

because the actual distance is then smaller than expected for the assumed random 

distribution, due to the attractive force fields.  This explains why the estimated hydration 

shells size (> 10 Å) from the simulation could be smaller than the hydration shell size 

observed by the experiments (> 20 Å).  However, any long-range interaction cannot 

explain the observed maximum in the Terahertz absorption, because it would only cause a 

‘‘rescaling’’ of the concentration axis. The nonlinearity has to be attributed to the onset of 

overlapping dynamical hydration layers, which show an increased Terahertz absorption 

compared with the buffer.  
 

 Whereas the existence of hydration shells of over 10Å has not been reported 

experimentally so far, such large shells containing water dynamically distinct from water 

in the bulk have been found in earlier molecular dynamics simulations [63, 76].  The 

heterogeneous rigidity of the water network and its coupling to the protein surface 

influence the vibrational density of the low frequency modes.[63, 77, 78]  Several other 
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recent studies have also addressed the molecular-level dynamics of hydration layers from 

the protein surface to the bulk.[79]  Using X-ray and neutron diffraction, Head-Gordon 

and co-workers found for low concentration of the NALMA peptide an additional elastic 

component is activated, which is attributed to a coupling between inner and outer 

hydration layers.[80]  Molecular dynamics simulations for villin headpiece in aqueous 

solution yielded a change in the density of water near the protein upon unfolding and a 

correlation of the water dynamics with the folding process.[81] 

 

 In addition to the dipole autocorrelation function and recent works described in 

the literatures above, a hydration shell corresponding to water dynamics distinct from 

bulk water can be quantified by the hydrogen bond correlation function, C(t), which 

yields the probability that a hydrogen bond that exists between two water molecules at a 

given time, t=0, is present at a later time, t, regardless whether the bond has been broken 

between 0 and t.  The MD simulation of solvated globular 6 85*λ −  at 27 °C, performed by 

the Leitner group [19] reveals that the hydrogen bond correlation function for water 

molecules in 2 Å thick layers of water up to 10 Å from globular 6 85*λ −  is distinct from 

the hydrogen bond correlation function computed for bulk water [63], as shown in 

[Figure 3.9]. 

 
Figure 3.9 : Hydrogen bond correlation function for the water molecules around 6 85*λ −  

The shown, from top to bottom, within 2 Å of the protein, between 2 and 4 Å, etc., up to between 8 and 10 
Å, which appears very close to the bulk water value. (Inset) The hydrogen bond lifetimes for water as a 
function of distance (Å) from the surface of the protein, which is defined as the time at which C(t) is 1/e. 
[63]  These calculations to interpret our experiments were performed by Matthias Heyden, Xin Yu, and 
David Leitner. 
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 In summary, both experiment and simulations indicate a long-range dynamical 

hydration shell and reveal the dynamics of the hydration water to be sensitive to the 

distance between proteins. 

 

 

3.5 Sequence- and pH-dependent hydration of the lambda 

repressor5 
 

3.5.1 pH-dependent hydration of the lambda repressor 
 

 As a global perturbation of protein hydration, first we lowered the pH value from 

7.3 to 5, or even down to 2.  The absorption of the buffer alone is constant over this pH 

range. The protein has gone partway through the unfolding transition at pH 2 (as 

monitored by circular dichroism and fluorescence wavelength shift, shown in supporting 

materials in ref. [77]).  ANS binding to the proteins is enhanced at lower pH (2 and 5), 

indicating a more exposed hydrophobic surface area.[64] 

 

 We observe a strong pH dependence of the Terahertz absorption [Figure 3.10].  At 

pH 7.3, addition of protein to the buffer increases the absorption coefficient 0.5-1.0 mM 

concentration, whereas at pH 2 and 5, the protein solution has almost the same or slightly 

lower absorption coefficient than aqueous buffer.  The non-monotonic behavior observed 

at pH 7.3 cannot be explained by a two-component excluded volume model.  In the case 

of a completely transparent protein which displaces water, we expect a decrease 

according to the dotted line in [Figure 3.10], but the pH 7.3 data indicate that the 

absorption coefficient of hydration water is enhanced by the presence of protein.  This 

enhancement at low concentrations indicates a dynamical hydration shell of >10 Å 

thickness around the protein, as discussed earlier in [Chapter 3.4].  At pH 2, the 

absorption lies slightly below the dotted line that posits a completely transparent protein, 

                                                 
5 All protein samples are carefully prepared and provided by the author, and the Terahertz data were 
collected by Simon Ebbinghaus in the Havenith group, at Ruhr-University-Bochum, Germany. 
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indicating hydration water with an unusually low absorption coefficient.  The pH 5 data 

follow the dotted line more accurately. 

 

 
Figure 3.10 : Terahertz absorption of 6 85*λ −  at pH 2.0 / 5.0 / 7.3 

Difference in the integrated Terahertz absorption coefficient (2.1-2.8 Terahertz) of 6 85*λ −  at pH 2.0, pH 

5.0, and pH 7.3 relative to [ ]/rel protein bulk bulkα α α α= −  plotted against concentration. Shown is the 
average of several subsequent measurements at the same concentration along with the statistical error. The 
main error source is the refilling of the sample cell. Further details of the experimental setup can be found 
in ref. [74]. The temperature is kept at 20°C. The inset shows the structure and the mutation sites. The 
absorbance for the native protein (pH 7.3) depends nonlinearly on concentration in this region, indicating 
overlapping hydration shells. In contrast the concentration dependence of the Terahertz absorption of the 
destabilized protein (at pH 2 and 5) resembles the predicted decrease due to the replacement of water 
molecules by the proteins, described in the two-component excluded volume model. 
   

  To complement the experimental data, our collaborators, M. Heyden, X. Yu, D. 

Leitner, and M. Havenith have studied the approximate dynamics of the protein and 

explicit solvent water by molecular dynamics (MD) simulation.  They calculated the 

predicted average lifetimes of hydrogen bonds for 6 85*λ − , and it shows that water 

molecules around the denatured state show retardation of the dynamics, caused by the 

exposure of hydrophobic residues of the denatured protein to the water. [77]  The more 

exposed hydrophobic residues significantly change the hydration dynamics and induce 

negative THz absorption in surrounding water molecules. 
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3.5.2 Sequence dependent hydration of the lambda repressor 
 

 To study a site-specific hydration effect on the Terahertz spectrum, I substituted 

Gln33 for Tyr by site-directed mutagenesis, replacing the highly polar glutamine side 

chain (CH2CH2CONH2) by a less polar aromatic side chain.  When coupled with Ala-Gly 

mutations (A37G/A49G) that greatly destabilize the protein,[82] the Tyr mutant shows a 

concentration dependence similar to the low pH proteins, with only a remnant of a 

concentration maximum.  When coupled with a helix-stabilizing mutation (G46A/G48A), 

about half the maximum in absorption relative to buffer is restored when compared to pH 

7.3.  Thus a quadruple mutation (A37G/A49G to G46A/G48A) that stabilizes helices in 

6 85*λ −  is not sufficient to completely offset the effect induced by a single point mutation 

at position 33.   

 The results are summarized in [Figure 3.11].  Terahertz absorption can thus be 

used in conjunction with site-directed mutagenesis to probe local interaction of protein 

surfaces with their solvent shells. 

 

 
Figure 3.11 : Terahertz absorbance of 6 85*λ − and its mutants at pH 7.3 

A comparison of the integrated Terahertz absorbance (between 2.1 and 2.8 Terahertz) of the pseudo-wild-
type lambda repressor with two mutants of the protein at pH 7.3.  The nonlinear concentration response is 
most pronounced for the wild type. It is less significant for the helix-stabilized mutants. The mutant 
Q33Y/A37G/A49G deviates the least from a simple solvent displacement model (dotted line). 
 



 53 

 

 In summary, we have shown that global perturbations of the protein hydration 

shell by pH and local perturbation by surface site-specific mutation both produce 

significant changes in the terahertz absorption spectrum of aqueous protein.  Such 

changes can be used in the future as sensitive probes of protein-solvent dynamics, 

opening up the possibility of using Terahertz absorption as a probe for protein folding 

kinetics and functional dynamics measurements.  The development of quantitative 

models for the Terahertz spectra will make it possible to understand local hydration of 

proteins at the molecular level. 

 

 

3.6 The effect of protein flexibility on the dynamical 

hydration shell of ubiquitin 
 

3.6.1 Results 
 

 I summarize the results of the measured changes in the Terahertz absorption of all 

five protein variants in [Figure 3.12]6.  For reference, the dotted line also shows what 

would be expected for a simple two-component model with protein and bulk water only.  

Similar to 6 85*λ − , the measured Terahertz absorption of all five proteins deviates strongly 

from a linear decrease which is predicted in [Equation (3.4)].  The wild-type and pseudo-

wild-type (containing a tryptophan) in particular deviate strongly from a linear 

concentration dependence.  The mutants whose fluorescence indicates higher flexibility 

deviate less from bulk buffer absorption, but still significantly outside the measurement 

uncertainty shown by the error bars.  Note that the ranking from highest to lowest 

flexibility based on our fluorescence measurements is Ub* I61A > Ub* V26A I61V > Ub* 

V26A ≈ Ub* > Ub, [66] whereas the ranking from lowest to highest deviation in the 

Terahertz absorption is Ub* V26A I61V ≤ Ub* V26A < Ub* I61A < Ub* < Ub.  (See 

[Table 3.1] and [Chapter 3.3.2] for the abbreviation of the ubiquitin mutants.) 

                                                 
6 All protein samples are carefully prepared and provided by the author, and the Terahertz data were 
collected by Benjamin Born in the Havenith group, at Ruhr-University-Bochum, Germany 
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 When extrapolating the Terahertz absorption coefficient towards very high protein 

concentrations we find slight differences between the different mutants. Whereas the 

wild-type shows the highest net absorption in this spectral range, Ub* and Ub* V26A are 

found to have a similar but slightly smaller Terahertz absorption coefficient at the highest 

measured protein concentration. Both exceed that of Ub* V26A I61V and Ub* I61A, 

which approach the value expected for a completely transparent sphere of the volume of 

the protein.  The concentration at which the maximum in the Terahertz absorption for all 

ubiquitin and mutants is found lies around 1.25-1.5 mM, which is higher than the 

maximum in the Terahertz absorption for the five helix bundle *6 85λ −  at ca. 0.6 -0.7 mM 

concentration. This indicates that ubiquitin has a smaller dynamical hydration shell 

than *6 85λ − . 

 

 
Figure 3.12 : Terahertz absorption of ubiquitin and its mutants 

Integrated Terahertz absorption coefficient (between 2.1-2.8 Terahertz) of the protein as a function of 
protein concentration. Displayed is the result for ubiquitin wild-type, the ubiquitin pseudo-wild-type and 
three ubiquitin mutants relative to bulk water. The measurements ware carried out at (20±0.5) °C and at 
pH 4.8. The dotted line shows the predicted decrease in case that the protein does not contribute to the total 
Terahertz absorption, but is just displacing water molecules (two component excluded volume model). 
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3.6.2 A fit to the three component excluded volume model  
 

 The concentration at which the onset of non-linearity occurs is directly correlated 

with the smallest concentration at which the dynamical hydration shells start to overlap. 

[Figure 3.13] shows a fit of the Ub data to [Equation (3.5)], which is performed by 

Benjamin Born in Ruhr-University-Bochum, Germany. 

 

 
Figure 3.13 : A fit to the three-component model for wildtype ubiquitin 

Wild-type ubiquitin Terahertz absorption fitted to a three component Monte Carlo model that takes into 
account overlapping hydration water shells at higher concentration.[83] This fit to interpret the experiment 
results was performed by Benjamin Born, Ruhr-University-Bochum, Germany. 
 

 He has restricted the fit to concentrations below 2.5 mM because the three-

component model cannot account for the full decrease of absorption observed at higher 

concentrations.  The truncated bulk solvent and hydration sphere volumes required by 

[Equation (3.5)] were simulated by a Monte Carlo distribution of globular proteins with 

spherical hydration shells whose diameter can be adjusted.[83]  We can then directly 

deduce the average size of the hydration shell from the concentration at the point of 

turnaround in the Terahertz absorption. 

 He has added these calculated protein surface – protein surface distances as a 

further variable to the x-axis of [Figure 3.12].  For ubiquitin the molar concentration of 
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the maximum is around 1.5 mM, which corresponds to an average protein - protein center 

of mass distance D of ≈ 66.6 Å.  
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 If we take a surface radius of 15 Å for the bare ubiquitin, the average distance 

between the protein surfaces at 1.5 mM is 36.6 Å. 

 

 ( ) ( )shell surface

66.6  A
2R ~18.3 A 2R ~ 15 A

D =

= +
 (3.11) 

 

 We can then directly deduce the average size of the hydration shell, which 

corresponds to Rshell at the concentration at the point of turnaround in the Terahertz 

absorption to be 18.3 Å.  This number still exceeds by far the estimated size of the 

sterically bound first hydration shell (~3 Å).  

 

 However, it must be noted that the three-component model oversimplifies the 

situation, and does not provide a quantitative fit over the full concentration range.  As 

seen in [Figure 3.13], the fitted function does not drop off rapidly enough at higher 

concentrations.  Proteins are rather large molecules compared to disaccharides,[74] and at 

high enough concentration, a large fraction of the hydration water lies in the hydration 

shells around two or more proteins.  Such multiple hydrated waters may differ from 

hydration water around a single protein.  The overestimate of absorbance in [Figure 3.13] 

at higher concentrations would in fact indicate that water interacting with multiple 

proteins absorbs less than water interacting with one protein.   For λ-repressor in 

[Chapter 3.4] we also showed that the assumption of a single hydration shell, but constant 

absorption coefficient is too simple for proteins.  The molecular dynamics simulations 

performed by our collaborators [Chapter 3.4.5] supports a more complex Terahertz 

absorption which depends on the protein-protein distance.[19] 
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3.6.3 Terahertz vs. Fluorescence spectroscopy: the tryptophan effect 
 

 Fluorescence and Terahertz spectroscopy report differently on the flexibility of the 

protein.  Tryptophan is a local probe, and one would expect it to be most sensitive to the 

environment near the side chain.  Terahertz spectroscopy of the dynamical hydration shell 

is a global probe that averages over the entire protein surface.  This is borne out by the 

ranking reported in the results.  In [Figure 3.3] on the right, the fluorescence 

measurements show large deviations from the pseudo-wildtype when residue isoleucine 

61, adjacent to the tryptophan, is mutated to alanine or valine.  On the other hand, 

mutation of the remote residue valine 26 to alanine has almost no effect on the 

fluorescence, even though this mutation is more destabilizing to the protein overall.  In 

contrast, Terahertz spectroscopy shows the largest deviation from Ub* for the more 

disruptive core mutation Val26Ala and for the corresponding double mutant, but a smaller 

effect for the less disruptive Ile61Ala mutation of a near-surface residue.  Thus 

tryptophan detection emphasizes the side chain truncation near the tryptophan residue, 

while Terahertz spectroscopy emphasizes the more destabilizing truncation of a core 

residue. 

 

 The tryptophan probe itself can be evaluated further by our Terahertz 

measurements.  The interesting question is: how much does insertion of a tryptophan side 

chain modify the hydration dynamics?  As we can see from [Figure 3.12], the 

introduction of the fluorescent tryptophan in the Phe45Trp variant Ub* shows a peak at a 

slightly lower concentration (1.25 mM) than the wild-type Ub (1.5 mM), and we obtain a 

statistically significant reduction of the Terahertz absorption at the concentration of the 

maximum.  Thus the tryptophan probe has an impact on the absorbance of the hydration 

water network Terahertz vibrations, and thereby on the fast hydration dynamics.  This is 

an important consideration for fluorescence studies that depend on the insertion of 

tryptophan probes at various sites, and which generally assume unperturbed hydration 

dynamics upon insertion.  However, the good news for fluorescence studies of hydration 

water is that phenylalanine to tryptophan replacements cause smaller changes in the 

absorbance characteristics of the hydration water than any of the other mutations, e.g. the 
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side chain truncations. 

 

 

3.6.4 Hydrophobicity significantly affects hydration water structure 
 

 In [Chapter 3.5.1], a complete absence of the maximum was found for 

denaturated λ-repressor at pH 2, which is more flexible than the native structure.[77]   

ANS binding indicated that this reduction might be associated with the increased 

exposure of more hydrophobic sites which affect the water in its hydration shell. [64, 77]   

The more the protein loses its structures and gains flexibility, the more hydrophobic 

residues are exposed to water molecules, as shown in [Figure 3.14].  Thus increased 

surface hydrophobicity of the mutants is a candidate for changes in hydration water 

structure that leads to the smaller bulk water-like Terahertz absorption, as compared to 

the Ub and Ub* proteins.  Based upon MD simulations [84], we propose that the solvent 

exposed hydrophobic side chains induce a negative Terahertz absorption coefficient in 

their surrounding, whereas hydrophilic parts lead to an increase in the hydration water 

compared to bulk water.  

 
Figure 3.14 : VMD visualization of a partially folded (left) and a fully unfolded (right) Ubiquitin 

The more the protein loses its structures and gains flexibility, the more hydrophobic residues are exposed. 
1UBQ structure from PDB Databank [85] using VMD visualization to show its 3D shapes [37] 
 

 To test this idea further, we measured the absorption coefficient of denatured 

ubiquitin as a function of concentration.  [Figure 3.15] shows that ubiquitin, like 
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λ−repressor, has a signature very close to the two-component bulk water model of 

[Equation (3.4)] once it has been denatured.  This supports the idea that in case of partial 

unfolding the increased exposure of the hydrophobic core leads to a decrease of the initial 

maximum in Terahertz absorption at 1.5 mM. The resulting curve resembles now that of 

bulk water with the protein displacing a water volume of 14400 Å3 multiplying number 

of proteins. 

 

 
Figure 3.15 : Terahertz absorption coefficient of Ub and Ub* at pH 2 and pH 4.8 

Integrated Terahertz absorption coefficient (between 2.1-2.8 Terahertz) of Ub and Ub* as a function of 
protein concentration at pH 2 and pH 4.8. The measurements were carried out at (20±0.5) °C and at pH 4.8. 
The dotted line shows the predicted decrease in case that the protein does not contribute to the total 
Terahertz absorption, but is just displacing water molecules (two component excluded volume model).  
 

 

3.7 Summary 
 

 In summary, we find that Terahertz absorption spectroscopy provides a sensitive 

tool to probe the fast hydration water dynamics around proteins.  At low concentrations 

we find a non-linear absorption dependence on concentration.  This nonlinearity indicates 

a long range (up to ~20 Å from the protein surface) influence on the hydration dynamics, 

corresponding to 6 hydration water layers (ca. 3 Å average extension per water molecule).  
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This long range influence is sensitive to changes in the overall flexibility.  The Terahertz 

absorption at low concentrations is significantly altered when the protein is partially 

unfolded. 
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Chapter 4 Real-time detection of protein-water 

dynamics upon protein folding by KITA (Kinetic 

Terahertz absorption) spectroscopy 
 

4.1 Abstract 
 

 Kinetic Terahertz absorption (KITA) spectroscopy is introduced to study folding 

of solvated biomolecules.  KITA is particularly sensitive to protein-hydration water 

dynamics.  We apply KITA to the refolding kinetics of ubiquitin and of three side chain 

truncation mutants designed to disrupt the hydrophobic core and increase overall protein 

flexibility.  KITA results are compared to small angle X-ray scattering, tryptophan 

fluorescence, and circular dichroism.  The KITA signal rapidly relaxes to the native 

protein’s value, on the same millisecond time scale on which secondary structure 

formation is detected by circular dichroism.  Both processes are much faster than 

acquisition of native-like fluorescence.  We propose that KITA monitors the 

rearrangement of hydrogen bonding during secondary structure formation, and suggest 

future experimental tests and applications to folding dynamics with this new technique. 

 

 

4.2 Introduction 
 

 Recently, there has been a growing interest in probing not just the dynamics of 

self-assembling macromolecules, but the dynamics of their hydration shells as well.  

Dielectric, Raman and fluorescence spectroscopies, NMR, neutron scattering and 

crystallography all provided insights, but only Terahertz absorption spectroscopy 

(wavelength range 0.1-1 mm; 1 Terahertz = 1 ps-1) probes the picosecond solvent 

dynamics directly over any desired time scale, and is sensitive to hydration layers far 

from the molecular surface.[63]  
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 Protein folding is a self-assembly process in which solvent motions play a critical 

role.  The free energy contributions of the protein and of the hydration water are 

comparable during folding,[86] and water dynamics are perturbed by the protein beyond 

two hydration layers.[83, 87]  Yet folding has been probed in the past mainly with an 

emphasis on the backbone and side chains of the protein itself.  Can we directly probe 

solvent reorganization during secondary structure or hydrophobic core formation? 

 Terahertz sources have become powerful enough to study directly the absorption 

spectroscopy of biomolecules in aqueous buffer.[62, 74, 88-91]  We recently showed that 

Terahertz absorption is sensitive specifically to hydration water around proteins.[19, 77]  

At the same time, time-domain Terahertz spectroscopy has been applied in absorption and 

emission to study picosecond dynamics on the time scale of the Terahertz pulse itself,[92, 

93] and Terahertz absorption has been used to monitor slow kinetics.[94]  Terahertz 

absorbance probes dynamics on the 10-12 second (picosecond) time scale, ideal for 

monitoring translational/rotational/vibrational dynamics of the water network near the 

protein surface, notably hydrogen bond rearrangements.  

In our previous work, for the five-helix bundle *
6 85λ −  and for ubiquitin, we 

observed excess absorption of 2.5 Terahertz light by millimolar protein solutions, 

compared to the buffer or the protein alone.  We showed that altered water dynamics 

within hydration shells of up to 15 Å in thickness account for the excess absorption.[19, 

77, 83]  We suggested that the excess absorption of hydration water at 2-3 Terahertz 

occurs because the protein-water coupling induces a shift of absorbance from sub-

Terahertz to higher frequency modes.[19]  At even higher concentrations of proteins, 

Plaxco and coworkers determined that Terahertz absorption decreases quasi-linearly,[62] 

and our measurements agree with this result. 

 

Here we find that millimolar protein solutions indeed absorb less than buffer in the 

0.2 – 0.8 Terahertz region, which is in agreement with this suggestion.  We then use the 

change in Terahertz absorbance to monitor folding kinetics.  Here we introduce kinetic 

Terahertz absorption (KITA) for hydration dynamics during folding.  KITA provides a 

direct window on protein-solvent rearrangements during folding, such as the breaking of 

backbone-water hydrogen bonds and their replacement by backbone-backbone hydrogen 
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bonds.[95]  KITA monitors the changing Terahertz electric field pulse shape on the 

picosecond time scale Δt, as a chemical reaction proceeds on a longer time scale t, up to 

many seconds.  We apply KITA to measure the changing protein-hydration water 

dynamics during the fast refolding of ubiquitin.  We have chosen human ubiquitin with a 

Phe45Trp mutation (Ub*) for our first KITA folding study.  Ub* is a 76 residue 

predominantly β-sheet protein, which has long been used as a prototype for folding 

kinetics studies.[96]  We previously probed ubiquitin folding by circular dichroism 

(sensitive to secondary structure formation), fluorescence (sensitive to dehydration 

around an engineered tryptophan) and small angle X-ray scattering (sensitive to the 

radius of gyration).[71, 97]  These studies provide an opportunity to compare KITA with 

a number of existing spectroscopic probes of folding. 

 Highly probe-dependent refolding kinetics are observed.  The folding kinetics 

detected by KITA are compared to small angle X-ray scattering (SAXS), tryptophan 

fluorescence, and circular dichroism (CD), revealing that in the 0.1-1 Terahertz range, the 

hydration dynamics are coupled to secondary structure formation (including a switch 

from solvent-protein towards more protein-protein hydrogen bonds) and to protein 

compactification, whereas formation of native-like tertiary structure around the 

tryptophan takes place on a thousand-fold slower time scale. We find that the change in 

Terahertz absorption, which monitors collective rearrangements of the protein chain and 

hydration water, has a millisecond response.  On a similar time scale, we observe 

significant changes in secondary structure content and protein compactness.  In sharp 

contrast, tryptophan fluorescence takes at least a second to switch from the denatured to 

the native state.  Thus rapid adaptation of the hydration water around a protein occurs 

long before hydrophobic residues are packed into a native-like environment.  Our finding 

supports the hypothesis of Frauenfelder and coworkers that early protein folding protein 

dynamics is slaved to hydration dynamics.[47]  

To extract further structural information, we also monitored the absorption of three 

mutants of Ub*, involving side chain truncation of fully or mostly buried aliphatic 

residues (Valine, Isoleucine) so as to minimize any change in the interactions of the 

native protein with hydration water.  The early folding dynamics monitored by KITA are 

not greatly affected by mutations that affect the core packing of the native state. 
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Kinetic Terahertz absorption promises to be a useful tool for studying the dynamics 

of the hydration environment around proteins.  Recent simulations of absorption spectra 

of hydrated proteins, achieved by monitoring the picosecond rearrangement (1/Terahertz 

= 10-12 seconds) of dipole moments in molecular dynamics simulations, [19, 63] also 

show the sensitivity of the water hydration network to Terahertz absorption.  It will be 

very interesting to compare such simulations for unfolded, partially folded and native 

states of proteins in the future, to go hand-in-hand with KITA experiments of protein 

folding. 

 

 

4.3 Materials and methods 
 

4.3.1 Protein sample 
 

 Ubiquitin is a small predominantly β-sheet protein with 76 residues (MW 8.5 

kDa; see [Figure 4.1]). The plasmids for ubiquitin mutants were made as described in ref. 

[66] from the original Ub* plasmid (provided by Tracy Handel), [72] which has a 

Phe45Trp mutation to introduce a fluorescent marker.  We studied two single point 

mutants (I61A, V26A) and one double mutant (V26A I61V) to examine the effect of 

flexibility caused by side chain truncation.  (Refer to [Table 3.1] and [Chapter 3.3.2] for 

the abbreviation of the ubiquitin mutants.)  Protein flexibility was previously shown to 

reduce the Terahertz absorption of native ubiquitin in the 2.5 Terahertz region.[83] 
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Figure 4.1 : VMD visualization of Ubiquitin and its structures by color 

1UBQ structure from PDB Databank,[85] using VMD visualization to show its structures by color[37] 

 

Plasmids for each mutant were inserted into the pET-15b vector and expressed in 

Rosetta TM (DE3) pLysS cells (Novagen Inc). After cell growth in LB broth at 37 °C for 

8 hours, we performed an induction with IPTG and kept cells at 25 °C for 12 hours.  Cells 

were lysed with a French press. Collected supernatants were bound to a CM-52 cation 

exchange column and eluted with a linear salt gradient from 0 to 1 M NaCl for 

purification. Flow-through containing ubiquitin was collected and additional purification 

was performed with Amicon 3 kDa and 30 kDa membranes (Fisher Scientific). The 

purity of ubiquitin mutants was checked by electrospray ionization mass spectroscopy 

and SDS-PAGE. Final protein concentrations were determined by UV absorption 

spectroscopy (Shimadsu UV-1650 PC) at 280 nm. 

 Protein was dissolved in a 45%/55% by volume ethylene glycol/water buffer with 

40 millimolar sodium phosphate at pH 5.9.  This allowed cooling of the solutions to as 

low as –28 °C for comparison with previous X-ray scattering experiments. 6 molar of 

guanidine hydrochloride was added to denature protein before mixing in the stopped-flow.  

After 1:6 mixing, and in the reference buffers used for subtraction, the guanidine 

hydrochloride concentration was 0.86 M.  The denaturation curves by guanidine hydro-

chloride are shown in ref. [66]. 
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4.3.2 KITA measurement details   
 

 Our apparatus is illustrated in [Figure 4.2] and [Figure 4.3]. Terahertz pulses pass 

through a stopped-flow cell, where a mixer combines denatured ubiquitin with 

denaturant-free buffer to start refolding,   The shape of the transmitted Terahertz electric 

field is detected using a ZnTe crystal and a 800 nm gating pulse delayed by Δt.  The 

difference ΔE of the electric field between buffer and denaturant-free 1.5 mM protein 

solution is shown.  For kinetics, the Terahertz pulse is detected near the maximum 

electric field, and the mixer is scanned in time t with respect to the Terahertz pulse. 

 It resolves the Terahertz pulse with sub-ps time resolution, and measures with 

millisecond time resolution the changes in the pulse caused by changing absorption of 

hydration shells and their associated proteins during refolding initiated by a mixer.  

Pulses spanning the 0.1-1 Terahertz frequency range were used.  By scanning the time 

delay of the Terahertz pulse relative to the gating pulse, the Terahertz electric field is 

mapped out precisely.  By changing the “kinetic” time between stopped-flow and 

Terahertz pulse, the kinetics of folding are mapped out. 

 

 Stopped flow kinetics were used to initiate refolding of Ub* and its mutants for 

the Terahertz detection.  Stopped flow kinetics was measured by 1:6 mixing from 6 to 

0.86 M guanidine hydrochloride in stopped-flow instruments (Unisoku, Ltd.).  A buffer 

containing protein and denaturant (6 M guanidine hydrochloride) is mixed with a 

denaturant-free buffer, and then injected into the observation cell.  1:6 mixing in two 

stopped-flow instruments (both Unisoku) resulted in a final guanidine hydrochloride 

concentration of 0.86 M, and in a final protein concentration of 1.5 mM (Ub*) or 1.0 mM 

(mutants of Ub*).  At this denaturant level, all mutants fold to the native state.  The dead 

time of the instrument ranged between 6 ms and 50 ms, depending on the temperature, 

instrument configuration and solvent conditions.  The KITA stopped flow observation cell 

has a pathlength of 0.5 mm, with 50 μm z-cut quartz windows. 
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Figure 4.2 : Data collection setup for KITA 

Terahertz pulses (orange) are focused into a KITA stopped flow observation cell (pink).  A mixer (blue) 
combines denatured protein solution with buffer to initiate refolding, then  injects the protein sample into 
the cell (1UBQ structure from PDB Databank,[85] using VMD visualization to show mutation sites [37]).  
The transmitted Terahertz pulse, which is now attenuated and delayed in time, is refocused onto a zinc 
telluride crystal for detection.  There the Terahertz pulse electro-optically modulates a 800 nm laser pulse, 
imprinting its amplitude onto the laser pulse.  By delaying the Terahertz pulse relative to the laser pulse, the 
electric field of the Terahertz pulse is mapped out.  For kinetics, the delay is fixed at or near the maximum 
Terahertz electric field.  To increase sensitivity, the input Terahertz pulse amplitude is modulated at 40 kHz 
and a lock-in amplifier detects signal only at 40 kHz, providing efficient noise suppression by phase-
sensitive detection 
 

 Terahertz pulses of about 4 picosecond total duration (600 femtoseconds full 

width at half maximum) and spanning the 0-1 Terahertz frequency range [Figure 4.5] are 

generated by photoconductive switching of near-infrared pulses from a Ti:sapphire laser 

on a Tera-SED low temperature grown gallium arsenide photoconductive emitter made 

by GigaopticsTM.  The specifications of the input pulses are 800 nm wavelength, 20 

femtosecond duration at 500 mW average power and 92 MHz pulse repetition rate.  The 

average Terahertz output power is about 10 μW, in picosecond duration pulses at 92 MHz 
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repetition rate.  The Terahertz pulses are focused by an off-axis parabola into the stopped-

flow cell.  The transmitted Terahertz pulses, attenuated and shifted after protein folding is 

initiated by the stopped-flow, are then refocused onto a 1 mm thick zinc telluride crystal 

cut at <110> orientation.  To trace out the Terahertz electric field, another 800 nm pulse, 

derived from the same Ti:sapphire laser is also focused onto the crystal.  The interaction 

of the two pulses generates a gated output signal at 800 nm that is detected by a Nirvana 

autobalanced photo detector (New Focus).  By scanning the time delay of the Terahertz 

pulse relative to the 800 nm reference pulse on a translation stage (≈0.6 mm per 

picosecond), the electric field is mapped out precisely, as shown in [Figure 4.5] and 

[Figure 4.4].[98] 

 
Figure 4.3 : KITA setup overview7 

 

 To detect this signal with the highest possible sensitivity, the Terahertz pulse was 

amplitude-modulated at 40 kHz by applying a ±50 V square wave to the photoconductive 

emitter.  The detector current was fed into a lock-in amplifier (Signal Recovery 7265 

DSP) with 30 dB input gain set to the same reference frequency.  The time constant of the 

                                                 
7 By courtesy of Benjamin Born, Ruhr-University-Bochum, Germany 
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lock-in amplifier is set to 5 milliseconds, faster than the dead time of the instrument or 

the fastest kinetic transients observed.  The resulting electric field as a function of delay 

time, or at a fixed delay time but as a function of “kinetic time” after the stopped-flow, 

was accumulated into a computer using the National Instruments LabView software. 

 The relative humidity around the stopped-flow cell was kept below 9% at 19 °C 

by a stream of nitrogen gas, to avoid attenuation of the Terahertz pulses by water vapor, 

and to prevent condensation from forming on the optical windows of the stopped flow 

cell. 

 
 

4.3.3 Fluorescence kinetics measurements  
 

 Stopped flow kinetics were used to initiate refolding of Ub* and its mutants for 

the fluorescence measurement.  Stopped flow kinetics was measured by 1:6 mixing from 

6 to 0.86 M guanidine hydrochloride in stopped-flow instruments (Unisoku, Ltd.).  We 

used 280 nm UV laser pulses to excite the tryptophan residue of Ub* and collected 

integrated fluorescence (λ>320nm) with a photomultiplier.  280 nm cut-off filters (Schott 

WG320 and Hoya U-360) were used to selectively collect fluorescence and block UV 

excitation pulses.  Time-evolution of fluorescence was recorded by a LeCroy 9384L 

digitizer coupled to the photomultiplier by an SR 570 current preamplifier (Stanford 

Research System).  Final protein concentration was measured as 29 μM after 1:6 mixing.  

An observation cell, with a pathlength of 1 mm and 50 μm sapphire windows was used 

for the fluorescence measurement. 

  

 

4.3.4 Statistical analysis 
 

 The Terahertz and fluorescence data were fitted to single exponential models 

(y=A0+A1 exp[-kt]) and double-exponential models (y=A0+A1 exp[-k2t]+A2 exp[-k2t]) by 

a Levenberg-Marquart algorithm using equal weights for all data points shown in [Figure 

4.7], [Figure 4.9] and [Figure 4.10].  In all cases 2σ fitting uncertainties were below 15% 
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of the parameter values.  In the case of Terahertz kinetic times shown in [Figure 4.7], 

[Figure 4.9] and [Figure 4.10], the actual error is limited by the dead-time of the stopped 

flow instrument at low temperature, which prevents data collection < 50 ms.  The 

relaxation times listed are thus most likely lower limits on the actual relaxation times. 

 

 

4.4 Results 
 

4.4.1 Protein and hydration water absorb less than buffer at 0.2-0.8 

THz 
 

 For the fluorescent Phe45Trp (F45W) mutant of ubiquitin (Ub*), we previously 

observed excess absorption of 2.5 Terahertz light in 0.5-1.5 millimolar protein solutions, 

compared to the buffer or the protein alone.  We showed that altered water dynamics up 

to 18 Å from the protein surface accounts for the excess absorption. [19, 77, 83]  We 

suggested that the excess absorption of hydration water at 2-3 Terahertz occurs because 

the protein-water coupling induces a shift of absorbance from sub-Terahertz to higher 

frequency modes. [19] 

 

 Here we find that ubiquitin solution absorbs less than buffer in the 0.1 – 1 

Terahertz region, in agreement with this suggestion.  [Figure 4.4] traces out the difference 

in the Terahertz electric fields between a 1.5 mM solution of Ub*, and the water/ethylene 

glycol buffer alone.  Fourier transforming the Terahertz electric fields from the time to 

the frequency domain yields the transmitted intensity for protein solution and pure buffer, 

shown in [Figure 4.5].  

 Our pulse covers the spectrum from 0.2-0.8 Terahertz, peaking at about 0.5 

Terahertz.  The protein and its hydration water typically absorb 10-20% less than the bulk 

water they replace. The net difference between buffer and protein is nearly constant from 

0.2-0.8 Terahertz, so one would expect KITA-detected kinetics not to be wavelength-

sensitive in this range. 
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Figure 4.4 : Net Terahertz electric field of Ub* as a function of time 

“Peak” and “off-peak” label two times where the Terahertz pulses were sampled for probing kinetics.  
“Pulse delay” is the variable delay time between the Terahertz pulse and an 800 nm femtosecond laser pulse 
that maps out the Terahertz pulse. 
 

 
Figure 4.5 : Fourier Transform of transmitted Terahertz electric fields 

It shows frequency spectrum of the Terahertz pulses used in the experiment, comparing transmission 
through buffer and through a 1.5 millimolar protein sample.  The black curve shows that the absorption 
reduction caused by protein and hydration water is relatively constant over the frequency range. 
 

 

4.4.2 Different slices of the Terahertz temporal pulse profile probe the 

same folding kinetics 
 

 Next, we used the change in transmitted Terahertz electric field between folded 

and unfolded protein solutions (typically 3-5%) to monitor folding kinetics.  We mix 
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protein from a 6 M guanidinium hydrochloride buffer, where it is unfolded, to 0.86 M 

guanidinium hydrocholirde, where it folds.  Refolding kinetics monitored by KITA 

provides a direct window on protein-solvent rearrangements during folding, such as the 

breaking of backbone-water hydrogen bonds and their replacement by backbone-

backbone hydrogen bonds.  

 

 
Figure 4.6 : KITA data collection scheme 

Left: A succession of Terahertz pulses (red), each of ca. 4 picosecond duration (delay axis), passes through 
the sample for several seconds (kinetic time axis).  At t=0, refolding of the protein is initiated, and the 
resulting Terahertz pulse attenuation and delay are monitored at a fixed delay time marked by black dots, 
resulting in a kinetic trace (blue).  As the mixer is scanned in time t with respect to the Terahertz pulse, the 
field changes because the folded protein solution has different Terahertz absorbance and refractive index 
than the unfolded protein solution. This is repeated with buffer for reference.  Right: Ratio of Ub*/buffer 
transmitted field at the pulse delay (0 picoseconds) of maximum field maps out folding kinetics at – 20 °C 
(blue).  Only a fast single exponential is required to fit the data.  The difference Ub*-buffer yields identical 
results to the ratio within measurement uncertainty. 
 

 [Figure 4.6] on the left shows schematically how KITA probes the evolution of 

collective protein-hydration water dynamics during refolding kinetics.  Terahertz pulses 

probe the sample with delays between 0.05 to 5 seconds after the protein has been mixed 

into low guanidine hydrochloride buffer, tracing out refolding kinetics.  These pulses are 

attenuated and delayed slightly differently because the sample has a different refractive 

index and absorbs differently as the protein undergoes folding.  We collect a buffer 

sample for reference, and plot the kinetics either as the ratio of protein 

transmission/buffer transmission [Figure 4.6, right], or as the difference [Figure 4.4].  
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Because the change in absorption between protein solution and buffer is relatively small 

[Figure 4.4], both methods yield fits with the same time constant.  The detectable kinetics 

are in the millisecond range under all conditions we measured. 

 

 
Figure 4.7 : Ub*V26A kinetics 

Top: Terahertz transmission on and off the transmitted electric field peak yields identical millisecond 
kinetics at –20 °C.  Bottom: Fluorescence-detected kinetics are much slower. 
 

 The nearly wavelength-independent absorption in [Figure 4.5] implies that the 

kinetics we detect should not depend on which part of the Terahertz pulse we probe, as 

indeed we find.  The top panel in [Figure 4.7] shows the resulting kinetics for the Ub* 

V26A, detected at the peak and off the peak as indicated by the arrows in [Figure 4.4].  

Within our measurement uncertainty, refolding kinetics are identical. Similar results were 

obtained for the other proteins we studied. Also described as [Figure 4.8], frequency 
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information contained at the peak and off-peak positions are consistently in the range of 

0.2-0.8 Terahertz and one would expect KITA-detected kinetics not to be wavelength-

sensitive in this range [Figure 4.5]. Therefore we can simply look at the kinetic trace from 

the peak of the electric field, where the signal-to-noise ratio is highest.  For proteins 

whose absorbance varies markedly in the 0.2-0.8 Terahertz range, it would of course be 

interesting to detect the entire field instead of just plotting kinetics averaging over the 

0.5±0.3 Terahertz range of the pulse from [Figure 4.5]. 

 

 
Figure 4.8 : Fourier Transform of Terahertz pulses at the peak and off-peak positions8 

Fourier Transform was performed at the peak and off-peak positions (at 1st and 2nd turning point, in inset) 
with integration width of 6 μm and 20 μm. 
 

 

4.4.3 KITA reaches equilibrium much faster than tryptophan 

fluorescence 
 

 The folding kinetics of Ub* and of its mutants turn out to be highly probe-

dependent.  In [Figure 4.7], the fitted KITA relaxation time of 8 ms is approximate due to 
                                                 
8 By courtesy of Benjamin Born, Ruhr-University-Bochum, Germany 
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the 50 ms dead time of our stopped flow apparatus under the solvent conditions used.  

However, it is clear from the time scales in [Figure 4.7] that Terahertz transmission 

approaches the native equilibrium value of Ub* V26A nearly two orders of magnitude 

faster than tryptophan fluorescence.   

 We also carefully searched for changes in the Terahertz signal on the 1s time scale 

comparable to the fluorescence-detected kinetics.  A typical result is shown for Ub* in the 

right panel of [Figure 4.6].  Within the signal-to-noise ratio of 5:1 to 20:1 achieved for the 

several Ub* mutants under various conditions, we were unable to observe any slow phase 

([Figure 4.7], [Figure 4.9] and [Figure 4.10]).  Thus for the current ubiquitin mutants 

KITA reports primarily on protein-solvent collective motions that equilibrate well before 

the tryptophan is packed into a native-like environment. 

 
 

4.4.4 Four groups of observables emerge: KITA, fluorescence, CD and 

SAXS 
 

 We also compared KITA to CD- and SAXS-detected refolding kinetics of Ub* 

and Ub* I61A.[71, 97]  To compare directly with the prior CD and SAXS experiments, 

we measured KITA under the same solvent conditions (40 mM phosphate buffer, 45% 

ethylene glycol in water buffer at pH 5.9).  [Figure 4.9] and [Figure 4.10] compare KITA, 

fluorescence, CD (circular dichroism), and SAXS (small angle X-ray scattering) data for 

Ub* and Ub* I61A.  KITA has only a fast millisecond phase.  Fluorescence has only a 

slow phase.  CD and SAXS show both phases.  For both Ub* and Ub* I61A, the altered 

dynamics of hydration water and protein detected at 0.5 Terahertz go hand in hand with a 

rapid overshoot of the CD signal at 222 nm.  The CD overshoot has been identified as 

due to formation of excess helical structure relative to the native state of ubiquitin, with 

the accompanying reduction of hydrogen bonds from the protein backbone to the 

hydration shell.[71, 83]  At the same time, the CD signal has a slow response that 

matches the fluorescence data.  This has been assigned to acquisition of native-like 

secondary structure after the protein has collapsed to a compact state.  SAXS 

measurements indicate that Ub* and Ub* I61A indeed undergo a rapid collapse on the  
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Figure 4.9 : Ub* pseudo-wild type (F45W) kinetics  

KITA, fluorescence, CD, and SAXS refolding kinetics of Ub* (Due to the dead time, the KITA fit is an 
upper limit.) Top: the Terahertz-detected kinetics complete in ≈ 100 milliseconds and have weak or no 
temperature dependence between –20 and –28 °C in 45% ethylene glycol buffer.  Top center: Tryptophan 
fluorescence-detected kinetics are an order of magnitude slower than Terahertz-detected kinetics.  Bottom 
center: Circular dichroism-detected kinetics show both a ms phase that overshoots the native secondary 
structure content, and a slow phase that matches fluorescence and takes Ub* to the native state.  Bottom: 
Small angle X-ray scattering also shows both phases: a millisecond contraction that matches the KITA 
signal, and further slow contraction to the native radius of gyration that matches the fluorescence signal.  
The bottom two panels are adapted from ref. [71]. 
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Figure 4.10 : Ub* I61A kinetics 

Top: the Terahertz-detected kinetics are fast (<100 milliseconds).  Top center: Tryptophan fluorescence 
changes much more slowly than Terahertz-detected kinetics.  Bottom center: Circular dichroism-detected 
kinetics show both a millisecond phase that overshoots the native secondary structure content, and a slow 
phase that matches fluorescence and takes Ub* to the native state.  Bottom: Small angle X-ray scattering of 
this mutant shows only a fast millisecond contraction to the native radius that matches the KITA time scale. 
The bottom two panels are adapted from ref. [71]. 
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millisecond time scale, but like CD, SAXS data of Ub* also show a slow signature that 

matches the fluorescence.  Thus the rearrangements of the solvent network detected by 

KITA occur during collapse and formation of early local secondary structure, whereas 

further rearrangements required by native packing are not picked up by KITA at 0.1-1 

Terahertz. 

