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ABSTRACT

Classical Factor Analysis Regression is a statistical technique using
factor analysis to calculate a linear function similar to ordinary least

squares regression. CFAR has been recommended to replace OLS
in cases where there is high multicollinearity among the explanatory
variables and when there are errors in the variables as well as when
there may be outliers in the data. Mathematical derivation of the dis-

tribution functions of the CFAR coefficients has so far not been done.

The research reported here is a Monte Carlo study to determine the

statistical goodness of CFAR compared to OLS. The results of

this research show that CFAR is superior to OLS whenever there

is high multicollinearity or errors in the variables. The variances of

the b coefficients are smaller for CFAR and the biases asymptotically

approach zero. Also the distributions appear to be normally distributed

so statistical tests based on the normal distribution can be used.

Key Words: Factor Analysis, Principal Components, Monte Carlo,

Factor Analysis Regression, Ordinary Least Squares, Multicollinearity,
Errors in the Variables, Outliers.
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Statistical Analysis of the Goodness of

Classical Factor Analysis Regression (CFAR)

John T. Scott, Jr., and Allen Fleishman

Regression from factor analysis has been >u.uuf>tel by several authors

as an alternative for ordinary least-squares (OLS) regression when

the explanatory variables are subject to error or there is significant

multicollinearity (Kloek and Mennes, 1960; Amemiya, 1966; Scott,

1966; I-nwley, 1073).

In the case of nuilticollinearity when the determinant of the ex-

planatory variables correlation matrix approaches zero, it is well known
that OLS can give spurious results. The regression coefficients fre-

quently do not correspond to either the theory or the zero-order cor-

relation coefficients, and the variances are inconsistent. Also, when

there are errors in the variables (which is normal with economic data),

it has been shown (Johnston, 1963) that OLS regression coefficients are

biased and that the associated variances are not only inconsistent but

generally underestimate the true variances. These results follow from

violation of two OLS assumptions: that the explanatory variables are

independent, and that the explanatory variables are known, fixed num-

bers without error. For example, if we assume there are errors in all

variables, then the OLS model becomes:

(1) (y
-

v)
- b, (x,

- uO + b2 (x,
-

tt.) + ...

+ bk (x k uk ) + \v

or in matrix notation:

(2) (Y - V) = (X - U)B + W;

where Y is the n X 1 vector of observed values of the dependent variable

adjusted for the mean,
V is the n X 1 vector of errors in Y,
X is the n X k matrix of n observations of the k explanatory vari-

ables adjusted for the mean,
U is the n X k matrix of errors in X, and

W is the n X 1 vector of residuals from regression which may in-

clude specification errors as well as other errors not included in

V.
A

Minimizing W with respect to B results in

(3) B = [(X
-

U)'(X - U)]-'[(X
-

U)'(Y
-

V)], or

B = [(X
-

U)'(X - U)]-'[X'Y
- U'Y - X'V + 17V].
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We can simplify the foregoing expression by making three additional

assumptions not found in the classic assumptions underlying OLS:
the errors in Y are uncorrelated with those in X; the errors in X are

uncorrelated with Y; and the errors in Y are uncorrelated with X. These

assumptions are reasonable and only moderately restrictive. Then the

last three terms in equation 3 become zero and B becomes:

(4) B = [(X
- U)'(X -

U)]-
J

X'Y, or

B = [X'X
- 2X'U + U'U]-

1 X'Y.

Assuming that the errors in X are independent of X itself (which
is still another assumption), the middle term of the inverse in equation

4 drops and then equation 4 becomes :

(5) B = [X'X
-

U'U]-
1 X'Y.

To estimate this modification of the OLS model, we need to know
as a minimum the variance-covariance matrix of the errors in X. The

problem is that this is rarely if ever known in the real world. If we
make the assumption that the errors in X are uncorrelated with each

other, then equation (5) becomes the ridge regression estimator:

(6) B = [X'X
-

al]-
1
X'Y,

where a is another parameter which must be estimated, which is no

trivial task (Marquardt, 1970; McDonald and Galarneau, 1975).

While empirical results from factor analysis regression are sub-

stantially better than those from OLS based on a priori expectations

(Amemiya, 1966; Scott, 1966; Oehrtman, 1968; Bursch et al., 1972),

the statistical properties of the estimators in factor analysis regression

have not been derived mathematically, nor does such a derivation ap-

pear tractable. 1 The alternative method generally acceptable for obtaining

the statistical characteristics of an estimator is to perform a Monte Carlo

study of the estimator. The development of such a study involving

classical factor analysis regression and its results are reported here.

CLASSICAL FACTOR ANALYSIS REGRESSION

The factor analysis statistical model assumes that a large number of

variables can be described adequately by a smaller number of factors:

(8) Z = AF + U
1 The senior author has worked on this problem and consulted others including
R. A. Wijsman, Department of Mathematics, and Leyard Tucker and Charles

Lewis, Department of Psychology, University of Illinois. All suggested the

Monte Carlo approach.
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where Z is the h X n matrix of n observations of all h real variables

involved,

A is the h X m matrix of regression coefficients, usually referred

to as factor coefficients or factor loadings, with m < h,

F is the m X n matrix of the n values of the m factors, and

U is the h X n matrix of the n residuals associated with the h

variables.

