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Abstract

Many empirical studies of auctions show that prices of identical goods sold sequentially follow a
declining path. Declining prices have been viewed as an anomaly, because the theoretical models of
auctions predict that the price sequence should either be a martingale (with independent signals and no
informational externalities), or a submartingale (with a¢ liated signals). This paper shows that declining
prices, the afternoon e¤ect, arise naturally when bidders are averse to price risk. A bidder is averse to
price risk if he prefers to win an object at a certain price, rather than at a random price with the same
expected value. When bidders have independent signals and there are no informational externalities,
only the e¤ect of aversion to price risk is present and the price sequence is a supermartingale. When there
are informational externalities, even with independent signals, there is a countervailing, informational
e¤ect, which pushes prices to raise along the path of a sequential auction. This may help explaining the
more complex price paths we observe in some auctions.
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�Theoretical work on auctions will almost certainly have to remove the assumption of risk neu-
tral bidders if it is to explain the full range of interesting empirical results from real auctions.�
(Ashenfelter, 1989, p.31.)

1 Introduction

The classic theoretical models of sequential auctions of identical goods predict constant, or increasing,

average prices across rounds. Weber (1983) and Milgrom and Weber (1982) showed that with independent

private values the price sequence is a martingale (the expected value of Pk+1, the price in round k + 1,

conditional on Pk, the price in round k, is equal to Pk), while with a¢ liated values the price sequence is a

submartingale (the expected value of Pk+1 conditional on Pk is higher than Pk).

There is a substantial body of empirical evidence that is at odds with the classic theory: prices most

frequently decline across rounds. The puzzle associated with this evidence has become known as the after-

noon e¤ect (because after a morning auction, often the second round takes place in the afternoon), or the

declining price anomaly. Sequential auctions where prices have been shown to decline include wine (Ashen-

felter, 1989, McAfee and Vincent, 1993), �owers (van den Berg et al., 2001), livestock (Buccola, 1982),

gold jewelry (Chanel et al., 1996), china from shipwrecks (Ginsburgh and van Ours, 2007), stamps (Thiel

and Petry, 1995), Picasso prints (Pesando and Shum, 1996), art (Beggs and Graddy, 1997), condomini-

ums (Ashenfelter and Genesove, 1992), commercial real estate (Lusht, 1994). There is also experimental

evidence of declining prices (Burns, 1985, and Keser and Olson, 1996). Ashenfelter and Graddy (2003)

contains a general survey that focuses on art auctions.

In this paper, I propose a simple explanation of the afternoon e¤ect: aversion to price risk. A bidder

is averse to price risk if he prefers to win an object at a certain price, rather than at a random price with

the same expected value.

The prediction that, with independent private values and risk neutral bidders, the price sequence is a

martingale can be interpreted as a manifestation of the law of one price. Optimal bidder behavior would

seem to require that the law of one price holds generally. After all, if the equilibrium price were known to

be higher on average in a given round, shouldn�t bidders lower their bids in that round?

It is easiest to explain the intuition for why aversion to price risk generates declining prices in the case

of a two-round, second-price auction with private values and unit-demand bidders. The price in the last

round will be determined by the second highest bid. The crucial observation is that in the �rst round each

bidder chooses his optimal bid assuming that he will win and will be the price setter; that is, he assumes

that his bid is tied with the highest bid of his opponents. This is because a small change in his bid only

matters when the bidder wins and is the price setter. The fundamental implication of this observation

is that in choosing his optimal bid, a bidder views the �rst-round price as certain (equal to his bid) and

the second-round price as a random variable (equal to the second highest, second-round bid). Optimality

requires that the bidder be indi¤erent between winning in the �rst or in the second round. Aversion to

price risk then implies that the expected second-round price (conditional on the �rst-round price) must

be lower than the �rst-round price. The di¤erence is the risk premium that the bidder must receive to be
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indi¤erent between winning at a random, rather than a certain, price.

The result that aversion to price risk generates a tendency for prices to decline, called an aversion to

price risk e¤ect, and its intuition, is very general. It holds for auctions with more than two rounds, for

second-price, �rst-price, and English auctions. It also holds if there are informational externalities (i.e., if

values are not purely private), and if bidders have multi-unit demand.

Aversion to price risk is di¤erent from risk aversion, which had been informally proposed by Ashenfelter

(1989) as a possible explanation of declining prices. Models of risk aversion (e.g., Matthews, 1983, and

McAfee and Vincent, 1993) assume that a bidder has a monetary value for the object, so that risk aversion

is de�ned on the di¤erence between the monetary value of the object and its price. Aversion to price risk,

on the contrary, is de�ned on price alone. It implies separability of a bidder�s payo¤ between utility from

winning an object and utility from the bidder�s monetary wealth (or disutility from paying the price).

McAfee and Vincent (1993) demonstrated that risk aversion is not a convincing explanation of the

afternoon e¤ect. They studied a two-round, private-value, second-price auction, and showed that prices

decline only if bidders display increasing absolute risk aversion, which seems implausible. Under the more

plausible assumption of decreasing absolute risk-aversion, an equilibrium in pure strategies does not exist

and average prices need not decline.

To appreciate the di¤erence between the concepts of risk aversion and aversion to price risk, it is useful

to revisit the familiar result that with a single object for sale and risk aversion, the average price is higher

in a �rst-price than in a second-price auction. It is simple to show that a similar result also holds when

bidders are averse to price risk. The intuition, however, is di¤erent. In a �rst-price auction, the price is

certain for the winning bidder; it equals his bid. In a second-price auction, on the contrary, the price is

a random variable. On average the price must be lower in order to compensate the bidder for the price

risk. (Appendix A shows that with aversion to price risk all standard auctions are payo¤ equivalent for

the bidders.) Thus, in e¤ect, in a �rst-price auction a bidder buys insurance against price variations. On

the other hand, the intuition that is commonly given for why risk aversion raises the bid in a �rst-price

auction is that, by bidding higher, a bidder buys insurance against the possibility of losing the auction

(e.g., see Krishna, 2002, p.40).

There are other models in the literature that generate an afternoon e¤ect. They include winners having

the option to buy additional units (Black and de Meza, 1992), heterogeneity of objects (Engelbrecht-

Wiggans, 1994, Bernhardt and Scoones, 1994, Gale and Hausch, 1994), ordering of the objects for sale by

declining value (Beggs and Graddy, 1997), absentee bidders (Ginsburgh, 1998), an unknown number of

objects for sale (Jeitschko, 1999), asymmetry among bidders (Gale and Stegeman, 2001), etc.

I view aversion to price risk as complementary to the other explanations given in the literature. The

explanation based on aversion to price risk has the advantage of applying very generally, without requiring

any additional modi�cation of the classic model. This is an important advantage because, as the empirical

evidence suggests, declining prices have been found to prevail even with no buyers�option to buy additional

objects, with identical objects, etc.

While declining prices are much more common, increasing prices have also been documented in the

empirical literature. For example, they were found for library books by Deltas and Kosmopolou (2001),
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watches by Chanel et al. (1996), wool by Jones et al. (2004), and Israeli cable tv by Gandal (1997).

A second, general contribution of this paper is to show that a¢ liated types are not needed to explain

increasing prices. Informational externalities alone, even with independent types, push prices to increase

across rounds.1 There are informational externalities (or interdependent types), if a bidder�s payo¤ from

winning an object directly depends on the types of the other bidders. To understand the intuition for

the e¤ect of informational externalities, consider a two-round, second-price auction with risk-neutral, unit-

demand bidders. As I have already argued, a bidder must be indi¤erent between winning in the �rst

and in the second round, conditional on the event that he wins the �rst round and he is the price setter.

Thus, when bidders are risk neutral, the �rst-round price must be equal to the expected second-round

price conditional on this event, which is lower than the expected second-round price conditional on the

�rst-round price. This is because the �rst-round winner will generally bid higher and have a higher signal

than the �rst-round price setter, and the value of an object is an increasing function of all bidders�signals.

When bidders are averse to price risk and there are informational externalities, the paper shows how

to separate the aversion to price risk e¤ect, which reduces prices from one round to the next, from the

informational e¤ect, which increases prices from round to round. The combined presence of the two

e¤ects may help explaining the more complex price paths, with prices increasing between some rounds and

decreasing between others, that we sometimes observe in the data (e.g., see Jones et al., 2004).

Most of the paper studies the �rst-price and second-price sequential auctions with unit-demand bidders,

but in Section 8 I show that the results extend to English auctions and, to some extent, to bidders with

multi-unit demand.

The paper is organized as follows. Section 2 introduces the model. Section 3 presents the equilibria of

the �rst-price and second-price auction. One delicate issue is what information is revealed from round to

round. The natural candidate is to reveal the winning price in each round. However, the existence of an

equilibrium with increasing bidding functions in a second-price auction is potentially problematic with this

information policy, because the price setter in a round is a participant in the next round. I show that with

no informational externalities an increasing equilibrium exists, but it does not if there are informational

externalities. To study the second-price auction with informational externalities, I assume that only the

winning bid is announced (Mezzetti et al., 2008, discuss this assumption in a model with a¢ liated values and

risk neutral bidders). Section 4 presents the afternoon e¤ect when there are no informational externalities.

Section 5 looks at risk neutral bidders with informational externalities. Section 6 studies the general model

with aversion to price risk and informational externalities. It de�nes and discusses the aversion to price risk

e¤ect and the informational e¤ect. Section 7 presents a calibrated example that shows how the data from

empirical studies can be reproduced for plausible values of an aversion to price risk and an informational

externality parameter. Section 8 discusses extensions of the model and the robustness of the main results.

In particular, it looks at English auctions and bidders with multi-unit demand. When studying sequential

English auctions, it is important to formulate a tractable model that allows bidders not to reveal all the

information in their hands during the �rst round. Section 9 concludes. Most of the proofs and additional

1Stochastic scale e¤ects (Jeitschko and Wolfstetter, 1998) and uncertainty about the number of rounds (Feng and Chatterjee,

2005) may also generate increasing prices.
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technical results are in the appendices.

2 The Model

There are K identical objects to be auctioned and N symmetric bidders, N > K. Each bidder has unit

demand. Bidder i observes the realization xi of a signal Xi, a random variable with support [x; x]: I assume

that the signals are i.i.d. random variables with density f and distribution F . Let the random variable

X�i be the vector of signals of all bidders except i, with x�i a realized value of X�i. If i wins an object,

the price he pays at auction, P , is a random variable which depends, through the bids, on his realized

signal, or type, xi and the types of all other bidders X�i. Let p be a price realization. If a bidder does not

win an object, he pays nothing.

Let q be the probability of winning an object, G(p) a winning price distribution, and L = (q;G(p)) a

compound lottery. Bidder i has von-Neumann Morgenstern preferences over lotteries, which only depend

on the type pro�le x 2 X = Xi � X�i if i wins the object. Thus, we can normalize the utility of player
i to zero when he does not win an object. Moreover, bidder i�s preferences have an expected utility

representation U(x; q;G(p)) =
R
qu(x; p)dG(p), where u(x; p), the utility of the certain outcome of winning

an object at price p; satis�es the following assumption.

Assumption A1. The function u(x; p) is strictly decreasing in p and additively separable in x and p:

For any distribution G(p), let E[P ] =
R
pdG(p): It is u(x;E[P ]) �

R
u(x; p)dG(p):

If the inequality in A1 is strict for all G(p), we say that bidders are averse to price risk. If the inequality

holds as an equality for all G(p), then the model reduces to the classical case of risk neutral bidders. It is

immediate from A1 that there exist a function V and a convex function `, such that we can write bidder

i�s utility when he wins an object at a price p and the type pro�le is x = (xi; x�i) as:

u(x; p) = V (xi; x�i)� `(p):

The �rst component, V (xi; x�i), is the utility bidder i receives from consuming one object when the type

pro�le is x. The second component, `(p), is the loss, or disutility, from a payment p to the seller. Think of

B(M�p) as the payo¤, or bene�t, from a money amountM�p, whereM is the initial money endowment,

then �`(p) = B(M � p).
The realized valuation of bidder i, Vi = V (xi; x�i), depends on the value x�i of the type of all other

bidders. I will make the additional assumptions that V (xi; x�i) is positive, smooth, the same for all bidders

i, symmetric in xj , j 6= i, and increasing in all its arguments with @Vi
@xi

� @Vi
@xj

� 0: The latter assumption
(which is commonly made when there are interdependent valuations, e.g., see Dasgupta Maskin, 2000)

guarantees the allocational e¢ ciency of the equilibrium.