 

 

4.4.5 Native protein flexibility has no systematic effect on early folding 

kinetics detected by KITA 
 

 Comparison of the KITA data for Ub*, Ub* V26A and Ub* I61A shows that 

native protein flexibility has no systematic effect on early Terahertz kinetics.  We studied 

the folding kinetics of three mutants in addition to Ub*.  Two of these mutants are single 

side chain truncations (Ub* V26A and Ub* I61A) of nonpolar residues.  The valine is 

completely buried, while isoleucine 61 is largely buried.  

 As can be seen by comparing the top of [Figure 4.7], [Figure 4.9] and [Figure 

4.10], Ub* I61A fits to a slightly slower exponential decay than Ub*, while Ub* V26A 

fits slightly faster.  All are in the range of 18±10 ms.  Considering the 50 ms dead time of 

the stopped flow, these differences are not significant.  We also studied a double mutant 

truncating both positions (Ub* V26A I61V, data not shown), known to destabilize the 

native state by 20 kilojoules/mole.[97]  This mutant has a single fast phase of 17±2 ms, 

again on the same time scale as [Figure 4.7], [Figure 4.9] and [Figure 4.10].  Thus the 

early kinetics detected by KITA are not strongly affected by mutations that destabilize the 

native hydrophobic core, even ones that significantly destabilize the native state.  

Interestingly, the same is true for the slow final stage of folding detected by fluorescence: 

the Val26Ala mutant in [Figure 4.7] is only a factor of two slower than the 14 

kilojoule/mole more stable pseudo-wildtype Ub* shown in [Figure 4.9].[71] 
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4.4.6 Fast Ub* folding dynamics have no strong temperature 

dependence detected by KITA 
  

 [Figure 4.9] (top) compares the early Terahertz folding kinetics of Ub* at two 

different temperatures, –20 °C and -28 °C (chosen to allow direct comparison with 

existing SAXS data[71]).  The traces fit to the same millisecond exponential decays 

within fitting uncertainty, and the same is the case for other mutants of Ub* (data not 

shown).  We can use this to put limits on the activation energy for rearranging the 

hydration water network during early folding events, and find that the water network 

rearrangements and large amplitude protein motions probed by KITA have a very small 

activation energy, < 15 kilojoules/mole, whereas the later stage of folding monitored by 

fluorescence has a barrier of about 27.5 kJ/mole.   

  

 We proceed as follows.  The rate is influenced by two factors: the activation 

energy † ( )G TΔ  controls how rapidly the protein can cross the barrier; the viscosity η 

controls how fast the protein chain can move in the solvent to get to the barrier.  The 

resulting rate is given by Kramers [99] as  

 

 † †( ) exp[ ( ) / ]k G T RTν η= −Δ  (4.1) 

 

Since ubiquitin is similar in size to cytochrome c, we can use the estimate of Eaton 

and coworkers, † (25 )Cν °  ≈ (1 μs)-1, as a starting point for the prefactor.[100]  For Ub*, 

the KITA signal precedes complete protein collapse to native-like compactness [Figure 

4.9].  Thus the friction limiting the rate is largely solvent friction, not internal friction.  If 

the solvent friction around the protein scales similarly with temperature as the bulk 

solvent friction (of course the absolute values, and even the scaling, could be different 

from bulk water), the corrected prefactor is  

 

(1 μs)-1η(25 °C)/η(T) ≈ (19 μs)-1 at –28 °C, 

                  and ≈ (13 μs)-1 at –20 °C. [71] 
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Combined with an observed upper limit of (8 ms)-1 on the rate coefficient k in 

[Figure 4.9], this yields a limit of ΔG†≤6RT = 15 kilojoules/mole for the activation free 

energy of Ub* as observed by KITA.  The later folding stage monitored by fluorescence 

has a much larger barrier of about 11 RT, in line with barriers estimated for ubiquitin by 

other methods. [43] 

 

 For the Ub* I61V mutant in [Figure 4.10], complete collapse to the native radius 

of gyration is fast, so protein self-friction could contribute appreciably to the prefactor.  

However, it is very likely that the temperature scaling of self-friction is similar to that of 

the solvent, yielding a similar limit for that mutant.  To the best of our knowledge, the 

temperature dependence of protein self-friction is not currently known from independent 

measurements.  It is also worth noting that bulk viscosity scaling may be slightly weaker 

than η-1 (e.g. η-0.7), but this will also have only a small effect on the limiting barrier over 

the temperature range discussed here. 

 

 

4.5 Discussion 
 

 Monitoring the changes in terahertz absorption of a protein and of its hydration 

water by KITA during folding, coupled with site-directed mutagenesis, promises to 

provide a new experimental reaction coordinate that includes hydration water motion 

directly.  As shown in our previous steady-state Terahertz measurements on ubiquitin,[77] 

hydration water makes a significant contribution to the difference between bulk solvent 

and millimolar protein solutions.  This difference can be monitored as it relaxes from the 

denatured to the native value, as plotted in [Figure 4.7], [Figure 4.9] and [Figure 4.10]. 

 The comparison of KITA and fluorescence shows that ubiquitin folds in at least 

two stages, the first of which is monitored by KITA and has a very low activation barrier 

≤ 6 RT.  The stage monitored by fluorescence has a much larger barrier of about 11 RT, in 

line with barriers estimated for ubiquitin by other methods.[43] 

 



 81 

 

 Conceptually, the interpretation of the Terahertz absorbance is straightforward.  

The dynamical hydration shell to which Terahertz absorption is sensitive has a thickness 

of 15-20 Å around proteins the size of ubiquitin.[19, 77]  In the middle of the Terahertz 

band (2-3 Terahertz), addition of protein to bulk water increases absorbance over either 

protein or bulk water (by ≈10%), due to the strongly absorbing dynamical hydration shell.  

This “Terahertz excess” is taken away from the low Terahertz band (< 1 Terahertz), where 

the same protein solution absorbs 10-20% less than bulk water [Figure 4.5], creating a 

“Terahertz defect”.[101]  As shown in [Figure 4.7], [Figure 4.9] and [Figure 4.10], the 

Terahertz defect relaxes to its value in the native protein within less than 50 milliseconds 

after initiation of refolding. 

 For the 2-3 Terahertz data, we proposed a coupling of protein surface flexibility 

and hydration shell to explain the sensitivity of absorbance to side chain truncations in 

the core of the protein.[77] In contrast, kinetic measurements at 0.2-0.8 Terahertz are not 

sensitive to changes in protein flexibility that result from side chain truncations.  The 

rates in [Figure 4.7], [Figure 4.9] and [Figure 4.10] are the same within experimental 

uncertainty (limited by the dead time), and show no systematic trend with native state 

flexibility.[66, 77]  This indicates that a different mechanism influences the Terahertz 

spectrum at lower frequencies early during the folding process. 

 A comparison with circular dichroism data allows us to propose a tentative 

mechanism.  The time scale observed by KITA is in line with the 6 millisecond upper 

limit set by circular dichroism spectroscopy on a fast phase that forms excess secondary 

structure, and with a 50 millisecond upper limit set by SAXS measurements that indicate 

complete or partial fast collapse of Ub* and Ub* I61V.[71, 97]  Considering that during 

this time span, hydrogen bonds from the protein backbone to water are broken, and 

remade as intramolecular hydrogen bonds to form secondary structure, the agreement 

between circular dichroism and KITA is entirely plausible.  We thus assign the KITA 

relaxation kinetics to formation of intermolecular hydrogen bonds early during protein 

folding. 

 If this interpretation is correct, investigation of KITA in deuterated water would 

be interesting.  We predict that the Terahertz defect we observe at 0.5 Terahertz, and the 

excess we previously observed at 2.5 Terahertz, would both move to lower frequencies, 
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and would be very sensitive to the use of deuterated solvent.  Likewise, monitoring the 

kinetics in water in the higher frequency 2-3 Terahertz band would be interesting.  If this 

wavelength region is indeed more sensitive to surface flexibility differences induced in 

the native state by core mutations,[66] it should be able to pick up later stages (between 

50 milliseconds and 2 seconds) where a native-like protein surface forms.  Thus, the 2.5 

Terahertz KITA signal could show a slow phase similar to the one observed by 

fluorescence, in addition or instead of the millisecond phase associated with a changing 

hydrogen bond network during secondary structure formation we have monitored here.  

Finally, we suggest the need for molecular dynamics simulations that compare the 

denatured and folded states of ubiquitin by computing the absorption at 0.5 Terahertz and 

2.5 Terahertz from the dipole-dipole autocorrelation function,[63] and at the same time 

examining the protein-water and protein-protein hydrogen bonding. 

 The agreement between the circular dichroism (sensitive to protein backbone 

secondary structure) and KITA (sensitive to the protein-hydration water interaction) time 

scales shows how closely protein dynamics and solvent dynamics interact during folding.  

Although our measurements do not make a cause-effect distinction between protein and 

solvent dynamics, our results are in agreement with the hypothesis proposed by 

Frauenfelder and coworkers that some protein dynamics is slaved to solvent motions.  

The motions we observe by KITA would be the so-called alpha-fluctuations in the 

framework proposed by Frauenfelder.[47] 
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Chapter 5 Development of the automated single 

molecule operating system (ASMOS) for a high 

throughput single molecule detector 
 

5.1 Introduction 
 

 Most protein folding measurements have been conducted on the basis of bulk 

samples up to now.[102]  What we get in a bulk is a statistical average of a protein 

ensemble.  However, what if an individual protein behaves in a significantly different 

manner from the ensemble average?  Bulk studies of protein folding are often frustrated 

by the presence of (either expected or unexpected) multiple species and multiple folding 

pathways, while a single molecule follows a single trajectory.[103]  Since every single 

protein molecule might have different characteristics from the ensemble average, these 

differences can provide important information about the structure of the energy surface. 

 Single molecule spectroscopy is an important new approach for studying the 

intrinsically heterogeneous process of protein folding.[104] So far, several pioneering 

studies of a single protein molecule have been conducted by using mechanical force 

[103], single-molecule FRET [105], force-clamp atomic force microscopy [106], etc.  

The main difficulty with those experiments lies in the limited number of sampling due to 

the weak fluorescence from a single molecule, as well as the limited observation time 

with lengthy manual resetting gap between observations. 

  

 

5.2 A high throughput single molecule detector 
 

 A new “high throughput single molecule detector” has been built for the study of 

protein folding energy landscapes on the basis of a single molecule, in collaboration with 

Krishnarjun Sarkar (a Ph.D. student in chemistry) and Dr. J. Douglas McDonald 
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(Professor of chemistry) under the supervision of Dr. Martin Gruebele. I developed the 

automated single molecule operating system (ASMOS), integrating the hardware 

controlling modules, fast data acquisition modules, and data analysis modules.  Most of 

the instrument building works has been carried out by Krishnarjun Sarkar. 

 

 

5.2.1 A lens cube assembly and 6 PMT tubes 
 

 We have designed a small (1 cm) lens cube, where the levitation of a 10 µm 

diameter droplet occurs by the Infrared laser guidance.[107-112]  Every 10 µm diameter 

droplet, functioning as a “sample chamber”, is generated by a custom made droplet 

generator on the top [113], under the piezoelectric control. [114]  Diluted protein sample 

solution ascertains that each droplet contains one single protein only.  As soon as two co-

aligned infrared lasers trap a droplet, the excitation UV pulses focused into the single 

protein induce the excited states of a single protein, which enable the radiation of 

fluorescence photons.  [Figure 5.1] shows a schematic of the lens cube assembly.  This 

setup minimizes the extraneous interactions because there is no direct contact with any 

other materials inside the cube. 

 

 
Figure 5.1 : A schematic of the lens cube assembly 

A droplet is generated by a piezoelectric droplet generator from the top.  It contains a single protein and is 
trapped by two IR laser beams at the center. The excitation UV laser pulses are focused into the protein for 
the fluorescence measurement. Both IR and UV beams comes into the cube through a tiny hole on the edge. 
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 We built the lens cube assembly by putting together 6 pieces of the front lens, 

which is eventually mounted in front of each PMT tube.  As shown in [Figure 5.2], all 6 

PMT tubes are comprised of 2 lenses + 2 filters + 1 PMT components and attached to 

each surface of the lens cube assembly.  This instrument was designed to collect as many 

as fluorescence photons selectively from all directions.  Two cutoff filters (ET480/40m, 

Chroma) are installed for that purpose, and made of UV grade fused silica to maintain the 

minimum level of self-fluorescence.  6 PMTs (R7400 U-03, Hamamatsu) are installed for 

the fluorescence detection.  This instrument makes possible the discrimination of 

polarization by the 4π steradian photon collection. 

 

 

 
Figure 5.2 : The whole detection system with the lens cube assembly and 6 PMT tubes9 

(Left Top) A cross section through four front pieces of the lens cube assembly. The region shaded in green 
is the first lens (Lambda research) and the one in blue is the second lens (R. Mathews optical works, Inc.). 
These lens sets are focused into each PMT. (Right Top) The schematic of a complete PMT tube made up of 
2 lenses + 2 filters + 1 PMT. All the scattered UV probe beams are reflected by 2 filters and removed by 
absorption of the graphite coated horns (black). Only the fluorescence photons pass through the filters. This 
gives the very high signal to noise ratio required for a single molecule experiment.  (Bottom) A photo of 
the lens cube + 6 PMT tubes held by the scaffold. The front PMT tube is removed to show the lens cube 
assembly (at the center) buried in the instrument. 
 

                                                 
9By courtesy of Krishnarjun Sarkar 
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5.2.2 Principles of operation for the droplet generation, laser guidance 

and measurement 
 

 A commercial controller box (JetDriveTM III Controller, MicroFab Technologies) 

generates piezo-driving pulses in 50 Hz [115], at the command [116] of ASMOS (the 

automated single molecule operating system) through a serial port connection.  Then a 

droplet of 10 µm diameter is generated and falls down from the tip of the piezoelectric 

droplet generator, synchronized with a piezo-driving pulse [Figure 5.3].  The initial 

ejection velocity of the droplet depends on the amplitude and shapes of the piezo-driving 

pulse.  Eventually the droplet reaches a terminal velocity in few milliseconds and enters 

into the laser guiding region. (See [Chapter 6.5] for the simulation result.) 

 

 
Figure 5.3 : The piezoelectric droplet generator10 

On the right is the stroboscopic image of a drop just after coming out of the nozzle. 
 

 The use of a weakly convergent beam to first trap particles radially in the beam 

and subsequently guide them along the beam propagation axis has been termed laser 

guidance [117, 118].  For the precise and efficient laser guidance of a droplet we need to 

turn on two IR guiding diode lasers (ThorLabs) as soon as a droplet enters into the 

focused guiding region.  The radius of the focused spot is about 50 microns.  The 830 nm 

IR beam was chosen to minimize heat absorption by water and to avoid being detected by 

the PMT tubes. 

A 5W green laser at 532nm (Millennia Pro, Spectra-Physics) pumps a Ti:Sapphire 

mode-locked laser (KMLabs), which generates 95 MHz pulses in 840 nm peak 

                                                 
10 By courtesy of Krishnarjun Sarkar 
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wavelength with FWHM (full width at half maximum) of about 40 nm.  This pulse beam 

goes into a custom-made Tripler, which produces 280 nm excitation UV pulses for the 

single molecule fluorescence measurements, and 420 nm reference pulses for the SYNC 

signal of the Data Acquisition Box (DAB). (See [Chapter 5.3.1] for the details of DAB.) 

Currently, two different operating modes are available, one is “Continuous 

operating mode” and the other one is “On Demand operating mode”.  All procedures are 

fully automated in either mode. 

 

In Continuous operating mode, two guiding diode lasers operate periodically in 

the same frequency as the generation of a droplet (50 Hz), but with a certain amount of 

delay time between the piezo-driving pulse and the guiding laser pulse [Figure 5.4].  The 

appropriate delay time is required for synchronization, since it takes (a certain) time until 

a droplet enters into the guiding region after a release from the nozzle.  The main 

difficulty in Continuous operating mode lies in finding the appropriate delay time 

between the generation of a droplet and laser guidance. 

 

 
Figure 5.4 : Programming logic for the synchronization in Continuous operating mode 
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As soon as two co-aligned infrared lasers trap a droplet, the excitation UV pulse 

beam focused into the single protein will make possible the measurement of single 

molecule fluorescence. (See [Chapter 5.3] for the details)   

Once 10 ms of the guiding time (or the exposure time) elapses, two guiding diode 

lasers are automatically turned off for the replacement of guided objects under the 

delicate control of the operating system.  The automated sample replacement is very 

useful especially when the chromophores are used up.  The droplet containing an old 

used-up protein starts to fall down and will eventually be evaporated and discarded.  (We 

keep purging argon gas into the whole detection system, to remove unnecessary water 

molecules and maintain nearly zero humidity inside the lens cube assembly.)  Then we 

are ready for a new sample, and repeat the same procedures in 50 Hz frequency for every 

single protein. 

 

In “On Demand mode”, the operation of two diode guiding lasers is triggered by 

the signal from a photodiode, which detects the UV scattering from the surface of a 

droplet.  The signal from a photodiode guarantees that the protein is in the right position 

for the UV fluorescence measurement.  Turning on the laser guidance by this signal will 

keep the protein in the UV focused region for enough time for the measurement.  This 

event may take place in a non-periodic timely manner.  For On Demand mode, we need 

an extra installation of a photodiode sensitive to the UV scattering inside the lens cube 

assembly.   

 

 In summary, all these techniques will provide the completely automated data 

acquisition and sample replacement, removing lengthy resetting times between 

observations.  [Figure 5.5] shows the complete schematic of the high throughput single 

molecule detector we have been developing so far. 
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Figure 5.5 : The complete schematic of a high throughput single molecule detector 
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5.3 Hardware controlling module 
 

5.3.1 Raw 32 bit binary data by Data Acquisition Box (DAB) 
 

 All single fluorescence photons detected by 6 PMT tubes are initially analyzed at 

the Data Acquisition Box (DAB).  The custom made DAB was designed by Dr. Douglas 

McDonald and implemented by Mike Thompson of the SCS Electronic Services.  As 

shown in [Figure 5.5] and [Table 5.1], DAB provides ASMOS with arrays of 32 bit 

binary data per a single photon, through the National Instruments (NI) PCI-6534 card 

device. (See [Chapter 5.3.2] for the NI devices.) 

 On the other hand, DAB has a RESET input port for the self-control.  It stops 

functioning while the RESET input is being kept in HIGH state (=High voltage TTL 

signal is being applied to the RESET input).  As soon as the RESET input switches into 

LOW state, DAB resumes functioning. 

 

 The data acquisition is fully synchronized with the 95 MHz excitation UV pulse 

train.  DAB counts how many the reference UV pulses have passed for each photon input 

(photon arrival time) [high 16 bits], recognizes from which PMT the photon is coming 

[middle 6 bits], and measures the time gap between a fluorescence photon and the latest 

95 MHz SYNC pulse [low 10 bits].  The 95 MHz SYNC pulses are split from a Tripler 

and 100% synchronized with the excitation UV pulses.  Thus an efficient, time-correlated 

single photon counting setup is established. 

  The high 16 bits contains photon spacing information applicable to the analysis 

of time-correlation, while 6 bits in the middle represents polarization information of 

fluorescence.  The fluorescence photon delay in the low 10 bits enables a statistical 

analysis of fluorescence photon decay and relaxation in the raw resolution of 10.3 ps. 

 

In [Table 5.1], the raw 32 bit binary data (0000 0011 1111 0001 1000 0010 0010 0101) 

is sectioned out as high 16 bits, middle 6 bits, and low 10 bits.  A conversion to a decimal 

number makes the interpretation of raw data easy.  The high 16 bits (0000 0011 1111 0001) 

are converted to 1009 in a decimal number, while low 10 bits (10 0010 0101) are 
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converted to 549 in a decimal number.  The middle 6 bits (1000 00) directly indicate that 

the photon is coming from PMT number 6.  Therefore, this photon was detected after 

1009 reference UV pulses since the start of the experiment by PMT number 6, and the 

fluorescence photon delay was 549 time units after the UV laser pulse #1009. 

  
Table 5.1 : Interpretation of raw 32 bit binary data from DAB 

Raw 32 bit binary data 

from DAB 

High 16 bits, 

UV pulse 

Tick Count 

Middle 

6 bits, 

PMT # 

Low 10 bits, 

Fluorescence 

Photon Delay 

0000 0011 1111 0001 1000 0010 0010 0101 0000 0011 1111 0001 1000 00 10 0010 0101 

Hexadecimal 03 F1 82 25 03 F1 20 225 

Decimal 66159141 1009 32 549 

  

 It is worth noting that the UV pulse tick count in high 16 bits resets to zero (0000 

0000 0000 0000) after it reaches its maximum value (1111 1111 1111 1111 in binary).  The 

maximum UV pulse tick count is 65535 in a decimal number, so it continues to reset to 

zero per every 689.84 μs (= 65535 excitation UV pulses in 95 MHz).  And the 

fluorescence photon delay in low 10 bits has a maximum value of 1024 (11 1111 1111 in 

binary).  Since the fluorescence photon delay resets to zero when the next excitation UV 

pulse comes, the raw base time unit corresponds 10.3 ps. (= 10.5 ns period for 95 MHz 

UV pulse / 1024) 

 

 ASMOS is designed for the fast acquisition and massive storage of arrays of raw 

32 bit binary data on a real time basis.  (See [Chapter 5.4] for the details)  Currently 

ASMOS is capable to manage massive photon data at the rate of up to 320 Mega Bits per 

second (= 40 Mega Bytes/s = 1,000,000 photon inputs per second) 11.  The maximum rate 

depends on the speed and bandwidth of the hard disk drives and CPU.  This setup 

provides a much higher S/N ratio because of its high throughput. 

 

 
                                                 
11 It is fully tested in a Microsoft Windows 2003 server with Intel Xeon 2.4 GHz CPU (quad-core 
Harpertown, 12MB L2 Cache) and a 10,000 rpm SATA II hard disk drive (Western Digital). 
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5.3.2 National Instruments devices 
 

 ASMOS interfaces with two National Instruments (NI) card devices via PCI 

(Peripheral Component Interconnect) bus for operating all instruments and acquiring the 

fluorescence photon data.  NI PCI-6229 Multifunction Data Acquisition (DAQ) device 

generates analog outputs for the manipulation of the droplet generator controller box and 

the diode guiding lasers.  NI PCI-6534 High-Speed Digital I/O device obtains raw 32 bit 

binary data from DAB, by performing digital pattern I/O.  Both of NI devices are 

synchronized via RTSI (Real-Time System Integration) bus cable and connected to the 

instruments via SCB-68 I/O connector blocks.  Here I present brief overviews of each NI 

device based on the official documents by National Instruments. [119-121] 

 

 

NI PCI-6229  (multifunction device) 

 

 The National Instruments PCI-6229 is a multifunction M Series data acquisition 

(DAQ) board that incorporates advanced features as the followings to increase 

performance and accuracy.   

    • Four 16-bit analog outputs (833 kS/s) 

    • 48 digital I/O; 32-bit counters; digital triggering 

    • Correlated DIO (32 clocked lines, 1 MHz) 

    • NIST-traceable calibration certificate and more than 70 signal conditioning options 

    • Change detection 

 

         
Figure 5.6 : NI PCI-6229 (left) and NI PCI-6534 (right) 
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Figure 5.7 : Pin layout of NI PCI-6229 

 

 

NI PCI-6534   (data acquisition device) 

 

 The National Instruments PCI-6534 is a high-speed, 32-bit, parallel digital I/O 

interface for PCI.  The NI PCI-6534 performs pattern I/O and high-speed data transfer 

using a wide range of handshaking protocols at speeds up to 80 MB/s through onboard 

memory.  It contains 64 MB of on board memory, which removes the dependency on the 

host computer bus for applications that require guaranteed transfer rates.[120]  It features 

user-defined power-up states, start and stop triggering, pattern matching, and change 

detection. 

 We operate the 32 digital I/O lines as 32-bit ports for pattern I/O.  The 32 digital 

I/O lines are physically connected to DAB for collecting raw 32 bit binary data.  Initially 

NI PCI-6534 loads raw 32 bit binary data (patterns) into 64 MB of on board memory, and 

the patterns are transferred into the computer memory buffer continuously. 
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Figure 5.8 : Pin layout of NI PCI-6534 

 

 

RTSI bus cable   (synchronization) 

 

 RTSI stands for Real-Time System Integration. It is a bus found on many National 

Instruments devices that, when cabled together with a RTSI cable, is used to share and 

exchange timing and control signals between multiple boards. It is usually used for 

synchronization purposes.  The RTSI bus cables are short, 34-conductor ribbon cables 

equipped with two to five connectors to link together a group of boards.  The following 

figure shows an example of an extended five-board cable setup. 
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Figure 5.9 : RTSI bus cable 

 

SCB-68   (connector block) 

 

 The SCB-68 is a shielded I/O connector block for interfacing I/O signals to plug-

in DAQ devices with 68-pin connectors. Combined with the shielded cables, the SCB-68 

provides rugged, very low-noise signal termination.  Currently the SCB-68 is integrated 

as an essential part of DAB. 

 

 
Figure 5.10 : SCB-68 

 

 

5.3.3 Control of the droplet generator 
 

 The custom-made droplet generator operates with the 50 Hz piezo-driving pulses 

as typically shaped in [Figure 5.11].  The details described in this section are based on the 

official documents released by Microfab Technologies.[115, 116] 
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Figure 5.11 : A typical piezo-driving pulse for the droplet generation 

From ref. [115]: MicroFab Technologies, JetDrive™ III User's Guide. 2003, MicroFab Technologies, Inc.: 
Plano, TX. p. 1-5. 
 

 Although the controller box (JetDrive™ III, Microfab Technologies) allows 

generating pulses within the voltage range from –140 V to 140 V, the typical piezo-

driving pulse requires the pulse amplitudes at less than 40 V.  The controller allows all 

three voltage levels (DC, positive pulse part, negative pulse part) to be adjusted in steps 

of 1 V, and all rise, dwell, and fall times in steps of 1 μs.  The rise and fall times in most 

cases are around 3-5 μs, and the dwell times (durations of the positive and negative 

voltage pulse plateaus) are normally in the range 15-50 μs.  A total pulse length can be 

extended up to 4095 μs and a longest single piece up to 3276 μs.  The falling edge of the 

positive pulse excursion effectively determines the release time of a droplet from the 

droplet generator. 

 

 ASMOS sends user-defined parameter commands for customizing the piezo-

driving pulses, to the controller box via a serial port communication (DTE to DCE; 9600 

baud, 8 bits, no parity, and 1 stop bit).  As an initialization process, commands are sent to 

the controller box one by one, and a response to each is returned back to ASMOS.  The 

commands and responses are in a binary format. (See references [115, 116] for the details 

of the command set.) 
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Figure 5.12 : Droplet generator parameter setting window in ASMOS 

 

 The “Pulse Shape” section on the screen allows adjustment of the pulse shape 

parameters.  Editing of parameters occurs by directly typing a value or clicking up and 

down small icons on the left side.  

 The “Trigger Settings” section on the screen allows adjustment of triggering 

parameters.  Editing follows the same pattern as described for the “Pulse Shape” 

command, except a “Source” and a “Mode” switch.  In “Single” mode, the droplet is 

generated once per every signal trigger signal input. 

 

 In Continuous operating mode, soon after the controller box is initialized and 

ready for functioning, ASMOS gives an order for the NI PCI-6229 device to generate a 

periodic continuous pulse train as an external trigger source for the controller box.  The 

rising edge of the external trigger pulse defines the execution timing of a piezo-driving 

pulse.  The external trigger pulses are coming from one of the analog outputs in NI PCI-

6229, and it makes sure that the piezo-driving pulse are fully synchronized with the laser 

guidance with a certain amount of delay time. [Figure 5.4] 

 

 It is rather simple for the case of On Demand operating mode, since 
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synchronization is not required.  When the controller box is initialized and ready for 

functioning, ASMOS just sends a command to the controller box directly for the 

generation of the piezo-driving pulse.  The controller box uses an internal trigger for the 

continuous periodic pulse generation. 

 

 

5.3.4 Control of the guiding lasers 
 

 The power of the IR guiding laser is proportional to the voltage applied to the 

diode laser.  ASMOS gives an order for the NI PCI-6229 device to generate the user-

defined analog guide signals for customizing the IR guiding lasers.  The analog guide 

signals are coming from two analog outputs in NI PCI-6229 and going into each diode 

laser.  A typical shape of the analog guide signal is shown in [Figure 5.13]. 

 

 
Figure 5.13 : A typical analog guide signal for the guiding lasers 

 

 
Figure 5.14 : Laser trapping parameter setting window in ASMOS 
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 For a short time of 200 μs, we apply a higher 6 V to generate the high power 

guiding laser, positioning a droplet at the focus of excitation UV pulses.  Then we switch 

to a lower 4 V to keep the droplet for the fluorescence measurement for 10 ms.  The 

execution timing of the guiding lasers is determined by the current setting of the 

operating mode, as defined in [Chapter 5.2.2] and shown in [Figure 5.4]. 

 

 

5.3.5 Hardware alignment 
 

 
Figure 5.15 : Alignment window in ASMOS 

 

 In order to reach a maximum signal-to-noise ratio, every instrument must be 

aligned properly, and especially the alignment of the UV excitation laser and the droplet 

generator are most essential parts in ASMOS.  For user’s sake, one can use an alignment 

module to tweak hardware in a real time base.  The alignment window can start by 

clicking the “Alignment” button on the main panel of ASMOS.  During the hardware 

alignment, the user can monitor how photon spacing and count information changes in a 

real time base, typically automatically updated every 0.6 sec (=reading time on the main 

panel + 0.1 sec).  This module displays the total photon count on the top, and photon 

counts by each PMT below. 
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5.4 Fast data acquisition module with multiple threading 
 
The entire ASMOS source codes are written in C language, in the National Instruments LabWindows/CVI 
8.5 development environment.  ASMOS is installed in a Microsoft Windows 2003 server with Intel Xeon 
2.4 GHz CPU (quad-core Harpertown, 12MB L2 Cache) and SATA II RAID systems (mode 0) for massive 
storage.  In ASMOS source codes, the NI PCI-6229 (multifunction device) is defined as “Dev 1”, and the 
NI PCI-6534 (data acquisition) as “Dev 2”.  Refer to [Appendix C] for the source codes and manuals. 
 

 

5.4.1 Main panel - hardware initialization 
 

 First of all, all NI devices must be reset appropriately. [DAQmxResetDevice();]  

ASMOS loads all user parameter inputs [Initialize_Parameter(); InitializeMicroJet();] and 

reads the calibration profiles for DAB and PMT. [TimeCalibration(); build_corrections();]  

Then ASMOS is waiting for a user input in a stand-by mode, unless the user clicks any 

buttons on the main panel.[RunUserInterface();] 

 

 
Figure 5.16 : The main panel of ASMOS 

Most of sub-windows and applications can start by clicking buttons on the main panel 
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 Next, the user needs to initialize the droplet generator by clicking “Droplet Init.” 

button. [SerialPort_Connection(); Initial_Connection();]  In order to start the droplet 

generator, just click “Droplet Start” button on the main panel. [Droplet_Start();]  To stop 

operating the droplet generator, click “Droplet Stop” button. [Droplet_Stop();] 

 The laser guidance and data acquisition begins when the user clicks “Start Trap & 

Data Acquisition” button on the main panel. [StartTrapDAQ_Thread();]  ASMOS 

configures all hardware parameters according to the current setting of the operating mode. 

 

 

In Continuous operating mode, 

 

 1. The PFI 0 port (P1.0) in NI PCI-6229 is assigned as a TRIGGER INPUT for 

the data acquisition. 

 

 2. Two analog output ports (AO0, AO1) in NI PCI-6229 are set up for the laser 

guidance.  Two analog signals are generated periodically in 50 Hz. 

 

 3. The PFI 12 port in NI PCI-6229 (ctr0 out: Dev1/PFI12) is set up for a pseudo 

RESET signal and internally wired into the PFI 4 port (Dev2/PFI4) in NI PCI-6534, 

which is going to be functioning as the real RESET input to DAB.  The RESET signals 

are generated periodically in 50 Hz. 

 

 4. The PFI 13 port in NI PCI-6229 (ctr1 out: Dev1/PFI13) is set up for an 

EXTERNAL TRIGGER signal for the droplet generator.  The EXTERNAL TRIGGER 

signals are generated periodically in 50 Hz. 

 

 All three signal outputs (the guiding laser pulse, the RESET signal into DAB, and 

the EXTERNAL TRIGGER for a droplet generator) are triggered by the TRIGGER 

INPUT signal at the PFI 0 port (P1.0) in NI PCI-6229 and synchronized.  In the sources 

codes, another name for the TRIGGER INPUT is “ao/StartTrigger”. 
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In On Demand operating mode,  

 

 We need a photodiode signal which detects the UV scattering from the lens cube 

assembly.  The PFI 4 port in NI PCI-6229 ("/Dev1/PFI4") is reserved to be connected 

with the photodiode.  We use the “retriggered pattern I/O” for the operation. 

  

 1. The (P0.7) port in NI PCI-6229 is assigned as a pseudo RESET signal, and 

initially set HIGH.  It must be physically wired into the PFI 4 port (Dev2/PFI4) in NI 

PCI-6534, which is going to be functioning as the real RESET input for DAB. 

 

 2. We generate the “Retriggered External Timing Source” (RETS) for the laser 

guidance and the RESET signal to DAB.  Counter output function of NI PCI-6229 is used 

for this purpose.  RETS is coming out from the counter1 output in NI PCI-6229 (Ctr1 

out: Dev1/PFI13), triggered by the counter1 gate input in NI PCI-6229 (Ctr1 gate: 

Dev1/PFI4), which is physically connected to the photodiode input for the scattering 

photon detection. 

 

 3. Two analog output ports (AO2, AO3) in NI PCI-6229 are set up for the laser 

guidance by using RETS (=Ctrl1 Internal Output) as a sample clock timing source. 

 

 4. We generate the On Demand pseudo RESET Signal at the (P0.7) port, by using 

RETS (=Ctrl1 Internal Output) as a sample clock timing source.  It is already physically 

wired into the PFI 4 port (Dev2/PFI4) in NI PCI-6534, which is going to be functioning 

as the real RESET input for DAB. 

 

 The laser guidance and RESET signal are synchronized each other since they 

share the same sample clock timing source, which is the RETS.  The droplet generator is 

triggered by an internal trigger from the controller box. 
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5.4.2 Change detection of the RESET signal and multiple threading 
 

 Change detection is defined as a transition on one or more (digital) input lines that 

causes the entire group to be captured in hardware.  With change detection, we can 

automatically trigger a certain operation upon a digital change of state.  ASMOS uses 

change detection on the (P0.0) input in NI PCI-6229.  Because the (P0.0) input is 

externally (by wire) connected from the RESET outputs (PFI 12 in Continuous operating 

mode and (P0.7) in On Demand operating mode), the change detection allows detecting 

the change (the rising edge) of the RESET signal and creates a Windows event, with a 

resolution of 150 ns.  As soon as ASMOS captures this event, it executes a data reading 

thread [DAQ_thread();], which delivers all raw data in the computer memory buffer 

[Chapter 5.3.2] into ASMOS.  Since DAB stops functioning when the RESET input is in 

HIGH state, the detection of the rising edge of the RESET ensures that DAB doesn’t 

collect any raw data when ASMOS performs the data reading or data storage process. 

 

 Eventually a data reading thread flushes all raw data into a Thread Safety Queue  

(TSQ) for the protection of raw data shared by multiple threads.  ASMOS uses multiple 

threads for improved performance and enhanced security during data acquisition and 

storage.  Here I present quotes from the National Instruments website about the multi-

threading.[121] 

  

 “With multithreading, applications can separate their own tasks into individual 

threads. In a multithreaded program, the OS directs each thread to execute code for a 

period of time, referred to as a time slice, before switching execution to another thread. 

The act of stopping execution of one thread and starting execution of another is referred 

to as a thread switch. The OS typically can perform thread switches quickly enough to 

give the appearance of concurrent execution of more than one thread at a time. 

 ... 

 The most common reason is to separate multiple tasks, one or more of which is 

time-critical and might be subject to interference by the execution of the other tasks. For 

example, a program that performs data acquisition and displays a user interface is a good 



 104 

 

candidate for multithreading. In this type of program, the data acquisition is the time-

critical task that might be subject to interference by the user interface task. While using a 

single-threaded approach in a LabWindows/CVI program, you might decide to pull data 

from the data acquisition buffer, plot the data to a user interface graph, and then process 

events to allow the user interface to update. If the user chooses to operate your user 

interface (for example, by dragging a cursor on a graph), the thread continues to process 

the user interface events and does not return to the data acquisition task before the data 

acquisition buffer overflows. Using a multithreaded approach in a LabWindows/CVI 

program, you might put the data acquisition operations in one thread and display the user 

interface in another thread. This way, while the user is operating the user interface, the 

OS performs thread switches to give the data acquisition thread time to perform its task.”  

 

 

5.4.3 Data acquisition by performing pattern I/O with the NI PCI-6534 
 

 With pattern I/O, we can acquire raw 32 bit data (patterns) under timing control of 

a REQ clock signal input.  We acquire raw data (patterns) on every rising edge of a REQ 

clock signal, which are generated by DAB and received through the REQ port (PFI 2) in 

NI PCI-6534.   The low time and high time of the REQ signal must each be >20 ns. The 

minimum duration for a period of the REQ signal is 50 ns.  Refer to the reference [120] 

for the details of pattern I/O. 

 

 
Figure 5.17 : Connecting signals in Pattern I/O  (from ref. [120]) 

 

 As shown in [Figure 5.18], the NI PCI-6534 device loads raw 32 bit binary data 

(pattern I/O) from DAB into 64 MB of on board memory, and the patterns are transferred 
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into the computer memory buffer continuously.  The data reading thread delivers all data 

in the computer memory buffer into ASMOS, and eventually into TSQ for the storage. 

 

  
 

Figure 5.18 : A flow chart for the raw data processing in ASMOS 

 

 

5.4.4 Thread safety queue (TSQ) and the critical section (CS) 
 

 We introduce a Thread Safety Queue (TSQ) to protect all raw data acquired and 

shared by multiple threads.  The raw 32 bit binary data are sent to TSQ for the storage 

and real time analysis, and TSQ guarantees the safety and reliability of all raw data 

shared in the multiple threading environments.  

 According to the National Instruments website, we can safely pass data between 

threads with TSQ.  It is most useful when one thread acquires the data and another thread 

processes that data. TSQ handles all the data locking internally. Generally, a secondary 

thread in the application acquires the data while the main thread reads the data when it is 

available and then analyzes and/or displays the data.[121] 

  

 In addition, we use a critical section (CS) for the exclusive thread running. CS 
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guarantees that only one of the same kinds of threads will be executing at the moment, 

while the other threads are just waiting for their turn in a stand by mode.  It is a “thread 

lock”, in a sense that only one of the same kinds has the key to open a lock. 

 CS is very useful and efficient tool for managing multiple threads, especially in 

case of huge numbers of raw data far more than the capacity of ASMOS.  The execution 

of the data reading and data storage threads can be delayed or even suspended in this case.  

CS determines the execution order of the multiple threads competing to each other. 

 

 

5.4.5 Massive data storage by storage threads and overlapped I/O 
 

 I have built 4 TB (terabyte) of a massive storage system with SATA II RAID 

(mode 0).  Finally ASMOS executes a data storage thread [Storage_thread();], which 

stores raw 32 bit data in TSQ into the RAID system and plots a real-time histogram of the 

fluorescence decay per every 0.5 sec.  

 Currently ASMOS can store massive data sets at the rate of up to 100 Mega Bytes 

per second12.  The Overlapped I/O operation is set up at the data storage thread for better 

performance.  The Overlapped I/O is an asynchronous I/O operation on files.  Microsoft 

MSDN library describes the principle of Overlapped I/O as the followings. 

 

 “When a function is executed synchronously, it does not return until the operation 

has been completed.  This means that the execution of the calling thread can be blocked 

for an indefinite period while it waits for a time-consuming operation to finish.  

Functions called for overlapped operation can return immediately, even though the 

operation has not been completed.  This enables a time-consuming I/O operation to be 

executed in the background while the calling thread is free to perform other tasks.  For 

example, a single thread can perform simultaneous I/O operations on different handles, or 

even simultaneous read and write operations on the same handle.” [122]   

 

                                                 
12 Benchmarked by SiSoft Sandra software, United Kingtom 
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5.5 Data analysis module for a single protein molecule 
 
 The data analysis module has been developed for the two different user interfaces.  The GUI 
(graphical user interface) version is integrated with AMOS in NI Labwindows/CVI 8.5 environment for a 
Windows machine.  The universal ANSI C version is an independent program which can work regardless to 
the operating system.  It loads user parameter inputs by a configuration file (*.ini).  Both versions give the 
same result. 
 

 

5.5.1 Calibration of the instruments by using a uniform white light 

source 
 

 DAB gives us useful information about the raw photon delay time between a 

fluorescence photon and the latest excitation UV pulse.  It is encoded as low 10 bits in a 

raw 32 bit binary data.  But this raw photon delay time doesn’t have an actual physical 

meaning unless it is adequately corrected by calibration of all instruments.  All National 

Instruments devices have self-calibration functions, so we don’t need to worry about 

them in a normal working condition.  But DAB is custom made and it is recommended to 

calibrate it regularly for the highest accuracy.  

 Calibration of the whole detection system (DAB and PMT) is performed by 

replacing the excitation UV pulses with a uniform white light source.  It consists of 

random timing photons from all directions in all visible wavelengths.  We still need a 95 

MHz SYNC pulse train for the reference input.  Calibration of the detection system is 

focused onto the photon delay time in low 10 bits.  By calculating a histogram of the 

photon delay time, we can analyze the real response characteristic of the detection system.  

Dr. McDonald developed an algorithm converting the raw data to the uniformly corrected 

one by generating a conversion table for the white light source.  This algorithm is 

integrated to ASMOS.  Once the user calibrates the detection system, ASMOS keeps the 

calibration settings for the future usage. 

 

 For a long time (> 30 minutes) data acquisition, the auto-calibration module has 

been developed for user convenience.  It automatically calibrates the whole detection 

system according to user input parameters.  One can launch the parameter setting window 
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by clicking the “Calib. Para.” button on the main panel. 

 

 
Figure 5.19 : Auto-calibration parameter setting window in ASMOS 

 

 

5.5.2 PMT zeroing 
 

 
Figure 5.20 : PMT zeroing window in ASMOS 
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 The start time of a fluorescence photon delay may be different from each PMT as 

shown in [Figure 5.20].  It is due to the different response of each timing circuit in DAB.  

In this case, the user can adjust PMT delay timings by setting zero points for each PMT, 

manually by dragging the cursors. 

 

 

5.5.3 Analysis 
 

 The analysis module reads a binary file containing arrays of raw 32 bit binary data 

or a text file that is already analyzed before.  The output file format of analyzed file is 

ASCII so that it is easily readable in any computer system. 

 For the analysis of a binary file, the analysis module sections out the raw 32 bit 

binary data as high 16 bits, middle 6 bits, and low 10 bits as described in [Chapter 5.3.1] 

and [Table 5.1].  It generates ASCII text files (*.txt) which consists of four columns.  The 

first column shows how many the reference UV pulses have passed for each photon input 

and denotes the actual photon arrival time.  It is used for the time-correlation analysis 

later.  The second column shows the index number of PMT, and the third column presents 

the raw photon delay time between a fluorescence photon and the latest excitation UV 

pulse.  The last column has the corrected photon delay time and contains a real physical 

meaning of the fluorescence decay.  It is used to generate a histogram file for the 

fluorescence lifetime analysis.  The GUI version of ASMOS automatically plots the 

histogram of the fluorescence decay for a single protein molecule, in the main panel. 
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Figure 5.21 : Histogram of the fluorescence decay for a single protein molecule 

 

 For the re-analysis of a text file, the analysis module simply copies the contents in 

the first, second, and third column into a new text analyzed file.  But it generates a new 

corrected photon delay time between a fluorescence photon and the latest excitation UV 

pulse.  This is useful when the user has a new calibration file for the instruments. 

