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Employing a recently introduced framework in which a large number of adaptive filter algorithms can be
viewed as special cases, we present a generalized transient analysis. An important implication of this is that while
the theoretical analysis is performed for a generic filter coefficient update equation the results are directly appli-
cable to a large range of adaptive filter algorithms simply by specifying some parameters of this generic filter co-
efficient update equation. In particular we point out that theoretical learning curves for the Least Mean Square
(LMS), Normalized Least Mean Square (NLMS), the Affine Projection Algorithm (APA) and its relatives, as well
as the Recursive Least Squares (RLS) algorithm are obtained as special cases of a general result. Subsequently,
the recently introduced Fast Euclidian Direction Search (FEDS) algorithms as well as the Pradhan-Reddy subband
adaptive filter (PRSAF) are used as non-trivial examples when we demonstrate the usefulness and versatility of
the proposed approach to adaptive filter transient analysis through an experimental evaluation.

Key words: convergence analysis (for adaptive filters), transient analysis (for adaptive filters), subband adaptive fil-
ters, euclidean direction search, unified theory for adaptive filters

1 INTRODUCTION

Adaptive filtering is an important subfield of digi-
tal signal processing having been actively resear-
ched for more than four decades and having im-
portant applications such as noise cancellation, sys-
tem identification, telecommunications channel equ-
alization, and telephony acoustic and network echo
cancellation. The various adaptive filtering algo-
rithms that have been developed have traditionally
been presented without a unifying theoretical fra-
mework: Typically, each adaptive filter algorithm is
developed from a particular optimization problem
whose iterative or direct minimization gives rise to
the various algorithms. This approach obscures the
relationships, commonalities and differences, bet-
ween the numerous adaptive algorithms available
today. Also, contributions dealing with performance
analysis of adaptive filtering algorithms focus on a
particular algorithm, making more or less restrictive
assumptions on the input signal. Obviously, a more
general framework for the understanding and per-
formance analysis encompassing as many different
adaptive algorithms as possible as special cases,
while at the same time making as few restrictive
assumptions as possible, is highly desirable.

In the case of transient analysis, – or conver-
gence analysis, important recent contributions are
the analysis of data normalized adaptive algorithms
[1] (for example the Normalized Least Mean

Square (NLMS) algorithm) and the (family of)
Affine Projection Algorithm(s) (APA) [2] where ex-
cellent agreement between theoretically obtained
results and simulations are obtained. What we pro-
pose here is a formalism for the transient analysis
based on a generic adaptive filter update equation
proposed in [3] which was shown to cover LMS,
NLMS, APA, and RLS as special cases obtained
through parameter selections in the generic filter
vector update equation. Here we also show that the
recently introduced Fast Euclidian Direction Search
(FEDS) algorithm [4] as well as the Pradhan-Reddy
subband adaptive filters (PRSAF) [5] fit into the
class of algorithms that can be viewed as special
cases of the generic update equation of [3]. Based
on this new insight we exemplify the power and
versatility of the proposed transient analysis appro-
ach by demonstrating excellent agreement between
theoretical and real learning curves for both the
FEDS and PRSAF algorithms.

We have organized our paper as follows: In the
following section we present the generic update
equation forming the basis of our analysis, and
briefly review its origin. In the main section, we
concisely formulate and solve the problem of find-
ing a general expression for the learning curve of a
generic adaptive filter encompassing many particu-
lar, classical as well as modern, adaptive filters as
special cases. Although the scope of our analysis is
wider than that of [2], the logic of the develop-
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interpreted as some sort of Richardson iteration
[6], the simplest of all iterative linear equation sol-
vers, applied to a particular estimated Wiener-Hopf
equation.

ht is the unknown filter vector we are trying to es-
timate. Defining p(n) = h t − h(n), we have ea(n) =
= xT(n)p (n). This implies that

E{e2a(n)} = E{p T(n) x(n)xT(n)p(n)}.     (8)

Employing the common independence assumption
[7] and defining the A-weighted norm for some ar-
bitrary vector t as || t||2

A
= tTA t, we have

E{e2a(n)} = E{p T(n)Rxxp (n)} = E{||p (n)||2
Rxx
},  (9)

where again the definition of the autocorrelation
matrix Rxx = E{x(n)xT(n)} has been used. Thus, to
find the learning curve, we need to find E{||p (n)||2

Rxx
}

as a function of n.

