THE MINIMAL INDEX OF A SELF-ADJOINT PENCIL

Paul Binding and Branko Na.jman
University of Calgary, Canada, University of Zagreb, Croatia
Dedicated to my coauthor and great friend

Abstract. Let A and B be selfadjoint operators on a Hilbert space H. We define the minimal index $\nu(A, B)=\min \{\#$ negative eigenvalues of $A-\lambda B\}$, we connect it with various ideas in the literature and we connect it with formulae used in some recent variational principles.

1. Introduction

Let A and B be self adjoint operators on a Hilbert space H. For simplicity we assume at present that A is bounded below with compact resolvent and B is bounded, although more general situations will be treated (see Sections 3 and 4 for comments on this, and on application to matrix and boundary value problems). It follows that the spectrum $\sigma(A-\lambda B)$ is discrete, so $-\mu \in$ $\sigma(A-\lambda B)$ if and only if

$$
\begin{equation*}
(A-\lambda B+\mu I) x=0 \tag{1.1}
\end{equation*}
$$

for some nonzero $x \in D(A) \cap D(B)$.
We say that λ is an eigenvalue of (A, B) if (1.1) holds with $\mu=0$, i.e.,

$$
\begin{equation*}
A x=\lambda B x \tag{1.2}
\end{equation*}
$$

for some $0 \neq x \in D(A) \cap D(B)$.
Note that

$$
\sigma(A, B)=\{\lambda: 0 \in \sigma(A-\lambda B)\}
$$

[^0]can be the whole complex plane (e.g., if $N(A) \cap N(B) \neq 0$) even though $\sigma(A-\lambda B)$ is discrete. For this introduction, then, we assume that $\sigma(A, B)$ is nonempty and discrete, and hence consists of eigenvalues of (A, B) accumulating at most at $\pm \infty$. Explicit assumptions on A and B will be given in Sections 2 and 3, including the possibility of essential spectrum.

We define the (negative) index $\nu(A)$ of A to be the number of negative eigenvalues of A, counted by multiplicity. For $\lambda \in \mathbf{R}$ we write $\nu(\lambda)=\nu(A-\lambda B)$: this is evidently the number of positive values of μ (counted by multiplicity) satisfying (1.1). For any eigenvalue λ of (A, B), we call $\nu(\lambda)$ the index of λ. In the case of a Sturm-Liouville (SL) equation (1.2) of the form $l x:=-\left(p x^{\prime}\right)^{\prime}+q x=\lambda r x$ with separated end conditions on $[a, b]$, this is the "oscillation count" of the eigenfunction x, i.e., the number of zeros of x in $] a, b\left[\right.$. In this case, $H=L_{2}(a, b), A$ is a differential operator generated by l and the boundary conditions, and B is the operator of multiplication by r.

We are mainly interested in the minimal index of (A, B), which we define as

$$
\begin{equation*}
\nu(A, B)=\min \{\nu(\lambda): \lambda \in \mathbf{R}\} \tag{1.3}
\end{equation*}
$$

This quantity has appeared implicitly and explicitly in various contexts but does not seem to have been studied in its own right. In 1.1 and 1.2 we shall connect $\nu(A, B)$ with (a) the minimal "oscillation count" in the case when (1.2) is a SL equation, and (b) bounds on the numbers and multiplicities of eigenvalues of (A, B) which are, say, nonreal or have specified index. In Sections 2 and 3 we equate $\nu(A, B)$ with an explicit formula involving certain spectral information (independent of minimisation) of the pencil, and we discuss what happens to it under perturbation. Section 2 contains the finite dimensional case, while Section 3 covers certain infinite dimensional cases with both discrete and continuous spectra. Section 4 contains applications to the "index shift" in certain variational principles for the eigenvalues of (A, B), and to finiteness of certain variational quantities associated with the pair (A, B), thus leading to numerical estimation of $\nu(A, B)$.
1.1. Minimal oscillation count. To our knowledge, $\nu(A, B)$ first appeared in the published literature implicitly, in Richardson's analysis [28] of two parameter SL equations. Such equations led Richardson to study problems of the form (1.2) with neither A nor B definite, and for which the "oscillation theorem" (that there was an eigenfunction x for any given oscillation count) could fail. Richardson defined a minimal oscillation count (over all possible eigenfunctions) for (1.2), but it was the subsequent work of Haupt [17] on this subject which gave an explicit definition of $\nu(A, B)$, via the embedding (1.1).

We remark that the minimal oscillation count is actually the minimal eigenvalue index, i.e., $\min \{\nu(\lambda): \lambda \in \sigma(A, B)\}$, and this appears to depend
on solving (1.2). Fortunately, equality with $\nu(A, B)$ follows easily, e.g., from continuity of the (variational) eigencurves i.e., the set of (λ, μ) satisfying (1.1) and such that $\nu(A-\lambda B+\mu I)$ is fixed, cf. [5]. We remark that much of Richardson's reasoning is also based explicitly on eigencurve arguments.

Minimal oscillation counts have been discussed in more modern settings in $[3,6]$ in connection with the embedding (1.1).
1.2. Spectral bounds. In the "left definite" case, i.e., when $A>0$, the spectral theory of (1.2) is equivalent to that of the compact symmetric operator $A^{-1} B$ on the Hilbert space H_{A} defined as the completion of $D(A)$ under the inner product given by $(x, y)_{A}=(x, A y)$. It can be shown (cf. Section 3) that H_{A} coincides with the form domain $D(a)=D\left(A^{1 / 2}\right)$. If A is not definite but is (boundedly) invertible then H_{A} becomes a Pontryagin space of (negative) index $\nu(A)$. This provides bounds for various quantities such as the number of nonreal (conjugate) eigenvalue pairs, the total length of all Jordan chains, etc., cf. [12]. In the SL context, such ideas are developed in [15, 24]. In Section 3 we shall develop the Pontryagin space setting for a fairly general class of pairs (A, B).

Since the complexity of such a theory depends on the index of H_{A}, it is of importance to reduce that index as far as possible. This can be achieved by translating the eigenparameter λ, by λ_{0} say, thus replacing A by $A-\lambda_{0} B$. The "optimal" λ_{0} leads to a Pontryagin space of index $\nu(A, B)$, at least if $A-\lambda_{0} B$ is invertible. Bounds (as above) were already given for SL problems in [17], and more recently in [24]; cf. [20] for a pde context. A variety of such bounds, involving the number n^{i} of eigenvalues of (A, B) of index i, and related quantities, can be found in [5]. In this work, $\nu(A, B)$ is interpreted as the number of eigencurves lying above the λ-axis.

2. The finite dimensional case

Throughout we assume that the $N \times N$ matrices A and B form a "nonsingular" pair, i.e., that some linear combination of A and B is nonsingular. Then the canonical form (see [26]) shows that, for some nonsingular matrix T,

$$
\begin{equation*}
T^{*} A T=\operatorname{diag}\left(A_{\infty}, A_{F}\right), T^{*} B T=\operatorname{diag}\left(B_{\infty}, B_{F}\right) \tag{2.1}
\end{equation*}
$$

where the partitioned blocks are of sizes N_{∞} and N_{F} respectively. The N_{∞} zero eigenvalues of the pair $\left(B_{\infty}, A_{\infty}\right)$ correspond to the so-called infinite eigenvalues of (A, B), i.e., the zero eigenvalues of (B, A). The span of the corresponding (algebraic) eigenspaces is denoted by X_{∞}, and the dimension of a maximal subspace of X_{∞} on which A_{∞} is negative definite is denoted by N_{∞}^{-}. The span of the eigenspaces corresponding to (A, B) is denoted by X_{F}. Since T merely amounts to a change of coordinates in the quadratic forms of
A and B, we shall suppress it in what follows. This simplifies the proofs, but does not affect the results.

