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The fundamental theorem of calculus for Lipschitz

functions∗
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Abstract. Every smooth function in several variables with a Lip-
schitz derivative, when considered on a compact convex set, is the differ-
ence of a convex function and a convex quadratic function. We use this
result to decompose anti - derivatives of continuous Lipschitz functions
and augment the fundamental theorem of calculus. The augmentation
makes it possible to convexify and monotonize ordinary differential equa-
tions and obtain possibly new results for integrals of scalar functions
and for line integrals. The result is also used in linear algebra where
new bounds for the determinant and the spectral radius of symmetric
matrices are obtained.
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1. Introduction

This paper is based on a decomposition result from [21]. The result says that every
smooth, i.e., continuously differentiable, function f of several variables with Lip-
schitz derivative, when considered on a compact convex set, is the difference of a
convex function and a convex quadratic function; see Section 2. The main results
of the paper are contained in Section 3 where we use the decomposition to augment
the fundamental theorem of calculus for continuous Lipschitz functions. The clas-
sic theorem is “unquestionably the most important theorem in calculus . . . ” [15,
p. 287]. It has two parts. When taken together they say that differentiation and
integration are inverse processes: each undoes that the other does. It is stated in
the literature for continuous functions. In this paper we look at the theorem under
the assumption that the continuous function is Lipschitz. This yields additional
information on anti - derivatives and integrals which are incorporated here into the
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classic theorem. The augmentation shows that, in particular, ordinary differential
equations (ODEs) can be reduced to equivalent ODEs with only convex or monotone
solutions. The fact that one knows a priory that the solution is convex or monotone
is helpful for numerical methods, e.g. [4]. There are first - order ODEs that can
not be “convexified”, but the reduction works for the second - (and higher -) order
ODEs. This is important because ODEs that follow from Newton’s Second Law of
mechanics, e.g., [8, 14], have twice differentiable solutions and hence they can be
both convexified and monotonized. The reduction is illustrated on the movement
of a pendulum. Since the augmentation is given in terms of convex functions, it
may yield endlessly many results on Lipschitz functions and their anti - derivatives.
One only has to apply general properties of convex functions to the convex terms
in the augmentation. In Section 5, the line integral formulation of the fundamen-
tal theorem of calculus is recalled from [2]. Its augmentation yields possibly new
properties of line integrals, in particular, for Green’s theorem.

The decomposition result from [21] can be used in two directions: One is to
“convexify” smooth problems, e.g. [21, 23, 24, 25], see also [11]. We follow this
direction to augment the fundamental theorem of calculus in Sections 2 - 5. Along
the other direction one can extend properties of convex functions to non - convexity.
This was demonstrated, e.g., for Jensen’s inequalities in [20, 22]. Here, in Section 6,
a well - known inequality for convex functions of symmetric matrices from [12, 24] is
extended beyond convexity. The extension yields new bounds for the determinant
of symmetric matrices. In particular, a lower bound of Hadamard’s determinantal
inequality and a lower bound of the spectral radius of symmetric matrices are
obtained.

Instead of decomposing functions into differences of convex functions and con-
vex quadratics one can essentially do the same for concave functions and concave
quadratics. The assumption, that we are working with Lipschitz functions, is not
too restrictive for the applied mathematician because, loosely speaking, “almost
all” meaningful (having a real life interpretation) continuous functions on compact
sets are Lipschitz.

2. The basic decomposition result

In this section we recall the decomposition result from [21] and prove it for scalar
functions. First, a continuous scalar function f : R→ R is said to be Lipschitz, or
that is has the Lipschitz property, on an interval I = [a, b] if

|f(s)− f(t)| � L|s− t|

for every s and t in I. The number L is a Lipschitz constant. Similarly, a continuous
vector function F : R

n → R
m is said to be Lipschitz on a set S in R

n if

||F (x) − F (y)|| � L||x− y||

for every x and y in S for some constant L. The vector norm is chosen to be
Euclidean. Continuously differentiable functions are called “smooth functions”.
We will study these on compact convex sets K in R

n. Their derivatives may or may
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not have the Lipschitz property. The derivatives do have the Lipschitz property on
K if

||∇T f(x)−∇T f(y)|| � L̃||x− y|| (2.1)

for every x and y in K for some constant L̃. Note that L �= L̃; ∇T f(x) denotes the
transposed of the (row) gradient ∇f(x). A continuous f : R

n → R is convex on a
convex set K if

f(λx + (1− λ)y) � λf(x) + (1− λ)f(y) for every 0 � λ � 1 and x ∈ K, y ∈ K.