It is useful to distinguish between the case of no informational externalities, when the valuation function

of a bidder does not depend on the other bidders�types, V (xi; x�i) = xi, and the case with informational

externalities, in which V depends also on the signal realization x�i: In the literature, the case of no

informational externalities is referred to as private values.
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Suppose that a bidder�s value Vi for the object is the sum of two independent random variables Wi and

Z, and that Wi has support [0; 1], while Z has support [100; 101]: Suppose further that bidder i observes

the value wi taken by the random variable Wi, but not the value of Z: By de�ning the random variable

Xi =Wi+EZ, we can think that each bidder observes the value of Xi, with support [EZ;EZ+1]; clearly,

there is a predominant common value component to a bidder�s valuation, even though bidders have no

private information about it. For this reason, I prefer to refer to Vi = xi as the case of no informational

externalities, rather than private values. That bidders have no private information about the common

value component of their valuations is consistent with the common practice of auction houses, such as

Christie�s and Sotheby�s, to provide detailed expert estimates for each item at auction. When, on the

other hand, there is private information about the common value component of the items for sale, then

the appropriate model is one with informational externalities.

The loss function ` is the same for all bidders, strictly increasing with `(0) = 0, and convex, re�ecting

aversion to price risk on the part of bidders. Let � = `�1 be the inverse of ` with respect to the realized

price p; � is strictly increasing and concave. An example of a loss function which will be used in Section 7

is the constant relative price-risk aversion function `(p) = p1+r

1+r ; another example is the constant absolute

price-risk aversion function `(pi) = e�p:

In the literature on risk aversion in auctions, it is commonly assumed that bidders have an equivalent

monetary value for the object v(xi; x�i); risk aversion is captured by writing the payo¤ when winning

at price p as u (v(xi; x�i)� p) ; where u is a concave function. Most studies assume no informational
externalities: v(xi; x�i) = xi. As I pointed out in the introduction, McAfee and Vincent (1993) show that

such a model only generates decreasing prices if bidders have increasing absolute risk aversion, and it is

not very tractable (a pure strategy equilibrium does not exist with decreasing absolute risk aversion).

Bidders that are averse to price risk do not have an equivalent monetary value for the good on sale,

but the good contributes additively to the utility of money. This is consistent, for example, with bidders

viewing the good for sale as an asset that gives a stream of future payo¤s. According to this interpretation,

V (xi; x�i) is the discounted future payo¤, while `(p) is the current cost of acquiring the good at price p.

This interpretation can also incorporate the possibility that a winner may resell the object in the future,

so that the signal Xi includes information about future market value.

3 Sequential Auctions: Equilibrium

In this section I study the equilibrium bidding strategies in the sequential �rst-price and second-price

auctions, in which one object is sold in each of K successive rounds. In round k � K of a sequential

auction, the bidding function of a remaining bidder depends not only on his type, but also on the common

history of announced prices and bids from previous rounds. I will start by assuming that at the end of each

round the bid of the winner is announced. In a �rst-price auction, this is equivalent to announcing the

selling price, the standard practice in real auctions. I will look for symmetric equilibria in which the bid of

a player is an increasing function of his type (everything else constant) in each round k. Thus, revealing

the winning bid is equivalent to revealing the signal of the winning bidder.
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By assuming that the winning bid is what is announced at the end of each round in a sequential second-

price auction, I guarantee that the same information is revealed as in a sequential �rst-price auction format.

On the other hand, if the bidding functions are increasing, revealing the price in a round of the sequential

second-price auction amounts to revealing the type of the highest loser, a bidder who will be present in

the next round. This has potentially quite di¤erent informational implications than revealing the type

of the winner, which will not be present in future rounds (because of unit demand). I will show that in

the case of no informational externalities the equilibrium bidding functions are the same irrespectively of

whether the price or the winning bid are announced. I will also show, by way of an example, that with

informational externalities an increasing equilibrium of the sequential second-price auction does not exist

when the winning prices are announced.

The bidding functions of the sequential �rst-price and second-price auctions were �rst derived by Weber

(1983) and Milgrom and Weber (1982) for the case of risk neutral bidders.2 The next three theorems, whose

proofs are in Appendix A, extend Milgrom and Weber�s results to the case of aversion to price risk.

3.1 The Sequential First-Price Auction

In a sequential �rst-price auction, one object is sold in each of K rounds to the highest bidder at a price

equal to the highest bid.

De�ne the random variable Y (n)j , an order statistic, as the j-th highest type of bidder out of n. Denote

the distribution and density function of Y (n)j as F (n)j and f (n)j :

With a small abuse of notation, I will write bidder i�s valuation as the following random variable:

V
�
Xi; Y

(N�1)
K ; � � � ; Y (N�1)1

�
= E

h
V (Xi; X�i) jXi; Y (N�1)K ; � � � ; Y (N�1)1

i
:

Since I will look for an increasing equilibrium, and will assume that the winning prices are revealed, in

round k of a sequential �rst-price auction the bid function will depend on the bidder�s type x and on the

types y1; :::; yk�1 of the winners in previous rounds.

Theorem 1 Along the equilibrium path of the symmetric equilibrium of the sequential �rst-price auction

with price (or winning bid) announcement, bidders follow the bidding functions

�S1k (x; yk�1; :::; y1) = �
�
E
h
V
�
Y
(N�1)
K ; Y

(N�1)
K ; Y

(N�1)
K�1 ; :::

�
jY (N�1)k � x � Y (N�1)k�1 = yk�1; :::

i�
:

If there are no informational externalities, the bidding functions can be written as

�S1k (x; yk�1; :::; y1) = �
S1
k (x) = �

�
E
h
Y
(N�1)
K jY (N�1)k � x � Y (N�1)k�1

i�
:

In the formula for �S11 it should be understood that Y (N�1)0 = x, the top of the signal support. Observe

that �S1k is an increasing function of all its arguments when there are informational externalities, while

with no informational externalities �S1k does not depend on the types of the winners of previous rounds

(equivalently, it does not depend on the price history).

2Milgrom and Weber (1982) worked with a¢ liated types. As they say in the foreword added to the published version,

because of a¢ liation the proofs have to be considered in doubt; see Mezzetti et al. (2008), for some recent progress.

6



It is useful to view `
�
�S1k (x; :::)

�
as the loss bid associated with the price bid �S1k (x; :::): In the last

round, a bidder of type x submits a loss bid equal to what he would value the object if he won and had

the same signal realization as his highest opponent. Thus, for example, with no informational externalities

his loss bid is equal to the highest expected value of his remaining opponents, conditional on their values

being lower than his value. This is the same loss bid that the bidder would make in a single-sale, �rst-price

auction. Bids in a round k before the last follow from the indi¤erence condition that the loss bid in round

k by a type x must be equal to the expected loss bid in round k + 1 that a type x would make if he made

a bid certain to lose in round k and discovered that round k winner has a type lower than x (see equation

(14) in Appendix A).

3.2 The Sequential Second-Price Auction

In the sequential second-price auction, in each round one object is sold to the highest bidder at a price

equal to the second highest bid. First, I will look at the case in which the winning bid is announced, as

in the case of a sequential �rst-price auction. Then I will analyze the case in which the winning price

is announced. In a sequential second-price auction, announcing the bids of winners is not equivalent to

announcing the winning prices.

Theorem 2 On the equilibrium path of the symmetric equilibrium of the sequential second-price auction

with winning bid announcements, the bidding functions are

�S2k (x; yk�1; :::; y1) = �
�
E
h
V (Y

(N�1)
K ; Y

(N�1)
K ; Y

(N�1)
K�1 ; :::)jY (N�1)k = x � Y (N�1)k�1 = yk�1; :::

i�
:

If there are no informational externalities, the bidding functions can be written as

�S2k (x; yk�1; :::; y1) = �
S2
k (x) = �

�
E
h
Y
(N�1)
K jY (N�1)k = x

i�
:

Given the history of the past winning types, in the last round a bidder of type x submits a loss bid equal

to what he would value the object if he won and were pivotal. With no informational externalities, this

loss bid reduces to the expected value of the object to the bidder: Bids in a round k before the last follow

from the indi¤erence condition that, conditional on being pivotal in round k; a bidder must be indi¤erent

between winning in round k or in round k + 1 (see equation (22) Appendix A).

Consider now the case in which the winning prices are announced after each bidding round. With no

informational externalities, the equilibrium bidding functions in the sequential second-price auction are

the same as when the winning bids are announced.

Theorem 3 When there are no informational externalities, on the equilibrium path of the symmetric

equilibrium of the sequential second-price auction with announcement of the winning prices, the bidding

functions can be written as

�S2pk (x; yk�1; :::; y2) = �
�
E
h
Y
(N�1)
K jY (N�1)k = x

i�
:
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This theorem can be understood as follows. Without informational externalities, equilibrium bids do

not depend on the past history of bids, no matter whether the winning bids, or the winning prices, are

announced. In both cases, in the last round it is a dominant strategy to place a loss bid equal to the item�s

value. The bids in earlier rounds are then determined recursively, via the indi¤erence condition (22).

History does not matter because in each round k a bidder bids as if he were pivotal (i.e., as if Y (N�1)k = x):

When, on the other hand, there are informational externalities and the winning price is revealed in

each round, an equilibrium of the sequential second-price auction with an increasing bidding function does

not exist. The reason is simple: a bidder who, based on the history of prices, knows that he will lose in

round k, but will almost certainly win in round k + 1, has an incentive to deviate and make a very low

bid in round k. By doing so he will avoid being the price setter in round k: The price setter in round k

will be a bidder with a lower type, and hence in round k + 1 all other bidders (including the future price

setter) will have lower estimates of an object�s conditional value and will make lower bids. As a result, the

deviating bidder will pro�t by winning at a lower price in round k+1. This is made clear by the following

simple example.

Example 1.

There are four bidders, three objects, and the common value of an object is V = x1 + x2 + x3 + x4.

Without loss of generality, let x1 > x2 > x3 > x4 (bidders, of course, only know their own signals). Suppose

there exists an increasing equilibrium. Then bidder 1 wins the �rst round and announcing the price reveals

x2, the signal of bidder 2. Suppose x3 = x2 � ", with " �arbitrarily small�. At the beginning of the
second round, bidder 3 knows that if he bids according to the equilibrium strategy, then with probability

�arbitrarily close�to 1 he will be the price setter in round 2 and win an object in round 3. The price he

will pay in round 3 is the bid of bidder 4. Since this is the last round, it is a weakly dominant strategy for

bidder 4 to bid b = � (E[X1jX1 � x2] + x2 + x3 + x4) (recall that x2 and x3 have been revealed by the price
announcements, but x1 has not). Now consider a deviation by bidder 3 in round 2; suppose he bids zero.

Then the price setter in round 2 is bidder 4 and his signal is revealed. In round 3 bidder 4�s weakly dominant

bid is bb = � (E[X1jX1 � x2] + x2 + 2x4), since bidder 4 assumes he is pivotal; that is, he assumes x3 = x4.
After having deviated in round 2, in round 3 bidder 3�s weakly dominant strategy is to use a loss bid equal

to the conditional expected value of the object; that is, he will bid � (E[X1jX1 � x2] + x2 + x3 + x4). It
follows that by deviating bidder 3 will win in the third round and pay a price bb which is less than the price
b he would pay if he followed the equilibrium strategy. Hence we have a contradiction; bidder 3 of type

x3 = x2 � " has a pro�table deviation in round 2 from the supposed increasing equilibrium.

4 The Afternoon E¤ect

In this section I show that declining prices (i.e., the afternoon e¤ect) are a natural consequence of aversion

to price risk, when there are no informational externalities.

Theorem 4 When there are no informational externalities, the price sequences in a sequential �rst-price

and in a sequential second-price auction are a supermartingale.
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Proof. The proofs for both cases follow the same logic. Note that if there are no informational externalities,

then announcing either the winning bids or prices has no direct e¤ect on the bidding functions. Consider

�rst a sequential �rst-price auction. Suppose type x of bidder i wins auction k < K. Then it must be

Y
(N�1)
k � x � yk�1 < ::: < y1. It follows that PS1k = �S1k (x) = �

�
E
h
Y
(N�1)
K jY (N�1)k � x � Y (N�1)k�1

i�
and

E
�
PS1k+1jPS1k

�
= E

�
PS1k+1j�S1k (x)

�
= E

h
�S1k+1(Y

(N�1)
k )jY (N�1)k � x = Xi � Y (N�1)k�1 = yk�1; :::

i
= E

h
�
�
`
�
�S1k+1(Y

(N�1)
k )

��
jY (N�1)k � x = Xi � Y (N�1)k�1 = yk�1; :::

i
< �

�
E
h
`
�
�S1k+1(Y

(N�1)
k )

�
jY (N�1)k � x = Xi � Y (N�1)k�1 = yk�1; :::

i�
= �

�
E
h
Y
(N�1)
K jY (N�1)k � x = Xi � Y (N�1)k�1 = yk�1; :::

i�
= �S1k (x)

= PS1k ;

where the inequality follows from Jensen�s inequality, given that � is a concave function. This shows that

the price sequence in a sequential �rst-price auction is a supermartingale.