It is assumed that E(U) = 0; E(F) = 0; K(UU') = V, a diagonal

matrix; E(FF') =
I; and E(Z) = 0; and further, that U and F are

independent and have multivariate normal distributions.

A number of methods have been developed to "extract factors" or

calculate the coefficient matrix to meet the foregoing statistical assump-
tions (Hotelling, 1933; Guttman, 1940; I^awley, 1940; Rao, 1955;

Joreskog, 1962: and others).

A derivation of regression from factor analysis was developed

which, for purposes of differentiation, is called "classical factor analysis

regression" or "see far CFAR" (Scott, 1970). Since CFAR is much

simpler and easier to obtain than the earlier factor analysis regression

derivations, it should appeal to practitioners for their research work.

The results from CFAR are as good as, or better than, those from the

earlier factor analysis regression methods.

Using standardized variables in ordinary least-squares regression

(OLS) results in the following equation to estimate the regression

coefficients :

(9) R - Rxx-'Rxy

A
where B is the k X 1 vector of regression coefficients,

R is the k X k correlation matrix of the explanatory variables,

and

Rjy is the k X 1 vector of correlations between the dependent and

the explanatory variables.

The factor analysis statistical model, equation 8, allows for errors in

all variables and can be used in situations involving high multicollinear-

ity. Factor analysis regression may also give improved results over OLS
when the data set contains a number of extreme values or outliers. Thus

the assumptions of factor analysis seem more appropriate for use with

real economic data than do the assumptions of ordinary least squares.

Let the matrix R be the matrix of correlations among the explana-

tory variables augmented with the correlations between the dependent
and the explanatory variable. This matrix has dimensions k + 1 by
k + 1. Using matrix R, obtain the factor loading matrix A, by least
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squares or maximum-likelihood (Lawley, 1940; Whittle, 1952; Rao,

1955; Joreskog, 1962). Then:

(10) AA' + V = R,

where V is a diagonal matrix and is the difference between diagonal

(AA') and I, the identity matrix; and R is the maximum-likelihood

estimate of the full correlation matrix.
^ ^

Then partition R into Rxx ,
the k by k estimated correlation matrix of

the explanatory variables, and Rxy ,
the k by 1 vector of estimated correla-

tions between the explanatory variables and the dependent variable. Use

these estimated correlations in the OLS regression coefficient estimating

equation to get the CFAR coefficients, P>, so that:

(11) B^R^R^,
The long-run efficacy of any statistical method at least partly depends

upon having knowledge of the statistical properties of the method,

especially of the characteristics of the parameter estimators. We try to

obtain this knowledge for the CFAR estimators in the Monte Carlo

study.

CONCEPT AND PROCEDURE OF THE MONTE CARLO STUDY

The concept of this study was to use observations of a population

with a dependent variable that is associated with observations of a set

of explanatory variables, all observations assumed to be without sam-

pling error. Then the OLS regression estimators for this set were

assumed to be the parameters or expected values of the estimators. To
this original population random normal errors were added to all

variables. This new population with errors in all variables then is the

observed population to be sampled for the Monte Carlo experiment.

From this set of observations with measurement errors, draw a large

number of random samples of various sample sizes, and estimate the re-

gression for each sample with CFAR and OLS. Then, examine the popu-
lation of coefficients obtained from these regressions by comparing the

mean of each estimator with its corresponding parameter (whether or not

there is a bias or how the bias behaves) ,
and examine how closely the dis-

tribution of the estimators corresponds to the normal distribution. Desired

characteristics for the CFAR coefficients would be unbiasedness, effi-

ciency, and normality. Two additional important characteristics are com-

pared for CFAR and OLS. These are the mean-square error for the pre-

diction: 2(Y -- Y)
2

,
where Y is the original population value without
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A

error and Y is the predicted value based on the estimation from the ob-

served variables with error; and, the mean-square error for the repression

coefficients: 2(/8 j)
2

, where ft is the OLS estimate from the original

Imputation without sampling error as the parameter, and ft is the regres-

sion coefficient estimated by CFAR and OLS from the observed variables

with error included. I f < V - Y) 2 and S(j8
-

ft)
2 estimated by CFAR

are less than when estimated by OLS, then this is evidence that CFAR
is in some sense a better estimating procedure. These latter two criteria

are usually considered more important for small sample size than are

unbiasedness and normality.

MONTE CARLO PROCEDURE

Three original populations were selected, each with one dependent
variable and twelve explanatory variables. Then, using four sets of asso-

ciative characteristics and two variable generating procedures, 24 popu-
lations which are now called initial imputations were generated having
various internal characteristics.

1

For this Monte Carlo experiment, a substantial range was generated

in the associative characteristics because of the wide range of these

characteristics found in empirical observations. For example, with most

economic data more of the intercorrelations are positive than negative;

some socioeconomic variables have high intercorrelations as an ex-

ample, prices of substitutes or economic variables over time and time

series; and some socioeconomic variables occasionally have low inter-

correlations, typically those from cross-section data and survey ques-

tionnaires. Also, the range in the proportion of the variance of the

dependent variable explained by regression is frequently quite large.

