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ABSTRACT

Classical Factor Analysis Regression is a statistical technique using
factor analysis to calculate a linear function similar to ordinary least
squares regression. CFAR has been recommended to replace OLS
in cases where there is high multicollinearity among the explanatory
variables and when there are errors in the variables as well as when
there may be outliers in the data. Mathematical derivation of the dis-
tribution functions of the CFAR coefficients has so far not been done.
The research reported here is a Monte Carlo study to determine the
statistical goodness of CFAR compared to OLS. The results of
this research show that CFAR is superior to OLS whenever there
is high multicollinearity or errors in the variables. The variances of
the b coefficients are smaller for CFAR and the biases asymptotically
approach zero. Also the distributions appear to be normally distributed
so statistical tests based on the normal distribution can be used.

Key Words: Factor Analysis, Principal Components, Monte Carlo,
Factor Analysis Regression, Ordinary Least Squares, Multicollinearity,
Errors in the Variables, Outliers.
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Statistical Analysis of the Goodness of
* Classical Factor Analysis Regression (CFAR)

John T. Scott, Jr., and Allen Fleishman

Regression from factor analysis has been suggested by several authors
as an alternative for ordinary least-squares (OLS) regression when
the explanatory variables are subject to error or there is significant
multicollinearity (Kloek and Mennes, 1960; Amemiya, 1966; Scott,
1966; Lawley, 1973).

In the case of multicollinearity when the determinant of the ex-
planatory variables correlation matrix approaches zero, it is well known
that OLS can give spurious results. The regression coefficients fre-
quently do not correspond to either the theory or the zero-order cor-
relation coefhicients, and the variances are inconsistent. Also, when
there are errors in the variables (which is normal with economic data),
it has been shown ( Johnston, 1963) that OLS regression coefficients are
biased and that the associated variances are not only inconsistent but
generally underestimate the true variances. These results follow from
violation of two OLS assumptions: that the explanatory variables are
independent, and that the explanatory variables are known, fixed num-
bers without error. For example, if we assume there are errors in all
variables, then the OLS model becomes:

(1) (y — v) = by (%, — u;) + by (x; — 1) + ...
+ bk (xk-—uk) + w

or in matrix notation:
(2) (Y =SVi=a@EX=TU) B RaWe

where Y is the n X 1 vector of observed values of the dependent variable
adjusted for the mean,

Vis the n X 1 vector of errorsin Y,

X is the n X k matrix of n observations of the k explanatory vari-
ables adjusted for the mean,

U is the n X k matrix of errors in X, and

Wisthe n X 1 vector of residuals from regression which may in-
clude specification errors as well as other errors not included in

L
Minimizing W with respect to B results in

3) B=[(X-U)YX-U)IP(X-U)(Y—-V)]or
B =[(X - U)X - U)XY - UY — X'V + U'V].
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We can simplify the foregoing expression by making three additional
assumptions not found in the classic assumptions underlying OLS:
the errors in Y are uncorrelated with those in X; the errors in X are
uncorrelated with Y; and the errors in Y are uncorrelated with X. These
assumptions are reasonable and only moderately restrictive. Then the
last three terms in equation 3 become zero and B becomes:

(4) B=[(X—-UY(X-U)]" XY, or
B=[X'X—2X"U+ UU]*XY.

Assuming that the errors in X are independent of X itself (which
is still another assumption), the middle term of the inverse in equation
4 drops and then equation 4 becomes:

(5) B = X'X — U'U X7Y.

To estimate this modification of the OLS model, we need to know
as a minimum the variance-covariance matrix of the errors in X. The
problem 1is that this is rarely if ever known in the real world. If we
make the assumption that the errors in X are uncorrelated with each
other, then equation (5) becomes the ridge regression estimator:

(6) ' B = [X'X — oI XY,

where e« is another parameter which must be estimated, which is no
trivial task (Marquardt, 1970; McDonald and Galarneau, 1975).

While empirical results from factor analysis regression are sub-
stantially better than those from OLS based on a priori expectations
(Amemiya, 1966; Scott, 1966; Oehrtman, 1968; Bursch et al., 1972),
the statistical properties of the estimators in factor analysis regression
have not been derived mathematically, nor does such a derivation ap-
pear tractable.! The alternative method generally acceptable for obtaining
the statistical characteristics of an estimator is to perform a Monte Carlo
study of the estimator. The development of such a study involving
classical factor analysis regression and its results are reported here.

CLASSICAL FACTOR ANALYSIS REGRESSION

The factor analysis statistical model assumes that a large number of
variables can be described adequately by a smaller number of factors:

(8) Z=AF+4+ U

' The senior author has worked on this problem and consulted others including
R. A. Wijsman, Department of Mathematics, and Leyard Tucker and Charles
Lewis, Department of Psychology, University of Illinois. All suggested the
Monte Carlo approach.
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where Z is the h X n matrix of n observations of all h real variables
involved,
A is the h X m matrix of regression coefficients, usually referred
to as factor coefficients or factor loadings, with m < h,
F is the m X n matrix of the n values of the m factors, and
U is the h X n matrix of the n residuals associated with the h
variables.

It is assumed that E(U) = 0; E(F) = 0; E(UU") =V, a diagonal
matrix; E(FF’) =1; and E(Z) = 0; and further, that U and F are
independent and have multivariate normal distributions.

A number of methods have been developed to “extract factors” or
calculate the coefficient matrix to meet the foregoing statistical assump-
tions (Hotelling, 1933; Guttman, 1940; Lawley, 1940; Rao, 1955;
Joreskog, 1962; and others).

A derivation of regression from factor analysis was developed
which, for purposes of differentiation, is called “classical factor analysis
regression” or “see far — CFAR” (Scott, 1970). Since CFAR is much
simpler and easier to obtain than the earlier factor analysis regression
derivations, it should appeal to practitioners for their research work.
The results from CFAR are as good as, or better than, those from the
earlier factor analysis regression methods.

Using standardized variables in ordinary least-squares regression
(OLS) results in the following equation to estimate the regression
coefficients:

(9) B = RilRuy

where B is the k X 1 vector of regression coefficients,
R, isthe k X k correlation matrix of the explanatory variables,
and
R,, is the k X 1 vector of correlations between the dependent and
the explanatory variables.

The factor analysis statistical model, equation 8, allows for errors in
all variables and can be used in situations involving high multicollinear-
ity. Factor analysis regression may also give improved results over OLS
when the data set contains a number of extreme values or outliers. Thus
the assumptions of factor analysis seem more appropriate for use with
real economic data than do the assumptions of ordinary least squares.

Let the matrix R be the matrix of correlations among the explana-
tory variables augmented with the correlations between the dependent
and the explanatory variable. This matrix has dimensions k + 1 by
k + 1. Using matrix R, obtain the factor loading matrix A, by least
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squares or maximum-likelihood (Lawley, 1940; Whittle, 1952; Rao,
1955; Joreskog, 1962). Then:

(10) AA’+V =R,

where V is a diagonal matrix and is the difference between diagonal
(AA’) and I, the identity matrix; and R is the maximum-likelihood
estimate of the full correlation matrix.

Then partition R into f{,,, the k by k estimated correlation matrix of
the explanatory variables, and Ry, the k by 1 vector of estimated correla-
tions between the explanatory variables and the dependent variable. Use
these estimated correlations in the OLS regression coefficient estimating
equation to get the CFAR coefficients, 3, so that:

(11) B = Ru"Ry.

The long-run efficacy of any statistical method at least partly depends
upon having knowledge of the statistical properties of the method,
especially of the characteristics of the parameter estimators. We try to
obtain this knowledge for the CFAR estimators in the Monte Carlo
study.