Consider now a sequential second-price auction. Suppose in round k the winner is the bidder with

signal Y (N�1)k ; and bidder i of type x is the price setter; that is, PS2k = �S2k (x; yk�1; :::; y1) = �S2k (x) =

�
�
E
h
Y
(N�1)
K jY (N�1)k = x

i�
. In round k + 1, bidder i of type x wins the auction, and the price setter is

the bidder with the signal Y (N�1)k+1 . It follows that

E
�
PS2k+1jPS2k

�
= E

�
PS2k+1j�S2k (x)

�
= E

h
�S2k+1(Y

(N�1)
k+1 )jY (N�1)k = x

i
= E

h
�
�
`
�
�S2k+1(Y

(N�1)
k+1 )

��
jY (N�1)k = x

i
< �

�
E
h
`
�
�S2k+1(Y

(N�1)
k+1 )

�
jY (N�1)k = x

i�
= �

�
E
h
Y
(N�1)
K )jY (N�1)k = x

i�
= �S2k (x)

= PS2k :

Thus, the price sequence in a sequential second-price auction is also a supermartingale.

The intuition for the afternoon e¤ect is essentially the same in a �rst-price and a second-price sequential

auction. In each round before the last, conditional on having the highest remaining type and being the

price setter, a bidder must be indi¤erent between winning now and winning in the next round.3 But if a

bidder is the price setter, then he knows the current price, while next round�s price is random. Because of

3 In a sequential �rst-price auction, if a bidder has the highest signal in round k and he bids according to the equilbrium

bidding function, then he is automatically the price setter. On the other hand in a sequential second-price auction, conditioning

on the highest-signal bidder also being the price setter amounts to requiring that his signal is tied with the signal of another

bidder (i.e., the bidder is pivotal).
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aversion to price risk, next round�s expected price must then be lower than the price now. The di¤erence is

the risk premium the bidder must receive to be indi¤erent between the certain price now and the random

price in the next round.

To understand this intuition in more detail, consider round k < K of the second-price auction. Suppose

type x of bidder i has lost all preceding auctions. Suppose also that in round k bidder x considers raising

his bid by a small amount " above �S2k (x). This will only make a di¤erence if, after the deviation, he wins

in round k, while he would have otherwise lost and won in round k + 1. For this to happen, it must be

that Y (N�1)k ' x; that is, we must be in the event in which bidder i with signal x is at the margin between
winning and losing in round k (i.e., he must be pivotal, his signal must be tied with the signal of another

bidder). Conditional on this event, the marginal cost of the deviation is the loss incurred in period k when

bidding according to the deviation,

`(�S2k (x) + ");

while the marginal bene�t is the expected loss avoided in period k + 1;

E
h
`(�S2k+1(Y

(N�1)
k+1 ))jY (N�1)k ' Xi = x � Y (N�1)k�1 )

i
:

Equating marginal cost and marginal bene�t (and sending " to zero) gives the following indi¤erence con-

dition (see equation (22) in Appendix A):

`(�S2k (x)) = E
h
`(�S2k+1(Y

(N�1)
k+1 ))jY (N�1)k = Xi = x)

i
:

The indi¤erence condition says that the certain loss when winning in period k at a price �S2k (x) must be

equal to the expected loss when winning in period k + 1. Since bidders are averse to price risk, it must

then be the case that the expected price in round k + 1 is less than the price �S2k (x) in round k: For the

marginal bidder to be indi¤erent between winning at a certain price now, or at an uncertain price in the

next round, it must be the case that the next round�s expected price (conditional on the current price) is

lower than the current price. Hence prices must decline from one period to the next.

Now consider a sequential �rst-price auction. Suppose bidder i wins in round k if he bids as a type

x; that is, suppose Y (N�1)k � x � Y
(N�1)
k�1 : Bidder i can also always bid so low so as to lose in round k.

With a losing bid, bidder i discovers the value of Y (N�1)k (the signal of the winner when bidder i bids low).

Bidder i can then win for sure in round k + 1 by bidding �S1k+1(Y
(N�1)
k ) (i.e., by bidding as if his type

were Y (N�1)k ). The indi¤erence condition for sequential �rst-price auctions states that bidder i must be

indi¤erent between winning in round k and in round k + 1 (see equation (14) in Appendix A):

`(�S1k (x)) = E
h
`
�
�S1k+1(Y

(N�1)
k )

�
jY (N�1)k � x � Y (N�1)k�1

i
:

The left hand side is the certain loss associated with the period k price; the right hand side is the expected

loss associated with the random price in period k+ 1. Thus the price sequence must also be decreasing in

a sequential �rst-price auction.
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5 The E¤ect of Informational Externalities

In order to focus on the e¤ect of informational externalities on the price sequence, it is best to look �rst

at the standard risk neutral model (i.e., the case when ` is the identity function). I will show that when

bidders are neutral with respect to price risk, and there are informational externalities, prices increase

along the equilibrium path of a sequential auction with bid announcements. It is a bit of a surprise that

this result, which applies to the standard model with risk neutral bidders and independent signals, does

not seem to have appeared in previous literature. An increasing price sequence has only been derived in

the model with a¢ liated signals by Milgrom and Weber (1982) (see also Mezzetti et al., 2008).

Theorem 5 In a sequential �rst-price and in a sequential second-price auction with announcement of the

winning bids, if bidders are risk neutral and there are informational externalities, then the price sequence

is a submartingale.

Proof. Recall that ` and � coincide with the identity function. Consider �rst a sequential �rst-price

auction. Suppose type x of bidder i wins auction k < K. It must be Y (N�1)k � x < yk�1 < ::: < y1,

and PS1k = �S1k (x; yk�1; :::; y1) = E
h
V
�
Y
(N�1)
K ; Y

(N�1)
K ; Y

(N�1)
K�1 ; :::

�
jY (N�1)k � x � Y (N�1)k�1 = yk�1; :::

i
: It

follows that

E
�
PS1k+1jPS1k

�
= E

�
PS1k+1j�S1k (x; yk�1; :::; y1)

�
= E

h
�S1k+1(Y

(N�1)
k ;x; yk�1; ::; y1)jY (N�1)k � x � Y (N�1)k�1 = yk�1; ::

i
� E

h
�S1k+1(Y

(N�1)
k ;Y

(N�1)
k ; yk�1; ::; y1)jY (N�1)k � x � Y (N�1)k�1 = yk�1; ::

i
= E

h
V
�
Y
(N�1)
K ; Y

(N�1)
K ; Y

(N�1)
K�1 ; :::

�
jY (N�1)k � x � Y (N�1)k�1 = yk�1; :::

i
= �S1k (x; yk�1; ::; y1)

= PS1k ;

where the inequality follows from �S1k+1(�) being an increasing function of all its arguments and Y
(N�1)
k � x.

Thus, the price sequence in a sequential �rst-price auction is a submartingale.

Now consider a sequential second-price auction. Suppose that in round k the winner is the bidder

with signal Y (N�1)k , and bidder i of type x is the price setter; that is, PS2k = �S2k (x; yk�1; :::; y1) =

E
h
V (Y

(N�1)
K ; Y

(N�1)
K ; Y

(N�1)
K�1 ; :::)jY (N�1)k = x � Y (N�1)k�1 = yk�1; :::

i
: In round k + 1, bidder i of type x

wins the auction, and the price setter is the bidder with signal Y (N�1)k+1 . It follows that

E
�
PS2k+1jPS2k

�
= E

�
PS2k+1j�S2k (x; yk�1; ::; y1)

�
= E

h
�S2k+1(Y

(N�1)
k+1 ;Y

(N�1)
k ; yk�1; ::)jY (N�1)k+1 � X1 = x � Y (N�1)k ; :::

i
� E

h
�S2k+1(Y

(N�1)
k+1 ;Y

(N�1)
k ; yk�1; ::)jY (N�1)k+1 � X1 = x = Y (N�1)k ; :::

i
= E

h
V (Y

(N�1)
K ; Y

(N�1)
K ; Y

(N�1)
K�1 ; :::)jY (N�1)k = X1 = x � Y (N�1)k�1 = yk�1; :::

i
= �S2k (x; yk�1; ::; y1)

= PS2k :
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Thus, the price sequence in a sequential second-price auction is also a submartingale.

The conventional wisdom that with independent signals and risk neutral bidders the price sequence is a

martingale is only correct if there are no informational externality (i.e., in the common terminology, values

are private). With informational externalities, prices tend to increase from one round to the next. To see

why, consider a sequential second-price auction (the reasoning for a �rst-price auction is similar). As we

argued in the previous section, a bidder must be indi¤erent between winning in the current round and

winning in the next round, conditional on having the highest remaining signal and being the price setter.

With risk neutral bidders, this implies that the current price must be equal to the expected price in the

next round conditional on the event E that the current winner has the same signal as the price setter. With
informational externalities, the next round expected price conditional on the event E is an underestimate
of the next round expected price conditional on the current price. This is because the current winner will

generally have a higher signal than the current price setter, and the value of an object directly depends in

a positive way on the signals of all bidders.

It is useful to stress that the intuition behind the result in Milgrom and Weber (1982) that the price

sequence is increasing when signals are a¢ liated random variables is similar to the intuition behind Theorem

5. With a¢ liated signals, the expected value of an object depends in a positive way on the signals of all

bidders, and it is also the case that the current price is equal to an underestimate of the price in the next

round (see Mezzetti et al., 2008, for a discussion).

6 Aversion to Price Risk and Informational Externalities: E¤ect De-

composition

While aversion to price risk pushes prices to decline over time, informational externalities introduce a ten-

dency for prices to increase. If bidders are both averse to price risk and there are informational externalities,

it is possible to decompose the two countervailing e¤ects on the price sequence.

Given a bid loss `�; since ` (�(`�)) = `�, we can think of �(`�) as the implicit price associated with `�;

if a bidder pays a price �(`�); his loss is equal to `�:

Consider round k + 1 of a sequential �rst-price auction, after the winners�signal history x; yk�1; :::; y1.

(Note that the bidder with signal x is also the price setter in round k:) The round k + 1 aversion to price

risk e¤ect is de�ned as the di¤erence between the expected price and the implicit price associated with the

expected loss in round k + 1; conditional on the signal history x; yk�1; :::; y1:

AS1k+1(x; yk�1; :::; y1) = E
h
�S1k+1(Y

(N�1)
k ;x; yk�1; ::)jY (N�1)k � x � Y (N�1)k�1 = yk�1; ::

i
� �

�
E
h
`
�
�S1k+1(Y

(N�1)
k ;x; yk�1; ::)

�
jY (N�1)k � x � Y (N�1)k�1 = yk�1; ::

i�
Since � is a concave function, when bidders are averse to price risk the implicit price associated with the

expected loss is higher than the expected price; the aversion to price risk e¤ect is negative, AS1k+1(�) < 0. If
bidders are risk neutral, AS1k+1(�) = 0.

