Paralelni aktivni energetski filtar s prediktivnim određivanjem referentne struje – eksperimentalni sustav

UDK 621.372.543 IFAC IA 4.2.1;5.5.4

Izvorni znanstveni članak

U svrhu eksperimentalne provjere rezultata simulacije trofaznog aktivnog filtra s prediktivnim određivanjem referentne struje izrađena je njegova laboratorijska maketa. U radu je prikazan funkcionalan opis laboratorijske makete trofaznog aktivnog filtra. Energetski krug aktivnog filtra sastoji se od tri jednofazne prigušnice, trofaznog izmjenjivača s IGBT-ovima i dva simetrična kondenzatora na istosmjernoj strani. Regulacija struje realizirana je pomoću tri neovisna histerezna regulatora. Razrađen je algoritam filtarskog sustava s prediktivnom strukturom za određivanje referentne struje i implementiran na DSP. Prikazani su eksperimentalni rezultati potvrđuju učinkovitost aktivnog energetskog filtra pri slabljenju viših harmonika struje u mreži.

Ključne riječi: aktivni energetski filtar, DSP, harmonici, histerezni regulator, IGBT, prediktivni filtar

1. UVOD

Klasičan način filtriranja viših harmonika koje generiraju nelinearna trošila realizira se ugradnjom ugođenih pasivnih LC filtara. Međutim, zbog čitavog niza nedostataka koje imaju pasivni LC filtri danas se intenzivno istražuju rješenja koja pomoću poluvodičkih elemenata energetske elektronike generiraju korektivni ili kompenzirajući valni oblik struje. Takva se struja injektira u odabranu točku elektroenergetskog sustava da bi se korigiralo izobličenje valnog oblika struje mreže. Koncept injektiranja struje kompenzirajućeg valnog oblika u elektroenergetski sustav obično se naziva aktivno filtriranje, a uređaj koji generira takvu struju naziva se aktivni energetski filtar.

Osnovnu ideju trenutne kompenzacije jalove snage pri stacionarnom opterećenju prvi su objavili Erlicki i Emanuel-Eigeles još 1968. [1]. Primjena poluvodičkih elemenata za kompenzaciju jalove snage objavljena je početkom sedamdesetih godina prošlog stoljeća. Regulacija struje filtra pomoću povratne veze primijenjena s prisilno komutirajućim izmjenjivačem realizirana je 1976. godine [2]. Razvijeno je nekoliko različitih konfiguracija filtra u toj izvedbi.

U osnovi, dva su načina korekcije valnog oblika struje: korekcija u vremenskom i frekvencijskom području. Kod većine aktivnih filtara s korekcijom u vremenskom području [3–11] referentna se struja određuje na temelju teorije o trenutnoj imaginarnoj snazi koju je 1984. godine definirao Akagi i dr. [12]. Drugo rješenje koje se susreće jest određivanje referentnih struja preko referentnih napona mreže [13–16]. Mogući način određivanja referentne struje jest da se od struje trošila oduzme njezin osnovni harmonik, a to je ideja koju u svom radu prvi spominju Gyugyi i Strycula 1976. godine [2]. Međutim, ovdje se pojavljuje problem određivanja osnovnog harmonika struje bez kašnjenja. Naime, sve klasične tehnike filtriranja, bilo analogne bilo digitalne, unose neko kašnjenje u filtrirani signal.

U ovom je radu opisan paralelni aktivni energetski filtar koji poništava više harmonike struje rabeći trofazni izmjenjivač koji u mrežu injektira kompenzirajući valni oblik struje. Upravljanje se obavlja u vremenskom području rabeći tri neovisna histerezna regulatora koji na temelju referentnih struja generiraju upravljačke signale za izmjenjivač. Pomoću prediktivnog filtarskog sustava određuju se referentne struje koje se dobiju kao razlike stvarnih struja trošila i njihovih osnovnih harmonika. Simulacijom na računalu, aktivnog energetskog filtra s prediktivnim određivanjem referentne struje u stacionarnim i dinamičkim režimima rada, određene su njegove osnovne značajke [17 i 18].