CONCEPT AND PROCEDURE OF THE MONTE CARLO STUDY

The concept of this study was to use observations of a population
with a dependent variable that is associated with observations of a set
of explanatory variables, all observations assumed to be without sam-
pling error. Then the OLS regression estimators for this set were
assumed to be the parameters or expected values of the estimators. To
this original population random normal errors were added to all
variables. This new population with errors in all variables then is the
observed population to be sampled for the Monte Carlo experiment.
From this set of observations with measurement errors, draw a large
number of random samples of various sample sizes, and estimate the re-
gression for each sample with CFAR and OLS. Then, examine the popu-
lation of coefficients obtained from these regressions by comparing the
mean of each estimator with its corresponding parameter (whether or not
there is a bias or how the bias behaves), and examine how closely the dis-
tribution of the estimators corresponds to the normal distribution. Desired
characteristics for the CFAR coefficients would be unbiasedness, effi-
ciency, and normality. Two additional important characteristics are com-
pared for CFAR and OLS. These are the mean-square error for the pre-
diction: X(Y — Y)? where Y is the original population value without
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error and V is the predicted value based on the estimation from the ob-
served variables with error; and, the mean-square error for the regression
coefficients: (B — [3)2 where B is the OLS estimate from the original
population without sampling error as the parameter, and ,B is the regres-
sion coefficient estimated by CFAR and OLS from the observed variables
with error included. If (Y — Y)’ and £(8 — ,B)2 estimated by CFAR
are less than when estimated by OLS, then this is evidence that CFAR
is in some sense a better estimating procedure. These latter two criteria
are usually considered more important for small sample size than are
unbiasedness and normality.

MONTE CARLO PROCEDURE

Three original populations were selected, each with one dependent
variable and twelve explanatory variables. Then, using four sets of asso-
ciative characteristics and two variable generating procedures, 24 popu-
lations which are now called initial populations were generated having
various internal characteristics.?

For this Monte Carlo experiment, a substantial range was generated
in the associative characteristics because of the wide range of these
characteristics found in empirical observations. For example, with most
economic data more of the intercorrelations are positive than negative;
some socioeconomic variables have high intercorrelations —as an ex-
ample, prices of substitutes or economic variables over time and time
series; and some socioeconomic variables occasionally have low inter-
correlations, typically those from cross-section data and survey ques-
tionnaires. Also, the range in the proportion of the variance of the
dependent variable explained by regression is frequently quite large.
Therefore we believed that it was imperative to use different initial
populations representative of a wide range of various associative
characteristics.

Assuming that the observations in the initial populations were with-
out error, we calculated the OLS regression for each of the initial 24
populations and assumed the coefficients from these regressions to be
the parameters or expected values of the coefficients for each respective
initial population.

A random normal error structure was added to all variables in each
initial population so that we then had 24 populations with errors in all
variables which became the “‘observable’” values to be sampled. Then

! By associative or internal characteristics is meant the interrclationship of
the variables within any one initial population.



[ ILLINOIS BULLETIN 759 [AUGUST,

from each of the 24 populations with errors in the variables, 100 sam-
ples each of size 16, size 64, and size 256 were drawn, with the sampling
error structure potentially different with each draw, simulating drawing
from an infinite population. Thus, there were 7,200 sample variance-
covariance matrices drawn for this experiment. An OLS regression was
run for each of the 7,200 samples, each with 12 explanatory variables.

To obtain factor analysis regression, the sample correlation matrix
must be factor-analyzed and a reproduced correlation matrix calculated
from the factor-loading matrix. An important consideration in factor
analysis is the number of factors to be extracted from the sample corre-
lation matrix. The factor-reproduced correlation matrix will differ, de-
pending upon the number of factors extracted. With 12 explanatory
variables, we believed a maximum of six factors should be ample to
describe the underlying phenomena. Not knowing the change in char-
acteristics of the CFAR estimators that might occur as a result of
using different numbers of factors, we extracted and reproduced a
correlation matrix from one factor, from two factors, etc., up to and
including six factors, using the factors explaining the most cumulative
variance in all cases. Thus from each sample correlation matrix there
were six reproduced correlation matrices. A classical factor analysis
regression equation was estimated from each of these six reproduced
correlation matrices, making 43,200 CFAR equations, each with 12
explanatory variables, that were estimated for this Monte Carlo
experiment.

Since factor extraction and communality estimation by least squares
or maximum-likelihood is much more expensive than obtaining the
principal components, the experiment included obtaining the factors by
principal components as well as by a statistical routine, and calculating
the regression coefficients the same way from each extraction method to
compare the results between image factor-analysis extraction and prin-
cipal components. There were actually 86,400 CFAR equations — half
using statistical factor-analysis extraction and half using principal
components.!

'L. R. Tucker, Department of Psychology, University of Illinois, suggested at
the time we ran the calculations of the experiment that we factor-analyze only
the explanatory variable correlation matrix rather than the augmented matrix
to save computer time on such a large experiment. The estimating equation then
becomes B = Ru Ryy rather than B = R« Riy. Although the difference in re-
sults is probably only marginal, we now believe that conceptually the augmented
matrix should be the matrix to factor-analyze. We have no way of knowing
whether a marginal improvement would have been great enough to compensate
for the cost of the extra calculation.
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ASSOCIATIVE CHARACTERISTICS

Tables 1 through 6 give the details of the associative or internal
characteristics of each of the initial 24 populations. Table 1 shows the
four initial populations with the four different associative characteristic
ranges generated by the two-factor generator from the first original
population (see appendix). Table 2 shows four additional initial popu-

Table 1. Characteristics of Four Initial Populations Including Regres-

sion Coefficients (1-4) Produced With the Two-Factor Generator From
Original Population
Associative characteristics
¢ Initial Initial Initial Initial
Cox;raenl;;mn population 1 population 2 population 3 population 4
Freq. Freq. Freq. Freq. Freq. Freq. Freq. Freq.
of tsy- "z + ofifxy  Ofifsaty ~of rxp’ “of Bex  -Of fxy Of v
—1.0to —.9
—.9to —.8
—.8to —.7
—.7t0 —.6
—-.6to —.5 2
—.5to—.4
—.4to—-.3 1 1 2 1
—-.3t0o—.2 1 1 1 1
—.2to —.1 3 1 2 1 2
—.1to O 1 3 1 7 3 8 1 6
Oto .1 3 1 4 3 14 4 6
1to .2 1 5 1 5 6 31 5
.2t0 .3 1 2 9 11 5 13
3to .4 6 3 11 1 8
4t0.5 5 3 19 12
.5t0 .6 2 § 8 5
.6to .7 2 8 D,
.7to .8 3 17 /7
.8t0 .9 6
.9t01.0
Statistical Population regression parameters (by OLS)
estimator Initial Initial Initial Initial
population 1 population 2 population 3 population 4
R? .6806 .3474 .0647 .1195
b: —.0283 —.0111 —.0005 L0277
b: .1071 .1068 .0593 .0284
b, .1129 .0850 .0526 .0549
b .2457 L1875 .0904 .1959
bs -.1121 —.0930 —.0467 .0450
by —.0035 .0077 .0097 .0141
by .0528 .0627 .0312 .0058
bs .1609 .1416 .0764 .0578
be —.0537 —.0443 —.0193 .0197
bie .0881 .0896 .0510 .0222
" .1424 .1262 .0718 .0503
12 —.0755 —.0688 —.0321 .0225
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lations with the four associative ranges generated by the four-factor
generator from the first original population. Tables 3 and 4 show the
corresponding eight additional initial populations generated from the
second original population. Tables 5 and 6 show the corresponding eight
additional initial populations generated from the third original
population.

