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This paper proposes a new sensorless technique for induction motor drives based on a hybrid MRAS-neural
technique, which improves a previously developed neural MRAS based sensorless method. In this paper the open-
-loop integration in the reference model is performed by an adaptive neural integrator, enhanced here by means
of a speed-varying filter transfer function. The adaptive model is based on a more accurate discrete current model
based on the modified Euler integration, with a resulting more stable behaviour in the field weakening region.
The adaptive model is further trained on-line by a generalized least squares technique, the MCA EXIN + neu-
ron, in which a parameterized learning algorithm is used. As a consequence, the speed estimation presents an im-
proved convergence with higher accuracy and shorter settling time, because of the better transient behaviour of
the neuron. 

A test bench has been set up to verify the methodology experimentally and the results prove its goodness at
very low speeds (below 4 rad/s) and in zero-speed operation.
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1 INTRODUCTION

This work deals with sensorless control of induc-
tion motor drives [1–10] and in particular with the
rotor speed estimation by means of MRAS obser-
vers [11–15]. Specifically, this work is in the frame-
work of series of papers dealing with sensorless
control in AC drives, based on the fundamental
mmf dynamic model of the induction machines in
which the speed computation is obtained by means
of least squares techniques [16–20]. In particular,
the dynamical performances and the estimation ac-
curacy were previously shown with a Total Least-
-Squares (TLS) method, while now this paper pre-
sents an improved MRAS observer for three aspects:
firstly, a more accurate discrete current model is
used, based on the modified Euler integration (see
[19] for all the details about the advantages of the
proposed modified Euler integration method), se-
condly in the reference model an enhanced version
of the adaptive integration technique of [17, 20, 21]
has been used with a filter whose transfer function
varies with speed, and thirdly a completely new
neural technique, the MCA EXIN + neuron, has
been adopted to estimate the rotor speed. Each of
these improvements has respectively given the fol-
lowing advantages: more stable flux estimation, mo-
re accurate open loop flux integration at very low
speed than the fixed-pole filter transfer function

and finally the use of the MCA EXIN + neuron
with its scheduling makes it more powerful than
the other existing techniques with resulting smoot-
her transient, shorter settling time and better accu-
racy [24]. The use of the MCA EXIN + neuron ma-
kes allowances for the measurement flux modeling
errors, which influence the accuracy of the speed
estimation, since MCA EXIN + is inherently robust
to the two above sources of errors. The MCA
EXIN + MRAS observer has been experimentally te-
sted on a rotor-flux-oriented vector control drive
with an induction motor.

2 LIMITS OF MODEL BASED SENSORLESS 

TECHNIQUES

A. Open-loop integration

One of the main problems of some speed ob-
servers, when adopted in high performance drives,
is the open-loop integration in presence of DC bia-
ses. Speed observers suffering from this problem
are those which employ open-loop flux estimators,
e.g. open-loop speed estimators and those MRAS
systems where the reference model is an open-loop
flux estimator [11, 13–15]. Unlike them, speed esti-
mators employing such closed-loop flux integration
as the classic full-order Adaptive Observer [3], do
not have this problem. 
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In particular this problem is due to DC drifts,
which are always present in the signal both before
it is integrated, thus causing the integrator to satu-
rate with a resulting inadmissible estimation error,
and after the integration, because of the initial con-
ditions. In general Low Pass (LP) filters with very
low cut-off frequency are used instead of pure inte-
grators [13–15]; however since they fail in low fre-
quency ranges, close to their cut-off frequency, some
alternative solutions have been devised to overcome
this problem, e.g. the integrator with saturation
feed-back [25], the integrator based on cascaded
LP filters [26, 27], the integrator based on the off-
-set vector estimation and compensation of residual
estimation error [28] and the adaptive neural integra-
tor [21]. In this work, the adaptive neural integrator
proposed in [21] has been adopted and further im-
proved by means of a filter whose transfer function
varies with speed, as fully explained in § 3 B.

B. Inverter non-linearity 

The power devices of an inverter present a finite
voltage drop in »on-state«, due to their forward
non-linear characteristics. This voltage drop has to
be taken into consideration at low frequency (low
voltage amplitude) where it becomes comparable
with the stator voltage itself, giving rise to distor-
tion and discontinuities in the voltage waveform.
Here the compensation method proposed by [29]
has been employed. This technique is based on
modelling the forward characteristics of each power
device by a piecewise linear characteristic, with an
average threshold voltage and an average differen-
tial resistance. 

