
1 INTRODUCTION

In order to formulate the MIMO input/output
(I/O) generalised predictive controller (GPC), a mo-
del of the process described through the CARIMA
model in transfer matrices [1, 2, 3] is assumed:
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Such model contains n outputs and m inputs.
The ξi variables represent the uncertainties of the
model and are called noise inputs. Two separate
parts form this CARIMA model:

– A deterministic associated to the relationship bet-
ween inputs and outputs given by the polynomi-
als Ai(z−1) and Bij(z−1).

– A stochastic associated to the relationship bet-
ween noise variables ξi and the outputs given by
the polynomials Ai(z−1) and Ti(z−1)(1). This part is
called noise model.

On the GPC MIMO design, a quadratic cost in-
dex is used [3]:

(2)

Where:

– N1
q
, N2

q
represent the limits of the prediction ho-

rizon for the q-th output.

– Nu
j
is the control horizon for the j-th input.
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– αqi is the pondering coefficient of the error for out-
put q on instant i inside the prediction horizon.

– λji is the pondering coefficient of control action
increment for input j on instant i inside the con-
trol horizon.

The methodology for the design of the generali-
sed predictive control MIMO [4, 5, 6] is as follows:
on each sampling instant k, index (2) has to be op-
timised in order to determine the control actions
that are going to be applied to the process. In or-
der to optimize such index it is necessary to predict
the n outputs of process (1) inside their corres-
ponding prediction horizon, and according to:

– The values of the m input variables inside their
control horizons (unknown). These are precisely

the independent variables from which the quad- 
ratic index depends (û(k)).

– The ξi variables considered as white noises.

– The past values (known) of inputs, noises and out-
puts.

From of the control actions values obtained after
optimising index (2), only the control actions corres-
ponding to the first instant of each control horizon
u1(k), u2(k), . . . um(k) are applied to the process. This
technique is known as receding horizon. After this,
the process is repeated for the following sampling
period k + 1.

2 STATE SPACE CARIMA MODEL

2.1 Preliminaries

Plant models are multivariable in most real appli-
cations. The literature related to I/O MIMO GPC
design presents a common aspect: the extension
from SISO case to the MIMO case is conceptually
easy, although the required matrix and signal mani-
pulations make it a complex process. However, with
state space techniques the extension is easier.

The development of a state space strategy for
MIMO GPC designing is furthermore supported by
the need for solving certain questions concerning
MIMO GPC: stability, robustness, specifications se-
lection, etc., very important in industrial applications.
These could be easily analysed with state space tech-
niques.

2.2 Model definition

In order to be able to design state space GPC
following the methodology used in the I/O case, a
CARIMA model with the same characteristics as
the one used for the I/O (1) although for state spa-
ce, is needed.

The deterministic part of the CARIMA model
can be represented according to the following state
space model:

(3)

(4)

It is a model consisting of n outputs, m inputs
and r states.

To obtain a complete CARIMA model, it is ne-
cessary to add to the former deterministic model the
ξi(k) noise variables and their associate states which
are called noise states xi*(k). These states are not-
hing more than the accumulation of such inputs:

(5)

When these additional states and inputs are in-
corporated into the deterministic model given by
(3), the following model is obtained:

(6)

Being:

(7)

(8)

(9)

This model is a state space CARIMA model
equivalent in construction to the one used in the
I/O case. Matrices ΣΣ, ΠΠ1, ΠΠ2, ΩΩ and ΛΛ can be fre-
ely chosen to establish different noise models for
the process. This means an increase in the com-
plexity of the choice of noise model parameters
with respect to the I/O formulation, in which only
the Ti(z−1) filter polynomials had to be chosen.

3 EQUIVALENCY BETWEEN CARIMA MODELS

It is possible to prove [2] that I/O CARIMA mo-
del (1) and state space CARIMA model (6) are
equivalent. The following expression relating the
Ti(z−1) filter polynomials and the matrices associated
to the state space noise model  ΣΣ, ΠΠ1, ΠΠ2, ΩΩ and
ΛΛ:
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Expression (10) allows, once the Tj(z−1) filter po-
lynomials are known, obtaining the matrices for the
CARIMA model in state space and viceversa. This
expression is only valid when the order of filter po-
lynomials is minor or equal than nj + 1, as this is the
degree of the second member of (10). If filter poly-
no-mials of a bigger order were to be used, it would
be necessary to include artificial states to the
CARI-MA model, assigning them zero poles which
would not add any additional dynamic to the sys-
tem, allo-wing them to increase the degree of the
second member's polynomials.

The direct problem, that is to say, obtaining the
model's state space matrices given the filter polyno-
mials, presents no single solution as deduced from
(10):

– Because the polynomials are of nj + 1 order, a to-
tal number of nj + 2 equations are available to
solve the problem.