This paper is based on the following decomposition result from [21].
Theorem 2.1. (Basic Decomposition of Smooth Functions in Several

Variables with a Lipschitz Derivative) Consider a smooth function in several
variables f : R

n → R on a compact convex set K contained in its open domain. If
the derivative of f is Lipschitz on K, then there exists a number α� such that for
every α � α�

f(x) = C(α, x) − q(α, x)

where C(α, x) is a convex function and q(x) = − 1
2αxT x is a convex quadratic

function on K.
Numbers α and α� in Theorem 2.1, which “make” C(α, ·) convex, are called

convexifiers of f on K. If α′ is a convexifier, so is every α < α′. Function C(α, x)
is called a convexification of f on K. A continuous function f is convexifiable
(or “weakly convex”, e.g., [17]) on K if it has a convexification for some α. If
α � α� is replaced by α < α�, then the phrase: “C(α, x) is a convex function and
q(x) = − 1

2αxT x is a convex quadratic” can be replaced by “C(α, x) is a strictly
convex function and q(x) = − 1

2αxT x is a strictly convex quadratic”. Note that the
claim of the theorem can be rephrased: “If the derivative of f is Lipschitz on K,
then f becomes convex after adding to it a particular convex quadratic function q”,
e.g. [10, 19].

For two important classes of smooth functions one can determine convexifiers
explicitly. These classes are:

i) Continuously differentiable functions with Lipschitz derivatives. For these
functions, (2.1) holds and one can choose α� = −L̃, e.g., [21].

ii) Twice continuously differentiable functions. If f is such function, then one
can choose

α� = min
x∈K

min
λ

λ(∇2f(x))

where λ = λ(∇2f(x)) is an eigenvalue of the Hessian ∇2f(x) of f at a given
x, e.g. [19].

Illustration 2.2. The graphs of f(x1, x2) = sinx1 cosx2 and of its convexifi-
cation C(−4, x1, x2) = f(x1, x2) + 2(x2

1 + x2
2) on

K = {x = (xi) ∈ R
2 : −π

2
� x1, x2 � π

2
}
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are depicted in Figure 1. Function f is neither convex nor concave on K.

Figure 1. Function f and its convexification C

Let us prove a scalar version of Theorem 2.1. For scalar variables, we use the
notation s, t ∈ R instead of x, y ∈ R

n.
Corollary 2.3. (Decomposition of Smooth Scalar Functions with a

Lipschitz Derivative) Consider a smooth scalar function y : R→ R on a compact
interval I of its open domain. If the derivative of y has the Lipschitz property on
I, then there exists a number α� such that for every α � α�

y(s) = C(α, s) − q(α, s) (2.2)

where C(α, s) is a convex function and q(s) = − 1
2αs2 is a convex quadratic function

on I. In particular, one can specify α� = −L̃, where L̃ is a Lipschitz constant of
the derivative of y on I.

Proof. We know that for s and t, s �= t in I

|[y′(s)− y′(t)](s− t)| � L̃(s− t)2

since the derivative y′ is assumed to be Lipschitz. Using the absolute value property,
this implies

−L̃ � [y′(s)− y′(t)](s− t)
(s− t)2

� L̃.

Hence

α(s − t)2 < [y′(s)− y′(t)](s− t) for everyα < −L̃.

This yields

{[y′(s)− y′(t)]− α(s− t)}(s− t) > 0. (2.3)
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Consider ϕ(t) = y(t)− 1
2αt2. The derivative of ϕ(t) is ϕ′(t) = y′(t)−αt. Since (2.3)

can be written

[ϕ′(s)− ϕ′(t)](s− t) > 0,

we conclude that ϕ is strictly convex, hence convex, on I, e.g. [12]. �

Theorem 2.1 and (2.2) provide a link between smooth functions with Lipschitz
derivatives and convex functions. In particular, loosely speaking, they say that every
smooth function with a Lipschitz derivative is a convex quadratic “away” from the
set of convex functions for all sufficiently small α′s. This proximity to convexity is
used in, e.g. [24] to formulate canonical forms of mathematical programs. In the
illustration below, we depict this proximity for the sine function.

Illustration 2.4. Consider f(s) = sin s. We have

f(s) = [f(s) + q(α, s)]− q(α, s) = C(α, s) − q(α, s)

where C(α, s) = f(s)− 1
2αs2 and q(α, s) = − 1

2αs2 are convex for every α � −1.

Note that lower the parameter α, the “more convex” C(α, s).

Figure 2. Function f(s) = sin s and its convexifications C(α, s)

A characterization of continuous convexifiable functions is given in [23].