C. Machine Parameter Mismatch

A further source of error in flux estimation is
the mismatch of the stator and rotor resistances of
the observer with their real values because of heat-
ing/cooling of the machine. The load dependent
variations of the winding temperature may lead up
to 50 % error in the modelled resistance. Stator
and rotor resistances should be therefore estimated
on-line and tracked during the operation of the dri-
ve. A great deal of on-line parameter estimation al-
gorithms have been devised [1, 3, 28–31], requiring
low complexity and computational burden when
used in control systems. In any case, it should be
emphasized that steady-state estimation of the rotor
resistance cannot be performed in sensorless drives,
thus rotor resistance variations must be deduced
from stator resistance estimation. In the case under
study, the stator estimation methodology proposed
in [28], employed also in [17], has been adopted.

3 THE TLS MRAS OBSERVER

A. Structure of the Observer

In the MRAS speed observation scheme pro-
posed here the reference model is based on the
well known voltage model of the induction motor
[1], while the adaptive model is a linear artificial
neural network based on the current model. To per-
form open-loop integration the voltage model em-
ploys the adaptive neural integrator based on the
neural adaptive filtering described in § 3 B.

The adaptive model is given by:

(1)

Eq (1) can be re-written in the following manner:

(2)
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Its corresponding discrete model is given by:

(3)

where k is the current sampling time.

is generally computed by truncating its power
series expansion at the n-th term, i.e.

(4)

In the MRAS observer proposed here, the adap-
tive model is based on an enhanced ADALINE neu-
ral network based on a modified Euler discretization
method, which is capable of solving the instability
problems due to the simple Euler discretization pro-
cess. Moreover, like [17], the adaptive model has
been employed in »prediction mode«, that is the
flux components computed with the reference mo-
del are used in the adaptive model, thus avoiding
any feedback. 

The employment of the adaptive model in pre-
diction mode leads to a quicker convergence of the
algorithm, a higher bandwidth of the speed control
loop, a better behaviour at zero speed, lower speed
estimation errors both in transient and steady-state
conditions and a far more stable behaviour of the
estimator, in particular in the field-weakening re-
gion, as explained in § 4. 
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(6)

A more efficient integration method than that
used in [17], that is the Modified Euler Integration,
has been employed in (3) and it takes into conside-
ration also the values of the variables in two previ-
ous time steps [22]. The following discrete time
equations are obtained:

rect Torque Control) [20] drive, has been here im-
proved in its low frequency behaviour by making
its learning factor τ adaptive, according to the refe-
rence speed of the machine. The idea is to use line-
ar filter (ADALINE) used as a notch filter to cut
off the DC component adaptively.

The learning law of the neural adaptive filter is
as follows:

y(k + 1) = y(k) + 2τ(d(k) − y(k))        (7)

where k is the current time instant, d(k) is the pri-
mary input of the filter, y(k) is the output of the
filter neuron and τ is the learning rate. This one-
-weight neuron is able to remove not only a con-
stant bias but also a slowly varying drift in the pri-
mary input. It should be remarked that two neural
filters must be used in the neural-based integrator:
the neural filter 1 eliminates the DC component of
the signal to be processed, the neural filter 2 elimi-
nates the DC drift appearing at the output of the
integrator because of the initial conditions and the
filtering error of the neural filter 1 during its adap-
tation (Figure 2), as shown below.
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(5)

where $ marks the variables estimated with the adap-
tive model and k is the current time sample. A line-
ar neural network can reproduce these equations,
where w1n, w2n, w3n, w4n, w5n, w6n are the weights
of the neural networks defined as: w1n = 1−3Ts/(2Tr),
w2n = 3ωrTs/2, w3n = 3TsLm/(2Tr), w4n = Ts/(2Tr), w5n =
= ωrTs/2, w6n = TsLm/(2Tr).

Rearranging (5), the following matrix equation is
obtained in prediction mode:

Fig. 1 Block diagram of the ANN MRAS observer with modified 

Euler adaptive model (adaptive model in prediction mode)
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B. The Adaptive Integrator based on Neural Filterin

The neural adaptive integrator proposed in [21]
and adopted in the TLS MRAS observer both in a
FOC (Field Oriented Control) [17] and DTC (Di-

This matrix equation can be solved by any re-
gression technique. Here the MCA EXIN + tech-
nique has been adopted to retrieve the rotor speed
on-line. Figure 1 shows the block diagram of the
corresponding MRAS speed observer. 