Indeed we can find a recursion for E{||p (n)||2ΣΣ},
where ΣΣ is some arbitrary square symmetric matrix
of dimension commensurate with that of p(n). Assu-
ming a model for the desired signal, d(n), given by

d(n) = xT(n)ht + υ(n),           (10)  

which we prefer to express as

d(n) = XT(n)ht + υ(n),           (10)  

where υ(n) is measurement noise assumed to be
independent of the input signal matrix XT(n), we
can proceed on a rather laborious derivation pretty
much along the lines of [2], but based on Equation
1 rather than on the APA recursion. The final re-
sult is

E{||p (n + 1)||2ΣΣ} = E{||p (n)||2ΣΣ′} + E{υT(n)XΣΣ(n)υ(n)},

(12)
where

ΣΣ′ = ΣΣ − ΣΣE{C−1(n)X(n)W(n)XT(n)} −

− E{X(n)W(n)XT(n)C−T(n)}ΣΣ + 

+ E{X(n)XΣΣ(n)XT(n)},           (13)

and

XΣΣ(n) = W(n)XT(n)ΣΣC−1(n)X(n)W(n).   (14)

The form of our expressions exactly match those
presented in [2] for APA. The difference is only in
the definition of the various quantities involved.
From this observation, we can rely directly on the
results of [2] to establish

E{||p (n + 1)||2σ} = E{||p (n)||2
Gσ} + E{υT(n)XΣΣ(n)υ(n)},

(15)
where

σ = vec(ΣΣ)    ΣΣ = vec(σ)         (16)

is to be interpreted as (left portion) σ is the vector
of columns of ΣΣ stacked under each other, and
(right portion) ΣΣ is the the matrix found by taking
equal length sub-vectors of σ and putting them be-
side each other. Furthermore, for notational con-
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Table 2 Correspondence between special cases of Eq. 1 and va-

rious adaptive filtering algorithms

L W(n) C−1(n) Algorithm

1 1 µI LMS

(Richardson iter.)

1 ||x(n)||−2 µI NLMS

(variants) (Richardson iter.)

1 < L <  M [XT(n)X(n)]−1 µI APA

(variants) (Richardson iter.)

1 1 RLS

(Precond. Richardson)

L >  M I FEDS-1

(Partial Gauss-Seidel) 

(variants) (FEDS-P)

K Fα(kN)FT µI PRSAF

(X(kN)) (F dependent) (Richardson iter.)

2
( )( ) || ( ) ||j nj ni x n

−%

1
( ) ( )[ ]T

X n X n
−% %

We close this section by stressing the main point:
A remarkable number of adaptive filter algorithms
can be formulated as special cases of the generic
update equation, Equation 1. The table above is
not necessarily exhaustive. It is not inconceivable
that other combinations of L, W(n), and C−1(n) will
give rise to new adaptive algorithms exhibiting fa-
vorable performance/complexity tradeoffs. As we
shall see in the next section, all adaptive algorithms
that can be viewed as special cases of the generic
update equation can, under certain assumptions, be
given a common convergence analysis. Needless to
say, this is rather nice.

3 GENERAL TRANSIENT ANALYSIS

The technicalities of the transient analysis of this
section is closely related to the one presented in
[2], the main distinction being that we carry out
our analysis using the more general update equa-
tion, Equation 1, rather than the update equation
for the APA algorithm(s). Also the assumptions
made in [2] carry over to the present analysis with
appropriate adjustments. Given the technical simi-
larity to the work of [2], we leave out some of the
details, and focus on the results and their signifi-
cance.