– The coefficients of the Π′jj(z) and Σ′jj(z) polyno-
mials and the value of constants Λjj and Ωjj, are
unknown. The polynomials aforementioned have
a nj−1 order and consequently, there will be a to-
tal of nj + nj + 1 + 1 = 2nj + 2 unknowns.

Therefore there will always be more unknowns
than equations and consequently, solving the prob-
lem will always be possible although it will not have
a single solution. However, the inverse problem,
finding the filter polynomials from the matrices of
the state space model, always has a single and direct
solution using (10).

4 PREDICTING THE OUTPUTS

Once the CARIMA model is presented in state
space, the following step consists on obtaining an
expression for the prediction of process MIMO out-
puts in their corresponding prediction horizons. To
simplify the expression, the same prediction horizon
is considered for every output, and the same control
horizon is considered for every input:

(16)

Under these conditions, the resulting expression
for the prediction is shown in [2]:

(17)

Where:

(18)

y(k + i|k) is the prediction of the outputs vector in
instant k + i from the information available in in-
stant k.
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(2) In is the identity matrix with of n-th order
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Π1i(k + 1, j) represents the element (k + 1, j) from the
ΠΠ1i matrix.

(12)

ú

(13)

(14)

(15)

A realization of the model I/O's deterministic
part (3) was carried out through the fusion of the
observable canonical forms of every output inde-
pendently considered. This was necessary to obtain
the equivalency. In such realization nj represents
the number of states associated to the j-th output.
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(19)

M, N, O and P are real matrices of adequate di-
mensions.

If this prediction expression is compared to the
one obtained in version I/O [1, 2, 3]:

(20)
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γqk and Fq are constants associated to the dimen-
sions of matrices ΓΓ and F respectively.

The following conclusions are reached:

– The expression of I/O prediction is formulated
after a series of matrices that recursively (non di-
rectly) depend on the coefficients of the polyno-
mials, forming the transfer matrices of the I/O
CARIMA model in process [1, 2, 3]. Unlike the
matrices taking part in the expression of the CA-
RIMA prediction in space state, which directly
depend on its matrices [2].

– All the information that needs the expression of
the prediction in state space, is referred to cur-
rent instant k, with the exception of the need to
know the control actions of the instant before
the current one. However, the expression of I/O
prediction needs to know the values of the incre-
ments of the control actions and the outputs in
previous instants to the current one, but filtered
through the polynomials Tj(z−1).
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– Unfortunately, the expression of the state space
CARIMA prediction needs for the model's states
to be observed.

– The amount of information to be stored in both
formulations can be analysed also:

– In the state space formulation, the following
variables are needed: control actions vector u
with m elements, outputs vector y with n ele-
ments and states vector x with ele-

ments. Noise inputs are not required, since they
can be estimated from the states vector and
the outputs vector using [2]:

(27)

At each sampling instant the amount of infor-
mation storing required is:

(28)

– In I/O formulation, the following variables are
needed: control actions vector u with m ele-
ments, outputs vector y with n elements, filte-
red outputs vector yf with 

elements and filtered control action increments
vector ∆uf with 

elements. Consequently:

(29)

As illustrated in the I/O case, the amount of
information storing depends on more variables
than in the state space case, in particular on
filter polynomials degree and on Brj polynomi-

als degree. In order to simplify the analysis,   
the case of minimum amount is treated. In    
such situation, all Brj polynomials degrees are 
minor or equal than two and filter polynomials 
have zero degree, therefore: 
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(3) Equal to the ΓΓ matrix column number [2]
(4) Equal to the F matrix column number [2]
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Finally the amount of information storing veri-
fies:

(32)

Comparing (28) and (32), it is deducted that
I/O formulation requires a greater amount of
information storing than state space formula-
tion.

5 COST INDEX OF STATE SPACE GPC MIMO

In order to obtain the GPC control law, a qua-
dratic cost index equivalent to the one proposed for
I/O formulation (2), similar to the cost index used
in [7], is proposed:
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With these new terms, the index adopts the fol-
lowing matricial form:

(38)

This expression is only valid if the future refer-
en-ces are known. If these were unknown, it would
have to assume that the future references are equal
to the current one.

6 GPC MIMO CONTROLLAW

Unconstrained GPC control law is obtained by
optimizing the performance index (38) with respect
to û(k) subject to the outputs prediction equation
given by (17). Such law has the following form [2]:

(39)

This expression will be accurate if the NTQN + R
matrix is positive definite (minimum of the perfor-
mance index). To ensure this fact, Qi matrices must
be positive definite, Ri matrices must be non-nega-
tive definite and N matrix should be of full rank.