Figure 3 shows the frequency response of an ideal
integrator, an LP filter based integrator (cut-off fre-
quency = 15 rad/s) and the neural adaptive integra-
tor with two different values of τ, respectively
2 ⋅10−4 and 1⋅10 −5. It can be demonstrated that the
transfer function of the neural adaptive integrator
presents two poles and one zero (in the origin).
This figure shows that the adaptive neural integra-
tor with τ = 2 ⋅10−4 outperforms the LP filter, both
in its magnitude and phase characteristics, in the
neighbourhood of a reference speed of about 10
rad/s in electrical angles (corresponding to 5 rad/s
in mechanical ones). However, if a speed below 5
rad/s is required, a neural integrator with τ = 1⋅10 −5

offers a better behaviour, since it approximates the
ideal integrator well at much lower frequencies.
Nevertheless, a neural integrator with τ = 1⋅10 −5 can-

Fig. 2 Neural filter based integrator



not be suitably employed in the whole speed range
of the drive, since the adaptation time of the filter
increases when the value of τ decreases, as shown
in Figure 4, which shows the difference between
the adaptation times obtained with the two values
of τ at the operating speed of 2 rad/s, when a 2 %
(of the rated voltage) dc signal is superimposed to
the voltage signal on phase sA. This figure clearly
shows that a lower value of τ permits a better flux
estimation, but at the expense of a high filtering
adaptation time. For this reason, the use of low

values of τ can bring about stability problems in
the flux control loop, especially when a speed tran-
sient is required. In this respect the problem has
been solved as follows: at reference speeds above
10 rad/s (in electrical angles) and during each speed
transient the value of τ has been set to 2 ⋅10 −4,
while in speed steady-state at references from 10
down to 4 rad/s, the value of τ has been varied li-
nearly from 2 ⋅10−4 to 1⋅10 −5 and then kept to this
last value for lower reference speeds, as shown in
Figure 5. It should be remarked that reducing the
value of τ corresponds to moving the poles of the
neural filter towards the origin, which however does
not affect anyhow the accuracy of the integrator.
This is not the case for the LP filter integrator,
where the amplitude of the pole cannot be reduced
too much, since the lower the amplitude of the
pole the higher the drift at the LP filter output
caused by a DC drift at its input.
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Fig. 3 Frequency response of the adaptive integrator with two values of the learning factor, of the LP integrator and of the ideal integrator

Fig. 4 Rotor flux D axis component obtained with a 2 % (of the
rated voltage) dc signal superimposed to the voltage signal on phase

sA, with two values of τ (simulation)

Fig. 5 Variation of the learning factor according to the reference
speed of the machine



4 STABILITY ISSUES IN FIELD WEAKENING

WITH SIMPLE EULER AND MODIFIED EULER

INTEGRATION

This section is a description of the stability con-
siderations explained in [19] and is rewritten shortly
here for clarity reasons.

Some considerations fully justify the use of the
adaptive model in prediction mode with the modi-
fied Euler integration. When used in simulation
mode, the process output, that is the rotor flux lin-
kage, is delayed and then used as an input. In case
the simple Euler integration method were used, then
the transfer function X(z) of the flux model in the
z-domain is:

(8)

which has one pole z1 = w1 + jw2, and one zero at the
origin of the z-domain. For stability reasons, the
poles of the transfer function must lie within the
unit circle in the z-domain. There is therefore a
critical value of the rotor speed which causes insta-
bility of the system. More precisely, the following
relationships must be satisfied:
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Relationship (9) shows that the drive goes into
instability for increasing values of the rotor speed,
while relationship (10) shows that there is the an
upper limit of stability of sampling time Ts, if the
motor runs at a defined angular speed. 

For instance, for the motor at hand whose rated
speed is 314 electrical rad/s and Tr = 0.134 s, this
upper limit for the sampling time is of 0.15 ms.
Conversely, if a sampling time of 0.1 ms is em-
ployed, which is the case under study, the highest
limit of the speed is of 385 electrical rad/s (Figure
6, upper graph), which implies that the speed can
be increased to as much as 18 % of the rated speed
and not over this limit, with resulting difficulties in
using the drive in the field-weakening region. 

To overcome this difficulty the adaptive model
should be used in prediction mode, that is the de-
layed outputs of the reference model are used as
inputs to the adaptive model. In this case no feed-
back exists and no stability problems occur. 

The simple Euler method was obtained by using
n = 1 in (4). Better stability results, can be obtained
if n = 2 is chosen in (4). Then the speed stability
limit increases as shown in Figure 6, bottom graph.
This approximation has been at least used in
[13–15] to avoid the stability problems in simula-
tion mode. It should be emphasized that this last
method implies at least the on-line computation of
the square of the AxTs matrix, which makes this
method too cumbersome for on-line applications.