The learning curve of an adaptive filter algo-
rithm is defined by the evolution of the expected
squared apriori error with time n, i.e. as E{e2a(n)},
where the apriori error is defined as

ea(n) = xT(n)[ht − h(n)].            (7)



venience the notation E{||p (n + 1)||2σ} is to be inter-
preted as the ΣΣ-weighted norm of p (n + 1), i.e. as
E{||p (n + 1)||2ΣΣ}. Finally, the matrix G is an M2 × M2

matrix given by

G = I − E{Q(n)}⊗ I − I⊗E{Q(n)} + E{Q(n)⊗Q(n)},

(17)

where the first identity matrix has dimension
M2 × M2, the other two identities are of dimension
M × M,⊗ denotes the Kronecker product, and Q(n)
is the M × M matrix given by

Q(n) = X(n)W(n)XT(n)C−T(n).        (18)

The second term of the right hand side of Equa-
tion 15, can, once again following the same line of
thought as in [2], be written as

E{υT(n)XΣΣ(n)υ(n)} = συ2σTϒ ,        (19)

where συ2 = E{υ2(n)} and

ϒ = vec(E{[C−1(n)X(n)W2(n)XT(n)C−T(n)]}),  (20)

giving the recursion as

E{||p (n + 1)||2σ} = E{||p (n)||2
Gσ} + συ2σTϒ .  (21)

Focusing again on the learning curve, we substi-
tute Rxx for ΣΣ, define r xx = vec(Rxx), and find

E{e2a(n)} = E{||p (n + 1)||2r xx} = 

= E{||p (0)||2Gnr xx
} + συ2ϒ T{I + G + …Gn−1}r xx,  (22)

This expression is easy to compute recursively
once we have estimates for G and Rxx. Such esti-
mates are easily obtained from a single realization
of the signals involved in the adaptive filter.

What we now have is a tool to predict the transi-
ent behavior of various adaptive algorithms. Depen-
ding on the particular algorithm we wish to study,
all we have to do is to specify the quantities L,
W(n), and C−1(n) of Table 2. A large number of ex-
periments covering all algorithms of Table 2 has
been performed. As two nontrivial examples of re-
sults obtained, we employ the theory for the pre-
diction of learning curves for the FEDS and the
PRSAF algorithms.

4 APPLICATION TO THE FEDS ALGORITHM

The FEDS algorithm was originally formulated
as a simplified conjugate gradient adaptive filter in
which the search directions were restricted to the
Euclidian directions gi = [0,…, 0, 1, 0,…, 0]T, where
the one appears in the i-th position. The directions
are sequenced through i = 0, 1,…,M − 1 after which
time we start again with i = 0. At each sample time,
n, the filter vector in only one direction is updated.

This means that for each sample interval, only one
of the filter coefficients are updated. It has later
been shown [8, 9] that this algorithm can be inter-
preted as the application of one Gauss-Seidel itera-
tion to the normal equation

X(n)XT(n)h = X(n)d(n)          (23)

at time n. This Gauss-Seidel iteration is [9]

(24)

where is the i-th column of XT(n). Defining

i j as the M × M matrix with a 1 in position ( j, j) and
zeros in all other positions, we realize that i jA,
where A is some arbitrary matrix of appropriate di-
mensions, is the matrix with the j-th row equal to
the j-th row of A, but with zeros in all other posi-
tions. Thus we may refer to i j as a row-picking op-
erator. With this, a little thought should reveal that
rather than expressing the update of Equation 24
for single components of the filter vector, we can
formulate it for the whole filter vector as

(25)

Realizing that we cycle through i as indicated
above, we might simply identify the index of the
filter coefficient to be updated at time n an integer
function of n, say j(n). This function is given by n
counted modulo M, or j(n) = n⊗M, where ⊗ is the
modulo operator. Denoting the new and previous h
vectors as h(n + 1) and h(n), respectively, and iden-
tifying [d(n) − X(n)h(n)] as e(n), we have the recur-
sion as

(26)

Defining we immediately

realize that this recursion fits into the form of Equ-
ation 1. Note that there is no reason to worry
about the itself not being invertible! We

can modify the algorithm by allowing more than
one coefficient update at each time instant giving
better performance at the expense of a somewhat
higher computational cost. Fortunately, the addi-
tional coefficient updates are considerably cheaper
than the first [9]. Depending on the number of fil-
ter coefficient updates performed at each time in-
stant n, we denote this number by P, we shall refer
the algorithm as FEDS-P. For P > 1, we get a some-

what more involved expression for 1
( ) ( ).FEDSC n−

1
( ) ( )FEDSC n−

1
( ) ( )2

1
( )

( )
,FEDS j n

j

C n
x n

− = ii
%

+ = +
%

( )2

1
( 1) ( ) ( ) ( ).