 

 For photon spacing (counting) information used for the correlation analysis, a 

“Photon Count Analysis” module has been developed.  One can start the module by 

clicking “Photon Count Analysis” button on the main panel of ASMOS.  It reads the raw 

binary or pre-analyzed ASCII file as a user input, and plots the photon spacing 

information in a real time coordinate.  It also shows photon spacing information collected 

by each PMT, which can be used for the future analysis of fluorescence polarization.  One 

can easily drag the cursors to get the coordinates and select the ranges for plotting and 

saving data. 
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Figure 5.22 : Photon count analysis in ASMOS 

 

 Normally we have a photon count peak whenever a droplet is trapped within the 

excitation UV laser beam.  Since droplets are generated and trapped periodically, we 

expect synchronized periodic peaks in an optimal working condition.  The concatenation 

cuts off the unnecessary photon parts (background scattering, auto-fluorescence, noises, 

etc.) which are away from peaks and below a threshold.  The concatenation can start by 

clicking “Concatenate” button on the photon count analysis panel.  One can set the value 

of a peak width as a user input on the panel. 
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Chapter 6 Computer simulation of the whole 

trajectory of a droplet in the lens cube assembly 
 

6.1 Introduction 
 

 To guarantee the successful operation of ASMOS and a high throughput single 

molecule detector, I have simulated the whole trajectory of a droplet in the lens cube 

assembly.  The simulation result is used to determine the optimal operational conditions 

for the instruments.  The trajectory of a droplet is affected by IR laser guidance, water 

evaporation, Brownian motion, etc. 

 In this chapter, I explain the details of these effects and integration into a 

simulation program written in C language.  I present how a droplet is guided into the 

excitation UV focused region by the radiation force exerted by the IR guiding lasers, and 

how fast the size of the droplet is reduced by the evaporation effect. 

 

 

6.2 Calculation of Infrared laser guidance 
 

6.2.1 Generalized Lorenz-Mie Theory (GLMT) 
 

 “All problems in theoretical optics are problems in Maxwell’s theory and should 

be treated as such when a full, formal solution is required.  …  The scattering of light a 

homogeneous sphere cannot be treated in a general way, other than by the formal solution 

of Maxwell’s equations with the appropriate boundary conditions.” [123] 

  

 As mentioned by van de Hulst above, the rigorous calculation of the optical 

scattering begins with Maxwell’s equations.  In 1908-1909, Mie and Debye published 

pioneering papers on the scattering of a plane wave by a spherical particle,[124, 125] 

inspired by even earlier work by Lorenz in 1890.[126]  Thanks to their contributions, the 
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classical Lorenz-Mie Theory (LMT) was established for the scattering of a plane wave by 

a spherical particle, and is still valid for arbitrary particle size, refractive index, and 

wavelength.[118] 

 

 However, LMT is based on a plane wave which is just an approximation in reality.  

For example, the popular TEM mode laser produces a Gaussian beam and can not be 

treated as a plane wave unless it is emanating from a far distance.[118, 127]  The 

Generalized Lorenz-Mie Theory (GLMT) was developed by Gouesbet et al. to extend 

LMT for arbitrarily shaped beams.[128-131]  A beam shape coefficient, m
ng  is introduced 

and contains information about the incident beam profile.[132]   An infinite set of beam 

shape coefficients is at the core of GLMT devoted to the scattering of an arbitrary shaped 

beam by spheres.[133, 134]  A localized approximation is introduced for the fast 

calculation of beam shape coefficients, m
ng  [134, 135], and has been justified rigorously 

for the case of Gaussian beams [136] and for arbitrarily shaped beams.[131]  GLMT 

predictions have been previously compared to experimental results and were in good 

agreement within a few percent, in all size regimes.[118, 137-140]  

 

 

6.2.2 Radiation force by the IR guiding lasers expressed in GLMT 
 

 Every incident photon carries momentum.  The radiation force exerted by the IR 

guiding lasers on a droplet is proportional to the net momentum removed from the 

incident photons by the scattering.[129]  The radiation force vector in GLMT is 

expressed as 

 

 , , ,2
0

2( ) ( ) ( ) ( )m
pr x pr y pr z

n PF r xC r yC r zC r
c πω

⎛ ⎞ ⎡ ⎤= + +⎜ ⎟ ⎣ ⎦⎝ ⎠
 (6.1) 

 

where  , , ,, ,pr x pr y pr zC C C are the cross sections for radiation pressure in the Cartesian 

coordinate system and defined in reference [129, 130].  And c is the speed of light, nm is a 
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refractive index of the air, 0ω  is a beam radius at the focal point (the beam waist), and P 

is an incident laser beam power.  The radiation force components are characterized as two 

different categories, the longitudinal radiation force along z axis (the main axial direction 

of propagation), and the transverse radiation force along x and y axes (the radial 

directions).[138]  When the displacement of the droplet from the focus is less than its 

radius, the radiation force is approximately proportional to the droplet displacement in 

either case. 

 

 

6.2.3 Longitudinal radiation force (z direction) 
 

 Gouesbet et al. rigorously formulated the radiation forces in GLMT.  It consists of 

massive sets of complex equations and can be solved by numerical methods only.  Here I 

briefly present the core formulas of GLMT for the Gaussian beam.  The cross section for 

radiation pressure in z direction is given by the references [129, 130] as, 
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where λ is the wavelength of an incident beam in the air.  The asterisk (*) indicates the 

complex conjugate.  The scattering coefficients of the LMT, an and bn are defined as, 
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where the prime indicates the derivative of the function for the argument in the 

parentheses, and the size parameter α is, 

 

 d krπα
λ

= =  (6.5) 

Also 

 Mβ α=  (6.6) 

 droplet droplet
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and 

 2k π
λ
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Here, k is the angular wave number of the incident beam in the air, d is the diameter, r is 

the radius of the droplet, M is the complex refractive index of a droplet relative to the air, 

and ε  is the electric permittivity of the medium, respectively.  We assume a non-

magnetic droplet, which means the magnetic permeability is, 

 1droplet

air

μ
μ

=  (6.9) 

 

 On the other hand, 1 ( )n krψ  is the spherical Bessel function given by, 

 1
2

1 ( ) ( )
2n nkr J kr

kr
πψ +=  (6.10) 

where 1
2
( )nJ kr+  is a Bessel function of half-integer order.  Gouesbet et al. introduced the 

Ricatti-Bessel functions, ( ) and ( )n nkr krψ ξ  as, [129, 130] 
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where 1
2

(2) ( )nH kr+  is the Hankel function and valid for the case of a half-integer order only. 

 

 Now m
ng , the beam shape coefficients are determined as the followings. 
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 11 2 1( 1)
( 1)

pw n n
n

nC i
k n n

− +
= −

+
 (6.13) 

 

 0 0 0 0
2
0

( ) ( )sin
( )! !

j j p p

jp
x iy x iyiQr

j p p
θψ

ω

−⎛ ⎞ − +
= ⎜ ⎟ −⎝ ⎠

 (6.14) 

and 

 0
0

2sin 1 cos exp( )QF r K
l

ψ θ θ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (6.15) 
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 0
0

2 cos exp( )QG K
l

ψ θ=  (6.16) 

 

 0

0

1 2 1
1 2 1

j j p j
j j p j
+

−

= + − = +
= − − = −

 (6.17) 

 

The symbol 
jp

c
∑ designates the sum 

0 0

jp j

j p

∞

= =

=∑ ∑∑ restricted to the condition c.[129] 

Finally again, 

 0( cos )K ik r zθ= − −  (6.18) 

 
2 22 2

0 0 0
0 2 2

0 0

sinexp exp x yriQ iQ iQθψ
ω ω

⎛ ⎞ ⎛ ⎞+
= − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (6.19) 

 
0

1
2( )

Q
i ζ ζ

=
+ −

 (6.20) 

where z
l

ζ = , 0
0

z
l

ζ = , and l  is the so-called diffraction or spreading length, 2
0l kω= .  

0 0 0( , , )x y z  is the coordinate of the beam waist center and ( , , )x y z  is the coordinate of the 

incident beam, while ( , , )r θ ϕ is the coordinate of the scattered light, and all of these are 

viewed from the particle center.  

 

 

6.2.4 Transverse radiation force (x and y directions) 
 

 The cross sections for radiation pressure in x and y directions are given by the 

references [129, 130] as, 

 

 , ,Re( )pr x pr xyC C=  (6.21) 

 , ,Im( )pr y pr xyC C=  (6.22) 

where 
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∑∑ ∑ (6.23) 

and 

 * 1 * * 1 *
, , , ,

p p p p p
nm n m n TM m TM n m n TE m TEU a a g g b b g g+ += +  (6.24) 

 * 1 * * 1 *
, , , ,

p p p p p
nm n m n TE m TM n m n TM m TEV ib a g g ia b g g+ += −  (6.25) 

 * 1 * * 1 *
, , , ,( ) ( )p p p p p

nm n m n TM m TM n m n TE m TES a a g g b b g g+ += + + +  (6.26) 

 * 1 * * 1 *
, , , ,( ) ( )p p p p p

nm n m n TM m TE n m n TE m TMT i a b g g i b a g g+ += − + + +  (6.27) 

 

 The scattering coefficients of the LMT, an and bn are defined in equation (6.3) and 

equation (6.4).   m
ng , the beam shape coefficients are given in equation (6.12). 

 

 

6.2.5 A localized approximation for the fast calculation 
 

 The original equation sets in GLMT include infinite sums and integrations of 

many functions, which require huge amount of calculation time.  Gouesbet et al. 

developed a localized approximation for the fast calculation of m
ng , the beam shape 

coefficients.[134]  I’ll present their results in this section shortly. 

 

 
22 2 1, ,20 0 0 2

2
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2(1 2 ) 1 2 1 2

m m
n TM n TMmm

nm m
n TE n TE

g iFniz x y s R i
iz s iz izg F

+ + +

+ + +

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎡ ⎤++
= − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎣ ⎦⎝ ⎠ ⎝ ⎠

 (6.28) 

 

where the dimensionless coordinates are defined as, 
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Respectively, 0ω  is the beam waist radius, 2
0l kω=  is the spreading length, and 0s

l
ω

=  is 

a dimensionless parameter.  0 0 0( , , )x y z  is the coordinate of the beam waist center, viewed 

from the particle center.  Also 
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and 

 

0
, 0 2 1
0

0, 0

1
, 1 2 1

,

,

,

2
( 0)

!( 1)!2

1 1
( 0)

( 1)! ( )! !
1 1

j j
n TM j

jn TE

m m j m j
n TM m j m
m

j mn TE

m
n TM

m
n TE

F x X Xa m
j jF iy

X X
F j m jX X Xa a m

X Xm j m jF
j m j

F

F

+ ∞
+ − +

+
=

+ −
− −∞

− − +− + −

= + −

−

−

⎛ ⎞ ⎛ ⎞ ⋅
= =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

⎛ ⎞+⎜ ⎟⎛ ⎞ − + +⋅ ⎜ ⎟= + >⎜ ⎟
⎜ ⎟ ⎜ ⎟− −⎝ ⎠ −⎜ ⎟− + +⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟−⎝ ⎠

∑

∑

1
1 2 1 1 1

( 0)
( 1)! !( )!

1 1

m j mj
m j m

j m

X X
j m jX X Xa a m

X Xm j j m
j m j

− +
− −∞

− − ++ + −

= −

⎛ ⎞+⎜ ⎟− + +⋅ ⎜ ⎟= + <
⎜ ⎟+− −

−⎜ ⎟− + +⎝ ⎠

∑

 (6.31) 

 

By definition, 

 0 0

0 0

X x iy

X x iy

+ +
−

+ +
+

= −

= +
 (6.32) 

 

 Here m
ng , the beam shape coefficients also have infinite sums, but it converges 
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much faster than the original formulas, so significantly decreases computation time (>100 

times faster). 

 

 

6.3 Evaporation of water from a droplet 
 

6.3.1 Introduction 
 

 In 1959, Fuchs mentioned about the evaporation process for droplets in the 

preface of his survey.[141]  It describes how difficult the complete description of 

evaporation process for droplets is. 

 “Under natural conditions this phenomenon is extremely complex.  The bulk of 

the droplet evaporates almost immediately.  The process is non-stationary and occurs in a 

medium with unequal temperature and vapor concentration.  The drops move irregularly 

relative to the medium and are more or less deformed, while circulation arises within the 

drops.  Heat transfer between the drops and the medium occurs by three different 

mechanisms (conduction, convention and radiation).”[142]  

 

 In 1949, Kinzer et al. described evaporation from spherical droplet in terms of 

heat and vapor transferred and calculated the temperature of a freely falling water 

droplet.[143]  In 1971, Duguid et al. determined the evaporation rates of small, freely 

falling water droplets by recording the drop at fixed time intervals, and compared their 

results with Kinzer and Gunn’s and the original mass diffusion theory by Maxwell.[144]  

Surprisingly, Duguid et al. showed that the evaporation of pure water droplets is best 

described by simple mass diffusion theory by Maxwell, with a small ventilation 

effect.[144]  However, all of these approaches do not perfectly catch up the experimental 

results. 

 

 For a computer simulation of the evaporation from a droplet, I assume a pure 

water droplet for simplicity.  It is a reasonable assumption since the main composition of 

a droplet is still pure water although it contains a single protein molecule and some buffer 
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molecules.  Furthermore, I combine Maxwell’s mass diffusion theory with Kinzer’s 

approach with the heat transfer, in steady state equilibrium.  By combining both of them 

together, we get more realistic results for the evaporation from a droplet. 

 

 

6.3.2 Mass diffusion 
 

 Diffusion theory was proposed by Maxwell in 1877. It describes evaporation of 

water from a droplet as a pure diffusion process of the water molecules through the 

surrounding medium (air).  It assumes the evaporation is a steady-state equilibrium 

process, and is given by 

 

 4 ( )a
dm aD
dt

π ρ ρ∞= −  (6.33) 

 

where m is mass of a droplet, a is radius of a droplet, D is a diffusion coefficient of water 

vapor in the surrounding gaseous medium (air), ρ∞  is a density of water vapor in the air, 

and aρ  is a density of water vapor at the surface of a droplet.[144] 

 

 Since 34
3 lm aπρ=  for a homogenous water droplet where lρ  is a density of liquid 

water in a droplet, the equation (6.33) can be rephrased as 

 

 24 3 4 ( )
3 l a

daa aD
dt

πρ π ρ ρ∞
⎛ ⎞ = −⎜ ⎟
⎝ ⎠

 (6.34) 

 

 Therefore the evaporation rate may be written as in terms of radius, 

 

 
2 22 ( )a

l

da da Da
dt dt

ρ ρ
ρ ∞= = −  (6.35) 
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6.3.3 Heat transfer 
 

 The transport of water vapor by diffusion is a molecular process closely related to 

the diffusion of heat.[143]  Whenever water evaporates from a droplet as a diffusion 

process, it takes the latent heat away from the droplet lowering the surface temperature. 

 

 dQ L dm=  (6.36) 

 

where Q is the amount of energy required to change the phase of water from liquid to gas, 

and L is the latent heat of evaporation for water.  The heat energy taken away from the 

droplet is used to change the phase of water from liquid to gas. 

 

 Therefore a heat loss, lossQ and the corresponding heat loss flux, 2

1
4

lossdQ
a dtπ

 

from a droplet is expressed as, with the help of equation (6.33) 

 

 2 2

1 1 ( )
4 4

loss
a

dQ dm DLL
a dt a dt a

ρ ρ
π π ∞= = −  (6.37) 

 

 

 At the same moment, since a droplet is getting cooled down during the 

evaporation, the temperature gradient at the surface of the droplet causes a heat gain, 

gainQ  into the droplet.  In addition I included an additional heat gain source, absorption of 

the IR guiding laser beams by the droplet. (See [Chapter 6.3.7] for the details)  By 

applying the heat diffusion equation we can set up a differential equation for the heat gain 

flux, 

 

 { }2 2

1 1 4 ( )
4 4

gain
a

dQ
aK T T

a dt a
π α

π π ∞= − +  (6.38) 

 

where K is the coefficient of thermal conductivity, T∞  is the temperature of the 
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surrounding air, aT is the temperature of the surface of a droplet, and α is the heat energy 

absorbed from the IR guiding laser beams by the droplet. 

 

 

6.3.4 In the steady state  
 

 In the steady state, there is no net heat flux between a droplet and the surround air.  

Therefore the net heat flux, a sum of the heat loss flux [Equation (6.37)] and the heat gain 

flux [Equation (6.38)] must be zero. 

 

 2

1 0
4

gainloss dQdQ
a dt dtπ

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
 (6.39) 

 

In a more explicit form, 

 

 { }2

1( ) 4 ( ) 0
4a a

DL aK T T
a a

ρ ρ π α
π∞ ∞− + − + =  (6.40) 

 

By defining a new constant Γ  as K
DL

Γ ≡ , we reach 

 

 1 ( )
4a aT T

aK
αρ ρ

π∞ ∞− = − −
Γ

 (6.41) 

 

 

6.3.5 Evaporation rate 
 

 The evaporation rate of water from a droplet is already given by a diffusion theory 

by Maxwell in the equation (6.35). 

 
2 2 ( )a

l

da D
dt

ρ ρ
ρ ∞= −  
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Since 
4a aT T

aK
αρ ρ

π∞ ∞
⎛ ⎞− = Γ − −⎜ ⎟
⎝ ⎠

 from rephrasing the equation (6.41) in the steady 

state, the evaporation rate of water is presented as, in terms of radius of a droplet 

 

 
2 2

4a
l

da D T T
dt aK

α
ρ π∞

Γ ⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

  (6.42) 

 

 The equation (6.42) is the most important equation for simulating evaporation of 

water from a droplet.  What we need to do is solve this differential equation numerically 

for a , the radius of a droplet [Chapter 6.5.2], by using a numerical root finding for aT , 

the temperature at the surface of the droplet [Equation (6.47) in Chapter 6.3.6], and 

calculating α , absorbed energy by water from IR laser guiding beams [Equation (6.54) in 

Chapter 6.3.7].  Other parameters are assumed to be constants for simplicity. 

 

 

6.3.6 Numerical root finding for aT , the temperature at the surface of a 

droplet during evaporation 
 

 Providing the ideal gas law of PV nRT= , the density of water vapor becomes 

 

 nM M P
V R T

ρ ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 (6.43) 

 

where M is molecular weight of water.  By combining the equation (6.41) with the 

equation (6.43), we get 

 

 
4

a
a

a

P PMT T
R T T aK

α
π

∞
∞

∞

⎛ ⎞
− = − −⎜ ⎟Γ ⎝ ⎠

 (6.44) 
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where aP  is a pressure of water vapor at the surface of a droplet, and P∞  is a pressure of 

water vapor in the surrounding air. 

 

 Next, we rearrange equation (6.44) to define a new constant X for a quadratic 

expression in terms of aT . 

 

 4
a

a
a

P PM MT T
R T R T aK

X

α
π

∞
∞

∞

⎛ ⎞ ⎛ ⎞+ = + +⎜ ⎟ ⎜ ⎟Γ Γ⎝ ⎠ ⎝ ⎠
≡

 (6.45) 

 

 Note that the right side of equation (6.45) doesn’t have any dependence on Ta.  

However, it is a function of a, the radius of the droplet for example.  So the simulation 

updates the value of X whenever the radius changes.  In addition, we define the relative 

humidity of air (RH) as 

 

 
,

RH
dew

P
P

∞

∞

≡  (6.46) 

 

where ,dewP ∞  is a pressure of water vapor in the surrounding air, at the dew point of T∞ . 

  

 Finally, we multiply aT  into the both sides of the equation (6.45) to make a 

quadratic equation in terms of aT . 

 

 2 0a a a
MT XT P
R

⎛ ⎞− + =⎜ ⎟Γ⎝ ⎠
 (6.47) 

 

where 
4

PMX T
R T aK

α
π

∞
∞

∞

⎛ ⎞= + +⎜ ⎟Γ⎝ ⎠
.  We need to calculate aT  by using a numerical root 

finding algorithm,[145] because aP , the pressure of water vapor at the surface of a 

droplet, is strongly correlated with aT , the temperature at the surface of the droplet.  The 
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correlation between aP  and aT  has been published in CRC handbook in detail.[146] 

 

 

6.3.7 An absorbed heat energy by a droplet from IR guiding laser 

illumination 
 

 In this calculation, I assume a simple plane wave for the incident beam.  Although 

the IR guiding laser beams have a Gaussian beam shape, this assumption gives a good 

approximation since we’re treating the small size of a droplet only.  Figure 6.1 shows the 

trajectory of the IR guiding laser beam inside a droplet. 

 

 
Figure 6.1 : Trajectory of the IR guiding laser beam inside a droplet 

The refraction of the laser beam follows Snell’s Law, sin sini i t tn nθ θ=  and the beam propagates a 

distance of 2 cosl r tθ≡  through the inside of a droplet. 

 

 First of all, I begin with the total energy of incident beams, which is obtained as 

 

 2
0 00

(2 )
r

incidentP I y dy I rπ π= =∫  (6.48) 

 

where 0I  is the intensity of the incident beam through the center of a droplet, r is the 

radius of a droplet, and sin iy r θ= . 
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 The transmittance of the incident beam with an incident angle of iθ  is defined as 

 1 ( )
2

T T T⊥≡ +  (6.49) 

where 

 2 2

sin 2 sin 2
sin ( ) cos ( )

i t

i t i t

T θ θ
θ θ θ θ

=
+ −

 (6.50) 

 

 2

sin 2 sin 2
sin ( )

i t

i t

T θ θ
θ θ⊥ =

+
 (6.51) 

 

and tθ  is an angle of the refracted beam.[127]  The refraction of the incident beam 

follows Snell’s law, sin sini i t tn nθ θ= .  Therefore the total energy of refracted beams just 

after the first interface is, 

 
0

(2 )
r

refractedP I T y dyπ= ∫  (6.52) 

 

 Next, the refracted beam propagates a distance of 2 cos tl r θ≡  through the inside 

a droplet.  Due to the IR absorption by water, the intensity of the refracted beam 

decreases with a rate of  

 2 cos trle e α θα −− =  (6.53) 

 

where α is the absorption coefficient of water at 830 nm, as shown in [Figure 6.2]. 

 Therefore the total absorbed energy by water from the refracted beams can be 

formulated as, 

 

 
0 0

2 cos2
0 0

(2 )

(1 )(2 sin )( cos )t

r l
absorbed refracted

r
i i i

P P I Te y dy

I T e r r d

α

π
α θ

π

π θ θ θ

−

−

= −

= −

∫

∫
 (6.54) 

 

where sin sini i t tn nθ θ= .  Multiple reflections inside the droplet are neglected for 
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simplicity. 

 In addition, the ratio of absorbed energy to the incident energy is, 

 

 2 cos2
0

(1 ) sin 2trabsorbed
i i

incident

P T e d
P

π
α θ θ θ−= −∫  (6.55) 

 

 In the simulation, the Romberg integration has been performed for the fast and 

reliable integration.[145] 

 

 
Figure 6.2 : Absorption coefficients for liquid water 

From reference [147].  The data are extracted from references [148-151]. 
 

 

6.4 Brownian motion 
  
 Small particles in a fluid perpetually move about in a random manner.  It was first 

observed by Brown, and was explained theoretically by Einstein in 1905 [152] from the 

random collisions of the particle with the molecules of the liquid.[153]  In this section, I 

present how to simulate the Brownian motion of a droplet in the air.  I introduce an 

efficient method to simulate the Brownian motion, by modeling it as a vector white noise 

process according to the references of [154-157].   
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Figure 6.3 : Brownian motion process 

From ref. [154]: G. Ahmadi, lecture note for ME437/537, Clarkson University 
 

 First of all, we begin with the Knudson number Kn, the ratio of the gas mean free 

path to particle radius. 

 2
nK

d
λ

=  (6.56) 

 

where d is the droplet diameter and λ is the molecular mean free path of the air molecule.  

The mean free path of the air was estimated as 100 nm since the typical molecular 

diameter of air molecules is 0.3 nm. [153]  Then the corresponding Stokes-Cunningham 

slip correction Cc is given by Abuzeid et al. [155] 

 

 (1.1/ )1 1.257 0.40 nK
c n nC K K e−= + +  (6.57) 

 

 Next, the Brownian motion is governed by the Langevin equation, 

 

 ( )x
dx x n t
dt

β+ =  (6.58) 

 

where x  is the velocity of the droplet in x direction and n(t) is the effective Brownian 

force.  The coefficient β  for the damping is defined as, 

 

 3

c

d
C m
πμβ =  (6.59) 
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where μ  is the viscosity of the air and m is the mass of the droplet. 

 

 Calculation of the effective Brownian force, n(t) is based on the pioneering 

studies of a Gaussian white noise random process.[158-160]  The spectral intensity of the 

noise, Snn is given by 

 

 2 B
nn

k TS
m

β
π

=  (6.60) 

  

where kB is the Boltzmann constant.  By generating independent Gaussian random 

numbers Zi having unit variance and zero mean, the amplitude of the Brownian force in 

the x direction is calculated as 

 

 ( ) nn
x i i

Sn t Z
t

π
=

Δ
 (6.61) 

 

where it  is the current time in the simulation and tΔ  is the time step of the simulation.  

tΔ  should be much larger than the molecular time scale and much smaller than the 

particle relaxation time.[156]  I repeat the same procedures for the y and z directions in 

the simulation.  Figure 6.4 presents the numerically simulated Brownian force. 

 

 
Figure 6.4 : Numerically simulated Brownian force 

From ref. [154]: G. Ahmadi, lecture note for ME437/537, Clarkson University 
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The following C code executes the calculation of the amplitude of the Brownian force in 

one direction. 

 
double brownian_amplitude(double dt, double radius) { 
 double mean_free_path, Kn, Cc, beta, Snn; 
 double number_density_mixture, number_density_water, number_density_ethylene_glycol; 
 double mole_fraction; 
 double diffusion_coefficient; 
 double brownian_amplitude; 
 
 number_density_water = DENSITY_H2O / MOLECULAR_WEIGHT_H2O *  AvogadroConstant(); 
 number_density_ethylene_glycol = DENSITY_ETHYLENE_GLYCOL /     
  MOLECULAR_WEIGHT_ETHGLY * AvogadroConstant(); 
 number_density_mixture = g_EthyleneGlycol * number_density_ethylene_glycol + (1.0-g_EthyleneGlycol)  
  * number_density_water; 
  
 // http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/menfre.html#c3 
 mean_free_path = 1.0 / (number_density_mixture * sqrt(2.0) * ( Pi() * DIAMETER(radius) *   
  DIAMETER(radius)) ); 
 
 // Abuzeid et al, Wall deposition of aerosol particles in a turbulent channel flow.pdf 
 Kn = 2.0 * mean_free_path / DIAMETER(radius); // Knudson Number 
 Cc = 1.0 + 1.257*Kn + 0.40*Kn*exp(-1.1/Kn);  // Cunningham Slip Correction (Cc ~ 1.0) 
 g_Cc = Cc; 
 
 /* Dumont et al, Solvent-tuning the collapse and helix formation time scales of lambda 6-85 (2006) 
 x = 0.2078963606 (mole fraction of ethylene glycol) T : in Celcius 
 (0.004757 + 0.047x) {1 + (221 + 573x)Exp[-0.048T] + (154 - 69x)Exp[-0.01T]} */ 
  
 mole_fraction = (g_EthyleneGlycol*number_density_ethylene_glycol) / number_density_mixture; 
 g_viscosity = (1.0e-3)*(0.004757 + 0.047*mole_fraction)*(1.0 + (221.0 + 573.0*mole_fraction) * 
   exp(-0.048*KelvinToCelsius(g_Temperature)) + (154.0 - 69.0*mole_fraction) * 
   exp(-0.01*KelvinToCelsius(g_Temperature))); 
 diffusion_coefficient = Cc * (BOLTZMANN_COEFF*g_Temperature) / (6.0*Pi()*g_viscosity*radius); 
 
 // G. Ahmadi, ME437/537 Lecture Note, Clarkson University 
 beta = (3.0 * Pi() * g_viscosity * DIAMETER(radius)) / (Cc * MASS); 
 Snn = (2.0 * BOLTZMANN_COEFF * g_Temperature) * beta / (Pi() * MASS); 
 brownian_amplitude = sqrt( Pi() * Snn / dt ); 
  
 return brownian_amplitude; 
} 
 

 

6.5 Simulation results 
 

6.5.1 Radiation force by guiding lasers predicted by GLMT 
 

 To verify the validity of the laser guidance, I performed a computer simulation of 

infrared laser guidance by using Generalized Lorenz-Mie Theory (GLMT) [118, 129, 
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161] and considering Brownian Motions of a droplet in the air [155-157].  I neglected the 

evaporation of water for simplicity, to mainly understand how guiding lasers work near 

the beam center.  The simulation program was written in C language, under the National 

Instruments LabWindows/CVI 8.5 GUI environment. 

 

 In a small displacement of less than 10 µm, two co-aligned guiding laser beams 

generate a gradient restoring force, which is proportional to the deviation from the center 

of beam as shown in [Figure 6.5].  Thus the laser guidance predicted by GLMT simply 

acts like a Hookean spring near the center of beam.  The laser guiding simulation shows 

that the micron sized drops can be reliably well trapped by the guiding lasers.  The initial 

diameter of a droplet was 10 µm, with two IR guiding lasers having 100 mW beam power 

and 10 µm beam waist. 

  

 
Figure 6.5 : Simulation of the laser guidance (left) and restoring force by guiding lasers (right) 

The left plot shows the simulated (height) trajectory of a droplet by the laser guidance.  The droplet is well 
trapped around the center of beam (at the height of 1 cm) with a tiny deviation of less than 1 µm. 
 

 

6.5.2 The evaporation of water from a droplet 
 

 For the next step, the evaporation of water from a droplet has been simulated 

according to the steady-state equation (6.42) in [Chapter 6.3.5].  I applied two Gaussian 
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IR beams of 830 nm wavelength, with a beam power of 100 mW and a beam waist of 70 

µm, for the IR laser illumination.  The evaporation rate mainly depends on the relative 

humidity, since IR absorption of water at 830 nm is quite small.  Thus, the radius change 

of a droplet is mainly affected by the relative humidity, as shown in [Table 6.1]. 
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Figure 6.6 : Typical evaporation curves of water from a droplet. 

The left plot shows Radius (µm) vs Time (sec), whilst the right plot shows Radius2 (µm2) vs Time (sec).  
Since the evaporation rate (µm2/sec) is nearly a constant, we get an approximately linear decrease of 
Radius2 as time evolves. 
 

Table 6.1 : Simulation results for the evaporation of water from a droplet 

Initial 

Radius 

(µm) 

RH 

(Relative 

Humidity) 

IR Laser* 

Illumination

Total 

Life 

Time 

(sec) 

Time to 

reach 

r=1.1 µm 

(sec) 

Time Interval 

(ms) for the 

radius of 

0.9 µm ~1.1 µm 

(Average) 

Evaporation 

Rate 

(µm2/sec) 

Y 0.1108 0.1055 1.75 ms -225.7 
25 % 

N 0.1110 0.1055 1.75 ms -225.2 

Y 0.1773 0.1688 3 ms -141.0 
50 % 

N 0.1775 0.1690 3 ms -140.7 

Y 0.3753 0.3570 6 ms -66.6 
75 % 

N 0.3770 0.3588 6 ms -66.3 

Y 0.9628 0.9158 15.5 ms -26.0 
90 % 

N 0.9748 0.9278 15.5 ms -25.6 

Y 8.8505 8.3723 157.5 ms -2.8 

5 

99 % 
N 9.9398 9.4588 159 ms -2.5 
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Table 6.1 continued 

Initial 

Radius 

 (µm) 

RH 

(Relative 

Humidity) 

IR Laser* 

Illumination

Total  

Life 

Time 

(sec) 

Time to 

reach 

r=1.1 µm 

(sec) 

Time Interval 

(ms) for the 

radius of  

0.9 µm ~1.1 µm 

Average 

Evaporation 

Rate 

(µm2/sec) 

Y 0.4420 0.4375 1.75 ms -226.2 
25 % 

N 0.4440 0.4395 1.75 ms -225.2 

Y 0.7050 0.6965 3 ms -141.8 
50 % 

N 0.7105 0.7020 3 ms -140.7 

Y 1.4823 1.4648 6 ms -67.5 
75 % 

N 1.5083 1.4900 6 ms -66.3 

Y 3.7278 3.6808 15.5 ms -26.8 
90 % 

N 3.8995 3.8523 15.5 ms -25.6 

Y 28.0345 27.556 157 ms -3.6 

10 

99 % 
N 39.7598 39.362 159 ms -2.5 

Y 0.9900 0.9855 1.75 ms -227.3 
25 % 

N 0.9990 0.9938 1.75 ms -225.2 

Y 1.5733 1.5648 3 ms -143.0 
50 % 

N 1.5988 1.5903 3 ms -140.7 

Y 3.2755 3.2573 6 ms -68.7 
75 % 

N 3.3938 3.3755 6 ms -66.3 

Y 8.0148 7.9678 15.5 ms -28.1 
90 % 

N 8.7740 8.7268 15.5 ms -25.6 

Y 48.9708 48.493 157 ms -4.6 

15 

99 % 
N 89.4597 88.979 159 ms -2.5 

 

 

6.5.3 The whole trajectory and the radius change of a droplet 
 

 Computer simulations of a droplet trajectory in a lens cube have been performed 

with integration of all the contents and equations in Chapter 6.  There are many 
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parameters which affect the whole trajectory and the radius change of a droplet as shown 

in  [Figure 6.7].  But among them, “Initial injection velocity” and “Relative Humidity” 

are most dominant factors.   

 

 
Figure 6.7 : Basic parameter setting for the simulation 

 

 

Initial Injection Velocity 

 

 The “Initial injection velocity” significantly affects how far a droplet can initially 

fall down, until it shortly reaches to the terminal velocity in less than 3 ms. 
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Figure 6.8 : Initial injection velocity dependence (No IR laser guidance) 

The whole trajectory of a droplet (left) and the velocity change in an early time period (< 5 ms) (right).  The 
droplet reaches its terminal velocity in a short time of less than 3 ms, in 75% relative humidity.  See [Figure 
6.7] for the parameter setting other than initial velocity. 
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Relative Humidity 

 

 On the other hand, the “Relative Humidity” mostly determines the evaporation 

rate and the corresponding lifetime of a droplet, as we already discussed in the previous 

section.  Notice that the droplet comes close to the beam center (at the zero height) in 

95% relative humidity, about  2.1 seconds later. 
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Figure 6.9 : Relative humidity dependence (No IR laser guidance) 

Plots of the simulated trajectories (left) and the radius changes (right) of a droplet at different humidity.  
The evaporation rate decreases at higher humidity.  As a result, the lifetime of a droplet significantly 
increases.  See [Figure 6.7] for the parameter setting other than humidity. 
 

 

IR laser guidance 

 

 The effects of IR laser guidance are studied for the optimal condition of the 

trapping.  I performed three independent simulations in 95 % humidity, at the initial 

injection velocity of -3.5 m/s.  Temperature was set at 293.15 K and the initial diameter 

of a droplet was 10 µm.  The wavelength of the IR guiding lasers was 830 nm, with a 

beam power of 100 mW.  At a high photon intensity setting (=14 µm beam waist), as 

soon as a droplet enters the IR guiding laser beam, the droplet starts to be trapped around 

the beam center until it completely evaporates.  In a case of low photon intensity setting 

(=40 µm beam waist), we could not find any noticeable effects by the IR guiding lasers.  

Both of the trajectory and the radius changes look identical to the case of non-IR laser 

guidance.  In conclusion, the intensive IR laser focusing (about 14 µm beam waist) is 

required for the efficient IR laser guidance. 



 137 

 

While a droplet is illuminated by the IR guiding lasers of high intensity, the 

droplet absorbs the heat energy from the IR laser beams, resulting in a higher evaporation 

rate.  Thus the droplet trapped by the high intensity IR lasers evaporates faster than others.  
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Figure 6.10 : Simulation results for IR laser guidance  

Plots of the simulated trajectories (left) and the radius changes (right) of a droplet with different 830 nm IR 
laser guidance settings.  See [Figure 6.7] for the basic parameter setting other than humidity (The humidity 
was fixed at 95%.) 
 

 
Figure 6.11 : The whole trajectory of a droplet, by IR laser guidance of high intensity 

A screen capture from the simulation program, written in C language under NI Labwindows/CVI 8.5 GUI 
environments.  Two of 830 nm IR lasers are used for the laser guidance at 95 % humidity, with a high 
intensity (100 mW beam power,  14 µm beam waist).  See [Figure 6.7] for the basic parameter setting. 
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An alternative way – utilizing low humidity and an IR heating pulse for the fast 

evaporation 

 

In addition, there is an alternative way for the trapping of a droplet by utilizing a 

high evaporation rate in a low humidity.  This is just an opposite way from what we have 

done so far.  By delicately tweaking the humidity, the initial injection velocity, and an IR 

heating pulse, we may trap a droplet even without any help of guiding lasers for a 

significant amount of time.  

For example, if we set a low humidity of less than 1 %, the evaporation rate is 

extremely high so that we get a short lifetime (< 80 ms) for a droplet of 10 µm diameter.  

But remember, as the droplet becomes smaller, its terminal velocity comes close to zero – 

so eventually the droplet stops for a moment [Figure 6.12].  With an aid of an IR heating 

pulse (1430 nm wavelength) from the bottom, we can actively control the evaporation 

rate and the whole  trajectory of a droplet.  (Water is known to absorb 1000 times more at 

1430 nm than at 830 nm, see [Figure 6.2].)  The IR heating pulse should be focused onto 

the tip of the droplet generator, so that it can be easily aligned. 

 

 
Figure 6.12 : The whole trajectory of a fast evaporating droplet 

A screen capture from the simulation program. The IR heating pulse of 1430 nm wavelength was applied 
for 2 ms with a high power of 1000 mW, for the fast evaporation in 1 % humidity. 
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Appendix A Description of small angle X-ray 

scattering experiments 
 

A.1 Background theory 
 

 By analyzing X-ray scattering profiles at a small angle (typically 2θ  < 1˚), we can 

directly figure out how big the particle is.  We use the radius of gyration Rg to determine 

the size of the protein [12, 67], which is defined as the following 

 

∫

∫
=

V

V
g sds

sdss
R

3

32

2

)(

)(

ρ

ρ
 

 

where ( )sρ  is the density of a sub-volume of the particle located at a position vector s 

from the center of mass.  Indeed, the radius of gyration is defined as the root mean square 

of mass-weighted distances of all sub-volumes in a particle, from the center of mass. 

 

 
 

 Analyzing SAXS data, we can calculate the radius of gyration easily through the 

Guinier Plot [13] as follows.  By definition, the scattering vector is a difference vector of 

the scattered beam unit vector s and the transmitted beam unit vector 0s . 

( )0
2q s sπ
λ

≡ −  



 140 

 

 The optical path difference is defined as ( )0l r s sΔ = ⋅ − , and the phase difference 

is defined as ( )0
22 l r s s q rπϕ π

λ λ
Δ

= = ⋅ − ≡ ⋅ . 

 Since 0 2sins s θ− = , as shown from the above figure, the scattering vector 

magnitude is directly proportional to sinθ , 

 

 4 sin

o

nq π θ
λ

=  

where 0

n
λλ =  

  

 By Guinier approximation as described in many references [12, 67],  the 

scattering intensity at the scattering vector q,  I(q) can be expressed as, 

 
2 2

ln ( ) ln (0)
3

gq R
I q I −  

 

 It is valid only when qRg < 1.3 for spherical objects.  Therefore at the small angle 

satisfying qRg < 1.3 for spherical objects, the slope of the SAXS profile in the Guinier 

plot (q2 vs ln I(q)) should be directly proportional to the square of the radius of gyration, 

Rg
2. 
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 For example, a small particle tends to scatter more, so the X-ray photons will be 

spread more widely, resulting in low beam intensity at the small angle region.  Thus we 

can get a low slope (a) in the Guinier plot.  On the other hand, a large particle doesn’t 

scatter much, so the X-ray photons will be more densely packed at the small angle region, 

resulting in a high slope (b). 

 

 

A.2 Experimental setup at Argonne National Laboratory 
 
 The SAXS experiment was performed at the BioCAT-18 section of the Advanced Photon Source 
(APS) at Argonne National Laboratory, in collaboration with Charles Dumont (a Ph.D. student in Physics), 
the BioCAT-18 group, and the Kihara group in Kansai Medical University, Japan. 
  

 For the protein folding kinetics, the stopped-flow apparatus (Unisoku, Japan) was 

installed for fast mixing to dilute a denatured protein solution within a dead time of less 

than 5 ms, so that the following protein collapse (kinetics upon refolding) could be 

monitored in combination with SAXS.  Despite using the brightest X-ray source in the 

world, exposure times of more than 100 ms are required for the collection of reliable data, 

which is quite a large time scale compared with the sub-ms folding time scale of λ6-85*.  

Sub-zero temperature (-28 °C) and high viscosity solvent (45 % Ethylene Glycol / 55 % 

water by volume, having ~10 times higher viscosity than water at 298K) slow down the 

kinetics enough for the measurement to be possible. [162] 

 Our stopped-flow apparatus has an instrument dead time of less than 5 ms with a 

mixing ratio of 1 to 6.  For the fast mixing, a piston is pushed by a nitrogen gas controlled 

mechanical system, moving each solution into the mixer with a volume ratio of 1 to 6 (for 
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example, one volume of denatured protein in 5 M Guanidine Hydrochloride vs. 6 

volumes of 0 M Guanidine Hydrochloride buffer). The instantly-mixed protein solution 

(in 0.7 M Guanidine Hydrochloride) flows through an observation window cell (made of 

sapphire) for the SAXS measurement.  We use a timing box to integrate the x-ray 

scattering for a specific time window.[29]  For the details of timing box setup, refer to 

Appendix A in reference [29]. 

 

 
Schematic diagram of Stopped-Flow apparatus (left), Experimental Setup at Argonne Lab. (right).  From ref. 
[29]: Larios, E., a Computational-Experimental Study of Small Globular Proteins, in Physics Ph.D. Thesis. 
2005, University of Illinois at Urbana-Champaign. 
 

 

A.3 How to design and perform a solution X-ray scattering 

experiment 
 

This manual explains how to design and perform a solution x-ray scattering experiment at the BioCAT-18 
section of the Advanced Photon Source at Argonne National Laboratory, and I attach this for completeness.  
Most of the contents in this section are based on the published web documents in Argonne National 
Laboratory website [163], (cited from http://www.bio.aps.anl.gov/techniques/SAXS-HOWTO.html) and it 
delivers quite useful information especially for the beginner. 
 

 

A.3.1 Range of Q (scattering vector magnitude) 
  

 We typically do Small Angle X-ray Scattering (SAXS) or Wide Angle X-ray 

Scattering (WAXS) experiments at an x-ray photon energy of 12 keV.  The Aviex CCD 
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detector that will be used for SAXS or WAXS measurements has an active area of 

approximately 160 x 80 mm2.  The zero-order beam stop---after masking---typically has 

an effective diameter of 4.6 mm.  We can set a sample-to-detector distance for SAXS 

experiments at ~950, ~1400, ~1800, ~2300, or ~2750 mm, which corresponds to a Q 

range, when offsetting the beam stop 60 mm from the detector center, of 0.015-0.9 Å-1, 

0.01-0.6 Å-1, 0.008-0.47 Å-1, 0.006-0.37 Å-1, and 0.005-0.3 Å-1, respectively.  Switching 

between different Q ranges can take between four and eight hours. 

 For the WAXS instrument, the beam stop is set at the center of the detector and 

the sample-to-detector distance is fixed at 180 mm. This corresponds to a Q range of 

0.08-2.5 Å-1. 

 

 

A.3.2 Reducing radiation damage 
 

 Longer exposure to high power X-ray beams will lead to radiation damage to the 

protein.  Protein aggregation also can result from radiation damage.  To reduce radiation 

damage, we can shorten the exposure time (down to several hundred milliseconds), and 

lower the sample temperature (down to -28 °C), and even add small amounts (~100 mM) 

of cryoprotectants, such as glycerol, ethylene glycol and sucrose.[164]  But the ideal 

condition must be determined by trying various experimental parameters prior to 

collecting main SAXS data. 