Therefore we believed that it was imperative to use different initial

populations representative of a wide range of various associative

characteristics.

Assuming that the observations in the initial populations were with-

out error, we calculated the OLS regression for each of the initial 24

populations and assumed the coefficients from these regressions to be

the parameters or expected values of the coefficients for each respective

initial population.

A random normal error structure was added to all variables in each

initial population so that we then had 24 populations with errors in all

variables which became the "observable" values to be sampled. Then

1

By associative or internal characteristics is meant the interrelationship of

the variables within any one initial population.
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from each of the 24 populations with errors in the variables, 100 sam-

ples each of size 16, size 64, and size 256 were drawn, with the sampling
error structure potentially different with each draw, simulating drawing
from an infinite population. Thus, there were 7,200 sample variance-

covariance matrices drawn for this experiment. An OLS regression was

run for each of the 7,200 samples, each with 12 explanatory variables.

To obtain factor analysis regression, the sample correlation matrix

must be factor-analyzed and a reproduced correlation matrix calculated

from the factor-loading matrix. An important consideration in factor

analysis is the number of factors to be extracted from the sample corre-

lation matrix. The factor-reproduced correlation matrix will differ, de-

pending upon the number of factors extracted. With 12 explanatory

variables, we believed a maximum of six factors should be ample to

describe the underlying phenomena. Not knowing the change in char-

acteristics of the CFAR estimators that might occur as a result of

using different numbers of factors, we extracted and reproduced a

correlation matrix from one factor, from two factors, etc., up to and

including six factors, using the factors explaining the most cumulative

variance in all cases. Thus from each sample correlation matrix there

were six reproduced correlation matrices. A classical factor analysis

regression equation was estimated from each of these six reproduced
correlation matrices, making 43,200 CFAR equations, each with 12

explanatory variables, that were estimated for this Monte Carlo

experiment.

Since factor extraction and communality estimation by least squares

or maximum-likelihood is much more expensive than obtaining the

principal components, the experiment included obtaining the factors by

principal components as well as by a statistical routine, and calculating

the regression coefficients the same way from each extraction method to

compare the results between image factor-analysis extraction and prin-

cipal components. There were actually 86,400 CFAR equations half

using statistical factor-analysis extraction and half using principal

components.
1

1

L. R. Tucker, Department of Psychology, University of Illinois, suggested at

the time we ran the calculations of the experiment that we factor-analyze only
the explanatory variable correlation matrix rather than the augmented matrix

to save computer time on such a large experiment. The estimating equation then

becomes B = RXJf
* Rxy rather than B = Rxx"

1

Rxy. Although the difference in re-

sults is probably only marginal, we now believe that conceptually the augmented
matrix should be the matrix to factor-analyze. We have no way of knowing
whether a marginal improvement would have been great enough to compensate
for the cost of the extra calculation.



19781 CLASSICAL FACTOR ANALYSIS REGRESSION

ASSOCIATIVE CHARACTERISTICS

Tables 1 through 6 give the details of the associative or internal

characteristics of each of the initial 24 populations. Table 1 shows the

four initial populations with the four different associative characteristic

ranges generated by the two- factor generator from the first original

population (see appendix). Table 2 shows four additional initial popu-

Table 1. Characteristics of Four Initial Populations Including Regres-
sion Coefficients (1-4) Produced With the Two-Factor Generator From
Original Population

Associative characteristics

Correlation
i\i n kit*
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lations with the four associative ranges generated by the four- factor

generator from the first original population. Tables 3 and 4 show the

corresponding eight additional initial populations generated from the

second original population. Tables 5 and 6 show the corresponding eight

additional initial populations generated from the third original

population.

Table 2. Characteristics of Four Initial Populations (5-8) Produced With
the Four-Factor Generator From Original Population One

Associative characteristics

Correlation
ransre
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The associative characteristic sets were developed on the following

criteria: Associative characteristic set 1 was to have a high R2 and a

wide range of frequency of rxy and r^ but with a large share of the

zero-order correlations in the upper range (above 0.6) ; set 2 was to have

a medium R 2 and zero-order correlation coefficients not as high, but still

predominantly on the upper part of the range; set 3 was to have a rela-

Table 3. Characteristics of Four Initial Populations (9-12) Produced
With the Two-Factor Generator From Original Population Two

Associative characteristics
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lively low R- and a small range of zero-order correlation coefficients;

and set 4 was to have a medium to low R 2 with a wide range of zero-

order correlation coefficients. Also, since we were trying to simulate

socio-economic variables, we had the criterion for all sets that a major
share of the correlations should be positive. These objectives are met

reasonably well as shown by the frequency distribution of the data and

Table 4. Characteristics of Four Initial Populations (13-16) Produced
With the Four-Factor Generator From Original Population Two

Associative characteristics
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the R*'s in Tables 1 through 6. The range in Rrs for set 1 is from

0.6626 to 0.8147; set 2 is from 0.3156 to 0.4682; set 3 is from 0.0512 to

0.1463; and set 4 is from 0.1123 to 0.6084.