Better results, at the expense of a slight increase
of computation in comparison with the simple Eu-
ler method, can be obtained with the modified Eu-
ler method [19, 22]. In this case a similar analysis
of stability shows that two poles of the transfer
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Fig. 6 Amplitude of the poles in simple Euler integration with the approximated exponential function with n = 1 and n = 2



function vary with speed, but the resulting speed
stability limit is much higher than that obtained
with the simple Euler method, thus allowing the ex-
ploitment of the field weakening region (Figure 7).

5 THE MCA EXIN + NEURON IN SENSORLESS 

CONTROL

A. Least-Squares Techiniques 

Matrix equation (6), which can be written more
generally as Ax ≈ b, can be solved for ωr by using
Least-Squares (LS) techniques. In particular in lite-
rature there exist three Least-Squares techniques,
i.e. the Ordinary Least-Squares (OLS), the Total
Least-Squares (TLS) and the Data Least-Squares
(DLS) which arise when errors are respectively pre-
sent only in b or both in A and in b or only in A.

In classical Ordinary Least-Squares (OLS) each
element of A is considered without any error: the-
refore all errors are confined to b. However this
hypothesis does not always correspond to the reali-
ty: modelling errors, measurement errors etc. can
in fact cause errors also in A. Therefore in real
world applications the employment of Total Least-
-Squares would be very often better, as it takes into
consideration also the errors in the data matrix. 

In the mono-dimensional case (n = 1), which is
the case under study, the resolution of the LS
problem consists in determining the angular coeffi-
cient ωr of the straight line of equation Aωr ≈ b.
The LS technique solves for this problem by calcu-
lating the value of ωr which minimises the sum of
squares of the distances among the elements (ai,
bi), with i = 1, . . . ,m, and the line itself. Figure 8
shows the difference among the OLS, TLS and
DLS. OLS minimises the sum of squares of the di-
stances in the b direction (error only in the obser-

vation vector). TLS minimises the sum of squares
in the direction orthogonal to the line (for this rea-
son TLS is also called orthogonal regression) while
DLS minimises the sum of squares in the A direc-
tion (errors only in the data matrix). In particular
it must be expected that, in absence of noise, the
results obtained with TLS are equal to those ob-
tained with OLS; however in presence of increasing
noise the performance of TLS remains higher than
that of OLS, as TLS is less sensitive to noise. For
these reasons the TLS algorithm is particularly suit-
able for estimation processes in which data are af-
fected by noise or modelling errors; this is certain-
ly the case of speed estimation, where the estimated
rotor flux, present in A, is affected both by model-
ling errors and noise. Therefore, a TLS technique
should be used instead of the Ordinary Least-Squa-
res (OLS) technique. The TLS EXIN neuron, which
is the only neural network capable to solve a TLS
problems recursively on-line, has been succesfully
adopted in MRAS speed observers [17, 20]. In this
work, a new generalized Least-Squares technique,
the MCA EXIN+ (Minor Component Analysis) neu-
ron, is used for the first time to compute the rotor
speed. This technique is a further improvement of
the TLS EXIN neuron [23, 24] and is explained
below.
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Fig. 7 Amplitude of the poles with the modified Euler integration

Fig. 8 Schematics of the Least-Squares techniques in the mono-di-

mensional case



B. The MCA EXIN + neuron

As written above, eq. (6) can be solved by using
different techniques according to the assumptions
about noise in the data; indeed, if only the obser-
vation vector b is corrupted by noise, the problem
is ordinary least squares (OLS), if only the data
matrix is corrupted by noise, the problem is data
least squares (DLS), if all data are corrupted by
noise, as the problem considered in this work, the
problem is TLS, due to measurement and flux mo-
delling errors. In [23] all these problems have been
generalized by using a parameterized formulation
(Generalized TLS, GeTLS EXIN) of an error func-
tion whose minimization yields the corresponding
solution. This error is given by:

(11)

where T represents the transpose and ζ is equal to
0 for OLS, 0.5 for TLS and 1 for DLS. The corres-
ponding iterative algorithm (GeTLS EXIN learning
law), which computes the minimizer by using an
exact gradient technique, is given by:

(12)

where:

(13)

being α(k) the learning rate, a(k) the row of A fed
at instant k and b(k) the corresponding observa-
tion. The GeTLS EXIN learning law becomes the
TLS EXIN learning law for ζ equal to 0.5 [23]. The
TLS EXIN problem can also been solved by sche-
duling the value of the parameter in GeTLS EXIN,
e.g. it can vary linearly from 0 to 0.5 and then re-
mains constant. This scheduling improves the tran-
sient, the speed and the accuracy of the iterative
technique. [24] shows that a TLS problem corre-
sponds to a minor component analysis (MCA) pro-
blem and is equivalent to a particular DLS prob-
lem. Indeed, define C = [A;b] as the augmented ma-
trix built by appending the observation vector
to the right of the data matrix. In this case the li-
near regression problem can be reformulated as

and can be solved as a homogeneous sy-

stem Cv ≈ 0; the solution v is given by the eigen
vector associated to the smallest eigenvalue of CTC
(MCA). This eigenvector can be found by minimi-
zing the following error function:
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which is the Rayleigh quotient of CTC. Hence, the
TLS solution x is found by normalizing v in order
to have the last component equal to −1. Resuming,
TLS can be solved by applying MCA to the aug-
mented matrix C. In [24] it is also proved the
equivalence between MCA and DLS in a very spe-
cific case. Indeed, setting b = 0 and ζ = 1 (DLS) in
eq. (11) yields eq. (14) with C = A. Hence, the
MCA for the matrix C is equivalent to the DLS of
the system composed of C as the data matrix and
of a null observation vector. In particular, TLS by
using MCA can be solved by using eq.s (12)–(13)
with b = 0 and ζ = 1 with C = A. The advantage of
this approach is the possibility of using the schedu-
ling. This technique is the learning law of the MCA
EXIN + neuron [24], which is an iterative algorithm
from a numerical point of view. It yields better re-
sults than the other MCA iterative techniques be-
cause of its smoother dynamics, faster convergence
and better accuracy, which are the consequence of
the fact that the varying parameter drives x(t) to-
ward the solution in a smooth way. These features
allow higher learning rates for accelerating the con-
vergence and smaller initial conditions (in [24] it is
proven that very low initial conditions speed up the
algorithm).

6 EXPERIMENTAL RESULTS

The MCA EXIN + MRAS speed observer has
been verified numerically in simulation and applied
experimentally on a properly devised test setup [17,
20]. Simulations have been performed in Matlab®–
Simulink®. With regard to the experimental tests
the speed observer as well as the whole control al-
gorithm have been implemented by software on the
DSP of the dSPACE 1103. In particular the speed
observer has been tested in a rotor flux oriented
scheme (FOC). The adopted MRAS speed observer
has been integrated with the Rs estimation algo-
rithm presented in [28] and with the IGBT voltage
drop compensation presented in [29]. In all repor-
ted experimental results the following ζ scheduling
has been adopted: at each speed transient com-
manded by the control system, a linear variation of
ζ from 0 to 1 in 0.3 s has been given. In this way,
the flatness of the OLS error surface around its
minimum, which prevents the algorithm from being
fast, is smoothly replaced by a ravine in the corre-
sponding DLS error surface, which speeds up the
convergence to the solution (minimum of eqn.
(11)) as well as its final accuracy. Figure 9 clearly
shows the error surfaces obtained with ζ = 0 (OLS)
and ζ = 1 (DLS) and the MCA EXIN + error trajec-
tory versus the two components of x with regard to
the DLS error surface, obtained when a speed step
reference from 0 to 150 rad/s has been given to
the drive.
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In the following a series of experimental tests is
reported.

A. Stability in Field-Weakening

This test has been performed to verify the sta-
bility issues in field weakening of the MCA EXIN
+ MRAS observer with Modified Euler integration

in comparison with the BPN MRAS observer with
Simple Euler integration. As explained above, in
fact, this last one suffer from potential instability
problems above certain speeds.

The top graph in Figure 10 shows the MCA
EXIN + MRAS observer in prediction mode with
the modified Euler integration. It shows that no in-

66 AUTOMATIKA 46(2005) 1–2, 59–72

An MRAS Sensorless Technique Based on ... M. Cirrincione, et al.

Fig. 9 Error surfaces with ζ = 0 and ζ = 1 and the MCA EXIN + error trajectory versus x

Fig. 10 Reference, measured and estimated speed in field-weakening operation with MRAS observers (experimental and simulation)



stability phenomena occur in field weakening, as
expected. In this test the drive has been given a
speed reference step of 200 rad/s at no load.

In contrast to this, the BPN MRAS Observer
used in simulation mode with both the simple Euler
integration and the approximated model [15] shows
instability phenomena. As for the BPN MRAS Ob-
server with simple Euler integration, as explained
in above, a certain speed stability threshold exists
depending on the sampling time. For the motor
at hand and a sampling time of 10−4 s, this speed
threshold is 192 rad/s (mechanical angles). The se-
cond graph in Figure 10 shows the reference, the
real and the estimated speed obtained in numerical
simulation of this observer when two speed refe-
rences, respectively of 100 rad/s and 200 rad/s, are
given. It shows instability at about 200 rad/s. 