  

 

A.3.3 Sample concentration 
 

For SAXS 

 For proteins of a size comparable to lysozyme or cytochrome c, a concentration of 

2 mg/ml can give reasonably good data quality.  If the protein has twice the size of 

lysozyme or cytochrome c, the concentration can be reduced by a factor of two.  Higher 

concentrations can be used to give better data quality if the protein does not suffer from 

aggregation.  We can measure samples with a concentration of 0.5 mg/ml at long 
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exposures and have good data quality in the low q region. 

 DNA and RNA scatter x-rays more strongly than proteins, so the required 

concentration can be about 5 fold lower than proteins. 

 

For WAXS 

 Here we acquire data in the intermediate to high q region (0.05-2 Å-1) where 

aggregation of sample molecules have little effect in the data.  In this case we can use 

much higher concentrations than for SAXS in order to increase the weak scattering signal 

in the high q region.  The concentration can be 5 or even more times higher than for 

SAXS.  If you also need SAXS data, you can dilute WAXS samples and use the diluted 

samples for SAXS measurements if aggregates break up easily upon dilution.  If dilution 

does not break up aggregates or it takes a very long time to break up aggregates, prepare 

separate SAXS samples at the desired low concentrations. 

 

Buffer Solution 

 Scattering data taken on a protein solution contains signals from both the protein 

and the buffer.  Scattering measurements should be done on both the protein solution and 

the buffer.  The scattering signal from the buffer alone is then subtracted from the 

solution scattering in order to get the scattering signal of only the protein.  The buffer for 

measurement must match that in the protein solution. 

 One way to get matched buffers is to dialyze the protein solution in a buffer for a 

certain time, and then bring both the protein solution and the buffer for SAXS 

measurement.  It is recommended to bring plenty of buffer (> 1 L). 
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A.3.4 Loading samples 

 
From ref. [29]: Larios, E., a Computational-Experimental Study of Small Globular Proteins, in Physics 

Ph.D. Thesis. 2005, University of Illinois at Urbana-Champaign. 
 

 The protein solution and buffer are contained in reservoirs before being loaded 

into the observation cell.  We need to filter samples and centrifuge the protein solution 

and buffer to remove any bubbles inside solutions before loading.  The protein solution is 

measured immediately following the measurement of its matched buffer.  Before 

switching to the next buffer and protein solution, it is recommended to flush the 

observation cell with the sequence: water, 20% bleach, water, 100% ethanol, water, 

acetone, and water to remove any possible protein deposits left on the observation cell 

wall by interactions with the high-flux x-ray beam. 

 For the operating principle of the stopped flow instruments in detail, refer to 

Appendix A of Ref. [29] : a Ph.D. dissertation by Edgar Larios. 

 

 

A.3.5 Acquiring data 
 

 The client program which controls the Aviex CCD currently resides on the 

computer named "Godzilla."  Double-click the icon "Shortcut to Aviex CCD" to start the 
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program.  This opens the following window: 

 

 
From ref. [163]: The published web documents in Argonne National Laboratory website by BioCAT-18 

 

 First, have a directory created for you on the computer and select this working 

directory by clicking on the "..." button.  Name your experiment file in the format 

name_####.smv, where #### is the index that will be filled in automatically by the client 

program with the number you specify in the "Next Frame Number" box.  This number 

will automatically increment by 1 each time a frame of exposure is taken. You may 

change it at any time. 

 

 It may be convenient to name a protein and its buffer with different names such as 

proA_####.smv and bufferA_####.smv.  Do not use a numeral as the first letter of the 

filename, since the Igor Pro program we will use later for data reduction does not like this.  

Also, keep the total length of the filename shorter than 20 characters. 

 

 Check the "Auto Save Images" box to have your images automatically saved - 

unless you do not wish to save them (e.g. during a practice run). Select your desired 

exposure time for each frame of the CCD image. 

 

 Every time you change exposure times, you need to record a dark image for 
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background subtraction. To do this, 

 

   1. Close the Normally Open shutter with the flip-switch on the XIA control box. 

   2. Click on "Take Dark" in the Aviex client program 

   3. Save the dark image as dark.smv in the directory C:\Aviex Calibrations (you will be 

prompted for this information) 

   4. Open the "Configure" dialog by selecting it under the "Settings" menu on the Aviex 

client program: 

   5. Make sure all the boxes on the left are selected. 

   6. Click "Load Calibrations" 

 

 
From ref. [163]: The published web documents in Argonne National Laboratory website by BioCAT-18 

 

 Experimenters are encouraged to take darks periodically as the detector can drift 

slightly over the course of a few hours.  You may minimize the calibration window if you 

like.  Go back to the client program to select the number of continuous repeats of frames 

(exposures) you desire each time you click on the "Start Still" button and choose 0.1 or 

0.2 sec for the "Delay" between each exposure.  Even if you take only one exposure, the 

delay time should still be set.  If you have started a continuous run of several exposures 

accidently, you can press the "Stop Still" button to interrupt the run. 
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A.3.6 Data reduction 
 

 The acquired SAXS/WAXS data are saved as CCD image files and they need to 

be integrated azimuthally around the beam center to generate data of scattering intensity 

versus scattering vector (I vs. Q).  The program Igor Pro will be used to do data reduction 

of the SAXS/WAXS images.  We need to install additional user Igor Pro procedures 

written by BioCAT-18. 

 

 First, map the folder on Godzilla where the SAXS/WAXS images are stored onto 

a local network folder on your computer. Then open the Igor Pro program by double 

clicking on the Igor Pro icon, and choose "BioCAT → SAXS data Reduction" to input the 

necessary SAXS parameters: 
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 Fill in the number of frames to be processed that have the same base name 

filename_####.smv which is usually used for the same protein sample or buffer.  Select 

the mask image that the BioCAT staff has created for you.  You will need to normalize 

your data with beam intensity, so select "transmitted intensity I1" for normalization.  The 

sample thickness is the diameter of the capillary tube.  The detector pixel size is 0.039 

mm without binning and 0.078 mm for 2x2 binning, depending on which you chose.  Fill 

in the x-ray energy and the sample-to-detector distance values.  Normally you do not 

need to "Sum All Files to a Single Frame."  After filling in all the needed parameters, 

click on the "Continue" button to open up the next dialogue box: 

 

 
 

 Fill in the horizontal and vertical pixel numbers of the beam center.  Select the 

total number of data points you would like to display on a plot and the Q vector scaling 

mode.  It should be noted that the more data points you would like to generate, the less 

area of the CCD image is used to average into the individual data points and, hence, 

higher statistical errors and less smooth experimental curves are obtained.  On the other 

hand, if too few points are used, you generate data more spatially smeared and loose 

spatial resolution.  It is really up to your needs to select the proper number of data points. 

 

 When all parameters are filled in, click on the "Continue" button to let Igor do the 

data reduction job.  It will take a while to reduce a few dozen SAXS/WAXS images.  For 

each scattering image Igor Pro returns three columns of reduced data: the Q vector data 

with "q" prepended to the filename, the intensity data with an "r" prepended, and the 

intensity error data with an "s" prepended.  For example, one would get the files 
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qproteinA.0001, rproteinA.0001, and sproteinA.0001 for the image proteinA_0001.smv.  

Note that in the reduced data, the image extension “.smv” is removed. 

 

 

A.3.7 Analyzing data and the Guinier plot 
 

Log-Log Plot 

 Macros have been written in Igor Pro to allow you to do quick data analysis on-

site.  First, we want to examine the scattering pattern of the protein in solution and check 

for protein aggregates in the solution.  

 In Igor Pro, click on tab "Plot Fits → LogLog Plots → LogLogPlot" to open the 

following dialogue window: 

 

 
 

 We want to display all the reduced data for the same protein sample on a log-log 

scale plot to compare all the curves.  Select the first frame number in the sequence and 

check to plot a sequence of frames with the same base name (i.e. for all the frames for the 

same sample).  We want to plot all the curves as lines for now so that they are easier to 

compare with each other (the purpose for doing this is to identify the few curves that 

deviate from the average so that we will remove them).  Click on the "Continue" button 

to make a plot similar to the following: 
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From ref. [163]: The published web documents in Argonne National Laboratory website by BioCAT-18 

 

Averaging data 

 Notice that frame 5 deviates from the other curves. Therefore, when we do 

averaging, we use only curves 1 to 4.  To perform data averaging, click on tab "Plot Fits 

→ Modify Data → Average Multiple Data Sets" to open the following dialogue box: 

 

 
 

 Fill in the number of frames to be averaged (in this case, 4) and use "weight 

averaging by uncertainty" (the average is weighted by the data error bars, the bigger the 

errors the less the weighting).  Give a name for the average and click on the "Continue" 

button to bring up the following dialogue box for choosing the data to be averaged: 

 

 
From ref. [163]: The published web documents in Argonne National Laboratory website by BioCAT-18 
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 Each frame must be selected individually from the pull-down menu.  Click 

"Continue" to proceed to the next frame.  The program will calculate the averaged data 

when all the needed frames have been selected.  If you have done 20 frames for a 

particular protein sample, you will find that selecting 20 frames one by one is tedious.  

There exist some Igor shortcuts which BioCAT staff will alert you to. 

 

Background Subtraction 

 Having averaged the data for both the protein solution and its buffer, we now 

subtract the buffer scattering from the protein solution scattering. To do this, click on the 

tab "Plot Fits → Modify Data → Subtract Background Wave" to open the following 

dialogue box: 

 
From ref. [163]: The published web documents in Argonne National Laboratory website by BioCAT-18 

 

 Enter the averaged scattering data from the buffer as the background data, and the 

averaged data from the protein solution as the Data to be processed.  The "Scale Factor" 

is the fraction of the buffer scattering that you want to remove.  Since most protein 

solutions are at very low concentrations, the volume content of the buffer in the protein 

solution is almost 100%, so "1" can be used for the "Scale Factor". 

 

 What if you have a protein solution at 10 mg/ml?  Suppose the protein has a 

density of 1.4 g/cc, 10 mg/ml is about 0.71% protein by volume in the solution.  Thus, the 

buffer has a volume fraction of 0.993 in the solution.  In this case, you may use 0.993 for 

the "Scale Factor."  However, it introduces additional error since the scattering from the 

buffer also contains the scattering from the observation cell and this process only 

subtracts 0.993 of the observation cell scattering.  To correct this error, it is best to do a 
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scattering measurement on the empty observation cell as well and subtract the 

observation cell scattering by 100% from both buffer scattering and protein solution 

scattering.  Then use the scale factor 0.993 for the net buffer scattering and the net protein 

solution scattering. 

 

 Now you can plot the averaged data and the background removed data (with 

_bsub attached to the data filename) on the same plot (recall above procedures to make a 

plot.  But you have to select each data set one by one, since they do not have the same 

base name now): 

 
From ref. [163]: The published web documents in Argonne National Laboratory website by BioCAT-18 

 

 In this plot, the red and blue curves are for the averaged protein solution data and 

the averaged buffer data, respectively; and the green curve is for the protein solution with 

buffer background removed.  The slight bending up of the green curve at the very low Q 

region indicates the presence of a small amount of aggregates (aggregate-free protein 

would show a flat scattering curve in the low Q region).  In rare cases, you will see a 

higher scattering signal of the blue buffer curve than the red protein solution curve.  This 

is the outcome of some errors during the measurements.  It could be that your buffer does 

not match the one in the protein solution or that, at some point during measurement, the 

beam moved.  You should repeat the experiment.  Should you get similar results, some 

investigation will be required to figure out what is happening. 
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 First, check your preparation of protein solutions and buffers. It is also possible 

that, for concentrated protein solutions, the buffer may have higher signal than the protein 

solution.  After you have removed the empty cell scattering as discussed above and used 

the correct "scale factor" (less than 1) for background subtraction, you will end up with 

the correct data for the net protein scattering. 

 

The Guinier Plot 

 In Igor Pro, click on tab "Plot Fits → Special Plots → Make Guinier Plot" to open 

the following dialogue window: 

 

 
 

 Entering appropriate parameters and clicking “continue” button, we can easily 

generate the Guinier plot.  Also if you click on tab "Plot Fits → Special Plots → Perform 

Guinier Fit", we can perform a Guinier fit to calculate the radius of gyration as follows.  

You need to select a range by dragging cursor “A” and “B” to perform a Guinier fit. 

 

 
The Guinier plot and a corresponding Guinier fit to calculate the radius of gyration 



 155 

 

A.3.8 Selecting a range of data and saving as an ASCII file 
 

 Now that we have reduced the CCD image into 1D data and have removed the 

background scattering, we wish to output the data as an ASCII file so that it may be used 

by some other analysis programs such as GNOM and CRYSOL.[38]  As shown below, on 

the plot with the data to be output, drag cursor "A" and "B" with the left mouse button to 

the beginning and end points of the region of data that you wish to output. 

 

 
From ref. [163]: The published web documents in Argonne National Laboratory website by BioCAT-18 

 

The Save Data menu 

 Cursor "A" must be the beginning point and cursor "B" the end point.  Then click 

on the tab "Argonne SAXS → Save data from plot to file" to save the data to a folder that 

you select.  You will notice that 5 rows down, the tab you just clicked has the option 

"save text file."  You can use that to save the whole range of data.  The first column of the 

saved data is the Q vector, the second column contains the scattering intensity, and the 

third column is the error of the scattering intensity. 

 

 
The drop down menu 
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A.4 Packing list for SAXS experiments in Argonne National 
Laboratory 
 

These are typical lists we need to bring into Argonne National Laboratory. 

- Protein Sample (normally lyophilized already), in a Styrofoam box with plenty of 

frozen ice packs. 

- The stopped-flow instrument with temperature gauge and observation cells 

- Extra battery for temperature gauge 

- A chiller, but we need to wash it before leaving. 

- Coolant for the chiller (Ethylene Glycol + Methanol Mixture, 4 gallon) 

- Empty containers for the disposal of coolant after experiments. 

 

- Phosphate Buffer (50 mM Phosphate, pH = 7.0) 

- Mixing Buffer (50 mM Phosphate, 45% Ethylene Glycol by volume, pH = 7.0) 

- Protein Buffer (50 mM Phosphate, 45% Ethylene Glycol by volume, 5 M Guanidine 

Hydrochloride, pH = 7.0) 

- Chemicals: Guanidine Hydrochloride, Ethylene Glycol, Methanol, Sodium Phosphate, 

Sodium Chloride, and etc. 

- Plenty of Pipets and Tips 

- Plastic transfer pipets 

- Syringe + Filters (> 30 pieces) 

- Amicon (Small / Big), with 3 kDa and 30 kDa membranes. 

- Plastic Tubes (50 mL / 14 mL) 

 

- Timing Box 

- Don’t forget to bring Badge / ID card for APS 

- Peristaltic Pump 

- Notebook Computer 

- Calculator 

- DVD Blank Media / External Hard Disk Drive 

- Rent a car (van) from university carpool. 
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Appendix B Biochemical protocols 
 

B.1 Protein sequences and basic characteristics 
 
For the calculation of Molecular Weight, Extinction Coefficient, etc, the web-based Peptide Property 
Calculators are used (Northwestern university: http://www.basic.northwestern.edu/biotools/proteincalc.html 
and INNOVAGEN: http://www.innovagen.se/custom-peptide-synthesis/peptide-property-
calculator/peptide-property-calculator.asp). 
 

 

B.1.1 Lambda repressor ( *
6 85λ − ) 

 

Pseudo Wild Type (Y22W) 

< Amino acid sequence in 1 letter code > 

GSHMSLTQEQLEDARRLKAIWEKKKNELGLSQESVADKMGMGQSGVGALFNGI

NALNAYNAALLAKILKVSVEEFSPSIAREIR 

 

< Amino acid sequence in 3 letter code > 

Gly-Ser-His-Met-Ser-Leu-Thr-Gln-Glu-Gln-Leu-Glu-Asp-Ala-Arg-Arg-Leu-Lys-Ala-Ile-

Trp-Glu-Lys-Lys-Lys-Asn-Glu-Leu-Gly-Leu-Ser-Gln-Glu-Ser-Val-Ala-Asp-Lys-Met-

Gly-Met-Gly-Gln-Ser-Gly-Val-Gly-Ala-Leu-Phe-Asn-Gly-Ile-Asn-Ala-Leu-Asn-Ala-

Tyr-Asn-Ala-Ala-Leu-Leu-Ala-Lys-Ile-Leu-Lys-Val-Ser-Val-Glu-Glu-Phe-Ser-Pro-Ser-

Ile-Ala-Arg-Glu-Ile-Arg 

 

Residues 
Molecular Weight 

(g/mol) 

Extinction Coefficient 

(cm-1M-1) 

Approximate Volume 

(Å3) 

84 9159.5 6970 11082 

 

Net Charges 

at pH 7.0 

Iso-electric Point 

(pI) 

Average 

Hydrophillicity 

Ratio hydrophilic residues / 

total number of residues 

1.1 9.4 0.2 45 % 
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Net Charge (left) and Hydrophilicity (right), from Innovagen peptide property calculator 

 

 

Y22W  Q33Y  G46A  G48A 

< Amino acid sequence in 1 letter code > 

GSHMSLTQEQLEDARRLKAIWEKKKNELGLSYESVADKMGMGQSAVAALFNGI

NALNAYNAALLAKILKVSVEEFSPSIAREIR 

 

Residues 
Molecular Weight 

(g/mol) 

Extinction Coefficient 

(cm-1M-1) 

Approximate Volume 

(Å3) 

84 9222.6 8250 11159 

 

Net Charges 

at pH 7.0 

Iso-electric Point 

(pI) 

Average 

Hydrophillicity 

Ratio hydrophilic residues / 

total number of residues 

1.1 9.3 0.1 44 % 

 

  
Net Charge (left) and Hydrophilicity (right), from Innovagen peptide property calculator 

 

 

Y22W  Q33Y  A37G  A49G 

< Amino acid sequence in 1 letter code > 
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GSHMSLTQEQLEDARRLKAIWEKKKNELGLSYESVGDKMGMGQSGVGGLFNGI

NALNAYNAALLAKILKVSVEEFSPSIAREIR 

 

Residues 
Molecular Weight 

(g/mol) 

Extinction Coefficient 

(cm-1M-1) 

Approximate Volume 

(Å3) 

84 9166.5 8250 11091 

 

Net Charges 

at pH 7.0 

Iso-electric Point 

(pI) 

Average 

Hydrophillicity 

Ratio hydrophilic residues / 

total number of residues 

1.1 9.3 0.1 44 % 

 

  
Net Charge (left) and Hydrophilicity (right), from Innovagen peptide property calculator 

 

 

D14A  Y22W  Q33Y  G46A  G48A 

< Amino acid sequence in 1 letter code > 

GSHMSLTQEQLEAARRLKAIWEKKKNELGLSYESVADKMGMGQSAVAALFNGI

NALNAYNAALLAKILKVSVEEFSPSIAREIR 

 

Residues 
Molecular Weight 

(g/mol) 

Extinction Coefficient 

(cm-1M-1) 

Approximate Volume 

(Å3) 

84 9178.6 8250 11105 

 

Net Charges 

at pH 7.0 

Iso-electric Point 

(pI) 

Average 

Hydrophillicity 

Ratio hydrophilic residues / 

total number of residues 

2.1 9.7 0.1 43  % 



 160 

 

 

  
Net Charge (left) and Hydrophilicity (right), from Innovagen peptide property calculator 

 

 

B.1.2 fyn-SH3 wild type (with a His-tag) 
 

< Amino acid sequence in 1 letter code > 

VQISTLFEALYDYEARTEDDLSFHKGEKFQILNSSEGDWWEVRSLTTGETGYIPSN

YFAPVDRLDYKDDDDKHHHHHH 

 

< Amino acid sequence in 3 letter code > 

Val-Gln-Ile-Ser-Thr-Leu-Phe-Glu-Ala-Leu-Tyr-Asp-Tyr-Glu-Ala-Arg-Thr-Glu-Asp-Asp-

Leu-Ser-Phe-His-Lys-Gly-Glu-Lys-Phe-Gln-Ile-Leu-Asn-Ser-Ser-Glu-Gly-Asp-Trp-Trp-

Glu-Val-Arg-Ser-Leu-Thr-Thr-Gly-Glu-Thr-Gly-Tyr-Ile-Pro-Ser-Asn-Tyr-Phe-Ala-Pro-

Val-Asp-Arg-Leu-Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys-His-His-His-His-His-His 

 

Residues 
Molecular Weight 

(g/mol) 

Extinction Coefficient 

(cm-1M-1) 

Approximate Volume 

(Å3) 

78 9254.9 17780 11199 

 

Net Charges 

at pH 7.0 

Iso-electric Point 

(pI) 

Average 

Hydrophillicity 

Ratio hydrophilic residues / 

total number of residues 

-9.4 4.7 0.2 44 % 
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Net Charge (left) and Hydrophilicity (right), from Innovagen peptide property calculator 

 

 

B.1.3 Ubiquitin 
 

Ub* : Pseudo Wild Type (F45W) 

< Amino acid sequence in 1 letter code > 

MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIWAGKQLEDGRTL

SDYNIQKESTLHLVLRLRGG 

 

< Amino acid sequence in 3 letter code > 

Met-Gln-Ile-Phe-Val-Lys-Thr-Leu-Thr-Gly-Lys-Thr-Ile-Thr-Leu-Glu-Val-Glu-Pro-Ser-

Asp-Thr-Ile-Glu-Asn-Val-Lys-Ala-Lys-Ile-Gln-Asp-Lys-Glu-Gly-Ile-Pro-Pro-Asp-Gln-

Gln-Arg-Leu-Ile-Trp-Ala-Gly-Lys-Gln-Leu-Glu-Asp-Gly-Arg-Thr-Leu-Ser-Asp-Tyr-

Asn-Ile-Gln-Lys-Glu-Ser-Thr-Leu-His-Leu-Val-Leu-Arg-Leu-Arg-Gly-Gly 

 

Residues 
Molecular Weight 

(g/mol) 

Extinction Coefficient 

(cm-1M-1) 

Approximate Volume 

(Å3) 

76 8603.9 6970 10410 

 

Net Charges 

at pH 7.0 

Iso-electric Point 

(pI) 

Average 

Hydrophillicity 

Ratio hydrophilic residues / 

total number of residues 

0.1 7.7 0.3 43 % 
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Net Charge (left) and Hydrophilicity (right), from Innovagen peptide property calculator 

 

 

Ub* V26A  (F45W  V26A) 

< Amino acid sequence in 1 letter code > 

MQIFVKTLTGKTITLEVEPSDTIENAKAKIQDKEGIPPDQQRLIWAGKQLEDGRTL

SDYNIQKESTLHLVLRLRGG 

 

Residues 
Molecular Weight 

(g/mol) 

Extinction Coefficient 

(cm-1M-1) 

Approximate Volume 

(Å3) 

76 8575.8 6970 10376 

 

Net Charges 

at pH 7.0 

Iso-electric Point 

(pI) 

Average 

Hydrophillicity 

Ratio hydrophilic residues / 

total number of residues 

0.1 7.7 0.3 43 % 

 

  
Net Charge (left) and Hydrophilicity (right), from Innovagen peptide property calculator 

 

 

Ub* I61A  (F45W  I61A) 

< Amino acid sequence in 1 letter code > 

MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIWAGKQLEDGRTL
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SDYNAQKESTLHLVLRLRGG 

 

Residues 
Molecular Weight 

(g/mol) 

Extinction Coefficient 

(cm-1M-1) 

Approximate Volume 

(Å3) 

76 8561.8 6970 10359 

 

Net Charges 

at pH 7.0 

Iso-electric Point 

(pI) 

Average 

Hydrophillicity 

Ratio hydrophilic residues / 

total number of residues 

0.1 7.7 0.3 43 % 

 

  
Net Charge (left) and Hydrophilicity (right), from Innovagen peptide property calculator 

 

 

Ub* V26A  I61V  (F45W  V26A  I61V) 

< Amino acid sequence in 1 letter code > 

MQIFVKTLTGKTITLEVEPSDTIENAKAKIQDKEGIPPDQQRLIWAGKQLEDGRTL

SDYNVQKESTLHLVLRLRGG 

 

Residues 
Molecular Weight 

(g/mol) 

Extinction Coefficient 

(cm-1M-1) 

Approximate Volume 

(Å3) 

76 8561.8 6970 10359 

 

Net Charges 

at pH 7.0 

Iso-electric Point 

(pI) 

Average 

Hydrophillicity 

Ratio hydrophilic residues / 

total number of residues 

0.1 7.7 0.3 43 % 
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Net Charge (left) and Hydrophilicity (right), from Innovagen peptide property calculator 

 

 

B.1.4 U1A 
 

< Amino acid sequence in 1 letter code > 

GSHMAVPETRPNHTIYINNLNEKIKKDELKKSLYAIFSQFGQILDILVSRSLKMRGQ

AWVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGTFV 

 

< Amino acid sequence in 3 letter code > 

Gly-Ser-His-Met-Ala-Val-Pro-Glu-Thr-Arg-Pro-Asn-His-Thr-Ile-Tyr-Ile-Asn-Asn-Leu-

Asn-Glu-Lys-Ile-Lys-Lys-Asp-Glu-Leu-Lys-Lys-Ser-Leu-Tyr-Ala-Ile-Phe-Ser-Gln-Phe-

Gly-Gln-Ile-Leu-Asp-Ile-Leu-Val-Ser-Arg-Ser-Leu-Lys-Met-Arg-Gly-Gln-Ala-Trp-Val-

Ile-Phe-Lys-Glu-Val-Ser-Ser-Ala-Thr-Asn-Ala-Leu-Arg-Ser-Met-Gln-Gly-Phe-Pro-Phe-

Tyr-Asp-Lys-Pro-Met-Arg-Ile-Gln-Tyr-Ala-Lys-Thr-Asp-Ser-Asp-Ile-Ile-Ala-Lys-Met-

Lys-Gly-Thr-Phe-Val 

 

Residues 
Molecular Weight 

(g/mol) 

Extinction Coefficient 

(cm-1M-1) 

Approximate Volume 

(Å3) 

105 12044 10810 14573 

 

Net Charges 

at pH 7.0 

Iso-electric Point 

(pI) 

Average 

Hydrophillicity 

Ratio hydrophilic residues / 

total number of residues 

7.2 10.2 0 42 % 
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Net Charge (left) and Hydrophilicity (right), from Innovagen peptide property calculator 

 

 

B.2 How to grow proteins from plasmid DNA 
 

B.2.1 The 1st day: Transformation 
 

2.1.1 Fill a Styrofoam ice bucket with ice. 

 

2.1.2 Take one small eppendorf containing an adequate E. coli cell (such as Rosetta TM 

(DE3) pLysS cells (Novagen) for the pET-15b vector) from the –80 °C freezer.  Also take 

an eppendorf containing plasmid DNA from the deep freezer. 

 

2.1.3 Extract 1 µL of the plasmid DNA solution (~100 ng/µL) by a pipet, and drop it 

into the E. coli cell eppendorf directly. Place the eppendorf in the ice bucket for 5 min, 

and put the remaining plasmid DNA solution back into the original position in the freezer. 

 

2.1.4 Keep the E. coli eppendorf in a 42 °C water bath for 30 seconds. (42 °C is an 

optimal temperature for the E. coli cell to open its membrane.) 

 

2.1.5 Place the E. coli eppendorf in the ice bucket for 2 minutes. 

 

2.1.6 Add 500 µL of LB solution (nutrition for the bacteria) into the E. coli eppendorf. 

 

2.1.7 Keep it in a shaker at 37 °C, for 5 minutes 
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2.1.8 Bend the tip of a thin Pasteur tube by a Bunsen burner flame, and sterilize it by 

fire and ethanol solution.  Allow the Pasteur pipet to cool for 10 seconds before 

proceeding to the next step. 

 

2.1.9 Take the eppendorf from the shaker and pour all the E. coli solution into an agar 

plate which contains the appropriate antibiotic (usually ampicillin or kanamycin).  Spread 

the solution uniformly by using a bended tip (step 2.1.8). 

 

2.1.10 Set the agar plate upright and keep it at room temperature for about 15 minutes.  

This time will allow the agar to absorb the E. coli suspension. 

 

2.1.11 Place the agar plate into the 37 °C incubator, with the cover-side down, and keep 

it for 15 to 18 hours (overnight). 

 

 

B.2.2 The 2nd day: Growing the E. coli cells and inducing the target 

proteins by IPTG 
 

2.2.1 Check whether the colony grew well in the agar plate.  Typically the colonies are 

small (white) spots on the surface of the agar plate.  If you don’t have enough colonies, 

wait more.  If you still don’t get any colony, please restart from the beginning of the first 

day protocol. 

 

2.2.2 Prepare an antibiotic solution to exclusively grow the target E. coli cells 

containing the plasmid DNA.  E. coli not having the plasmid DNA and other germs will 

be destroyed by the antibiotic. 

 

 For lambda repressor and SH3, prepare a 1000x ampicillin solution by dissolving 

0.1 grams ampicillin sodium salt, MW 371.39, per 1 mL of water.  Eventually it will be 

diluted down to 0.1 g/L (=269.3 µM) in LB broth.  For example, 11 L of LB broth 

solutions (=11 flasks), we need to prepare 1.1 g of ampiciline solution in 11 mL of 
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distilled water. 

 

 For U1A, we use a kanamycin (M.W. 484.5) instead.  1000X concentrated 

solution is to be prepared at the concentration of 70 mg/mL.  Eventually it will be diluted 

in LB solution down to 70 mg/L (=144.5 µM). 

 

2.2.3 Pick up 20 µL of 1000X antibiotic (ampiciline or kanamycin) solution, and add it 

into the falcon tube containing 20 mL of LB broth. 

 

2.2.4 Touch one of the grown colonies on the agar plate with a sterile tip very softly, dip 

the tip into the above LB broth, and shake well. 

 

2.2.5 Keep the 20 mL LB broth in the shaker at 37 °C, and let E. coli cells grow for 

about 5 hours.  The solution is getting cloudy as the E. coli cells grow.  Its population 

doubles every 20~30 minutes. 

 

2.2.6 Make 11 L of LB broth solutions that provides nutrition to E. coli cells 

- Per every 1 L of distilled water, prepare 

 10 g of Tryptone 

 5 g of Bacto-Yeast Extract 

 10 g of NaCl 

 - Adjust to pH 7.0, with 5 M NaOH (typically 500 µL) 

 

2.2.7 Split LB broth into 11 large flasks, which are used for supplying enough air to the 

bacteria. 

 

2.2.8 Wrap the top of each flask with an aluminum foil, and autoclave all 11 flasks at 

120 °C for 25 minutes for the sterilization.  Select the “Liquid” option, the whole 

procedure will take about 1 hour to finish. 

 

2.2.9 Add 1 mL each of 1000x antibiotic solution (step 2.2.2) into each flask. 
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2.2.10 Transfer 1 mL of pre-grown LB solution (step 2.2.5) into each 37 °C or cooler 

flask. 

 

2.2.11 Keep all 11 flasks in the shaker at 37 °C, and let E. coli cells grow until the 

optical depth (absorption) reaches 0.6 at 600 nm (typically it takes 5 to 6 hours). 

 

2.2.12 Induce the target proteins by adding IPTG (isopropyl-β-D-thiogalactopyranoside, 

M.W. 238). 

- Prepare 1000X concentrated IPTG solution (0.238 g/mL) by adding 0.238 g/mL * 11 

mL = 2.62 g of IPTG into 11 mL of distilled water for all 11 flasks.  The final goal 

concentration in LB broth is 1 mM. 

- Apply IPTG solution when the temperature of the flaks drops down to around 30 °C.  

We can keep all the flasks outside to cool down for 30 minutes. 

 

2.2.13 Change the temperature setting of the shaker to the minimum, and induce the 

target proteins for more than 10 hours (keep overnight).  Keep slightly open the cover of 

the shaker by putting some paper sheets (or a Styrofoam container) to the edge of the 

cover for making a gap. 

 

 

B.2.3 The 3rd day: Harvesting cells (centrifugation and cell breaking) 
 

2.3.1 Centrifuge cloudy LB broth solutions from 11 flasks for 10 minutes at 5000 rpm, 

in 6 centrifugation bottles.  E. coli cell pellets will be deposited on the bottom of each 

bottle.  Put the supernants back into the flasks, and add some bleach before pouring it 

down the drain.  (It smells awful.) 

 

2.3.2 Collect all the cell pellets into 50 mL falcon tubes using a spatula and keep them 

in the freezer at least for several hours.  This process will weaken cell membranes for 

easy extraction of the target proteins from the cell.  
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2.3.3 Bleach the supernant solutions and throw away.  Wash all the flasks ever used. 

 

2.3.4 Pour ~150 mL of a buffer solution into the cell pellets (step 2.3.2), with 

continuously transferring it into a 250 mL Erlenmeyer flask.  We use a 10 mM Imidazole 

equilibrium buffer for a purification process (see the protein purification part below). 

 

For a Ni-Agarose His-tag binding column, prepare at least 500 mL of 

- 50 mM PO4    (Na2HPO4, MW 141.96)  : 7.1 g / L 

- 500 mM NaCl   (MW 58.44)    : 29.22 g / L 

- 10 mM Imidazole   (MW 68.08)    : 0.68 g / L 

-  PH 8.0 by adding small amounts of HCl. 

 

2.3.5 Add a tiny amount (a spoon tip) of DNase I to cut a DNA into many fragments 

and digest them. 

 

2.3.6 Fill a Styrofoam ice bucket with ice, and keep all the samples in it. 

 

2.3.7 Break E. coli cells to extract the target proteins by a French Press.  Repeat twice 

at a pressure of 1500 Psi.  Don’t apply higher pressure than 1600 Psi, to avoid any 

damage to the French Press. 

 

2.3.8 Collect the flow-through from the French Press and centrifuge it for 25 minutes at 

10,000 rpm using the JA-17 Beckman rotor.  The target proteins are dissolved in 

supernants.  Other cell junks will be deposited on the bottom of the centrifugation tubes.  

Then we are ready for the purification of proteins dissolved in the supernants. 
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B.2.4 Protein purification: Ni-Agarose His-tag binding column for 

lambda repressor and fyn-SH3 
 

2.4.1 Regenerate the Ni-Agarose His-tag binding column (resin volume: ~20 mL) 

thoroughly per every five time usage.  Refer to the instructions from the manufacturer. 

  

2.4.2 Load about 40 mL (two times the volume) of 10 mM Imidazole buffer (step 2.3.4) 

into the column to pre-equilibrate the column with 10 mM Imidazole solution.  We can 

use a peristaltic pump to expedite the buffer loading.  Run the peristaltic pump at the 

speed of 150~200 mL/hour.  

 

2.4.3 Load all supernants (step 2.3.8) into the Ni-Agarose column.  Only the target 

proteins with a His-tag will be attached to the Ni-Agarose column. 

 

2.4.4 Wash the column by flowing about 300~500 mL of 20 mM Imidazole buffer 

solution (PH 8.0) into cells until the absorption reaches 0.05 at 260 nm (It indicates the 

amount of DNA) 

- 50 mM PO4
3-  (Na2HPO4, MW 141.96)  : 7.1 g / L 

- 500 mM NaCl (MW 58.44)    : 29.22 g / L 

- 20 mM Imidazole (MW 68.08)    : 1.36 g / L 

- Adjust to pH 8.0 by adding small amount of HCl 

 

2.4.5 Elute the target proteins by loading small volumes of 250 mM Imidazole buffer 

solution (PH 8.0) into the column.  Don’t use the peristaltic pump for this step. 

- 50 mM PO4
3-  (Na2HPO4, MW 141.96)  : 7.1 g / L 

- 500 mM NaCl (MW 58.44)    : 29.22 g / L 

- 250 mM Imidazole (MW 68.08)    : 17.02 g / L 

- Adjust to pH 8.0 by adding small amount of HCl. 

- Check UV absorption at 250-340 nm frequently (Peak at 280 nm) to determine how 

much protein is being eluted. 
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B.2.5 Thrombin digestion for His-tag removal 
 

2.5.1 Dialyze for at least 5 hours in the cold room at 4 °C to remove NaCl, Imidazole 

and everything other than protein.  The following is a suitable buffer for dialysis. 

- 50 mM PO4
3- (Na2HPO4, MW 141.96) : 7.1 g / L  (pH 7.0)  

You can also use ultra-pure water if the protein is very stable. 

  

2.5.2 Remove the His-tag by adding ~1 unit of thrombin per mg of the protein.  Use 

restriction grade thrombin for digestion.  Keep the digestion reaction at room temperature 

overnight (16 hours), or longer at 4°C.  Check that digestion is complete by running an 

SDS-page (see Appendix B.3.2) 

 

 

B.2.6 Protein purification: Cation exchange column (CM-52 column 

with cellulose matrix) for ubiquitin 
 

2.6.1 Regenerate the column with one half column volume (~250 mL) of 0.5 M NaOH 

or 6 M Guanidine Hydrochloride solution 

 

2.6.2 Equilibrate the column with 2 column volumes (1 L) of 50 mM Sodium-Acetate-

Buffer at pH 5.0 until the pH of the solution passed through the column is pH 5.0 (check 

with pH paper) 

 

2.6.3 Dialyze the supernatants (step 2.3.8) with 3 kDa MWCO dialysis tubing (Fisher 

Scientific) against 4 L of a 50 mM Sodium-Acetate-Buffer Solution at 4°C (cold room!): 

- 50 mM Sodium-Acetate  (MW 82.05)  : 4.102 g / L 

- 5 mM EDTA   (MW 372.24)  : 1.861 g / L 

 -  Adjust to pH 5.0 by adding a small amount of 6M HCl 

** Much Precipitate will occur due to aggregation, so only take the supernatant for 

further purification. 
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2.6.4 Centrifuge the above sample solution again in small tubes for 30 min at 10000 

rpm, and then filter it through a 0.2 micron sterile filter. 

 

2.6.5 Add the filtered Ubiquitin-Buffer-Solution to the CM-52 cellulose cation 

exchange column, then ubiquitin and DNA will be bound to the column. 

 

2.6.6 Wash the column by adding about 500 mL of 50 mM Sodium-Acetate-Buffer (pH 

5.0) until the absorption is 0.05 at 260 nm, which indicates a negligible amount of DNA.  

Other proteins and nucleic acids which are not of interest will be washed out by the 50 

mM Sodium-Acetate-Buffer. 

 

2.6.7 Elute Ubiquitin against a NaCl Salt-Gradient solution by adding 50 mM Sodium-

Acetate-Buffer (pH 5.0) with 1 M NaCl and collect the fractions (50 mL each). 

- 50 mM Sodium-Acetate  (MW 82.05)  : 4.102 g / L 

- 5 mM EDTA   (MW 372.24)  : 1.861 g / L 

- 1 M NaCl   (MW 58.44)  : 58.44 g / L 

- pH 5.0 by adding a small amount of 6 M HCl  

- Ubiquitin will be eluted from Fraction 3 to 10 (Vtotal~ 300mL)  

- Check UV from 250-340 nm frequently (Peak at 280 nm) 

 

 

B.2.7 Calculate the protein yield 
 

2.7.1 Calculation of Concentration (ubiquitin, for example) 

- Absorption value at the 280 nm peak: 1.294 

- Baseline value at 310 nm: 0.447 

- The difference is 1.294 – 0.447 = 0.847 = OD280 

- Absorption coefficient A280 [Trp, Tyr] = 6970 M-1cm-1 (depends on the protein and its 

mutations) 

- Optical pathlength L = 1.0 cm 

OD280 = 0.847 = A280 · L · c = 6970 M-1cm-1 · 1.0 cm · c 
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Therefore, c = 0.847 / 6970 M-1 = 1.22 · 10-4 M 

 

2.7.2 Calculate the Protein Yield 

m = c (Concentration) · V (Volume) · M (Molecular Weight) 

    = 1.22 · 10-4 M · 0.020 L· 8472 g · mol-1 = 0.02067 g  

The total yield of ubiquitin is 20.7 mg. 

 

 

B.3 Protein purification and verification 
 

B.3.1 Further purifications 
 

* We need to use the SDS Gel electrophoresis or Mass Spectroscopy to check how the 

purity of the target proteins improves with each step. 

 

3.1.1 Purify the proteins in 30 kDa MWCO Amicon at p = 350 kPa (50 PSI) in order to 

get rid of DNA, Thrombin and other junk in the sample solution.  The target proteins (and 

particles having less than 30K M.W) will penetrate the size-selective membrane, so we 

need to collect the flow-through from the Amicon.  Check the purity of the sample by 

SDS-page and mass spectroscopy. 

 

3.1.2 Dialyze (using 3.5 kDa dialysis tubing) for at least 3 times for 5 hours each 

against 4L of ultra-pure water (or buffer) in the cold room at 4°C to remove NaCl, 

Nucleic Acids and everything other than the target proteins.  Check the purity of the 

sample. 

 

3.1.3 If necessary, run the sizing column in order to purify the protein further.  First of 

all, concentrate the sample solution by using 3kDa MWCO (molecular weight cut-off) 

Amicon. Only a small volume (~ 5 mL) of protein sample can be purified with a sizing 

column at once. 
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3.1.4 Lyophilize the proteins: freeze the sample instantly by liquid nitrogen and bring it 

to the Lyophilizer on the 4th floor in Lu group.  This will take approximately 3 days at 

the vacuum pressure of less than 1 Torr. 

 

 

B.3.2 SDS gel electrophoresis 
 

3.2.1 Attach the yellow rubber tube to the U-type glass, to prepare the gel frame 

 

3.2.2 Separation Gel: 

1.5 mL Acrylamide 

1.5 mL Gel buffer 

1.5 mL Glycerol 

80 µL APS (10%): Ammonium Peroxydisulfate 

10 µL TEMED (It makes the gel solution polymerize fast! Be careful…) 

 

3.2.3 Loading Gel: 

0.3 mL Acrylamide 

0.75 mL Gel buffer 

2.0 mL Water 

80 µL APS (10%): Ammonium Peroxydisulfate 

10 µL TEMED (It makes the gel solution polymerize fast! Be careful…) 

 

3.2.4 Prepare 

- 10 µL Load Buffer + 10 µL Sample 

- 10 µL Load Buffer + 10 µL Reference Ladder (Kaleidoscope Polypeptide Standards) 

→ Centrifuge solution to make uniform 

 

3.2.5 Denature (unfold) proteins by heating up to 70°C for 10 minutes 

 

3.2.6 Prepare buffer solution 



 175 

 

- 5X Cathode buffer (upper) 20 mL + 80 mL water 

- 10X Anode buffer (lower) 30 mL + 270 mL water 

 

3.2.7 Apply sample and reference ladder into gel chambers 

 

3.2.8 Apply 120V for about 3~4 hours or until the blue dye is 1/3 to 1/4 from the 

bottom of the gel. 

 

3.2.9 Wash and Stain Gel with  Simply Blue stain for 1 hour 

 

3.2.10 Wash the Gel (rinse with water) and keep it in distilled water overnight to remove 

the background and intensify the band 

 

 

B.3.3 Sizing column 
 

3.3.1 Prepare about 3 mL of protein sample (maximum 5 mL), glass tubes and the 

frame. 

 

3.3.2 Prepare 1 L of Buffer Solution  

- 50 mM PO4
3-  (Na2HPO4, MW 141.96)  : 7.098 g / L 

- 300 mM NaCl (MW 58.44)    : 17.532 g / L 

- pH 7.0 

 

3.3.3 Filter the buffer solution using a 0.22 µm filter 

 

3.3.4 Equilibrate the sizing column with about 100mL of Buffer solution by using a 

Peristaltic pump at the speed of 150 mL/hour.  Take care to ensure no air bubbles enter 

into the column. 

 

3.3.5 Load sample solution by running the peristaltic pump from your sample tube. 
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3.3.6 Collect 95 drops per tube with the fraction collector (It will take 3 hours) 

** lambda-repressor protein can be found between 50~60 tubes generally. 

 

3.3.7 Wash the column with at least 200 mL of buffer (Step 3.3.2) for long term storage. 

 

 

B.4 How to amplify a plasmid DNA 
 

B.4.1 The 1st day: Transformation 
 

4.1.1 Fill a Styrofoam ice bucket with ice. 

 

4.1.2 Take one small eppendorf containing an adequate E. coli cell (such as BL21 and 

Rosetta TM (DE3) pLysS cells (Novagen) for the pET-15b vector) from the –80 °C 

freezer.  Also take an eppendorf containing plasmid DNA from the deep freezer. 