3. Augmentation of the fundamental theorem of calculus

The fundamental theorem of calculus has two parts. The first part states that for
a continuous scalar function f : R→ R on an interval [a, b] the function

y(s) =
∫ s

a

f(ξ)dξ, a � s � b (3.1)
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is continuous on [a, b] and differentiable on (a, b) and its derivative is y′(s) = f(s).
(Thus y is an anti - derivative of f .) We wish to know what can be said about y if f
is both continuous and Lipschitz. An answer follows from Corollary 2.3. However,
we need a compact interval I in (a, b). On this I, y is the difference of a convex
function and a convex quadratic function. The theorem below recalls the classic
version in (i) and it gives its augmentation in (ii).

Theorem 3.1. (The fundamental theorem of calculus: First part)

(i) Consider a scalar function f : R→ R that is continuous on an interval [a, b].
The function y(s) defined by (3.1) is continuous on [a, b] and differentiable on
(a, b) and its derivative is y′(s) = f(s).

(ii) Assume that f is continuous and Lipschitz on [a, b] with a Lipschitz constant
L. Then for every compact subinterval I in (a, b) there is a number α� such
that y(s) can be decomposed as

y(s) = C(α, s)− q(α, s) (2.2)

for every α � α�, where C(α, s) is a convex function and q(α, s) = − 1
2αs2 is

a convex quadratic on I. In particular, one can specify α� = −L. Moreover,
f(s) = M(α, s)−αs for every α � α�, where M(α, s) is a monotone increasing
function.

Proof. For the proof of (i) see, e.g. [15, p. 280]. In order to prove (ii) we use (i).
We note that for a continuous and Lipschitz f , y is smooth and it has a Lipschitz
derivative. Therefore, by Corollary 2.3, y is convexifiable. Furthermore, we know
that α� = −L is a convexifier of y, by, e.g. [21]. (Observe that y′(s) = f(s)!) From
the properties of convex functions it follows that also every α � α� is a convexifier.
Finally, the claim on monotonicity follows from the property of differentiable convex
functions, e.g. [12]. �

Illustration 3.2. Consider f(s) = cos s.
(i) An anti - derivative of f is

y(s) =
∫ s

0

cos ξdξ = sin s.

(ii) (Augmentation:) Since f is continuous and Lipschitz with, e.g., L = 1 on any
interval, one can specify α� = −1. The anti - derivative y can be decomposed y(s) =
C(α, s)−q(α, s), where C(α, s) = sin s+q(α, s) and q(α, s) = − 1

2αs2 are convex for
every α � −1. Moreover, f(s) = M(α, s)−αs where M(α, s) = C′(α, s) = cos s−αs
is monotone increasing for every α � −1.

Warning. The decomposition (2.2) is not trivial because it requires convexity
of the two terms. It does not work for, e.g., y given in Illustration 4.3 below.

The second part of the fundamental theorem of calculus says that every contin-
uous f on [a, b] satisfies ∫ b

a

f(s)ds = y(b)− y(a) (3.2)
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where y is any anti - derivative of f , that is, y′ = f . The result follows from the
first part of Theorem 3.1, e.g., [15]. Using the fact that a continuous and Lipschitz
f has a decomposable anti - derivative y(s) = C(α, s)− 1

2αs2 on compact intervals
we have the following result.

Theorem 3.3. (The fundamental theorem of calculus: Second part)

(i) Consider a scalar function f : R→ R that is continuous on a compact interval
I = [a, b]. The equation (3.2) holds for an arbitrary anti - derivative y of f .

(ii) Assume that f is continuous and Lipschitz on an interval J with a Lipschitz
constant L. Then for every compact subinterval I = [a, b] in the interior of J
there is a number α� such that∫ b

a

f(s)ds = C(α, b)− C(α, a) +
1
2
α(b2 − a2) (3.3)

for every α � α�, where C(α, s) is a convexification of an arbitrary anti -
derivative y(s) on I. In particular, one can specify α� = −L.

4. Applications of the augmentation

There are many applications of the augmentation. A straightforward one is to
ordinary differential equations (ODE). If a solution y of an ODE on a compact
interval is a smooth function with a Lipschitz derivative then y is convexifiable.
Hence, using the transformation y(s) = C(α, s) − q(α, s), every ODE with such
a solution can be reduced to an ODE with a convex solution. We denote these
transformed ODEs by C - ODE (standing for “convexified ODE”).