Tables 1 through 6 also give the standardized OLS regression co-

efficients for each of the 24 initial insulations. \Ye assume these regres-

sion coefficients are the population parameters or expected values for

each of the 24 initial populations. Tables 1 through 6 also give the values

Table 5. Characteristics of Four Initial Populations (17-20) Produced
With the Two-Factor Generator From Original Population Three

Associative characteristics

Correlation
ranpe
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of the determinant of the augmented correlation matrix as some indi-

cation of the degree of multicollinearity. The closer the determinant is

to zero, the greater is the degree of multicollinearity. If the R2
is high,

then we would expect the determinant of the augmented correlation

matrix to be near zero. But since the highest R2 of any of the 24 initial

populations is 0.7521, the small size of the determinants also reflects

a high degree of multicollinearity among the explanatory variables.

Table 6. Characteristics of Four Initial Populations (21-24) Produced
With the Four-Factor Generator From Original Population Three

Associative characteristics

_ . . Initial
Correlation

population 1
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RESULTS

Efficiency

Efficiency refers to the size of the variance of an estimator relative

to the variance of another estimator or a standard estimator. The

smaller the variance of an estimator, the more efficient the estimator is,

and the estimator with greatest efficiency (often referred to as the effi-

cient estimator) is the estimator with the smallest variance.

\Ye know from statistical theory (Anderson, 1958) that the OLS
estimator is inefficient and that the variance is unreliable for probability

estimates when there are errors in the explanatory variables.

Thus one imix)rtant characteristic of the CFAR estimator to investi-

gate is the variance of this estimator. Since there are 43,200 equations

each with 12 bj values and it is impossible to make or report all the pos-

sible comparisons one might like to make, the variances for each esti-

mator (calculated from each of the samples of 100) were summed and

averaged over the 12 bj for certain Monte Carlo variables such as sam-

ple size (N =
16, 64, 256) for associative characteristics or the internal

population relationships, and for each of the different numbers of fac-

tors extracted from one through six factors. We have essentially sum-

marized the 5,184 variances related to the Monte Carlo variables.

The data relating the mean variances to the sample size and number

of factors extracted are given in Table 7. The mean variance, very small

when the sample size is the largest (256), remains consistently small

for all factors extracted. The mean variance is still quite small for the

medium sample size (64), but tends to increase as the number of

factors extracted is increased. The mean variance is small even for

sample size 16. The fact that the mean variance gets smaller as the

sample size increases is important because it indicates that CFAR is a

consistent estimator; that is, the variance asymptotically approaches a

minimum as sample size increases.

Table 7. Mean Variance of the Table 8. Mean Variance of the

CFAR Estimators by Sample Size CFAR Estimators by Sample Size
and Number of Factors Extracted and Associative Characteristics

Factors Sample size Asso-
- dative Sample size

tracted N 16 N 64 N 256 charac- N 15 N 64 N 256
teristics

1 006176 .001803 .000764
2 010808 .002095 .000579 R, .023146 .004126 .001322
3 018060 .003286 000960 R, .026211 .004315 .001317
4 .027348 004815 001347 R, .028443 .005483 .001486
5 .039844 .007020 .002084 R, .627851 .004976 .001497
6 .056240 .009330 .002699
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The mean variance increases as the number of factors extracted in-

creases for both extraction methods. As the number of factors extracted

increases, the solution approaches the OLS solution and is the same as

the OLS solution when the maximum possible number of factors are

extracted. This result implies that the CFAR solutions are always more

efficient than the OLS solutions.

Table 8 relates the mean variances to the four selected associative

characteristics and to the sample size. The four sets of associative char-

acteristics explained earlier are designated Rj as the populations with

high R2
,
R2 as the populations with medium R2

,
R3 as the populations

with a low R2
,
and R4 with a wider ranging R2

. Intercorrelations among
the population variables also differ. While the associative set with the

highest R2 and the highest intercorrelations among the explanatory

variables has the smallest variances for the CFAR estimators, the

average variances for the other sets are also small and well behaved.

The variances for the CFAR estimators drop sharply in magnitude w^hen

we go from sample size 16 to sample size 64, and again to sample size

256. This is exactly the way we would like to have the CFAR estimator

behave in order to recommend it as an extremely good estimator for

errors-in-the-variables regression. The variances were smallest regard-

less of sample size for the population characteristics which had the high-

est R2 and the highest intercorrelations among the explanatory variables,

also a very desirable feature.

The mean variances are related to the number of factors extracted

and the associative characteristics in Table 9. These data illustrate

again the increase in variance as the number of factors extracted

increases. There is little difference in the variances from one associative

characteristic to another. Except when only one factor is extracted,

the variances are smallest for the two populations having the highest

R2 and higher intercorrelations among the explanatory variables.

