BLOCK DESIGNS AND STRONGLY REGULAR GRAPHS CONSTRUCTED FROM THE GROUP $U(3,4)$

Dean Crnković and Vedrana Mikulić
University of Rijeka, Croatia

Abstract

We show a construction of the projective plane $P G(2,16)$ and the Hermitian unital $S(2,5,65)$ from the unitary group $U(3,4)$. Further, we construct two block designs, a $2-(65,15,21)$ design and a 2 $(65,26,250)$ design, and two strongly regular graphs with parameters $(208,75,30,25)$ and $(416,100,36,20)$. These incidence structures are defined on the elements of the conjugacy classes of the maximal subgroups of $U(3,4)$. The group $U(3,4)$ acts transitively as an automorphism group of the so constructed designs and strongly regular graphs. The strongly regular graph with parameters $(416,100,36,20)$ has the full automorphism group of order 503193600, isomorphic to $G(2,4): Z_{2}$. Since the Janko group J_{2} is a subgroup of $G(2,4), J_{2}$ acts as an automorphism group of the constructed $S R G(416,100,36,20)$.

1. Introduction

An incidence structure is an ordered triple $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ where \mathcal{P} and \mathcal{B} are non-empty disjoint sets and $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{B}$. The elements of the set \mathcal{P} are called points, the elements of the set \mathcal{B} are called blocks and \mathcal{I} is called an incidence relation. The incidence matrix of an incidence structure is a $b \times v$ matrix $\left[m_{i j}\right.$], where b and v are the number of blocks and points respectively, such that $m_{i j}=1$ if the point P_{j} and block x_{i} are incident, and $m_{i j}=0$ otherwise.

An isomorphism from one incidence structure to another is a bijective mapping of points to points and blocks to blocks which preserves incidence.

[^0]An isomorphism from an incidence structure \mathcal{D} onto itself is called an automorphism of \mathcal{D}. The set of all automorphisms forms a group called the full automorphism group of \mathcal{D} and is denoted by $\operatorname{Aut}(\mathcal{D})$.

A $t-(v, k, \lambda)$ design is a finite incidence structure $(\mathcal{P}, \mathcal{B}, \mathcal{I})$ satisfying the following requirements:

1. $|\mathcal{P}|=v$,
2. every element of \mathcal{B} is incident with exactly k elements of \mathcal{P},
3. every t elements of \mathcal{P} are incident with exactly λ elements of \mathcal{B}.

A Steiner system $S(t, k, v)$ is a $t-(v, k, 1)$ design. A $2-(v, k, \lambda)$ design is called a block design. A $2-(v, k, \lambda)$ design is called quasi-symmetric if the number of points in the intersection of any two blocks takes only two values. If $|\mathcal{P}|=$ $|\mathcal{B}|=v$ and $2 \leq k \leq v-2$, then a $2-(v, k, \lambda)$ design is called a symmetric design. A symmetric $2-(v, k, 1)$ design is called a projective plane. A blocking set is a subset of the point set of a design that contains a point of every block, but that contains no complete block.

A semi-symmetric $(v, k,(\lambda))$ design is a finite incidence structure with v points and v blocks satisfying:

1. every point (block) is incident with exactly k blocks (points),
2. every pair of points (blocks) is incident with 0 or λ blocks (points).

Let $\mathcal{G}=(\mathcal{V}, \mathcal{E}, \mathcal{I})$ be a finite incidence structure. \mathcal{G} is a graph if each element of \mathcal{E} is incident with exactly two elements of \mathcal{V}. The elements of \mathcal{V} are called vertices and the elements of \mathcal{E} edges.

Two vertices u and v are called adjacent or neighbors if they are incident with the same edge. The number of neighbors of a vertex v is called the degree of v. If all the vertices of the graph \mathcal{G} have the same degree k, then \mathcal{G} is called k-regular.

Let \mathcal{G} be a graph. Define a square $\{0,1\}$-matrix $A=\left(a_{u v}\right)$ labelled with the vertices of \mathcal{G} in such a way that $a_{u v}=1$ if and only if the vertices u and v are adjacent. The matrix A is called the adjacency matrix of the graph \mathcal{G}.