Illustration 4.1. The movement of a pendulum of length l = g under small
vibrations and no resisting forces is described in time t essentially by

Θ′′(t) = −Θ(t), Θ′(0) = 0, Θ(0) = Θ0

e.g., [8, 14]. The solution Θ(t) is of the form Θ(t) = C(α, t)+ 1
2αt2, by Theorem 3.1

(ii), and it is convex for every α sufficiently small. Using this substitution, the
corresponding C - ODE is

C′′(α, t) = −C(α, t)− 1
2
αt2 − α, C′(α, 0) = 0, C(α, 0) = Θ0.

Its solution is convex and it can be found in the “region of convexification”, i.e., in
a region with “sufficiently small” α. It is C(α, t) = Θ0 cos t − 1

2αt2. After back -
substitution, one finds the solution of the original problem: Θ(t) = Θ0 cos t. Graphs
of the solutions C(α, t) of the above C - ODE are depicted in Figure 3 for different
values of α. For sufficiently negative α � −L the solutions are convex and for
sufficiently positive α � L they are concave. The transformation from ODE to C -
ODE does not require that α be numerically specified.
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Figure 3. Solutions of C - ODE for the pendulum problem

The trajectories of objects that are described by Newton’s Second Law in theoretical
mechanics are solutions of the second order ODE. These trajectories are smooth
and have a Lipschitz derivative. Therefore they are convexifiable and hence one
concludes that ODE of theoretical mechanics can be transformed to C - ODE.

Theorem 3.1 (ii) says that for a Lipschitz f :

f(s) = M(α, s)− αs (4.1)

for every α � α�, where M(α, s) is an increasing monotone function in s. In
particular, one can specify α� = −L. Function M(α, s) = f(s) + αs for α � α� is
called a monotonization of f on I. Since differentiable functions are both continuous
and Lipschitz, one can use (4.1) to “monotonize” ODE of any order. The general
method of reducing an ODE to an ODE by monotonization is denoted by M - ODE.

Illustration 4.2. Using M - ODE and the substition Θ(s) = M(α, s) − αs,
the pendulum problem from Illustration 4.1 becomes

M ′′(α, s) = −M(α, s) + αs, M ′(α, 0) = α, M(α, 0) = Θ0.

Its monotone increasing solution is M(α, s) = Θ0 cos s+αs. After back substitution,
the solution to the original ODE is Θ(t) = Θ0 cos t.

There exist ODEs of the first order for which the solutions can not be decom-
posed as in (2.2). For such equations C - ODE does not work.

Illustration 4.3. The solution of y′(s) = f(s), where

f(s) =

{
2s sin 1

s − cos 1
s , if s �= 0,

0, if s = 0
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is

y(s) =

{
s2 sin 1

s , if s �= 0,

0, if s = 0.

The function f is not continuous at s = 0, hence y is not smooth. In fact, y is
not the difference of a convex function and a convex quadratic. Indeed, if y were
decomposable as in (2.2), then we would have y(s) = C(α, s) + 1

2αs2 and hence
f(s) = C′(α, s) + αs. Since the derivative of a strictly convex function is monotone
increasing, f would have to be the sum of a monotone increasing function and
a linear function, which is not true. The graphs of these particular f and y are
depicted in [18].

Illustration 4.4. The initial - value problem y′(s) = f(s), y(0) = 0, where
f(s) is given in Illustration 4.3, can not be solved by C - ODE. However, it can be
solved by M - ODE.

Illustration 4.5. A continuous monotone function is differentiable almost
everywhere on a compact interval I, by Lebesque’s theorem, e.g. [9, p. 321].
Hence, using Theorem 3.1 (ii), we conclude that every continuous Lipschitz function
is differentiable almost everywhere. This result, known as Rademacher’s theorem,
extends to functions in several variables.

The augmentations of the fundamental theorem of calculus in Theorems 3.1 and
3.3 relate f and its anti - derivative y to convexity. Since convex functions are well
studied, these augmentations provide wealth of information on f and y. One can
simply pick any result on general convex functions from, e.g. [12, 16, 20, 22] etc.
and apply it to C. For example, we know that, with a fixed α, a differentiable C is
convex on I if, and only if,

C′(α, s)(t − s) � C(α, t)− C(α, s) for every s and t in I.

What does this property imply here? Since

C(α, s) = y(s)− 1
2
αs2, C(α, t) = y(t)− 1

2
αt2 and C′(α, s) = f(s)− αs

we have the following situation:

y(t)− y(s) = C(α, t) − C(α, s) +
1
2
α(t2 − s2)

� C′(α, s)(t− s) +
1
2
α(t2 − s2), by convexity

= (t− s)f(s) +
1
2
α(t− s)2, after substitution and rearrangement.