U svrhu eksperimentalne provjere rezultata simulacije izrađena je laboratorijska maketa paralelnog aktivnog energetskog filtra. U ovom je radu opisana laboratorijska maketa aktivnog energetskog filtra nominalne snage 16,5 kVA temeljen na izmjenjivaču realiziranom pomoću inteligentnog energetskog modula (IPM-a) sa 6 IGBT-ova. Algoritam za određivanje referentne struje pomoću filtarskog sustava s prediktivnom strukturom implementiran je na DSP-u, a regulacija struje ostvarena je pomoću tri neovisna histerezna regulatora struje. Učinkovitost realizirane laboratorijske makete aktivnog energetskog filtra potvrđena je i eksperimentalno. Uočava se jako dobro slaganje eksperimentalnih i simulacijskih rezultata te se pokazalo da ostvareni aktivni filtar uspješno poništava harmonike struje i u stacionarnom i u dinamičkom režimu rada električne mreže.

2. NAČELO RADA PARALELNOG AKTIVNOG FILTRA

Na slici 1 prikazana je načelna shema paralelnog aktivnog energetskog filtra. Struja trošila i_t može se prikazati kao suma struje osnovnog harmonika i_{t1} i struja viših harmonika:

$$i_t = i_{t1} + \sum_{\nu=2}^{N} i_{t\nu} \tag{1}$$

gdje je v cjelobrojna vrijednost koja označava red harmonika, a i_{tv} struja v-tog harmonika.

Sl. 1. Načelna shema paralelnog aktivnog energetskog filtra

Na temelju slike 1 i relacije (1) jasno je da će iz mreže teći sinusna struja osnovne frekvencije, samo kada struja aktivnog filtra ima harmonički sastav jednak sumi viših harmoničkih članova struje trošila. U osnovi, paralelni aktivni filtar najprije detektira harmonički spektar struje koji generira nelinearno trošilo te potom injektira isti takav spektar u električnu mrežu. Dakle, aktivni se filtar može zamisliti kao idealni strujni izvor čija struja odgovara neželjenom harmoničkom sastavu u struji mreže koji treba poništiti.

3. LABORATORIJSKA MAKETA TROFAZNOG AKTIVNOG FILTRA

Osnova energetskog kruga aktivnog filtra trofazni je tranzistorski izmjenjivač. Na istosmjernoj strani trofaznog izmjenjivača dva su jednaka kondenzatora, a njihova je srednja točka spojena na nulvodič mreže. Na izmjeničnoj je strani izmjenjivač s mrežom povezan preko 3 istovrsne prigušnice sa željeznom jezgrom. Zakonitosti uključivanja i isključivanja tranzistora izmjenjivača određuju histerezni regulatori struje na temelju razlike između referentnih i mjerenih (stvarnih) struja filtra. Algoritam za određivanje referentnih struja filtra implementiran je u DSP-u (Digital Signal Processor), a dobivene referentne struje preko D/A pretvornika pretvaraju se u analogne signale za histerezne regulatore struje. Upravljački signali iz histereznih regulatora struje šalju se preko optoizolatora na upravljačke elektrode tranzistora. Upravljački krugovi tranzistora napajaju se posebnim galvanski odvojenim izvorima napona. Struje trošila, struje filtra te fazni naponi mreže i naponi na kondenzatorima mjere se pomoću mjernih članova temeljenih na Hallovim senzorima.

3.1. Energetski krug

Na slici 2 prikazana je strukturna shema aktivnog trofaznog filtra, a na slici 3 fotografija realizirane laboratorijske makete. Osnova je aktivnog filtra strujno upravljani izmjenjivač realiziran pomoću integriranog modula IPM (Intelligent Power Module), oznake PM50RSA120, proizvođača Mitsubishi Electric, u kojem je integrirano 6 IGBT-ova (Insulated Gate Bipolar Transistor) sa 6 povratnih dioda. Izmjenjivač s IGBT-ovima odabran je zbog čitavog niza prednosti pred drugim poluvodičkim elementima energetske elektronike. Oni objedinjuju brzinu i jednostavno naponsko upravljanje MOSFET-ova te niski napon zasićenja bipolarnih tranzistora. Radna im je frekvencija do 50 kHz, a upravljački signali su naponski. Odlika je IPM-a što su u njemu, uz energetski i upravljački dio, integrirani i neki zaštitni sklopovi. Primijenjeni IPM ima prekostrujnu zaštitu, zaštitu od kratkog spoja, podnaponsku zaštitu upravljačkog kruga i termičku zaštitu. Prilikom prorade bilo koje od spomenutih zaštita IPM generira signal greške (PWMTRIP) koji se preko optoizolatora vodi na DSP i zaustavlja rad filtra.