Table 2. Characteristics of Four Initial Populations (5-8) Produced With
the Four-Factor Generator From Original Population One

Associative characteristics

lati Initial Initial Initial Initial
Cog‘;zz“’" population 1 population 2 population 3 population 4
Freq. Freq. Freq. Freq. Freq. Freq. Freq. Freq.
olors . olkis® offisen. ofdd offing | offns)  of ryy . of rex
—1.0to —.9
—.9to —.8
—.8to—.7
—.7to —.6
—.6to —.5
—.5to—.4 1 12
—.4t0o—.3 1 1
—.3to —.2 5 1 3 4
—.2to —.1 4 6 3 1 4
—.1to O 2 5 1 8 2 15 9 8
Oto .1 1 4 g 10 6 25 4 13
Mo 2 1 8 1 10 4 20 74 7
2:tonsd 1 7 2 8 3 3 12
3to .4 2 5 3 11 7
4to.5 6 1 10 4
.5to .6 2 5 5
.6to .7 2 9 1
.7to .8 5
.8t0.9
9to1.0
TR 7 Population regression parameters (by OLS)
estimator Initial Initial Initial Initial
population 1 population 2 population 3 population 4
R? .6626 .316 .0513 L1123
by —.0570 —.0442 —.0190 —.0158
b, .1346 11230 .0608 .0381
bs —.0732 —.0275 —.0018 —.0681
by .3206 .1944 .0999 .2408
bs L1251 .0966 .0408 .0403
bs —.05333 —.0265 —.0046 —.0336
b, .0337 .0422 .0216 .0033
bs .2080 .1766 .0846 .0641
by .0184 .0062 —.0003 L0112
bie .0554 .0582 .0338 .0134
bn .1953 .1516 .0732 L0775

brz —.1626 —.1444 —.0598 —.0397
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The associative characteristic sets were developed on the following
criteria: Associative characteristic set 1 was to have a high R? and a
wide range of frequency of r,, and ry but with a large share of the
zero-order correlations in the upper range (above 0.6); set 2 was to have
a medium R? and zero-order correlation coefficients not as high, but still
predominantly on the upper part of the range; set 3 was to have a rela-

Table 3. Characteristics of Four Initial Populations (9-12) Produced
With the Two-Factor Generator From Original Population Two

Associative characteristics

Initial Initial Initial Initial

Correlation population 1 population 2 population 3 population 4

range
Freq. Freq. Freq. Freq. Freq. Freq. Freq. Freq.
ofrey ofirxx ofirzy ofires ofirsy ofirzs of rxy Of £xs
—1.0to —.9
—.9to —.8
—.8to —-.7 1
—~.7t0o —.6 1
-.6to —.5 2
—.5to —.4 3 /)
—.4to —.3 1 2
—.3t0o—.2 2 4 3
—.2to —.1 2 ) 5 S
—.1to O 5 7 11 9
Oto .1 2 2 2 2 3 17 3 7
1to .2 2 1 S 7 26 1 12
.2t0 .3 1 3 2 13 2 7 2 11
.3to .4 8 2 8 1 6
4t0.5 2 S 3 16 2 4
.5to .6 5 2 5 3 3
.6to .7 2 9 4
.7t0 .8 3 11 2
.8t0.9 2 4
.9t01.0
Soaviebeal Population regression parameters (by OLS)
estimator Initial Initial Initial Initial
population 1 population 2 population 3 population 4
R? .7521 .4180 .1142 3724
by 11212 .1082 .0749 .0679
b; .1537 .1345 .0957 .1063
bs .0803 .0948 .0604 .0238
b .0575 .0603 .0431 .0321
bs .1241 L1213 .0849 .0655
be .2208 .1538 .1089 .2754
by .0545 .0597 .0414 .0259
by .0003 —.0023 .0006 .0059
by .0242 .0317 .0176 .0017
bio .0570 .0687 L0415 .0132
by .1601 L1276 .0926 1484

bys .0054 .009%0 .0036 —~.0041
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tively low R? and a small range of zero-order correlation coefficients;
and set 4 was to have a medium to low R? with a wide range of zero-
order correlation coefficients. Also, since we were trying to simulate
socio-economic variables, we had the criterion for all sets that a major
share of the correlations should be positive. These objectives are met
reasonably well as shown by the frequency distribution of the data and

Table 4. Characteristics of Four Initial Populations (13-16) Produced
With the Four-Factor Generator From Original Population Two

Associative characteristics

Initial Initial Initial Initial

Correlation population 1 population 2 population 3 population 4

range
Freq. Freq. Freq. Freq. Freq. Freq. Freq. Freq.
ofusy Oficls Olicly ofnls ©ofosy ofule of ryy of re
—1.0to —.9
—.9to —.8
—.8to —.7
—.7to—.6
—.6to —.5
—.5to —.4 4
—.4t0o —.3 1 4
—.3to—.2 2 7
—.2to —.1 6 6 1 8
—.1to O 3 6 1 19 11
Oto .1 1 5 3 7 7 30 3 15
.1to .2 1 5 2 13 4 17 3 13
.2t0.3 1 10 4 11 2 7
.3to .4 10 1 10 1 6
4to0.5 4 3 2 10 2 3
.5to .6 1 S 1
.6to .7 1 9
.7t0 .8 2
.8to.9
.9t01.0
Statistial Population regression parameters (by OLS)
estimator Initial Initial Initial Initial
population 1 population 2 population 3 population 4
R2 .7203 .3623 .0802 .3277
by —.0106 .0131 .0035 .0913
ba .3159 2T .1345 .2866
bs .1937 .1871 .0910 .0610
b —.0272 —.0040 .0125 —.0193
bs —.0791 —.0305 —.0014 —.00688
bs .3458 .2106 21183 .3370
bs .0574 .0653 L0475 .0303
bs .0260 .0238 .0058 —.0060
by —.0938 —.0804 —.0411 —.0395
bio .0526 .0600 .0388 .0202
bu .0537 .0653 .0614 .0694

biz .1394 11224 .0586 .0595
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the R¥s in Tables 1 through 6. The range in R*¥s for set 1 is from
0.6626 to 0.8147; set 2 is from 0.3156 to 0.4682; set 3 is from 0.0512 to
0.1463; and set 4 is from 0.1123 to 0.6084.

Tables 1 through 6 also give the standardized OLS regression co-
efficients for each of the 24 initial populations. \We assume these regres-
sion coefficients are the population parameters or expected values for
each of the 24 initial populations. Tables 1 through 6 also give the values

Table 5. Characteristics of Four Initial Populations (17-20) Produced
With the Two-Factor Generator From Original Population Three

Associative characteristics

Correlati Initial Initial Initial Initial
o:_;c:];\:lon population 1 population 2 population 3 population 4
Freq. Freq. Freq. Freq. Freq. Freq. Freq. Freq.
offrd. of ta&v, oftsys Ol ofdriws Ofituah - OF Guywmr O Tax
-1.0to —.9
—.9to —.8
—.8to —.7 1
—.7to —.6 3 1
—.6to —.5 1 1
—.5to—.4 2 2 1
—.4to—.3 4 4 3
—.3t0 —.2 3 3 1 1
—.2to —.1 1 2 2 5 1 -1
—.1to O 2 4 1 9 3
Oto.1 1 y 1 6 3 20 1 6
1to.2 5 2 6 6 20 2 10
.2to0 .3 1 3 1 10 2 4 1 15
.3to .4 7 2 7 1 9
4t0.5 2 5 5 20 3 6
.5t0 .6 6 1 2 2 2
.6to .7 4 5 1 2
.7to .8 2 15 1
.8t0 .9 1 2
.9t01.0
Statistical Population regression parameters (by OLS)
estimator Initial Initial Initial Initial
population 1 population 2 population 3 population 4
R? . 8147 .4682 . 1463 .6084
by L1941 .1664 .1263 .2071
b: L1221 .1178 .0881 .1027
b .1334 1276 .0941 .1064
b .0193 .0036 .0072 .1162
by .1257 11245 .0917 .0974
by . 1446 .1365 .1028 .1288
bs .0356 .0326 .0245 .0281
bs .1023 .0880 .0692 L1173
by .2156 .1500 .1120 .3595
bie .0858 .0922 .0610 .0392
bn —.0340 —.0372 —.0246 .0049

bis .0589 .0700 .0448 .0199
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of the determinant of the augmented correlation matrix as some indi-
cation of the degree of multicollinearity. The closer the determinant is
to zero, the greater is the degree of multicollinearity. If the R? is high,
then we would expect the determinant of the augmented correlation
matrix to be near zero. But since the highest R? of any of the 24 initial
populations is 0.7521, the small size of the determinants also reflects
a high degree of multicollinearity among the explanatory variables.