Specifying, e.g. α = −L, we have

y(t)− y(s) � (t− s)f(s)− L

2
(t− s)2.
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Similary, using concavity of y(s) + 1
2Ls2, e.g., [19, 21], we find that y(t) − y(s) �

(t− s)f(s) + L
2 (t− s)2. Thus the following bound is obtained:

Corollary 4.6. Consider a scalar function f : R → R that is continuous and
Lipschitz on [a, b] with a constant L. Then an arbitrary anti - derivative y of f
satisfies

|y(t)− y(s)− (t− s)f(s)| � L
2

(t− s)2 (4.2)

for every s and t on a compact subinterval I of (a, b).
After interchanging s and t and a rearrangement, (4.2) yields stricter bounds:

Corollary 4.7. Consider a scalar function f : R → R that is continuous and
Lipschitz on [a, b] with a constant L. Then every anti - derivative y of f satisfies

−L
2

(s− t)2 + max{(t− s)f(s), (t− s)f(t)} � y(t)− y(s) � L
2

(s− t)2

+min{(t− s)f(s), (t− s)f(t)}

for every s and t on a compact subinterval I of (a, b).
Using Theorem 3.3 and Corollary 4.6 we obtain the following estimate of a

definite integral.
Corollary 4.8. Assume that f is continuous and Lipschitz on an interval J

with a Lipschitz constant L. Then for each compact interval I = [a, b] in the interior
of J

|
∫ b

a

f(s)ds− (b− a)f(a)| � L

2
(b− a)2. (4.3)

The inequality (4.3) gives a relationship between the definite integral of f on I =

[a, b], the rectangle (b − a)f(a), and a triangle
L

2
(b − a)2 with a basis (b − a) and

the height L(b − a). If f is a linear function, then the inequality is replaced by
an equation. If f is smooth, then one can specify L = maxs∈I |f ′(s)|. In order to
obtain “good” estimates, one should choose L (or another convexifier) relative to
given I.

Illustration 4.9. Consider the function y(s) from Illustration 4.3. This
function has a complicated anti - derivative, e.g. [13, p. 68]. Here (4.3), regardless
of b > 0, gives

|
∫ b

0

f(s)ds| � b2

2
.

Let us apply Artin’s characterizition of convex functions, e.g., [12], to a convexifi-
cation C(−L, s). Following the approach used in [22] we find a connection between
a Lipschitz constant of f and its arbitrary anti - derivative y. The connection is
given in terms of the absolute value of a determinant!
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Corollary 4.10. If y is an anti - derivative of a Lipschitz function f on I with
a constant L, then

|det


1 1 1

s t ξ

y(s) y(t) y(ξ)

 | � L
2

(s− t)(t− ξ)(ξ − s)

for every s < t < ξ on I.
One can use Corollary 4.10 in situation where y(s) and y(t) are known to esti-

mate y(ξ). The above also yields all kinds of inequalites. Take, e.g. f(s) = cos s.
Then y(s) = sin s and L = 1 regardless of I and the corollary yields various in-
equalities for the sine function.

5. Augmentation of the fundamental theorem of calculus for
line integrals

In this section we will use Theorem 2.1 to augment the fundamental theorem of
calculus for functions in several variables. Only in this section, we will use the
notation and terminology from [2]. In particular, the bold symbols, such as X,
represent “vectors” from the origin to the point x = (xi) ∈ R

n. They appear in
[2] with an arrow sign; the symbol “•” stands for the dot (inner) product. Using
the vector notation, the value of f : R

n → R at X is denoted by f(X) instead of
f(x1, . . . , xn) or f(x). Function f is then said to be a scalar - valued function of a
vector variable or, briefly, a scalar field. Similarly, the “value” of F : R

n → R
m at

X is denoted F(X) and F is then called a vector field and denoted F. We consider
only fields that are continuous and bounded on open connected sets S. The results
given below are meaningful in n - space. However, following [2], we are interested
only in the case when m = 2 or m = 3.

Apostol in [2, Section 5.10] gives a method for constructing a potential function
of a vector field that is different from the one given in, e.g. [1, Section 4.19]. He
uses a step polygon to connect points in S. Since S is connected, each point X in
S can be reached from any fixed point A in S by such a curve. He says: “When a
potential is constructed by line integration the calculations are often simplified by
connecting A and X by a step polygon” [2, p. 235]. We wish to integrate along a
curve C from a fixed point A in S to an arbitrary point X. Denote by Φ the scalar
field