Initially we shall also assume that each eigenvalue of (A, B) is semisimple. (Actually it makes no difference whether the nonreal eigenvalues are semisimple or not). The canonical form (loc. cit.) then gives

$$
\begin{gather*}
A_{\infty}=\operatorname{diag}(I,-I), B_{\infty}=0 \tag{2.2}\\
A_{F}=\operatorname{diag}\left(D^{+}, D^{-}, A_{n}\right), B_{F}=\operatorname{diag}\left(I,-I, B_{n}\right) \tag{2.3}
\end{gather*}
$$

where $D^{ \pm}$are diagonal matrices with diagonal entries $\lambda_{j}^{ \pm}, 1 \leq j \leq N_{F}^{ \pm}$. These are the finite real eigenvalues of (A, B), and since the sign depends on B, we call λ_{j}^{+}a B-positive eigenvalue: it admits an eigenvector x_{j}^{+}such that $\left(x_{j}^{+}, B x_{j}^{+}\right)>0$. Similarly for the B-negative eigenvalues λ_{j}^{-}. The matrices A_{n} and B_{n} are $2 N_{n} \times 2 N_{n}$ matrices corresponding to the nonreal eigenvalues of (A, B). It is well known that the latter occur in conjugate pairs, so N_{n} is the number of such pairs.

We now apply the cancellation algorithm of [11] to the finite real eigenvalues. We start by "cancelling" c pairs of the form $\lambda_{j}^{+}<\lambda_{k}^{-}$with no eigenvalues in between. (This operation is recursive, and stops when there are no more pairs to cancel: see [11] for details). The remaining real eigenvalues can then be relabelled in the order

$$
\begin{equation*}
\rho_{n^{-}}^{-} \leq \ldots \leq \rho_{1}^{-} \leq \rho_{1}^{+} \leq \ldots \leq \rho_{n^{+}}^{+} \tag{2.4}
\end{equation*}
$$

Note that $c+n^{+}$is the number of B-positive eigenvalues.
The main result of this section expresses $\nu(A, B)$ in terms of the above quantities.

Theorem 2.1.

$$
\begin{equation*}
\nu(A, B)=N_{n}+c+N_{\infty}^{-} \tag{2.5}
\end{equation*}
$$

Remark 2.2. It is possible to extend the cancellation to include the (negative type) infinite eigenvalues, viewed as $+\infty$. Then (2.5) continues to hold provided we interpret N_{∞}^{-}as the number of such eigenvalues that were not cancelled.

2.1. Proof of Theorem 2.1 in the semisimple case.

Proof. Noting the evident relation $\nu\left(A_{\infty}-\lambda B_{\infty}\right)=N_{\infty}^{-}$and the fact [11, Lemma 2.4] that $\nu\left(A_{n}-\lambda B_{n}\right)=N_{n}$ for all λ, we shall assume without loss of generality that $N_{n}=N_{\infty}=0$. For the purposes of this proof, we list the eigenvalues of (A, B) in ascending order (and counted by multiplicity):

$$
\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{N}
$$

and we replace $\nu(A, B)$ by d. We proceed by induction on the size N of A and B to prove both equation (2.5) and the formula $\lambda_{0}=\rho_{1}^{-}$or (if ρ_{1}^{-}does not exist) $\lambda_{0}=\lambda_{1}$ for the minimiser λ_{0} of (1.3).

First note that if $\left(\lambda^{ \pm}, e^{ \pm}\right)$are $\pm B$-positive eigenpairs of (A, B), then

$$
\begin{equation*}
\left(e^{+},(A-\lambda B) e^{+}\right)=\lambda^{+}-\lambda \quad \text { and } \quad\left(e^{-},(A-\lambda B) e^{-}\right)=\lambda-\lambda^{-} \tag{2.6}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\nu(\lambda) \text { jumps by } \pm 1 \text { as } \lambda \text { increases across } \lambda^{ \pm} \tag{2.7}
\end{equation*}
$$

Hence we can (and will) choose λ_{0} so that $\lambda_{0} \in\left[\lambda_{1}, \lambda_{N}\right]$.
If $N=1$, then we set $\lambda_{0}=\lambda_{1}, c=d=0$. For the inductive step (from N, with c, d, etc. distinguished by carets, to $N+1$), we need to consider three cases:

Case 1: Suppose λ_{N+1} is B-positive. Then $c=\hat{c}$ and (2.6) shows that $\nu(\lambda)=\hat{\nu}(\lambda)$ if $\lambda \leq \lambda_{N+1}$. Therefore we can take $\lambda_{0}=\hat{\lambda}_{0}\left(=\rho_{1}^{-}\right.$or $\left.\lambda_{1}\right)$ and $d=\hat{d}$.

Case 2: Suppose λ_{N+1} is B-negative but is not cancelled by a B-positive eigenvalue. Then $c=\hat{c}$. Also

$$
\begin{equation*}
\nu(\lambda)=\hat{\nu}(\lambda)+1 \text { for } \lambda<\lambda_{N+1} \text { and } \nu\left(\lambda_{N+1}\right)=\hat{\nu}\left(\lambda_{N+1}\right) \tag{2.8}
\end{equation*}
$$

Further, since neither ρ_{1}^{-}nor λ_{N+1} are cancelled, the numbers of B-positive and B-negative eigenvalues in $] \rho_{1}^{-}, \lambda_{N+1}$ [are equal. A similar argument holds for $\left[\lambda_{1}, \lambda_{N+1}\left[\right.\right.$ if $\lambda=\lambda_{1}$. Hence by (2.7) it follows that $\nu\left(\hat{\lambda}_{0}\right)=\hat{\nu}\left(\lambda_{N+1}\right)$ and $\nu(\lambda)=d+1$ for $\lambda<\lambda_{N+1}$. Thus taking $\lambda_{0}=\lambda_{N+1}\left(=\rho_{1}^{-}\right)$, we have $\nu(\lambda)=d=\hat{d}$.

Case 3: Suppose λ_{N+1} is b-negative and is cancelled by a B-positive eigenvalue, say λ^{+}. Then $c=\hat{c}+1$ and (2.8) holds. It follows from (2.7) that

$$
\nu\left(\lambda_{N+1}\right)=\hat{\nu}\left(\lambda_{N+1}\right) \geq \hat{\nu}\left(\lambda^{+}\right)+1
$$

since there are no eigenvalues in $\left(\lambda^{+}, \lambda_{N+1}\right)$. From the definition of $\hat{\nu}_{m}$,

$$
\hat{\nu}\left(\lambda^{+}\right) \geq \hat{\nu}\left(\hat{\lambda}_{0}\right)=\hat{d}
$$

so we conclude that $\nu\left(\lambda_{N+1}\right) \geq \hat{d}+1$. It follows from (2.8) that we can take $\lambda_{0}=\hat{\lambda}_{0}\left(=\rho_{1}^{-}\right.$or $\left.\lambda_{1}\right)$, and then $d=\hat{d}+1$.
2.2. The infinite semisimple case. We now admit, in addition to the situation of Subsection 2.1, the possibility that any finite eigenvalue can be nonsemisimple. We note, however, that B_{F} of (2.1) remains invertible since $\sigma\left(A_{F}, B_{F}\right)$ consists entirely of finite eigenvalues.

We need a Lemma which expresses the dependence of $d=\nu(A, B)$ on small perturbations of A.

Lemma 2.3. Let P be a nonnegative definite $N \times N$ matrix and let $d(\mu)$ $=\nu(A+\mu P, B)$. Then, under the above assumptions, there exists $\mu_{o}>0$ such that $d(\mu)=\nu(A, B)$, for all $\mu \in] 0, \mu_{o}[$.

Proof. As in the proof of Subsection 2.1, we can assume that there are neither nonreal nor infinite eigenvalues so $(A, B)=\left(A_{F}, B_{F}\right)$. Evidently $d(\mu) \leq \nu(A, B)$ for any $\mu>0$, so assume

$$
\begin{equation*}
d\left(\mu_{n}\right)<\nu(A, B) \tag{2.9}
\end{equation*}
$$

for some sequence $\mu_{n} \searrow 0$. Let λ_{n} be a minimiser for $\nu(A, B)$ in (1.3) with A replaced by $A+\mu_{n} P$. Then $\lambda_{n}^{-1}\left(A+\mu_{n} P\right) x_{n}=B x_{n}$ for some x_{n} of unit norm. If λ_{n} are unbounded, we pass to a subsequence of x_{n} with limit x, and we obtain $B x=0$, contradicting invertibility of $B\left(=B_{F}\right)$. Thus λ_{n} are bounded, and we pass to a subsequence of λ_{n} with limit λ. Now continuity of the eigenvalues under perturbation shows that, for large enough n,

$$
d\left(\mu_{n}\right)=\nu\left(A+\mu_{n} P-\lambda_{n} B\right) \geq \nu(A-\lambda B) \geq \nu(A, B)
$$

contradicting (2.9).
Remark 2.4. If $\mu<0$, the result need not hold. For example, if $C=$ $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], D=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $P=I$, then $\nu(C, D)=0$ but $d(\mu)=1$ for small $\mu<0$.