As for the BPN MRAS Observer with the ap-
proximated adaptive model in simulation mode
(this means that n = 2 has been used in the power
expansion (4) as in [13–15]), there exists an incre-
ase of the speed threshold which permits the ope-
ration in field weakening at the expense though of
increased computational burden. However, Figure
10 bottom graph shows that the drive at 200 rad/s

tends to approach to instability with a large estima-
tion error and with huge oscillations of the esti-
mated speed: this is caused by the difficulties in
choosing a proper learning factor and momentum
in the BPN algorithm. This difficulty in the heuris-
tics of the choice of the parameters does not exist
in case a linear neural network were employed. This
also implies the use of a low-pass filter of the es-
timated speed in order to use it in a closed-loop
speed control.

B. Dynamic Performances

The dynamic performance of the drive has been
tested both at high and low speed. Firstly, a speed
reversal from −100 rad/s to 100 rad/s at no load
has been given. Figure 11 shows the waveforms of
the reference, estimated (used in the feed-back
loop) and measured speed as well as the isy stator
current component and the parameter ζ during the
test. It shows that both the measured and the esti-
mated speed correctly follow the reference during
the speed transient, even when the speed of the
drive passes trough zero. Secondly, the transient of
the observer at lower speeds have been tested. At
first, the drive has been given a set of speed rever-
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Fig. 11 Reference, estimated and measured speed, isy and ζ during a –100 to 100 rad/s speed reversal at no load (experimental)
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Fig. 12 Reference, estimated and measured speed during a set of speed reversals at no load (experimental)

Fig. 13 Reference, measured and estimated speed in a square wave reference of amplitude 7 rad/s and pulsation 0.2 rad/s (experimental)



sals at from −30 to 30 rad/s, from −10 to 10 rad/s
and from −8 to 8 rad/s. Figure 12 shows the wave-
forms of the reference, estimated and measured
speed during this test. It clearly highlights a very
good dynamic behaviour of the drive, even at low
speed. In fact, the challenging speed reversal at low
speed is correctly performed by the drive, and the
estimated speed correctly follows the real one, with-
out a significant delay time. Thirdly, the dynamic
performances of the MCA EXIN + MRAS Observer
have been tested by giving the drive a square wave
speed reference with the lowest possible amplitude
and the highest possible pulsation. Figure 13 shows
the reference, measured and estimated speed ob-
tained giving the MCA EXIN + MRAS Observer a
square waveform reference of amplitude 7 rad/s
and pulsation 0.2 rad/s. These last figures show the
capability of this observer to follow a square wave-
form reference of very low amplitude and highest
possible frequency.

C. Low Speed Steady-state operation

To verify the low speed working capability of the
drive, it has been operated at the minimum con-
stant speed reference In this case, the constant very
low speed of 3.3 rad/s at no load has been reached.

Figure 14 shows the waveforms of the reference,
estimated and measured speed and the estimated
stator resistance of the motor during this test. The
mean estimation percent error, in this challenging
condition, is as low as 18 %. Below this speed the
machine remains at standstill (zero speed), even if
the estimated speed follows correctly its reference,
and therefore the observer has not a reliable be-
haviour. It should be remarked that minimum wor-
king speed is lower than that reached both in [17]
and [20], thanks to the improved features of the
MRAS observer.

D. Zero-Speed operation

Finally, to test the operating capability of the
observer at zero speed, the drive has been made to
work for 50 s fully magnetized at zero speed with
no load. Figure 15, which shows the reference, es-
timated, and measured speed during this test, clear-
ly highlights the zero speed capability of this ob-
server. In fact, the estimated speed has slight oscil-
lations around 0 rad/s while the measured speed is
always zero, except for some spikes which are due
to the non-perfect filtering of the speed signal com-
ing form the incremental encoder: in any case the
rotor does not move.
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Fig. 14 Reference, estimated and measured speed and estimated Rs during a constant speed reference of 3.3 rad/s at no load (experimental)



7 CONCLUSIONS

This paper proposes a new sensorless technique
for induction motor drives based on a hybrid
MRAS-neural technique. This MRAS method is an
improvement of an already developed neural
MRAS based sensorless method in three aspects:

1. A more accurate discrete current model is used,
based on the modified Euler integration, with
resulting more integration accuracy and more
stability at higher speeds.

2. An enhanced adaptive integration technique has
been used in the reference model with a speed-
-varying filter transfer function with resulting
higher accuracy in the open-loop flux integration
than the fixed pole filter transfer function.