Table 6. Characteristics of Four Initial Populations (21-24) Produced
With the Four-Factor Generator From Original Population Three

[AUGUST,

Associative characteristics

lati Initial Initial Initial Initial
Co;;engzlon population 1 population 2 population 3 population 4
Freq. Freq. Freq. Freq. Freq. Freq. Freq. Freq.
ol AN algtsy oanBt ofiny  offiA) ofit M  ofiry, - of ry
—1.0to —.9
—.9to —.8
—.8to —.7
—.7t0o —.6 1
—.6to —.5 1
—.5to—.4 1
—.4to —-.3 4 1
—.3to —.2 5 L5 3
—.2to —.1 2 6 2 8
—.1to 0 2 9 2 10 2 20 2 10
Oto .1 1 9 1 10 4 30 1 12
iitor. 2 1 2 2 8 6 15 2 13
2to .3 1 7 2 13 3 12
3to .4 1 8 2 9 2 5
4to .5 1 S 3 4 1 1
5to.6 2 7 1 il
6to .7 2 4
.7to .8 1 2
.8t0 .9
.9to1.0
Sttt Population regression parameters (by OLS)
estimator Initial Initial Initial Initial

population 1

population 2 population 3 population 4

R2 . 7861
by .0468
b. .1484
bs .2672
by .1476
bs —.0134
bs 2434
b; .1078
bs —.0491
by .1992
bio .1687
b —.0375

bia w529

.4179
.0457
.1339
.2169
.0845
.0040
.2025
.0993
.0343
.1269
.1635
.0280
.1471

.1052
.0328
.0874
.1406
.0590
.0021
.1270
.0611
.0229
.0808
.0923
.0099
.0831

.5187
.0284
1179
.2828
.3179
.0328
2214
.0701
.0842
.3373
.0782
.0049
.0829
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RESULTS
Efficiency

Efficiency refers to the size of the variance of an estimator relative
to the variance of another estimator or a standard estimator. The
smaller the variance of an estimator, the more efficient the estimator is,
and the estimator with greatest efficiency (often referred to as the efh-
cient estimator) is the estimator with the smallest variance.

We know from statistical theory (Anderson, 1958) that the OLS
estimator is inefficient and that the variance is unreliable for probability
estimates when there are errors in the explanatory variables.

Thus one important characteristic of the CFAR estimator to investi-
gate is the variance of this estimator. Since there are 43,200 equations
each with 12 b; values and it is impossible to make or report all the pos-
sible comparisons one might like to make, the variances for each esti-
mator (calculated from each of the samples of 100) were summed and
averaged over the 12 b; for certain Monte Carlo variables such as sam-
ple size (N = 16, 64, 256) for associative characteristics or the internal
population relationships, and for each of the different numbers of fac-
tors extracted from one through six factors. We have essentially sum-
marized the 5,184 variances related to the Monte Carlo variables.

The data relating the mean variances to the sample size and number
of factors extracted are given in Table 7. The mean variance, very small
when the sample size is the largest (256), remains consistently small
for all factors extracted. The mean variance is still quite small for the
medium sample size (64), but tends to increase as the number of
factors extracted is increased. The mean variance is small even for
sample size 16. The fact that the mean variance gets smaller as the
sample size increases is important because it indicates that CFAR is a
consistent estimator; that is, the variance asymptotically approaches a
minimum as sample size increases.

Table 7. Mean Variance of the Table 8. Mean Variance of the
CFAR Estimators by Sample Size CFAR Estimators by Sample Size
and Number of Factors Extracted and Associative Characteristics

Factors . Ando? g
. 2 San,]ple == . ciative Sample size

acted  Mimh¢ NEStw N - RAUOSSOTIEENG ek a2

teristics 2 <

.006176  .001803  .000764
.010808 .002095 .000579 R, .023146  .004126  .001322
.018060 .003286 .000960 2 .026211  .004315  .001317
.027348  .004815  .001347 Rs .028443  .005483  .001486
.039844  .007020  .002084 R, .627851  .004976  .001497
.056240  .009330  .002699

O\ e N =
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The mean variance increases as the number of factors extracted in-
creases for both extraction methods. As the number of factors extracted
increases, the solution approaches the OLS solution and is the same as
the OLS solution when the maximum possible number of factors are
extracted. This result implies that the CFAR solutions are always more
efficient than the OLS solutions.

Table 8 relates the mean variances to the four selected associative
characteristics and to the sample size. The four sets of associative char-
acteristics explained earlier are designated R, as the populations with
high R?, R, as the populations with medium RZ? R; as the populations
with a low R?, and R, with a wider ranging R2 Intercorrelations among
the population variables also differ. While the associative set with the
highest R* and the highest intercorrelations among the explanatory
variables has the smallest variances for the CFAR estimators, the
average variances for the other sets are also small and well behaved.
The variances for the CFAR estimators drop sharply in magnitude when
we go from sample size 16 to sample size 64, and again to sample size
256. This is exactly the way we would like to have the CFAR estimator
behave in order to recommend it as an extremely good estimator for
errors-in-the-variables regression. The variances were smallest regard-
less of sample size for the population characteristics which had the high-
est R? and the highest intercorrelations among the explanatory variables,
also a very desirable feature.

The mean variances are related to the number of factors extracted
and the associative characteristics in Table 9. These data illustrate
again the increase in variance as the number of factors extracted
increases. There is little difference in the variances from one associative
characteristic to another. Except when only one factor is extracted,
the variances are smallest for the two populations having the highest
R? and higher intercorrelations among the explanatory variables.

Table 9. Mean Variance of the CFAR Estimator by
Number of Factors and Associative Characteristics

Nun;ber Associative characteristics®

o

factors R, R, Rs Ry
1 .003193 .003121 .003026 .002316
2 .003620 .004533 .005439 .004384
3 .005927 .007256 .008763 .007795
4 .009136 .010879 .012790 .011876
5 .014480 .015728 .017504 .017552
6 .020831 .022168 .023303 .024724

* In this and_ following tables, R1 = High r, Rz = Medium r, Rs = Low
r, and R« = Wide range r.
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Normality

Normality refers to how closely the distribution of the CFAR
estimator approaches the normal distribution. The method we chose to
analyze this question was to calculate for each f&, the higher moments
of the distribution (skewness and kurtosis) since both skewness and
kurtosis of the normal distribution are zero. The Kolmogorov-Smirnov
statistic, an alternative statistic, was not used because the moments are
more sensitive, particularly in the tails of the distribution. The moments
were calculated and averaged, again relating the mean of the moments
to the Monte Carlo variables.

Skewness

Summary data for skewness are given in Table 10 with respect to
sample size and the number of factors extracted. All values obtained
for skewness are small. Skewness approaches zero as sample size
increases and as the number of factors extracted increases. The skew-
ness in the largest sample size is consistently small regardless of the
number of factors extracted.