Na istosmjernoj strani izmjenjivača dva su jednaka kondenzatora, kapaciteta $2\,200 \ \mu\text{F}$, sa srednjom točkom spojenom na neutralni vodič trofaznog sustava. Izmjenjivač je preko serijskih prigušnica, koje ograničavaju pulzacije injektirane struje, spojen na mrežu. Prigušnice su sa željeznom jezgrom i imaju po pet odcjepa tako da se mogu birati induktiviteti od 1 mH do 5 mH, uz nominalnu struju 25 A.

3.2. Određivanje referentne struje

Prema slici 1 struja trošila jednaka je sumi struje mreže i_m i struje i_f koju generira aktivni filtar:

$$i_t = i_m + i_f. \tag{2}$$

Struja filtra jednaka je razlici struje trošila i struje mreže, a da bi iz mreže tekla samo sinusna stru-

Sl. 2. Strukturna shema trofaznog aktivnog energetskog filtra

Sl. 3. Fotografija laboratorijske makete trofaznog aktivnog filtra

ja osnovne frekvencije, struja filtra mora biti jednaka sumi viših harmonika struje trošila, tj.:

$$i_f = i_t - i_1 = \sum_{\nu=2}^N i_{\nu}.$$
 (3)

Detaljan opis algoritma za određivanje referentne struje opisan je u [17] i [18], a njegova implementacija na digitalni signal procesor – DSP, opisana je u dodatku. Rabi se 16-bitni DSP oznake ADMC300, proizvođača *Analog Devices*, u kojem je integrirano 5 A/D (analogno/digitalnih) pretvornika.

Na slici 4 su blokovski prikazane osnovne funkcije koje se u DSP-u obavljaju pri određivanju referentne struje filtra. Mjerene struje trošila dovode se na A/D pretvornike. Nakon pretvorbe u digitalni oblik, primjenom niskopropusnog Chebyshevljevog filtra iz signala struje trošila izlučuje se osnovni harmonik. Da bi se poništilo kašnjenje koje unosi niskopropusni filtar, signal osnovnog harmonika vodi

Sl. 4. Shema određivanja referentnih struja

se na prediktivni filtar. Signal iz prediktivnog filtra oduzima se od mjerene struje trošila i dobije se signal referentne struje. Signali referentnih struja se preko D/A pretvornika te operacijskih pojačala pretvaraju u naponske signale i vode na histerezne regulatore, slika 4. Rabljen je D/A pretvornik AD7568 u kojem je integrirano 8 serijskih 12 bitnih D/A pretvornika. Cjelokupni program za određivanje referentne struje, koji se izvodi u DSP-u, napisan je u simboličkom jeziku (eng. *assembler*).

Pomoću vremenskog člana DSP-a osigurano je uzorkovanje mjerenih signala u točno određenim vremenskim razmacima. Odabran je period uzorkovanjaja 100 µs, odnosno frekvencija uzorkovanja 10 kHz. Osim signala prekida kojeg generira vremenski član, može se pojaviti i vanjski zahtjev za prekidom (PWMTRIP) (slika 2), koji se javlja ukoliko se pojavi greška na nekom od dijelova izmjenjivača. Ovaj zahtjev za prekidom ima prioritet i ukoliko se pojavi, zaustavlja se izvršavanje programa.

3.3. Histerezni regulatori struje

Za regulaciju struja filtra rabe se tri neovisna histerezna regulatora. Načelo rada histereznih regulatora opisano je u [17]. Na slici 5 prikazana je, za jednu fazu, shema histereznog regulatora struje i sklopa kojim se osigurava kašnjenje signala za uključivanje tranzistora izmjenjivača. Na invertirajući ulaz komparatora LM311 dovodi se razlika signala $u_{\rm ref}$ (razmjeran referentnoj struji $i_{\rm ref}$) i signala u_f (razmjeran stvarnoj struji filtra i_f). Budući da napon u_{ref} na izlazu D/A pretvornika za nultu vrijednost referentne struje ima napon 2,5 V (pomak nule), na ulaz komparatora dovodi se i istosmjerni napon preko referentne diode D₁ od -2,5 V kojim se poništava taj pomak.