Table 9. Mean Variance of the CFAR Estimator by
Number of Factors and Associative Characteristics

Number
nf
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Normality

Normality refers to how closely the distribution of the CFAR
estimator approaches the normal distribution. The method we chose to

analyze this question was to calculate for each Uj the higher moments
of the distribution (skewness and kurtosis) since both skewness and

kurtosis of the normal distribution are zero. The Kolmogorov-Smirnov

statistic, an alternative statistic, was not used because the moments are

more sensitive, particularly in the tails of the distribution. The moments

were calculated and averaged, again relating the mean of the moments

to the Monte Carlo variables.

Skewness

Summary data for skewness are given in Table 10 with respect to

sample size and the number of factors extracted. All values obtained

for skewness are small. Skewness approaches zero as sample size

increases and as the number of factors extracted increases. The skew-

ness in the largest sample size is consistently small regardless of the

number of factors extracted.

Skewness related to sample size and the four sets of populations

with different associative characteristics is given in Table 11. While

the skewness does not seem to bear a consistent relationship among
the various associative characteristics for each sample size, it is clear

again that the skewness approaches zero as sample size increases the

largest improvement being made as the sample size increases from 16

to 64.

Skewness related to associative characteristics and the number of

factors extracted is given in Table 12. The skewness declines consis-

tently for all associative groups as the number of factors extracted is

Table 10. Mean Skewness of the
CFAR Estimator by Sample Size
and Number of Factors Extracted

Num-
ber
of

factors
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Table 12. Mean Skewness of the CFAR Estimator by
Associative Characteristics and Number of Factors

Number
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Table 13. Mean Kurtosis of the
CFAR Estimator by Sample Size
and Number of Factors

Num-
ber of

factors
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Table 15. Mean Kurtosis of the CFAR Estimator by
Associative Characteristics and Number of Factors

Number
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Table 16. Average Bias of B From the True Value of B

No. of
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Loss Function of the Estimators

Another important criterion frequently considered is the loss func-

tion of the estimators: the sum of squares of the differences between

the estimator and the parameter over the number of samples. These

data are given in Table, 17. Mathematically the values given in this

table are:

(12) L 12 L 10
(

-
Bj)

2
/1200

j =1 i = 1

with respect to the particular cell designations of the table. The notation

is the same as for equation 11. As we look at the loss function of the esti-

mators, we find first that it is smaller in almost all cases than the

corresponding loss function for the OLS estimators. In some cases the

difference is very great, being 37 times greater for the OLS estimators

in one case. Moreover, the loss function for the CFAR estimators

becomes smaller as sample size increases for each level of factor ex-

traction, and the loss function increases as the number of factors ex-

tracted increases. If we realize that the CFAR estimator is the same as

the OLS estimator in the limit as the number of factors extracted in-

creases to be equal to the number of variables, we can then see the logic

in the increase in the loss function as the number of factors increases.

Thus the loss function for CFAR estimators should always be less than

for OLS, and would have as its upper bound the value of the OLS loss

function. On examining the differences between statistical factor extrac-

tion and principal component extraction, we find that at the small sam-

ple size, principal component extraction results in small loss functions

for all levels of factors extracted. These results are less pronounced at

the medium sample size, and statistical extraction seems better than

principal components at the large sample size.

With respect to the populations with different internal characteristics,

the OLS loss function again is uniformly larger than for the CFAR
estimators. In most cases the principal component estimators give better

results than the statistical factor procedure. Except for results from ex-

tracting only one factor, the loss function for the CFAR estimators

monotonically increases with increasing number of factors for both

the principal component procedure and the factor analysis procedure.

Furthermore, the upper bound should again be the OLS result when

all factors are extracted.

Loss Function of the Predicted Values

If we are concerned about prediction as well as the structural param-

eters, or if we are mainly concerned about prediction, as is frequently
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Table 18. Average Mean Square Error of the Predicted Value From the
True Value

No. of

factors

extracted

N - 16 N - 64

FA PC FA PC

N -256

"FA PC"

Overall average

FA PC

1
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which is the square of the difference between the predicted and the

observed, where Y' is the observed, but rather the loss function takes

into account the difference between the predicted and the true value.

The OLS loss is largest at the small sample size. The CFAR loss

is only one-fifth to one-fourth as large as the OLS loss at the small

sample size, showing a considerable improvement over the OLS pre-

dictions. On the small sample size, the loss for the principal component

(PC) procedure was less than the loss for the factor-analysis (FA)
procedure for all six factors. For the medium- and large-size samples,

the results for the PC and the FA procedures were very similar, with

first one and then the other being better. For the medium-size sample
CFAR was better than OLS for all factors extracted except the first and

second.

The results are even more clearly in favor of CFAR when compari-

sons are based on differences among internal population characteristics.

Here both the PC and the FA methods result in substantially smaller

loss than OLS for all classifications of internal population characteris-

tics, and for all the numbers of factors or principal components ex-

tracted. The best predictive ability for both OLS and CFAR occurred

when there was high intercorrelation among the variables. The predic-

tive ability measured by the loss function of the predicted values was

from about 100 percent to as much as 300 percent better for CFAR
than OLS. These results are shown in the first part of Table 18.