With the former expression, all the increments of
control actions in the control horizon are obtained.
But because the methodology applied will be the re-
ceding horizon's, only the increments corresponding
to the first instant of the control horizon will be ap-
plied. In this sense, matrix σσ is defined as the first m
rows of the (NTQN + R)−1 NTQT matrix. With this as-
signation it is possible to obtain exclusively the in-
crements belonging to the first instant of the con-
trol horizon:

(40)

7 DESIGN OF THE CARIMA OBSERVER

In any state space control technique, it is neces-
sary to develop an observer system able to estimate
the values of those states of the model that can not
be directly measured with sensors. Evidently, it would
be interesting to design observers for each particular
case, however, this work does not intend to examine
in depth any determined type of process. Accor-
dingly, a full rank observer has been adopted for
estimating the CARIMA model states (6):
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A full rank observer for this model is:
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(5) The Ar polynomial degree is equal to nr, the number
of states related to r-th output in the realisation of the
CARIMA model deterministic part (3)
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(34)

w(k + i) is the vector of the desired references in
instant k + i.

To facilitate the obtention of the control law, it
would be desirable to express the performance in-
dex on a matricial form. According to this, the fol-
lowing terms are defined:
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(42)

Because noise variables ξξ
−
(k) are white noises, its

best prediction is always zero, so the observer's de-
finitive expression is:

(43)

For the design of the full rank observer, the
feedback matrix K0 must be chosen so that the ma-
trix A

−
− K0C

−
has its eigenvalues on the adequate lo-

cations of the complex plane. Particularly these ei-
genvalues must all possess a module inferior to the
unity to allow the stability of the observer's dyna-
mic, and a module minor than that ones of the
state matrix A of the CARIMA model (6) (obser-
ver's poles faster than the model's) to have the es-
timate values converging the real ones.

The problem generated by the inclusion of such
observer (or any observer), is that it constitutes an
artificial element in the control and therefore pro-
duces dynamics that are foreign both to the control
and the process. In this work, the selection of K0 is
proposed from the CARIMA model manipulation
(6):

(44)

Working out ξξ
−
(k) from the output equation and

substituting it in the state equation:

(45)

As it can be seen, (45) is nothing more than a
particular case of (43) full rank observer, taking
K0 = ΠΠΛΛ−1. If a CARIMA model is available, the
matrices ΠΠ and ΛΛ are given and consequently, with
this observer's selection the design becomes limited
and there is no guaranty of a stable dynamic. Thus,
if this observer were chosen, it would be necessary
to verify the dynamic's stability before performing
its implementation.

The main advantage presented by this observer
with respect to the rest is that because it uses ma-
trix ΠΠΛΛ−1 as feedback matrix, no foreign dynamic is
being introduced to that of the process + controller.
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This observer is called CARIMA observer, due to
the way it is obtained (45).

The matrices corresponding to the noise model of
the CARIMA model (not only ΠΠ and ΛΛ) establish
the dynamic of the CARIMA observer, as it can be
seen by expanding its expression given by (45):

(46)

(47)

As a consequence it is also possible to design
them according to the placement of the observer's
poles in the desired places instead of using the
methodology used in section 3, which consisted in
obtaining them from determined filter polynomials.
Using this alternative, there is no further need for
a connection with formulation I/O when selecting
the noise model's matrices. Furthermore, it is based
on objective criteria regarding the position of the
observer's poles in the desired locations, and not
on a subjective formulation supported by the use of
filter polynomials chosen by the designer according
to his experience.

In [2] the problem of assigning particular λi valu-
es of matrix ΓΓ has been studied, resulting on the
one hand in:

λi = 1 − Ωii i = 1, 2, . . . , n (48)

And on the other hand the polynomials'roots:

(49)

ak, j are the Aj(z −1) polynomials' coefficients. It is
necessary to go back to (11) and (13) in order to
understand the previous expressions.

Setting the observer's poles from expressions (48)
and (49), it is possible to design the noise model's
matrices ΩΩ and ΠΠ 1. The remaining matrices are gi-
ven by the expressions:

ΠΠ2 = ΛΛ = In ;  ΣΣ = ΠΠ1ΩΩ (50)

Likewise, [2] establishes that the CARIMA ob-
server has the roots of the Ti(z−1) filter polynomials
as poles. This conclusion is derived from the ex-
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pressions obtained in this section and in section 3.
This is a very important result, as it allows:

– Performing an objective selection of the filter po-
lynomials in those applications in which an I/O
version of the controller's design has been per-
formed; considering its zeros as the poles of the
observer that would be used in the state space
version of such controller.

– Analysing the robustness of the I/O version con-
trollers that were designed with filter polynomials
selected according to different criteria from the
one presented here.