An automorphism of a graph is any permutation of the vertices preserving adjacency. The set of all automorphisms forms the full automorphism group of the graph.

Let \mathcal{G} be a k-regular graph with n vertices. \mathcal{G} is called a strongly regular graph with parameters (n, k, λ, μ) if any two adjacent vertices have λ common neighbors and any two non-adjacent vertices have μ common neighbors. A strongly regular graph with parameters (n, k, λ, μ) is usually denoted by $S R G(n, k, \lambda, \mu)$.

Let x and $y(x<y)$ be the two cardinalities of block intersections in a quasi-symmetric design \mathcal{D}. The block graph of the design \mathcal{D} has as vertices the blocks of \mathcal{D} and two vertices are adjacent if and only if they intersect in y points. The block graph of a quasi-symmetric $2-(v, k, \lambda)$ design is strongly regular. In a $2-(v, k, 1)$ design which is not a projective plane two blocks
intersect in 0 or 1 points, therefore the block graph of this design is strongly regular (see [1]).

In this paper we consider structures constructed from the unitary group $U(3,4)$, the classical simple group of order 62400 . The group $U(3,4)$ possesses 4 maximal subgroups (see [2]):

- $H_{1} \cong\left(E_{16}:\left(Z_{2} \times Z_{2}\right)\right): Z_{15}$,
- $H_{2} \cong A_{5} \times Z_{5}$,
- $H_{3} \cong\left(Z_{5} \times Z_{5}\right): S_{3}$,
- $H_{4} \cong Z_{13}: Z_{3}$.

Generators of the group $U(3,4)$ and its maximal subgroups are available on the Internet:

> http://brauer.maths.qmul.ac.uk/Atlas/v3/clas/U34.

The conjugacy classes of the subgroups $H_{i}, i=1,2,3,4$, in $G \cong U(3,4)$ are denoted by $c c l_{G}\left(H_{i}\right), i=1,2,3,4 . \quad G$ is a simple group and $H_{i}, i=$ $1,2,3,4$, are maximal subgroups of G. Therefore,

$$
N_{G}\left(H_{i}\right)=H_{i} \Longrightarrow\left|\operatorname{ccl}_{G}\left(H_{i}\right)\right|=\left|G: H_{i}\right|, i=1,2,3,4
$$

For $i \in\{1,2,3,4\}$ we denote the elements of $c c l_{G}\left(H_{i}\right)$ by $H_{i}^{g_{1}}, H_{i}^{g_{2}}, \ldots, H_{i}^{g_{j}}$, $j=\left|G: H_{i}\right|$.

2. Construction of $\operatorname{PG}(2,16)$

Let G be a group isomorphic to the unitary group $U(3,4)$ and $H_{1} \cong\left(E_{16}\right.$: $\left.\left(Z_{2} \times Z_{2}\right)\right): Z_{15}, H_{2} \cong A_{5} \times Z_{5}$ be maximal subgroups of G. Cardinality of the conjugacy class $c c l_{G}\left(H_{1}\right)$ is 65 and cardinality of the conjugacy class $c c l_{G}\left(H_{2}\right)$ is 208 .

One can check, using GAP ([5]), that the intersection of any two elements, $H_{1}^{g_{i}} \in \operatorname{ccl}_{G}\left(H_{1}\right), 1 \leq i \leq 65$, and $H_{2}^{g_{j}} \in \operatorname{ccl}_{G}\left(H_{2}\right), 1 \leq j \leq 208$, is either $A_{4} \times Z_{5}$ or Z_{5}. Further, for every $H_{1}^{g_{i}} \in \operatorname{ccl}_{G}\left(H_{1}\right), 1 \leq i \leq 65$, the cardinality of the set $\left.\left\{H_{2}^{g_{j}} \in \operatorname{ccl}_{G}\left(H_{2}\right) \mid H_{2}^{g_{j}} \cap H_{1}^{g_{i}} \cong A_{4} \times Z_{5}\right)\right\}$ is 5 . Let us define the sets $S_{i}=\left\{H_{1}^{g_{j}} \in \operatorname{ccl}_{G}\left(H_{1}\right) \mid H_{2}^{g_{i}} \cap H_{1}^{g_{j}} \cong A_{4} \times Z_{5}\right\}, 1 \leq i \leq 208$. For every $1 \leq i, j \leq 208, i \neq j$, the set $S_{i} \cap S_{j}$ has exactly one element.