Ukoliko je napon $u_f \leq (u_{ref} - \Delta u_h/2)$, tada je na izlazu komparatora napon približno jednak naponu napajanja $-U_{EE}$ (-15 V) i tranzistor T_1 ne vodi, odnosno na njegovom je izlazu napon $+U_{DD}$ (+5 V). Taj napon odgovara logičkoj jedinici, a to znači da gornji tranzistor izmjenjivača ima signal vođenja (na slici 5 signal U_{ug}). Vođenje gornjeg tranzistora dovodi do povećanja struje filtra. Nakon što struja naraste tako da je $u_f \ge (u_{ref} + \Delta u_h/2)$ doći će do promjene napona na izlazu komparatora $(+U_{CC})$ što uvjetuje vođenje tranzistora T_1 i logičku nulu na njegovom izlazu. To će dovesti do isključenja gornjeg tranzistora i uključenja donjeg tranzistora izmjenjivača (na slici 5 signal U_{ud}), što uvjetuje smanjenje struje filtra. Ponovnim padom struje filtra dolazi do pada napona $u_f \le (u_{ref} - \Delta u_h/2)$ što uvjetuje isključenje donjeg, a uključenje gornjeg tranzistora izmjenjivača, tj. ponovni porast struje.

Na opisani način struja koju izmjenjivač kroz prigušnicu utiskuje u mrežu s odgovarajućim pulzacijama, prati referentnu struju unutar zadanih granica $\pm \Delta i$, prema slici 6. Amplituda pulzacija određena je širinom histereze $2\Delta i$, a širina histereze $2\Delta i$ mijenja se podešavanjem otpora u povratnoj grani komparatora (\mathbf{R}_1 , \mathbf{R}_2 i \mathbf{P}_2).

Sl. 5. Shema histereznog regulatora struje

Značajka IGBT-ova je kraće vrijeme uključivanja od vremena isključivanja. Tako istodobnim dolaskom upravljačkih signala za uključivanje jednog tranzistora te isključivanje drugog tranzistora, u istoj grani izmjenjivača, postoji opasnost istodobnog vođenja obaju tranzistora, tj. pojava kratkog spoja. Stoga je u ovakvim konfiguracijama izmjenjivača nužno da signal uključenja jednog tranzistora kasni u odnosu na signal isključenja drugog tranzistora, tj. nužno je osigurati tzv. mrtvo vrijeme (engl. *dead time*). U sklopu prema slici 5 to je osigurano izlaznim tranzistorima T2 i T3 te RC elementima na njihovim izlazima.

Sl. 6. Načelo djelovanja histereznog regulatora

Da bi se osiguralo galvansko odvajanje, upravljački signali U_{ug} i U_{ud} iz histereznih regulatora struje dovode se na IGBT-ove, preko optoizolatora HCPL4503, signali U_{ugi} i U_{udi} na slici 5.

4. EKSPERIMENTALNI REZULTATI

4.1. Aktivni energetski filtar u stacionarnom režimu rada

Eksperimentalna provjera učinkovitosti trofaznog aktivnog energetskog filtra u stacionarnom režimu rada provedena je u trofaznom sustavu bez nulvodiča. Nelinearno je trošilo trofazni diodni ispravljač prema slici 7 na čijoj je istosmjernoj strani djelatnoinduktivni teret s elementima $R=86 \Omega$ i L=1 mH.

Sl. 7. Trofazni diodni ispravljač kao nelinearno trošilo

Sl. 9. Harmonički sastav struje trošila faze a

Valni oblici struja trošila prikazani su na slici 8, a odgovarajući harmonički sastav struje trošila za fazu a prikazan je na slici 9. Na slici 10 prikazani su valni oblici struja mreže s uključenim aktivnim filtrom, a na slici 11 odgovarajući harmonički sastav struje mreže za fazu a. Na temelju valnih oblika i harmoničkih sastava struja trošila i struja mreže vidi se da trofazni aktivni energetski filtar potiskuje praktički sve više harmoničke članove koje generira nelinearno trošilo. Prema tome, iz mreže teče struja praktično sinusnog valnog oblika osnovne frekvencije, uz visokofrekvencijske pulzacije koje su posljedica rada izmjenjivača. Odstupanje osnovnog valnog oblika struje mreže od sinusnog oblika primjećuje se jedino u trenucima kada se struja trošila mijenja skokovito. Kod tih naglih promjena aktivni filtar ne može trenutačno reagirati na tako brze promjene struje trošila. Međutim, gledajući harmonički sastav struje mreže to je izobličenje praktički zanemarivo.