8 APPLICATION EXAMPLE: INVERTED PENDULUM

The following application example is an inverted
pendulum represented in figure 1. It is a nonlinear
process with the following model [2]:

(51)

(52)

(53)

P is the torque applied to the cart wheel by the
dc motor. However, the control action in this sys-
tem is the voltage applied to the dc motor, V. In
order to design the GPC controller, its linearized
model around the equilibrium point α = 0 was ob-
tained:

(54)

being: m = 0.21 Kg, M = 0.455 Kg, r = 0.0063 m and
l = 0.61 m.
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For this process, a state space GPC MIMO con-
troller is designed after the following parameters:

– Sampling period: T = 0.01 minutes. Prediction
horizon: N1 = 1 and N2 = 100. Control horizon:
Nu = 2. Error pondering matrices: Qi = I i = N1, ...
..., N2. Control action increment pondering ma-
trices: Ri = 0 i = 1, ..., Nu. Future references are
unknown.

– CARIMA observer poles: four poles are located 
in 0.9 and the remaining in 0. This design is     
equivalent to use the following filter polynomials 
en the I/O version:

(55)

According to these parameters the CARIMA
model obtained is:

T z T z z z1
1

2
1 1 11 0 9 1 0 9− − − −= = − −e j e j e je j. . .
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Fig. 1 Inverted pendulum
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(59)

(60)

The remaining matrices associated to the con-
troller's design are omitted due to their dimensions.

The results obtained from the simulation of the
inverted pendulum control with the state space
GPC are shown on Figure 2. These results are
identical to those obtained designing the I/O ver-
sion of the controller. The references imposed are
0.1 for output 1 and 0 for output 2. As it can be
seen, the answer of both variables is smooth and
without oscillations (except the non minimum-phase
behaviour). Control action also show a smooth and
oscillation-free evolution.

C

I

=
L
NM

O
QP

= = =

0 0 0 1 0 0 0

0 0 0 0 0 0 1

2 2ΠΠ ΩΩ ΛΛ .

In order to be able to establish a quantitative
comparison between the state space controller de-
signed and the I/O one designed according to the
same parameters, figures 3 and 4 are used. These
figures represent the control actions calculation
time for the typologies of both controllers in the
case of the stirred tank reactor's control.

As it can be appreciated, the calculation time in
almost every sampling instant is always lower for
the state space GPC.
These results are obtained using the following

Matlab commands:

t1=clock;

% Here the control action algorithm is

developed

t2=clock;

time(i)=etime(t2,t1);

If the values t1 and t2 are very close the func-
tion etime returns 0, the reason is that Matlab can
not calculate elapsed times lesser than 0.05 seconds.
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Fig. 2 Control of an inverted pendulum using state space GPC

Fig. 3 Calculation time of control action of the state space GPC
for 

the inverted pendulum

Fig. 4 Calculation time of control action of the I/O GPC for the
in-

9 CONCLUSIONS

– An original CARIMA model has been proposed
for state space formulation, together with its equi-
valency to the I/O model used in the literature.

– The matrices obtained in the prediction model
directly depend on the CARIMA model matrices,
instead of depending recursively as in the I/O
version.

– The disadvantage with respect to the I/O metho-
dology is resolved with the use of the CARIMA
observer, as this observer introduces a dynamic,  
which is not foreign to the process.

– The design of such observer allows establishing a
determinate CARIMA model, which on the be-
ginning had to be done according to the know-
ledge of filter polynomials.

– The observer's poles are confirmed to be the fil-
trate polynomials' roots. From this derives the pos-
sibility of designing them according to a control



objective criteria instead of according to the de-
signer's experience, as it was being done up until
now.

– State space and I/O methodology reach identical
results, although the later generally requires lon-
ger calculation time and greater information sto-
ring.
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Izvedba poop}enih predikcijskih regulatora u prostoru stanja. U ~lanku se opisuje izvorna metodologija projek-
tiranja i izvedbe poop}enih predikcijskih regulatora (GPC-a) zasnovana na primjeni CARIMA modela u prostoru
stanja za predikciju stanja. Opisani CARIMA model ekvivalentan je naj~e{}e kori{tenom CARIMA modelu koji se
koristi pri ulazno/izlaznoj formulacji GPC-a. Uspostavljena je veza izme|u stohasti~kog dijela modela i polinoma
Ti (z

−1), ~ime je omogu}ena sinteza regulatora kada je poznat bilo koji od njih. Za estimaciju nemjerljivih veli~ina
stanja predlo`en je estimator punog reda, koji, {to je posebno va`no, ima polove jednake korijenima polinoma
Ti (z

−1).

Klju~ne rije~i: CARIMA model, optimizacija, prediktivno upravljanje, upravljanje u prostoru stanja
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