Φ(X) =
∫ X

A

F • dr (5.1)

where r : R → R
3 describes C. For the definition of Φ(X) to be unambiguous, we

need to know that the integral depends on X and not on the particular path used to
join A to X. Therefore it is natural to require the line integral to be independent
of the path in S. (See [2, Section 5.8] for details.) Under these conditions, an
extension of the first part of the fundamental theorem of calculus to line integrals
takes the following form:
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Theorem 5.1. (First part of the fundamental theorem for line inte-
grals; [2, p. 235]) Let F be a vector field that is continuous on an open connected
set S. Let A be a fixed point of S. Assume that for every X in S the line integral
of F from A to X has the same value for every simple step polygon connecting A
to X. Define a scalar field Φ on S by the equation (5.1), where the line integral is
taken along any simple step polygon in S joining A to X. Then Φ is differentiable
on S and its gradient, ∇Φ, is equal to F; that is

∇Φ(X) = F(X) for every X in S. (5.2)

In order to apply Theorem 2.1 we need to place a compact convex set K in S:
Corollary 5.2. (Augmentation of the first part of the fundamental the-

orem for line integrals.) In addition to the assumptions given in Theorem 5.1,
consider a compact convex set K in S. Assume that F has the Lipschitz property
on K with a constant L. Take a fixed point A in K and consider Φ(X) with X in
K. Then the following two statements hold:
(i) For every α � -L, Φ(X) is of the form

Φ(X) = C(α,X)− q(α,X) (5.3)

where C(α,X) is a scalar convex field and q(α,X) = −1
2
αX •X is a scalar convex

quadratic field on K.

(ii) The vector field F(X) is the difference of a component - wise monotone increas-
ing vector field M(α,X) = ∇C(α,X) and a linear field, i.e., F(X) = M(α,X) −
(−αX) for every α � −L on K.

Proof. (i) The assumption on F and the equation (5.2) imply that Φ is smooth
and that its (Fréchet) derivative is Lipschitz. The decomposition (5.3) now follows
from Theorem 2.1 and the fact that α� = −L is a convexifier of Φ on K, e.g. [21].
(ii) We have Φ(X) = C(α,X)+ 1

2αX •X, by (5.3). The monotonicity claim follows
after differentiation using (5.2). �

We recall that a continuous function f : R
n → R is said to be component -

wise monotone on a convex set K if it is monotone along every line segment that
is parallel with each coordinate axis emanating from any x ∈ K, e.g. [24]. Note
that M(α,X) = ∇C(α,X) is component - wise monotone increasing, being the
derivative of a convex function. This follows from, e.g. [12].

Illustration 5.3. Consider F(X) = (cos x1 cosx2)i + (− sin x1 sin x2)j. Its
potential function is Φ(X) = sin x1 cosx2. Clearly, F : R

2 → R
2 is continuous

and Lipschitz on every compact convex set and any L � 2 can be choosen to be
a Lipschitz constant. Therefore Φ(X) can be decomposed as Φ(X) = C(α,X) −
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αx2)j for any α � −L. Graphs of the first components F1 of F(X) and of its
monotonization M1(α,X) = cosx1 cosx2−αx1 are depicted in Figure 4. M1(·, x2)
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is monotone increasing along x1 for every fixed x2. Similarly the second component
M2(α,X) = − sin x1 sin x2 − αx2 is monotone increasing along x2 for every fixed
x1, for every α sufficiently small.

Figure 4. First components of F(X) and its monotonization

Let us now look at the second part of the fundamental theorem of calculus for
line integrals from, e.g. [2] and its augmentation.

Theorem 5.4. (Second part of the fundamental theorem for line in-
tegrals; [2, p.230].) Let f be a scalar field that is continuously differentiable on
an open set S, and let ∇f denote the gradient of f . Let A and X be two points
of S that can be connected by a piecewise smooth curve lying in S. If C is such a
curve, described by a vector - valued function r defined on an interval [a, b], where
r(a) = A and r(b) = X, then we have∫

C

∇f • dr = f(X)− f(A).

Corollary 5.5. (Augmentation of the second part of the fundamental
theorem for line integrals.) In addition to the assumptions given in Theo-
rem 5.4, let us also assume that the derivative of the continuously differentiable f
has the Lipschitz property on a compact convex subset K of S with a constant L̃.
Let A and X be two points of K that can be connected by a piecewise smooth curve
C lying in K. Then∫

C

∇f • dr = C(α,X) − C(α,A) +
1
2
α(X •X−A •A) (5.4)

for every α � −L̃, where C(α,X) is a scalar convex field on K.
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Proof. We know that the line integral of ∇f along a path joining two points A
and B in K may be expressed in terms of the values f(A) and f(B). Alternatively,
using a decomposition of f , one can express it as in (5.4). �

The above yields estimates that are analogues to those described in Section 4.
A sample result follows.