The informational externality e¤ect is de�ned as the increase in the implicit price in round k + 1 due

to the winning bidder in round k having signal x � Y
(N�1)
k , rather than the same signal Y (N�1)k as the
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winner in round k + 1; conditional on the signal history x; yk�1; :::; y1:

IS1k+1(x; yk�1; :::; y1) = �
�
E
h
`
�
�S1k+1(Y

(N�1)
k ;x; yk�1; ::)

�
jY (N�1)k � x � Y (N�1)k�1 = yk�1; ::

i�
� �

�
E
h
`
�
�S1k+1(Y

(N�1)
k ;Y

(N�1)
k ; yk�1; ::)

�
jY (N�1)k � x � Y (N�1)k�1 = yk�1; ::

i�
:

If there are informational externalities IS1k+1(�) > 0, because �S1k+1, is an increasing function of all its

variables; the informational externality e¤ect is positive. If there are no informational externalities, bids

do not depend on the signals of past winners and so the implicit price in round k + 1 does not depend on

the signal of the winning bidder in round k; hence IS1k+1(�) = 0:
The aversion to price risk e¤ect and the informational externality e¤ect in a sequential second-price

auction are de�ned as in the case of a �rst-price auction, except that conditioning now is on the event that

in round k the winner is the bidder with signal Y (N�1)k , that bidder i of type x is the price setter, and that

the previous rounds winners�signals are yk�1; :::; y1:

AS2k+1(x; yk�1; :::; y1) = E
h
�S2k+1(Y

(N�1)
k+1 ;Y

(N�1)
k ; yk�1; ::)jY (N�1)k+1 � X1 = x � Y (N�1)k ; ::

i
� �

�
E
h
`
�
�S2k+1(Y

(N�1)
k+1 ;Y

(N�1)
k ; yk�1; ::)j

�
jY (N�1)k+1 � X1 = x � Y (N�1)k ; ::

i�
:

IS2k+1(x; yk�1; :::; y1) = �
�
E
h
`
�
�S2k+1(Y

(N�1)
k+1 ;Y

(N�1)
k ; yk�1; ::)j

�
jY (N�1)k+1 � X1 = x � Y (N�1)k ; ::

i�
� �

�
E
h
`
�
�S2k+1(Y

(N�1)
k+1 ;Y

(N�1)
k ; yk�1; ::)j

�
jY (N�1)k = x

i�
:

The next theorem, whose proof is in Appendix A, shows that in both sequential auctions the expected

price in round k + 1, conditional on the price in round k; is equal to the sum of the price in round k, the

aversion to price risk e¤ect, and the informational externality e¤ect.

Theorem 6 Suppose the price setter in round k has signal x and the history of winners� signals up to

round k � 1 is yk�1; :::; y1: In the sequential �rst-price auction (j = 1) and the sequential second-price

auction (j = 2) with announcement of the winning bids we have:

E
h
PSjk+1jP

Sj
k

i
= PSjk +ASjk=1(x; yk�1; :::; y1) + I

Sj
k=1(x; yk�1; :::; y1):

7 A Calibrated Example

Can aversion to price risk explain the declining price sequences we observe in the data? What is the

degree of aversion to price risk that is needed? May prices decline even with informational externalities?

This section provides some answers to these questions. I introduce a simple parametric example, and

show that its predictions match the data from a sample of empirical studies, for reasonable speci�cations

of the parameters. The empirical reference points for the discussion in this section are the papers of

Ashenfelter (1989) and McAfee and Vincent (1993) on sequential (mostly two-round) auctions of identical

bottles of wine sold in equal lot sizes. Ashenfelter�s (1989) data set included auctions between August

1985 and December 1987 in four di¤erent location (Christies�s London and Chicago, Sotheby�s London and
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Butters�eld�s San Francisco). McAfee and Vincent (1993) looked at auctions held at Christies�s in Chicago

in 1987. They both found evidence of declining prices; the price in the second auction was twice more

likely to decrease than to increase. The average price ratio P2=P 1 they found is displayed in Figure 1.

Mean Ratio P2=P1

Ashenfelter (1989): Christies�s London .9943

Ashenfelter (1989): Sotheby�s London .9875

Ashenfelter (1989): Christies�s Chicago .9884

Ashenfelter (1989): Butter�eld�s San Francisco .9663

McAfee and Vincent (1993): Christies�s Chicago .9922

Figure 1: Price ratio in the data

I will make the following simplifying assumptions to the model. The value of an object to bidder i is

xi + b
P
j 6=i xj ; with b 2 [0; 1]: If b = 0, there are no informational externalities. The random variables Xi

are distributed on [0; 1] with distribution function F (x) = xa; with a > 0: The loss function is:

`(p) =
p1+r

1 + r
;

We can interpret r = p`00=`0 as a coe¢ cient of relative price-risk aversion. The inverse of ` is

�(z) = (1 + r)
1

1+r z
1

1+r :

I will restrict attention to the second-price auction and the case of two rounds, K = 2. In Appendix B, I

compute the bidding functions, the expected price in round 2 conditional on the �rst-round price P1; and

the ratio of the conditional expected second-round price to the �rst-round price.

In all computations reported in this section, I will set r = 2, a commonly used value for relative risk

aversion in computational macroeconomics (e.g., see Ljungqvist and Sargent, 2000); it implies that a bidder

is willing to pay a price about 1% higher to avoid a 50-50 gamble of a 10% increase or a 10% decrease in

price. The results do not seem overly sensitive to the value of r.

If we �rst postulate that in the auctions in question there were no informational externalities, that is

b = 0, then the price ratio is (see (27)):

E [P2jP1]
P1

=
(a(N � 2))

r
1+r (a (N � 2) + 1)

1
1+r�

a(N � 2) + 1
1+r

� : (1)
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We can use (1) to graph the price ratio E [P2jP1] =P1 as a function of A = a(N � 2):

Figure 2: Price ratio with no informational externalities as a function of A = a(N � 2)

The average price ratio in the data in Figure 1 ranges from 0:9663 to 0:9943, which correspond to values

of A from 1:3903 to 3:9788. In most of the auctions considered the number of bidders was relatively small,

typically well below 20. If we take N = 10, this gives values of a between 0:1738 and 0:4973 as those

consistent with the data.

Suppose now that there are informational externalities, b > 0: In this case E[P2jP1]P1
depends on the type

x of the �rst-round price setter. Appendix B reports the expected value of the price ratio E
h
E[P2jP1]
P1

i
:

With informational externalities, lower values of the parameter a are needed to match the data. Setting

r = 2 as before, N = 10, and a = 0:1 yields the relationship between the price ratio and the informational

externality parameter b shown in Figure 3. The range of the average price ratio in the data in Figure 1

corresponds to values of the informational externality parameter between 0:0827 and 0:1260. Prices may

decline even if there are informational externalities. In fact, the presence of both aversion to price risk and

informational externalities could help explaining why in some auctions prices decline and in other they

increase; it could also help explaining why in some multiple round auctions prices decline between some
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rounds and increase between other rounds (e.g. see Jones et al. 2004).

Figure 3: Price ratio as a function of the information externality parameter b

8 Extensions

In this section, I show that the aversion to price risk e¤ect is present even when bidders demand multiple

units, or the auction format is an oral ascending auction. While I do not prove it formally, if I allowed for

informational externalities, the informational externality e¤ect would also be present in these extensions.

8.1 Multi-Unit Demand

New issues and serious complications arise in models with multi-unit demand, which are generally not very

tractable (e.g., see Milgrom, 2004). To keep the focus on the e¤ect of aversion to price risk in a tractable

model, in this subsection I extend Katzman�s (1999) model of a two-round, second-price auction with no

informational externalities.

I assume that each bidder extracts two values from the same distribution F . If xh is the highest and xl

the lowest value extracted, then bidder i obtains a payo¤ of xh � `(pk) if he only wins one object in round
k at price pk, and a payo¤ of xh+xl� `(p1)� `(p2) if he wins two objects at prices p1 and p2: In Katzman
(1999), ` is the identity function, and hence bidders are risk neutral.

The proof of the following theorem is in Appendix C.

Theorem 7 On the equilibrium path of the two-round, second-price auction with multi-unit demand and

no informational externalities, the bidding functions are

�S22

�
xh; xljxh > Y (2N�2)1

�
= �(xl)
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�S22

�
xh; xljxh < Y (2N�2)1

�
= �(xh)

�S21 (xh; xl) = �
�
E
h
Y
(2N�2)
2 jY (2N�2)1 = xh

i�
:

The auction is e¢ cient, the bidder or bidders with the two highest marginal valuations win the objects.

In the second round, the loss bid is equal to the bidder�s value for the object, which is equal to xl if the

bidder won in the �rst round and to xh if he did not. In the �rst round, the loss bid is equal to the expected

second highest value of a bidder�s opponents, conditional on the highest value of the bidder�s opponents

being equal to the bidder�s highest value. A bidder behaves as if he is only going to win an object, and his

bid is selected so as to make him indi¤erent between winning in the �rst or in the second round.

Suppose that the �rst-round price setter is bidder i of type (xh; xl); the bidder with the highest value

among bidder i�s opponents won the �rst round. There are two possible events. The �rst event is that

the �rst-round price setter, bidder i, wins the second round auction. In this case the expected second

round price is the expected bid associated with the second highest value of bidder i�s opponents; that is,

E
h
�(Y

(2N�2)
2 )jY (2N�2)2 � xh

i
, which is equal to E

h
�(Y

(2N�2)
2 )jY (2N�2)1 = xh

i
, because of the indepen-

dence of signals. This �rst event has probability PrfY (2)2 < xhjY (2)1 > xhg; the conditional probability
that the �rst-round winner has a marginal value for the second object lower than xh: The second event is

that the �rst-round winner also wins the second auction, and hence the �rst-round price setter also sets

the price in the second round; in this case the expected second round price is �(xh). This event happens

with probability PrfY (2)2 > xhjY (2)1 > xhg: It follows that, conditional on bidder i of type (xh; xl) being
the �rst-round price setter, the second round expected price is:

E [P2jP1] = E
h
�
�
Y
(2N�2)
2

�
jY (2N�2)1 = xh

i
PrfY (2)2 < xhjY (2)1 > xhg+ �(xh) PrfY (2)2 > xhjY (2)1 > xhg:

(2)

De�ne the aversion to price risk e¤ect as:

AS22 (xh) =
n
E
h
�
�
Y
(2N�2)
2

�
jY (2N�2)1 = xh

i
� �

�
E
h
Y
(2N�2)
2 jY (2N�2)1 = xh

i�o
PrfY (2)2 < xhjY (2)1 > xhg

=
n
E
h
�
�
Y
(2N�2)
2

�
jY (2N�2)1 = xh

i
� �S21 (xh; xl)

o
PrfY (2)2 < xhjY (2)1 > xhg: (3)

The aversion to price risk e¤ect is the di¤erence between the expected price and the implicit price associated

with the expected loss in round 2; conditional on the �rst-round price setter winning the second round

auction, multiplied by the probability that the �rst-round price-setter wins in the second round.

De�ne the multi-unit demand e¤ect as:

MS2
2 (xh) =

�
�(xh)� �S21 (xh; xl)

�
PrfY (2)2 > xhjY (2)1 > xhg: (4)

The multi-unit demand e¤ect measures the e¤ect on the price sequence of the same bidder winning both

rounds. It is the di¤erence between the second-round price and the �rst-round price, conditional on the

�rst-round price-setter being the price setter also in the second round, multiplied by the probability that

the �rst-round and second-round price setters are the same bidder, which implies that the same bidder

wins both �rst and second round.
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While the aversion to price risk e¤ect is non-positive, the multi-unit demand e¤ect is non-negative.4

As the next theorem shows, whether the price sequence in a two-round second-price auction with no

informational externalities is decreasing depends on whether the aversion to price risk e¤ect dominates the

multi-unit demand e¤ect (the proof is in Appendix C).

Theorem 8 Suppose that the price setter in the �rst round has signals (xh; xl): Then the expected second

round price in the two-round, second-price auction with multi-unit demand and no informational external-

ities is:

E [P2jP1] = P1 +AS22 (xh) +MS2
2 (xh)

Consider the example with F (x) = xa and `(p) = p1+r=(1 + r) introduced in Section 7. Appendix

C computes the bidding functions, the expected price in round 2 and the conditional price ratio: Letting

r = 2 and N = 10; as in Section 7, Figure 4 graphs the expected price ratio as a function of a: The average

price ratio in the data in Figure 1 ranges from 0:9663 to 0:9943. This corresponds to values of a ranging

from 0:0728 to 0:1897: Aversion to price risk may generate declining prices even if bidders have multi-unit

demand.

Figure 4: Price ratio as a function of a

8.2 The English Auction

Sequential auctions are often run using an English, or oral ascending, format. The fundamental di¤erence

between an English format and a sealed bid auction is that in the former information endogenously accrues

to bidders in the course of each round of play. The main issue with analyzing sequential English auctions

4Katzman (1999) showed that with risk neutral bidders the price sequence is increasing.
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is to �nd a formal model that is tractable and captures the information �ow during the auction. The most

commonly used model to study a static, single unit, English auction is the so-called Japanese version, in

which a price clock moves continuously and bidders can only decide when to quit. Once a bidder quits, he

cannot re-enter. When the second to last bidder quits, the clock stops and the last bidder standing wins

at the current clock price. The main virtue of such an auction format is its simplicity. In the case of no

informational externalities and risk neutral bidders, for example, it is a dominant strategy to quit when the

price reaches one�s value for the item. Using the Japanese format for sequential auctions is problematic.