Remark 2.5. Note by [18, p. 64] that the eigenvalues of $(A+\mu I, B)$ are all semisimple for small enough $\mu \neq 0$. Thus if we choose $P=I$, and if c is defined as $\lim _{\mu \searrow 0} c(\mu)$, the limit from above of c for (1.1), then (2.5) continues to hold.

Remark 2.6. The perturbation of A does not have to be by μI in Remark 2.3. According to the canonical form (see [26]), our assumptions imply that (2.3) is replaced by

$$
A_{F}=\operatorname{diag}\left(A_{1}, \cdots, A_{q}, A_{n}\right), B_{F}=\operatorname{diag}\left(B_{1}, \cdots, B_{q}, B_{n}\right)
$$

where A_{k}, B_{k}, etc., involve certain (symmetrized) Jordan-like blocks. For example, if $\left(A_{1}, B_{1}\right)$ correspond to eigenvalue λ_{1}, then

$$
A_{1}=\varepsilon\left[\begin{array}{cccccc}
0 & . & . & . & 0 & \lambda_{1} \tag{2.10}\\
. & . & . & . & \lambda_{1} & 1 \\
. & . & . & . & 1 & 0 \\
. & . & . & . & . & . \\
0 & \lambda_{1} & 1 & . & . & . \\
\lambda_{1} & 1 & 0 & . & . & 0
\end{array}\right], B_{1}=\varepsilon\left[\begin{array}{cccccc}
0 & . & . & . & 0 & 1 \\
. & . & . & 0 & 1 & 0 \\
. & . & . & . & 0 & \cdot \\
. & 0 & . & . & . & . \\
0 & 1 & 0 & . & . & . \\
1 & 0 & . & . & . & 0
\end{array}\right]
$$

where $\varepsilon= \pm 1$. Then the multiple eigenvalue of $\left(A_{k}, B_{k}\right)$ can be split by any nonnegative definite matrix μQ (of the right size), provided $q_{11} \neq 0$. This can be shown by direct calculation of $\operatorname{det}\left(A_{k}+\mu Q-\lambda B_{k}\right)$ and a Newton diagram argument.
2.3. The general case. We now allow nonsemisimple infinite eigenvalues as well, so (A, B) is an arbitrary nonsingular pair. We reduce this case to those already considered above, perturbing A this time by a negative semidefinite matrix acting on X_{∞}.

Lemma 2.7. Let $P=\operatorname{diag}\left(P_{\infty}, 0\right)$ where P_{∞} is a positive semidefinite $N_{\infty} \times N_{\infty}$ matrix. If $d(\mu)=\nu(A+\mu P, B)$, then there exists $\mu_{o}<0$ such that for $\mu \in] \mu_{o}, 0[$,

$$
\begin{equation*}
d(\mu)=\nu(A, B) \tag{2.11}
\end{equation*}
$$

Proof. Since $\left(A_{\infty}, B_{\infty}\right)$ has no finite eigenvalues, $\operatorname{det}\left(A_{\infty}-\lambda B_{\infty}\right) \neq 0$, so $\nu\left(A_{\infty}-\lambda B_{\infty}\right)$ is independent of λ, and therefore

$$
\begin{equation*}
\nu(A, B)=\nu\left(A_{\infty}-\lambda_{0} B_{\infty}\right)+\nu\left(A_{F}-\lambda_{0} B_{F}\right) \tag{2.12}
\end{equation*}
$$

where λ_{0} is the minimiser in (1.3). Further
(2.13) $d(\mu) \leq \nu\left(A+\mu P-\lambda_{0} B\right)=\nu\left(A_{\infty}+\mu P_{\infty}-\lambda_{0} B_{\infty}\right)+\nu\left(A_{F}-\lambda_{0} B_{F}\right)$.

Since $\nu\left(A_{\infty}-\lambda_{0} B_{\infty}\right)$ is invertible, we have $\nu\left(A_{\infty}+\mu P_{\infty}-\lambda_{0} B_{\infty}\right)=\nu\left(A_{\infty}-\right.$ $\lambda_{0} B_{\infty}$) for sufficiently small μ, so it follows from (2.12) and (2.13) that

$$
\begin{equation*}
d(\mu) \leq \nu(A, B) \tag{2.14}
\end{equation*}
$$

The reverse inequality follows immediately from $\mu<0$.
Remark 2.8. Lemma 2.7 can fail if the sign of μ is changed. For example, with C, D and P from Remark $2.2, \nu(D, C)=1$ but $d(\mu)=0$ for small $\mu>0$.

REmark 2.9. As in Remark 2.3, we may split the infinite eigenvalues with $P_{\infty}=I_{\infty}$, thus producing a problem of the type considered in 2.2 . We omit the details, since a more general case will be treated by a different method in Section 3.

Together with Remark 2.3, this completes the proof of Theorem 2.1 in the general case.

Remark 2.10. The perturbation μI_{∞} of Remark 2.6 may be generalised as in Remark 2.4. Instead of (2.3) the canonical form now gives

$$
A_{\infty}=\operatorname{diag}\left(A_{-r}, \ldots, A_{-1}\right), B_{\infty}=\operatorname{diag}\left(B_{-r}, \ldots, B_{-1}\right)
$$

where A_{-j} and B_{-j} are again symmetrized Jordan-like blocks. Then the infinite eigenvalue of $\left(A_{-j}, B_{-j}\right)$ can be split by a nonpositive perturbation μP where $p_{11} \neq 0$.

REmark 2.11. It is possible to combine the above perturbations (acting on X_{∞}) with those of 2.2 (but acting on X_{F}). The details will be left to the reader.

3. QUASI-UNIFORMLY POSITIVE OPERATORS

We now consider a pair (A, B) of self adjoint operators on a Hilbert space H. Since we shall not assume discreteness of the spectrum, we define $\nu(A)$ as the dimension of a maximal subspace on which A is negative definite, with $\nu(\lambda)=\nu(A-\lambda B)$, etc., defined consequently as in Section 1.

We need three assumptions, the first being on A alone. Recall that a self adjoint operator U in a Hilbert space is called uniformly positive (up) if $\inf \sigma(U)>0$, so U is positive definite with bounded inverse.
Assumption A1. A is quasi-uniformly positive $(q u p)$, i.e., $\inf \sigma_{e}(A)>0$.
Here σ_{e} denotes essential spectrum. Thus A is qup means that

$$
\begin{equation*}
U=A+C \tag{3.1}
\end{equation*}
$$

is $u p$ for some (compact symmetric) operator C of finite rank. Indeed, if A has positive (resp. nonpositive) spectral subspace \mathcal{P} (resp. \mathcal{N}), then we may take $U=\left.A\right|_{\mathcal{P}}, C=\left.I\right|_{\mathcal{N}}$. See [4], [13] for further properties of qup operators.

Our second assumption ensures that A dominates B in a suitable sense.
Assumption A2. $D(a) \subset D(B)$
Here $D(a)=D\left(U^{1 / 2}\right)=D\left(|A|^{1 / 2}\right)$ is the domain of the form a which may be defined by

$$
\begin{align*}
a(x, y) & =\left(U^{1 / 2} x, U^{1 / 2} y\right)-(C x, y) \tag{3.2}\\
& =(A x, y) \text { if } x \in D(A)
\end{align*}
$$

Similarly the form b corresponding to B may be defined on $D(a)$ by virtue of A2. Indeed instead of (1.2) we could consider the "weak" eigenvalue problem

$$
\begin{equation*}
a(x, z)=\lambda b(x, z) \tag{3.3}
\end{equation*}
$$

for $0 \neq x, z \in D(a) \cap D(b)$ under weaker assumptions. We shall however continue with the operator framework and the (rather strong) relative boundedness assumption A2 for simplicity and because it uses constructions based on the original data (A, B). An approach using extensions (and different assumptions) will be described in 3.4.