( )
j n

j

h n h n n e n
x n

ii XX

( ) ( ) ( )
2

1
( ) ( ) ( )

( )
[ ],new prev T prev

i

i

h h n d n n h
x n

= + −ii XX XX
%

( )ix n%

( ) ( ) ( )
2

( )
( ) ( )

( )
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T
new prev T previ
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x n
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From the above, we realize that the transient
analysis of the previous section is directly applica-
ble. In a system identification setup we applied an
input signal x(n), generated through 

x(n) = ρx(n − 1) + w(n) with ρ = 0.9 and ρ = 0.5, 

i.e. a highly colored and a somewhat colored sig-
nal. In one simulation the amplitudes of w(n) had
a Gaussian distribution, in the other, a uniform.
The unknown filters h t are selected as random
length 8 vectors. The assumed filter length of the
FEDS was also set to 8 and the window length was
set to L = 32. Measurement noise, υ(n), with
συ2 = 10−3 was added to the noise free desired signal
generated through d(n) = hT

t x(n). The results of our
experiments are shown in Figure 2 and Figure 3.

As can be seen the agreement between the theo-
retical learning curves and the learning curves ob-
tained by averaging over 200 independent realiza-
tions of the experiment is striking except for the
case of P = 1, where some discrepancies are ob-
served.

5 APPLICATION TO SUBBAND ADAPTIVE FILTERS

An important class of subband adaptive filters is
the so called Pradhan-Reddy Subband Adaptive Filter
(PRSAF) [5], the structure of which is shown in
Figure 4. Such filters are described in detail in [5,
10, 11]. PRSAF has received considerable attention
in the literature, and it is interesting to note that
the adaptive filter algorithms in [5, 10, 11], while
derived from different points of view, are the same.
To make a long story short, the PRSAF minimizes
a weighted sum of the expected squared subband
errrors [5] resulting in an update algorithm formu-
lated in terms of sample-by-sample updates, at the
sample rate in the subband signals, of the polyphase
components of the full band adaptive filter h(n).
This update of the polyphase components can, after
some tedious but in principle simple derivations, be
shown to imply an update of the equivalent full
band filters given by 1):

h(k + 1) = h(k) + µX(kN)Fα(kN)FTe(kN),  (27)

where
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Fig. 3 Simulated and theoretical learning curves for FEDS-P for

various P values. L = 32. The input signal was generated according 

to x(n) = 0.5x(n − 1) + w(n) with w(n) uniformly distributed

Fig. 2 Simulated and theoretical learning curves for FEDS-P for

various P values. L = 32. The input signal was generated according

to x(n) = 0.9 x(n − 1) + w(n) with w(n) Gaussian

Fig. 4 Structure of the Pradhan-Reddy subband adaptive filter

1) We note that the Eq. 27 corresponds directly to the 
formulation given in Eq. 8 of [10].



(28)

is the K × N matrix2) whose columns are the unit
pulse responses of the channel filters of the analy-
sis filter bank of Figure 4,

X(kN) = [x(kN), x(kN − 1),…, x(kN − K + 1)],  (29)

and

e(kN) = d(kN) − XT(kN)h(k).        (30)

The N × N matrix α(kN) is a diagonal matrix with
elements ||X(kN)fi||−2, i = 0, 1,…,N − 1 on the diago-
nal. Note that the terms ||X(kN)fi||2 are the signal
energies of N subband samples in channel no. i of
the analysis filter bank. Finally, we point out that
this is a block adaptive algorithm, i.e. one filter vec-
tor update is performed each time N new samples
have entered the system.