That proves that the incidence structure $\mathcal{D}_{1}=\left(\mathcal{P}_{1}, \mathcal{B}_{1}, \mathcal{I}_{1}\right)$ where $\mathcal{P}_{1}=$ $\left\{P_{1}^{(1)}, \ldots, P_{65}^{(1)}\right\}, \mathcal{B}_{1}=\left\{x_{1}^{(1)}, \ldots, x_{208}^{(1)}\right\}$ and

$$
\left(P_{i}^{(1)}, x_{j}^{(1)}\right) \in \mathcal{I}_{1} \Longleftrightarrow\left(H_{1}^{g_{i}} \cap H_{2}^{g_{j}} \cong A_{4} \times Z_{5}\right)
$$

is a Steiner system $S(2,5,65)$.
The intersection of any two different elements $H_{2}^{g_{i}}$ and $H_{2}^{g_{j}}$ of the set $\operatorname{ccl}_{G}\left(H_{2}\right)$ is isomorphic to $Z_{5}, Z_{2} \times Z_{2}$ or $Z_{5} \times Z_{5}$. One can check that the incidence structure $\mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ where $\mathcal{P}=\left\{P_{1}, \ldots, P_{208}\right\}, \mathcal{B}=\left\{x_{1}, \ldots, x_{208}\right\}$ and

$$
\left(P_{i}, x_{j}\right) \in \mathcal{I} \Longleftrightarrow\left(H_{2}^{g_{i}} \cap H_{2}^{g_{j}} \cong Z_{5} \times Z_{5}\right)
$$

is a semi-symmetric design with parameters $(208,12,(1))$.

Let M_{1} and M be the incidence matrices of \mathcal{D}_{1} and \mathcal{S} respectively, and I_{65} be the identity matrix of order 65 . Then the matrix

$$
P=\left[\begin{array}{ll}
I_{65} & M_{1}^{T} \\
M_{1} & \mathrm{M}
\end{array}\right]
$$

is the incidence matrix of a projective plane $\operatorname{PG}(2,16)$, i.e., a symmetric $(273,17,1)$ design. Since the matrix P is symmetric, the projective plane admits a unitary polarity (for the definition see e.g. [3]). The absolute points and blocks are the conjugates of H_{1}, and the non-absolute points and blocks are the conjugates on H_{2}. The design \mathcal{D}_{1} is the Hermitian unital in $\operatorname{PG}(2,16)$ and it is resolvable (see [7]).

The group $U(3,4)$ acts transitively on the design \mathcal{D}_{1} and the semisymmetric design \mathcal{S}.

Using Nauty (see [4]) and GAP (see [5]), we have determined that the full automorphism group of \mathcal{D}_{1} and \mathcal{S} is a group of order 249600 isomorphic to $U(3,4): Z_{4}$. Note that $U(3,4): Z_{4}$ is the full automorphism group of $U(3,4)$.

The design \mathcal{D}_{1} is a quasi-symmetric design with block intersections 1 and 0 and its block graph is a strongly regular graph with parameters $(208,75,30,25)$. Denote this graph by \mathcal{G}_{1}. It can be obtained directly from conjugates of H_{2}. The adjacency matrix of the graph \mathcal{G}_{1} is the matrix $A_{1}=\left(a_{i j}^{(1)}\right)$ defined as follows:

$$
a_{i j}^{(1)}= \begin{cases}1, & \text { if } H_{2}^{g_{i}} \cap H_{2}^{g_{j}} \cong Z_{2} \times Z_{2} \\ 0, & \text { otherwise. }\end{cases}
$$

The full automorphism group of \mathcal{G}_{1} is isomorphic to $U(3,4): Z_{4}$. The group $U(3,4)$ acts transitively on the graph \mathcal{G}_{1}.
3. Construction of BLOCK Designs 2-($65,15,21$) AND $2-(65,26,250)$

Let G be a group isomorphic to the unitary group $U(3,4)$ and $H_{1} \cong$ $\left(E_{16}:\left(Z_{2} \times Z_{2}\right)\right): Z_{15}, H_{3} \cong\left(Z_{5} \times Z_{5}\right): S_{3}$ and $H_{4} \cong Z_{13}: Z_{3}$ be maximal subgroups of G. Cardinality of the conjugacy class $c c l_{G}\left(H_{1}\right)$ is 65 , cardinality of the conjugacy class $c c l_{G}\left(H_{3}\right)$ is 416, and cardinality of the conjugacy class $\operatorname{ccl}_{G}\left(H_{4}\right)$ is 1600.