Sl. 10. Valni oblici struja mreže s uključenim aktivnim filtrom

Sl. 11. Harmonički sastav struje mreže faze a s uključenim aktivnim filtrom

Kao što je uobičajeno, za ocjenu učinkovitosti filtra usporedit ćemo koeficijent ukupnog harmoničkog izobličenja – THD (*Total Harmonic Distortion*) za struje trošila i mreže. Za struju trošila u fazi *a* (slike 8 i 9) THD iznosi preko 30 %, a za struju mreže iste faze (slike 10 i 11) THD je oko 10 %. Na temelju THD-a struje trošila i struje mreže može se zaključiti da aktivni filtar, injektiranjem struje odgovarajućeg valnog oblika, učinkovito potiskuje više harmoničke članove struje trošila.

4.2. Aktivni energetski filtar u dinamičkom režimu rada

Ponašanje trofaznog aktivnog filtra u dinamičkom režimu rada provjereno je pri zaletu trofaznog asinkronog motora, nominalne snage 5 kVA, pomoću tiristorskog pretvarača napona. Kod zaleta motora pomoću tiristorskog pretvarača karakteristično je da se harmonički sastav struje motora kontinuirano mijenja tijekom cijelog intervala zaleta. Radi toga je i odabran kao teret za provjeru ponašanja aktivnog filtra u dinamičkom režimu rada. Zalet motora upravljan je pomoću tiristorskog pretvarača napona

Sl. 12. Asinkroni motor s tiristorskim pretvaračem napona

Sl. 13. Harmonički sastav struje motora faze b

Sl. 14. Harmonički sastav struje mreže faze b s uključenim aktivnim filtrom

Sl. 15. Vremenska promjena osnovnog harmonika struje trošila i struje mreže

Sl. 16. Vremenska promjena petog harmonika struje trošila i struje mreže

Sl. 17. Vremenska promjena sedmog harmonika struje trošila i struje mreže

SIKOSTART 3RW22, a mjerenje je obavljeno za cijeli vremenski interval zaleta. Shema asinkronog motora s tiristorskim pretvaračem napona prikazana je na slici 12.

Valni oblici struja koje takvo trošilo uzima iz mreže slični su valnim oblicima struja trofaznog diodnog ispravljača, slika 8. Harmonički sastavi (za kratki vremenski period) struje trošila (motora) i struje mreže s uključenim aktivnim filtrom prikazani su na slikama 13 i 14. Vidi se da su u struji motora od viših harmonika izraženi peti i sedmi. Da bi se ocijenilo ponašanje aktivnog filtra u cijelom intervalu zaleta motora, na slikama 15, 16 i 17 prikazane su vremenske promjene osnovnog, petog i sedmog harmonika struje trošila i struje mreže s uključenim aktivnim filtrom, za fazu b. Na slici 15 prikazana je vremenska promjena osnovnog harmonika struje trošila i struje mreže s uključenim aktivnim filtrom. Vidi se da osnovni harmonik struje mreže u potpunosti prati osnovni harmonik struje motora s nešto povišenim iznosom zbog gubitaka u izmjenjivaču aktivnog filtra. Na slikama 16 i 17 prikazane su vremenske promjene petog i sedmog harmonika i vidi se da aktivni filtar učinkovito prigušuje više harmonike struje za cijelo vrijeme zaleta motora. Na taj su način potvrđene dobre dinamičke karakteristike aktivnog filtra.

5. ZAKLJUČAK

U radu je opisan trofazni aktivni energetski filtar s prediktivnim određivanjem referentne struje te njegova laboratorijska maketa. Energetski krug aktivnog filtra jest strujno upravljani izmjenjivač realiziran pomoću integriranog modula IPM-a sa 6 IGBT-ova. Na istosmjernoj strani izmjenjivača dva su kondenzatora jednaka kapaciteta, a preko serijskih prigušnica, koje ograničavaju pulzacije injektirane struje, izmjenjivač je spojen na mrežu. Algoritam za određivanje referentne struje implementiran je na DSP-u, a za regulaciju struja filtra rabe se tri neovisna histerezna regulatora.