Skewness related to sample size and the four sets of populations
with different associative characteristics is given in Table 11. While
the skewness does not seem to bear a consistent relationship among
the various associative characteristics for each sample size, it is clear
again that the skewness approaches zero as sample size increases — the
largest improvement being made as the sample size increases from 16
to 64.

Skewness related to associative characteristics and the number of
factors extracted is given in Table 12. The skewness declines consis-
tently for all associative groups as the number of factors extracted is

Table 10. Mean Skewness of the
CFAR Estimator by Sample Size
and Number of Factors Extracted

Table 11. Mean Skewness of the
CFAR Estimator by Sample Size
and Associative Characteristics

Num- Asso-
&T Sample size ciaisi(\)/e Sample size

o, N=16 N=o4 N=256 chac Nw.js N=6t N=256
actors tenistics
1 1.273076  .209734 —.013147 R,  .568742 .148125 .037540
2 .7069982 200702 .042032 R,  .727828  .087259  .015515
3 1507069 121915 056393 R,  .465930 .111601 —.006986
4 (402840 098575 060511 R,  .S74174 .159582 .092826
S 276784 076460 043235
6  .185260 .052464 .019319
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Table 12. Mean Skewness of the CFAR Estimator by
Associative Characteristics and Number of Factors

Nun;ber Associative characteristics

o

factors R R, Ry R
1 .280749 .419263 .440154 .819383
2 .359442 .395388 .283772 .311686
3 .304982 .315598 194992 .218266
4 .227333 .234565 .136653 .150683
5 .191042 .185158 .056596 .095842
6 .145269 111230 .028922 057304

increased, except for group R, in going from one factor to two factors
extracted. In all cases the skewness is the least for six factors extracted.

The salient points shown by this Monte Carlo experiment regarding
skewness are: skewness, while generally positive, is very small in all
cases; skewness approaches zero as sample size increases; skewness
approaches zero as the number of factors increases; and skewness does
not seem to be consistently related to the associative characteristics.

Kurtosis

Kurtosis was calculated and related to the Monte Carlo variables
in the same way as variance and skewness. If the distribution is not
kurtotic relative to the normal distribution, the value for kurtosis is
equal to or near zero. The mean kurtosis values related to sample size
and number of factors extracted are given in Table 13. All kurtosis
values are small, and the kurtosis approaches zero as sample size in-
creases. The sharpest reduction in kurtosis was made in going from sam-
ple size 16 to 64. Except for an aberration at three factors for the two
larger sample sizes, the kurtosis also approached zero as the number of
factors extracted increases.

Kurtosis related to sample size and associative characteristics is given
in Table 14. Here again the kurtosis values for all combinations are
small and approach zero as the sample size increases, with the sharpest
reduction in kurtosis occurring in moving from the size 16 sample to
sample size 64. The populations with high R? and high intercorrelations
among the explanatory variables seem to have the kurtosis values closest
to zero at all sample sizes.

Kurtosis values related to associative characteristics and number
of factors extracted are given in Table 15. Except for an aberration for
group R, when two factors are extracted, the consistent pattern of
kurtosis values indicates that they approach zero as the number of fac-
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Table 13. Mean Kurtosis of the
CFAR Estimator by Sample Size
and Number of Factors
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Table 14. Mean Kurtosis of the
CFAR Estimator by Sample Size
and Associative Characteristics

Num- Sample size

Asso-

ber of - ciative Sample size
factors N =16 N=64 N=25 characc N'76 N=6¢ N=256
teristics

1 8.746820 094613 469777
2 5.51090 504834 222304 R, 3.842346 .472982 .087ST1
3 4336723 709071 352426 R, 6.658900 .394044 190024
4 30701197 425751 070094 R, 4.925442 469767 109464
5 2.980154 285380 010045  R. 5.003670 674829 .272235
6  2.260743 097709 — . 135707

tors extracted increases. Otherwise there seems to be no clear pattern
of how the kurtosis values relate to the associative characteristics at
corresponding factor numbers.

The findings on kurtosis can be stated as follows: all the kurtosis
values are small; kurtosis values approach zero as sample size in-
creases; and kurtosis values approach zero as the number of factors
extracted increases.

Bias

The bias is the difference between the expected value or the average
value over all samllles of the estimator and the true values or para-
meter — bias = E(B) — B. Because the large amount of data restricted
the extent of investigation and presentation of each item, we averaged
the bias over all parameters for comparison purposes. The result shown
in each cell of Table 15 is the average bias calculated as follows for each
subclassification of the Monte Carlo experiment:

(11) B (Bi — B;)/1200

jm1l im

where B; is the hypothesized parameter of the j-th explanatory variable
calculated by using OLS on the initial population without error. By
is the estimator for the j-th explanatory variable calculated from the
i-th sample after the addition of random normal errors to all observa-
tions of all variables.

The results of calculation of the bias are given in Table 16. The
bias of the OLS estimator after errors are added to the initial observa-
tions of the variables relative to the OLS values before errors are added
is given in the first row of the table for comparison purposes. The re-
sults are given for both factor analysis and principal component ex-
traction and by sample size and number of factors extracted. The OLS
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Table 15. Mean Kurtosis of the CFAR Estimator by
Associative Characteristics and Number of Factors

N “"}be" Associative characteristics
o

factors R, R, R; R,
1 1.939687 3.001932 4.525533 4.147795
2 1.426016 2.013136 2.320110 2.558121
3 1.999107 1.810255 1.544697 1.976898
4 1.461554 1.619087 1.127421 1.387992
S 1.236110 1.221622 .836656 1.085051
6 . 743223 .819904 .654925 . 745608

bias is small for all three sample sizes, but does not appear to be con-
sistent, going from positive to negative to positive nor does it appear to
be asymptotic.

In all cases the bias for the CFAR estimators is consistent and
negative, but asymptotically approaches zero as sample size increases.
For the largest sample size, the bias of the CFAR estimators when four
or more factors are extracted is smaller than the bias of the OLS esti-
mator. Using principal components rather than statistical factor analysis
gives comparable results. While the bias for factor analysis is equal to
or smaller than the bias of principal components, the differences are
sufficiently small that the extra cost of statistical factor extraction rela-
tive to the cost of principal components appears to be greater than the
advantage gained.

The second part of Table 16 gives the bias by number of factors ex-
tracted and the internal population characteristics. Here the OLS esti-
mators also seem to be inconsistent. The CFAR estimators are negatively
biased and in general are smallest when there is a high intercorrelation
among the variables in the population. There are several cases among
these data where the principal components method results in better
(smaller bias) estimates than the statistical factor extraction method.
Differences in the magnitude of the bias are smaller than we had ex-
pected among the various populations. The high correlation populations
have the smallest bias, but the magnitude of the bias of the CFAR
estimators for the other populations is about the same.