 

4.1.3 Extract 1 µL of the plasmid DNA solution (~100 ng/µL) by a pipet, and drop it 

into the E. coli cell eppendorf directly. Place the eppendorf in the ice bucket for 5 min, 

and put the remaining plasmid DNA solution back into the original position in the freezer. 

 

4.1.4 Keep the E. coli eppendorf  in a 42 °C water bath for 30 seconds. (42 °C is an 

optimal temperature for the E. coli cell to open its membrane.) 

 

4.1.5 Place the E. coli eppendorf in the ice bucket for 2 minutes. 

 

4.1.6 Add 500 µL of LB solution (nutrition for the bacteria) into the E. coli eppendorf. 

 

4.1.7 Keep it in a shaker at 37 °C, for 5 minutes 

 

4.1.8 Bend the tip of a thin Pasteur tube by a Bunsen burner flame, and sterilize it by 
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fire and ethanol solution.  Allow the Pasteur pipet to cool for 10 seconds before 

proceeding to the next step. 

 

4.1.9 Take the eppendorf from the shaker and pour all the E. coli solution into an agar 

plate which contains the appropriate antibiotic (usually ampicillin or kanamycin).  Spread 

the solution uniformly by using a bended tip (step 4.1.8). 

 

4.1.10 Set the agar plate upright and keep it at room temperature for about 15 minutes.  

This time will allow the agar to absorb the E. coli suspension. 

 

4.1.11 Place the agar plate into the 37 °C incubator, with the cover-side down, and keep 

it for 15 to 18 hours (overnight). 

 

 

B.4.2 The 2nd day: Growing the E. coli cells 
 

4.2.1 Check whether the colony grew well in the agar plate.  Typically the colonies are 

small (white) spots on the surface of the agar plate.  If you don’t have enough colonies, 

wait more.  If you still don’t get any colony, please restart from the beginning of the first 

day protocol. 

 

4.2.2 Prepare an antibiotic solution to exclusively grow the target E. coli cells 

containing the plasmid DNA.  E. coli not having the plasmid DNA and other germs will 

be destroyed by the antibiotic. 

 

 For lambda repressor and SH3, prepare a 1000x ampicillin solution by dissolving 

0.1 grams ampicillin sodium salt, MW 371.39, per 1 mL of water.  Eventually it will be 

diluted down to 0.1 g/L (=269.3 µM) in LB broth.  For example, 11 L of LB broth 

solutions (=11 flasks), we need to prepare 1.1 g of ampiciline solution in 11 mL of 

distilled water. 
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 For U1A, we use a kanamycin (M.W. 484.5) instead.  1000X concentrated 

solution is to be prepared at the concentration of 70 mg/mL.  Eventually it will be diluted 

in LB solution down to 70 mg/L (=144.5 µM). 

 

4.2.3 Pick up 20 µL of 1000X antibiotic (ampiciline or kanamycin) solution, and add it 

into the falcon tube containing 20 mL of LB broth. 

 

4.2.4 Touch one of the grown colonies on the agar plate with a sterile tip very softly, dip 

the tip into the above LB broth, and shake well. 

 

4.2.5 Keep the 20 mL LB broth in the shaker at 37 °C, and let E. coli cells grow for a 

day.  The solution is getting cloudy as the E. coli cells grow.  Its population doubles every 

20~30 minutes. 

 

 

B.4.3 The 3rd day: Extraction of plasmid DNA and purification 
 

4.3.1 Centrifuge 20 mL of LB broth for 30 minutes at maximum speed in Clinical 

Centrifuge machine (in 3rd floor, Lu group), or centrifuge in A229 CLSL. 

 

4.3.2 Dispose supernants and keep the cultures deposited on the bottom of the tube in 

the freezer for a while.  This procedure will weaken the cell membranes to expedite DNA 

extraction. 

 

4.3.3 Follow an instruction from a QIAGEN kit. 

 

4.3.4 Check the sequence of plasmid DNA at the biotech center in the university. 
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B.5 Site-directed mutagenesis 
 

B.5.1 The 1st day: Design and order a primer 
 

5.1.1 Design your Primer sets from the following website, 

 PrimerX - http://bioinformatics.org/primerx/ 

- Normally it consists of 25 ~ 45 bases pairs. 

- Melting Temperature should be higher than 78 °C 

- The primer should have GC content of about 40%. 

- The primer should terminate in one or more C or G bases. 

- Design a pair of primers which flank your gene and anneal to opposite strands.  

 

5.1.2 Order the primer at Biotech Center, ask Custom Oligonucleotide Synthesis with 

settings of 40 nmol and OPC Purified. 

 

 

B.5.2 The 2nd day: Thermal cycling 
 

5.2.1 Prepare ice in a bucket and keep all elements of a Stratagene Quik-Change kit in 

the ice bucket. 

 

5.2.2 Measure UV absorption and estimate the concentration of primer and target 

plasmid DNA (1 OD260 ~ 50 ng / µL). 

 

5.2.3 Prepare 125 ng / µL of Primer sets and 10 ng / µL of target-Plasmid DNA 

 

5.2.4 Prepare 4 small autoclaved eppendorfs, as the following table. 
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Eppendorf # #1 #2 #3 #4 

Target Plasmid 

DNA 
1 µL 2 µL 3 µL 4 µL 

10X Reaction 

Buffer 
5 µL 5 µL 5 µL 5 µL 

Primer 5’ → 3’ 1 µL 1 µL 1 µL 1 µL 

Primer 3’ → 5’ 1 µL 1 µL 1 µL 1 µL 

dNTP 1 µL 1 µL 1 µL 1 µL 

double-distilled 

water (dd H2O) 
41 µL 40 µL 39 µL 38 µL 

PfuTurbo DNA 

polymerase 
1 µL 1 µL 1 µL 1 µL 

Mineral Oil 30 µL 30 µL 30 µL 30 µL 

 

5.2.5 Centrifuge all the eppendorfs at the speed 4, for 5 minutes. 

 

5.2.6 Start a Thermal Cycling (use Program #4 on the memory of the instrument) 

 

Block # #1 #2 #3 #4 

Temperature 95 °C 55 °C 68 °C 20 °C 

Minutes 0:30 1:00 7:00 - 

 

Point mutations – 12 cycles 

Single Amino Acid Changes – 16 cycles 

Multiple Amino Acid Deletions or insertions – 18 cycles 

 

5.2.7 Add 1 µL of Dpn I using small pipets for PCR ONLY. Avoid touching oil layers 

on the top. Put Dpn I below the oil layer. 

 

5.2.8 Centrifuge the samples for 1 minute. 
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5.2.9 Incubate at 37 °C, for an hour to digest the parental (non-mutated) supercoiled 

dsDNA. 

 

5.2.10 Remove oil layers before transformation. Use a small pipet. 

 

 

B.5.3 The 3rd day: Transformation 
 

5.3.1 Fill a Styrofoam ice bucket with ice. 

 

5.3.2 Get a XL1-Blue supercompetent cell from –80 °C deep freezer, and gently thaw 

in ice. 

 

5.3.3 Pipet 50 µL of the cell to four pieces of 14 mL sterile eppendorfs. 

 

5.3.4 Extract 1 µL of each Dpn I-treated DNA solution (~100 ng/µL) by a pipet, and 

drop it into each XL1-Blue supercompetent cell directly.  Place all the eppendorfs in the 

ice bucket for 5 minutes. 

 

5.3.5 Keep all the eppendorfs in a 42 °C water bath for 45 seconds. (42 °C is an optimal 

temperature for the E. coli cell to open its membrane.) 

 

5.3.6 Place all the eppendorfs in the ice bucket for 2 minutes. 

 

5.3.7 Add 500 µL of LB solution (nutrition for the bacteria) into each eppendorf. 

 

5.3.8 Keep it in a shaker at 37 °C, for 1 hour at least. (at ~200 rpm) 

 

5.3.9 Bend the tip of a thin Pasteur tube by a Bunsen burner flame, and sterilize it by 

fire and ethanol solution.  Allow the Pasteur pipet to cool for 10 seconds before 

proceeding to the next step. 
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5.3.10 Take all the eppendorfs from the shaker and pour each E. coli solutions into each 

agar plate which contains the appropriate antibiotic (usually ampicillin or kanamycin).  

Spread the solution uniformly by using the bended tip (step 5.3.9) 

 

5.3.11 Set all the agar plates upright and keep them at room temperature for about 15 

minutes.  This time will allow the agar to absorb the E. coli suspensions. 

 

5.3.12 Place all the agar plates into the 37 °C incubator, with the cover-side down, and 

keep them for 15 to 18 hours (overnight). 

 

 

B.5.4 The 4th day: Amplify the plasmid DNA 
 

- Follow the instructions in [B.4.2] and [B.4.3]. 
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Appendix C Program codes in C language 
 

C.1 Simulation-based fitting of protein-protein interaction 

potentials to SAXS experiments 
 

C.1.1 Main function (sax_agg.c) 
 

 The main function reads a configuration file (.INI file), determines the execution 

mode, and calls an appropriate function. 

 
//=========================================================================== 
// Main function 
//=========================================================================== 
int main(int argc, char *argv[]) { 
 time_t s1, s2; 
 int Levenberg_Marquardt, i; 
 struct tm *newTime; 
 time_t szClock; 
 
 // Get UNIX-style time and display as number and string.  
 time(&szClock); 
 newTime = localtime(&szClock); 
 printf("%s", asctime(newTime)); 
  
 g_argc = argc - 1; // Number of TXT files 
 
 if (g_argc >= 1) { 
  s1 = time (NULL); 
  Levenberg_Marquardt = ReadINIparameters(argv[1]); 
  g_Concentration *= 1.0e-6; 
  g_CubeSize = pow(n_particles/(1000.0*g_Concentration*AvogadroConstant()), 1.0/3.0); 
  SetgRunning(1); 
      
  g_Concs = (double*)calloc(g_argc, sizeof(double)); 
  g_CubeSizeS = (double*)calloc(g_argc, sizeof(double)); 
  g_InputFiles = (char **)calloc(g_argc, sizeof(char *)); 
  g_OutputFiles = (char **)calloc(g_argc, sizeof(char *)); 
   
  for (i=0; i<g_argc; i++) { 
   g_InputFiles[i] = (char *)calloc(256, sizeof(char)); 
   g_OutputFiles[i] = (char *)calloc(256, sizeof(char)); 
    
   ReadMultipleINIparameters(argv[i+1], &g_Concs[i], &g_OutputFiles[i],   
   &g_InputFiles[i]); 
   g_Concs[i] *= 1.0e-6; 
   g_CubeSizeS[i] = pow(n_particles/(1000.0*g_Concs[i]*AvogadroConstant()), 1.0/3.0); 
  } 
  if (g_argc >= 2) { // Multiple File Input 
  /*if ( Levenberg_Marquardt != 0 && Levenberg_Marquardt != 50 && Levenberg_Marquardt != 98 



 184 

 

   && Levenberg_Marquardt != 99) 
   Levenberg_Marquardt++;*/ 
  } 
      
  // Determine the execution mode 
  switch ( Levenberg_Marquardt ) { 
   // No Optimization, just do Metropolis simulation at once. 
   case 0 :  Metropolis(1); 
    break; 
    
   // Metropolis simulation with Levenberg-Marquardt Optimization 
   case 1 :  Levenberg_Marquardt_Metropolis(1); 
    break; 
   // -1 : with Rg FIXED !! 
   case 10 :  Levenberg_Marquardt_Metropolis(-1);     
    break;         
   // -2 : with D0 FIXED !! (D0 = 2*sqrt(5/3)Rg * PW)) !! 
   case 100 :  Levenberg_Marquardt_Metropolis(-2);   
    break; 
   // -3 : with D0 FIXED !! (D0 = 2*sqrt(5/3)Rg * PW)) !! && PR fixed!! 
   case 110 :  Levenberg_Marquardt_Metropolis(-3);    
    break; 
    
  // Metropolis simluation with Levenberg-Marquardt Optimization, for multiple concentrations  
   case 1 : Multiple_Levenberg_Marquardt_Metropolis(1);  
    break; 
   // -1 : with Rg FIXED !! 
   case 10 : Multiple_Levenberg_Marquardt_Metropolis(-1);    
    break;        
   // -2 : with D0 FIXED !! (D0 = 2*sqrt(5/3)Rg * PW)) !!  
   case 100 :Multiple_Levenberg_Marquardt_Metropolis(-2);    
    break; 
   // -3 : with D0 FIXED !! (D0 = 2*sqrt(5/3)Rg * PW)) !! && PR fixed!! 
   case 110 : Multiple_Levenberg_Marquardt_Metropolis(-3);    
    break; 
    
   // Winter's simulation 
   case 50 : Winter(1);   // No Optimization, just do Winter's simulation at once. 
    break; 
   case 500 :Multiple_LM_Winter(1); // for Multiple concentrations 
    break; 
   // -2 : with D0 FIXED !! (D0 = 2*sqrt(5/3)Rg * PW) !! 
   case 510 :Multiple_LM_Winter(-2);   
    break; 
   // -3 : with D0 FIXED !! (D0 = 2*sqrt(5/3)Rg * PW) && PR fixed!! 
   case 520 :Multiple_LM_Winter(-3); 
    break; 
 
   // Molecular Dynamics simulation in a given potential model 
   case 98 : MDsimulation(0);   // Verlet's Method 
    break; 
   case 99 : MDsimulation(1);   // Beeman's Method 
    break; 
 
   default : break; 
  } 
  s2 = time (NULL); 
  printf("\nTotal Execution Time : %g hours (=%g minutes)\n", (s2-s1)/3600.0, (s2-s1)/60.0); 
 } 
 else 
  printf("Please Input INI file name!\n"); 
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 for (i=0; i<g_argc; i++) { 
  Destroy(g_InputFiles[i]); 
  Destroy(g_OutputFiles[i]); 
 } 
 Destroy(g_Concs); 
 Destroy(g_CubeSizeS); 
 Destroy(g_InputFiles); 
 Destroy(g_OutputFiles); 
 return 0; 
} 
 

 

C.1.2 Simple Metropolis Monte Carlo simulation (saxs_agg.c) 
 

 This simple Metropolis function simulates the protein aggregation and calculates 

an expected SAXS profile for a single concentration by Metropolis Monte Carlo method, 

under the given potential.  The optimization of protein-protein interaction potential 

(Levenberg-Marquardt algorithm) was not applied to this module. 

 
//=========================================================================== 
// Metropolis Monte Carlo Simulation (No LM Optimization), just for a single concentration 
//=========================================================================== 
int Metropolis(int panel) { 
 MDdata *md; 
 int count=0, count_Guinier=1, count_Temperature=0, i, count_Metropolis=1, Metropolis_repeat; 
 double time=0.0, variable_size_factor, chisq=0.0; 
 FILE *fp; 
 int result, rejection=0, n_array; 
 double RMS_Error, RSE, fittedArray[N_DATA_SET], coefficientArray[1] = {0.0}; 
    
 md = (MDdata*) calloc(n_particles, sizeof(MDdata)); 
 initialize(panel, md); 
 g_Potential = (double*)malloc(sizeof(double)*g_PotentialBinSize); 
 PreCalculate_Potential(g_Potential, g_PotentialDepth, g_PotentialRange, g_PotentialWall,   
  g_EFFECTIVE_FORCE_RANGE_2, &g_coeff, g_Repulsive_Potential_Depth,   
  g_Repulsive_Potential_Range); 
  
 Metropolis_repeat = n_particles * g_MP_Repeat; 
 variable_size_factor = Random_Distribution(panel, md, g_CubeSize); 
 
 while ( (g_Running == 1) && (count_Guinier <= g_max_repeat) ) { 
  for (count_Metropolis=1; count_Metropolis<=Metropolis_repeat; count_Metropolis++) { 
   result = Metropolis_Sampling(panel, md, variable_size_factor, (int)NR_Random(0.0,  
   n_particles, &g_Seed_MC2)); 
  } 
 
  SAXS_Guinier(panel, &count_Guinier, md, variable_size_factor); 
  variable_size_factor = Random_Distribution(panel, md, g_CubeSize); 
  count_Guinier++; 
 } 
 
 #ifdef N_DATA_SET 
  n_array = N_DATA_SET; 
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 #else 
  n_array = (int)((g_qmax-g_qmin)/g_dq + 1.0); 
 #endif 
 
 // Offset Optimization for the least chi-square value 
 RMS_Error = Offset_Optimization(&RSE, coefficientArray, fittedArray);  
 fp=fopen(g_OutputFile, "w"); 
 fprintf(fp, "%d\t%.10lf\t%.10lf\t%.10lf\n", count_Guinier-1, RSE, RMS_Error, coefficientArray[0]); 
 for (i=0; i<n_array; i++) { 
  fprintf(fp, "%.10f\t%.10f\n", g_qq[i], (g_log_Iaverage[i] + coefficientArray[0]));    
 } 
 fclose(fp); 
 finalize(panel, md); 
 
 return 0; 
} 
 
 
//=========================================================================== 
// Randomly relocate the proteins by Random Number Generators 
//=========================================================================== 
double Random_Distribution(int panel, MDdata *md, double iCubeSize) { 
 int i=0, flag; 
 double CubeSize, variable_size_factor = 1.0; 
   
 variable_size_factor = NR_Random(pow(0.5, 1.0/3.0), pow(1.5, 1.0/3.0), &g_Seed_VariableSize); 
 CubeSize = iCubeSize * variable_size_factor; 
  
 while ( i < n_particles ) { 
  #ifdef CUBIC_UNIT 
   md[i].x = NR_Random(0.0, 1.0, &g_Seed_xyz) * CubeSize; 
   md[i].y = NR_Random(0.0, 1.0, &g_Seed_xyz) * CubeSize; 
   md[i].z = NR_Random(0.0, 1.0, &g_Seed_xyz) * CubeSize; 
  #endif 
   
  if (g_isHardSphere) { 
   int j; 
   double rr, PotentialWall_2 = g_PotentialWall*g_PotentialWall; 
   r_vector dr; 
    
   for (j=0; j<i; j++) { 
    find_rr(i, j, md, variable_size_factor, &rr, &dr); 
    if (rr < PotentialWall_2) { 
     flag = 0; 
     break; 
    } 
   } 
  } 
 
  if (flag == 1) { 
  i++; 
  } 
 } 
 return variable_size_factor; 
} 
 
 
//=========================================================================== 
// Distribute proteins according to a potential model, for a single Concentration (without Levenberg- 
marquardt) 
//=========================================================================== 
int Metropolis_Sampling(int panel, MDdata *md, double variable_size_factor, int index) { 
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 double energy1=0.0, energy2=0.0, delta_U, tempx, tempy, tempz; 
 double CubeSize = g_CubeSize*variable_size_factor, u=0.0; 
 int j; 
  
 double rr, reciprocal_CubeSize = 1.0/CubeSize; 
 r_vector dr; 
  
 tempx = NR_Random(-g_step, g_step, &g_Seed_xyz); 
 tempy = NR_Random(-g_step, g_step, &g_Seed_xyz); 
 tempz = NR_Random(-g_step, g_step, &g_Seed_xyz); 
 
 for (j=0; j<n_particles; j++) { 
  if (j != index) { 
   find_rr(index, j, md, variable_size_factor, &rr, &dr); 
   
   if (rr < g_EFFECTIVE_FORCE_RANGE_2)   // using nearest separation rule 
    energy1 += g_Potential[(int)(rr * g_coeff)]; 
  } 
 } 
 
 md[index].x_old = md[index].x; 
 md[index].y_old = md[index].y; 
 md[index].z_old = md[index].z; 
  
 md[index].x += tempx; 
 md[index].y += tempy; 
 md[index].z += tempz; 
 
 // Periodic Boundary Condition 
 if (md[index].x >= CubeSize || md[index].x < 0.0 ) 
  md[index].x -= CubeSize * FLOOR(md[index].x * reciprocal_CubeSize); 
 if (md[index].y >= CubeSize || md[index].y < 0.0) 
  md[index].y -= CubeSize * FLOOR(md[index].y * reciprocal_CubeSize); 
 if (md[index].z >= CubeSize || md[index].z < 0.0) 
  md[index].z -= CubeSize * FLOOR(md[index].z * reciprocal_CubeSize); 
   
 for (j=0; j<n_particles; j++) { 
  if (j != index) { 
   find_rr(index, j, md, variable_size_factor, &rr, &dr); 
   
   if (rr < g_EFFECTIVE_FORCE_RANGE_2)   // using nearest separation rule 
    energy2 += g_Potential[(int)(rr * g_coeff)]; 
  } 
 } 
 delta_U = energy2 - energy1; 
 
 if (delta_U >= 0.0) { 
  // Rollback; Rejected 
  if ( NR_Random(0.0, 1.0, &g_Seed_MC) > exp( delta_U * g_reciprocal_of_KT ) ) {  
  md[index].x = md[index].x_old; 
   md[index].y = md[index].y_old; 
   md[index].z = md[index].z_old; 
     
   return -1; 
  } 
 } 
 return 0; 
} 
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C.1.3 SAXS calculation (saxs_agg.c) 
 

 This module calculates the expected (average) SAXS profiles per a given 

snapshot of the proteins. 

 
//=========================================================================== 
// Calculate and average SAXS scattering profiles, in Guinier plot 
//=========================================================================== 
int SAXS_Guinier(int panel, int *count_Guinier, MDdata *md, double variable_size_factor) { 
 int i; 
 
 for (i=0; i<N_DATA_SET; i++) 
     g_SumI[i] += Calc_Scattering_Intensity(i, md, variable_size_factor, g_CubeSize); 
     
 if (*count_Guinier - (int)(*count_Guinier/g_SAXS_MP_rate)*g_SAXS_MP_rate == 0) { 
  FILE *fp; 
  double RMS_Error, RSE, fittedArray[N_DATA_SET], coefficientArray[1] = {0.0}; 
    
  for (i=0; i<N_DATA_SET; i++) { 
   g_log_Iaverage[i] = log( g_I[i] * g_SumI[i] / (double)(*count_Guinier) *   
     g_volume_correction ); 
  } 
   
  // Added by SJ Kim, 11/17/2007 
  RMS_Error = Offset_Optimization(&RSE, coefficientArray, fittedArray);   
 
  // Offset Optimization for the least chi-square value 
  fp = fopen(g_OutputFile, "w"); 
  fprintf(fp, "%d\t%.10lf\t%.10lf\n", *count_Guinier, RSE, RMS_Error); 
  for (i=0; i<N_DATA_SET; i++) 
   fprintf(fp, "%.10f\t%.10f\n", g_qq[i], (g_log_Iaverage[i] + coefficientArray[0]));  
  
  fclose(fp); 
 } 
 return 0; 
} 
 
 
//=========================================================================== 
// Calculate raw SAXS scattering profiles 
//=========================================================================== 
double Calc_Scattering_Intensity(int index, MDdata *md, double variable_size_factor, double iCubeSize) { 
 int i, count=0; 
 fcomplex amplitude=complex(0.0, 0.0), intensity=complex(0.0, 0.0); 
 double temp, psi=DegToRad(0.0), sin_psi, cos_psi, dpsi=DegToRad(45.0); 
 
 double CubeSize, rr, Center; 
 double dx, dy, dz; 
  
 CubeSize = iCubeSize * variable_size_factor; 
 Center = CubeSize*0.5; 
 rr = Center * Center; 
 
#ifdef PSI_AVERAGE  
 while (psi < DegToRad(90.0)) { 
#endif  
  amplitude=complex(0.0, 0.0); 
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  sin_psi = sin(psi); 
  cos_psi = cos(psi); 
  for (i=0; i<n_particles; i++) { 
   dx = md[i].x - Center; 
   dy = md[i].y - Center; 
   dz = md[i].z - Center; 
    
   if ((dx*dx + dy*dy + dz*dz) > rr) 
    continue; 
 
   temp = -( - g_q_sin_theta[index] * md[i].x +  
    g_q_cos_theta[index] * sin_psi * md[i].y +  
    g_q_cos_theta[index] * cos_psi * md[i].z ); 
   amplitude.r += cos(temp); 
   amplitude.i += sin(temp); 
  } 
  intensity = Cadd(intensity, Cmul(amplitude, Conjg(amplitude))); 
  count++; 
#ifdef PSI_AVERAGE 
  psi += dpsi; 
 } 
#endif 
 return (intensity.r/count); 
} 
 

 

C.1.4 Molecular Dynamics simulation (saxs_agg.c) 
 

 This simple Molecular Dynamics function simulates the protein aggregation and 

calculates an expected SAXS profile for a single concentration under the given potential.  

The optimization of protein-protein interaction potential (Levenberg-Marquardt 

algorithm) was not applied to this simple module.  One can decide between Beeman’s 

method and Verlet’s method for time integration.  Verlet’s method normally guarantees 

faster calculation, but with less accuracy.  For long time integrations, Beeman’s method is 

recommended although it’s slow.  The automated Verlet’s list is used for a faster 

calculation, and it is regularly updated.  This module shares the same SAXS calculation 

module with Metropolis Monte Carlo function. 

 
//=========================================================================== 
// Molecular Dynamics Simulation, in a given potental model, just for a single concentration 
//=========================================================================== 
int MDsimulation(int panel) { 
 MDdata *md; 
 int count=0, count_Guinier=1, count_Temperature=0, i, count_MD=0; 
 double variable_size_factor, chisq=0.0, temperature_sum=0.0; 
 FILE *fp; 
 int result=0, rejection=0, n_array=N_DATA_SET; 
 double RMS_Error, RSE, fittedArray[N_DATA_SET], coefficientArray[1] = {0.0}, mass=MASS; 
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 md = (MDdata*) calloc(n_particles, sizeof(MDdata)); 
 g_Potential = (double*)malloc(sizeof(double)*g_PotentialBinSize); 
 g_Force = (double*)malloc(sizeof(double)*g_PotentialBinSize); 
 g_r = (double*)malloc(sizeof(double)*g_PotentialBinSize); 
 g_Force_over_r = (double*)malloc(sizeof(double)*g_PotentialBinSize); 
 g_acceleration_over_r = (double*)malloc(sizeof(double)*g_PotentialBinSize); 
 
 initialize(panel, md); 
 PreCalculate_Potential(g_Potential, g_PotentialDepth, g_PotentialRange, g_PotentialWall,   
  g_EFFECTIVE_FORCE_RANGE_2, &g_coeff, g_Repulsive_Potential_Depth,   
  g_Repulsive_Potential_Range); 
 PreCalculate_Force(g_Potential, g_Force, g_r, g_Force_over_r, g_acceleration_over_r); 
 
 variable_size_factor = Random_Distribution_MD(panel, md);  
  
 while ( (g_Running == 1) && (count_Guinier <= g_max_repeat) ) { 
  count_MD = 0; 
 
  if (panel) { 
   // Repeat many times... 
   while ( (g_Running == 1) && (count_MD < g_MD_Repeat) ) { 
    // Beeman's Method for Time Integration 
    result = Beeman(md, variable_size_factor);     
    count_MD++; 
    if ( (int)(count_MD * 0.04) * 25 == count_MD ) 
     UpdateVerletList(md, variable_size_factor); 
   } 
  } else { 
   // Repeat many times... 
   while ( (g_Running == 1) && (count_MD < g_MD_Repeat) ) {  
    // Verlet's Method for Time Integration 
    result = Verlet(md, variable_size_factor);   
    count_MD++; 
    if ( (int)(count_MD * 0.04) * 25 == count_MD ) 
     UpdateVerletList(md, variable_size_factor); 
   } 
  } 
 
  SAXS_Guinier(panel, &count_Guinier, md, variable_size_factor); 
  variable_size_factor = Random_Distribution_MD(panel, md); 
  count_Guinier++; 
 } 
  
 // Offset Optimization for the least chi-square value 
 RMS_Error = Offset_Optimization(&RSE, coefficientArray, fittedArray);   
 fp = fopen(g_OutputFile, "w"); 
 fprintf(fp, "%d\t%.10lf\t%.10lf\n", count_Guinier-1, RSE, RMS_Error); 
 for (i=0; i<n_array; i++) { 
  fprintf(fp, "%.10f\t%.10f\n", g_qq[i], (g_log_Iaverage[i] + coefficientArray[0]));    
 } 
 fclose(fp); 
 finalize(panel, md); 
 
 return 0; 
} 
 
 
//=========================================================================== 
// randomly relocate proteins by Random Number Generators for a Single Concentration in Molecular Dynamics 
//=========================================================================== 
double Random_Distribution_MD(int panel, MDdata *md) { 
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 int i=0, j, flag; 
 double variable_size_factor = 1.0; 
 double rr, CubeSize, spacing_allowance; 
 r_vector dr, a; 
 double v_average;  // max initial speed displacement  
  
 variable_size_factor = NR_Random(pow(0.5, 1.0/3.0), pow(1.5, 1.0/3.0), &g_Seed_VariableSize); 
  
 CubeSize = g_CubeSize * variable_size_factor; 
 v_average = sqrt( BOLTZMANN_COEFF * g_Temperature / MASS ); 
 spacing_allowance = g_PotentialWall * g_PotentialWall; 
  
 #ifdef SPHERICAL_UNIT 
  radius = CubeSize * g_radiusCoeff;  
  rr = radius*radius; 
  Center = CubeSize * 0.5; 
 #endif 
  
 while ( i < n_particles ) { 
  flag = 1; 
 
  #ifdef CUBIC_UNIT 
   md[i].x = NR_Random(0.0, 1.0, &g_Seed_xyz) * CubeSize; 
   md[i].y = NR_Random(0.0, 1.0, &g_Seed_xyz) * CubeSize; 
   md[i].z = NR_Random(0.0, 1.0, &g_Seed_xyz) * CubeSize; 
  #endif 
   
  // Avoid Overlapping of proteins     
  for (j=0; j<i; j++) { 
   find_rr(i, j, md, variable_size_factor, &rr, &dr); 
    
   if (rr <= 1.1*spacing_allowance) { 
    flag = 0; // Reject it in the case of overlapping with any other proteins. 
    break; 
   } 
  } 
 
  if (flag == 1) { // Accept it 
   // Velocity (Random Gaussian Distribution) 
   md[i].vx = v_average * gasdev(&g_Seed_speed);  
   md[i].vy = v_average * gasdev(&g_Seed_speed); 
   md[i].vz = v_average * gasdev(&g_Seed_speed); 
 
   md[i].x_old = md[i].x - md[i].vx * g_dT; // the previous one.. 
       md[i].y_old = md[i].y - md[i].vy * g_dT; // the previous one.. 
       md[i].z_old = md[i].z - md[i].vz * g_dT; // the previous one.. 
     
   i++; 
  } 
 } 
  
 UpdateVerletList(md, variable_size_factor); 
  
 if (panel) { 
  for (i=0; i<n_particles; i++) { 
   acceleration(i, md, &a, variable_size_factor, 1); // current time 
   md[i].ax = a.x;   
   md[i].ay = a.y; 
   md[i].az = a.z; 
   md[i].x_old += 0.5 * (a.x) * g_dTdT; 
   md[i].y_old += 0.5 * (a.y) * g_dTdT; 
   md[i].z_old += 0.5 * (a.z) * g_dTdT; 
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   md[i].vx_old = md[i].vx - a.x * g_dT; 
   md[i].vy_old = md[i].vy - a.y * g_dT; 
   md[i].vz_old = md[i].vz - a.z * g_dT; 
  } 
  for (i=0; i<n_particles; i++) { 
   acceleration(i, md, &a, variable_size_factor, 0); // old time 
   md[i].ax_old = a.x; 
   md[i].ay_old = a.y; 
   md[i].az_old = a.z; 
  } 
 } 
 
 return variable_size_factor; 
} 
 
 
//=========================================================================== 
// Update Verlist’s list 
//=========================================================================== 
int UpdateVerletList(MDdata *md, double variable_size_factor) { 
 int i, j; 
 double rr; 
 r_vector dr; 
  
 for (i=0; i<n_particles; i++) { 
  g_VerletList[i][0] = 0; 
  /*for (j=0; j<n_particles; j++) { 
   g_VerletList[i][j] = 0; 
  }*/ 
 } 
  
 for (i=0; i<n_particles; i++) { 
  for (j=i+1; j<n_particles; j++) { 
   find_rr(i, j, md, variable_size_factor, &rr, &dr); 
   // Update Verlet Neightbor List Here 
   if (rr < g_EFFECTIVE_FORCE_RANGE_2) { 
    g_VerletList[i][ ++(g_VerletList[i][0]) ] = j; 
    g_VerletList[j][ ++(g_VerletList[j][0]) ] = i; 
   } 
  } 
 } 
 return 0; 
} 
 
 
//=========================================================================== 
// Verlet's Method for Molecular Dynamics Simulation 
//=========================================================================== 
int Verlet(MDdata *md, double variable_size_factor) { 
 int i; 
 r_vector f; 
 double CubeSize = g_CubeSize * variable_size_factor, displacement, reciprocal_CubeSize = 1.0/CubeSize; 
 double mass=MASS, *fx, *fy, *fz; 
  
 fx = (double*)malloc(sizeof(double)*n_particles); 
 fy = (double*)malloc(sizeof(double)*n_particles); 
 fz = (double*)malloc(sizeof(double)*n_particles); 
  
 // Calculate force on each particle 
 for (i=0; i<n_particles; i++) { 
  force(i, md, &f, variable_size_factor); 
  fx[i] = f.x; fy[i] = f.y; fz[i] = f.z; 
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 } 
  
 for (i=0; i<n_particles; i++) { 
  // use Verlet method (g_coeff1 = (g_dT*g_dT) / mass); 
  md[i].x_new = 2.0*md[i].x - md[i].x_old + fx[i] * g_coeff1;    
  md[i].y_new = 2.0*md[i].y - md[i].y_old + fy[i] * g_coeff1; 
  md[i].z_new = 2.0*md[i].z - md[i].z_old + fz[i] * g_coeff1; 
    
  // keep tracks of velocities (g_coeff2 = 1.0 / (2.0*g_dT)) 
  md[i].vx = (md[i].x_new - md[i].x_old) * g_coeff2;     
  md[i].vy = (md[i].y_new - md[i].y_old) * g_coeff2; 
  md[i].vz = (md[i].z_new - md[i].z_old) * g_coeff2; 
   
  // Periodic Boundary Condition 
  if (md[i].x_new >= CubeSize || md[i].x_new < 0.0) { 
   displacement = CubeSize * FLOOR(md[i].x_new * reciprocal_CubeSize); 
   md[i].x -= displacement; 
   md[i].x_new -= displacement; 
  } 
  if (md[i].y_new >= CubeSize || md[i].y_new < 0.0) { 
   displacement = CubeSize * FLOOR(md[i].y_new * reciprocal_CubeSize); 
   md[i].y -= displacement; 
   md[i].y_new -= displacement; 
  } 
  if (md[i].z_new >= CubeSize || md[i].z_new < 0.0) { 
   displacement = CubeSize * FLOOR(md[i].z_new * reciprocal_CubeSize); 
   md[i].z -= displacement; 
   md[i].z_new -= displacement; 
  } 
 } 
 
 // update current and old values 
 for (i=0; i<n_particles; i++) { 
  md[i].x_old = md[i].x; 
  md[i].y_old = md[i].y; 
  md[i].z_old = md[i].z; 
    
  md[i].x = md[i].x_new; 
  md[i].y = md[i].y_new; 
  md[i].z = md[i].z_new; 
 } 
 
 free(fx); 
 free(fy); 
 free(fz); 
  
 return 0; 
} 
 
 
//=========================================================================== 
// Beeman's Method for Molecular Dynamics Simulation 
//=========================================================================== 
int Beeman(MDdata *md, double variable_size_factor) { 
 int i, flag, count; 
 r_vector a; 
 double CubeSize = g_CubeSize * variable_size_factor, displacement, reciprocal_CubeSize = 1.0/CubeSize; 
 double vx_prediction, vy_prediction, vz_prediction, vx_prediction_old, vy_prediction_old,   
 vz_prediction_old; 
  
 for (i=0; i<n_particles; i++) { 
  md[i].x_new = md[i].x + md[i].vx*g_dT + c1*md[i].ax - c2*md[i].ax_old; 
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  md[i].y_new = md[i].y + md[i].vy*g_dT + c1*md[i].ay - c2*md[i].ay_old; 
  md[i].z_new = md[i].z + md[i].vz*g_dT + c1*md[i].az - c2*md[i].az_old; 
   
  // Periodic Boundary Condition 
  if (md[i].x_new >= CubeSize || md[i].x_new < 0.0) { 
   displacement = CubeSize * FLOOR(md[i].x_new * reciprocal_CubeSize); 
   md[i].x -= displacement; 
   md[i].x_new -= displacement; 
  } 
  if (md[i].y_new >= CubeSize || md[i].y_new < 0.0) { 
   displacement = CubeSize * FLOOR(md[i].y_new * reciprocal_CubeSize); 
   md[i].y -= displacement; 
   md[i].y_new -= displacement; 
  } 
  if (md[i].z_new >= CubeSize || md[i].z_new < 0.0) { 
   displacement = CubeSize * FLOOR(md[i].z_new * reciprocal_CubeSize); 
   md[i].z -= displacement; 
   md[i].z_new -= displacement; 
  } 
   
  // Velocity Prediction 
  md[i].vx_new = md[i].vx + c3*md[i].ax - c4*md[i].ax_old; 
  md[i].vy_new = md[i].vy + c3*md[i].ay - c4*md[i].ay_old; 
  md[i].vz_new = md[i].vz + c3*md[i].az - c4*md[i].az_old; 
 } 
 
 for (i=0; i<n_particles; i++) { 
  count=0; 
  do { 
   flag = 1; 
   // Velocity Prediction 
   vx_prediction = md[i].vx_new;  
   vy_prediction = md[i].vy_new; 
   vz_prediction = md[i].vz_new; 
    
   if (count == 0) { 
    // Calculate acceleration at t+dT, based on a given velocity prediction. 
    acceleration(i, md, &a, variable_size_factor, 2);  
    md[i].ax_new = a.x; 
    md[i].ay_new = a.y; 
    md[i].az_new = a.z; 
   } else { 
    md[i].ax_new += g_coeff5 * (vx_prediction - vx_prediction_old); 
    md[i].ay_new += g_coeff5 * (vy_prediction - vy_prediction_old); 
    md[i].az_new += g_coeff5 * (vz_prediction - vz_prediction_old); 
   } 
    
   // Corrected Velocity 
   md[i].vx_new = md[i].vx + c5*md[i].ax_new + c6*md[i].ax - c7*md[i].ax_old; 
   md[i].vy_new = md[i].vy + c5*md[i].ay_new + c6*md[i].ay - c7*md[i].ay_old; 
   md[i].vz_new = md[i].vz + c5*md[i].az_new + c6*md[i].az - c7*md[i].az_old; 
    
   if ( FABS_SJK(vx_prediction - md[i].vx_new) > 1.0e-7*FABS_SJK(md[i].vx_new) ) 
    goto EXIT; 
    
   if ( FABS_SJK(vy_prediction - md[i].vy_new) > 1.0e-7*FABS_SJK(md[i].vy_new) )  
    goto EXIT; 
 
   if ( FABS_SJK(vz_prediction - md[i].vz_new) > 1.0e-7*FABS_SJK(md[i].vz_new) ) 
    goto EXIT; 
   continue; 
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  EXIT:    
   flag=0; 
   count++; 
   vx_prediction_old = vx_prediction; 
   vy_prediction_old = vy_prediction; 
   vz_prediction_old = vz_prediction; 
    
  } while (flag == 0); 
 } 
  
 // update current and old values 
 for (i=0; i<n_particles; i++) { 
  md[i].x_old = md[i].x; 
  md[i].y_old = md[i].y; 
  md[i].z_old = md[i].z; 
  md[i].vx_old = md[i].vx; 
  md[i].vy_old = md[i].vy; 
  md[i].vz_old = md[i].vz; 
  md[i].ax_old = md[i].ax; 
  md[i].ay_old = md[i].ay; 
  md[i].az_old = md[i].az; 
    
  md[i].x = md[i].x_new; 
  md[i].y = md[i].y_new; 
  md[i].z = md[i].z_new; 
  md[i].vx = md[i].vx_new; 
  md[i].vy = md[i].vy_new; 
  md[i].vz = md[i].vz_new; 
  md[i].ax = md[i].ax_new; 
  md[i].ay = md[i].ay_new; 
  md[i].az = md[i].az_new; 
 } 
 return 0; 
} 
 
 
//=========================================================================== 
// compute accelerations on the n-th particle by surrounding all the particles 
//=========================================================================== 
int acceleration(int n, MDdata *md, r_vector *a, double variable_size_factor, int mode) { 
 int i, index; 
 double rr, temp; 
 r_vector dr; 
  
 a->x = a->y = a->z = 0.0; 
 // gravitational force + buoyant force components (negligible) 
 //a->z = GRAVITY * (1 - (DENSITY_H2O/DENSITY_PROTEIN));  
  
 if (mode == 2) { 
  for (i=1; i<=g_VerletList[n][0]; i++) {  // Next Time (New Time) 
   // r^2 distance at the next time 
   find_rr_new(g_VerletList[n][i], n, md, variable_size_factor, &rr, &dr);  
   index = min( (int)(rr * g_coeff), g_PotentialBinSize ); 
   temp = g_acceleration_over_r[index];  // g_coeff = (1/coeff); 
    
   a->x += temp * dr.x; 
   a->y += temp * dr.y; 
   a->z += temp * dr.z; 
  } 
  // frictional force component (Stokes' law) 
  // g_coeff5 = -6.0*Pi()*g_R_effective*g_viscosity / g_mass; 
  a->x += g_coeff5 * md[n].vx_new;  
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  a->y += g_coeff5 * md[n].vy_new; 
  a->z += g_coeff5 * md[n].vz_new; 
 } 
 else if (mode == 1) { // Curremt Time 
  for (i=1; i<=g_VerletList[n][0]; i++) {  // Next Time (New Time) 
   // r^2 distance at the next time 
   find_rr(g_VerletList[n][i], n, md, variable_size_factor, &rr, &dr);   
   // g_coeff = (1/coeff); 
   index = min( (int)(rr * g_coeff), g_PotentialBinSize ); 
   temp = g_acceleration_over_r[index];      
  
   a->x += temp * dr.x; 
   a->y += temp * dr.y; 
   a->z += temp * dr.z; 
  } 
  // frictional force component (Stokes' law) 
  // g_coeff5 = -6.0*Pi()*g_R_effective*g_viscosity / g_mass; 
  a->x += g_coeff5 * md[n].vx;  
  a->y += g_coeff5 * md[n].vy; 
  a->z += g_coeff5 * md[n].vz; 
 }  
 else if (mode == 0) {  // Previous Time (Old Time) 
  for (i=1; i<=g_VerletList[n][0]; i++) {  // Next Time (New Time) 
   // r^2 distance at the next time 
   find_rr_old(g_VerletList[n][i], n, md, variable_size_factor, &rr, &dr);   
   // g_coeff = (1/coeff); 
   index = min( (int)(rr * g_coeff), g_PotentialBinSize );  
   temp = g_acceleration_over_r[index];   
      
   a->x += temp * dr.x; 
   a->y += temp * dr.y; 
   a->z += temp * dr.z; 
  } 
  // frictional force component (Stokes' law) 
  // g_coeff5 = -6.0*Pi()*g_R_effective*g_viscosity / g_mass; 
  a->x += g_coeff5 * md[n].vx_old;  
  a->y += g_coeff5 * md[n].vy_old; 
  a->z += g_coeff5 * md[n].vz_old; 
 } 
  
 // Brownian force component <r^2(t)> = 2Dt 
 a->x += g_Brownian_Amplitude * gasdev(&g_Seed_brownian); 
 a->y += g_Brownian_Amplitude * gasdev(&g_Seed_brownian); 
 a->z += g_Brownian_Amplitude * gasdev(&g_Seed_brownian); 
 
 return 0; 
} 
 
 
//=========================================================================== 
// compute forces on the n-th particle by surrounding all the particles 
//=========================================================================== 
int force(int n, MDdata *md, r_vector *f, double variable_size_factor) { 
 int i, index; 
 double temp, rr; 
 r_vector dr; 
  
 f->x = f->y = f->z = 0.0; 
 // gravitational force + buoyant force components (negligible) 
 //f->z = mass * GRAVITY * (1 - (DENSITY_H2O/DENSITY_PROTEIN)); 
  
 for (i=1; i<=g_VerletList[n][0]; i++) {  // Next Time (New Time) 
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  // r^2 distance at the next time 
  find_rr(g_VerletList[n][i], n, md, variable_size_factor, &rr, &dr);   
  index = min( (int)(rr * g_coeff), g_PotentialBinSize ); 
  temp = g_Force_over_r[index];  // g_coeff = (1/coeff); 
   
  f->x += temp * dr.x; 
  f->y += temp * dr.y; 
  f->z += temp * dr.z; 
 } 
 
 // frictional force component (Stokes' law) 
 f->x += g_coeff3 * md[n].vx; // g_coeff3 = -6.0*Pi()*g_R_effective*g_viscosity; 
 f->y += g_coeff3 * md[n].vy; 
 f->z += g_coeff3 * md[n].vz; 
 
 // Brownian force component <x^2(t)> = 2Dt, <r^2(t)> = 6Dt 
 f->x += g_coeff4 * gasdev(&g_Seed_brownian); // g_coeff4 = mass*g_Brownian_Amplitude; 
 f->y += g_coeff4 * gasdev(&g_Seed_brownian); 
 f->z += g_coeff4 * gasdev(&g_Seed_brownian); 
 
 return 0; 
} 
 
 
//=========================================================================== 
// find spacing taking periodic boundary conditions into account 
//=========================================================================== 
int find_rr_new(int i, int n, MDdata *md, double variable_size_factor, double *rr, r_vector *dr) { 
 #ifdef CUBIC_UNIT 
  double CubeSize = g_CubeSize * variable_size_factor; 
  double size = CubeSize*0.5; 
 #endif 
 
 dr->x = md[n].x_new - md[i].x_new; 
 dr->y = md[n].y_new - md[i].y_new; 
 dr->z = md[n].z_new - md[i].z_new; 
  
 #ifdef CUBIC_UNIT 
  if (FABS_SJK(dr->x) > size) 
   dr->x -= SIGN_SJK(dr->x) * CubeSize; 
  if (FABS_SJK(dr->y) > size) 
   dr->y -= SIGN_SJK(dr->y) * CubeSize; 
  if (FABS_SJK(dr->z) > size) 
   dr->z -= SIGN_SJK(dr->z) * CubeSize; 
 #endif 
   
 *rr = ( (dr->x)*(dr->x) + (dr->y)*(dr->y) + (dr->z)*(dr->z) ); 
 return 0; 
} 
 

 

C.1.5 Levenberg-Marquardt optimization (sax_agg.c and cminpack.c) 
 

 For fitting of the protein-protein interaction potential to multiple concentration 

data, the Levenberg-Marquardt algorithm is applied and written in “cminpack.c”.[35, 36]  
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The “lmdif0” function is called for the optimization process and requires a Jacobian 

matrix input to calculate a gradient according the infinitesimal parameter changes.  For 

the details of the “lmdif0” function, refer to references  [35, 36].   