Eksperimentalna provjera učinkovitosti realizirane laboratorijske makete aktivnog energetskog filtra provedena je za neka karakteristična trošila u stacionarnom i dinamičkom režimu rada. Prvo je trošilo trofazni diodni most kojim se napaja djelatnoinduktivni teret. Na temelju rezultata vidi se značajno prigušenje viših harmonika struje tako da je koeficijent ukupnog harmoničkog izobličenja (THD) s oko 30 % pao na 10 %. Ponašanje aktivnog filtra u dinamičkom režimu rada provjereno je pri zaletu trofaznog asinkronog motora pomoću tiristorskog pretvarača napona. Kod zaleta motora pomoću tiristorskog pretvarača karakteristično je da se kontinuirano mijenja harmonički sastav struje motora. Na temelju vremenske promjene harmonika struja mreže i motora vidi se da aktivni filtar učinkovito prigušuje više harmonike struje tijekom cijelog vremena zaleta motora. Na taj su način potvrđene i dobre dinamičke karakteristike ostvarenog aktivnog filtra.

Eksperimentalni su rezultati nešto lošiji od rezultata simulacije, a to je zbog određenih manjkavosti i ograničenja laboratorijske makete zbog kojih se u mjerno-regulacijskim signalima pojavljuju šumovi te ograničenja zbog 16-bitne cjelobrojne aritmetike DSP-a. Isto tako, problem je što uzorkovanje struja pomoću A/D pretvornika u DSP-u nužno uključuje i odgovarajuće interno filtriranje tih signala, što s druge strane ograničava brzinu uzorkovanja a time i brzinu određivanja referentne struje.

DODATAK

Implementacija algoritma za određivanje referentne struje na DSP-u

Na slici D1 prikazan je dijagram toka organizacije glavnog programa. Na početku programa definira se memorijski prostor te učitavaju koeficijenti Chebyshevljevog i prediktivnog filtra. Nakon toga inicijaliziraju se periferne jedinice DSP-a: analogno/digitalni i digitalno/analogni pretvornici te starta vremenski član.

Sl. D1. Dijagram toka glavnog programa koji se izvodi u DSP-u

Vremenski je član periferna jedinica DSP-a pomoću koje se osigurava uzorkovanje mjerenih signala u točno određenim vremenskim razmacima. Kada se generira signal prekida (engl. *interrupt*), počinje izvršavanje potprograma »Referentna struja«. Najprije se uzorkuju mjerene struje trošila i na temelju njih računaju referentne struje. Nakon proračuna referentnih struja dobivene se vrijednosti šalju na D/A pretvornike. Time se završava potprogram »Referentna struja«. Nakon toga algoritam se vraća u glavni program gdje se u beskonačnoj petlji čeka novi prekid.

Ulaskom u potprogram »Referentna struja« očitavaju se vrijednosti s prva tri A/D pretvornika – tri struje trošila i spremaju se u privremenu memoriju te vode na Chebyshevljev filtar. Postavljeni kriteriji kod projektiranja ovog filtra su: jedinično pojačanje na frekvenciji 50 Hz te gušenje od 50 dB za frekvencije iznad 140 Hz. Frekvencija rezanja od 140 Hz odabrana je zato što je aktivni energetski filtar predviđen za filtriranje harmonika iznad trećeg. Prijenosna funkcija Chebyshevljevog filtra koji zadovoljava postavljene kriterije je:

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + b_3 z^{-3} + b_4 z^{-4} + b_5 z^{-5} + b_6 z^{-6}}{1 - a_1 z^{-1} - a_2 z^{-2} - a_3 z^{-3} - a_4 z^{-4} - a_5 z^{-5} - a_6 z^{-6}}$$

(D.1)

gdje su koeficijenti filtra:

Sl. D2. Shema Chebyshevljevog filtra drugog reda

Problem rekurzivnih filtara kao što je Chebyshevljev filtar je stabilnost koja ovisi o redu filtra i frekvencijskoj karakteristici filtra. Naime, koeficijenti filtra razlikuju se za nekoliko redova veličine što onda predstavlja problem prilikom implementacije tog filtra na mikroprocesore s 16-bitnom dužinom riječi. Da bi se izbjegao taj problem Chebyshevljev filtar šestog reda podijelili smo na tri kaskadno vezana filtra drugog reda. Tada je ukupna prijenosna funkcija jednaka produktu prijenosnih funkcija svakog pojedinog filtra:

$$H(z) = H_1(z) \cdot H_2(z) \cdot H_3(z).$$
 (D.2)

Prijenosne funkcije pojedinih filtara drugog reda, čija kaskadna veza odgovara prijenosnoj funkciji prema (D.2), jesu:

$$H_{1}(z) = \frac{0.002928 - 0.005526 z^{-1} + 0.002928 z^{-2}}{1 + 1.87711 z^{-1} - 0.881297 z^{-2}}$$

$$H_{2}(z) = \frac{1 - 1.984564 z^{-1} + z^{-2}}{1 + 1.925204 z^{-1} - 0.928636 z^{-2}}$$

$$H_{3}(z) = \frac{1 - 1.991713 z^{-1} + z^{-2}}{1 + 1.974723 z^{-1} - 0.977659 z^{-2}}.$$
(D.3)