While the most desirable outcome for the bias would be if the
CFAR estimators were unbiased, the bias does appear to be well
behaved; that is, the bias is negative, consistent, and asymptotically ap-
proaches zero as sample size increases. Also, the bias is smallest for
the kind of population characteristics that we are most concerned about
and for which this estimator was initially developed.
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Table 16. Average Bias of B From the True Value of B

No. of N =16 N = 64 N = 256 Overall average
factors
extracted FA PC FA PC FA e FA PC

1 —.0332 —.0317 —.0204 —.0229 —.0150 —.0186 —.0229 —.0244
2 -.0168 —.0178 —.0073 —.0102 —.0041 —.0078 —.0094 —.0119
3 —.0109 —.0113 —.0035 —.0041 —.0020 —.0017 —.0054 —.0057
4 —.0077 —.0084 —.0017 —.0023 —.0004 —.0004 —.0033 —.0037
S —.00s3 —.0070 —.0012 —.0020 —.0003 —.0004 —.0023 —.0031
6 —.0039 —.0056 —.0009 —.0016 —.0003 —.0005 —.0017 —.0028

OLS .0012 —.0002 ) .0006

Internal Characteristics
No. of High r Medium r Lowr Wide range r
factors

extracted FA PC FA 146 FA PC FA PC

—.0221 —.0229 —.0209 —.0238 —.0181 —.0020 —.0304 —.0288
—.0087 —.0096 —.0102 —.0113 —.0099 —.0133 —.0087 —.0134
—.0040 —.0030 —.0060 —.0052 —.0065 —.0088 —.0054 —.0057
—.0015 —.0007 —.0041 —.0034 —.0044 —.0072 —.0030 —.0034
—.0007 —.0005 —.0032 —.0031 —.0030 —.0058 —.0021 —.0031
—.0009 —.0002 —.0025 —.0026 —.0018 —.0049 —.0016 —.0026

OLS .0002 —.0010 .0012 —.0008

Note: FA means a statistical factor extraction; PC means extraction by principal
components.

O\ N e

Table 17. Average Mean Square Error of B From the True Value of B

No. of N =16 N = 64 N = 256 Overall average
factors

extracted FA PC FA PC FA PC FA PC

1 .0120 .0100 .0070  .0085 .0059 .0080 .0083 .0089
2 .0133 .0085 .0039 .0055 .0024 .0048 .0065 .0063
3 .0194 0099 .0040 .0044 .0015 .0030 .0083 .00S8
4 .0282 .0130  .0052 .0046 .0017  .0025 .0117 .0067
S .0406 .0176 .0074 .0057 .0024 .0027 .0168  .0087
6 L0570 .0244 .0096 .0068 .0029 .0030 .0232 .0114

OLS .5023 .0212 .0044 .1760

Internal Characteristics
No. of High r Medium r Lowr Wide range r
factors

extracted FA PC FA PC FA PC FA PC

1 .0105 .0121 .0073 .0075 .0045 .0036 .0110 .0122
2 L0064 .0069 .0059 .0046 .0060 .0038 .0077 .0099
3 .0067 .0050 .0077 .0042 .0091 .0050 .0096 .0089
4 .0095 .0049 .0111 .0053 .0130 .0068 .0132 .0099
S .0148  .0069 .0160 .0072 .0177 .0088 .0186 .0117
6 .0212 0096 .0224 0099 .0235 .0116 .0256 .014S
OLs .1580 .1703 1677 .2079

Note: FA means a statistical factor extraction; PC means extraction by principal
components.
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Loss Function of the Estimators

Another important criterion frequently considered is the loss func-
tion of the estimators: the sum of squares of the differences between
the estimator and the parameter over the number of samples. These
data are given in Table 17. Mathematically the values given in this
table are:

(12) T T (By; — B;)?/1200

jml im1l

with respect to the particular cell designations of the table. The notation
is the same as for equation 11. As we look at the loss function of the esti-
mators, we find first that it is smaller in almost all cases than the
corresponding loss function for the OLS estimators. In some cases the
difference is very great, being 37 times greater for the OLS estimators
in one case. Moreover, the loss function for the CFAR estimators
becomes smaller as sample size increases for each level of factor ex-
traction, and the loss function increases as the number of factors ex-
tracted increases. If we realize that the CFAR estimator is the same as
the OLS estimator in the limit as the number of factors extracted in-
creases to be equal to the number of variables, we can then see the logic
in the increase in the loss function as the number of factors increases.
Thus the loss function for CFAR estimators should always be less than
for OLS, and would have as its upper bound the value of the OLS loss
function. On examining the differences between statistical factor extrac-
tion and principal component extraction, we find that at the small sam-
ple size, principal component extraction results in small loss functions
for all levels of factors extracted. These results are less pronounced at
the medium sample size, and statistical extraction seems better than
principal components at the large sample size.

With respect to the populations with different internal characteristics,
the OLS loss function again is uniformly larger than for the CFAR
estimators. In most cases the principal component estimators give better
results than the statistical factor procedure. Except for results from ex-
tracting only one factor, the loss function for the CFAR estimators
monotonically increases with increasing number of factors for both
the principal component procedure and the factor analysis procedure.
Furthermore, the upper bound should again be the OLS result when
all factors are extracted.

Loss Function of the Predicted Values

If we are concerned about prediction as well as the structural param-
eters, or if we are mainly concerned about prediction, as is frequently
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Table 18. Average Mean Square Error of the Predicted Value From the
True Value

No. of N =16 N = 64 N = 256 Overall average
factors
extracted FA pPC FA PC FA BC FA BC
1 .9038  .8921 7864 .8191 7479 7971  .8127 .8361
2 8435 8040 .6854 .7085 6489 .6846 .7259 .7324
i L8744 7987 .6671 .6715 .6280 .6393 .7322 .7031
4 .9388  .8225 .6738 .6676 .6273 .6292 .7466 .7064
5 1.0322 .8609 .6874 .6750 .6315 .6307 .7837 .7222
6 1.1552 .9174 .7015 .6831 .6348 .6324 .8305 .7743
OLS 4.4568 . 7689 .6424 1.9560
Internal Characteristics
No. of High r Medium r Low r Wide range r

factors

extracted FA P FA pPC FA PC FA PC

1 .5734 .6336 .8039 .8317 1.0031 .9959 .8704 .8831
2 .3816 .4098 .7273 .7271 1.0015 .9959 .7796 .8023
3 .3347  .3376 .7271  .7016 1.0494 .9903 .7815 .7716
4 .3353 .3184 .7496 .7070 1.0933 1.0019 .8082 .7780
5 .3538 .3251 .7867 .7218 1.1460 1.0223 .8483 .7958
6 J3751 .3354 .8360 .7428 1.2140 1.0462 .8970 .8202
OLS .8660 1.9950 2.8522 2.1110

Note: FA means a statistical factor extraction; PC means extraction by principal
components.

the case, then an important criterion is how the loss function of the
predicted values compares between CFAR equations and OLS equations.
The results shown in Table 18 were calculated as follows:

(13) Y ¥ (Y — ¥i)/1200
By e
where Y, is the i, j-th population true value. 1 = 1, 2,..., n, where n
is the sample size. j =1, 2,..., 100, with 100 repeated
samples.

Y. 5 is the predicted value.

Predictions were made by the various procedures — factor analysis with
six different factors, principal components with six different com-
ponents, and OLS.

The values actually sampled and used to calculate the estimators and
the predictions were Y,j, which are Y5 + 3;,, where 3, is the random
normal error added to the original population values. Thus the loss
function is not the mean square error in the sample, which would be
(14) Wy T (Y — Ya)Y/1200,

j=1 i=l



22 ILLINOIS BULLETIN 759 [AUGUST,

which is the square of the difference between the predicted and the
observed, where Y’ is the observed, but rather the loss function takes
into account the difference between the predicted and the true value.

The OLS loss is largest at the small sample size. The CFAR loss
is only one-fifth to one-fourth as large as the OLS loss at the small
sample size, showing a considerable improvement over the OLS pre-
dictions. On the small sample size, the loss for the principal component
(PC) procedure was less than the loss for the factor-analysis (FA)
procedure for all six factors. For the medium- and large-size samples,
the results for the PC and the FA procedures were very similar, with
first one and then the other being better. For the medium-size sample
CFAR was better than OLS for all factors extracted except the first and
second.

The results are even more clearly in favor of CFAR when compari-
sons are based on differences among internal population characteristics.
Here both the PC and the FA methods result in substantially smaller
loss than OLS for all classifications of internal population characteris-
tics, and for all the numbers of factors or principal components ex-
tracted. The best predictive ability for both OLS and CFAR occurred
when there was high intercorrelation among the variables. The predic-
tive ability measured by the loss function of the predicted values was
from about 100 percent to as much as 300 percent better for CFAR
than OLS. These results are shown in the first part of Table 18.