SUMMARY
A Monte Carlo experiment was developed to study the statistical

characteristics for the beta estimators from classical factor analysis re-

gression (CFAR), which has been proposed especially for estimating

regressions when there are errors in the variables and when high multi-

collinearity makes ordinary least squares inappropriate or completely

infeasible.

This experiment took 100 random samples of each sample size of 16,

64, and 256 from each of 24 initial populations having four different sets

of associative or internal characteristics and 12 explanatory and one

dependent variable. Thus there were 7,200 samples drawn. One through
six factors were extracted from each and CFAR estimated from these

factors, making 43,200 CFAR equations with 12 explanatory variables

each. The statistical properties of the CFAR estimators were then

analyzed.

It was found that the CFAR estimators behave extremely well. The
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variance is small even at small sample sizes and quickly approaches a

consistent minimum level as sample size is increased. For purposes of

using this estimator where there is high multicollinearity, it is note-

worthy that CFAR estimates for the initial jxjpulations which had

the highest R 2 and the highest intercorrdations among the explanatory

variables consistently had the smallest variances. The good small-sample

results are important, especially for those working with time-series data

for which the number of observations is often limited. The variances

increase as the number of factors extracted increases, so that if this

procedure were carried to the limit (where the number of factors ex-

tracted equaled the number of variables the OLS regression case), the

variances corresponding to OLS estimation would balloon up to the

OLS values. Thus CFAR is clearly a very efficient estimator relative

to OLS for regressions when there are errors in the variables.

The experiment also shows that the CFAR estimators are asymptot-

ically normal both as sample size increases and as the number of factors

increases. This is deduced from the behavior of the third and fourth

moments (skewness and kurtosis), which are both zero in the normal

distribution. Even for small samples a normal or "t" distribution could

be used for probability statements about the CFAR estimators.

The CFAR estimators are consistently negatively biased, but appear

to approach zero monotonically as sample size increases. Two measures

often made of estimators are comparisons of the mean-square error or

loss functions for the estimators themselves and of the loss function of

the prediction. Here, too, CFAR shows substantial advantage over

OLS, being from 100 percent in many cases to as much as 2,500 percent

better than OLS.
Thus the CFAR estimator is substantially better in several respects

than OLS for all applications where there is high multicollinearity or

when there are errors in the variables, regardless of sample size, and

CFAR is especially useful for small samples. We hypothesize that

CFAR is also better when the data are plagued with outliers.

BIBLIOGRAPHY

Adelman, I., and C. T. Morris, "A Quantitative Study of Determinants of

Fertility," Economic Development and Cultural Change, 14(1966),
129-157.

Amemiya, T., "On the Use of Principal Components of Independent Vari-

ables in Two-Stage Least Squares Estimation," International Eco-

nomic Review, 7(1966), 283-303.

Anderson, T. \\'., Introduction to Multirariatc Statistical Analysis, New
York: John Wiley and Sons (1958).



24 ILLINOIS BULLETIN 759 [AUGUST,

,
"The Use of Factor Analysis in the Statistical Analysis of Multi-

ple Time Series," Psychometrika, 28(1963), 1-25.

-, and H. Rubin, "Statistical Inference in Factor Analysis," Proc.

Third Berkeley Symposium on Mathematics, Statistics, and Probabil-

ity, 5(1956), 111-150.

Box, G. E. P., and M. E. Mueller, "A Note on the Generation of Random
Normal Deviates," Annals of Mathematical Statistics, 29(1958), 210-

211.

Bursch, W. G., J. T. Scott, Jr., and R. N. Van Arsdall, "Characteristics

and Prospects of the Commercial Hog Feed Market in Illinois," Illi-

nois Agricultural Experiment Station Bulletin 743 (1973).

Doll, J. P., and S. B. Chin, "A Use for Principal Components in Price

Analysis," American Journal of Agricultural Economics, 52(1970),
591-593.

Flanagan, J. C., Factor Analysis in the Study of Personality, Stanford

University Press (1935).

Guilford, J. P., "The Structure of Intellect," Psychological Bulletin,

53 (1956), 267-293.

Guttman, L., "Multiple Rectangular Prediction and the Resolution into

Components," Psychometrika, 5(1940), 75-79.

,
"Best Possible Systematic Estimates of Communalities," Psycho-

metrika, 21(1950), 273-285.

Haitovsky, Y., "Multicollinearity in Regression Analysis, an Experimental
Evaluation of Alternative Procedures," paper given at American
Statistics Association annual meeting, New York (1969).

Hotelling, H., "Analysis of a Complex Set of Statistical Variables into

Principal Components," Journal of Educational Psychology, 24(1933),
417-441.

Holzinger, K. J., and H. H. Harmon, Factor Analysis: a Synthesis of Fac-

torial Methods, Chicago: University of Chicago Press (1941).

Johnston, J., Econometric Methods, New York: McGraw-Hill (1963).

Joreskog, K. G., "On the Statistical Treatment of Residuals in Factor

Analysis," Psychometrika, 27(1962), 335-354.

Kelley, T., "Essential Traits of Mental Life," Harvard Studies in Educa-

tion (1935).