Radi lakšeg programiranja prijenosne funkcije (D.3) svakog od filtara drugog reda napisali smo u obliku jednadžbi diferencija:

$$y(n) = b_0 u(n) + b_1 u(n-1) + b_2 u(n-2)$$
(D.4)
- $a_1 y(n-1) - a_2 y(n-2)$

gdje u(n) predstavlja ulaznu vrijednost, a y(n) izlaznu vrijednost filtra u trenutku *n*. Jedna sekcija filtra drugog reda prikazana je na slici D2.

Na slici D3 prikazan je dijagram toka za sva tri stupnja Chebyshevljevog filtra s tim da je detaljno prikazan samo prvi stupanj. Preostala su dva stupnja potpuno ekvivalentna prvome. Mjereni (ulazni) signal označen je s u(n), a izlazni s y(n) (izlazni signal y(n) jednog stupnja je ulazni signal u(n) u narednom stupnju). Na izlazu kaskadne veze tri Chebyshevljeva filtra dobije se signal osnovnog harmonika struje trošila. Taj se signal dalje vodi na prediktivni filtar, za kojeg je dijagram toka prikazan na slici D4.

Ostvareni prediktivni FIR (*Finite Impulse Response*) [17] i [18] filtar koji poništava kašnjenje što ga unosi Chebyshevljev filtar je dvadeset drugog reda i može se opisati jednažbom diferencija:

$$u(n+p) = h_1 u(n-1) + \dots + h_{22} u(n-22) =$$

$$= \sum_{k=1}^{22} h_k u(n-k)$$
(D.5)

gdje su h(k) koeficijenti prediktivnog filtra sa sljedećim vrijednostima:

Sl. D3. Dijagram toka Chebyshevljeva filtra

$h_1 =$	0,25956014	$h_{12} = -0,04470342$
$h_2 =$	0,23264099	$h_{13} = -0,07265029$
$h_3 =$	0,20549226	$h_{14} = -0,10052546$
$h_4 =$	0,17814072	$h_{15} = -0,12830143$
$h_{5} =$	0,15061339	$h_{16} = -0,15595077$
$h_6 =$	0,12293741	$h_{17} = -0,18344622$
$h_7 =$	0,09514011	$h_{18} = -0,21076062$
$h_8 =$	0,06724892	$h_{19} = -0,23786703$
$h_{9} =$	0,03929137	$h_{20} = -0,26473869$
$h_{10} =$	0,01129504	$h_{21} = -0,29134909$
$h_{11} = -$	-0,01671243	$h_{22} = -0,31767196$

Sl. D4. Dijagram toka potprograma »Referentna struja«

Prediktivni FIR filtar poništava kašnjenje koje unosi niskopropusni Chebyshevljev filtar te se na taj način dobije signal osnovnog harmonika struje trošila bez kašnjenja. Signal osnovnog harmonika oduzima se od mjerenog signala i dobije se referentna struja koja se preko D/A pretvornika šalje na histerezni regulator.

LITERATURA

- M. Erlicki, A. Emanuel-Eigeles, New Aspects of Power Factor Improvement: Theoretical Basis. IEEE Trans. on Ind. and Gen. Appl., Vol. IGA–4(4), July/Aug. 1968.
- [2] L. Gyugyi, E. C. Strycula, Active AC Power Filters. In IEEE/IAS Ann. Meeting, pp. 529–535, 1976.