Our third assumption extends the previous one of nonsingularity to infinite dimensions.

Assumption A3. (A, B) is nonsingular, i.e., $\sigma(A, B) \neq \mathbf{C}$.
Note that A3 requires $A-\lambda B$ to be invertible for some $\lambda \in \mathbf{C}$. The first step in our analysis allows us to choose $\lambda \in \mathbf{R}$, so we can preserve self adjointness after an eigenvalue shift.

Lemma 3.1. There exists $\lambda \in \mathbf{R}$ such that the operator $A-\lambda B$ is boundedly invertible and qup.

Proof. It follows from (A2) that $D(A) \subset D(B)$ so $T(\lambda)=A-\lambda B$ is a holomorphic family of type (A) in the sense of [18, p. 375]. Therefore if $0 \in$
$\sigma(A)$, by [18, p.386] either $0 \in \sigma(A-\lambda B)$ for all $\lambda \in \mathbf{C}$ or there exist analytic functions $\mu_{j}(\lambda)$ such that $\mu_{j}(0)=0, \mu_{j} \neq 0$ for all j. Since the first alternative contradicts (A3), it follows that $0 \in \rho(A-\lambda B)$ for $\lambda \neq 0,|\lambda|$ sufficiently small. Moreover, if $|\lambda|$ is sufficiently small, then $U-\lambda B$ is uniformly positive definite, and so $A-\lambda B$ is $q u p$ for such λ.

In what follows we shall assume (without loss of generality, by Lemma 3.1) that A is boundedly invertible and qup. Before proceeding we note the following consequence of our assumptions.

Lemma 3.2. If $x_{n} \in D(a)$ and $a\left(x_{n}\right) \rightarrow 0$ then $B x_{n} \rightarrow 0$.
Proof. Writing $A^{\prime}=|A|^{-1 / 2} \operatorname{sgn} A$, we note that B is closed in, and A^{\prime} is bounded on, H so A2 and the closed graph theorem show that

$$
\begin{equation*}
S=B A^{\prime} \text { is bounded on } H \text {. } \tag{3.4}
\end{equation*}
$$

Thus if $a\left(x_{n}\right) \rightarrow 0$ then $y_{n}=\left(|A|^{1 / 2} \operatorname{sgn} A\right) x_{n} \rightarrow 0$ and so $B x_{n}=S y_{n} \rightarrow 0$.
3.1. Pontryagin space setting. Our aim, roughly, is to split $\sigma(A, B)$ into "finite" and "infinite" parts corresponding to X_{F} and X_{∞} in Section 2. To make this precise, we shall use the indefinite space $\Pi=D(a)$ with inner product given by $(x, y)_{a}:=a(x, y)$ of (3.2). By our assumptions, Π is a Pontryagin space and we define $Q=\left.A^{-1} B\right|_{\Pi}$.

Lemma 3.3. Q is a bounded self adjoint operator on Π.
Proof. Q is obviously symmetric and by (A2) Q is everywhere defined. The conclusion now follows from [12, Theorem VI.2.8]

For any subspace Σ of Π we denote by $\nu(\Sigma)$ the dimension of a maximal subspace of Σ on which a is negative definite. In particular, $\nu(\Pi)=\nu(A)$ and $\nu(\Sigma)=0 \Longleftrightarrow a$ is nonnegative definite on Σ. By known results (cf. [22]) Q has a spectral function E, say, with a finite set of real critical points which satisfy the condition that

$$
c \text { is critical } \Longleftrightarrow E\left(\Delta_{c}\right) \text { has indefinite range, }
$$

for any open interval Δ_{c} containing c. Abbreviating $\nu(E(\Delta) \Pi)$ to $\nu(\Delta)$, we see that if $c \in \Delta_{c}$ and if $\Delta \subset \Delta_{c}$ is sufficiently small then $\nu(\Delta)=0$ if $c \notin \Delta$, $\nu(\Delta)=\nu\left(\Delta_{c}\right)>0$ if $c \in \Delta$. Let

$$
e_{-}=\min \sigma_{e}(Q), e_{+}=\max \sigma_{e}(Q)
$$

Note that $\sigma_{e}(Q) \subseteq\left[e_{-}, e_{+}\right]$, but the inclusion may be strict.
We denote the set of nonreal eigenvalues of Q by Ω_{n}. It is well known that the corresponding root subspaces span a finite dimensional subspace, say Π_{n}, and we write $Q_{n}=\left.Q\right|_{\Pi_{n}}$.

Definition 3.4. A real number $\xi \geq e_{+}$is a-positive for Q if ξ admits no a-nonpositive root vector, i.e., if ξ is either an a-positive eigenvalue, or else not an eigenvalue, of Q.

The following lemma is a key to the connection between Q and the formulae for $\nu(A, B)$ in 3.2. By $\nu_{Q}(\xi)$ we mean the dimension of a maximal subspace on which $\xi I-Q$ is negative definite in Π, i.e., $\nu_{Q}(\xi)=\nu(\xi a-b)$. In parts (c) and (d) below, we choose positive $\eta_{+} \in \rho(Q)$ such that $\eta_{+}>e_{+}$ and $\nu(\Delta)=0$ whenever $\bar{\Delta} \subset \Gamma:=] e_{+}, \eta_{+}[$(i.e., Γ contains only a-positive points). This is always possible by finiteness of $\nu(\Pi)=\nu(A)$.

Lemma 3.5. (a) If $\xi<e_{+}$then $\nu_{Q}(\xi)=\infty$.
(b) If e_{+}is the limit of eigenvalues from the right, then $\nu_{Q}\left(e_{+}\right)=\infty$.
(c) If Ω is a real interval in $\rho(Q)$ then $\nu_{Q}(\xi)$ is constant for $\xi \in \Omega$.
(d) ν_{Q} is nonincreasing on $] e_{+}, \eta_{+}[$.
(e) If e_{+}is a-positive for Q, then ν_{Q} is nonincreasing on $]-\infty, \eta_{+}[$.

Proof. (a) Suppose there exists a closed interval $\left.\Omega_{1} \subset\right] \xi, e_{+}[$so that dim $\Pi_{1}=\infty$ and $\nu\left(\Pi_{1}\right)=0$, where Π_{1} is the range of $E\left(\Omega_{1}\right)$. Then for all nonzero $x \in \Pi_{1}$,

$$
\begin{equation*}
((\xi I-Q) x, x)_{a}=\int_{\Omega_{1}}(\xi-\theta)(d E(\theta) x, x)_{a}<0 \tag{3.5}
\end{equation*}
$$

Suppose such an interval Ω_{1} does not exist. It follows that e_{+}is a limit from the right of (a-positive) eigenvalues ξ_{j}, say. If e_{j} are the corresponding eigenvectors and $x=\Sigma_{j} x_{j} e_{j}$, then

$$
((\xi I-Q) x, x)_{a}=\Sigma_{j}\left(\xi-\xi_{j}\right)\left|x_{j}\right|^{2}\left(e_{j}, e_{j}\right)_{a}<0
$$

(b) Set $\xi=e_{+}$above.
(c) This is a consequence of [14, Lemma 2.4].
(d) Choose $\theta \in] e_{+}, \xi\left[\right.$ and write $\left.\left.\Omega_{1}=\right]-\infty, \theta\right]$ and $\left.\Omega_{2}=\right] \theta, \infty\left[\right.$. Let Π_{j} be the range of $E\left(\Omega_{j}\right)$ and write $Q_{j}=\left.Q\right|_{\Pi_{j}}, j=1,2$. Then $\nu_{Q_{1}}$ is constant near ξ by (c), and $\nu_{Q_{2}}$ is nonincreasing near ξ by (2.6). By (c), $\nu_{Q_{n}}$ is constant over \mathbf{R}, so the result follows from $\nu_{Q}=\nu_{Q_{n}}+\nu_{Q_{1}}+\nu_{Q_{2}}$.
(e) If e_{+}is a limit of eigenvalues from the right, then an argument as for (3.5) shows that $\nu_{Q}\left(e_{+}\right)=\infty$, and the finite dimensional theory (2.6) shows that ν_{Q} is nonincreasing on a right neighbourhood of e_{+}. The result then follows from (a).