SUMMARY

A Monte Carlo experiment was developed to study the statistical
characteristics for the beta estimators from classical factor analysis re-
gression (CFAR), which has been proposed especially for estimating
regressions when there are errors in the variables and when high multi-
collinearity makes ordinary least squares inappropriate or completely
infeasible.

This experiment took 100 random samples of each sample size of 16,
64, and 256 from each of 24 initial populations having four different sets
of associative or internal characteristics and 12 explanatory and one
dependent variable. Thus there were 7,200 samples drawn. One through
six factors were extracted from each and CFAR estimated from these
factors, making 43,200 CFAR equations with 12 explanatory variables
each. The statistical properties of the CFAR estimators were then
analyzed. '

It was found that the CFAR estimators behave extremely well. The



19781 CLASSICAL FACTOR ANALYSIS REGRESSION 23

variance is small even at small sample sizes and quickly approaches a
consistent minimum level as sample size is increased. For purposes of
using this estimator where there is high multicollinearity, it is note-
worthy that CFAR estimates for the initial populations which had
the highest R? and the highest intercorrelations among the explanatory
variables consistently had the smallest variances. The good small-sample
results are important, especially for those working with time-series data
for which the number of observations is often limited. The variances
increase as the number of factors extracted increases, so that if this
procedure were carried to the limit (where the number of factors ex-
tracted equaled the number of variables — the OL.S regression case), the
variances corresponding to OLS estimation would balloon up to the
OLS values. Thus CFAR is clearly a very efficient estimator relative
to OLS for regressions when there are errors in the variables.

The experiment also shows that the CFAR estimators are asymptot-
ically normal both as sample size increases and as the number of factors
increases. This is deduced from the behavior of the third and fourth
moments (skewness and kurtosis), which are both zero in the normal
distribution. Even for small samples a normal or “t” distribution could
be used for probability statements about the CFAR estimators.

The CFAR estimators are consistently negatively biased, but appear
to approach zero monotonically as sample size increases. Two measures
often made of estimators are comparisons of the mean-square error or
loss functions for the estimators themselves and of the loss function of
the prediction. Here, too, CFAR shows substantial advantage over
OLS, being from 100 percent in many cases to as much as 2,500 percent
better than OLS.

Thus the CFAR estimator is substantially better in several respects
than OLS for all applications where there is high multicollinearity or
when there are errors in the variables, regardless of sample size, and
CFAR is especially useful for small samples. We hypothesize that
CFAR is also better when the data are plagued with outliers.
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APPENDIX: GENERATION OF THE ORIGINAL
AND SAMPLING POPULATIONS

As this was a Monte Carlo investigation, the relevance of the results
totally depended on the appropriateness of the populations used; there-
fore, this study varied the characteristics of the population used for the
study in the same ways that characteristics have been observed to vary
in many applied studies published in the literature and in other known
empirical work.

The population intercorrelation matrix [P] dictates in many ways
the results of any Monte Carlo experiment. The choice of an empirically
derived matrix from the literature was rejected, because any single study
might have had the data generated in an unique way, with an atypical
error structure. The choice was therefore between an artificial but known
and controllable population generation technique, and an unknown and
controllable but natural data-generation technique. The simulation of P
was selected. A procedure was needed which allowed errors in both the
dependent and independent variables and various degrees of inter-
correlation (multicollinearity) among all variables, and which paralleled
the procedure that an investigator might use in selecting variables.

The methodology of Tucker, Koopman, and Linn (1969) was se-
lected. Their procedure is based on the latent causal (or factor analytic)
model. For each set of population matrices (there were two replications
to be described later), it was hypothesized that the investigator had at-
tempted to select variables to measure (to varying degrees) the under-
lying variables. It was assumed that the criterion was measuring all the
latent variables. The degree to which variables were measuring the un-
derlying factors was simulated by random selection of integers to sum to
four. This matrix was then row-normed. By this method it was possible
to get overrepresentation of loadings on certain latent variables. As
indicated by the trace of the cross products, overrepresentation did not
occur to a prohibitive degree. This matrix, the degree to which the vari-
ables are assumed to load on the latent variable [A], is given in Table
Al. This matrix has been row-normed to be of unit length.

However, it was assumed that in practice there is a discrepancy be-
tween the a priori correlation of the variables with the causal variable
and the actual correlation. The true loadings on the underlying con-
structs were generated by

(1) A = ACp + DX (1.0 — C?p)0<

where A =a 13 X 4 matrix of actual loadings on the underlying con-
structs,
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Table Al. Conceptual Row-Normed Loadings on the Latent Variables

(A)
Observied Latent variables
variables I 1 1 v
Xy .94868 .31623 .0 .0
X: .0 .31623 .94868 .0
Xs .0 .94868 .0 .31623
X .0 .0 .31623 .94868
Xs 1.00000 .0 .0 .0
Xe¢ .0 .94868 .0 .31623
Xz .0 .33333 . 66667 . 66667
Xs .0 .0 .31623 .94868
Xs 1.00000 .0 .0 .0
Xuo .0 -31623 194868 0
Xn .0 .0 1.00000 .0
Xz .0 .94868 .31623 .0
Y 3 .50000 .50000 .50000
[Tr(A’A)})/13 .24231 .25855 .29188 .20726

C = a 4 X 4 diagonal matrix with constants for each factor rep-
resenting the degree of error in specifying how well a
a variable loads on a factor. Following Tucker, Koopman,
and Linn, C was generated by random uniform deviates in
the range of 0.70 to 0.90. The diagonal elements of C for
population replication 1 were 0.83140, 0.71735, 0.74041, and
0.82244.

X =a 13 X 4 matrix of standardized normal deviates, and

D =a 13 X 13 diagonal matrix that was used to row-normalize
X to unit length, where d;; = (3;X?;)-°3.

Table A2. True Loadings
for the Two-Factor Pop-

ulation 1

Var. Factorl Factor2

X, .99946 .03277
X, .49329 .86987
X, . 82605 .56360
X .43780 .89907
Xs .81502 —.57943
Xs .98863 . 15035
X .73175 .68157
Xs —.19622 .98056
Xy .96754¢  —.25273
Xie .66333 . 74833
Xu .43708 .89942
X .87765 —.47931
W .15204 .98837

Table A3. True Loadings for the Four-Factor

Population 1

Var. Factorl Factor2 Factor3 Factor4
X . 74088 .25534 .45529 —.44262
X .44165 .24887 .63778 .57987
Xs —.00629 .89658 .37995 .22748
X .15225 .39174 .24289 .87428
Xs .69137 14441 .65570 .26684
X .21740 .95499 .02229 .20058
X .23414 . 73280 41418 .48646
X —.16205 .02912 .03059 .98588
Xy . 71000 .41126 .36330 —.44134
Xie .24554 .65089 .55396 45735
Xn .63180 11712 . 64407 .41507
Xie .03940 . 80663 11615 —.57819

.30116 .12834 .19992 .92350
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Number of Underlying Factors

Within each population it was desirable to vary the number of
underlying latent variables; two and four variables were selected for
this study. In the two-variable case, a linear sum of the first two and last
two columns of matrix A was performed. This procedure insured that
the two- and four-factor cases would have similar effects from the sto-
chastic nature of X and C given in IEquation 1. The loading matrix for
the two- and four-factor solution was row-normalized to unity and
appears for population 1 in Tables A2 and A3.

Levels of Communality
(2) R =FF + U?

where F = a matrix of factor loadings, and
U? = a diagonal matrix containing the proportion of uncorrelated
error variance of each variable (uniqueness).