Kloek, T., and L. B. M. Mennes, "Simultaneous Equations Estimation

Based on Principal Components of Predetermined Variables," Eco-

nometrica, 28(1960), 45-61.

Lawley, D. N., "The Estimation of Factor Loadings by the Method of

Maximum-Likelihood," Royal Society of Edinburgh Proc., A-60

(1940), 64-82.

, and A. E. Maxwell, Factor Analysis as a Statistical Method, Lon-
don: Butterworth (1963).

-, "Regression and Factor Analysis," Biometrika, 60(1973), 331-332.

Mangan, F. K., "A Monte Carlo Study of Linear Regression and Factor

Analysis Under Multicollinearity," unpublished master's thesis, Uni-

versity of Washington (1970).

Marquardt, D. W., "Generalized Inverses, Ridge Regression, Biased

Linear Estimating and Nonlinear Estimation," Technometrica, 12

(1970), 591-612.



19781 CLASSICAL FACTOR ANALYSIS REGRESSION 25

McDonald, G. C., and D. I. Galarneau, "A Monte Carlo Evaluation of Some

Ridge Type Estimators," Journal of American Statistical Association,
70 (1975), 407-4 16.

Oehrtman. R. L., "A Factor Analysis of the Adjustment Problems Facing
Milk Bottling Firms," paper presented at Econometric Society meeting,

Chicago (1968).

Olsen, B. M., and G. Garb, "An Application of Factor Analysis to Re-

gional Economic Growth," Tournal of Regional Science, 6(1965), 51-

56.

Payne. \V. II., and T. G. Lewis, "Continuous Distribution Sampling:

Accuracy and Speed," in Mathematical Software, J. R. Rice, editor,

Xew York: Academic Press (1971), 331-345.

Pearson, K., "On Lines and Planes of Closest Fit to Systems of Points in

Space," Philosophical Magazine, 6(1901), 559-572.

RANDU in SSP Manual System/360 Scientific Subroutine Package Ver-

sion III Programmer's Manual, Program No. 360A-CM-03X, IBM
Corp. (1970).

Rao, C. R., "Estimation and Tests of Significance in Factor Analysis,"

Psychometrika, 20(1955), 93-111.

Scott, J. T., Jr., "Factor Analysis Regression," Economctrica, 34(1966),
552-562.

, "The Synthesis of Classical Regression and Factor Analysis,"

unpublished manuscript, Department of Agricultural Economics, Uni-

versity of Illinois at Urbana-Champaign (1972).

Sheth, J. N., and J. S. Armstrong, "Factor Analysis of Marketing Data:
a Critical Evaluation," paper given at American Marketing Associa-

tion fall conference, Department of Business Administration, Univer-

sity of Illinois at Urbana-Champaign ( 1969).

Sobolewski, J. S., and VV. H. Payne, "Pseudonoise with Arbitrary Ampli-
tude Distribution Part I: Theory," IEEE Transactions on Com-
puters, C-21:4(1972), 337-345.

Spearman, C., "General Intelligence, Objectively Determined and Mea-
sured," American Journal of Psychology, 15(1904), 201-292.

Thurstone, L. L., "Multiple Factor Analysis," Psychological Review, 38

(1931), 406-427.

,
"A New Rotational Method in Factor Analysis," Psychology, 3

(1938). 199-218.

-, Multiple Factor Analysis, Psychology Review, 38(1931), 406-427.

Tinter, G., Econometrics, John Wiley and Sons, New York (1952).

Tucker, L. R., R. F. Koopman, and R. L. Linn, "Evaluation of Factor

Analytic Research Procedures by Means of Simulated Correlation

Matrices," Psychometrika, GGNMP in IMSL manual; Library I:

International Mathematical and Statistical Librar\, Inc., 34(1969),
421-459.

Waugh, F. V., "Factor Analysis: Some Basic Principles and an Applica-
tion," Agricultural Economics Research, 14(1962), 77-80.

Whittle, S. S., "Certain Generalizations in the Analysis of Variance,"
Biometrika, 24(1932), 471-494.

Wijsman, Robert A., "Application of a Certain Representation of the

Wishart Matrix, Annals of Mathematical Statistics, 30(1959), 597-601.



26 ILLINOIS BULLETIN 759 [AUGUST,

APPENDIX: GENERATION OF THE ORIGINAL
AND SAMPLING POPULATIONS

As this was a Monte Carlo investigation, the relevance of the results

totally depended on the appropriateness of the populations used; there-

fore, this study varied the characteristics of the population used for the

study in the same ways that characteristics have been observed to vary
in many applied studies published in the literature and in other known

empirical work.

The population intercorrelation matrix [P] dictates in many ways
the results of any Monte Carlo experiment. The choice of an empirically

derived matrix from the literature was rejected, because any single study

might have had the data generated in an unique way, with an atypical

error structure. The choice was therefore between an artificial but known
and controllable population generation technique, and an unknown and

controllable but natural data-generation technique. The simulation of P
was selected. A procedure was needed which allowed errors in both the

dependent and independent variables and various degrees of inter-

correlation (multicollinearity) among all variables, and which paralleled

the procedure that an investigator might use in selecting variables.