If $\left.] e_{+}, \theta\right]$ contains no eigenvalues for some $\theta>e_{+}$, we define Q_{j} as in the proof of (d). Since Q_{1} has no eigenvalues greater than $e_{+}, \nu_{Q_{1}}(\xi)=0$ for $\xi \geq e_{+}$. Since $\nu_{Q_{2}}$ is constant on $\left[e_{+}, \theta\left[\right.\right.$ by (c), it follows that ν_{Q} is also constant on this interval, and the result now follows from (c).

We shall also need a dual result, involving the dimension $\pi_{Q}(\xi)$ of a maximal subspace on which $\xi I-Q$ is positive definite. The proof is similar and will be omitted.

Corollary 3.6. π_{Q} is constant on $\rho(Q)$, is infinite for $\xi>e_{-}$and even for $\xi \geq e_{-}$if e_{-}is a limit from the left of a sequence of eigenvalues. If $e_{-}>\eta_{-} \in \rho(Q)$ and $] \eta_{-}, e_{-}[$contains only a-positive points, then π is nondecreasing on $] \eta_{-}, e_{-}\left[\right.$. If in addition e_{-}is $a-$ positive then π is also nondecreasing at e_{-}.
3.2. Formulae for $\nu(a, b)$. The next step is to relate the above properties of Q to the form pencil $a-\lambda b$. We let $\left(a_{n}, b_{n}\right)$ be the restriction of (a, b) to Π_{n}, and with $\nu(a)$ defined as for $\nu(A)$ we write $\nu_{n}(\lambda)=\nu\left(a_{n}-\lambda b_{n}\right)$ and $\nu_{n}=$ $\min \left\{\nu_{n}(\lambda): \lambda \in \mathbf{R}\right\}$. (Simpler constructions will be given in 3.3 below). We discuss $\nu(a, b)$ in three separate cases.
3.2.1. $e_{-}>0$, i.e., Q is qup.

In this case we choose η_{+}as for Lemma 3.5 and we set $\left.J_{f}=\right]-\infty, \eta_{+}^{-1}\left[, J_{e}=\right.$ $\left[\eta_{+}^{-1}, \infty\left[\right.\right.$. Note that $0<\eta_{+}^{-1}<e_{+}^{-1}, J_{f}$ corresponds to a finite set of eigenvalues, and J_{e} contains the essential spectrum $\left\{\lambda: \lambda^{-1} \in \sigma_{e}(Q)\right\}$. We use the notation $\Omega_{f}=\left\{\xi: \xi^{-1} \in J_{f}\right\} \cap \sigma(Q), Q_{f}=\left.Q\right|_{\Pi_{f}}$ where Π_{f} is the range of $E\left(\Omega_{f}\right)$ and similarly for Q_{e}. We define corresponding $a_{f}=\left.a\right|_{\Pi_{f}}, a_{e}$ etc., and we write $\nu_{f}=\min \left\{\nu_{f}(\lambda): \lambda \in \mathbf{R}\right\}$ with λ_{f} as the corresponding minimizer, and similarly for ν_{e}. Finally we write

$$
\delta=\nu\left(e_{+}\right)-\nu_{f}
$$

Theorem 3.7. With the above notation $\lambda_{f} \in J_{f}$ and $\nu\left(\lambda_{f}\right)=\nu_{n}+\nu_{f}+\nu_{e}$. If $\delta \geq 0$, then $\nu(a, b)=\nu\left(\lambda_{f}\right)$ and if $\delta<0$, then $\nu(a, b)=\nu\left(\lambda_{f}\right)+\delta$.

Proof. Since $\nu(a-\lambda b)=\nu\left(\frac{1}{\lambda} a-b\right)$ for $\lambda>0$, we obtain

$$
\begin{equation*}
\nu(a-\lambda b)=\nu_{Q}\left(\lambda^{-1}\right) \text { if } \lambda>0 \tag{3.6}
\end{equation*}
$$

with similar equations for the restrictions Q_{n} to Π_{n}, etc. Replacing Q by Q_{f} and applying Lemma 3.5 (c), we see that $\lambda_{f} \in J_{f}$. Replacing Q by Q_{n} instead, we see that $\nu_{n}(\lambda)$ is a constant $\left(\nu_{n}\right)$ for all (real) λ. Applying Lemma 3.5 (a) to Q_{e}, we see that $\nu_{e}(\lambda)$, and hence $\nu(\lambda)$, is infinite for $\lambda>e_{+}^{-1}$, so it suffices to consider $\lambda \leq e_{+}^{-1}$.

By definition and Lemma 3.5(c), ν_{f} is minimized at $\lambda_{f} \in J_{f}$ and is constant on $\left[\eta^{-1}, e_{+}^{-1}\right]$. By Lemma $3.5(\mathrm{c})$ and (d), ν_{e} is constant on J_{f} and is nondecreasing on $\left[\eta^{-1}, e_{+}^{-1}[\right.$. Thus

$$
\begin{equation*}
\nu(\lambda)=\nu_{n}(\lambda)+\nu_{f}(\lambda)+\nu_{e}(\lambda) \tag{3.7}
\end{equation*}
$$

has a minimizer at either λ_{f} or e_{+}^{-1}. If $\delta \geq 0, \lambda_{f}$ is a minimizer, and if $\delta<0$ then we must use e_{+}^{-1}.

Corollary 3.8. If e_{+}is either
(i) a-positive (see Definition 3.2), or
(ii) a limit from the right of eigenvalues of Q
then $\delta \geq 0$ and $\nu(a, b)=\nu_{n}+\nu_{f}+\nu_{e}$.
Proof. In case (i), Lemma 3.5(e) shows that ν_{e} is nondecreasing at e_{+}^{-1}, and in case (ii), $\nu_{e}\left(e_{+}\right)=\infty$ by Lemma 3.5(b). Thus the previous proof shows that λ_{f} must be a minimizer of ν. This also implies $\delta \geq 0$.
3.2.2. $e_{+}<0$, i.e., $-Q$ is qup.

In this case we define η_{-}as for Corollary 3.6, with $\left.J_{e}=\right]-\infty, \eta_{-}^{-1}$] and $\left.J_{f}=\right] \eta_{-}^{-1}, \infty[$. The remaining notation is then as before except that

$$
\delta=\nu\left(e_{-}\right)-\nu_{f}
$$

For $\lambda<0$, from $\nu(a-\lambda b)=\nu\left(-\frac{1}{\lambda} a+b\right)=\pi\left(\frac{1}{\lambda} a-b\right)$ it follows that

$$
\nu(a-\lambda b)=\pi_{Q}\left(\lambda^{-1}\right) \text { if } \lambda<0
$$

and using this and Corollary 3.6 instead of (3.9) and Lemma 3.5 we obtain
Theorem 3.9. Theorem 3.7 holds in the above notation, and if e_{-}is a-positive or is a limit from the left of eigenvalues for Q then $\delta \geq 0$.

3.2.3. $e_{-} \leq 0 \leq e_{+}$.

This case includes the possibility that Q is compact, which is satisfied in many applications. Note that then $e_{-}=e_{+}=0$ is a limit of eigenvalues for Q, except in finite dimensions. We choose $\eta_{ \pm}$as before and we define $\left.J_{f}=\right] \eta_{-}^{-1}, \eta_{+}^{-1}\left[\right.$ and $J_{e}=\left[-\infty, \eta_{-}^{-1}\right] \cup\left[\eta_{+}^{-1}, \infty\right]$. The remaining notation is as before, except that we set

$$
\begin{equation*}
\delta=\min \left\{\delta_{-}, \delta_{+}\right\}, \quad \text { where } \delta_{ \pm}=\nu\left(e_{ \pm}\right)-\nu_{f} \tag{3.8}
\end{equation*}
$$

ThEOREM 3.10. Theorem 3.7 remains valid, and if either of $e_{ \pm}$is a positive (or a limit of eigenvalues from the appropriate side) for Q, then the corresponding $\delta_{ \pm} \geq 0$.