The intersection of any two elements, $H_{1}^{g_{i}} \in \operatorname{ccl}_{G}\left(H_{1}\right), 1 \leq i \leq 65$, and $H_{3}^{g_{j}} \in \operatorname{ccl}_{G}\left(H_{3}\right), 1 \leq j \leq 416$, is either Z_{3} or Z_{10}.

One can check that the incidence structure $\mathcal{D}_{2}=\left(\mathcal{P}_{2}, \mathcal{B}_{2}, \mathcal{I}_{2}\right)$ where $\mathcal{P}_{2}=$ $\left\{P_{1}^{(2)}, \ldots, P_{65}^{(2)}\right\}, \mathcal{B}_{2}=\left\{x_{1}^{(2)}, \ldots, x_{416}^{(2)}\right\}$ and

$$
\left(P_{i}^{(2)}, x_{j}^{(2)}\right) \in \mathcal{I}_{2} \Longleftrightarrow\left(H_{1}^{g_{i}} \cap H_{3}^{g_{j}} \cong Z_{10}\right)
$$

is a $2-(65,15,21)$ design. Each block of the design \mathcal{D}_{2} is a union of three disjoint blocks of the design \mathcal{D}_{1} which form a triangle in the projective plane
$P G(2,16)$. A setwise stabilizer in $A u t\left(\mathcal{D}_{1}\right)$ of a union of three disjoint blocks of \mathcal{D}_{1} which form a block of \mathcal{D}_{2} is a group of order 600 isomorphic to $H_{3}: Z_{4}$.

The intersection of any two elements, $H_{1}^{g_{i}} \in \operatorname{ccl}_{G}\left(H_{1}\right), 1 \leq i \leq 65$, and $H_{4}^{g_{j}} \in \operatorname{ccl}_{G}\left(H_{4}\right), 1 \leq j \leq 1600$, is either the trivial group or Z_{3}. The incidence structure $\mathcal{D}_{3}=\left(\mathcal{P}_{3}, \mathcal{B}_{3}, \mathcal{I}_{3}\right)$, where $\mathcal{P}_{3}=\left\{P_{1}^{(3)}, \ldots, P_{65}^{(3)}\right\}, \mathcal{B}_{3}=$ $\left\{x_{1}^{(3)}, \ldots, x_{1600}^{(3)}\right\}$ and

$$
\left(P_{i}^{(3)}, x_{j}^{(3)}\right) \in \mathcal{I}_{3} \Longleftrightarrow\left(H_{1}^{g_{i}} \cap H_{4}^{g_{j}} \cong Z_{3}\right)
$$

is a $2-(65,26,250)$ design. Every block of \mathcal{D}_{3} intersect 78 blocks of \mathcal{D}_{1} in one point, 91 blocks in two points, and the remaining 39 blocks in four points. So, every block of \mathcal{D}_{3} is a blocking set of the Hermitian unital \mathcal{D}_{1}.

The group $U(3,4)$ acts transitively on the designs \mathcal{D}_{2} and \mathcal{D}_{3}. The full automorphism group of the designs \mathcal{D}_{2} and \mathcal{D}_{3} is isomorphic to $U(3,4): Z_{4}$.

4. Construction of $S R G(416,100,36,20)$

Let G be a group isomorphic to the unitary group $U(3,4)$ and $H_{3} \cong$ $\left(Z_{5} \times Z_{5}\right): S_{3}$ be a maximal subgroup of G. Cardinality of the conjugacy class $\operatorname{ccl}_{G}\left(H_{3}\right)$ is 416.

The intersection of any two different elements $H_{3}^{g_{i}}$ and $H_{3}^{g_{j}}$ of the set $c c l_{G}\left(H_{3}\right)$ is isomorphic to Z_{10}, Z_{2}, S_{3} or the trivial group.