As Milgrom and Weber (1982) �rst pointed out, the equilibrium is the same as in the static English auction

for multiple items. Consider for example the case of two objects, no informational externalities and risk

neutral bidders. In the �rst round, it is a dominant strategy for all bidders to drop out at their value for

the object if there are more than two bidders remaining, and to drop out immediately after the third to last

bidder has dropped out. Thus, the price in the �rst round is equal to the third highest bidder�s valuation.

This is also the price that prevails in the second, and last, round. The price is the same in all rounds; in

fact, a sequential Japanese auction is outcome equivalent to a static, multi-unit, Japanese auction. This

is because the Japanese format forces all losing bidders to reveal their types during the �rst round. At

the time the �rst round price is determined, all that is needed to determine prices in all rounds has been

revealed. This is true independently of whether bidders are risk neutral or averse to price risk; aversion to

price risk cannot lead to decreasing prices because bidders face no price risk!

Such a counterintuitive conclusion is a by-product of the extreme nature of the Japanese format. In

practical ascending auctions, it is not the case that at the end of the �rst round all bidders in the room

know the identity of all future winners and the types of all losing bidders. Bidders often stay silent at the

beginning and only start bidding towards the end of a round. Some bidders stay silent throughout a round,

and it is not at all clear what their values are. When bidders are allowed to decide how much information

to reveal in the course of bidding, the analysis can be unwieldy. In this subsection, I will introduce a format

of an ascending auction that is tractable, and allows bidders to hide their values during a round. The only

point I want to make is that the afternoon e¤ect is still present, as long as bidders in the early rounds are

uncertain, at the time price is determined, about the valuation of some of their opponents (allowing for

the probability of entry of new bidders in the second round would serve the same purpose).

I will assume that there are only two rounds and that there are no informational externalities. Bidders

are averse to price risk and have unit demand. In each round of the auction, the auctioneer calls bidders

to increase the current price by a �xed increment � (I will let � go to zero). If one or more bidders raise

the price, then the bidder with the lowest label is selected as the new high bidder at the new price (the

tie breaking rule is not important). If no bidder raises the price, then the auctioneer makes a second call,

at the same price. If one or more bidders raises after the second call, then, as before, the bidder with the

lowest label becomes the new high bidder. If no bidder raises after the second call, then the round ends

and the current high bidder wins an object at the current price.

This sequential ascending auction format has an equilibrium in which only two bidders are initially

active (say bidder 1 and bidder 2), in the �rst round. When one of the two active bidders does not raise

the other active bidder�s o¤er, then all other bidders enter the bidding (raise the current price) if it is
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pro�table for them to do so. Such an equilibrium has declining prices between rounds. This is because in

the �rst round, when deciding to stop raising the price, the two initially active bidders are uncertain about

the other bidders�valuations, and hence next round price. The uncertainty is due to all other bidders not

being active in the early stages of the �rst round of the auction. The intuition for the occurrence of an

afternoon e¤ect is the same as in the case of a second-price auction. Bidders 1 and 2 are willing to pay a

premium to insure themselves against a future uncertain price.

The proof of the following theorem is in Appendix C.

Theorem 9 There is an equilibrium of the two-round, English auction, with no informational externalities,

in which: 1) In the second round, each remaining bidder i answers the �rst call by raising the price if and

only if he is not the current winner and the current price is below �E2 (xi) = �(xi): 2) In the �rst round,

bidder i = 1; 2 answers the �rst call and raises bidder j = 1; 2; j 6= i; current winning price if and only if
the current price is below �E1E(xi) = �

�
E
h
Y
(N�1)
2 jY (N�1)1 = xi

i�
and no other bidder has yet entered the

bidding (i.e., ever raised the price). After a bidder di¤erent from 1 and 2 has entered the bidding for the

�rst time, then bidder i raises the current winning price if and only if he is not the current winner and

the current winning price is below �E1L(xi) = �(xi): 3) In the �rst round, bidder i 6= 1; 2 does not enter

the bidding as long as bidders 1 and 2 are raising each other prices. If one of bidders 1; 2 does not answer

the �rst-call to raise current price p � �, then bidder i answer the second call and raises if and only if
p < �(xi); after raising the price once, bidder i continues raising the price as long as he is not the current

winner and the current winning price is below �(xi).

The winners of the auction are the two highest valuation bidders. There are two possible outcomes.

First, all bidders become active in the �rst round. In this case, the prices in the �rst and in the second

round are the same and equal to �(Y (N)3 ); the types of all losing bidders will become known by the end of

in the �rst round. This is the same outcome that would obtain in the equilibrium of the Japanese auction.

The second possible outcome is that only bidder 1 and bidder 2 are active in the �rst round. This can

happen only if they are the two highest valuation bidders. Without loss of generality, we can assume that

bidder 1 has the highest valuation. Then the �rst round price is P1 = �
�
E
h
Y
(N�1)
2 jY (N�1)1 = x2

i�
. The

expected second round price, conditional on P1, is E [P2jP1] = E
h
�
�
Y
(N�1)
2

�
jY (N�1)1 = x2

i
; by Jensen�s

inequality, it is E [P2jP1] < P1. Since the second outcome will occur with strictly positive probability, we
have proved the following theorem.

Theorem 10 The price sequence of the two-round English auction with no informational externalities is

a supermartingale.

9 Conclusions

The classic model of risk neutral bidders assumes additive separability in a bidder�s preferences over objects

and money. Aversion to price risk maintains additive separability, but postulates that a bidder prefers a

certain price to an equivalent (on average) random price. Additive separability of preferences makes the
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model very tractable. As I show in Lemma 11 in Appendix A, it implies that a bidder-payo¤ equivalence

theorem holds. All auction mechanisms with the same allocation rule and which give the same payo¤ to

the lowest bidder type are bidder-payo¤ equivalent.

Without additive separability, the e¤ects due to aversion to price risk, aversion to quantity risk, and

private information interact. The interaction between (price and quantity) risk aversion and private in-

formation in a single-sale model is the focus of Maskin and Riley (1984). McAfee and Vincent (1993)

showed that sequential auctions without additive separability are not very tractable; equilibrium in their

two-round, second-price auction with no informational externalities is in mixed strategies.

Aversion to price risk yields a simple explanation of declining prices in sequential auctions. In any given

round, a small change in his own bid matters to a bidder only if it is, at the same time, the winning bid

and the price setting bid. Thus, when his own bid matters, a bidder wins at a certain price, his own bid.

Optimality requires that there is no �rst order e¤ect on the bidder�s payo¤ of a change in the bid. This

implies that the bidder is indi¤erent between winning in the current round or in the next round. Since next

round prince is random, in e¤ect the bidder buys price insurance in the current round to protect himself

against future price randomness.

The paper also uncovers an informational externality e¤ect. When there is no aversion to price risk,

but there are informational externalities, prices increase between rounds of sequential auctions. Again, the

explanation is simple. The current price setting bidder must be indi¤erent between winning in the current

or in the next round, assuming that he is also the current winner; that is, he must be indi¤erent between

the current price (which he sets) and his estimate of the next round price. Since he assumes that he is

also the current winner, the current price setter underestimates the signal of his highest opponent and true

winner of the current round. Because of informational externalities, this amounts to underestimating next

round price. Hence, on average next round price is higher than the current price.

Several empirical implications can be drawn from this paper. First, the more important a concern is

price risk for bidders, the more we should expect prices to decline between rounds. Thus, for example, if

there is a serious possibility that new bidders may enter in the next round, then price risk is more severe

and we should expect prices to decline more.

Second, when informational externalities, or value interdependencies, are not very important, but

bidders are averse to price risk, then prices are likely to decline. When value interdependencies are more

important than price risk, then we should expect prices to increase between rounds. For example, if the

auctioneer publishes all the information at his disposal (as the professional auction houses typically do),

including value estimates of the objects for sale, then interdependencies are reduces and it is more likely

that we see prices decline (as the data broadly suggests), rather than increase between rounds. If bidders

are professionals, buying the goods for resale, and little information is provided about resale value by the

auctioneer before the auction, then it is more likely that prices will increase between rounds.5

Third, when bidders have multi-unit demand, so, for example, if the same bidder wins multiple rounds,

5This seems broadly consistent with Deltas and Kosmopoulou (2005) study of an auction of rare library books, in which

price estimates were not published and a lower bound on the number of professionals in the auction is estimated by the authors

at about 25%.
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then it is more likely that prices only decline moderately, or even increase, between rounds.6

Fourth, the less information about bidders�values transpires during a round, the more we should expect

prices to decline. Thus, if each round is an oral ascending auction, the larger the number of bidders that

remain silent during the initial rounds, the higher future price randomness, and hence the more likely are

prices to decline between rounds.

More generally, the interaction between the aversion to price risk e¤ect and the informational externality

e¤ect could help to explain the more complex price paths we sometimes observe in the data.

6This seems consistent with the �ndings in Jones et al. (2004).
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Appendix A

This appendix contains the proofs of Theorems 1, 2, 3 and 6. First, it is it is useful to derive a lemma

showing that bidders�payo¤s are the same in every auction having the same outcome function and yielding

the same payo¤ to the lowest type of bidder.

Suppose that k objects have already been sold to the k highest type bidders, y1; :::; yk; suppose also

that the winners�types have been revealed. Consider a mechanism in which �k+1(x0; yN�1; :::; yk+1) is i�s

probability of winning one of the remaining objects and pk+1(x0; yN�1; :::; yk+1) is i�s payment when he

behaves as a type x0: Then, bidder i�s expected payo¤ when his type is x; but he behaves as if his type

were x0 is

Uk+1(x
0;x; yk; :::; y1) =

Z yk

x
:::

Z yN�2

x

�
V (x; yN�1; :::; y1)�i(x

0; yN�1; :::; yk+1)�

`(pi(x
0
i; yN�1; :::; yk+1))

�
f(yN�1; :::; yk+1jY (N�1)k = yk)dyN�1:::dyk+1;

where f(yN�1; :::; yk+1jyk) is the density of the order statistics Y (N�1)N�1 ; :::; Y
(N�1)
k+1 conditional on Y (N�1)k =

yk. (By independence, it is not necessary to condition on the order statistics Y
(N�1)
h with h < k:)

Letting U�k+1(x; yk; :::; y1) = Uk+1(x;x; yk; :::; y1) be the expected payo¤ in equilibrium of type x, and

using a standard envelope argument yields

@U�k+1(x; yk; :::; y1)

@x
(5)

=

Z yk

x
:::

Z yN�2

x

@V (x; yN�1; :::; y1)

@x
�i(x; yN�1; :::; yk+1)f(yN�1; :::; yk+1jY (N�1)k = yk)dyN�1:::dyk+1:

In particular, if the mechanism is e¢ cient, as the sequential auctions studied in this paper, then (5) becomes

@U�k+1(x; yk; ::; y1)

@x
= E

"
@V (x; Y

(N�1)
N�1 ; ::; Y

(N�1)
k+1 ; yk; ::; y1)

@x

���x > Y (N�1)K

#
FK(xjY (N�1)k = yk): (6)

Equation (5), combined with U�k+1(x; :::) = u, yields the bidder-payo¤ equivalence lemma.

Lemma 11 Suppose k = 0; :::;K � 1 objects have already been sold to the highest type bidders, and the
winning types have been announced. Bidders�payo¤s are the same in any mechanism h�k+1; pk+1i having
the same outcome function �k+1 and yielding the same payo¤ to the lowest type. Equation (5) (equation

(6) if the mechanism is e¢ cient) and the boundary condition U�k+1(x; :::) = u determine a bidder�s payo¤.