Corollary 5.6. Under the assumptions of Corollary 5.5, for every α � −L̃∫
C

∇f • dr � ∇f(A) • (X−A) +
1
2
α(X−A) • (X−A).

Proof. We have C(α,X)−C(α,A) � ∇C(α,A) • (X−A) by convexity of the
field C. Also ∇C(α,A) = ∇f(A)− αA by the construction of C. We use these in
(5.4). �

A two - dimensional analog of the second part of the fundamental theorem of
calculus that expresses a double integral over a region R as a line integral taken
along a closed curve forming the boundary of R, is referred to as Green’s theorem.
The integration symbol

∮
below indicates that the curve is to be traversed in the

counterclockwise direction. We recall a version of Green’s theorem and then give
its augmentation.

Theorem 5.7. (Green’s theorem for plane regions; [2, p. 244].) Let P
and Q be scalar fields that are continuously differentiable on an open set S in the
xy - plane. Let C be a piecewise smooth Jordan curve, and let R denote the union
of C and its interior. Assume R lies in the set S. Then we have the identity∫ ∫

R

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∮
Pdx + Qdy,

where the line integral is taken around C in the counterclockwise direction.
If the union R is a compact convex set and if the derivatives of P and Q have

the Lipschitz property on R, then P and Q are convexifiable, i.e., CP (αP , x, y) =
P (x, y) − 1

2αp(x2 + y2) and CQ(αQ, x, y) = Q(x, y) − 1
2αQ(x2 + y2) are convex on

R with some convexifiers αP and αQ. After substituting CQ for Q and CP for P in
Green’s identity we have the following.

Corollary 5.8. (Convexification of Green’s theorem for plane regions.)
Let P and Q be scalar fields that are continuously differentiable on an open set S
in the xy - plane. Let C be a piecewise smooth Jordan curve, and let R denote the
union of C and its interior. Assume R is a compact convex set that lies in the set
S. Also assume that the Fréchet derivatives of P and Q have the Lipschitz property
on R. If CP (αP , x, y) and CQ(αQ, x, y) are convexifications of P and Q on R then∫ ∫

R

(
∂Q

∂x
− ∂P

∂y

)
dxdy +

∫ ∫
R

(αP y − αQx)dxdy =
∮

CP (αP , x, y)dx

+CQ(αQ, x, y)dy

where the line integral is taken around C in the counterclockwise direction.
The essential difference between Theorem 5.7 and Corollary 5.8 is that the latter

assumes convexity of R and the line integration is traversed only for convex functions
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CP and CQ. This may be easier to implement than line integration for non - convex
functions.

Illustration 5.9. (Adopted from [1, p. 369].) We wish to evaluate

I =
∮

[x− y3 + 3a(x2 + y2)]dx + (x3 + y3)dy

where C is the positively oriented boundary of the quarter disc R: 0 � x2 + y2 �
a2, x � 0, y � 0. Take P (x, y) = x − y3 and Q(x, y) = x3 + y3. We find, from
the Hessian of P , (recall the method from [19]) that a convexifier of P on R is
αP = −6a (a > 0). Hence CP (αP , x, y) = x − y3 + 3a(x2 + y2). Since Q is convex
on R, one can set αQ = 0 and CQ(αQ, x, y) = x3 + y3. Hence, by Corollary 5.8:

I =
∫ ∫

R

(
∂Q

∂x
− ∂P

∂y

)
dxdy +

∫ ∫
R

(αP y − αQx)dxdy

= 3
∫ ∫

R

(x2 + y2)dxdy − 6a

∫ ∫
R

ydxdy

=
3
8
πa4 + 2a4 = 3.178a4.

One may apply convexifications and monotonizations to double and triple inte-
grals of certain “derivatives” of vector fields over two and three dimensional struc-
tures as given in, e.g. [1, 2]. This could be useful in modeling problems in, e.g.
fluid dynamics and electrostatics.

6. Going beyond convexity in linear algebra

Theorem 2.1 can be used in two directions. On one hand, problems with smooth
solutions y having Lipschitz derivatives can be “convexified” after a substitution
for y, recall (2.2). These transformed problems have convex solutions in C(α, s).
On the other hand, one can extend properties of general convex functions f to
smooth, generally non - convex, functions. These are obtained after properties
of convex functions are applied to the convexifications C. An illustration of this
approach was given in [20] for Jensen’s inequality. In this section we will follow
the main ideas from [24] where the details can be found; however some results will
be sharpened. Our aim is to extend an important inequality for convex functions
of symmetric matrices to non - convex functions. To this end we will work with a
product function and use its convexification.