The incidence structure $\mathcal{G}_{2}=\left(\mathcal{V}_{2}, \mathcal{E}_{2}, \mathcal{I}_{2}\right)$, where $\mathcal{V}_{2}=\left\{V_{1}^{(2)}, \ldots, V_{416}^{(2)}\right\}$ and vertices $V_{i}^{(2)}$ and $V_{j}^{(2)}$ are adjacent if and only if $H_{3}^{g_{i}} \cap H_{3}^{g_{j}} \cong S_{3}$, is a strongly regular graph with parameters $(416,100,36,20)$.

The group $U(3,4)$ acts transitively on the graph \mathcal{G}_{2}. The full automorphism group of the graph \mathcal{G}_{2} is a group of order 503193600 isomorphic to $G(2,4): Z_{2}$. This is the full automorphism group of the exceptional group $G(2,4)$, which is the simple group of order 251596800 . Since the Janko group J_{2} is a subgroup of $G(2,4), J_{2}$ acts as an automorphism group of the graph \mathcal{G}_{2}. The graph \mathcal{G}_{2} was previously known. Namely, the Suzuki graph, a strongly regular graph with parameters $(1782,416,100,96)$, is locally \mathcal{G}_{2} (see [6]).

The graph \mathcal{G}_{2} can be constructed from the design \mathcal{D}_{2} in a similar way as \mathcal{G}_{1} is constructed from \mathcal{D}_{1}. Any two blocks of \mathcal{D}_{2} intersect in 2,3 , or 5 points. The graph which has as its vertices the blocks of \mathcal{D}_{2}, two vertices being adjacent if and only if the corresponding blocks intersect in 3 points, is isomorphic to \mathcal{G}_{2}.

Strongly regular graphs described in this article, incidence matrices of the block designs and a semi-symmetric design, as well as generators of their full automorphism groups, are available at

In Table 1 we give the full automorphism groups of the constructed structures.

Table 1. Designs and strongly regular graphs.

Combinatorial structure	Order of the full automorphism group	Structure of the full automorphism group
$P G(2,16)$	34217164800	$P \Gamma L(3,16)$
$S(2,5,65)$	249600	$U(3,4): Z_{4}$
$2-(65,15,21)$ design	249600	$U(3,4): Z_{4}$
$2-(65,26,250)$ design	249600	$U(3,4): Z_{4}$
$(208,12,(1))$ design	249600	$U(3,4): Z_{4}$
$S R G(208,75,30,25)$	249600	$U(3,4): Z_{4}$
$S R G(416,100,36,20)$	503193600	$G(2,4): Z_{2}$

References

[1] P. J. Cameron and J. H. van Lint, Designs, Graphs, Codes and Their Tinks, Cambridge University Press, Cambridge, 1991.
[2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[3] P. Dembowski, Finite Geometries, Springer-Verlag, Berlin-New York, 1968.
[4] B. D. McKay, Nauty Users Guide (version 1.5) Technical Report TR-CS-90-02, Department of Computer Science, Australian National University, 1990.
[5] M. Schoenert et al., GAP - Groups, Algorithms and Programming, Lehrstuhl D für Mathematik, RWTH Aachen, 1995.
[6] L. H. Soicher, Three new distance-regular graphs, European J. Combin. 14 (1993), 501-505.
[7] S. D. Stoichev and V. D. Tonchev, Unital designs in planes of order 16, Discrete Appl. Math. 102 (2000), 151-158.
[8] V. D. Tonchev, MTU, private communication via Z. Janko of Universität Heidelberg.
D. Crnković

Department of Mathematics
Faculty of Philosophy
University of Rijeka
Omladinska 14, 51000 Rijeka
Croatia
E-mail: deanc@ffri.hr
V. Mikulić

Department of Mathematics
Faculty of Philosophy
University of Rijeka
Omladinska 14, 51000 Rijeka
Croatia
E-mail: vmikulic@ffri.hr
Received: 28.9.2005.
Revised: 20.3.2006. \& 24.5.2006.

[^0]: 2000 Mathematics Subject Classification. 05B05, 05E20, 05E30.
 Key words and phrases. Unitary group, block design, projective plane, Steiner system, strongly regular graph.