 
//=========================================================================== 
// Do the Levenberg-Marquardt (LM) Optimization with Metropolis Monte Carlo (MMC), for multiple concentrations 
//=========================================================================== 
int Multiple_Levenberg_Marquardt_Metropolis(int panel) { 
 int i, j, index, info, ecode, nfev; 
 int *msk, nParameter; 
 double tol=(0.1*0.1), RMS_Error, RSE, *fittedArray, *coefficientArray; 
 FILE *fp, *fp_r; 
  
 g_md = (MDdata*) calloc(n_particles, sizeof(MDdata)); 
 // Number of Parameter + Number of different concentrations for OFFSET 
 nParameter = N_PARAMETERS + (g_argc - 1);  
 coefficientArray = (double*) malloc(nParameter * sizeof(double)); 
 fittedArray = (double*) calloc(g_argc*(N_DATA_SET-N_DATA_START), sizeof(double)); 
 g_logI_calc = (double*) calloc(g_argc*N_DATA_SET, sizeof(double)); 
 g_panel = panel; 
 initialize(g_panel, g_md);  
  
 // msk[] allows selective activation of specific parameters. '1' means enabling modifications, '0' means 
 disabling modifications. 
 msk = (int*) malloc(nParameter * sizeof(int)); 
 for (i=0; i<nParameter; i++) 
  msk[i] = 1; 
 if (panel == -1) 
  msk[4] = 0; // No Radius of Gyration Change  
   
 // Initial Value of Parameters 
 coefficientArray[0] = 0.1;  // Fitting Phase Constant (Offset) for the First Concentration 
 coefficientArray[1] = g_PotentialWall;  // Potential Wall 
 coefficientArray[2] = g_PotentialRange; // Potential Range 
 coefficientArray[3] = g_PotentialDepth; // Potential Depth 
 coefficientArray[4] = g_R_effective;  // R_Effective 
 if (N_PARAMETERS == 7) { 
  coefficientArray[5] = g_Repulsive_Potential_Range; // Repulsive Potential Range 
  coefficientArray[6] = g_Repulsive_Potential_Depth; // Repulsive Potential Depth 
 } 
 for (i=N_PARAMETERS; i<nParameter; i++) 
  coefficientArray[i] = 0.1; // Fitting Phase Constant (Offset) for other concentrations 
  
 if (panel <= -2) { 
  g_isD0Fixed = 1; 
  msk[1] = 0; 
  g_PW = g_PotentialWall / (2.0*g_R_effective); 
  coefficientArray[1] = (2.0*g_R_effective) * g_PW; 
 } 
 if (panel == -3) 
  msk[2] = 0; 
  
 // solve system (calls lmdif0 in cminpack.c) 
 ecode = lmdif0(Multiple_LM_Jacobian, g_argc*(N_DATA_SET-N_DATA_START), nParameter,   
 coefficientArray, msk, fittedArray, tol, &info, &nfev); 
  
 RSE = enorm(g_argc*(N_DATA_SET-N_DATA_START), fittedArray); 
 RMS_Error = sqrt( (RSE*RSE) / (g_argc*(N_DATA_SET-N_DATA_START)) ); 
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 if (g_isD0Fixed) { 
  coefficientArray[1] = (2.0*coefficientArray[4]) * g_PW; 
 } 
  
 printf("\nExit parameter = %d\n", info); 
 printf("Final Root-Squared Error (RSE) =  %.13lf\n", RSE); 
 printf("Final Root-Mean-Squared Error (RMSE) = %.13lf\n", RMS_Error); 
 printf("PW=%.10lf (%.10lf A), PR=%.10lg A, PD=%.10lg kT, Rg=%.10lg A\n", 
 coefficientArray[1]/(2.0*coefficientArray[4]), coefficientArray[1]*1.0e10, coefficientArray[2]*1.0e10, 
 coefficientArray[3]/(BOLTZMANN_COEFF*g_Temperature), coefficientArray[4]/sqrt(5.0/3.0)*1.0e10); 
 if (N_PARAMETERS == 7) { 
  printf("Repulsive Potential Range (RPR)=%.10lg A, Repulsive Potential Depth (RPD)=%.10lg  
  kT\n", coefficientArray[5]*1.0e10, coefficientArray[6]/(BOLTZMANN_COEFF*g_Temperature)); 
 } 
 printf("Offset%d=%.10lf\t", 0, coefficientArray[0]); 
 for (i=N_PARAMETERS; i<nParameter; i++) 
  printf("Offset%d=%.10lf\t", i, coefficientArray[i]); 
 
 printf("\n\nResiduals:\n"); 
 for (i=0; i<g_argc*(N_DATA_SET-N_DATA_START); i++) 
  printf("fittedArray[%d]\t%lf\n", i, fittedArray[i]); 
   
 for (index=0; index<g_argc; index++) { 
  fp_r = fopen(g_InputFiles[index], "r"); 
  for (i=0; i<N_DATA_SET; i++) { 
   fscanf(fp_r, "%lf\t%lf\n", &(g_qq_Data[i]), &(g_logI_Data[i])); 
  } 
  fclose(fp_r); 
   
  fp = fopen(g_OutputFiles[index], "w"); 
  fprintf(fp, "%d\t%.10lf\t%.10lf\n", g_max_repeat, RSE, RMS_Error); 
 
  for (i=0; i<N_DATA_SET; i++) { 
   j = i + index*N_DATA_SET; 
   fprintf(fp, "%.10f\t%.10f\n", g_qq[i], g_logI_calc[j]);    
  } 
  fclose(fp);   
 } 
  
 Destroy(coefficientArray); 
 Destroy(msk); 
 Destroy(fittedArray); 
 Destroy(g_logI_calc); 
 finalize(g_panel, g_md); 
  
 return 0; 
} 
 
 
//=========================================================================== 
// Calculate a Jacobian matrix for the Levenberg-Marquardt optimization 
//=========================================================================== 
void Multiple_LM_Jacobian(int m, int n, double a[], double a_h[], double y[], double **y_h, int *iflag) { 
 int i, j, k, iindex, count_Guinier, count_Metropolis=1, result, index=0; 
 // Number of Parameter + Number of different concentrations for OFFSET 
 int nParameter = N_PARAMETERS + (g_argc - 1);  
 double Metropolis_repeat, variable_size_factor, offset, offset_h, RMS_Error=0.0, RSE=0.0; 
 double SumI_h1[N_DATA_SET], log_Iaverage_h0[N_DATA_SET], *Potential_h1; 
 double SumI_h2[N_DATA_SET], log_Iaverage_h1[N_DATA_SET], *Potential_h2; 
 double SumI_h3[N_DATA_SET], log_Iaverage_h2[N_DATA_SET], *Potential_h3; 
 double SumI_h4[N_DATA_SET], log_Iaverage_h3[N_DATA_SET], *Potential_h4; 
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 double SumI_h5[N_DATA_SET], log_Iaverage_h4[N_DATA_SET], *Potential_h5; 
 double SumI_h6[N_DATA_SET], log_Iaverage_h5[N_DATA_SET], *Potential_h6; 
 double step_h, qR_h[N_DATA_SET], I_h[N_DATA_SET], EFFECTIVE_FORCE_RANGE_2_h, coeff_h; 
 double coeff=1.0/sqrt(5.0/3.0), data; 
 char temp[256]; 
 FILE *fp, *fp_log; 
 time_t s1, s2; 
 struct tm *newTime; 
 time_t szClock; 
   
 m /= g_argc; // m : Measure Points for each concentration 
  
 if (g_isD0Fixed) { 
  a[1] = (2.0*a[4]) * g_PW; 
  a_h[1] = (2.0*a_h[4]) * g_PW; 
 } 
 
 g_EFFECTIVE_FORCE_RANGE_2 = EFFECTIVE_FORCE_CONST * (2.0 * a[4]); 
 g_EFFECTIVE_FORCE_RANGE_2 *= g_EFFECTIVE_FORCE_RANGE_2; 
 EFFECTIVE_FORCE_RANGE_2_h = EFFECTIVE_FORCE_CONST * (2.0 * a_h[4]); 
 EFFECTIVE_FORCE_RANGE_2_h *= EFFECTIVE_FORCE_RANGE_2_h; 
  
 Metropolis_repeat = n_particles * g_MP_Repeat;  
 g_step = a[4] * g_MP_StepSize; 
 step_h = a_h[4] * g_MP_StepSize; 
 fcn_count++; 
 
 if (g_Potential == NULL) 
  g_Potential = (double*)malloc(sizeof(double)*g_PotentialBinSize); 
 Potential_h1 = (double*)malloc(sizeof(double)*g_PotentialBinSize); 
 Potential_h2 = (double*)malloc(sizeof(double)*g_PotentialBinSize); 
 Potential_h3 = (double*)malloc(sizeof(double)*g_PotentialBinSize); 
 Potential_h4 = (double*)malloc(sizeof(double)*g_PotentialBinSize); 
 Potential_h5 = (double*)malloc(sizeof(double)*g_PotentialBinSize); 
 Potential_h6 = (double*)malloc(sizeof(double)*g_PotentialBinSize); 
   
 if (N_PARAMETERS == 7) { 
  PreCalculate_Potential(g_Potential, a[3], a[2], a[1], g_EFFECTIVE_FORCE_RANGE_2,  
   &g_coeff, a[6], a[5]); 
  PreCalculate_Potential(Potential_h1, a[3], a[2], a_h[1], g_EFFECTIVE_FORCE_RANGE_2,  
   &g_coeff, a[6], a[5]); 
  PreCalculate_Potential(Potential_h2, a[3], a_h[2], a[1], g_EFFECTIVE_FORCE_RANGE_2,  
   &g_coeff, a[6], a[5]); 
  PreCalculate_Potential(Potential_h3, a_h[3], a[2], a[1], g_EFFECTIVE_FORCE_RANGE_2,  
   &g_coeff, a[6], a[5]); 
  PreCalculate_Potential(Potential_h4, a[3], a[2], a[1], EFFECTIVE_FORCE_RANGE_2_h,  
   &coeff_h, a[6], a[5]); 
  PreCalculate_Potential(Potential_h5, a[3], a[2], a[1], g_EFFECTIVE_FORCE_RANGE_2,  
   &g_coeff, a[6], a_h[5]); 
  PreCalculate_Potential(Potential_h6, a[3], a[2], a[1], g_EFFECTIVE_FORCE_RANGE_2,  
   &g_coeff, a_h[6], a[5]); 
 } else { 
  PreCalculate_Potential(g_Potential, a[3], a[2], a[1], g_EFFECTIVE_FORCE_RANGE_2,  
   &g_coeff, g_Repulsive_Potential_Depth, g_Repulsive_Potential_Range); 
  PreCalculate_Potential(Potential_h1, a[3], a[2], a_h[1], g_EFFECTIVE_FORCE_RANGE_2,  
   &g_coeff, g_Repulsive_Potential_Depth, g_Repulsive_Potential_Range); 
  PreCalculate_Potential(Potential_h2, a[3], a_h[2], a[1], g_EFFECTIVE_FORCE_RANGE_2,  
   &g_coeff, g_Repulsive_Potential_Depth, g_Repulsive_Potential_Range); 
  PreCalculate_Potential(Potential_h3, a_h[3], a[2], a[1], g_EFFECTIVE_FORCE_RANGE_2,  
   &g_coeff, g_Repulsive_Potential_Depth, g_Repulsive_Potential_Range); 
  PreCalculate_Potential(Potential_h4, a[3], a[2], a[1], EFFECTIVE_FORCE_RANGE_2_h,  
   &coeff_h, g_Repulsive_Potential_Depth, g_Repulsive_Potential_Range); 
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 } 
  
 // for Multiple Files 
 for (index=0; index<g_argc; index++) { 
  s1 = time (NULL);  
   
  if (index == 0) { 
   offset = a[0];  
   offset_h = a_h[0]; 
  } else { 
   offset = a[index-1 + N_PARAMETERS]; 
   offset_h = a_h[index-1 + N_PARAMETERS]; 
  } 
   
  sprintf(temp, "%s.log", g_OutputFiles[index]); 
  fp_log=fopen(temp, "a"); 
   
  // Get UNIX-style time and display as number and string.  
  time(&szClock); 
  newTime = localtime(&szClock); 
  fprintf(fp_log, "%s", asctime(newTime));  
  printf("%s", asctime(newTime)); 
   
  if (N_PARAMETERS == 7) { 
   fprintf(fp_log, "[%d] : %s (%g, %g, %g, %g, %g, %g, %g) ->    
   (%g, %g, %g, %g, %g, %g, %g)\n", fcn_count, g_OutputFiles[index], offset,   
   a[1]/(2.0*a[4]), a[2], a[3]/(BOLTZMANN_COEFF*g_Temperature), a[4]*coeff, a[5],  
   a[6]/(BOLTZMANN_COEFF*g_Temperature), offset_h, a_h[1]/(2.0*a[4]), a_h[2],  
   a_h[3]/(BOLTZMANN_COEFF*g_Temperature), a_h[4]*coeff, a_h[5],   
   a_h[6]/(BOLTZMANN_COEFF*g_Temperature)); 
   printf("[%d] : %s (%g, %g, %g, %g, %g, %g, %g) -> (%g, %g, %g, %g, %g, %g, %g)\n", 
   fcn_count, g_OutputFiles[index], offset, a[1]/(2.0*a[4]), a[2],    
   a[3]/(BOLTZMANN_COEFF*g_Temperature), a[4]*coeff, a[5],    
   a[6]/(BOLTZMANN_COEFF*g_Temperature), offset_h, a_h[1]/(2.0*a[4]), a_h[2],  
   a_h[3]/(BOLTZMANN_COEFF*g_Temperature), a_h[4]*coeff, a_h[5],   
   a_h[6]/(BOLTZMANN_COEFF*g_Temperature)); 
  } else { 
   fprintf(fp_log, "[%d] : %s (%g, %g, %g, %g, %g) -> (%g, %g, %g, %g, %g)\n",  
   fcn_count, g_OutputFiles[index], offset, a[1]/(2.0*a[4]), a[2],    
   a[3]/(BOLTZMANN_COEFF*g_Temperature), a[4]*coeff, offset_h, a_h[1]/(2.0*a[4]),  
   a_h[2], a_h[3]/(BOLTZMANN_COEFF*g_Temperature), a_h[4]*coeff); 
   printf("[%d] : %s (%g, %g, %g, %g, %g) -> (%g, %g, %g, %g, %g)\n", fcn_count,  
   g_OutputFiles[index], offset, a[1]/(2.0*a[4]), a[2],     
   a[3]/(BOLTZMANN_COEFF*g_Temperature), a[4]*coeff, offset_h, a_h[1]/(2.0*a[4]),  
   a_h[2], a_h[3]/(BOLTZMANN_COEFF*g_Temperature), a_h[4]*coeff); 
  } 
  fclose(fp_log); 
 
  fp = fopen(g_InputFiles[index], "r"); 
  for (i=0; i<N_DATA_SET; i++) { 
   g_SumI[i] = 0.0; 
   SumI_h1[i] = 0.0; 
   SumI_h2[i] = 0.0; 
   SumI_h3[i] = 0.0; 
   SumI_h4[i] = 0.0; 
   SumI_h5[i] = 0.0; 
   SumI_h6[i] = 0.0; 
    
   fscanf(fp, "%lf\t%lf\n", &(g_qq_Data[i]), &(g_logI_Data[i])); 
    
   g_qR[i] = g_q_Data[i] * a[4]; 
   g_I[i] = 3.0 * (sin(g_qR[i]) - g_qR[i]*cos(g_qR[i])) / (g_qR[i]*g_qR[i]*g_qR[i]); 
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   g_I[i] = (g_I[i]*g_I[i]) / (n_particles); 
    
   qR_h[i] = g_q_Data[i] * a_h[4]; 
   I_h[i] = 3.0 * (sin(qR_h[i]) - qR_h[i]*cos(qR_h[i])) / (qR_h[i]*qR_h[i]*qR_h[i]); 
   I_h[i] = (I_h[i]*I_h[i]) / (n_particles); 
  } 
  fclose(fp); 
 
  count_Guinier = 1; 
  variable_size_factor = Random_Distribution(g_panel, g_md, g_CubeSizeS[index]); 
 
  while ( (g_Running == 1) && (count_Guinier <= g_max_repeat) ) { 
   for (count_Metropolis=1; count_Metropolis<=Metropolis_repeat; count_Metropolis++) 
    result = LM_Metropolis_Sampling(g_panel, g_md, variable_size_factor,  
    (int)NR_Random(0.0, n_particles, &g_Seed_MC2), g_Potential, g_step,  
    g_EFFECTIVE_FORCE_RANGE_2, g_coeff, g_CubeSizeS[index]); 
   LM_SAXS_Guinier(g_panel, &count_Guinier, g_md, variable_size_factor, g_SumI,  
   g_log_Iaverage, g_I, g_OutputFiles[index], g_CubeSizeS[index]); 
 
   if (fcn_count > 1) { 
    // (1) Potential Wall 
    for (count_Metropolis=1; count_Metropolis<=20*n_particles;   
    count_Metropolis++) 
     result = LM_Metropolis_Sampling(g_panel, g_md,   
     variable_size_factor, (int)NR_Random(0.0, n_particles,   
     &g_Seed_MC2), Potential_h1, g_step,     
     g_EFFECTIVE_FORCE_RANGE_2, g_coeff, g_CubeSizeS[index]); 
    LM_SAXS_Guinier(g_panel, &count_Guinier, g_md, variable_size_factor,  
    SumI_h1, log_Iaverage_h0, g_I, g_OutputFiles[index], g_CubeSizeS[index]); 
     
    // (2) Potential Range 
    for (count_Metropolis=1; count_Metropolis<=20*n_particles;   
    count_Metropolis++) 
     result = LM_Metropolis_Sampling(g_panel, g_md,   
     variable_size_factor, (int)NR_Random(0.0, n_particles,   
     &g_Seed_MC2), Potential_h2, g_step,     
     g_EFFECTIVE_FORCE_RANGE_2, g_coeff, g_CubeSizeS[index]); 
    LM_SAXS_Guinier(g_panel, &count_Guinier, g_md, variable_size_factor,  
    SumI_h2, log_Iaverage_h1, g_I, g_OutputFiles[index], g_CubeSizeS[index]); 
     
    // (3) Potential Depth 
    for (count_Metropolis=1; count_Metropolis<=20*n_particles;   
    count_Metropolis++) 
     result = LM_Metropolis_Sampling(g_panel, g_md,   
     variable_size_factor, (int)NR_Random(0.0, n_particles,   
     &g_Seed_MC2), Potential_h3, g_step,     
     g_EFFECTIVE_FORCE_RANGE_2, g_coeff, g_CubeSizeS[index]); 
    LM_SAXS_Guinier(g_panel, &count_Guinier, g_md, variable_size_factor,  
    SumI_h3, log_Iaverage_h2, g_I, g_OutputFiles[index], g_CubeSizeS[index]); 
     
    // (4) R_Effective 
    for (count_Metropolis=1; count_Metropolis<=20*n_particles;   
    count_Metropolis++) 
     result = LM_Metropolis_Sampling(g_panel, g_md,   
     variable_size_factor, (int)NR_Random(0.0, n_particles,   
     &g_Seed_MC2), Potential_h4, step_h,     
     EFFECTIVE_FORCE_RANGE_2_h, coeff_h, g_CubeSizeS[index]); 
    LM_SAXS_Guinier(g_panel, &count_Guinier, g_md, variable_size_factor,  
    SumI_h4, log_Iaverage_h3, I_h, g_OutputFiles[index], g_CubeSizeS[index]); 
     
    if (N_PARAMETERS == 7) { 
     // (5) Repulsive Potential Range 
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     for (count_Metropolis=1; count_Metropolis<=20*n_particles;  
     count_Metropolis++) 
      result = LM_Metropolis_Sampling(g_panel, g_md,  
      variable_size_factor, (int)NR_Random(0.0, n_particles,  
      &g_Seed_MC2), Potential_h5, g_step,    
      g_EFFECTIVE_FORCE_RANGE_2, g_coeff,   
      g_CubeSizeS[index]); 
     LM_SAXS_Guinier(g_panel, &count_Guinier, g_md,   
     variable_size_factor, SumI_h5, log_Iaverage_h4, g_I,   
     g_OutputFiles[index], g_CubeSizeS[index]); 
      
     // (6) Repulsive Potential Depth 
     for (count_Metropolis=1; count_Metropolis<=20*n_particles;  
     count_Metropolis++) 
      result = LM_Metropolis_Sampling(g_panel, g_md,  
      variable_size_factor, (int)NR_Random(0.0, n_particles,  
      &g_Seed_MC2), Potential_h6, g_step,    
      g_EFFECTIVE_FORCE_RANGE_2, g_coeff,   
      g_CubeSizeS[index]); 
     LM_SAXS_Guinier(g_panel, &count_Guinier, g_md,   
     variable_size_factor, SumI_h6, log_Iaverage_h5, g_I,   
     g_OutputFiles[index], g_CubeSizeS[index]); 
    } 
   } 
   variable_size_factor = Random_Distribution(g_panel, g_md, g_CubeSizeS[index]); 
   count_Guinier++; 
  } 
  RSE = 0.0; 
  for (i=0; i<m; i++) { 
   j = i + index*m; 
   iindex = N_DATA_START + i; 
   data = g_logI_Data[iindex]; 
    
   y[j] = (g_log_Iaverage[iindex] + offset) - data; 
   RSE += y[j]*y[j]; // Calculate Squared Error (SE) 
    
   y_h[0][j] = y[j]; 
   if (fcn_count > 1) { 
    y_h[1][j] = (log_Iaverage_h0[iindex] + offset) - data; 
    y_h[2][j] = (log_Iaverage_h1[iindex] + offset) - data; 
    y_h[3][j] = (log_Iaverage_h2[iindex] + offset) - data; 
    y_h[4][j] = (log_Iaverage_h3[iindex] + offset) - data; 
   } 
   else { 
    y_h[1][j] = y_h[2][j] = y_h[3][j] = y_h[4][j] = y[j]; 
   } 
   if (N_PARAMETERS == 7) { 
    if (fcn_count > 1) {   
     y_h[5][j] = (log_Iaverage_h4[iindex] + offset) - data; 
     y_h[6][j] = (log_Iaverage_h5[iindex] + offset) - data; 
    } else { 
     y_h[5][j] = y_h[6][j] = y[j]; 
    } 
   } 
    
   for (k=N_PARAMETERS; k<nParameter; k++) 
    y_h[k][j] = y[j]; 
    
   if (index == 0) 
    y_h[0][j] += offset_h - offset; 
   else 
    y_h[index-1 + N_PARAMETERS][j] += offset_h - offset; 
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  } 
  RSE = sqrt(RSE); // Calculate Root Squared Error (RSE) 
  RMS_Error = sqrt( (RSE*RSE) / m ); // Calculate Root Mean Squared Error (RMSE) 
   
  sprintf(temp, "%s.log", g_OutputFiles[index]); 
  fp_log = fopen(temp, "a"); 
  fp=fopen(g_OutputFiles[index], "w"); 
  fprintf(fp, "%d\t%.10lf\t%.10lf\n", count_Guinier-1, RSE, RMS_Error); 
  for (i=0; i<N_DATA_SET; i++) { 
   fprintf(fp, "%.10f\t%.10f\n", g_qq[i], (g_log_Iaverage[i] + offset)); 
   j = i + index*N_DATA_SET; 
   g_logI_calc[j] = g_log_Iaverage[i] + offset; 
  } 
    
  fprintf(fp, "RSE = %.13lf\t\tRMSE = %.13lf\n", RSE, RMS_Error); 
  fprintf(fp_log, "RSE = %.13lf\t\tRMSE = %.13lf\n", RSE, RMS_Error); 
  printf("RSE = %.13lf\t\tRMSE = %.13lf\n", RSE, RMS_Error); 
   
  s2 = time (NULL); 
  fprintf(fp, "Execution Time = %g mins\n\n", (s2-s1)/60.0); 
  fprintf(fp_log, "Execution Time = %g mins\n\n", (s2-s1)/60.0); 
  printf("Execution Time = %g mins\n\n", (s2-s1)/60.0); 
   
  fclose(fp); 
  fclose(fp_log); 
 } 
   
 free(Potential_h1); 
 free(Potential_h2); 
 free(Potential_h3); 
 free(Potential_h4); 
 free(Potential_h5); 
 free(Potential_h6); 
} 
 
 
//=========================================================================== 
// Distribute proteins according to a potential model, for Multiple Concentration (with Levenberg-marquardt) 
//=========================================================================== 
int LM_Metropolis_Sampling(int panel, MDdata *md, double variable_size_factor, int index, double *Potential, double 
step, double EFFECTIVE_FORCE_RANGE_2, double coeff, double iCubeSize) { 
 double energy1=0.0, energy2=0.0, delta_U, tempx, tempy, tempz; 
 double CubeSize, u=0.0; 
 int j; 
  
 double rr, reciprocal_CubeSize; 
 r_vector dr; 
 
 CubeSize = iCubeSize * variable_size_factor; 
 reciprocal_CubeSize = 1.0/CubeSize; 
   
 tempx = NR_Random(-step, step, &g_Seed_xyz); 
 tempy = NR_Random(-step, step, &g_Seed_xyz); 
 tempz = NR_Random(-step, step, &g_Seed_xyz); 
  
 for (j=0; j<n_particles; j++) { 
  if (j != index) { 
   find_rr(index, j, md, variable_size_factor, &rr, &dr); 
  
   if (rr < EFFECTIVE_FORCE_RANGE_2)  // using nearest separation rule  
    energy1 += Potential[(int)(rr * coeff)]; 
  } 
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 } 
   
 md[index].x_old = md[index].x; 
 md[index].y_old = md[index].y; 
 md[index].z_old = md[index].z; 
  
 md[index].x += tempx; 
 md[index].y += tempy; 
 md[index].z += tempz; 
  
 // Periodic Boundary Condition 
 if (md[index].x >= CubeSize || md[index].x < 0.0 ) 
  md[index].x -= CubeSize * FLOOR(md[index].x * reciprocal_CubeSize); 
 if (md[index].y >= CubeSize || md[index].y < 0.0) 
  md[index].y -= CubeSize * FLOOR(md[index].y * reciprocal_CubeSize); 
 if (md[index].z >= CubeSize || md[index].z < 0.0) 
  md[index].z -= CubeSize * FLOOR(md[index].z * reciprocal_CubeSize); 
   
 for (j=0; j<n_particles; j++) { 
  if (j != index) { 
   find_rr(index, j, md, variable_size_factor, &rr, &dr); 
  
   if (rr < EFFECTIVE_FORCE_RANGE_2)  // using nearest separation rule 
    energy2 += Potential[(int)(rr * coeff)]; 
  } 
 } 
 delta_U = energy2 - energy1; 
  
 if (delta_U >= 0.0) { 
  // Rollback; Rejected 
  if ( NR_Random(0.0, 1.0, &g_Seed_MC) > exp( delta_U * g_reciprocal_of_KT ) ) {  
   md[index].x = md[index].x_old; 
   md[index].y = md[index].y_old; 
   md[index].z = md[index].z_old; 
    
   return -1; 
  } 
 } 
 return 0; 
} 
 
 
//=========================================================================== 
// Calculate and average SAXS scattering profiles, in Guinier plot for Levenberg-Marquardt Method 
//=========================================================================== 
int LM_SAXS_Guinier(int panel, int *count_Guinier, MDdata *md, double variable_size_factor, double *SumI, double 
*log_Iaverage, double *I, char *OutputFile, double iCubeSize) { 
 int i; 
 
 for (i=0; i<N_DATA_SET; i++) 
  SumI[i] += Calc_Scattering_Intensity(i, md, variable_size_factor, iCubeSize); 
 
 if (*count_Guinier - (int)(*count_Guinier/g_SAXS_MP_rate)*g_SAXS_MP_rate == 0) { 
  //FILE *fp; 
  //fp=fopen(OutputFile, "w"); 
  //fprintf(fp, "%d\n", *count_Guinier); 
 
  for (i=0; i<N_DATA_SET; i++) { 
   log_Iaverage[i] = log( I[i] * SumI[i] / (double)(*count_Guinier) * g_volume_correction ); 
   //fprintf(fp, "%.10f\t%.10f\n", g_qq[i], log_Iaverage[i]); 
  } 
  //fclose(fp); 
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 } 
 return 0; 
} 
 

 

C.2 ASMOS (The automated single molecule operating 
system) 
 

 
 

C.2.1 Time calibration module (sm_fn.c) 
 
//==================================================================================== 
// It prepares to convert raw data to the uniformly corrected one by generating conversion tables for the white light 
source. 
//==================================================================================== 
int TimeCalibration(void) { 
 int hist[1024], hist1[1024], hist2[1024], hist3[1024], hist4[1024], hist5[1024], hist6[1024], hist0[1024]; 
 int i, err, index, laser_tick, PMTBuffer, decay; 
 double decay_corrected; 
 char temp[50]; 
 FILE *in, *out; 
  
 for (i = 0; i < 1024; i++) { 
  hist[i] = 0; 
  hist1[i] = 0; 
  hist2[i] = 0; 
  hist3[i] = 0; 
  hist4[i] = 0; 
  hist5[i] = 0; 
  hist6[i] = 0; 
  hist0[i] = 0; 
   
  gCorrections[i] = NULL; 
  gCorrections1[i] = NULL; 
  gCorrections2[i] = NULL; 
  gCorrections3[i] = NULL; 
  gCorrections4[i] = NULL; 
  gCorrections5[i] = NULL; 
  gCorrections6[i] = NULL; 
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  gDirectCorrection[i] = 0.0; 
  gDirectCorrection1[i] = 0.0; 
  gDirectCorrection2[i] = 0.0; 
  gDirectCorrection3[i] = 0.0; 
  gDirectCorrection4[i] = 0.0; 
  gDirectCorrection5[i] = 0.0; 
  gDirectCorrection6[i] = 0.0; 
 } 
 
 // Open a calibration histogram file 
 in = fopen("SM_data_calibration.his","r"); 
 if (in != NULL) { 
  i=0; 
  while ( err = fscanf (in, "%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n", &index, &hist[i], &hist1[i],  
  &hist2[i], &hist3[i], &hist4[i], &hist5[i], &hist6[i]) > 0 ) 
   i++; 
  fclose(in); 
 // if there is no calibration histogram file 
 } else { 
  in = fopen("SM_data_calibration.txt","r"); 
  if (in != NULL) { 
   // Ignoring the first row showing date/time information 
   sprintf(temp, "[%s, %s]\n", DateStr(), TimeStr()); 
   fseek(in, strlen(temp), SEEK_SET); 
  
   // Making a Histogram 
   while ( err = fscanf (in, "%d\t%d\t%d\t%lf", &laser_tick, &PMTBuffer, &decay,  
   &decay_corrected) > 0 ) { 
    switch ( PMTBuffer ) { 
     case 1 :  hist1[decay]++; 
      break; 
     case 2 : hist2[decay]++; 
      break; 
     case 3 : hist3[decay]++; 
      break; 
     case 4 :  hist4[decay]++; 
      break; 
     case 5 : hist5[decay]++; 
      break; 
     case 6 : hist6[decay]++; 
      break; 
     default : hist0[decay]++; 
      break; 
    } 
    hist[decay]++; 
   } 
   fclose(in); 
  } else { 
   MessagePopup("Warning", "Please do the Time-Calibration !"); 
   return 0; 
  } 
  // Saving a calibration histogram file 
  out = fopen("SM_data_calibration.his","w"); 
  for (i = 0; i < 1024; i++) 
   fprintf(out, "%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n", i, hist[i], hist1[i], hist2[i], hist3[i],  
   hist4[i], hist5[i], hist6[i]); 
  fclose(out); 
 } 
 // gTimingStep : default 555 -> 11.1 ns (90Mhz), which means each step corresponds to 20 pico second. 
 GetCtrlVal(SM, PANEL_NUMERIC_TIMING_STEP, &gTimingStep); 
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 // 555 -> 11.1 ns (90Mhz), which means each step corresponds to 20 pico second. 
 build_corrections(hist, 0, 1024, gTimingStep);  
 build_corrections_eachPMT(hist1, 0, 1024, gTimingStep, gCorrections1, gDirectCorrection1);
 build_corrections_eachPMT(hist2, 0, 1024, gTimingStep, gCorrections2, gDirectCorrection2);
 build_corrections_eachPMT(hist3, 0, 1024, gTimingStep, gCorrections3, gDirectCorrection3);
 build_corrections_eachPMT(hist4, 0, 1024, gTimingStep, gCorrections4, gDirectCorrection4);
 build_corrections_eachPMT(hist5, 0, 1024, gTimingStep, gCorrections5, gDirectCorrection5);
 build_corrections_eachPMT(hist6, 0, 1024, gTimingStep, gCorrections6, gDirectCorrection6); 
 return 0; 
} 
 
 
//==================================================================================== 
// It builds correction tables for each PMT.  Originally written by Dr. McDonalds, and updated by SJ Kim. 
//==================================================================================== 
void build_corrections_eachPMT(int *hist, int first, int ndata, int nbins, partials **Corrections, double 
*DirectCorrection) { 
 int i, j, k, m, q; 
 partials temp[500]; 
 double target, target2, residual; 
  
 if (nbins > 1024) { 
  MessagePopup("Error", "Error Code : E01"); 
  return; 
 } 
   
 for (i = 0; i < 1024; i++) 
  if (Corrections[i]) 
   free(Corrections[i]); 
 
 k = 0; 
 for (i = first; i < first + ndata; i++) 
  k += hist[i]; 
  
 target = (double)k / (double)nbins; 
 m = first; 
 residual = (double)hist[m]; 
  
 // Building Corrections array for statistical correction of original decay time by using Histogram... 
 for(i=0; i<nbins; i++) { 
  j = 0; 
  target2 = target; 
      
  do {  
   if (residual > 0.0) { 
    if (residual < target2) { 
     temp[j].index = m; 
     temp[j].fraction = (double)residual / (double)hist[m]; 
     target2 -= residual; 
     residual = (double)hist[++m]; 
    } else { 
     temp[j].index = m; 
     temp[j].fraction = (double)target2 / (double)hist[m]; 
     residual -= target2; 
     target2 = 0.0; 
    } 
    if (++j > 498) { 
     MessagePopup("Error", "Error Code : E02"); 
     return; 
    } 
   } else { 
    if (++m >= ndata) 
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     break; 
    residual = (double)hist[m]; 
   } 
  } while (target2 > 0.0); 
 
  temp[j].index = -1.0; 
  temp[j].fraction = 0.0; 
   
  if (++j > 499) { 
   MessagePopup("Error", "Error Code : E03"); 
   return; 
  } 
   
  Corrections[i] = (partials *) malloc( j * sizeof(partials) ); 
  for (q = 0; q < j; q++) { 
   Corrections[i][q].index = temp[q].index; 
   Corrections[i][q].fraction = temp[q].fraction; 
  } 
 } 
  
 // Building DirectCorrection array For Direct 1:1 correspondence between original & corrected decay time 
 j=0; 
 k=0; 
 for (i=0; i<ndata; i++) { // ndata : 1024 
  while (Corrections[j][k].index == i) { 
   DirectCorrection[i] += Corrections[j][k].fraction * j; 
   k++; 
   if (Corrections[j][k].index == -1) { 
    k=0; 
    j++; 
    if (j >= nbins) return; 
   } 
  } 
 } 
} 
 
 
//==================================================================================== 
// It builds a correction table for total photon counts.  Originally written by Dr. McDonalds, and updated by SJ Kim. 
//==================================================================================== 
void build_corrections(int *hist, int first, int ndata, int nbins) { 
 int i, j; 
 int k, m, q; 
 partials temp[500]; 
 double target, target2, residual; 
  
 if (nbins > 1024) { 
  MessagePopup("Error", "Error Code : E04"); 
  return; 
 } 
   
 for (i = 0; i < 1024; i++) 
  if (gCorrections[i]) 
   free(gCorrections[i]); 
 
 k = 0; 
 for (i = first; i < first + ndata; i++) 
  k += hist[i]; 
  
 target = (double)k / (double)nbins; 
 m = first; 
 residual = (double)hist[m]; 
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 // Building gCorrections array for statistical correction of original decay time by using Histogram... 
 for(i=0; i<nbins; i++) { 
  j = 0; 
  target2 = target; 
      
  do {  
       if (residual > 0.0) { 
    if (residual < target2) { 
     temp[j].index = m; 
     temp[j].fraction = (double)residual / (double)hist[m]; 
     target2 -= residual; 
     residual = (double)hist[++m]; 
    } else { 
     temp[j].index = m; 
     temp[j].fraction = (double)target2 / (double)hist[m]; 
     residual -= target2; 
     target2 = 0.0; 
    } 
    if (++j > 498) { 
     MessagePopup("Error", "Error Code : E05"); 
     return; 
    } 
   } else { 
    if (++m >= ndata) 
     break; 
    residual = (double)hist[m]; 
   } 
  } while (target2 > 0.0); 
 
  temp[j].index = -1.0; 
  temp[j].fraction = 0.0; 
   
  if (++j > 499) { 
   MessagePopup("Error", "Error Code : E06"); 
   return; 
  } 
   
  gCorrections[i] = (partials *) malloc( j * sizeof(partials) ); 
  for (q = 0; q < j; q++) { 
   gCorrections[i][q].index = temp[q].index; 
   gCorrections[i][q].fraction = temp[q].fraction; 
  } 
 } 
  
 // Building gDirectCorrection array For Direct 1:1 correspondence between original & corrected decay time 
 j=0; 
 k=0; 
 for (i=0; i<ndata; i++) { // ndata : 1024 
  while (gCorrections[j][k].index == i) { 
   gDirectCorrection[i] += gCorrections[j][k].fraction * j; 
   k++; 
   if (gCorrections[j][k].index == -1) { 
    k=0; 
    j++; 
    if (j >= nbins) return; 
   } 
  } 
 } 
} 
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//==================================================================================== 
// It converts the raw data to the uniformly corrected one per each PMT  
//==================================================================================== 
void correct_eachPMT(int *data, double *decay, int first, int ndata, int nbins, partials **Corrections) { 
 int i, j; 
  
 if (nbins > 1024) { 
  MessagePopup("Error", "Error Code : E07"); 
  return; 
 } 
  
 for (i=0; i<nbins; i++) { 
  j = 0; 
  decay[i] = 0.0; 
  while (Corrections[i][j].index != -1.0) {  
   decay[i] += data[ Corrections[i][j].index ] * Corrections[i][j].fraction; 
   j++; 
  }     
 } 
} 
 
 
//==================================================================================== 
// It converts the raw data to the uniformly corrected one for the total photon counts  
//==================================================================================== 
void correct(int *data, double *decay, int first, int ndata, int nbins) { 
 int i, j; 
  
 if (nbins > 1024) { 
  MessagePopup("Error", "Error Code : E08"); 
  return; 
 } 
  
 for (i=0; i<nbins; i++) { 
  j = 0; 
  decay[i] = 0.0; 
  while (gCorrections[i][j].index != -1.0) {  
   decay[i] += data[ gCorrections[i][j].index ] * gCorrections[i][j].fraction; 
   j++; 
  }     
 }    
} 
 
 
//==================================================================================== 
// It converts the raw data to the uniformly corrected one per each PMT, with an offset (a shift). 
//==================================================================================== 
void correct_with_offset(int *data, double *decay, int first, int ndata, int nbins, partials **Corrections, int offset) { 
 int i, j; 
 double *decay_temp; 
  
 decay_temp = (double*) malloc(nbins*sizeof(double)); 
  
 if (nbins > 1024) { 
  MessagePopup("Error", "Error Code : E09"); 
  return; 
 } 
  
 for (i=0; i<nbins; i++) { 
  j = 0; 
  decay_temp[i] = 0.0; 
  while (Corrections[i][j].index != -1.0) {  
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   decay_temp[i] += data[ Corrections[i][j].index ] * Corrections[i][j].fraction; 
   j++; 
  }     
 }    
  
 for (i=0; i<offset; i++) 
  decay[nbins-offset+i] = decay_temp[i]; 
 
 for (i=offset; i<nbins; i++) 
  decay[i-offset] = decay_temp[i]; 
  
 free(decay_temp); 
} 
 

   

C.2.2 Droplet generation module (sm_fn.c) 
 
//==================================================================================== 
// Initialize the droplet generator. Characters in the parenthesis indicate the protocol index. 
//==================================================================================== 
int Initial_Connection(void) {  
 SendCommand(JetDrv, MFJDRV_RESET);   // 1. Soft Reset (01) 
 SendCommand(JetDrv, MFJDRV_GETVERSION);  // 2. Get version (F0) 
 SendCommand(JetDrv, MFJDRV_GETCHANNEL);  // 2.5. Get number of channels (0D) 
  
 return 0; 
} 
 
 
//==================================================================================== 
// Start droplet generation. Characters in the parenthesis indicate the protocol index. 
//==================================================================================== 
int Droplet_Start(void) { 
 SendCommand(JetDrv, MFJDRV_PULSE);   // 3. Set pulse wave form (06) 
 SendCommand(JetDrv, MFJDRV_CONTMODE);  // 4. Set trigger mode (04) 
 SendCommand(JetDrv, MFJDRV_DROPS);   // 5. Set drops/trigger (03) 
 SendCommand(JetDrv, MFJDRV_FULLFREQ);   // 6. Set frequency (12) 
 SendCommand(JetDrv, MFJDRV_STROBEDIV);  // 7. Set strobe divider (07) 
 SendCommand(JetDrv, MFJDRV_STROBEENABLE);  // 8. Strobe Enable (10) 
 SendCommand(JetDrv, MFJDRV_STROBEDELAY);  // 9. Set Strobe delay (13) 
 SendCommand(JetDrv, MFJDRV_SOURCE);   // 10. Set trigger source (08) 
 SendCommand(JetDrv, MFJDRV_SOFTTRIGGER);  // 11. Trigger Output (09) "START" 
  