Furthermore,
(3) B ="1T5UkK

where H? = a diagonal matrix containing the proportion of variance
each variable shares with one another (i.e., communality).

It is desirable to vary the degree of communality (or conversely, the
degree of uniqueness) into four levels: high communality, H? ~ U(0.70
— 0.90); medium communality, H? ~ U(0.40 — 0.60); low communal-
ity, H2 ~U(0.10 — 0.30); and wide communality, H? ~ U(0.10 —
0.90). In order to insure comparability across communality levels, the
four levels of communality were selected to be linear combinations of
one another:

“) h? medium, j = (h? high, j) — 0.3 (observed attribute)

(5) h%low, j = (h?high, j) — 0.3 (observed attribute)
(6) h? wide, j = 4(h? low, j) — 0.3 (observed attribute)
jals 200 313

The diagonal entries of h? high for population 1 were 0.84905,
0.78175, 0.88172, 0.89331, 0.80636, 0.84063, 0.70259, 0.80925, 0.77029,
0.78500, 0.82318, 0.75626, and 0.70785.

The final population intercorrelation matrix is given by

7) P = FF' + U2

where F = HA
U? =is given by Equation 3, and
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H = a diagonal matrix containing elements given by Equation 4,

S, or 6 above.

Therefore, for each population there were two levels of factors and
four levels of communalities. Thus there were eight population matrices

per population replication.

The regression weights and population multiple correlation for all

population 1 matrices are presented in Table A4.

Table A4. Regression Weights and R? for Population 1

& Two factors Four factors
gres. High  Medium  Low  Wide High Medium  Low  Wide
sion'' com- com- com-  com- com- com- com- com-
weights mun- mun- mun-  mun- mun- mun- mun- mun-
ality ality ality ality ality ality ality ality
b: —.0283 —.0111 —~.0005 —.0277 —.0570 —.0442 —.0190 —.0158
bs .1071 .1068 .0593  .0284 .1346 .1230 .0608 .0381
by 1129 .0850 .0526  .0549 —.0732 —.0275 .0018 — .0681
by .2457 1575 .0904 1959 .3206 .1945 .0999  .2408
bs —.1121  —.0930 —.0467 —.0450 1251 .0966 .0408  .0403
b —.0035 .0077 .0097 —.0141 —.0533 —.0265 —.0046 —.0336
bs .0528 .0627 .0312  .0058 .0337 .0422 .0216  .0033
bs .1609 .1416 .0764  .0578 .2080 .1766 .0846 .0641
bs —.0537 —.0443 —.0193 —.0197 .0184 .0062 —.0003 .0112
bie .0881 .0896 .0510 .0222 .0554 .0582 .0338  .0134
by 1424 .1262 .0718  .0503 .1953 .1516 .0732 0775
bs. —.0755  —.0688 —.0321 —.0225 —.1626 —.1444 —.0598 —.0397
R? .6806 .3474 .0647  .1195 .6626 .3156 .0513  .1123
R .8250 .5894 .2544  .3457 .8140 .5618 12265  .3350
Det. .3687x10~¢ .006113 .3626  .002494 .1322x10—¢ .02633 .5247  .01697

Population Replication

The matrices H, C, and X which generated characteristics of P are
stochastic in nature. To determine the importance of such random per-
turbation on the model (i.e., to determine the effect of experimenter’s
choice of variables), the above procedure was replicated two times, al-
lowing A to remain the same but generating new random number ma-
trices H, C, and X. These computations were done on an IBM 370/155
at the University of Illinois Medical Center in Chicago using double
precision FORTRAN words. The random number generator used was
by Lewis and Payne (1973). Test results from this generator are

reported by Richardson.

The regression weights, b,, and population multiple correlation for

all population 2 matrices are given in Table AS.
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Table AS5. Regression Weights and R? for Populatiop 2

[AUGUST,

Re-

Two factors

Four factors

gres- High Medium Low Wide High Medium Low Wide
sion  com- com- com- com- com- com- com- com-
weights mun- mun- mun-  mun- mun- mun- mun- mun-
ality ality ality ality ality ality ality ality
by .1212 .1082 .0749  .0679 —.0106 .0131 .0035 —.0913
b .1537 .1345 .0957  .1063 .3159 2277 .1345  .2866
bs .0803 .0948 .0604 .0238 .1937 .1871 L0910  .0610
by .0575 .0603 .0431 .0321 —.0272 —.0040 .0125 —.0193
bs .1241 .1213 .0849 0655 —.0791 —.0305 —.0014 —.0688
bs .2208 .1538 .1089 2754 —.3458 .2106 1133 .3370
by .0545 .0597 .0414  .0259 .0574 .0653 .0475  .0303
ba .0003 .0023 .0006 .0059 .0260 .0238 .0058 — .0060
by .0242 .0317 .0176  .0017 —.0938 —.0804 —.0411 —.0395
bio .0570 .0687 .0415  .0132 .0526 .0600 .0388  .0202
bu .1601 .1276 .0926  .1484 .0537 .0653 .0614 0695
b2 .0054 .0090 .0036 .0041 .1394 1224 .0586  .0595
R2 L7521 .4180 1142 3724 .7203 .3623 .0802  .3277
R .8672 6465 .3379  .6102 . 8487 .6019 .2832  .5724

.7812x1075 008115 .4070  .006693 .3055x10™¢ . 03676 .5864  .04599

Sample Size (N)

Most standard errors depend on the number of observations (N). It
was felt that three levels should adequately span this variable and allow
for possible quadratic effects. N was set at 16, 64, and 256 observations.
The lower level was selected because it yields very few degrees of
freedom while allowing the matrix to be nonsingular. Pilot work sug-
gested there would be a lack of discrimination among techniques in
terms of MSE if the upper limit were raised. As the variance is usually
related to N2, the intermediate level was selected on the basis of an inter-
mediate number in a quadratic progression. To keep costs within reason,
only one intermediate level was chosen.

Sampling Replications

The next step in the simulation was to generate sample intercorrela-
tion matrices from each of the sixteen population matrices. Within
each sample size and for each population, one hundred sample replica-
tions were done. A replication (given the underlying population) was
done by use of Wishart (1928) matrices. ach population matrix was
Choleski-decomposed into

(8) P=TT

where T = an upper triangular matrix.
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Samples from P (Wijsman, 1959), were generated by forming a
sum of squares matrix:

(9) S=TwWT
where W = a Wishart matrix. W itself can be decomposed into
(10) W = GG’
where G = [g”] A ) S N(O,l) ifi > j

G g|j~XN-|-‘ifi=j

T = 0 ifi < j
Therefore,

(11) S=(TG)(TG)’

For i > j, gi; was generated by the polar variant of Box and Muel-
ler’s (1958) technique (program GGNMP of IMSL). For i = j, gu
was generated by a variant of the Lewis-Payne generator (Payne and
Lewis, 1971; and Sobolewski and Payne, 1972), given a random uni-
form deviate (RANDU of SSP).

A distribution of 10,000 samples of the above-normal and chi square
variates was generated and was found to be distributed according to
theoretical expectations. The sample unbiased covariances were obtained

by
(12) C=S/(N—1)

Thus, E(C) = P. Each of the population variances was set arbi-
trarily to 1.0. A sample of means was generated by

(13) % = (N-°5)Td

where d = a vector of normal deviates generated by GGNMP, as above.

Therefore X was the vector of sample means sampled from the popu-
lation matrix (P) with sample size N (N = 16, 64, and 256) and popu-
lation mean zero.

For each level of N there were 100 sample replications. Therefore
there were 4,800 mean and covariance matrices of 12 predictors and cri-
terion (two population replications by two levels of number of factors by
four levels of communality by three levels of number of observations
(N) by 100 sample replications).
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