The methodology of Tucker, Koopman, and Linn (1969) was se-

lected. Their procedure is based on the latent causal (or factor analytic)

model. For each set of population matrices (there were two replications

to be described later), it was hypothesized that the investigator had at-

tempted to select variables to measure (to varying degrees) the under-

lying variables. It was assumed that the criterion was measuring all the

latent variables. The degree to which variables were measuring the un-

derlying factors was simulated by random selection of integers to sum to

four. This matrix was then row-normed. By this method it was possible

to get overrepresentation of loadings on certain latent variables. As
indicated by the trace of the cross products, overrepresentation did not

occur to a prohibitive degree. This matrix, the degree to which the vari-

ables are assumed to load on the latent variable [A], is given in Table

Al. This matrix has been row-normed to be of unit length.

However, it was assumed that in practice there is a discrepancy be-

tween the a priori correlation of the variables with the causal variable

and the actual correlation. The true loadings on the underlying con-

structs were generated by

(1) A = ACm + DX(1.0
- C2

m )-
s

where A a 13 X 4 matrix of actual loadings on the underlying con-

structs,
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Table Al. Conceptual Row-Normed Loadings on the Latent Variables

(A)

Observed
variables
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Number of Underlying Factors

Within each population it was desirable to vary the number of

underlying latent variables; two and four variables were selected for

this study. In the two-variable case, a linear sum of the first two and last

two columns of matrix A was performed. This procedure insured that

the two- and four-factor cases would have similar effects from the sto-

chastic nature of X and C given in Equation 1. The loading matrix for

the two- and four-factor solution was row-normalized to unity and

appears for population 1 in Tables A2 and A3.

Levels of Communality

(2) R = FF' + U 2

where F = a matrix of factor loadings, and

U2 = a diagonal matrix containing the proportion of uncorrelated

error variance of each variable (uniqueness).

Furthermore,

(3) H 2 = I - U2

where H 2 = a diagonal matrix containing the proportion of variance

each variable shares with one another (i.e., communality).
It is desirable to vary the degree of communality (or conversely, the

degree of uniqueness) into four levels: high communality, H 2 ~ U(0.70
-

0.90); medium communality, H 2 ~
U(j0.40 0.60); low communal-

ity, H2

~U(0.10 -0.30); and wide communality, H 2 ~ U(0.10
-

0.90). In order to insure comparability across communality levels, the

four levels of communality were selected to be linear combinations of

one another:

(4) h2
medium, j

=
(h

2

high, j) 0.3 (observed attribute)

(5) h 2
low, j

=
(h

2
high, j )

- 0.3 (observed attribute)

(6) h2
wide, j

= 4(h
2
low, j) 0.3 (observed attribute)

j
= l,2,..., 13

The diagonal entries of h 2
high for population 1 were 0.84905,

0.78175, 0.88172, 0.89331, 0.80636, 0.84063, 0.70259, 0.80925, 0.77029,

0.78500, 0.82318, 0.75626, and 0.70785.

The final population intercorrelation matrix is given by

(7) P = FF' + U2

where F = HA
U2 = is given by Equation 3, and
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H = a diagonal matrix containing elements given by Equation 4,

5, or 6 above.

Therefore, for each population there were two levels of factors and

four levels of communalities. Thus there were eight population matrices

I>er population replication.

The regression weights and population multiple correlation for all

population 1 matrices are presented in Table A4.

Table A4. Regression Weights and R 2 for Population 1

1,'
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Table AS. Regression Weights and R 2 for Population 2

T> _
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Samples from P (Wijsman, 1959), were generated by forming a

sum of squares matrix :

(9) S = TWT'

whereW = a Wishart matrix. W itself can be decomposed into

(10) W
where G = [g,,] gu - N(0,l) if i > j

G gu ~ XN -i-iif i =
j

gu = ifi<j
Therefore,

(11) S=(TG)(TG)'

For i > j, gu was generated by the polar variant of Box and Muel-

ler's (1958) technique (program GGNMP of IMSL). For i = j, gu

was generated by a variant of the Lewis-Payne generator (Payne and

Lewis, 1971; and Sobolewski and Payne, 1972), given a random uni-

form deviate (RAXIH'of SSP).
A distribution of 10,000 samples of the above-normal and chi square

variates was generated and was found to be distributed according to

theoretical expectations. The sample unbiased covariances were obtained

by

(12) C = S/(N-1)

Thus, E(C) = P. Each of the population variances was set arbi-

trarily to 1.0. A sample of means was generated by

(13) x = (N--
5
)Td

where d = a vector of normal deviates generated by GGNMP, as above.

Therefore x was the vector of sample means sampled from the popu-
lation matrix (P) with sample size N (N = 16, 64, and 256) and popu-
lation mean zero.

For each level of N there were 100 sample replications. Therefore

there were 4,800 mean and covariance matrices of 12 predictors and cri-

terion (two population replications by two levels of number of factors by
four levels of communality by three levels of number of observations

(N) by 100 sample replications).
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