We begin with an arbitrary real symmetric matrix A. Given a fixed vector
consisting of its eigenvalues λ = (λi) in R

n, denote Kλ = {x ∈ R
n : x = Mλ, M ∈

Ωn}, where Ωn is the set of doubly stochastic n × n matrices, i.e., matrices with
nonnegative entries in which the sum of elements in each row and in each column
is 1, 〈u, v〉 = uT v is the Euclidean inner product of u and v from R

n.
Theorem 6.1. (Basic inequality for convex functions of symmetric

matrices, [12, Theorem C, p. 202].) Let A be an n × n, n � 2, real symmet-
ric matrix and let λ = (λ1, . . . , λn)T be a vector consisting of the eigenvalues of
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A arranged in some order. Let f : U → R be a convex function on a set U con-
taining the set Kλ. Then for any orthonormal set {v1, . . . , vn} in R

n there exists a
permutation matrix Pλ such that f(〈v1, Av1〉, . . . , 〈vn, Avn〉) � f(Pλλ).

After applying the above theorem to a convexification C(x, α) = f(x)− 1
2αxT x

of f , the following non - convex analog of Theorem 6.1 is obtained. Here ||A||
denotes the Frobenius (Euclidean) norm of A.

Theorem 6.2. (Basic inequality for convexifiable functions of sym-
metric matrices, [24].) Let A be an n× n, n � 2, real symmetric matrix and let
λ = (λ1, . . . , λ2)T be a vector consisting of the eigenvalues of A arranged in some
order. Let f : U → R be a convexifiable function on a convex set U containing
the set Kλ with a convexifier α and a concavifier β. Then for any orthonormal set
{v1, . . . , vn} in R

n, there exists a permutation matrix Pλ such that

f(〈v1, Av1〉, . . . , 〈vn, Avn〉) � f(Pλλ) +
α

2

{
n∑

i=1

〈vi, Avi〉2 − ||A||2
}

and

f(〈v1, Av1〉, . . . , 〈vn, Avn〉) � f(Pλλ) +
β

2

{
n∑

i=1

〈vi, Avi〉2 − ||A||2
}

.

After specifying f to be the product function f(x) = x1x2 · · ·xn, recalling that
f(Pλλ) = detA, and estimating its convexifier α and concavifier β, we have :

Corollary 6.3. (Bounds on Determinants of Symmetric Matrices, [24])
Let A = (aij) be an n × n real symmetric matrix and let ρ be its spectral radius.
Then

n∏
i=1

aii − (n− 1)ρn−2
n∑

i,j=1;i<j

a2
ij � detA �

n∏
i=1

aii + (n− 1)ρn−2
n∑

i,j=1;i<j

a2
ij .

This result is interesting for several reasons: (i) If the left - hand side is positive,
then we have a sufficient condition for non - singularity of A! (In order to simplify
the condition one can replace ρ by ||A|| in the inequality.) (ii) If A is a real arbitrary

square matrix, then we recall Hadamard’s inequality:

(detA)2 �
n∏

j=1

(
n∑

i=1

a2
ij).

This is considered by many to be “the most famous determinantal inequality” (e.g.
Bellman’s book: Introduction to Matrix Analysis, McGraw Hill, Second Edition,
1970, p. 130). What is a left - side bound of the inequality? Corollary 6.3 gives
the answer:

n∏
j=1

(
n∑

i=1

a2
ij)− (n− 1)[ρ(AT A)]n−2

n∑
i,j=1;i<j

(
n∑

k=1

(akiakj)2) � (detA)2.
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(iii) Corollary 6.3 also gives a lower bound on the spectral radius ρ of a symmetric
matrix:

|detA−
n∏

i=1

aii| � (n− 1)ρn−2
n∑

i,j=1;i<j

a2
ij .

Illustration 6.4. Consider

A =


ε ε −ε

ε 1 0

−ε 0 1

 .

Using (i) we find that A is non - singular if 0 < 4ε(1 + ε) < 1. Using (iii) we find
that the spectral radius of A satisfies ρ � 1

2 regardless of ε.

It may be interesting to find non - convex analogs of other properties of convex
functions, e.g. those from [3, 16] and numerous other texts on convexity. The idea
is to apply these properties to convexifications of non - convex functions. The most
difficult step in the process appears to be an estimation of convexifiers.

Let us emphasize what we have not done in this paper. We have not attempted
to generalize convexity in any way. We have not mentioned any kind of “general-
ized convexity”, such as pseudo convexity or quasi convexity, Karlin’s method of
generalized convexity or his total positivity, “convexifications” based on optimality
conditions, etc. For the sake of simplicity we have used only the classic notion of a
convex function and we have worked in a finite - dimensional setting.
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a2
ij .
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