Proof. The proof is similar to that of Theorem 3.7, except that now J_{f}, on which $\nu_{e}(\lambda)$ is constant, has two finite endpoints $e_{ \pm}$, so both they and λ_{f} are now potential minimizers of ν. If $\delta \geq 0$, then λ_{f} is a minimizer. If δ_{-}(resp. $\left.\delta_{+}\right)=\delta<0$, then $e_{-}\left(\right.$resp. $\left.e_{+}\right)$is a minimizer.
3.3. Calculation of $\nu(A, B)$. We now carry the analysis over to the original (A, B) setting. We note that

$$
\begin{equation*}
\text { (1.2) is equivalent to } Q x=\lambda^{-1} x \tag{3.9}
\end{equation*}
$$

(if we allow $\lambda^{-1}=0$, so $\lambda=\infty$).
Our next aim is to calculate the quantities in Theorem 3.7, in terms of the partition of $\sigma(A, B)$ used in 3.2. We start with the sum Σ_{n} of the root
subspaces for (A, B) corresponding to eigenvalues in J_{n}, and we denote the dimension of Σ_{n} by $2 N_{n}$. We denote by N_{e} the sum of the dimensions of maximal A-nonpositive subspaces of the root subspaces corresponding to J_{e}. Note that ∞ is included if B is not $1-1$. Finally we denote by c the number of real $\left(\lambda_{j}^{+}, \lambda_{k}^{-}\right)$pairs cancelled from J_{f} (we extend the definition according to Remark 2.3 if necessary). Note that c depends on the choice of J_{f}, i.e. of $\eta_{ \pm}$. The number δ is defined by (3.8).

Theorem 3.11. If $\delta \geq 0$, then

$$
\begin{equation*}
\nu(A, B)=N_{n}+c+N_{e} \tag{3.10}
\end{equation*}
$$

Proof. By (3.9) and Section 2, $\nu_{n}=N_{n}$ and $\nu_{f}=c$. Note that $\sigma(A, B) \cap$ J_{f} consists of eigenvalues of finite (algebraic) multiplicity and

$$
\begin{equation*}
0 \in J_{f} \tag{3.11}
\end{equation*}
$$

since Ω_{f} is bounded. Since $\nu_{e}(\lambda)$ is constant for $\lambda \in J_{f}$, we can evaluate it at $\lambda=0$ by (3.11), so $\nu_{e}=\nu\left(\Pi_{e}\right)$. Now any contribution to $\nu\left(\Pi_{e}\right)$ must come from a critical point (necessarily an eigenvalue) for Q, or from a negative type eigenvalue. By (3.9) and Pontryagin's invariant subspace theorem, such contributions are precisely those counted in N_{e}. The result now follows from Theorem 3.7.

Remark. The N_{e} term includes the contribution N_{∞}^{-}from the root subspace at ∞ (as in Section 2). Indeed N_{e} reduces to N_{∞}^{-}in the finite dimensional case, and in general N_{e} can be regarded as the contribution from a neighbourhood of ∞.

Alternatively, one could view the contributions from the other root subspaces corresponding to J_{e} in the same way as those corresponding to the (finite) eigenvalues in 2.1 and 2.2, i.e., via the quadratic form b (see also Theorem 3.14 below). Explicit calculations can be carried out using the blocks (2.10) of the canonical form.

Corollary 3.12. If Q is compact, then

$$
\nu(A, B)=N_{n}+c+N_{\infty}^{-}
$$

where N_{∞}^{-}is the maximal dimension of $a-n e g a t i v e ~ s u b s p a c e s ~ o f ~ t h e ~ r o o t ~ s u b-~$ space at ∞. In particular, this holds if A has compact resolvent.

Proof. It follows from Theorem 3.10 that in this case $\delta \geq 0$, hence by Theorem 3.11 and $N_{e}=N_{\infty}^{-}$the first conclusion follows.

For the final contention, we assume via (3.4) that $S=B A^{\prime}$ is bounded on H, where $A^{\prime}=|A|^{-1 / 2} \operatorname{sgn} A$. Moreover $T=\left.A^{\prime} B\right|_{\Pi}$ is defined on all of Π by A2 and

$$
\begin{equation*}
\|T x\|_{a} \leq\|S\|\|x\|_{a} \tag{3.12}
\end{equation*}
$$

Finally if x_{n} converges weakly to zero in Π then by compactness of $|A|^{-1 / 2}$, $x_{n} \rightarrow 0$ in H, i.e., $|A|^{-1 / 2} x_{n} \rightarrow 0$ in Π, and so $\left.|A|^{-1 / 2}\right|_{\Pi}$ is a compact operator on Π. With (3.12) this shows that Q is compact.

We now consider the case $\delta<0$. In fact we assume $\delta_{+}=\delta<0$, (the case $\delta_{-}=\delta<0$ being analogous). We also assume that the root subspace R_{+}at e_{+}^{-1} is a-nondegenerate (i.e., e_{+}is not a singular critical point for Q, cf. [8, Theorem 3.1]. This last assumption will be examined in the remarks after Theorem 3.13 below). In particular, there is a nondegenerate span Σ of Jordan chains in R_{+}whose a-orthocomplement is a-positive (cf. [8, Theorem 3.2]).

At this point it is convenient to replace the decomposition $\Pi_{n}^{\perp}=\Pi_{f} \oplus_{a} \Pi_{e}$ by $\Pi_{n}^{\perp}=\Pi_{f}^{\prime} \oplus_{a} \Pi_{e}^{\prime}$ where $\Pi_{f}^{\prime}=\Pi_{f} \oplus_{a} \Sigma, \Pi_{f}^{\prime}=\Pi_{f} \ominus_{a} \Sigma$.
Let J be an interval containing finitely many eigenvalues. As before, $\pi(J)$ $(\nu(J)$, resp.) denotes the dimension of a maximal a-positive (a-negative, resp.) subspace of the sum of the corresponding algebraic eigenspaces.

Theorem 3.13. Under the above assumptions, $\nu(A, B)=N_{n}+c+N_{e}+$ $\pi\left(\left[\lambda_{f}, e_{+}^{-1}[)-\nu(] \lambda_{f}, e_{+}^{-1}\right]\right)$.

Remark. The final term includes the contribution from Σ, which we may assume has been absorbed into Π_{f} as above.

Proof. By Theorem 3.7, $\nu(A, B)=\nu\left(\lambda_{f}\right)+\delta$, so by Theorem 3.11, it is enough to show that the $\pi(\cdot)$ and $\nu(\cdot)$ terms in the statement make up δ. Since $\nu_{n}(\lambda)$ is constant, δ may be split into $\delta_{f}+\delta_{e}$ where

$$
\delta_{g}=\nu_{g}\left(e_{+}^{-1}\right)-\nu_{g}\left(\lambda_{f}\right)
$$

and $g=f$ or e. An easy application of (2.7) shows that $\delta_{f}=\pi\left(\left[\lambda_{f}, e_{+}^{-1}[)-\right.\right.$ $\nu(] \lambda_{f}, e_{+}^{-1}[)$ (recall that there are no a-negative eigenvalues in $] \eta^{-1}, e_{+}^{-1}[)$. Similarly (using the above absorption to apply (2.7) again) $\delta_{e}=-\nu(\Sigma)=$ $-\nu\left(\left\{e_{+}^{-1}\right\}\right)$ according to our convention.

REMARK. If the minimizer $e_{ \pm}$is a singular critical point, from $\delta_{+}<0$ we have $\nu(A, B)=\nu\left(e_{ \pm}^{-1}\right)$; for nontriviality we assume that this index is finite. Using (3.9) we see that it is enough to calculate $\nu_{Q}\left(e_{ \pm}\right)$. For this we use a nonnegative perturbation as in [23], so that the new Q has no singular critical points. If the perturbation is small enough, then $\nu_{Q}\left(e_{ \pm}\right)$is unchanged, so we may perform the calculation as before.