Based on the above and comparing Equation 27
to Equation 1, – which we recall was identified as
an iterative solution strategy for Equation 5, we
immediately observe that the PRSAF update can
be interpreted as an iterative solution strategy ap-
plied to the weighted Wiener-Hopf-type equation

X(kN)Fα(kN)FTXT(kN)h(k) = X(kN)Fα(kN)FTd(kN). 
(31)

Furthermore, since we see that the PRSAF fits
into the general framework of Section 2, Equation
1 with C−1(n), W(n) and X(n) as given by the last
entry in Table 2, is a compact description of the
PRSAF. Also, we realize that the convergence

0 1 1
, , , ,[ ]

N
F f f f

−
= K

speed is determined by the eigenvalue spread of
RF = E{X(kN)Fα(kN)FTXT(kN)} suggesting that a
design procedure for the filterbank, F, involving the
minimization of the eigenvalue spread of RF is con-
ceivable. Finally, as will be demonstrated below, the
convergence results of Section 3 are directly appli-
cable to the PRSAF family of adaptive filters.

We have performed an experimental evaluation
of the applicability of the general convergence the-
ory of Section 3 to PRSAF adaptive filters: We
used a system identification setup identical to the
one described in the previous section. The filter
bank used was the four subband Extended Lapped
Transform (ELT) of Malvar [12]. Computed learn-
ing curves (using results of Section 3) and simula-
ted learning curves obtained by averaging over 200
independent runs are shown in Figure 5 and Figure
6 for various choices of µ. As is evident we have
excellent agreement between simulated learning
curves and learning curves predicted by our theory.

6 CONCLUSIONS

Making use of 1) A generic update equation giv-
ing many different classes of adaptive filters thro-
ugh simple parameter selection [3] and 2) A line of
thought for formulating the central issue in tran-
sient analysis [1, 2] previously applied to restricted
classes of adaptive filtering algorithms, we have
provided a theory allowing us to derive general re-
sults for the transient behavior for all algorithms
conforming to Equation 1. We demonstrated the
usefulness of this theory by showing its excellent
ability to predict the performance of the recently
introduced FEDS and PRSAF algorithms.

126 AUTOMATIKA 45(2004) 3–4, 121–127

Transient Analysis of Adaptive Filters... J. H. Husry, M. S. E. Abadi

2) K is the length of the channel filters of the analysis 
filter bank.

Fig. 5 Simulated and theoretical learning curves for a four band

PRSAF with various µ-values and an input signal generated accor-
ding to x(n) = 0.9 x(n − 1) + w(n) with w(n) Gaussian

Fig. 6 Simulated and theoretical learning curves for a four band

PRSAF with various µ-values and an input signal generated accor-

ding to x(n) = 0.5x(n − 1) + w(n) with w(n) uniformly distributed
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Analiza prijelazne pojave adaptivnih filtara primjenom op}eg radnog okvira. U radu se predstavlja poop}ena
analiza prijelaznih pojava adaptivnih filtara, koja se zasniva na primjeni nedavno predstavljenog radnog okvira koji
velik broj raznih algoritama adaptivnih filtara promatra kao specijalne slu~ajeve. Va`na posljedica toga je da su rezul-
tati, iako se teoretska analiza provodi na generi~koj jednad`bi za osvje`avanje koeficijenta filtra, izravno primje-
njivi na razne algoritme adaptivnih filtara jednostavnom specificikacijom nekih parametara generi~ke jednad`be za
osvje`avanje koeficijenata filtra. Posebno se nagla{ava da su teoretske krivulje u~enja za algoritam najmanjih kva-
drata (LMS), normalizirani algoritam najmanjih kvadrata (NLMS), afini projekcijski algoritam (APA) i njemu
srodnih algoritama, kao i za rekurzivni algoritam najmanjih kvadrata (RLS) dobivene kao posebni slu~ajevi
poop}enog rje{enja. Potom se nedavno predstavljeni algoritmi brze euklidske usmjerene pretrage (FEDS) te
Pradhan-Reddy pojasni adaptivni filtar (PRSAF) koriste kao netrivijalni primjeri za dokazivanje korisnosti i uni-
verzalnosti predlo`enog pristupa analizi prijelaznih pojava adaptivnih filtara kroz eksperimentalnu evaluaciju.

Klju~ne rije~i: analiza konvergencije (za adaptivne filtre), analiza prijelaznih pojava (za adaptivne filtre), pojasni
adaptivni filtri, euklidske usmjerene pretrage, objedinjena teorija adaptivnih filtara
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