We are now ready to prove Theorems 1-3

Proof of Theorem 1. Let �S1k (x; yk�1; :::; y1) be round k equilibrium bidding function. Recall that,

assuming that �S1k is increasing in x; on the equilibrium path the true types of the winning bidders are

revealed. Suppose that if the winning bid in round k is higher than the highest equilibrium bid, then all

bidders believes that the winning bidder�s type is the same as the type of the previous round�s winner;

if the observed winning bid in round k is below the lowest equilibrium bid, then bidders believe that the

winner�s type is the lowest possible type.
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Let U�k (x; yk�1; :::) be the expected payo¤ for a type x of bidder in the continuation equilibrium begin-

ning in round k (i.e., the payo¤ conditional on having lost all previous auctions and on the history up to

round k). In writing a bidder�s payo¤, I will use the function vk, de�ned as follows:

vk(x; yk; :::; y1) = E
h
V (Xi; X�i)jXi = x; Y (N�1)k = yk; :::; Y

(N�1)
1 = y1

i
: (7)

Suppose that all the other bidders follow the equilibrium strategies, while bidder i is considering deviating

in round k (only). First note that, given his beliefs, it is not pro�table for bidder i to bid above the highest

possible bid of the other bidders �S1k (yk�1; �). Bidding below the lowest possible bid is equivalent to bidding
the lowest bid; in both cases winning is a zero probability event. Hence if there is a pro�table deviation,

there is a pro�table deviation with a bid in the range of possible bids. The payo¤ of bidder i of type x

when he bids b = �S1k (z; yk�1; :::) (i.e., he bids like a type z) in round k is:

Uk(z;x; yk�1; :::) =

Z z

x

�
vk(x; yk; :::)� `(�S1k (z; yk�1; :::))

�
f
(N�1)
k

�
ykjY (N�1)k�1 = yk�1

�
dyk (8)

+

Z x

z
U�k+1(x; yk; yk�1; ::)f

(N�1)
k

�
ykjY (N�1)k�1 = yk�1

�
dyk:

Di¤erentiating with respect to z yields the �rst order condition

vk(x; z; yk�1; ::)f
(N�1)
k

�
zjY (N�1)k�1 = yk�1

�
�
d
�
`(�S1k (z; yk�1; :::))F

(N�1)
k

�
zjY (N�1)k�1 = yk�1

��
dz

(9)

� U�k+1(x; z; yk�1; ::; )f
(N�1)
k

�
zjY (N�1)k�1 = yk�1

�
= 0:

Since on the equilibrium path it is x � yk�1; and z = x must be optimal, we obtain the following necessary
condition for equilibrium:

vk(x; x; yk�1; ::)f
(N�1)
k

�
xjY (N�1)k�1 = yk�1

�
�
d
�
`(�S1k (x; yk�1; ::))F

(N�1)
k

�
xjY (N�1)k�1 = yk�1

��
dx

(10)

� U�k+1(x;x; yk�1; ::; )f
(N�1)
k

�
xjY (N�1)k�1 = yk�1

�
= 0:

Observe that if the signal of the winner in round k < K is x, then in round k + 1 bidder i with signal

x wins with probability 1; hence, it is

U�k+1(x;x; yk�1; ::; ) = vk(x; x; yk�1; :::)� `(�S1k+1(x;x; yk�1; :::)): (11)

Since U�K+1(x;x; yK�1; ::; ) = 0; equation (11) also holds for k = K, provided we de�ne

�S1K+1(x;x; yK�1; :::) = � (vK(x; x; yK�1; :::)) : (12)

Using (11), equation (10) can be written as

`(�S1k+1(x;x; yk�1; :::))f
(N�1)
k

�
xjY (N�1)k�1 = yk�1

�
�
d
�
`(�S1k (x; �))F

(N�1)
k

�
xjY (N�1)k�1 = yk�1

��
dx

= 0: (13)
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Integrating (13) we obtain

`(�S1k (x; yk�1; ::; y1)) =

Z x

x
`
�
�S1k+1(ex; ex; yk�1; ::; y1)� f (N�1)k

�exjY (N�1)k�1 = yk�1
�

F
(N�1)
k

�
xjY (N�1)k�1 = yk�1

�dex (14)

= E
h
`
�
�S1k+1(Y

(N�1)
k ;Y

(N�1)
k ; yk�1; :::)

�
jY (N�1)k � x � Y (N�1)k�1 = yk�1

i
:

By (12), for k = K, this yields

`(�S1K (x; yK�1; :::)) = E
h
V (Y

(N�1)
K ; Y

(N�1)
K ; yK�1; :::)jY (N�1)K � x � Y (N�1)K�1 = yK�1

i
:

Working backwards, (14) yields

`(�S1k (x; yk�1; :::)) = E
h
V (Y

(N�1)
K ; Y

(N�1)
K ; Y

(N�1)
K�1 ; :::)jY (N�1)k � x � Y (N�1)k�1 = yk�1; :::

i
;

and hence on the equilibrium path the bidding function must satisfy

�S1k (x; yk�1; ::; y1) = �
�
E
h
V (Y

(N�1)
K ; Y

(N�1)
K ; Y

(N�1)
K�1 ; ::; Y

(N�1)
k ; yk�1; ::)jY (N�1)k � x � Y (N�1)k�1 = yk�1

i�
:

(15)

Note from (15) that if values are private V (Y (N�1)K ; Y
(N�1)
K ; Y

(N�1)
K�1 ; :::) = Y

(N�1)
K , and �S1k is indepen-

dent of y1; :::; yk�1.

It remains to show that if all bidders follow the equilibrium bidding strategy in the rounds after k, and

if in round k all other bidders follow the bidding strategy �S1k de�ned in (15), then it is also optimal for

bidder i to follow it. Using (10) to replace the second term on the left hand side of equation (9) we obtain

@Uk
@z

= [vk(x; z; yk�1; :::)� vk(z; z; yk�1; :::)] f (N�1)k

�
zjY (N�1)k�1 = yk�1

�
(16)

+
�
U�k+1(z; z; yk�1; ::; )� U�k+1(x; z; yk�1; ::; )

�
f
(N�1)
k

�
zjY (N�1)k�1 = yk�1

�
:

Since vk is increasing in x and U�K+1 = 0; for k = K the sign of @Uk@z is the same as x � z; hence z = x is
optimal.

Now suppose k < K; take �rst the case z � x. Note that

U�k+1(x; z; yk�1; ::; ) = vk(x; z; yk�1; :::)� `(�S1k+1(z; z; yk�1; :::));

because in this case bidder i wins for sure in round k, and bids �S1k+1(minfx; zg; z; yk�1; :::) = �S1k+1(z; z; yk�1; :::):
It follows that @Uk@z = 0 for z � x and bidder i has no incentive to bid less than the equilibrium strategy in

round k.

Now suppose that z > x. By Lemma 11, equation (6), we have

@U�k+1(x; z; yk�1; ::; y1)

@x
= E

"
@V (x; Y

(N�1)
N�1 ; ::; Y

(N�1)
k+1 ; z; yk�1; ::; y1)

@x

���x > Y (N�1)K

#
FK(xjY (N�1)k = z)

< E

"
@V (x; Y

(N�1)
N�1 ; ::; Y

(N�1)
k+1 ; z; yk�1; ::; y1)

@x

#

=
@vk(x; z; yk�1; :::)

@x
: (17)
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Integrating between x and z, it follows that

U�k+1(z; z; yk�1; ::; )� U�k+1(x; z; yk�1; ::; ) < vk(z; z; yk�1; :::)� vk(x; z; yk�1; :::);

and hence that @Uk@z < 0 for z > x; bidder i has no incentive to bid more than the equilibrium strategy in

round k. This concludes the proof of the theorem. �

Proof of Theorem 2. Let �S2k (x; yk�1; :::; y1) be round k equilibrium bidding function. Suppose that if

the winning bid in round k is higher than the highest equilibrium bid, then all bidders believe that the

winning bidder�s type is the same as the type of the previous round�s winner; if the observed winning bid

in round k is below the lowest equilibrium bid, then bidders believe that the winner�s type is the lowest

possible type.

Let U�k (x; yk�1; :::) be the expected payo¤ for a type x of bidder at the beginning of round k. Suppose

that all the other bidders follow the equilibrium strategies, while bidder i is considering deviating in round

k. As for the case of a sequential �rst-price auction, if there is a pro�table deviation, there is a pro�table

deviation with a bid in the range of possible bids. Recalling (7), the payo¤ of bidder i of type x when he

bids b = �S2k (z; yk�1; :::) (i.e., he bids like a type z) in auction k can be written as:

Uk(z;x; yk�1; :::) =

Z z

x

�
vk(x; yk; :::)� `(�S2k (yk; yk�1; :::))

�
f
(N�1)
k

�
ykjY (N�1)k�1 = yk�1

�
dyk

+

Z x

z
U�k+1(x; yk; yk�1; ::)f

(N�1)
k

�
ykjY (N�1)k�1 = yk�1

�
dyk:

Di¤erentiating with respect to z yields the �rst order condition�
vk(x; z; yk�1; :::)� `(�S2k (z; yk�1; :::))

�
f
(N�1)
k

�
zjY (N�1)k�1 = yk�1

�
(18)

� U�k+1(x; z; yk�1; ::; )f
(N�1)
k

�
zjY (N�1)k�1 = yk�1

�
= 0:

Since on the equilibrium path z = x must be optimal, the following is a necessary condition for equilibrium:

vk(x; x; yk�1; :::)� `(�S2k (x; yk�1; :::))� U�k+1(x;x; yk�1; ::; ) = 0: (19)

If k = K; then U�k+1(x; �) = 0, and (19) yields that on the equilibrium path the bidding function must

satisfy

�S2K (x; yK�1; :::; y1) = � (vK(x; x; yK�1; :::; y1)) (20)

= �
�
E
h
V (Y

(N�1)
K ; Y

(N�1)
K ; Y

(N�1)
K�1 :::)jY (N�1)K = x � Y (N�1)K�1 = yK�1; :::

i�
:

If the signal of the winner in round k < K is x, then in round k + 1 bidder i with signal x wins with

probability 1; hence, it is

U�k+1(x;x; yk�1; ::; ) = vk(x; x; yk�1; :::)�
Z x

x
`(�S2k+1(yk+1;x; yk�1; :::))f

(N�1)
k+1

�
yk+1jY (N�1)k = x

�
: (21)

Thus (19) can be written as

`(�S2k (x; yk�1; :::)) =

Z x

x
`(�S2k+1(yk+1;x; yk�1; :::))f

(N�1)
k+1

�
yk+1jY (N�1)k = x

�
(22)

= E
h
`(�S2k+1(Y

(N�1)
k+1 ;Y

(N�1)
k ; :::))jY (N�1)k = x � Y (N�1)k�1 = yk�1; :::

i
:
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Recalling (20) and working backwards we obtain

`(�S2k (x; yk�1; ::)) = E
h
V (Y

(N�1)
K ; Y

(N�1)
K ; Y

(N�1)
K�1 ; :::)jY (N�1)k = x � Y (N�1)k�1 = yk�1; :::

i
Thus, we have shown that on the equilibrium path the bidding function must satisfy

�S2k (x; yk�1; ::; y1) = �
�
E
h
V (Y

(N�1)
K ; Y

(N�1)
K ; Y

(N�1)
K�1 ; ::)jY (N�1)k = x � Y (N�1)k�1 = yk�1; :::

i�
: (23)

It only remains to show that if all bidders follow the equilibrium bidding strategy in the rounds after k,

and if in round k all other bidders follow the bidding strategy �S2k de�ned in (23), then it is also optimal

for bidder i to follow it. Using (19) to replace the second term on the left hand side of equation (18) we

obtain

@Uk
@z

= [vk(x; z; yk�1; :::)� vk(z; z; yk�1; :::)] f (N�1)k

�
zjY (N�1)k�1 = yk�1

�
(24)

+
�
U�k+1(z; z; yk�1; ::; )� U�k+1(x; z; yk�1; :::)

�
f
(N�1)
k

�
zjY (N�1)k�1 = yk�1

�
:

Consider k = K; since vk is increasing in x and U�K+1 = 0; the sign of
@UK
@z is the same as x� z; hence

z = x is optimal.

Now suppose k < K; take �rst the case z � x. Note that

U�k+1(x; z; yk�1; ::; ) = vk(x; z; yk�1; :::)�
Z z

x
`(�S2k+1(yk+1; z; yk�1; :::))f

(N�1)
k+1

�
yk+1jY (N�1)k = z

�
;

because in this case bidder i wins for sure in round k: It follows that @Uk@z = 0 for z � x and bidder i has
no incentive to bid less than the equilibrium strategy in round k.

Now take the case z > x. As shown in (17), by Lemma 11, equation (6), we have

@U�k+1(x; z; yk�1; :::; y1)

@x
<
@vk(x; z; yk�1; :::)

@x
:

Integrating between x and z, it follows that

vk(z; z; yk�1; :::)� vk(x; z; yk�1; :::) > U�k+1(z; z; yk�1; ::; )� U�k+1(x; z; yk�1; ::; );

and hence that @Uk@z < 0 for z > x; bidder i has no incentive to bid more than the equilibrium strategy in

round k. This concludes the proof of the theorem. �

Proof of Theorem 3. As in a static second-price auction, it is clear that in round K bidding according

to the equilibrium strategy is a weakly dominant strategy; a bidder wins if and only if he obtains a positive

payo¤ and the price he pays does not depend on his bid.