3. A completely new neural technique, the MCA
EXIN + neuron, has been adopted to estimate
the rotor speed; its scheduling makes it more
powerful than the other existing techniques in
terms of smoother transient, shorter settling ti-
me and better accuracy.

A theoretical analysis of the stability issues of
the proposed observer in field weakening region
has been done, showing a higher speed stability
limit achievable with the Modified Euler integra-
tion method.

The MCA EXIN + MRAS observer has been
experimentally tested on rotor flux oriented vector

control drive with induction motor and the results
have proved its goodness in speed transients at low
and high speed, at very low speeds (below 4 rad/s)
and in zero-speed operation.

LIST OF SYMBOLS

us – space vector of the stator voltages in the sta-
tor reference frame

usD, usQ – direct and quadrature components of the
stator voltages in the stator reference frame

is – space vector of the stator currents in the sta-
tor reference frame

isD, isQ – direct and quadrature components of the
stator currents in the stator reference frame

isx, isy – direct and quadrature components of the
stator currents in the rotor-flux oriented refe-
rence frame

ψψ ′r – space vector of the rotor flux-linkages in the
stator reference frame

ψrd, ψrq – direct and quadrature component of the
rotor flux linkage in the stator reference
frame

Lm – total static magnetising inductance

Rs – resistance of a stator phase winding

Rr – resistance of a rotor phase winding

Tr – rotor time constant

σ – total leakage factor
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Fig. 15 Reference, estimated and measured speed at zero speed at no load (experimental)



p – number of pole pairs

ωr – angular rotor speed (in electrical angles per
second)

Ts – sampling time of the control system.

APPENDIX: TEST SETUP

The employed test set up consists of [17]:
– A three-phase induction motor with parameters

shown in Table 1; 

– A frequency converter which consists of a 3-pha-
se diode rectifier and a 7.5 kVA, three-phase
VSI; 

– A DC machine for loading the induction machi-
ne with parameters shown in Table 2;

– An electronic AC-DC converter (three-phase di-
ode rectifier and a full-bridge DC-DC converter)
for supplying the DC machine of rated power 4
kVA;

– A dSPACE card (DS1103) with a PowerPC 604e
at 400 MHz and a floating-point DSP TMS320-
F240;

Table 1 Parameters of the induction motor
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Rated power Prated, kW 2.2

Rated voltage Urated, V 220

Rated frequency frated, Hz 50

Rated Speed, rad/s 149.75

Pole-pairs 2

Stator resistance Rs, Ω 3.88

Stator inductance Ls, mH 252

Rotor resistance Rr, Ω 1.87

Rotor inductance Lr, mH 252

3-phase magnetizing inductance Lm, mH 236

Moment of inertia J, kg ⋅m2 0.0266

Rated power Prated, kW 1.5

Rated voltage Urated, V 300

Rated current Irat, A 5

Rated speed, rad/s 150

Rated excitation voltage uexrat, V 300

Rated excitation current iexrat, A 0.33
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Jedan novi postupak estimacije brzine vrtnje vektorski upravljanog asinkronog motora zasnovan na adap-
tivnom sustavu s referentnim modelom i neuronskim mre`ama. U ~lanku se predla`e novi postupak estimacije
brzine vrtnje elektromotornog pogona s vektorski upravljanim asinkronim motorom. Postupak se zasniva na hib-
ridnom adaptivnom sustavu s referentnim modelom (MRAS) i neuronskim mre`ama. Takav postupak pobolj{ava
prethodno razvijeni estimacijski postupak tako|er zasnovan na »neuronskom MRAS-u«. U radu je realizirana in-
tegracija u otvorenoj petlji u referentnom modelu pomo}u adaptivnog neuronskog integratora unaprije|enog s fil-
trom ~ija prijenosna funkcija ovisi o brzini motora. Adaptivni je model zasnovan na to~nijem diskretnom strujnom
modelu motora dobivenom modificiranom Eulerovom integracijom, {to rezultira stabilnijim vladanju pogona u
re`imu slabljenja polja. Adaptivni je model nadalje on-line obu~avan kori{tenjem poop}ene metode najmanjih
kvadrata (»MCA EXIN+neuron« postupak) pri ~emu se koristi parametrirani algoritam u~enja. Zbog boljeg
pona{anja neurona u dinami~kim stanjima pobolj{ava se konvergencija estimacije brzine s ve}om to~no{}u i ma-
njim vremenom smirivanja. Za eksperimentalnu provjeru predlo`ene metode izgra|ena je laboratorijska maketa.
Dobiveni rezultati potvr|uju valjanost metode na veoma niskim brzinama (ispod 4 rad/s) i u re`imu nulte brzine.