Remark. In [14, Section 4] it is shown how to calculate $\nu_{Q}(\lambda)$ when λ is a regular critical point, but in the singular case only an inequality is given. Thus the methods here appear to improve on [14] in this respect.
3.4. Krein space setting. If we assume

A0. B is 1-1,
then an alternative approach is possible, avoiding the reciprocals used in the previous constructions. We indicate the main steps as follows.
(i) We continue to assume $\mathbf{A 1}$ and we replace $\mathbf{A 2}$ by A2 $^{\prime}$. $D(A) \subset D(B)$ and $A x_{n} \rightarrow 0$ implies $B x_{n} \rightarrow 0$ for all $x_{n} \in D(A)$.

It follows from $\mathbf{A 0}, \mathbf{A 1}$ and $\mathbf{A 2} \mathbf{2}^{\prime}$ that A has a bounded inverse on H. Arguing as for (3.4), we see that $B A^{-1}$ is bounded, say $\|B x\| \leq c\|A x\|$ for all $x \in D(A)$. By Heinz's inequality, $b(x) \leq c^{1 / 2} a(x)$ and we deduce (cf. [18, p.572])

A2 ${ }^{\prime \prime} . D(a) \subset D(b)$ and $a\left(x_{n}\right) \rightarrow 0$ implies $b\left(x_{n}\right) \rightarrow 0$ for all $x_{n} \in D(a)$.
Here $D(a)$ is as before and similarly $D(b)=D\left(|B|^{1 / 2}\right)$.
(ii) Arguing again as for (3.4), we see from $\mathbf{A} 2^{\prime \prime}$ that $V=|B|^{1 / 2} A^{\prime}$ is bounded on H, where $A^{\prime}=|A|^{-1 / 2} \operatorname{sgn} A$. Thus

$$
\begin{equation*}
\left\|A^{-1} B x\right\|_{b} \leq\|V\|^{2}\|x\|_{b}, \text { for all } x \in D(B) \tag{3.13}
\end{equation*}
$$

We write $(x, y)_{b}=b(x, y),\|x\|_{b}=\left\||B|^{1 / 2} x\right\|$ etc., and we complete $\left(D(b),\|\cdot\|_{b}\right)$ to a Krein space \mathcal{K}. Evidently $A^{-1} B$ is symmetric on the dense subspace $D(B)$ of \mathcal{K}. Thus by (3.13), $A^{-1} B$ extends to a bounded symmetric operator \bar{Q} on \mathcal{K}. Moreover by construction of \mathcal{K}, \bar{Q} is 1-1.
(iii) From the above considerations, $R:=\bar{Q}^{-1}$ is self adjoint and boundedly invertible in \mathcal{K}. Moreover the range of \bar{Q} is dense, and since it is contained in the closure of the range of $A^{-1} B$, we see that R is an extension of $B^{-1} A$ which is densely defined in \mathcal{K}. Noting that $D\left(B^{-1} A\right) \subset D(A) \subset D(B)$, we have

$$
\begin{equation*}
((A-\lambda B) x, x)=b((R-\lambda I) x, x) \tag{3.14}
\end{equation*}
$$

for all $x \in D\left(B^{-1} A\right)$, which enables us to connect $\nu(A, B)$ with $\nu_{b}(R-\lambda I)$.
(iv) Setting $\lambda=0$ in (3.14), we have

$$
b(y, \bar{Q} y)=(A \bar{Q} y, \bar{Q} y)=\left(B y, A^{-1} B y\right)
$$

for all $y=B^{-1} A x$, and using boundedness of \bar{Q} we see that

$$
\nu(R)=\nu(\bar{Q})=\nu\left(A^{-1}\right)=\nu(A)
$$

In particular, R is qup in \mathcal{K}, and, being invertible, is definitizable, cf. [13]. Thus the total algebraic multiplicity corresponding to the nonreal eigenvalues of R is finite, the sets $\sigma_{+}(R) \cap \mathbf{R}_{-}$and $\sigma_{-}(R) \cap \mathbf{R}_{+}$consist of finitely many isolated eigenvalues of finite total multiplicity and all finite critical points of R are of finite index. Moreover R has a spectral function F with critical points, see [22].
(v) Let J_{f} be the interval defined in Subsection 3.3. Then J_{f} does not intersect the essential spectrum of R. Define

$$
m=\inf J_{f} \quad, \quad M=\sup J_{f}
$$

The number c was defined in Subsection 3.3 using b-signs of eigenvectors (and the perturbations of Section 2 if necessary). Since the inner product in \mathcal{K} is generated by b, an analogue of c can be defined for the eigenvalues of R. Similarly an analogue of N_{n} gives the sum of dimensions of the algebraic eigenspaces of the nonreal eigenvalues of R with positive imaginary parts.

Since R is qup, there are finitely many positive (negative, resp.) points λ such that for all intervals J containing λ, and not having critical points of R as one of its endpoints, the space $F(J) \mathcal{K}$ has a maximal negative (positive, resp.) subspace of finite dimension, say $\kappa_{-}(J)\left(\kappa_{+}(J)\right)$, resp.). Let $\kappa_{-}(\lambda)$ (resp. $\kappa_{+}(\lambda)$) be the minimum of all the numbers $\kappa_{-}(J)$ (resp. $\kappa_{+}(J)$)) when J varies over such intervals J.

We can now reformulate Theorem 3.11 for the present situation.
Theorem 3.14. If B is $1-1$ then

$$
\begin{equation*}
\min \nu_{b}(R-\lambda I)=N_{n}+c+\sum_{\lambda<0} \kappa_{+}(\lambda)+\sum_{\lambda>0} \kappa_{-}(\lambda) \tag{3.15}
\end{equation*}
$$

If $m=-\infty$, then the first sum on the right-hand side is absent; if $M=\infty$, then the second sum on the right-hand side is absent.

Proof. The proof is similar to the proof Theorem 3.11, using R and F instead of Q and E : the details will be omitted.

Remarks.

1. This approach offers advantages of directness. For example, no reciprocals are involved, and the underlying space is based on the form b, which in typical appliications is easier to evaluate then a. On the other hand, B must be 1-1 and it may be difficult to relate R to the original data (A, B).
2. In view of Lemma 3.2, A1-A3 imply A2 ${ }^{\prime}$. Thus if A0 holds then the assumptions of 3.3 are stronger than those of 3.4 , and these are in turn stronger than $\mathbf{A} \mathbf{2}^{\prime \prime}$, which would be appropriate for the setting of (3.3).

4. Application to variational problems

In this section we shall relate the minimal index to several formulae in the literature, mostly from the last decade, characterizing eigenvalues variationally, but with "index shifts". We start by defining the B-positive multiplicity of a semisimple eigenvalue λ of (A, B) is defined as the dimension of a maximal B-positive subspace of $N(A-\lambda B)$. Let $\lambda_{j}^{+}\left(\right.$resp. $\left.\lambda_{j}^{-}\right)$be the $j^{t h}$ eigenvalue of (A, B), listed in nondecreasing order and counted by B-positive (resp. negative) multiplicity. Next let

$$
\sigma_{j}^{+}=\sup \{\inf \{(x, A x):(x, B x)=1, \quad x \in S \cap D(A)\}: \operatorname{codim} S=j-1\}
$$

where we interpret $\inf \emptyset$ as $-\infty$. A classical variational formula gives $\lambda_{j}^{+}=\sigma_{j}^{+}$ (with sup and inf attained) in the "right definite" case $B>0$, and this (with
sup attained) turns out to hold also in the left definite case. In recursive form, this dates back to Richardson [27], but in max-inf form it seems quite recent: cf. [21] for matrices and [7, 10] for operators. Earlier related work can also be found in [19, 29].
4.1. Cancellation. The "cancellation" procedure of [11] is quite recent, and arose out of attempts to characterize eigenvalues λ_{j}^{+}of (A, B) in the case (which cannot occur in the above situations) where λ_{k}^{-}exist greater than λ_{j}^{+}. In the case where a sequence of c eigenvalues λ_{k}^{-}is preceded by c eigenvalues λ_{l}^{+}, a variational principle of the form