Now consider round k < K; suppose that all the other bidders follow their equilibrium strategies, as

described in the theorem, while bidder i is considering deviating. Suppose �rst that bidder i of type x is

the price setter in round k�1 and hence the bidder with the k-th highest signal (this implies that the k-th
highest signal among his N � 1 opponents is less than, or equal to, x). Note �rst that bidding as a type
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z > x yields the same payo¤ as bidding as a type x (he wins for sure). If he deviates in round k (only)

and bids as if he were a type z � x, he either wins in round k, or in round k + 1; he obtains a payo¤

x�
Z z

x
E
h
Y
(N�1)
K jY (N�1)k = y

i
f
(N�1)
k

�
yjY (N�1)k � x

�
dy

�
Z x

z

Z y

x
E
h
Y
(N�1)
K jY (N�1)k+1 = t

i
f
(N�1)
k+1

�
tjY (N�1)k = y

�
dtf

(N�1)
k

�
yjY (N�1)k � x

�
dy:

Di¤erentiating with respect to z yields

� E
h
Y
(N�1)
K jY (N�1)k = z

i
f
(N�1)
k

�
zjY (N�1)k � x

�
+

Z z

x
E
h
Y
(N�1)
K jY (N�1)k+1 = t

i
f
(N�1)
k+1

�
tjY (N�1)k = z

�
dtf

(N�1)
k

�
zjY (N�1)k � x

�
;

which is equal to zero for all values of z. It follows that type x has no incentive to deviate in round k.

Now consider a type x < yk, the price setter in round k � 1: If in round k he bids as if he were a type
z � yk, then he loses and obtains the same (expected, future) payo¤ independently of his bid. It follows
that he may as well bid as a type x; by equation (6), doing so gives him the (equilibrium) payo¤n

x� E
h
Y
(N�1)
K jY (N�1)K < x; Y

(N�1)
k = yk

io
Pr
h
Y
(N�1)
K < xjY (N�1)k = yk

i
; (25)

where Pr
h
Y
(N�1)
K < xjY (N�1)k = yk

i
is the probability that Y (N�1)K < x conditional on Y (N�1)k = yk: If

type x bids in round k as if he were a type z = yk; then he ties with the round k winner and he may as

well raise his bid and win for sure, or lower his bid and lose for sure. If he bids above the bid of the yk

type, so that he wins for sure, type x obtains a payo¤

x� E
h
Y
(N�1)
K jY (N�1)k = yk

i
=
n
x� E

h
Y
(N�1)
K jY (N�1)K < x; Y

(N�1)
k = yk

io
Pr
h
Y
(N�1)
K < xjY (N�1)k = yk

i
+
n
x� E

h
Y
(N�1)
K jY (N�1)K � x; Y (N�1)k = yk

io
Pr
h
Y
(N�1)
K � xjY (N�1)k = yk

i
<
n
x� E

h
Y
(N�1)
K jY (N�1)K < x; Y

(N�1)
k = yk

io
Pr
h
Y
(N�1)
K < xjY (N�1)k = yk

i
:

It follows from (25) that it is not pro�table for a bidder of type x to deviate and bid more than a type yk.

This concludes the proof of the theorem. �

Proof of Theorem 6. Consider a sequential �rst-price auction, and suppose that the history of the
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winners�signals up to round k is x; yk�1; :::; y1: Then we have:

E
�
PS1k+1jPS1k

�
= E

�
PS1k+1j�S1k (x; yk�1; :::; y1)

�
= E

h
�S1k+1(Y

(N�1)
k ;x; yk�1; ::)jY (N�1)k � x � Y (N�1)k�1 = yk�1; ::

i
= �

�
E
h
`
�
�S1k+1(Y

(N�1)
k ;x; yk�1; ::)

�
jY (N�1)k � x � Y (N�1)k�1 = yk�1; ::

i�
+AS1k=1(x; yk�1; :::; y1)

= �
�
E
h
`
�
�S1k+1(Y

(N�1)
k ;Y

(N�1)
k ; yk�1; ::)

�
jY (N�1)k � x � Y (N�1)k�1 = yk�1; ::

i�
+AS1k=1(x; yk�1; :::; y1) + I

S1
k=1(x; yk�1; :::; y1)

= �
�
E
h
V
�
Y
(N�1)
K ; Y

(N�1)
K ; Y

(N�1)
K�1 ; ::

�
jY (N�1)k � x � Y (N�1)k�1 = yk�1; ::

i�
+AS1k=1(x; yk�1; :::; y1) + I

S1
k=1(x; yk�1; :::; y1)

= �S1k (x; yk�1; ::; y1) +A
S1
k=1(x; yk�1; :::; y1) + I

S1
k=1(x; yk�1; :::; y1)

= PS1k +AS1k=1(x; yk�1; :::; y1) + I
S1
k=1(x; yk�1; :::; y1):

Now consider a sequential second-price auction. Suppose that in round k the winner is the bidder with

signal Y (N�1)k , and bidder i of type x is the price setter, while the history of the previous rounds winners�

signals is yk�1; :::; y1: We have

E
�
PS2k+1jPS2k

�
= E

�
PS2k+1j�S2k (x; yk�1; :::; y1)

�
= E

h
�S2k+1(Y

(N�1)
k+1 ;Y

(N�1)
k ; yk�1; ::)jY (N�1)k+1 � X1 = x � Y (N�1)k ; ::

i
= �

�
E
h
`
�
�S2k+1(Y

(N�1)
k+1 ;Y

(N�1)
k ; yk�1; ::)j

�
jY (N�1)k+1 � X1 = x � Y (N�1)k ; ::

i�
+AS2k=1(x; yk�1; :::; y1)

= �
�
E
h
`
�
�S2k+1(Y

(N�1)
k+1 ;Y

(N�1)
k ; yk�1; ::)j

�
jY (N�1)k = x

i�
+AS2k=1(x; yk�1; :::; y1) + I

S2
k=1(x; yk�1; :::; y1)

= �
�
E
h
V (Y

(N�1)
K ; Y

(N�1)
K ; Y

(N�1)
K�1 ; :::)jY (N�1)k = x � Y (N�1)k�1 = yk�1; :::

i�
+AS2k=1(x; yk�1; :::; y1) + I

S2
k=1(x; yk�1; :::; y1)

= �S2k (x; yk�1; ::; y1) +A
S2
k=1(x; yk�1; :::; y1) + I

S2
k=1(x; yk�1; :::; y1)

= PS2k +AS2k=1(x; yk�1; :::; y1) + I
S2
k=1(x; yk�1; :::; y1):

�

Appendix B

In this appendix, I compute the bidding functions and price ratios for the example discussed in Section 7.

Recalling that

�(z) = (1 + r)
1

1+r z
1

1+r ;
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we can use Theorem 2 to calculate the bidding functions in the sequential second-price auction:

�S22 (x; y1) = (1 + r)
1

1+r

�
by1 +

�
1 + b+ (N � 3) a

a+ 1
b

�
x

� 1
1+r

;

�S21 (x) = (1 + r)
1

1+r

�
a (N � 2)

a (N � 2) + 1x+ b
�
x+ (N � 2) a

a+ 1
x

�� 1
1+r

The expected price in round 2, conditional on the �rst-round price P1 is:

E
�
P2jP1 = �S21 (x)

�
= (1 + r)

1
1+r E

"�
b
a

a+ 1

1� xa+1
1� xa +

�
1 + b+ (N � 3) a

a+ 1
b

�
Y
(N�1)
2

� 1
1+r

jY (N�1)2 � x
#

= (1 + r)
1

1+r

Z x

0

�
b
a

a+ 1

1� xa+1
1� xa +

�
1 + b+ (N � 3) a

a+ 1
b

�
z

� 1
1+r

a(N � 2)z
a(N�2)�1

xa(N�2)
dz

= (1 + r)
1

1+r x
1

1+r

Z 1

0

�
b
a

a+ 1

1� xa+1
x� xa+1 +

�
1 + b+ (N � 3) a

a+ 1
b

�
z

� 1
1+r

a(N � 2)za(N�2)�1dz

It follows that the ratio of the conditional expected second-round price to the �rst-round price is:

E [P2jP1]
P1

=

R 1
0

�
b a
a+1

1�xa+1
x�xa+1 +

�
1 + b+ (N � 3) a

a+1b
�
z
� 1
1+r

a(N � 2)za(N�2)�1dz�
a(N�2)
a(N�2)+1 + b

�
1 + (N � 2) a

a+1

�� 1
1+r

: (26)

In the case of no informational externalities, that is b = 0, this becomes:

E [P2jP1]
P1

=

R 1
0 z

1
1+r a(N � 2)za(N�2)�1dz�

a(N�2)
a(N�2)+1

� 1
1+r

=
(a(N � 2))

r
1+r (a (N � 2) + 1)

1
1+r�

a(N � 2) + 1
1+r

� : (27)

If there are informational externalities, b > 0; E[P2jP1]P1
depends on the signal x of the �rst-round price

setter. Since x is the value of the second order statistic out of N draws, the expected value of the price

ratio is

E

�
E [P2jP1]
P1

�
=

Z 1

0

R 1
0

�
b a
a+1

1�xa+1
x�xa+1 +

�
1 + b

a+1 (1 + (N � 2)a)
�
z
� 1
1+r

a(N � 2)za(N�2)�1dz�
a(N�2)
a(N�2)+1 + b

�
1 + (N � 2) a

a+1

�� 1
1+r

N(N � 1)a (1� xa)xa(N�1)�1dx

Appendix C

In this appendix I prove the theorems for the multi-unit and English auction presented in Section 8. I

also compute the bidding functions, the expected price in round 2 and the conditional price ratio for a
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multi-unit version of the example with F (x) = xa and `(p) = p1+r=(1 + r) introduced in Section 7. I start

with the multi-unit demand, sequential, second-price auction.

Proof of Theorem 7. In the second round, it is a weakly dominant strategy to submit a loss bid equal

to the object�s value. Hence `(�S22 (�)) equals xl if the bidder won the �rst round, and xh if the bidder lost.
Consider the �rst round. Suppose all other bidders bid according to the equilibrium bid functions in

both periods. Note that the �rst-round bid function only depends on a bidder�s high value. Hence, any

pro�table �rst-round deviation of bidder i of type xh; xl can be described as bidding as if his high value

were z rather than xh. The payo¤ from such a bid when z � xl is:

U1(z;xh; xl) =

Z xl

x

�
xh + xl � `(�S21 (y1; �))� y1

�
f
(2N�2)
1 (y1) dy1 +

Z z

xl

�
xh � `(�S21 (y1; �))

�
f
(2N�2)
1 (y1) dy1

+

Z x

z

Z xh

x
[xh � y2]f (2N�2)2

�
y2jY (2N�2)1 = y1

�
dy2f

(2N�2)
1 (y1) dy1:

Recall that `
�
�S21 (z; �)

�
= E

h
Y
(2N�2)
2 jY (2N�2)1 = z

i
: Hence, di¤erentiating U1(z;xh; xl) with respect to z

yields:�
xh � `(�S21 (z; �))�

Z xh

x
[xh � y2]f (2N�2)2

�
y2jY (2N�2)1 = z

�
dy2

�
f
(2N�2)
1 (z)

=

�Z z

x
[xh � y2]f (2N�2)2

�
y2jY (2N�2)1 = z

�
dy2 �

Z xh

x
[xh � y2]f (2N�2)2

�
y2jY (2N�2)1 = z

�
dy2

�
f
(2N�2)
1 (z)

=

�Z z

xh

[xh � y2]f (2N�2)2

�
y2jY (2N�2)1 = z

�
dy2

�
f
(2N�2)
1 (z) ;

which is negative if z > xh and zero if z � xh; since f
(2N�2)
2

�
y2jY (2N�2)1 = z

�
= 0 for y2 > z: Hence

bidding as if z = xh (i.e., according to the equilibrium bidding function) is optimal (among all z � xl). It
remains to be shown that bidder i does not want to bid as if his high value is z < xl:

Bidder i�s payo¤ from bidding as if his high type is z < xl is:

U1(z;xh; xl) =

Z z

x

�
xh + xl � `(�S21 (y1; �))� y1

�
f
(2N�2)
1 (y1) dy1

+

Z x

z

Z xh

x
[xh � y2]f (2N�2)2

�
y2jY (2N�2)1 = y1

�
dy2f

(2N�2)
1 (y1) dy1:

Di¤erentiating with respect to z yields:�
xh + xl � `(�S21 (z; �))� z �

Z xh

x
[xh � y2]f (2N�2)2

�
y2jY (2N�2)1 = z

�
dy2

�
f
(2N�2)
1 (z) = (xl � z) f (2N�2)1 (z) ;

which is positive: Hence bidding as if z < xl is never optimal. �
Proof of Theorem 8. By (2), (3), and (4) we have that conditional on bidder i of type (xh; xl) being

the �rst-round price setter, the second round expected price is:

E [P2jP1]

= �S21 (xh; xl) PrfY
(2)
2 < xhjY (2)1 > xhg+AS22 (xh) + �S21 (xh; xl) PrfY

(2)
2 > xhjY (2)1 > xhg+MS2

2 (xh)

= �S21 (xh; xl) +A
S2
2 (xh) +M

S2
2 (xh)

= P1 +A
S2
2 (xh) +M

S2
2 (xh):

31



�
Now consider the example with F (x) = xa and `(p) = p1+r=(1 + r): We have:

�2(xh; xljxh > Y
(2N�2)
1 ) = (1 + r)

1
1+r (xl)

1
1+r

�2(xh; xljxh < Y
(2N�2)
1 ) = (1 + r)

1
1+r (xh)

1
1+r

�1(xh; xl) = (1 + r)
1

1+r

�
a (2N � 3)

a (2N � 3) + 1xh
� 1

1+r

The expected price in the last round, round 2, conditional on the �rst-round price P1 = �1(xh; xl) is:

E
h
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�
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�
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Note:
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�
It follows that the ratio of the conditional expected second-round price to the �rst-round price is:

E [P2jP1]
P1

=

R 1
0 z

1
1+r a(2N � 3)za(2N�3)�1dz 2xah

1+xah
+

1�xah
1+xah�

a(2N�3)
a(2N�3)+1

� 1
1+r

=

�
a(2N � 3) + 1
a(2N � 3)

� 1
1+r (a(2N � 3)) 2xah

1+xah
+
�
a(2N � 3) + 1

1+r

�
1�xah
1+xah�

a(2N � 3) + 1
1+r

�
=

�
a(2N � 3) + 1
a(2N � 3)

� 1
1+r

0@a(2N � 3) + 1
1+r

1�xah
1+xah�

a(2N � 3) + 1
1+r

�
1A :

The expected value of the price ratio is

E

�
E [P2jP1]
P1

�

=
(a(2N � 3) + 1)

1
1+r

�
a(2N � 3) + 1

1+r

R 1
0
1�xa
1+xaN(N � 1)2ax2a�1

�
1� x2a

�
x2a(N�2)dx

�
(a(2N � 3))

1
1+r

�
a(2N � 3) + 1

1+r

�
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Now consider the sequential English auction.

Proof of Theorem 9. In the second round, when bidder i is not the current winner and the current loss

bid is below i�s valuation of the object, it is a weakly dominant strategy for bidder i to raise the price.

Thus, we only need to show that the �rst round strategies are optimal.

Consider bidder i, i 6= 1; 2: If all other bidders follow their equilibrium strategies, then in the �rst round
bidder i cannot pro�tably deviate from his equilibrium strategy. On the equilibrium path, such a bidder

only wins if his valuation xi is one of the two highest, and when he wins (independently of the round) he

pays a price equal to �
�
Y
(N�1)
2

�
and makes a (positive) pro�t equal to xi�Y (N�1)2 : There is no deviation

which would ever make bidder i either win at a lower price, or win and make a positive pro�t when he is

not one of the two highest valuation bidders.

Now consider bidder i = 1; 2: Without loss of generality, let i = 1: An argument similar to the one in

the previous paragraph shows that there is no pro�table deviation for bidder 1 once one of the bidders

j 6= 1; 2 has entered the bidding. It only remains to show that, before such an entry, bidder 1 of type x1 will
stop raising the price when it reaches the level �E1E(x1) = �

�
E
h
Y
(N�1)
2 jY (N�1)1 = x1

i�
; that is, bidder 1

does not want to bid as if his type were z 6= x1: Consider �rst the option of dropping out (temporarily) at
a price P = �E1E(z) < �

E
1E(x1), and then resuming the bidding till the price reaches � (x1) if a bidder j 6= 2

enters. Let U1(x1;x1) be the payo¤ of type x1 of bidder 1 if he follows his equilibrium strategy, raising the

price above P , and let U1(z;x1) be the payo¤ if he deviates and drops out (temporarily) at price P . The

only di¤erence in the payo¤s from the two strategies is in the event that bidder 2�s type x2 is less than x1,

but higher than all other bidders�types. In such a case, bidder 1 wins in the �rst round at a price �E1E(x2)

if he follows the equilibrium strategy, while he wins at a price �(Y (N�2)1 ) if he deviates. Thus,

U1(x1;x1)� U1(z;x1)

=

Z x1

z

h
E
h
Y
(N�2)
1 jY (N�2)1 � x2

i
� `

�
�E1E(x2)

�i f(x2)

1� F (z)dx2

=

Z x1

z

h
E
h
Y
(N�1)
2 jY (N�1)1 = x2

i
� `

�
�E1E(x2)

�i f(x2)

1� F (z)dx2 = 0;

and the deviation is not pro�table.

Now consider the option of dropping out (temporarily) at a price P = �E1E(z) > �E1E(x1). The only

di¤erence in the payo¤s from following the equilibrium strategy (dropping out at price �E1E(x1)) and

deviating is in the event that bidder 2�s type x2 is the highest of all bidders�types, including x1; but it is

less than z. In such a case, bidder 1 wins in the �rst round at a price �E1E(x2) if he deviates. He wins at a

price �(Y (N�2)1 ) when Y (N�2)1 < x1 if he follows the equilibrium strategy. Since for x2 > x1 it is�
x1 � `

�
�E1E(x2)

��
FN�2(x2) =

h
x1 � E

h
Y
(N�1)
2 jY (N�1)1 = x2

ii
FN�2(x2)

=
h
x1 � E

h
Y
(N�2)
1 jY (N�2)1 � x2

ii
FN�2(x2)

<
h
x1 � E

h
Y
(N�2)
1 jY (N�2)1 � x1

ii
FN�2(x1);

the deviation is not pro�table. �

33



References

[1] Ashenfelter, O. (1989): How Auctions Works for Wine and Art. Journal of Economic Perspectives, 3,
23-36.

[2] Ashenfelter, O. and D. Genesove (1992): Testing for Price Anomalies in Real-Estate Auction. Amer-
ican Economic Review, 82, 501-505.

[3] Ashenfelter, O. and K. Graddy (2003): Auctions and the Price of Art. Journal of Economic Literature,
41, 763-786.

[4] Beggs, A. and K. Graddy, (1997): Declining Values and the Afternoon E¤ect: Evidence from Art
Auctions. RAND Journal of Economics, 28, 544-565.

[5] van den Berg, G., J. van Ours and M. Pradhan (2001): The Declining Price Anomaly in Dutch Rose
Auctions. American Economic Review, 91, 1055-1062.

[6] Bernhardt, D. and D. Scoones (1994): A Note on Sequential Auctions. American Economic Review,
84, 653-657.

[7] Black, J. and D. de Meza (1992): Systematic Price Di¤erences between Successive Auctions Are No
Anomaly. Journal of Economics and Management Strategy, 1, 607-628.

[8] Buccola, S. (1982): Price Trends at Livestock Auctions. American Journal of Agricultural Economics,
64, 63-69.

[9] Burns, P. (1985): Experience and Decision Making: A Comparison of Students and Businessmen in a
Simulated Progressive Auction. In V. Smith (ed.), Research in Experimental Economics: A Research
Annual, vol. 3, Greenwich, Connecticut: JAI.

[10] Chanel, O., L.A. Gérard-Varet and S. Vincent (1996): Auction Theory and Practice: Evidence from
the Market for Jewelry. In V. Ginsburgh and P.M. Menger (eds), Economics of the Arts: Selected
Essays. Amsterdam: Elsevier.

[11] Dasgupta P. and E. Maskin (2000): E¢ cient Auctions. Quarterly Journal of Economics, 95, 341-388.

[12] Deltas, G. and G. Kosmopolou (2004): Bidding in Sequential Auctions: �Catalogue�vs. �Order-of-Sale�
E¤ects. Economic Journal, 114, 28-54.

[13] Engelbrecht-Wiggans, R. (1994): Sequential Auctions of Stochastically Equivalent Objects. Economics
Letters, 44, 87-90.

[14] Feng, J., and K. Chatterjee (2005): Simultaneous vs. Sequential Auctions: Intensity of Competition
and Uncertainty. Working Paper, Penn State University, http://econ.la.psu.edu/papers/auction-OR-
5-5-051.pdf.

[15] Gale, I. and D. Hausch (1994): Bottom-Fishing and Declining Prices in Sequential Auctions. Games
and Economic Behavior, 7, 318-331.

[16] Gale, I. and M. Stegeman (2001): Sequential Auctions of Endogenously Valued Objects. Games and
Economic Behavior, 36, 74-103.

[17] Gandal, N. (1997): Sequential Auctions of Interdependent Objects: Israeli Cable Television Licenses.
Journal of Industrial Economics, 45, 227-244.

[18] Ginsburgh, V. (1998): Absentee Bidders and the Declining Price Anomaly in Wine Auctions. Journal
of Political Economy, 106, 1302-1319.

34



[19] Ginsburgh, V. and J. Van Ours (2007): How to Organize a Sequential Auction. Results of a Natural
Experiment by Christie�s. Oxford Economic Papers, 59 (2007), 1-15.

[20] Jeitschko, T. (1999): Equilibrium Price Paths in Sequential Auctions with Stochastic Supply. Eco-
nomics Letters, 64, 67-72.

[21] Jeitschko, T. and E. Wolfstetter (1998): Scale Economies and the Dynamics of Recurring Auctions.
Economic Inquiry, 40, 403�414.

[22] Jones, C., F. Menezes and F. Vella (2004): Auction Price Anomalies: Evidence from Wool Auctions
in Australia. Economic Record, 80 (250), 271-288.

[23] Katzman, B. (1999): A Two Stage Sequential Auction with Multi-Unit Demands. Journal of Economic
Theory, 86, 77-99.

[24] Keser, C. and M. Olson (1996): Experimental Examination of the Declining Price Anomaly. In V.
Ginsburgh and P.M. Menger (eds), Economics of the Arts: Selected Essays. Amsterdam: Elsevier.

[25] Krishna, V. (2002): Auction Theory, San Diego, California: Academic Press.

[26] Ljungqvist, L. and T. Sargent (2000), Recursive Macroeconomic Theory, Cambridge, Massachusetts:
MIT Press.

[27] Lusht, K. (1994): Order and Price in a Sequential Auction. Journal of Real Estate Finance and
Economics, 8, 259-266.

[28] Maskin, E. and J. Riley (1984): Optimal Auctions with Risk Averse Buyers. Econometrica, 52, 1473-
1518.

[29] Matthews, S. (1983): Selling to Risk Averse Buyers with Unobservable Tastes. Journal of Economic
Theory, 30, 370-400.

[30] McAfee, P. and D. Vincent (1993): The Declining Price Anomaly. Journal of Economic Theory, 60,
191-212.

[31] Mezzetti, C., A. Pekeµc, and I. Tsetlin (2008): Sequential vs. Single-Round Uniform-Price Auctions.
Games and Economic Behavior, in press, doi:10.1016/j.geb.2007.05.002.

[32] Milgrom, P. (2004): Putting Auction Theory to Work. Cambridge, UK: Cambridge University Press.

[33] Milgrom, P. and R. Weber (1982): A Theory of Auctions and Competitive Bidding, II. Mimeo.
Stanford University and Northwestern University. Published with new foreword in P. Klemperer (ed.)
(2000): The Economic Theory of Auctions, Vol. 1, Cheltenham, UK: Edward Edgar.

[34] Pesando J. and P. Shum (1996): Price Anomalies at Auctions: Evidence from the Market for Modern
Prints. In V. Ginsburgh and P.M. Menger (eds), Economics of the Arts: Selected Essays. Amsterdam:
Elsevier.

[35] Thiel, S, and G. Petry (1995): Bidding Behaviour in Second-Price Auctions: Rare Stamp Sales,
1923-1937. Applied Economics, 27(1), 11-16.

[36] Weber, R. (1983): Multi-Object Auctions. In: Engelbrecht-Wiggans, R., Shubil, M. and Stark, R.M.
(eds), Auctions, Bidding and Contracting: Uses and Theory. New York University Press, New York,
165�94.

35