 WriteDropletParamaters(); 
 
 return 0; 
} 
 
 
//==================================================================================== 
// Stop droplet generation. 
//==================================================================================== 
int Droplet_Stop(void) { 
 int temp = gJets[gCJ].fMode; 
  
 gJets[gCJ].fMode = 0; 
 SendCommand(JetDrv, MFJDRV_CONTMODE);  // 4. Set trigger mode (04) to "Single" 
 Delay(0.5);      // Wait for the pulse to stop 
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 gJets[gCJ].fMode = temp; 
  
 // by SJ Kim at 07/24/2007, for the ultimate droplet stop. 
 if ( SerialPort_Connection() == 0 ) {    // Initialize the serial port connection. 
  Initial_Connection();    // Initialize the droplet generator 
  MessagePopup("Droplet Stop", "The droplet generator has stopped successfully."); 
 } else  
  MessagePopup("Droplet Stop", "There is an error during serial port connection."); 
 return 0; 
} 
 
 
//==================================================================================== 
// by SJ Kim at 11/07/2007, for the dynamic parameter change of the droplet generator. 
//==================================================================================== 
int Droplet_Update(void) { 
 int temp = gJets[gCJ].fMode; 
 
 gJets[gCJ].fMode = 0; 
 SendCommand(JetDrv, MFJDRV_CONTMODE); // 4. Set trigger mode (04) to "Single" 
 Delay(0.5);    // Wait for the pulse to stop (> minimal dead time (~60 ms)) 
 
 gJets[gCJ].fMode = temp;   // Roll-back mode value as before 
 
 Droplet_Start();    // Update Droplet Information & Re-Start 
 return 0; 
} 
 

 

C.2.3 Data acquisition module (sm_fn.c) 
 
//==================================================================================== 
// Start “Trap & Data acquisition”.  It executes the data acquisition function (StartTrapDAQ_Thread()), and start trigger. 
//==================================================================================== 
int CVICALLBACK StartTrapDAQCallback (int panel, int control, int event, 
  void *callbackData, int eventData1, int eventData2) 
{ 
 switch (event) 
  { 
  case EVENT_COMMIT: 
   SetCtrlAttribute (panelHandle, PANEL_START_TRAP_DAQ, ATTR_DIMMED, 1); 
   StartTrapDAQ_Thread (panelHandle, panelParameter2); 
  #ifdef CONTINUOUS_TRAP    
   Sleep(4000); 
  #endif    
   SetCtrlAttribute (panelHandle, PANEL_STOP_TRAP_DAQ, ATTR_DIMMED, 0); 
   SetCtrlVal (panelHandle, PANEL_LED, 1); 
   ProcessDrawEvents(); 
  #ifdef CONTINUOUS_TRAP       
   trigger(); 
  #endif 
   break; 
  } 
 return 0; 
} 
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//==================================================================================== 
// Stop “Trap & Data acquisition” 
//==================================================================================== 
int CVICALLBACK StopTrapDAQCallback (int panel, int control, int event, 
  void *callbackData, int eventData1, int eventData2) 
{ 
 switch (event) 
  { 
  case EVENT_COMMIT: 
   SetCtrlAttribute (panelHandle, PANEL_STOP_TRAP_DAQ, ATTR_DIMMED, 1); 
   KillEverything(); 
   SetCtrlAttribute (panelHandle, PANEL_START_TRAP_DAQ, ATTR_DIMMED, 0); 
   DeleteGraphPlot(panelHandle, PANEL_GRAPH, -1, VAL_IMMEDIATE_DRAW); 
   SetCtrlVal (panelHandle, PANEL_LED, 0); 
   ProcessDrawEvents(); 
   SetgTrapDAQRunning(0); 
    
   break; 
  case EVENT_RIGHT_CLICK: 
 
   break; 
  } 
 return 0; 
} 
 
 
//====================================================================================
// Current Version for Data Acquisition Thread 
//====================================================================================
int StartTrapDAQ_Thread(int panelHandle, int panelPara) { 
 bool32 done=0; 
 char AOPhysical[20]={'\0'}; 
 char errBuff[2048] ={'\0'}; 
 char chan[256];         
 char REQclockSource6534[256]={“/Dev2/PFI2”};    // REQ Signal from Doug's Box, into 6534 (port4/line2)  
 double amplitude, phase=0.0, min=-10.0, max=10.0; 
 double AOfrequency, AOrate, *AOdata=NULL; 
 double resolution, width, peak_width, delay, rise, peak_rise, rate; 
 double time12; 
 double LaserFrequency; 
 int DAQmxError = DAQmxSuccess; 
 int i, written, bufferSize, sampsPerCycle, status, bIsAutoCalibration_Checked; 
 unsigned int sampsToRead; 
 unsigned int *RESETdata=NULL; 
 char output_file[256]; 
 FILE *fp; 
 
 InitializeCriticalSection( &gLock_READ ); 
 InitializeCriticalSection( &gLock_WRITE ); 
 
QueryPerformanceCounter(&gTime1); 
QueryPerformanceFrequency (&gTicksPerSecond); 
 
 // Load PMT offset information 
 if ( (fp = fopen("PMT_Calibration.txt","r")) != NULL ) { 
  status = fscanf (fp, "%d %d %d %d %d %d", &gPMT1_Offset, &gPMT2_Offset, &gPMT3_Offset, 
  &gPMT4_Offset, &gPMT5_Offset, &gPMT6_Offset);  
  if (status < 6) { 
   MessagePopup("error", "\"PMT_Calibration.txt\" doesn't have all parameters."); 
   return -1; 
  } 
 } else { 
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  MessagePopup("error", "\"PMT_Calibration.txt\" doesn't exist."); 
  return -2; 
 } 
 fclose(fp); 
  
 Init_Histrograms(); 
 
 // Set up overlapped I/O structure fields. 
 ZeroMemory( &gOverlapped, sizeof(gOverlapped) ); 
 gOverlapped.hEvent = CreateEvent(NULL, TRUE, TRUE, NULL); 
 gFileSize.QuadPart = 0; 
  
 GetCtrlVal(AUTO_CALIBRATION, PANEL_CALI_CHECKBOX_AUTO, &bIsAutoCalibration_Checked); 
 if (bIsAutoCalibration_Checked) 
  sprintf(output_file, "H:\\output1.dat"); 
 else 
  sprintf(output_file, "H:\\output.dat"); 
 
 // File Pointer Configuration 
 ghFile = CreateFile( output_file, GENERIC_WRITE, 0, NULL, 
#ifdef OVERLAPPED_IO 
  CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED, NULL ); 
#else 
  CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL ); 
#endif 
 gFp = fopen("D:\\SM_photon_density_Log.txt", "w"); 
 gFp_thread = fopen("D:\\SM_timing_Log.txt", "w"); 
  
 // Delete any already running timer 
 if (g_AutoCalibrationTimerId > 0) { 
  double width; 
  GetCtrlVal(AUTO_CALIBRATION, PANEL_CALI_NUMERIC_CALI_DURATION, &width); 
   
  SetAsyncTimerAttribute(g_AutoCalibrationTimerId, ASYNC_ATTR_ENABLED, 0); // < 0.01 ms 
  DiscardAsyncTimer (g_AutoCalibrationTimerId); 
  g_AutoCalibrationTimerId = 0; 
  Delay(width + 1.0);  
 } 
 // Stop Autocalibration task 
 if ( gAutoCalibration_task != 0 ) { 
  DAQmxStopTask(gAutoCalibration_task); 
  DAQmxClearTask(gAutoCalibration_task); 
  gAutoCalibration_task = 0; 
 } 
 
 // Reset Devices 
 DAQmxResetDevice ("Dev1"); 
 DAQmxResetDevice ("Dev2"); 
 
 // For Analog Output Laser Trapping 
 GetCtrlVal(panelPara, PANELPARA2_AOPHYSICAL, AOPhysical);    
 WriteCharParameter("AOPhysical", AOPhysical); 
 GetCtrlVal(panelPara, PANELPARA2_RESOLUTION, &resolution);  resolution *= 1.0e-6; 
 WriteParameter("AOresolution", (double)resolution); 
 GetCtrlVal(panelPara, PANELPARA2_RISE, &rise);   amplitude = rise / 2.0; 
 WriteParameter("AOrise", (double)rise); 
 GetCtrlVal(panelPara, PANELPARA2_WIDTH, &width);   width *= 1.0e-6;  
 WriteParameter("AOwidth", (double)width); 
 GetCtrlVal(panelPara, PANELPARA2_FREQUENCY, &AOfrequency);     
 WriteParameter("AOfrequency", (double)AOfrequency); 
 GetCtrlVal(panelPara, PANELPARA2_PEAK_RISE, &peak_rise);     
 WriteParameter("AOpeak_rise", (double)peak_rise); 
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 GetCtrlVal(panelPara, PANELPARA2_PEAK_WIDTH, &peak_width); peak_width *= 1.0e-6; 
 WriteParameter("AOpeak_width", (double)peak_width); 
 GetCtrlVal(panelPara, PANELPARA2_DELAY, &delay);   delay *= 1.0e-3;   
 WriteParameter("AOdelay", (double)delay); 
 
 bufferSize = sampsPerCycle = (int)( (1.0/AOfrequency) / resolution ); 
 AOrate = AOfrequency * bufferSize; 
     
 if ( (AOdata=(double*)malloc(2*bufferSize*sizeof(double)))==NULL ) { 
  MessagePopup("Error","Not enough memory"); 
  goto Error; 
 } 
 if ( (RESETdata=(unsigned int*)malloc(bufferSize*sizeof(unsigned int)))==NULL ) { 
  MessagePopup("Error","Not enough memory"); 
  goto Error; 
 } 
 SquareWave(bufferSize, amplitude, 1.0/sampsPerCycle, &phase, width/(1.0/AOfrequency)*100.00, AOdata);  
 LinEv1D(AOdata, sampsPerCycle, 1.0, amplitude, AOdata); 
  
 for (i=0; i<(peak_width/resolution); i++) 
  AOdata[i] += peak_rise - rise;  // Makes the Peak 
 
 for (i=0; i<bufferSize; i++) 
  AOdata[i+bufferSize] = AOdata[i];  // for Double Beam (AO2, AO3) 
  
 // Analog Output Display 
 DeleteGraphPlot(panelHandle, PANEL_GRAPH, -1, VAL_DELAYED_DRAW); 
 SetAxisScalingMode(panelHandle, PANEL_GRAPH, VAL_LEFT_YAXIS, VAL_AUTOSCALE, min, max); 
 SetCtrlAttribute(panelHandle, PANEL_GRAPH, ATTR_XAXIS_GAIN, 1.0/AOrate); 
 SetCtrlAttribute(panelHandle, PANEL_GRAPH, ATTR_XPRECISION, (int)log10(AOrate)); 
 PlotY(panelHandle, PANEL_GRAPH, AOdata, bufferSize, VAL_DOUBLE, VAL_FAT_LINE,   
 VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_RED); 
  
 // Initilization of Photon Density Graph 
 DeleteGraphPlot(panelHandle, PANEL_Photon_Count, -1, VAL_IMMEDIATE_DRAW); 
 SetAxisScalingMode(panelHandle, PANEL_Photon_Count, VAL_LEFT_YAXIS, VAL_AUTOSCALE, 0,  
  50); 
 SetAxisScalingMode(panelHandle, PANEL_Photon_Count, VAL_BOTTOM_XAXIS, VAL_AUTOSCALE,  
  0, 50); 
 g_Photon_Count_Index = 0; 
 g_Photon_Count = (double*)malloc(sizeof(double)*PHOTON_COUNTING_TIME_SCALE); 
 ZeroMemory(g_Photon_Count, sizeof(g_Photon_Count)); 
 
 // Initilization of Photon Delay Statistics Display 
 DeleteGraphPlot(panelHandle, PANEL_GRAPH, -1, VAL_DELAYED_DRAW); 
 SetCtrlAttribute(panelHandle, PANEL_GRAPH, ATTR_XAXIS_GAIN, 1.0); 
 SetCtrlAttribute(panelHandle, PANEL_GRAPH, ATTR_XPRECISION, VAL_AUTO); 
 SetAxisScalingMode(panelHandle, PANEL_GRAPH, VAL_LEFT_YAXIS, VAL_AUTOSCALE, 0, 150); 
  
 #ifdef PLOT_gHist_decay_time_corrected 
 // gTimingStep : default 555 -> 11.1 ns (90Mhz), which means each step corresponds to 20 pico second. 
  GetCtrlVal(SM, PANEL_NUMERIC_TIMING_STEP, &gTimingStep);   
  WriteParameter("gTimingStep", (double)gTimingStep); 
   
  GetCtrlVal(SM, PANEL_LaserFrequency, &LaserFrequency); 
  LaserFrequency *= 1.0e6; WriteParameter("LaserFrequency", (double)LaserFrequency); 
  SetAxisScalingMode(SM, PANEL_GRAPH, VAL_BOTTOM_XAXIS, VAL_MANUAL, 0,  
  1.0/LaserFrequency*1.0e9); 
 #else 
 #ifdef PLOT_gHist_laser_tick 
  SetAxisScalingMode(SM, PANEL_GRAPH, VAL_BOTTOM_XAXIS, VAL_MANUAL, 0,  
  65535); 
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  #endif 
 #endif 
 
 #ifdef CONTINUOUS_TRAP  
 //============================================================================= 
 // 1. TRIGGER Signal (PFI0 (P1.0) of 6229) Configuration 
 //============================================================================= 
  DAQmxErrChk (DAQmxCreateTask("Trigger", &gTRIGtask)); 
  DAQmxErrChk (DAQmxCreateDOChan(gTRIGtask, "/Dev1/port1/line0", "Trigger Pulse",  
   DAQmx_Val_ChanPerLine)); 
  DAQmxErrChk (DAQmxStartTask(gTRIGtask)); 
  DAQmxErrChk (DAQmxWriteDigitalScalarU32(gTRIGtask, 1, 10.0, 0, NULL)); 
 
 //============================================================================= 
 // 2. Continuous AO Laser Trapping Configuration (AO0, AO1) 
 //  - Triggered by PFI0 TRIGGER (=ao/StartTrigger) 
 //============================================================================= 
  DAQmxErrChk (DAQmxCreateTask("Analog_Output_Laser_Trapping", &gAOtask));  
  DAQmxErrChk (DAQmxCreateAOVoltageChan(gAOtask, "Dev1/ao0:1", "VoltageOut", min, max, 
   DAQmx_Val_Volts, NULL)); 
  DAQmxErrChk (DAQmxCfgDigEdgeStartTrig(gAOtask, "/Dev1/PFI0", DAQmx_Val_Rising)); 
  DAQmxErrChk (DAQmxCfgSampClkTiming(gAOtask, "", AOrate, DAQmx_Val_Rising,  
   DAQmx_Val_ContSamps, sampsPerCycle)); 
  DAQmxErrChk (DAQmxWriteAnalogF64(gAOtask, bufferSize, 0, 10.0,    
   DAQmx_Val_GroupByChannel, AOdata, &written, NULL)); 
  // Start AO Laser Trapping (0.3 ~ 0.4 ms) with digital trigger 
  DAQmxErrChk (DAQmxStartTask(gAOtask));  
 
 //============================================================================= 
 // 3. Continuous RESET Signal Configuration (ctr0 out : Dev1/PFI12) 
 //  - Triggered by PFI0 TRIGGER (=ao/StartTrigger) 
 //============================================================================= 
  DAQmxErrChk (DAQmxCreateTask("",&gContRESETtask)); 
  DAQmxErrChk (DAQmxCreateCOPulseChanFreq(gContRESETtask, "Dev1/ctr0", "RESET  
   Continuous Pulse", DAQmx_Val_Hz, DAQmx_Val_High, 0.0, AOfrequency,   
   1.0 - (width+0.001)*AOfrequency)); 
  DAQmxErrChk (DAQmxCfgDigEdgeStartTrig(gContRESETtask, "/Dev1/ao/StartTrigger",  
   DAQmx_Val_Rising)); 
  DAQmxErrChk (DAQmxCfgImplicitTiming(gContRESETtask, DAQmx_Val_ContSamps, 1000)); 
  DAQmxErrChk (DAQmxStartTask(gContRESETtask)); // Start Continuous RESET task 
  // Should go into PFI4 in 6534 (Dev2/PFI4 : New RESET ...) 
  DAQmxErrChk (DAQmxConnectTerms("/Dev1/PFI12", "/Dev2/PFI4",    
   DAQmx_Val_DoNotInvertPolarity)); 
  
 //============================================================================= 
 // 4. Continuous Droplet External TRIGGER (ctr1 out : Dev1/PFI13) with delay time 
 //  - Triggered by PFI0 TRIGGER (=ao/StartTrigger) 
 //============================================================================= 
  DAQmxErrChk (DAQmxCreateTask("",&gDropletTRIGtask)); 
  DAQmxErrChk (DAQmxCreateCOPulseChanFreq(gDropletTRIGtask, "Dev1/ctr1", "Droplet  
   External TRIGGER", DAQmx_Val_Hz, DAQmx_Val_Low, delay, AOfrequency, 0.05)); 
  DAQmxErrChk (DAQmxCfgDigEdgeStartTrig(gDropletTRIGtask, "/Dev1/ao/StartTrigger",  
   DAQmx_Val_Rising)); 
  DAQmxErrChk (DAQmxCfgImplicitTiming(gDropletTRIGtask, DAQmx_Val_ContSamps,  
   1000)); 
  // Start Droplet External TRIGGER task 
  DAQmxErrChk (DAQmxStartTask(gDropletTRIGtask));  
 #else 
 #ifdef ON_DEMAND_TRAP 
 //============================================================================= 
 // We need a photo-diode signal which detects scattering from the cube. It retriggers data acquisition. 
 // PFI4 of 6229("/Dev1/PFI4") is necessary to be connected into. 
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 //============================================================================= 
  
 /*//=========================================================================== 
 // PSEUDO TRIGGER Signal (PFI0 of 6229) Configuration : TRIGchan={"/Dev1/port1/line0"}   
 //============================================================================= 
  DAQmxErrChk (DAQmxCreateTask("Trigger", &gTRIGtask)); 
  DAQmxErrChk (DAQmxCreateDOChan(gTRIGtask, "Dev1/port1/line0", "Trigger Pulse",  
   DAQmx_Val_ChanPerLine)); 
  DAQmxErrChk (DAQmxStartTask(gTRIGtask)); 
  DAQmxErrChk (DAQmxWriteDigitalScalarU32(gTRIGtask, 1, 10.0, 0, NULL)); 
  // Signal Routing for Retriggerable Items (Temporary Solution) 
  DAQmxErrChk (DAQmxConnectTerms("/Dev1/PFI0", "/Dev1/RTSI0",    
   DAQmx_Val_DoNotInvertPolarity)); 
  DAQmxErrChk (DAQmxConnectTerms("/Dev1/RTSI0", "/Dev1/PFI4",    
   DAQmx_Val_DoNotInvertPolarity));*/ 
   
 //============================================================================= 
 // 1. On Demand (Retriggerable) RESET Signal (P0.7), Initially Set HIGH 
 //============================================================================= 
  DAQmxErrChk (DAQmxCreateTask("On Demand RESET task Init", &gRESETtask)); 
  DAQmxErrChk (DAQmxCreateDOChan(gRESETtask, "Dev1/port0/line7", "On Demand RESET  
   channel Init", DAQmx_Val_ChanPerLine)); 
  DAQmxErrChk (DAQmxStartTask(gRESETtask)); 
  DAQmxErrChk (DAQmxWriteDigitalScalarU32(gRESETtask, 1, 10.0, 128, NULL)); 
  DAQmxErrChk (DAQmxStopTask(gRESETtask)); 
  DAQmxErrChk (DAQmxClearTask(gRESETtask)); 
  // Should go into PFI4 in 6534 (Dev2/PFI4) ; Not sure it's working or not. Hardware Wiring is  
  necessary (9/6/2007) 
  DAQmxErrChk (DAQmxConnectTerms("/Dev1/port0/line7", "/Dev2/PFI4",    
   DAQmx_Val_DoNotInvertPolarity)); 
  
 //============================================================================= 
 // 2. Retriggerable External Timing Source for AO and RESET (ctr1 out : Dev1/PFI13, ctr1 gate : Dev1/PFI4) 
 //============================================================================= 
  DAQmxErrChk (DAQmxCreateTask("",&gDropletTRIGtask)); 
  DAQmxErrChk (DAQmxCreateCOPulseChanTime(gDropletTRIGtask, "Dev1/ctr1", "AO External 
   Timing Source", DAQmx_Val_Seconds, DAQmx_Val_Low, 0.0, resolution*0.5,  
   resolution*0.5)); 
  // Triggered by SCATTERING PHOTON DETECT SIGNAL ("/Dev1/PFI4") 
  DAQmxErrChk (DAQmxCfgDigEdgeStartTrig(gDropletTRIGtask, "/Dev1/PFI4",   
   DAQmx_Val_Rising)); 
  DAQmxErrChk (DAQmxCfgImplicitTiming(gDropletTRIGtask, DAQmx_Val_FiniteSamps,  
   sampsPerCycle)); 
  DAQmxErrChk (DAQmxSetTrigAttribute (gDropletTRIGtask, DAQmx_StartTrig_Retriggerable,  
   TRUE)); 
  // Start Droplet External TRIGGER task 
  DAQmxErrChk (DAQmxStartTask(gDropletTRIGtask));  
  
 //============================================================================= 
 // 3. On Demand (Retriggerable) AO Laser Trapping Configuration (AO2, AO3) 
 //============================================================================= 
  DAQmxErrChk (DAQmxCreateTask("Analog_Output_Laser_Trapping", &gAOtask));  
  DAQmxErrChk (DAQmxCreateAOVoltageChan(gAOtask, "Dev1/ao2:3", "VoltageOut", min, max, 
   DAQmx_Val_Volts, NULL)); 
  DAQmxErrChk (DAQmxCfgSampClkTiming(gAOtask, "/Dev1/Ctr1InternalOutput", AOrate,  
   DAQmx_Val_Rising, DAQmx_Val_ContSamps, sampsPerCycle)); 
  DAQmxErrChk (DAQmxWriteAnalogF64(gAOtask, bufferSize, 0, 10.0,    
   DAQmx_Val_GroupByChannel, AOdata, &written, NULL)); 
  DAQmxErrChk (DAQmxStartTask(gAOtask)); 
 
 //============================================================================= 
 // 4. On Demand (Retriggerable) RESET Signal (P0.7) Configuration 
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 //============================================================================= 
  for (i=0; i<(int)((width+0.001)/resolution); i++) 
   RESETdata[i] = 0; 
  for (i=(int)((width+0.001)/resolution); i<bufferSize; i++)  
   RESETdata[i] = 128; 
  DAQmxErrChk (DAQmxCreateTask("On Demand RESET task", &gRESETtask)); 
  DAQmxErrChk (DAQmxCreateDOChan(gRESETtask, "Dev1/port0/line7", "On Demand RESET  
   channel", DAQmx_Val_ChanPerLine)); 
  DAQmxErrChk (DAQmxCfgSampClkTiming(gRESETtask, "/Dev1/Ctr1InternalOutput", AOrate,  
   DAQmx_Val_Rising, DAQmx_Val_ContSamps, sampsPerCycle)); 
  DAQmxErrChk (DAQmxWriteDigitalU32(gRESETtask, sampsPerCycle, 0, 10.0,   
   DAQmx_Val_GroupByChannel, RESETdata, &written, NULL)); 
  DAQmxErrChk (DAQmxStartTask(gRESETtask)); 
 #endif 
 #endif 
 
//============================================================================= 
// 5. Data Acquisition (Continuous Pattern I/O; sampling is controlled by REQ signal at /Dev2/PFI2) 
//============================================================================= 
 GetCtrlVal(panelHandle, PANEL_DIPORTSPHYSICAL, chan); 
 WriteCharParameter("DI_Ports_Physical", chan); 
 GetCtrlVal(panelHandle, PANEL_SAMPSTOREAD, &sampsToRead);    
 WriteParameter("sampsToRead", (double)sampsToRead); 
 GetCtrlVal(panelHandle, PANEL_RATE, &rate);    
 WriteParameter("rate", (double)rate); 
 DAQmxErrChk (DAQmxCreateTask("Digital_Input_Data_Acquisition", &gDItask)); 
 DAQmxErrChk (DAQmxCreateDIChan(gDItask, chan, "DI Pattern IO", DAQmx_Val_ChanForAllLines)); 
 DAQmxErrChk (DAQmxCfgSampClkTiming(gDItask, REQclockSource6534, rate, DAQmx_Val_Rising,  
  DAQmx_Val_ContSamps, (10*sampsToRead<10000) ? 10000 : 10*sampsToRead)); 
 DAQmxErrChk (DAQmxStartTask(gDItask)); // Start Data Acquisition ( ~ 140 ms) 
 gTrapDAQRunning = 1; 
 
//============================================================================= 
// 6. Change Detection Configuration for DAQmxRead / Write calling 
// (P0.0) is externally (by wire) connected from  
// RESET (Dev1/PFI12 at CONTINUOUS_TRAP, (P0.7) at ON_DEMAND_TRAP). 
// It detects the change (the rising edge) of RESET, calling DATA acqusition / HDD Writing function. 
//=============================================================================
 DAQmxErrChk (DAQmxCreateTask("Change Detection", &gChangeDetectiontask)); 
 DAQmxErrChk (DAQmxCreateDIChan(gChangeDetectiontask, "Dev1/port0/line0", "Change Detection",  
  DAQmx_Val_ChanPerLine)); 
 DAQmxErrChk (DAQmxCfgChangeDetectionTiming(gChangeDetectiontask, "Dev1/port0/line0", NULL,  
  DAQmx_Val_ContSamps, 1000)); 
 DAQmxErrChk (DAQmxRegisterSignalEvent(gChangeDetectiontask, DAQmx_Val_ChangeDetectionEvent, 
  0, ChangeDetectionCallback, NULL)); 
 DAQmxErrChk (DAQmxStartTask(gChangeDetectiontask)); 
  
 if ( (gData = (unsigned int*)malloc(sampsToRead*sizeof(unsigned int)))==NULL ) { 
  MessagePopup("Error","Not enough memory for data for gData"); 
  goto Error; 
 } 
 if ( (gDataValues = (unsigned int*)malloc(sampsToRead*sizeof(unsigned int)))==NULL ) { 
  MessagePopup("Error","Not enough memory for data for gDataValues"); 
  goto Error; 
 } 
 
//============================================================================= 
// 7. Create Thread-Safe Queues to transfer data between threads 
//============================================================================= 
#ifdef THREAD_SAFETY_QUE 
 if (CmtNewTSQ (10*sampsToRead, sizeof(double), OPT_TSQ_DYNAMIC_SIZE, &g_timerQueueHdl)  
 < 0) { 
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  DAQmxError = -1; 
  goto Error; 
 }         
 if (CmtNewTSQ (10*sampsToRead, sizeof(unsigned int), OPT_TSQ_DYNAMIC_SIZE, &g_dataQueueHdl) 
 < 0) { 
  DAQmxError = -2; 
  goto Error; 
 } 
#endif 
 
//============================================================================= 
// 8. Initialize Thread-Safe Variables 
//============================================================================= 
 InitializeIndex(); 
 InitializeReadIndex(); 
 InitializeWriteIndex(); 
 InitializeAutoCalibrationIndex(); 
 SetIndex(0); 
 SetReadIndex(0); 
 SetWriteIndex(0); 
 SetAutoCalibrationIndex(1); 
  
//============================================================================= 
// 8.1. Write Log File 
//============================================================================= 
QueryPerformanceCounter(&gTime2); 
 time12 = (double)(gTime2.QuadPart - gTime1.QuadPart) / (double)gTicksPerSecond.QuadPart * 1000.0; 
 sprintf(errBuff, "%.06f ms", time12); 
 SetCtrlVal(SM, PANEL_HEXVALUE, errBuff); // 1 : sm.uir 
 
#ifdef WRITE_LOG_FILE 
 fprintf(gFp, "[%s, %s] Data Collection Starts\n", DateStr(), TimeStr()); 
 fprintf(gFp_thread, "[%s, %s] Initial Time Delay from AO Trapping : %.06f ms\n", DateStr(), TimeStr(), 
 time12); 
#endif  
 
//============================================================================= 
// 9. Auto-calibration 
//============================================================================= 
 // Only if Autocalibration is checked "Yes"... 
 if (bIsAutoCalibration_Checked) { 
  LARGE_INTEGER timer1, timer2; 
      int index=1; 
      char temp[256]; 
   
QueryPerformanceCounter(&timer1); 
  GetCtrlVal(AUTO_CALIBRATION, PANEL_CALI_NUMERIC_CALI_PERIOD,   
   &g_AutoCalibrationDelay);  g_AutoCalibrationDelay *= 60.0; 
 
  // 9.1. Create the new timer for Auto-Calibration Pulse ; It takes g_AutoCalibrationDelay before  
  launching the very first thread 
  g_AutoCalibrationTimerId = NewAsyncTimer (g_AutoCalibrationDelay, -1, 0,    
   AutoCalibration_Callback, NULL); 
  if (g_AutoCalibrationTimerId <= 0) { 
   sprintf(errBuff, "Async update timer could not be created due to the error of %d",  
    g_AutoCalibrationTimerId); 
   MessagePopup("Async Timer", errBuff); 
   WriteLog(errBuff, FALSE); 
   g_AutoCalibrationTimerId = 0; 
   DAQmxError = -4; 
   goto Error; 
  } 



 221 

 

  
  // 9.2. UV Laser Shutter Controlling Pulse (P0.16) of 6229) Configuration 
  DAQmxErrChk (DAQmxCreateTask("Autocalibration Test Pulse", &gAutoCalibration_task)); 
  DAQmxErrChk (DAQmxCreateDOChan(gAutoCalibration_task, "/Dev1/port0/line16",   
   "Autocalibration Test Pulse", DAQmx_Val_ChanPerLine)); 
  DAQmxErrChk (DAQmxStartTask(gAutoCalibration_task)); 
  DAQmxErrChk (DAQmxWriteDigitalScalarU32(gAutoCalibration_task, 1, 10.0, 0, NULL)); 
 
  // 9.3. the First Calibration 
  StopTASKs(index); 
  Calibration_Update(index); 
  StartTASKs(index); 
QueryPerformanceCounter(&timer2); 
  
  // Log Writing 
  time12 = (double)(timer2.QuadPart - timer1.QuadPart) / (double)gTicksPerSecond.QuadPart; 
  sprintf(errBuff, "[%s, %s] Calibration [#%d] (W%d) : %.06f sec", DateStr(), TimeStr(), index,  
   GetWriteIndex(), time12); 
  SetCtrlVal(SM, PANEL_HEXVALUE, errBuff); 
  #ifdef WRITE_LOG_FILE 
   fprintf(gFp_thread, "%s\n", errBuff); 
  #endif 
 } 
 
Error: 
 if ( DAQmxFailed(DAQmxError) ) { 
  DAQmxGetExtendedErrorInfo(errBuff, 2048); 
  MessagePopup("DAQmx Error", errBuff); 
  WriteLog(errBuff, FALSE); 
 } 
 if ( AOdata ) 
  free(AOdata); 
 if ( RESETdata ) 
  free(RESETdata); 
 return DAQmxError; 
} 
 
 
//====================================================================================
// Change Detection - Detect the Rising Edge of RESET signal 
//====================================================================================
int CVICALLBACK ChangeDetectionCallback(TaskHandle taskHandle, int32 signalID, void *callbackData) { 
 
 // Launch a DATA Acquisition (Reading) Thread 
 CmtScheduleThreadPoolFunction (DEFAULT_THREAD_POOL_HANDLE, DAQ_thread, NULL,  
  &gDAQThreadId); 
 return 0; 
} 
 

 

C.2.4 Data reading thread (sm_fn.c) 
 
//====================================================================================
// DATA acquisition (Reading) Thread 
//====================================================================================
int CVICALLBACK DAQ_thread (void *functionData) { 
 double currentTime = 0.0; 
 double deltaTime   = 0.0; 
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 char buff[100]; 
 unsigned int sampsToRead; 
 int index=0, sampsRead=0, totsampsRead=0, i; 
 LARGE_INTEGER timer1, timer2, timer3, timer4, timer5, ticksPerSecond, timerC; 
 double time12, time23, time34, timeC5; 
 double timeValue[1]; 
 DWORD dwBytesWritten=0; 
 DWORD NumberOfBytesTransferred=0; 
 double AOfrequency; 
 
 EnterCriticalSection( &gLock_READ ); 
QueryPerformanceCounter(&timer1); 
QueryPerformanceCounter(&timer3); 
 index = GetReadIndex(); 
 SetReadIndex(++index); 
 
 #ifdef PSEUDO_SAMPLE // for testing purpose 
  for (i=0; i<ksj; i++) { 
   gData[i] = (i % 1024) | 32768; 
   //gData[i] = (rand() % 1024) | 32768; 
  } 
  sampsRead = ksj; 
 #else 
  GetCtrlVal(SM, PANEL_SAMPSTOREAD, &sampsToRead); 
  DAQmxReadDigitalU32(gDItask, DAQmx_Val_Auto, 10.0, DAQmx_Val_GroupByChannel,  
   gData, sampsToRead, &sampsRead, NULL); //0.3 ~ 0.5 ms for 300 samples 
 #endif 
  
 //if (sampsRead > 0) { 
 #ifdef THREAD_SAFETY_QUE // Current Version 
  // Queue Writing 
  CmtWriteTSQData (g_dataQueueHdl, gData, sampsRead, TSQ_INFINITE_TIMEOUT,   
   NULL); // ~ 2ms for 10^5 samples 
 #endif 
 
 #ifndef NEW_DATA_STORAGE_THREAD_AT_CHANGE_DETECTION  
  #ifdef NEW_DATA_STORAGE_THREAD_AFTER_DAQ  // Current Version 
   gnItemsRead = sampsRead; 
    
   // Launch a DATA Storage (Writing) Thread 
   CmtScheduleThreadPoolFunction (DEFAULT_THREAD_POOL_HANDLE,   
    Storage_thread, NULL, &gDataStorageThreadId2); 
  #endif 
 #endif 
 //} 
  
QueryPerformanceCounter(&timer4); 
 timeValue[0] = (double)(timer1.QuadPart - gTime1.QuadPart) / (double)gTicksPerSecond.QuadPart *  
  1000.0; 
  
 #ifdef WRITE_LOG_FILE 
  time34 = (double)(timer4.QuadPart - timer3.QuadPart) /      
   (double)gTicksPerSecond.QuadPart * 1000.0; 
  fprintf(gFp_thread, "R\t%d\t%.06f\tR%d\t%.06f\n", index, timeValue[0], sampsRead,   
   time34); 
 #endif 
 
 gTime1.QuadPart = timer1.QuadPart; 
 
 #ifdef DISPLAY_READING_LOG 
  GetCtrlVal(PARAMETER2, PANELPARA2_FREQUENCY, &AOfrequency);  
QueryPerformanceCounter(&timer2); 



 223 

 

  time12 = (double)(timer2.QuadPart - timer1.QuadPart) / (double)gTicksPerSecond.QuadPart *  
   1000.0; 
  if (index % (int)AOfrequency == 1) { 
   sprintf(buff, "R(%d) %.06f ms %d : %d-%d", index, time12, sampsRead,   
   gData[max(0,totsampsRead-1)]&64512, gData[max(0,totsampsRead-1)]&1023); 
   SetCtrlVal(SM, PANEL_HEXVALUE, buff); // 1 : sm.uir 
  } 
 #endif 
 
 LeaveCriticalSection( &gLock_READ ); 
 return 0; 
} 
 

 

C.2.5 Massive data storage thread (sm_fn.c) 
 
//====================================================================================
// Massive Data Storage (HDD Writing) Thread 
//====================================================================================
int CVICALLBACK Storage_thread(void *functionData) { 
 int i=0, pmt, index=0; 
 char buff[1000]={'\0'}; 
 LARGE_INTEGER timer1, timer2, timer3, timer4; 
 double time12, time34; 
 DWORD dwBytesWritten=0; 
 DWORD NumberOfBytesTransferred=0; 
 int nItemsData=0; 
 int temp=0; 
 double AOfrequency, width; 
 double *graph_X=NULL;  
     
 EnterCriticalSection( &gLock_WRITE ); 
QueryPerformanceCounter(&timer1); 
 index = GetWriteIndex(); 
 SetWriteIndex(++index); 
 
#ifdef THREAD_SAFETY_QUE // Current Version 
 // Getting data from Queue 
 gnItemsRead = 0; 
 CmtGetTSQAttribute (g_dataQueueHdl, ATTR_TSQ_ITEMS_IN_QUEUE, &nItemsData); 
 if (nItemsData > 0) { 
  if ((gDataValues = (unsigned int*) realloc (gDataValues, nItemsData*sizeof(unsigned int))) !=  
  NULL) { 
   gnItemsRead = CmtReadTSQData (g_dataQueueHdl, gDataValues, nItemsData,  
    TSQ_INFINITE_TIMEOUT, 0); 
   if (gnItemsRead > 0) { 
    gnItemsTotalRead += gnItemsRead; 
   #ifdef OVERLAPPED_IO // Current Version 
    if (GetOverlappedResult (ghFile, &gOverlapped, &NumberOfBytesTransferred, 
    TRUE) == FALSE) { 
     sprintf (buff, "GetOverlappedResult %dth : %d bytes transfer  
      (ERROR %d)\n", GetWriteIndex(),    
      NumberOfBytesTransferred,  GetLastError()); 
     MessagePopup("GetOverlappedResult Error", buff); 
     WriteLog(buff, FALSE); 
    } 
    gFileSize.QuadPart += NumberOfBytesTransferred; 
    gOverlapped.Offset     = gFileSize.LowPart;  
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    gOverlapped.OffsetHigh = gFileSize.HighPart;  
    WriteFile( ghFile, gDataValues, gnItemsRead*sizeof(unsigned int),   
     &dwBytesWritten, &gOverlapped ); 
   #else  
    WriteFile( ghFile, gDataValues, gnItemsRead*sizeof(unsigned int),   
     &dwBytesWritten, NULL ); 
    NumberOfBytesTransferred = dwBytesWritten; 
   #endif  
   } 
  } 
 } 
#else 
#ifdef OVERLAPPED_IO  
 if (GetOverlappedResult (ghFile, &gOverlapped, &NumberOfBytesTransferred, TRUE) == FALSE) { 
  sprintf (buff, "GetOverlappedResult %dth : %d bytes transfer (ERROR %d)\n", GetWriteIndex(),  
   NumberOfBytesTransferred, GetLastError()); 
  MessagePopup("GetOverlappedResult Error", buff); 
  WriteLog(buff, FALSE); 
 } 
 gFileSize.QuadPart += NumberOfBytesTransferred; 
 gOverlapped.Offset     = gFileSize.LowPart;  
 gOverlapped.OffsetHigh = gFileSize.HighPart;  
 WriteFile( ghFile, gData, gnItemsRead*sizeof(unsigned int), &dwBytesWritten, &gOverlapped ); 
#else 
 WriteFile( ghFile, gData, gnItemsRead*sizeof(unsigned int), &dwBytesWritten, NULL ); 
 NumberOfBytesTransferred = dwBytesWritten; 
#endif 
#endif 
 
QueryPerformanceCounter(&timer2);                  
 time12 = (double)(timer2.QuadPart - timer1.QuadPart) / (double)gTicksPerSecond.QuadPart * 1000.0; 
  
#ifdef DISPLAY_WRITING_LOG 
 GetCtrlVal(PARAMETER2, PANELPARA2_WIDTH, &width); width *= 1.0e-6;  
 GetCtrlVal(PARAMETER2, PANELPARA2_FREQUENCY, &AOfrequency);  
   
 // every 1.0 sec, it displays histogram... 
 if (index % (int)AOfrequency == (int)(AOfrequency*0.5) + 1) { 
QueryPerformanceCounter(&timer3); 
  fprintf(gFp, "%g\n", gnItemsTotalRead / ( (width+0.001)*AOfrequency )); 
   
  if (GetgRTPhotonCount() == 1) { 
   //Take data for photon density plot here (Krish) 
   if (g_Photon_Count_Index < PHOTON_COUNTING_TIME_SCALE) { 
    g_Photon_Count[g_Photon_Count_Index] = gnItemsTotalRead /   
     ( (width+0.001)*AOfrequency ); 
   } else { 
    int j; 
    for (j=1; j<PHOTON_COUNTING_TIME_SCALE; j++) 
     g_Photon_Count[j-1] = g_Photon_Count[j]; 
    g_Photon_Count[PHOTON_COUNTING_TIME_SCALE-1] =   
     gnItemsTotalRead / ( (width+0.001)*AOfrequency ); 
   } 
   g_Photon_Count_Index++; 
  
   DeleteGraphPlot(SM, PANEL_Photon_Count, -1, VAL_DELAYED_DRAW); 
   if (g_Photon_Count_Index < PHOTON_COUNTING_TIME_SCALE)  
    PlotY (SM, PANEL_Photon_Count, g_Photon_Count, g_Photon_Count_Index, 
     VAL_DOUBLE, VAL_FAT_LINE, VAL_EMPTY_SQUARE,  
     VAL_SOLID, 1, VAL_YELLOW); 
   else 
    PlotY (SM, PANEL_Photon_Count, g_Photon_Count,    
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     PHOTON_COUNTING_TIME_SCALE, VAL_DOUBLE,   
     VAL_FAT_LINE, VAL_EMPTY_SQUARE, VAL_SOLID, 1,  
     VAL_YELLOW); 
   } 
   gnItemsTotalRead = 0; 
   
   if (gnItemsRead > 0) { 
   #ifdef PLOT_gHist_decay_time_corrected 
    double LaserFrequency; 
    unsigned int data; 
    
    //Init_Histrograms(); 
    graph_X = (double*) malloc(gTimingStep * sizeof(double));  
    ZeroMemory(graph_X, sizeof(graph_X)); 
    
    for (i=0; i<gnItemsRead; i++) { 
    #ifdef THREAD_SAFETY_QUE 
     data = gDataValues[i]; 
    #else 
     data = gData[i]; 
    #endif 
     // Low 10 bits for Laser time gap 
     switch ( data & 64512 ) { 
      case 1024 : gHist_decay_time1[data & 1023]++;   
       break; 
      case 2048 : gHist_decay_time2[data & 1023]++;   
       break; 
      case 4096 : gHist_decay_time3[data & 1023]++;   
       break; 
      case 8192 : gHist_decay_time4[data & 1023]++;   
       break; 
      case 16384 : gHist_decay_time5[data & 1023]++;   
       break; 
      case 32768 : gHist_decay_time6[data & 1023]++;   
       break; 
      default : break; 
     } 
     //gHist_decay_time[data & 1023]++;    
    } 
    // gTimingStep : default 555 -> 11.1 ns (90Mhz), which means each step  
    corresponds to 20 pico second. 
    GetCtrlVal(SM, PANEL_NUMERIC_TIMING_STEP, &gTimingStep); 
    // Data Correction 
    correct_with_offset(gHist_decay_time1, gHist_decay_time_corrected1, 0, 1024, 
     gTimingStep, gCorrections1, gPMT1_Offset);   
    correct_with_offset(gHist_decay_time2, gHist_decay_time_corrected2, 0, 1024, 
     gTimingStep, gCorrections2, gPMT2_Offset);   
    correct_with_offset(gHist_decay_time3, gHist_decay_time_corrected3, 0, 1024, 
     gTimingStep, gCorrections3, gPMT3_Offset);   
    correct_with_offset(gHist_decay_time4, gHist_decay_time_corrected4, 0, 1024, 
     gTimingStep, gCorrections4, gPMT4_Offset);   
    correct_with_offset(gHist_decay_time5, gHist_decay_time_corrected5, 0, 1024, 
     gTimingStep, gCorrections5, gPMT5_Offset);   
    correct_with_offset(gHist_decay_time6, gHist_decay_time_corrected6, 0, 1024, 
     gTimingStep, gCorrections6, gPMT6_Offset);    
 
    GetCtrlVal(SM, PANEL_LaserFrequency, &LaserFrequency); 
    LaserFrequency *= 1.0e6; 
    
    for (i=0; i<gTimingStep; i++) { 
     gHist_decay_time_corrected[i] = gHist_decay_time_corrected1[i] +  
     gHist_decay_time_corrected2[i] + gHist_decay_time_corrected3[i] 
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     + gHist_decay_time_corrected4[i] + gHist_decay_time_corrected5[i] 
     + gHist_decay_time_corrected6[i]; 
     //+ gHist_decay_time_corrected0[i]; 
     graph_X[i] = 1.0/LaserFrequency*1.0e9*i/gTimingStep; 
    } 
    