Klju~ne rije~i: elektromotorni pogoni s asinkronim motorom, bezsenzorsko upravljanje, adaptivno upravljanje s
referentnim modelom, neuronske mre`e

AUTHORS’ ADDRESSES

Maurizio Cirrincione1), Member IEEE
Université de Technologie de Belfort-Montbeliard (UTBM),
Rue Thierry Mieg, 90010 Belfort Cedex, France,
m.cirrincione@@ieee.org

Marcello Pucci, Member IEEE
I.S.S.I.A.-C.N.R. Section of Palermo 
(Institute on Intelligent Systems for the Automation)
Viale delle Scienze snc, 
90128 Palermo – Italy
marcello.pucci@@ieee.org

Giansalvo Cirrincione2), Member IEEE
Gérard-André Capolino, Fellow IEEE
Department of Electrical Engineering
University of Picardie-Jules Verne
33, rue Saint Leu
80039 Amiens – France
g.cirrincione@@ieee.org, Gerard.Capolino@@ieee.org

Received: 2005-12-01

[21] M. Cirrincione, M. Pucci, G. Cirrincione, G. A. Capolino, A
New Adaptive Integration Methodology for Estimating Flux
in Induction Machine Drives. IEEE Transactions on Power
Electronics, Vol. 19, n. 1, pp. 25–34, January 2004; 

[22] J. H. Matheus, K. D. Fink, Numerical Methods Using Mat-
lab. 4th edition, 2004, Prentice-Hall Pub. Inc.

[23] G. Cirrincione, M. Cirrincione, S. Van Huffel, The GeTLS
EXIN Neuron for Linear Regression. IJCNN, Como (Ita-
ly), July 2000. 

[24] G. Cirrincione, A Neural Approach to the Structure from
Motion Problem. Ph.D. thesis, INPG (Institut National Po-
lytechnique de Grenoble) France, 1998.

[25] J. Hu, B. Wu, New Integration Algorithms for Estimating
Motor Flux over a Wide Speed Range. IEEE Transactions
on Power Electronics, Vol. 13, no°5, pp. 969–977, September
1998.

[26] L. E. Borges de Silva, B. K. Bose, J. O. P. Pinto, Recurrent-
-Neural-Network-Based Implementation of a Programmab-
le Cascaded Low-Pass Filter Used in Stator Flux Synthesis
of Vector-Controlled Induction Motor Drive. IEEE Trans-
actions on Industrial Electronics, Vol. 46, no°3, pp. 662–
665, June 1999.

[27] J. O. P. Pinto, B. K. Bose, L. E. Borges de Silva, A Stator-
-Flux-Oriented Vector-Controlled Induction Motor Drive
with Space-Vector PWM and Flux-Vector Synthesis by Neu-
ral Network. IEEE Transactions Industry Applications, Vol.
37, no°5, pp. 1308–1318, September/October 2001.

[28] J. Holtz, Q. Juntao, Drift- and Parameter-Compensated
Flux Estimator for Persistent Zero-Stator-Frequency Ope-
ration of Sensorless-Controlled Induction Motors. IEEE
Transactions on Industry Applications, Vol. 39, no 4, pp.
1052–1060, July-Aug. 2003.

[29] J. Holtz, Q. Juntao, Sensorless Vector Control of Induction
Motors at Very Low Speed Using a Nonlinear Inverter Mo-
del and Parameter Identification. IEEE Transactions on
Industry Applications, Vol. 38, no 4, pp. 1087–1095, July-
-Aug. 2002. 

[30] M. Cirrincione, M. Pucci, G. Cirrincione, G. A. Capolino,
A New Experimental Application of Least-Squares Techni-
ques for the Estimation of the Induction Motor Parame-
ters. IEEE Transactions on Industry Applications Vol. 39,
no°5, September/October 2003. 

[31] M. Cirrincione, M. Pucci, G. Cirrincione, G. Capolino, Con-
strained Minimization for Parameter Estimation of Induc-
tion Motors in Saturated and Unsaturated Conditions.
IEEE Transactions on Industrial Electronics, vol. 52, n. 5,
October 2005.

72 AUTOMATIKA 46(2005) 1–2, 59–72

An MRAS Sensorless Technique Based on ... M. Cirrincione, et al.

with a grant of ISSIA-CNR, Italy in the framework of the
project Automazione della gestione intelligente della generazione
distribuita di energia elettrica da fonti rinnovabili e non inqui-
nanti e della domanda di energia elettrica, anche con riferimen-
to alle compatibilitš interne e ambientali, all'affidabilitš e alla
sicurezza. This work has been funded by the above project.