- [3] L. A. Moran, L. Fernandez, J. W. Dixon, R. Wallace, A Simple and Low-Cost Strategy for Active Power Filters Connected in Cascade. IEEE Trans. Ind. Elect., Vol. 44, No. 5, pp. 621–629, October 1997.
- [4] S. G. Jeong, M. H. Woo, DSP-Based Active Power Filter with Predictive Current Control. IEEE Trans. Ind. Electron. Vol. 44, No. 3, June 1997.
- [5] S. Kim, P. N. Enjeti, Control Strategies for Active Power Filter in Three-Phase Four-Wire Systems. APEC 2000. Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition, Vol. 1, pp. 420–426, Piscataway, NJ, USA, 2000.
- [6] M. Aredes, J. Hafner, K. Heumann, A Three-phase Four--wire Shunt Active Filter Using Six IGBTs. EPE '95. 6th European Conference on Power Electronics and Applications, Vol.1, pp. 874–9, Seville, Spain, Sept. 1995.
- [7] V. M. Cardenas, C. Nunez, N. Vazquez, Analysis and Evaluation of Control Techniques for Active Power Filters: Sliding Mode Control and Proportional-Integral Control. APEC '99. Forteenth Annual Applied Power Electronics Conference and Exposition, Vol. 1, pp. 649–654, Piscataway, NJ, USA, 2000.
- [8] H. Akagi, N. Nabae, S. Atoh, Control Strategy of Active Power Filters Using Multiple Voltage Source PWM Converters. IEEE Trans. Ind. Appl. Vol. 22, pp. 460–465, May/June 1986.
- [9] M. Aredes, E. H. Watanabe, New Control Algorithms for Series and Shunt Three-phase Four-wire Active Power Filters. IEEE Trans. Power Deliv. Vol. 10, No. 3, pp. 1649– 1656, 1995.
- [10] P. Verdelho, G. D. Marques, An Active Power Filter and Unbalanced Current Compensator. IEEE Trans. Ind. Elec-

tron. Vol. 44, No. 3, pp. 321-8, June 1997.

- [11] H. Akagi, New Trends in Active Filters for Power Conditioning. IEEE Trans. Ind. Appl. Vol. 32, No. 6, pp. 1312– 1322, Nov./Dec. 1996.
- [12] H. Akagi, Y. Kanazawa, A. Nabae, Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Components. IEEE Trans. Ind. Appl., Vol. IA 20, No. 3, pp. 625–630, May/June 1984.
- [13] D. Vončina, J. Nastran, Active Power Filter Compensating Harmonic Distortion and Unbalanced Non-Linear Loads. Automatika, No. 3–4, pp. 111–118, 1998.
- [14] B. Singh, K. Al-Haddad, A. Chandra, Active Power Filter for Harmonic and Reactive Power Compensation in Three--phase, Four-wire Systems Supplying Non-linear Loads. European Transactions on Electrical Power, ETEP Vol. 8, No. 2, pp. 139–145, Mar–Apr. 1998.
- [15] J. Dixon, J. Garcia, L. Morn, Control System for the Threephase Active Power Filter which Simultaneosly Compensates Power Factor and Unbalanced Loads. IEEE Trans. Ind. Electron. Vol. 42, pp. 636–641, 1995.
- [16] B. Singh, K. Al-Haddad, A. Chandra, Harmonic Elimination, Reactive Power Compensation and Load Balancing in Three-phase, Four-wire Electric Distribution Systems Supplying Nonlinear Loads. Electric Power Systems Research, Vol. 44, No. 2, pp. 93–100, Feb. 1998.
- [17] T. Kilić, S. Milun, Paralelni aktivni energetski filtar s prediktivnim određivanjem referentne struje. Automatika, God. 41, Br. 3-4, pp. 125–134, Zagreb, 2000.
- [18] T. Kilić, Trofazni aktivni energetski filtar s prediktivnim određivanjem referentne struje. Doktorska disertacija, FESB Sveučilište u Splitu, Split, 2001.

Parallel Active Power Filter with Predictive Structure for Reference Current Determination – Experimental System. For the purpose of simulation results testing, a laboratory prototype of three-phase active power filter with predictive structure for reference current determination has been developed. A functional description of the laboratory prototype is presented. Power stage of the proposed active filter has been realized using three serial inductance, three-phase IGBT based current control voltage inverter with two symmetrical capacitors on dc bus. Three independent hysteresis controllers on the base of reference currents were used to generate switching signals for inverter transistors. The algorithm for current reference determination as a combination of digital predictive filter and low pass filter was developed and implemented on DSP controller. The experimental results of three-phase active power filter gives satisfactory performance in power system harmonic attenuation.

Key words: active power filter, DSP, harmonic, hysteresis controller, IGBT, predictive filter

NASLOVI AUTORA

Dr. sc. Tomislav Kilić, Dr. sc. Stanko Milun, Mr. sc. Goran Petrović

Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu,

R. Boškovića bb, 21000 Split

e-mail: tkilic@fesb.hr smilun@fesb.hr gpetrovic@fesb.hr.

Primljeno: 2004-10-23