    DeleteGraphPlot(SM, PANEL_GRAPH, -1, VAL_DELAYED_DRAW); 
    PlotXY(SM, PANEL_GRAPH, graph_X, gHist_decay_time_corrected,  
     gTimingStep, VAL_DOUBLE, VAL_DOUBLE, VAL_THIN_LINE,  
     VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_RED); 
   #else 
   #ifdef PLOT_gHist_laser_tick 
    ZeroMemory(gHist_laser_tick, sizeof(gHist_laser_tick)); 
    for (i=0; i<gnItemsRead; i++) { 
    // High 16 bits for actual time gap 
    #ifdef THREAD_SAFETY_QUE 
     temp = (gDataValues[i] & 4294901760) >> 16; 
     gHist_laser_tick[temp]++; 
    #else  
     gHist_laser_tick[(gData[i] & 4294901760) >> 16]++;    
    #endif 
    } 
    DeleteGraphPlot(SM, PANEL_GRAPH, -1, VAL_DELAYED_DRAW); 
    PlotY(SM, PANEL_GRAPH, gHist_laser_tick, 65536,    
     VAL_UNSIGNED_INTEGER, VAL_THIN_LINE,   
     VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_RED); 
   #endif 
   #endif 
   } 
QueryPerformanceCounter(&timer4);   
   time34 = (double)(timer4.QuadPart - timer3.QuadPart) /     
    (double)gTicksPerSecond.QuadPart * 1000.0; 
   sprintf(buff, "W(%d) %.06f ms (Writing) %.06f ms (Histogram) W%d %d/%d\n", index,  
   time12, time34, gnItemsRead, NumberOfBytesTransferred, sizeof(unsigned int)); 
   SetCtrlVal (SM, PANEL_HEXVALUE, buff); 
  } 
 #endif 
 
QueryPerformanceCounter(&timer2);                  
 time12 = (double)(timer2.QuadPart - timer1.QuadPart) / (double)gTicksPerSecond.QuadPart * 1000.0; 
 
#ifdef WRITE_LOG_FILE  
 fprintf(gFp_thread, "W\t%d\t%.06f\tW%d\t%d/%d\n", index, time12, gnItemsRead,    
  NumberOfBytesTransferred, sizeof(unsigned int)); 
#endif 
 if (graph_X) 
  free (graph_X); 
 
 LeaveCriticalSection( &gLock_WRITE ); 
 return 0; 
} 
 

 

C.2.6 Analysis tool (sm.c in SM_UNIX version) 
 
//====================================================================================
// Main Function 
//====================================================================================
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int main (int argc, char *argv[]) { 
 time_t s1, s2; 
 int time_diff, mode; 
  
 s1 = time (NULL); 
 if (argc >= 2) 
  mode = ReadINIparameters(argv[1]);  
 else 
  mode = ReadINIparameters("sm.ini");  // Default 
 get_gPMT_Offsets(); 
 
 // Time Calibration for The BOX : Default 555 steps during 11.1 ns (90Mhz pulse laser), which means each 
 step corresponds to 20 pico second. 
 TimeCalibration();  
 
 switch (mode) { 
  case 1 : Analyze_UNIX();  // Analysis of raw data file 
   break; 
  case 2 : Histogram_for_TimeCalibration();  // histogram for time calibration 
   break; 
  case 3 : PhotonCountAnalyze_UNIX();  // Photon Count Analysis 
   break; 
  case 4 : Selective_PhotonCountAnalyze_UNIX(); // Selective Photon Count Analysis 
   break; 
  case 5 : Concatenate_PhotonCountAnalysis_UNIX();  // Photon Count Analysis 
   break; 
  default : 
   break; 
 } 
 s2 = time (NULL); 
 time_diff = (int)(s2-s1); 
 printf("\n> Analysis finished at [%s]", DateTimeToString());  
 printf("\n> Execution Time = %d seconds (= %g minutes)\n\n", time_diff, time_diff/60.0); 
 return 0; 
} 
 
 
//====================================================================================
// Analyze function - UNIX Version 
//====================================================================================
int Analyze_UNIX(void) { 
 FILE *hFile; 
 int bIsBINARY = 1; 
 unsigned int i; 
 int BufferSize = 8*1024;  // 8 * 1024 Samples 
 double *graph_X=NULL, coeff; 
 unsigned int nBytesToRead; 
 unsigned int nItemsToRead; 
 unsigned int nItemsRead; 
 unsigned int *inBuffer; 
 unsigned int index=0; 
 char buff[255], buff2[255]; 
 FILE *fp, *fp1, *fp2, *fp3, *fp4, *fp5, *fp6, *fp0, *fp_bad, *fp_out_of_range; 
 FILE *fpHist, *fpRawHist; 
 int mode1, mode2, mode3, mode4, mode5, mode6; 
 unsigned int raw_decay_start1, raw_decay_end1, raw_decay_start2, raw_decay_end2, raw_decay_start3,  
  raw_decay_end3; 
 unsigned int raw_decay_start4, raw_decay_end4, raw_decay_start5, raw_decay_end5, raw_decay_start6,  
  raw_decay_end6; 
 double direct_corrected_decay, laser_tick=0.0, DecayStart=0.0, DecayEnd=0.0; 
 unsigned int datapoint=0, PMTBuffer=0, willbeRemoved, raw_decay; 
 unsigned int unwrapping_index=0, bad_count=0, error_count=0, out_of_range_count=0; 
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 nBytesToRead = sizeof(unsigned int) * BufferSize; // 32 KB block unit & unsigned int : 4 Bytes  
 nItemsToRead = BufferSize; 
 inBuffer = (unsigned int *)malloc(nBytesToRead); 
 graph_X = (double*) malloc(g_TimingStep * sizeof(double));  
    
 // determine the file extension (binary? or ascii?) 
 if ( strstr(g_RawDataFile, ".dat") != NULL ) 
  bIsBINARY = 1; 
 else if ( strstr(g_RawDataFile, ".txt") != NULL ) 
  bIsBINARY = 0; 
  
 // Opens an empty file for writing. If the given file exists, its contents are destroyed 
 fp = fopen(g_AnalyzedFile, "w");  
 fprintf(fp, "[%s]\n", DateTimeToString()); 
 
 strncpy(buff, g_AnalyzedFile, strlen(g_AnalyzedFile)-4); 
 buff[strlen(g_AnalyzedFile)-4] = '\0'; 
 strcat(buff, "_HIST.txt"); 
 fpHist = fopen(buff, "w");  
  
 strncpy(buff, g_AnalyzedFile, strlen(g_AnalyzedFile)-4); 
 buff[strlen(g_AnalyzedFile)-4] = '\0'; 
 strcat(buff, "_RAW_HIST.txt"); 
 fpRawHist = fopen(buff, "w"); 
  
 strncpy(buff, g_AnalyzedFile, strlen(g_AnalyzedFile)-4); 
 buff[strlen(g_AnalyzedFile)-4] = '\0'; 
 strcat(buff, "_PMT1.txt"); 
 fp1 = fopen(buff, "w"); 
 fprintf(fp1, "[%s]\n", DateTimeToString()); 
  
 strncpy(buff, g_AnalyzedFile, strlen(g_AnalyzedFile)-4); 
 buff[strlen(g_AnalyzedFile)-4] = '\0'; 
 strcat(buff, "_PMT2.txt"); 
 fp2 = fopen(buff, "w"); 
 fprintf(fp2, "[%s]\n", DateTimeToString()); 
  
 strncpy(buff, g_AnalyzedFile, strlen(g_AnalyzedFile)-4); 
 buff[strlen(g_AnalyzedFile)-4] = '\0'; 
 strcat(buff, "_PMT3.txt"); 
 fp3 = fopen(buff, "w"); 
 fprintf(fp3, "[%s]\n", DateTimeToString()); 
  
 strncpy(buff, g_AnalyzedFile, strlen(g_AnalyzedFile)-4); 
 buff[strlen(g_AnalyzedFile)-4] = '\0'; 
 strcat(buff, "_PMT4.txt"); 
 fp4 = fopen(buff, "w"); 
 fprintf(fp4, "[%s]\n", DateTimeToString()); 
  
 strncpy(buff, g_AnalyzedFile, strlen(g_AnalyzedFile)-4); 
 buff[strlen(g_AnalyzedFile)-4] = '\0'; 
 strcat(buff, "_PMT5.txt"); 
 fp5 = fopen(buff, "w"); 
 fprintf(fp5, "[%s]\n", DateTimeToString()); 
  
 strncpy(buff, g_AnalyzedFile, strlen(g_AnalyzedFile)-4); 
 buff[strlen(g_AnalyzedFile)-4] = '\0'; 
 strcat(buff, "_PMT6.txt"); 
 fp6 = fopen(buff, "w"); 
 fprintf(fp6, "[%s]\n", DateTimeToString()); 
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 strncpy(buff, g_AnalyzedFile, strlen(g_AnalyzedFile)-4); 
 buff[strlen(g_AnalyzedFile)-4] = '\0'; 
 strcat(buff, "_PMT0.txt"); 
 fp0 = fopen(buff, "w"); 
 fprintf(fp0, "[%s]\n", DateTimeToString()); 
 
 strncpy(buff, g_AnalyzedFile, strlen(g_AnalyzedFile)-4); 
 buff[strlen(g_AnalyzedFile)-4] = '\0'; 
 strcat(buff, "_out_of_range.txt"); 
 fp_out_of_range = fopen(buff, "w"); 
 fprintf(fp_out_of_range, "[%s]\n", DateTimeToString());  
 
 strncpy(buff, g_AnalyzedFile, strlen(g_AnalyzedFile)-4); 
 buff[strlen(g_AnalyzedFile)-4] = '\0'; 
 sprintf(buff2, "_bad%02d.txt", g_PhotonRemoval); 
 strcat(buff, buff2); 
 fp_bad = fopen(buff, "w"); 
 fprintf(fp_bad, "[%s]\n", DateTimeToString()); 
 
 DecayStart = g_DecayWinStart / (1.0/g_LaserFrequency) * g_TimingStep; 
 DecayEnd = g_DecayWinEnd / (1.0/g_LaserFrequency) * g_TimingStep; 
 
 mode1 = calc_raw_decay(&raw_decay_start1, &raw_decay_end1, DecayStart, DecayEnd, gCorrections1,  
  gPMT1_Offset, (int)g_TimingStep); 
 mode2 = calc_raw_decay(&raw_decay_start2, &raw_decay_end2, DecayStart, DecayEnd, gCorrections2,  
  gPMT2_Offset, (int)g_TimingStep); 
 mode3 = calc_raw_decay(&raw_decay_start3, &raw_decay_end3, DecayStart, DecayEnd, gCorrections3,  
  gPMT3_Offset, (int)g_TimingStep); 
 mode4 = calc_raw_decay(&raw_decay_start4, &raw_decay_end4, DecayStart, DecayEnd, gCorrections4,  
  gPMT4_Offset, (int)g_TimingStep); 
 mode5 = calc_raw_decay(&raw_decay_start5, &raw_decay_end5, DecayStart, DecayEnd, gCorrections5,  
  gPMT5_Offset, (int)g_TimingStep); 
 mode6 = calc_raw_decay(&raw_decay_start6, &raw_decay_end6, DecayStart, DecayEnd, gCorrections6,  
  gPMT6_Offset, (int)g_TimingStep); 
 
 // Analysis of Raw BINARY Data 
 if (bIsBINARY) { 
  int old_laser_tick=0, new_laser_tick=0; 
  
  hFile = fopen(g_RawDataFile, "rb"); 
  if (hFile == NULL)  
   return -1; 
   
  while( !feof( hFile ) ) {  // Check for end of file.  
   nItemsRead = fread(inBuffer, sizeof(unsigned int), nItemsToRead, hFile); 
   if( ferror( hFile ) ) { 
    printf( "Read error\n" ); 
    break; 
   } 
   index++; 
    
   for (i=0; i<nItemsRead; i++) { // 8 * 1024 Samples for maximum reading 
    new_laser_tick = (inBuffer[i] & 4294901760) >> 16; 
    raw_decay = inBuffer[i] & 1023; 
 
    if (new_laser_tick < old_laser_tick) { 
     old_laser_tick -= 65536; 
     if (g_isUnwrapping)  
      unwrapping_index++; 
    } 
    laser_tick = (double)new_laser_tick + 65536.0*(double)unwrapping_index; 
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    // Incorporate removal of photons spaced by g_PhotonRemoval laser   
    pulses/ticks or less (Modified by SJKim, at Jan 4. 2008) 
    willbeRemoved = (new_laser_tick-old_laser_tick <= g_PhotonRemoval)? 1 : 0; 
    old_laser_tick = new_laser_tick; 
     
    switch ( inBuffer[i] & 64512 ) { 
     case 1024 : PMTBuffer = 1; 
      if ( calc_hist(laser_tick, PMTBuffer, raw_decay,   
      &direct_corrected_decay, raw_decay_start1,   
      raw_decay_end1, gDirectCorrection1, gPMT1_Offset,  
      g_TimingStep,willbeRemoved, fp_bad, &bad_count,  
      mode1, fp_out_of_range, &out_of_range_count, fp1,  
      gHist_decay_time1) < 0 ) 
       continue; 
       break; 
     case 2048 : PMTBuffer = 2; 
      if ( calc_hist(laser_tick, PMTBuffer, raw_decay,   
      &direct_corrected_decay, raw_decay_start2,   
      raw_decay_end2, gDirectCorrection2, gPMT2_Offset,  
      g_TimingStep, willbeRemoved, fp_bad, &bad_count,  
      mode2, fp_out_of_range, &out_of_range_count, fp2,  
      gHist_decay_time2) < 0 ) 
       continue; 
       break; 
     case 4096 : PMTBuffer = 3; 
      if ( calc_hist(laser_tick, PMTBuffer, raw_decay,   
      &direct_corrected_decay, raw_decay_start3,   
      raw_decay_end3, gDirectCorrection3, gPMT3_Offset,  
      g_TimingStep, willbeRemoved, fp_bad, &bad_count,  
      mode3, fp_out_of_range, &out_of_range_count, fp3,  
      gHist_decay_time3) < 0 ) 
       continue; 
       break; 
     case 8192 : PMTBuffer = 4; 
      if ( calc_hist(laser_tick, PMTBuffer, raw_decay,   
      &direct_corrected_decay, raw_decay_start4,   
      raw_decay_end4, gDirectCorrection4, gPMT4_Offset,  
      g_TimingStep, willbeRemoved, fp_bad, &bad_count,  
      mode4, fp_out_of_range, &out_of_range_count, fp4,  
      gHist_decay_time4) < 0 ) 
       continue; 
       break; 
     case 16384: PMTBuffer = 5; 
      if ( calc_hist(laser_tick, PMTBuffer, raw_decay,   
      &direct_corrected_decay, raw_decay_start5,   
      raw_decay_end5, gDirectCorrection5, gPMT5_Offset,  
      g_TimingStep, willbeRemoved, fp_bad, &bad_count,  
      mode5, fp_out_of_range, &out_of_range_count, fp5,  
      gHist_decay_time5) < 0 ) 
       continue; 
       break; 
     case 32768: PMTBuffer = 6; 
      if ( calc_hist(laser_tick, PMTBuffer, raw_decay,   
      &direct_corrected_decay, raw_decay_start6,   
      raw_decay_end6, gDirectCorrection6, gPMT6_Offset,  
      g_TimingStep, willbeRemoved, fp_bad, &bad_count,  
      mode6, fp_out_of_range, &out_of_range_count, fp6,  
      gHist_decay_time6) < 0 ) 
       continue; 
       break; 
     default : PMTBuffer = (inBuffer[i] & 64512);   
      // ERROR - Krish(12/30/07): Instead of showing PMT# as  
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      // zero it will show the actual 6 digit binary number 
      if ( calc_hist(laser_tick, PMTBuffer, raw_decay,   
      &direct_corrected_decay, raw_decay_start1,   
      raw_decay_end1, gDirectCorrection1, gPMT1_Offset,  
      g_TimingStep, willbeRemoved, fp_bad, &bad_count,  
      mode1, fp_out_of_range, &out_of_range_count, fp0,  
      gHist_decay_time0) < 0 ) 
       continue; 
       error_count++; 
    } 
    fprintf(fp, "%.15g\t%u\t%04u\t%04f\n", laser_tick, PMTBuffer, raw_decay,  
     direct_corrected_decay); 
    if (g_isRawHistrogram) 
     gHist_decay_time[raw_decay]++; // Low 10 bits for Laser time gap 
   } 
   datapoint += i; 
  } 
  printf("Binary -> ASCII\n"); 
  printf("Total Number of Photons, within the range (%g ns ~ %g ns) = %d\n",    
  g_DecayWinStart*1.0e9, g_DecayWinEnd*1.0e9, datapoint - bad_count - out_of_range_count); 
  fclose(hFile); 
 } 
 // Analysis of Already-Analyzed ASCII Data Analyzing 
 else { 
  int err; 
  FILE *fpTxt; 
  double decay_corrected=0.0, new_laser_tick=0.0, old_laser_tick=0.0; 
  char temp[50]; 
   
  fpTxt = fopen(g_RawDataFile, "r"); 
  if (fpTxt == NULL)  
   return -1; 
   
  sprintf(temp, "[%s]\n", DateTimeToString()); 
  fseek(fpTxt, strlen(temp), SEEK_SET);   
   
  while ( err = fscanf (fpTxt, "%lf\t%d\t%d\t%lf", &new_laser_tick, &PMTBuffer, &raw_decay,  
  &decay_corrected) > 0 ) { 
   index++; 
    
   if (new_laser_tick < old_laser_tick) { 
    old_laser_tick -= 65536.0; 
    if (g_isUnwrapping)  
     unwrapping_index++; 
   } 
   laser_tick = new_laser_tick + 65536.0*(double)unwrapping_index; 
 
   // Incorporate removal of photons spaced by g_PhotonRemoval laser pulses/ticks or less  
   // (Modified by SJKim, at Jan 4. 2008) 
   willbeRemoved = (new_laser_tick-old_laser_tick <= g_PhotonRemoval) ? 1 : 0; 
   old_laser_tick = new_laser_tick; 
     
   switch ( PMTBuffer ) { 
    case 1 : if ( calc_hist(laser_tick, PMTBuffer, raw_decay,    
     &direct_corrected_decay, raw_decay_start1, raw_decay_end1,  
     gDirectCorrection1, gPMT1_Offset, g_TimingSte, willbeRemoved,  
     fp_bad, &bad_count,  mode1, fp_out_of_range,&out_of_range_count, 
     fp1, gHist_decay_time1) < 0 ) 
      continue; 
     break; 
    case 2 : if ( calc_hist(laser_tick, PMTBuffer, raw_decay,    
     &direct_corrected_decay, raw_decay_start2, raw_decay_end2,  
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     gDirectCorrection2, gPMT2_Offset, g_TimingStep, willbeRemoved,  
     fp_bad, &bad_count,  mode2, fp_out_of_range,&out_of_range_count, 
     fp2, gHist_decay_time2) < 0 ) 
      continue; 
     break; 
    case 3 : if ( calc_hist(laser_tick, PMTBuffer, raw_decay,    
     &direct_corrected_decay, raw_decay_start3, raw_decay_end3,  
     gDirectCorrection3, gPMT3_Offset, g_TimingStep, willbeRemoved,  
     fp_bad, &bad_count, mode3, fp_out_of_range, &out_of_range_count, 
     fp3, gHist_decay_time3) < 0 ) 
      continue; 
     break; 
    case 4 : if ( calc_hist(laser_tick, PMTBuffer, raw_decay,    
     &direct_corrected_decay, raw_decay_start4, raw_decay_end4,  
     gDirectCorrection4, gPMT4_Offset, g_TimingStep, willbeRemoved,  
     fp_bad, &bad_count, mode4, fp_out_of_range, &out_of_range_count, 
     fp4, gHist_decay_time4) < 0 ) 
      continue; 
     break; 
    case 5 : if ( calc_hist(laser_tick, PMTBuffer, raw_decay,    
     &direct_corrected_decay, raw_decay_start5, raw_decay_end5,  
     gDirectCorrection5, gPMT5_Offset, g_TimingStep, willbeRemoved,  
     fp_bad, &bad_count, mode5, fp_out_of_range, &out_of_range_count, 
     fp5, gHist_decay_time5) < 0 ) 
      continue; 
     break; 
    case 6 : if ( calc_hist(laser_tick, PMTBuffer, raw_decay,    
     &direct_corrected_decay, raw_decay_start6, raw_decay_end6,  
     gDirectCorrection6, gPMT6_Offset, g_TimingStep, willbeRemoved,  
     fp_bad, &bad_count, mode6, fp_out_of_range, &out_of_range_count, 
     fp6, gHist_decay_time6) < 0 ) 
      continue; 
     break; 
    default : if ( calc_hist(laser_tick, PMTBuffer, raw_decay,    
     &direct_corrected_decay, raw_decay_start1, raw_decay_end1,  
     gDirectCorrection1, gPMT1_Offset, g_TimingStep, willbeRemoved,  
     fp_bad, &bad_count, mode1, fp_out_of_range, &out_of_range_count, 
     fp0, gHist_decay_time0) < 0 ) 
      continue; 
     error_count++; 
   } 
   fprintf(fp, "%.15g\t%u\t%04u\t%04f\n", laser_tick, PMTBuffer, raw_decay,   
    direct_corrected_decay); 
   if (g_isRawHistrogram) 
    gHist_decay_time[raw_decay]++;    // Low 10 bits for decay time 
   datapoint++; 
  } 
  printf("ASCII -> ASCII\n"); 
  printf("Total Number of Photons, within the range (%g ns ~ %g ns) = %d\n",    
   g_DecayWinStart*1.0e9, g_DecayWinEnd*1.0e9, datapoint); 
   
  fclose(fpTxt); 
 } 
 printf("Total Number of Photons, out of range = %d\n", out_of_range_count); 
 printf("Total Number of Bad Photons (raw time gap <= %d) = %d\n", g_PhotonRemoval, bad_count); 
 printf("Total Number of Error Photons (PMT 0) = %d\n", error_count); 
 
 // Data Correction 
 // 555 -> 11.1 ns (90Mhz), which means each step corresponds to 20 pico second. 
 correct_with_offset(gHist_decay_time1, gHist_decay_time_corrected1, 0, 1024, g_TimingStep,   
  gCorrections1, gPMT1_Offset);  
 correct_with_offset(gHist_decay_time2, gHist_decay_time_corrected2, 0, 1024, g_TimingStep,   
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  gCorrections2, gPMT2_Offset); 
 correct_with_offset(gHist_decay_time3, gHist_decay_time_corrected3, 0, 1024, g_TimingStep,   
  gCorrections3, gPMT3_Offset); 
 correct_with_offset(gHist_decay_time4, gHist_decay_time_corrected4, 0, 1024, g_TimingStep,   
  gCorrections4, gPMT4_Offset); 
 correct_with_offset(gHist_decay_time5, gHist_decay_time_corrected5, 0, 1024, g_TimingStep,   
  gCorrections5, gPMT5_Offset); 
 correct_with_offset(gHist_decay_time6, gHist_decay_time_corrected6, 0, 1024, g_TimingStep,   
  gCorrections6, gPMT6_Offset); 
 correct_with_offset(gHist_decay_time0, gHist_decay_time_corrected0, 0, 1024, g_TimingStep,   
  gCorrections1, gPMT1_Offset); 
  
 coeff = 1.0/g_LaserFrequency*1.0e9/g_TimingStep; 
 for (i=0; i<g_TimingStep; i++) { 
  graph_X[i] = coeff * (double)i; 
 
  if ( (i >= DecayStart) && (i <= DecayEnd) ) { 
   gHist_decay_time_corrected[i] = gHist_decay_time_corrected1[i] +    
    gHist_decay_time_corrected2[i] + gHist_decay_time_corrected3[i] + 
    gHist_decay_time_corrected4[i] + gHist_decay_time_corrected5[i] +  
    gHist_decay_time_corrected6[i]; 
    //+ gHist_decay_time_corrected0[i]; 
   fprintf(fpHist, "%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\n", graph_X[i],  
    gHist_decay_time_corrected[i], gHist_decay_time_corrected1[i],   
    gHist_decay_time_corrected2[i], gHist_decay_time_corrected3[i],   
    gHist_decay_time_corrected4[i], gHist_decay_time_corrected5[i],   
    gHist_decay_time_corrected6[i], gHist_decay_time_corrected0[i]); 
  } else { 
   fprintf(fpHist, "%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\n", graph_X[i], 0.0, 
    0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0); 
  }   
 } 
  
 // Raw Data Histrogram 
 if (g_isRawHistrogram == 1) { 
  for (i=0; i<1024; i++) 
   fprintf(fpRawHist, "%u\t%u\t%u\t%u\t%u\t%u\t%u\t%u\t%u\n", i, gHist_decay_time[i],  
    gHist_decay_time1[i], gHist_decay_time2[i], gHist_decay_time3[i],   
    gHist_decay_time4[i], gHist_decay_time5[i], gHist_decay_time6[i],   
    gHist_decay_time0[i]); 
 } 
 
 fclose(fp); 
 fclose(fp1); 
 fclose(fp2); 
 fclose(fp3); 
 fclose(fp4); 
 fclose(fp5); 
 fclose(fp6); 
 fclose(fp0); 
 fclose(fp_out_of_range);  
 fclose(fp_bad); 
 fclose(fpHist); 
 fclose(fpRawHist); 
 
 if (inBuffer) free(inBuffer); 
 if (graph_X) free (graph_X); 
 
 return 0; 
} 
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//====================================================================================
// Calculate RAW decay number 
//====================================================================================
int calc_raw_decay(unsigned int *raw_decay_start, unsigned int *raw_decay_end, double DecayStart, double 
DecayEnd, partials **Corrections, int PMT_Offset, int TimingStep) { 
 int decay_start, decay_end, i=-1; 
 
 if ( (decay_start = (int)MAX(DecayStart, 0.0) + PMT_Offset) >= TimingStep)   
  decay_start -= TimingStep; 
 *raw_decay_start = Corrections[decay_start][0].index; 
 
 if ( (decay_end = (int)MIN(DecayEnd, TimingStep-1) + PMT_Offset) >= TimingStep)  
  decay_end -= TimingStep; 
 while (Corrections[decay_end][++i].index != -1);   
 *raw_decay_end = Corrections[decay_end][--i].index; 
  
 if (*raw_decay_start < *raw_decay_end) 
  return 1; 
 else 
  return 0; 
} 
 
 
//====================================================================================
// Photon Count Analyze & Display 
//====================================================================================
int PhotonCountAnalyze_UNIX(void) { 
 int *photon_count=NULL, *photon_count1=NULL, *photon_count2=NULL, *photon_count3=NULL,  
  *photon_count4=NULL, *photon_count5=NULL, *photon_count6=NULL, photon_count0=NULL, 
  BinSize, i, datapoint=0, err, BinNumber, PMTBuffer=0, decay; 
 char buff[255]; 
 double *graph_X=NULL, reciprocal_LaserFrequency, reciprocal_resolution, start_time=0.0, end_time=0.0; 
 double decay_corrected, Laser_tick; 
 FILE *fpTxt; 
 
 reciprocal_LaserFrequency = 1.0/g_LaserFrequency; 
 reciprocal_resolution = 1.0/g_resolution; 
   
 fpTxt = fopen(g_AnalyzedFile, "r"); 
 if (fpTxt == NULL)  
  return -1; 
 sprintf(buff, "[%s]\n", DateTimeToString()); 
 fseek(fpTxt, strlen(buff), SEEK_SET); 
  
 // Determine photon start time and end time 
 fscanf (fpTxt, "%lf\t%d\t%d\t%lf", &Laser_tick, &PMTBuffer, &decay, &decay_corrected); 
 start_time = floor( (Laser_tick / g_LaserFrequency) / g_resolution ) * g_resolution; 
 while (err=fscanf (fpTxt, "%lf\t%d\t%d\t%lf", &Laser_tick, &PMTBuffer, &decay, &decay_corrected) > 0); 
 end_time = ceil( (Laser_tick / g_LaserFrequency) / g_resolution ) * g_resolution; 
 printf("photon_start_time = %g sec\nphoton_end_time = %g sec\n", start_time, end_time); 
 
 // initialization 
 BinSize = (int)((end_time - start_time) / g_resolution); 
 printf("BinSize = %d\n", BinSize); 
 graph_X = (double*) malloc(BinSize * sizeof(double)); 
 photon_count = (int*) malloc(BinSize * sizeof(int)); 
 photon_count1 = (int*) malloc(BinSize * sizeof(int)); 
 photon_count2 = (int*) malloc(BinSize * sizeof(int)); 
 photon_count3 = (int*) malloc(BinSize * sizeof(int)); 
 photon_count4 = (int*) malloc(BinSize * sizeof(int)); 
 photon_count5 = (int*) malloc(BinSize * sizeof(int)); 
 photon_count6 = (int*) malloc(BinSize * sizeof(int)); 
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 photon_count0 = (int*) malloc(BinSize * sizeof(int)); 
  
 for (i=0; i<BinSize; i++) { 
  graph_X[i] = ((double)i + 0.5) * g_resolution + start_time; graph_X[i] *= 1.0e3;// in milli-sec unit 
  photon_count[i] = 0; 
  photon_count1[i] = 0; 
  photon_count2[i] = 0; 
  photon_count3[i] = 0; 
  photon_count4[i] = 0; 
  photon_count5[i] = 0; 
  photon_count6[i] = 0; 
  photon_count0[i] = 0; 
 } 
 
 rewind(fpTxt); 
 sprintf(buff, "[%s]\n", DateTimeToString()); 
 fseek(fpTxt, strlen(buff), SEEK_SET); 
  
 // Photon Count Histogram 
 while (err=fscanf (fpTxt, "%lf\t%d\t%d\t%lf", &Laser_tick, &PMTBuffer, &decay, &decay_corrected) > 0) { 
  BinNumber = (int) ( (Laser_tick * reciprocal_LaserFrequency - start_time)*reciprocal_resolution ); 
  if ( BinNumber < 0 ) continue; 
  if ( BinNumber >= BinSize ) break; 
 
  photon_count[BinNumber]++; 
  switch ( PMTBuffer ) { 
   case 1 :  photon_count1[BinNumber]++; 
    break; 
   case 2 : photon_count2[BinNumber]++; 
    break; 
   case 3 : photon_count3[BinNumber]++; 
    break; 
   case 4 :  photon_count4[BinNumber]++; 
    break; 
   case 5 : photon_count5[BinNumber]++; 
    break; 
   case 6 : photon_count6[BinNumber]++; 
    break; 
   default : photon_count0[BinNumber]++; 
    break; 
  } 
  datapoint++; 
 } 
 printf("Total Number of Photons Counted = %d\n", datapoint); 
 fclose(fpTxt); 
  
 // Histogram File Save 
 fpTxt = fopen(g_PhotonCountHisFile, "w"); 
 for (i=0; i<BinSize; i++) 
  fprintf(fpTxt, "%.15g\t%d\t\t%d\t%d\t%d\t%d\t%d\t%d\n", graph_X[i], photon_count[i],   
   photon_count1[i], photon_count2[i], photon_count3[i], photon_count4[i],   
   photon_count5[i], photon_count6[i]); 
 fclose(fpTxt); 
 
 if (graph_X) free (graph_X); 
 if (photon_count) free (photon_count); 
 if (photon_count1) free (photon_count1); 
 if (photon_count2) free (photon_count2); 
 if (photon_count3) free (photon_count3); 
 if (photon_count4) free (photon_count4); 
 if (photon_count5) free (photon_count5); 
 if (photon_count6) free (photon_count6); 



 236 

 

 if (photon_count0) free (photon_count0); 
 
 return 0; 
} 
 
 
//====================================================================================
// Concatenate Photon counts 
// Modified by SJK, at 11/12/2007 for clever peak finding 
//====================================================================================
int Concatenate_PhotonCountAnalysis_UNIX(void) { 
 int err, PMTBuffer=0, decay; 
 char buff[MAX_PATHNAME_LEN]={'\0'}; 
 char target_pathname[MAX_PATHNAME_LEN]={'\0'}; 
 double mstime1, mstime2, mstime_start, mstime_end; 
 double decay_corrected, Laser_tick, Laser_tick_start, Laser_tick_end; 
 double Laser_mstime, width, period; 
 unsigned int count_total, count1, count2, count3, count4, count5, count6; 
 FILE *fpTxt, *fpPhotonCount, *fpTarget, *fpPeak;  
 double peak_time_weighted_count_sum, peak_search_begin_mstime, peak_search_end_mstime; 
 unsigned int i, j, peak_count_sum, raw_peak_numbers, final_peak_numbers; 
 double *mstime_array=NULL, *raw_peak_average_array=NULL, *peak_average_array=NULL; 
 unsigned int *photon_count_array=NULL, *raw_peak_count_sum_array=NULL,    
  *peak_count_sum_array=NULL, *peak_finding_array=NULL; 
 unsigned int threshold; 
  
 if (g_AnalyzedFile[0] == '\0') { 
  printf("Error; Please analyze an ASCII unwrapped data first.\n"); 
  return -1; 
 } 
     
 // Reading (expected) width of the peak 
 width = g_PC_PeakWidth; 
 period = 1.0/(double)g_DropletFrequency; // Droplet Generator Frequency (sec) 
  
 // Redaing cursor positions & Bin numbers 
 threshold = (unsigned int)g_PC_Threshold; 
 
 mstime_start = MIN(g_PC_Start, g_PC_End) * 1.0e3; 
 mstime_end = MAX(g_PC_Start, g_PC_End) * 1.0e3; 
 
 // Open a Photon Count Histogram file 
 fpPhotonCount = fopen(g_PhotonCountHisFile, "r"); 
  
 // Open a Peak List file 
 strncpy(buff, g_ConcatenatedFile, strlen(g_ConcatenatedFile)-4); 
 buff[strlen(g_ConcatenatedFile)-4] = '\0'; 
 strcat(buff, "_peaks.txt"); 
 fpPeak = fopen(buff, "w"); 
  
 // Initialization 
 raw_peak_numbers = 0; 
 peak_search_begin_mstime = mstime_start - 0.5*width*1.0e3; 
 peak_search_end_mstime = mstime_end + 0.5*width*1.0e3; 
 
 // Load all peaks (over the threashold) into the memory 
 while ( err = fscanf (fpPhotonCount, "%lf\t%d\t\t%d\t%d\t%d\t%d\t%d\t%d", &Laser_mstime, &count_total, 
 &count1, &count2, &count3, &count4, &count5, &count6) > 0 ) { 
  if ((Laser_mstime >= peak_search_begin_mstime) &&      
  (Laser_mstime<=peak_search_end_mstime) ) { 
   if (count_total > threshold) {  // Over the Threshold 
    mstime_array = (double*) realloc( mstime_array,     
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     (++raw_peak_numbers)*sizeof(double) ); 
    photon_count_array = (unsigned int*) realloc( photon_count_array,   
     raw_peak_numbers*sizeof(unsigned int) ); 
    mstime_array[raw_peak_numbers-1] = Laser_mstime; 
    photon_count_array[raw_peak_numbers-1] = count_total; 
   } 
  } 
  if ( Laser_mstime > peak_search_end_mstime ) // Exit the loop 
   break; 
 } 
 
 // if not enough initial peak has been detected 
 if (raw_peak_numbers < 9) { 
  printf("Error; Please lower the threshold cursor to detect a reasonable number of photon count  
   peaks\n"); 
  goto error; 
 } 
 
 // Initialization 
 peak_count_sum = 0; 
 peak_time_weighted_count_sum = 0.0; 
  
 peak_search_begin_mstime = mstime_start - width*1.0e3; 
 peak_search_end_mstime = mstime_start + period*1.0e3; 
 final_peak_numbers = 0; 
  
 raw_peak_average_array = (double*) malloc(raw_peak_numbers * sizeof(double)); 
 raw_peak_count_sum_array = (unsigned int*) malloc(raw_peak_numbers * sizeof(int)); 
  
 // Calculate average peaks assigned for every raw peak over the threashold 
 for (i=0; i<raw_peak_numbers; i++) { 
   
  mstime1 = mstime_array[i]; 
  mstime2 = mstime1 + width*1.0e3; 
  
  // Calculate peak sum (density) within the range (width) 
  for (j=i; j<raw_peak_numbers; j++) { 
   if ( mstime_array[j] <= mstime2) { 
    peak_time_weighted_count_sum += mstime_array[j] *    
     (double)photon_count_array[j]; 
    peak_count_sum += photon_count_array[j]; 
   } else { 
    break; 
   } 
  } 
   
  // if there were peaks in this range 
  if (peak_count_sum > 0) 
   raw_peak_average_array[i] = peak_time_weighted_count_sum/(double)peak_count_sum; 
  else 
   raw_peak_average_array[i] = 0.0; 
   
  raw_peak_count_sum_array[i] = peak_count_sum; 
  peak_time_weighted_count_sum = 0.0; 
  peak_count_sum = 0; 
 } 
  
 // Finding Peaks 
 peak_finding_array = (unsigned int*) malloc(raw_peak_numbers * sizeof(int)); 
 peak_finding_array[2] = raw_peak_count_sum_array[0] + raw_peak_count_sum_array[1] +   
  raw_peak_count_sum_array[2] + raw_peak_count_sum_array[3] + raw_peak_count_sum_array[4]; 
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 for (i=3; i<raw_peak_numbers-2; i++) 
  peak_finding_array[i] = peak_finding_array[i-1] + raw_peak_count_sum_array[i+2] -   
   raw_peak_count_sum_array[i-3]; 
   
 for (i=4; i<raw_peak_numbers-4; i++) { 
  if ( (peak_finding_array[i] >= peak_finding_array[i-2]) &&  
   (peak_finding_array[i] >= peak_finding_array[i-1]) &&  
   (peak_finding_array[i] > peak_finding_array[i+1]) &&  
   (peak_finding_array[i] > peak_finding_array[i+2]) ) { 
     
   peak_average_array = (double*) realloc( peak_average_array,    
    (++final_peak_numbers)*sizeof(double) ); 
   peak_count_sum_array = (unsigned int*) realloc( peak_count_sum_array,   
    final_peak_numbers*sizeof(int) ); 
    
   peak_average_array[final_peak_numbers-1] = raw_peak_average_array[i]; 
   peak_count_sum_array[final_peak_numbers-1] = raw_peak_count_sum_array[i]; 
  } 
 } 
 
 // If you found peaks! 
 if ( final_peak_numbers > 0 ) { 
  // Print peaks 
  for (i=0; i<final_peak_numbers; i++) {  
   fprintf(fpPeak, "%.15lg\t%u\n", peak_average_array[i], peak_count_sum_array[i]); 
  } 
   
  // Calcuation of initial laser tick range 
  Laser_tick_start = (double)( (unsigned int)( (peak_average_array[0]-0.5*width*1.0e3)*1.0e-3 /  
   g_resolution - 0.5 ) ) * g_resolution * g_LaserFrequency; 
  Laser_tick_end = (double)( (unsigned int)( (peak_average_array[0]+0.5*width*1.0e3)*1.0e-3 /  
   g_resolution + 0.5 ) ) * g_resolution * g_LaserFrequency + 1.0; 
   
  // Open an Unwrapped Laser Tick file 
  fpTxt = fopen(g_AnalyzedFile, "r"); 
  sprintf(buff, "[%s]\n", DateTimeToString()); 
  fseek(fpTxt, strlen(buff), SEEK_SET); 
   
  // Open a concaternated Target File & Write Date and Time 
  fpTarget = fopen(g_ConcatenatedFile, "w"); 
  fprintf(fpTarget, "[%s]\n", DateTimeToString()); 
  
  // Concaternation 
  i=0; 
  while ( err = fscanf (fpTxt, "%lf\t%d\t%d\t%lf", &Laser_tick, &PMTBuffer, &decay,   
  &decay_corrected) > 0 ) { 
   if ( Laser_tick >= Laser_tick_start ) 
    fprintf(fpTarget, "%.15lg\t%u\t%04u\t%04lf\n", Laser_tick, PMTBuffer, decay, 
     decay_corrected); 
   
   if ( Laser_tick > Laser_tick_end ) { 
    if ( ++i > (final_peak_numbers-1) ) 
     break; 
     
    Laser_tick_start = (double)( (unsigned int)( (peak_average_array[i]-  
     0.5*width*1.0e3)*1.0e-3 / g_resolution - 0.5 ) ) * g_resolution *  
     g_LaserFrequency; 
    Laser_tick_end = (double)( (unsigned int) ( (peak_average_array[i] +  
     0.5*width*1.0e3)*1.0e-3 / g_resolution + 0.5 ) ) * g_resolution *  
     g_LaserFrequency + 1.0; 
   } 
  } 
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  fclose(fpTarget); 
  fclose(fpTxt); 
 } else { 
  printf("Error; No Peaks found!"); 
 } 
 
error: 
 fclose(fpPeak); 
 fclose(fpPhotonCount); 
  
 if (mstime_array) 
  free (mstime_array); 
 if (photon_count_array) 
  free (photon_count_array); 
 if (peak_average_array) 
  free (peak_average_array); 
 if (raw_peak_average_array) 
  free (raw_peak_average_array); 
 if (raw_peak_count_sum_array) 
  free (raw_peak_count_sum_array); 
 if (peak_count_sum_array) 
  free (peak_count_sum_array); 
 if (peak_finding_array) 
  free (peak_finding_array); 
  
 return 0; 
} 
 
 
//====================================================================================
// Selective Photon Count Analyze 
//====================================================================================
int Selective_PhotonCountAnalyze_UNIX(void) { 
    int BinNumber1, BinNumber2; 
    FILE *fpTxt, *fpTarget; 
 char buff[255], buff2[255], *pFilename; 
 double decay_corrected, Laser_tick, Laser_tick1, Laser_tick2; 
 int err, PMTBuffer=0, decay; 
 
 if (g_AnalyzedFile[0] == '\0') { 
  printf("Error; Please analyze an ASCII unwrapped data first.\n"); 
  return -1; 
 } 
 
 BinNumber1 = (int)( MIN(g_PC_Start, g_PC_End) / g_resolution - 0.5 ); 
 BinNumber2 = (int)( MAX(g_PC_Start, g_PC_End) / g_resolution + 0.5 ); 
 
 Laser_tick1 = (double)BinNumber1 * g_resolution * g_LaserFrequency; 
 Laser_tick2 = (double)BinNumber2 * g_resolution * g_LaserFrequency + 1.0; 
  
 if ( (fpTxt = fopen(g_AnalyzedFile, "r")) == NULL ) 
  return -1; 
 sprintf(buff, "[%s]\n", DateTimeToString()); 
 fseek(fpTxt, strlen(buff), SEEK_SET); 
 
 // By Default, in case that there is no directory information included. 
 sprintf(buff, "selective_%s", g_AnalyzedFile);  
 
 pFilename = strrchr( g_AnalyzedFile, '\\');   // for Windows 
 if (pFilename != NULL) { 
  pFilename++; 
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  strncpy(buff2, g_AnalyzedFile, (int)(pFilename - g_AnalyzedFile)); 
  sprintf(buff, "%sselective_%s", buff2, pFilename); 
 } 
 
 pFilename = strrchr( g_AnalyzedFile, '/');   // for UNIX 
 if (pFilename != NULL) { 
  pFilename++; 
     
  strncpy(buff2, g_AnalyzedFile, (int)(pFilename - g_AnalyzedFile)); 
  sprintf(buff, "%sselective_%s", buff2, pFilename); 
 }  
 
 if ( (fpTarget = fopen(buff, "w")) == NULL ) 
  return -2; 
 fprintf(fpTarget, "[%s]\n", DateTimeToString()); 
 
 while (err=fscanf (fpTxt, "%lf\t%d\t%d\t%lf", &Laser_tick, &PMTBuffer, &decay, &decay_corrected) > 0) { 
  if ( Laser_tick >= Laser_tick1 ) 
   fprintf(fpTarget, "%.15lg\t%u\t%04u\t%04lf\n", Laser_tick, PMTBuffer, decay,  
    decay_corrected); 
 
  if ( Laser_tick > Laser_tick2 ) 
   break; 
 } 
 fclose(fpTarget); 
 fclose(fpTxt); 
  
 return 0; 
} 
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