$$
\begin{equation*}
\lambda_{j}^{+}=\sigma_{j+c}^{+} \tag{4.1}
\end{equation*}
$$

is established in [10] for certain matrix and qup operator pencils. This formula is extended to the general matrix pencil with semisimple real eigenvalues and B invertible in [11]. In these cases, $n=N_{\infty}^{-}=0$ so Corollary 3.12 gives $\nu(A, B)=c$. In other words, $\nu(A, B)$ is the index shift in (4.1).
4.2. The case $B \geq 0$. An early explicit variational principle with shifted index was given by Allegretto [1]. He considered (1.2) in the form

$$
\begin{equation*}
(-\Delta+q) u=\lambda w u \tag{4.2}
\end{equation*}
$$

with Dirichlet boundary conditions on a smooth domain Ω and a weight function $w \geq 0$ where $w^{-1}(0)$ was a smooth subdomain of Ω. It is easy to see that in this case all eigenvalues are real and B-positive, so $n=c=0$. Moreover Allegretto obtains

$$
\begin{equation*}
\lambda_{j}^{+}=\sigma_{j+d}^{+} \tag{4.3}
\end{equation*}
$$

where d is the number of nonpositive eigenvalues of $-\Delta+q$ on $w^{-1}(0)$. From this one can deduce that $d=N_{\infty}^{-}$and so by Corollary 3.12 the index shift in (4.3) is again $\nu(A, B)$. Actually, related versions of this result can be found in [16] for the minimal oscillation number of a right semidefinite Sturm-Liouville problem and in [6] for asymptotes of two parameter eigencurves for certain self adjoint operator pencils, cf. 4.4 below.
4.3. Maximal definite subspaces. In a recent paper [7] the authors gave a variational principle of the form (4.3) with $d=\kappa_{+}(F)$ where F is a particular subspace of the Krein space K (see 3.4). In fact F is the span of certain root subspaces, and $\kappa_{+}(F)$ can be evaluated via matrices of the form B_{1} in (2.10). Using [11, Lemmas 2.3 and 2.4], one can show that $\kappa_{+}(F)=n+c$, and since in this case B is $1-1$ so $N_{\infty}^{-}=0$, we obtain $d=\nu(A, B)$ for the index shift.

Other authors have considered special cases from different viewpoints. For sufficiently large λ_{j}^{+}and finite dimensional H, Najman and Ye [25] give an expression for d based directly on the sum of the κ_{+}for each individual block in (2.10). Again for sufficiently large λ_{j}^{+}, Allegretto and Mingarelli [2]
study (4.2) and and give $d=k-j$ in (4.3) where k is the eigencurve index for λ_{j}^{+}(so $A-\lambda_{j}^{+} B$ has k nonpositive eigenvalues). The equivalence between this and $d=n+c$ is discussed in [7, Subsection 4.3], but we add here that the "analysis of the eigencurves" mentioned there may be carried out by first replacing A by $A+\mu I$ and then decreasing μ continuously to zero (cf. [5] for this technique).

Recently cases with B noninvertible have been studied for $\operatorname{dim} H<\infty$. See [26] for an extension of [25], $d=\kappa_{+}(F)$ now including a term equivalent to N_{∞}^{-}by a sum over blocks of the form A_{1} in (2.10) (cf. Remark 2.7). In [9] more eigenvalues are characterized, and $d=n+c+N_{\infty}^{-}$is derived explicitly using the results of Section 2.
4.4. Minimal variational index. In the case $B \geq 0$, the eigencurves are graphs of nondecreasing functions, cf. [5]. A certain number (say ν_{0}) of the eigencurves lies entirely above the λ-axis, so the $\left(\nu_{o}+1\right)^{t h}$ eigencurve cuts the λ-axis at the minimal eigenvalue λ_{0}. Since this is also the eigenvalue of minimal index, we see that $\nu_{0}=\nu(A, B)$. An explicit formula for the minimal oscillation count ν_{0} in the SL case (with nonnegative weight) was given in [16], and this was motivation for Allegretto's analysis [1] mentioned above see also [6] where a formula for ν_{0} can be found, including that of [16], and describing eigencurve asymptotes.

An important feature of Allegretto's analysis is that it also gives the "missing" $\sigma_{j}^{+}\left(1 \leq j \leq \nu_{0}\right)$ as $-\infty$. Thus if we define the minimal variational index j_{m} as the minimal j so that σ_{j}^{+}is finite then

$$
j_{m}=\nu(A, B)+1
$$

at least if $B \geq 0$. It turns out, however, that this relation also holds in other cases with B indefinite $[9,11]$, so we obtain a new way of estimating $\nu(A, B)$, directly from approximations to the variational quantities σ_{j}^{+}.

References

[1] Allegretto, W., Second order elliptic equations with degenerate weight, Proc. Amer. Math. Soc. 107(1989), 989-998.
[2] Allegretto, W., Mingarelli, A. B., Boundary problems of the second order with an indefinite weight-function, J. Reine Angew. Math. 398(1989), 1-24.
[3] Atkinson, F.V., Jabon, D., Indefinite Sturm-Liouville problems, Argonne National Lab. reprint ANL-84-73, 1984, pp. 31-45.
[4] Binding, P., A canonical form for self-adjoint pencils in Hilbert space, Int. Equ. Op. Th., 12(1989), 324-342.
[5] Binding, P., Browne, P.J., Applications of two parameter spectral theory to symmetric generalised eigenvalue problems, Applic. Anal. 29(1988), 107-142.
[6] Binding, P., Browne, P. J., Eigencurves for two-parameter self-adjoint ordinary differential equations of even order, J. Diff. Equns 79(1989), 289-303.
[7] Binding, P., Najman, B., A variational principle in Krein space, Trans. Amer. Math. Soc 342(1994), 489-499.
[8] Binding, P., Najman, B., Regularity of finite type critical points for self-adjoint operators in Krein space, Operator Theory: Advances and Applications, Vol. 80, pp. 79-89. Birkhäuser, Basel, 1995.
[9] Binding, P., Najman, B., Ye, Q., A variational principle for eigenvalues of pencils of Hermitian matrices, Int. Equ. Op. Theory 35 (1999), 398-422.
[10] Binding, P., Ye, Q., Variational principles without definiteness conditions, SIAM J. Math. Anal. 22(1991), 1575-1583.
[11] Binding, P., Ye, Q., Variational principles for indefinite eigenvalue problems, Lin. Alg. Appl. 218(1995), 251-262.
[12] Bognár, J., Indefinite Inner Product Spaces, Springer-Verlag, 1974.
[13] Ćurgus, B., Najman, B., Quasi-uniformly positive operators in Krein spaces, Operator Theory: Advances and Applications, Vol. 80, pp. 90-99. Birkhäuser, Basel, 1995.
[14] Dijksma, A., Gheondea, A., On the signatures of selfadjoint pencils, Operator Theory: Advances and Applications, Vol. 80, pp. 112-136. Birkhäuser, Basel, 1995.
[15] Daho, K., Langer, H., Sturm-Liouville operators with an indefinite weight function, Proc. Roy. Soc. Edin. 78A(1977), 161-191.
[16] Everitt, W.K.N., Kwong, M.K., Zettl, A., Oscillation of eigenfunctions of weighted regular Sturm-Liouville problems, J. London Math. Soc., 27(1983), 106-120.
[17] Haupt, O., Über eine Methode zum Beweise von Oszillationstheoremen, Math. Ann., 76(1915), 67-104.
[18] Kato, T., Perturbation Theory for Linear Operators, Springer-Verlag, 1976.
[19] Kühne, R., Über eine Klasse J-selbstadjungierter Operatoren, Math. Ann., 154(1964), 56-69.
[20] Lancaster, P., Shkalikov, A., Damped vibrations of beams and related spectral problems, Can. Appl. Math. Quart., 2(1994), 45-90.
[21] Lancaster, P., Ye, Q., Variational properties and Rayleigh quotient algorithms for symmetric matrix pencils, in Oper. Theory Adv. Appl. 40, Birkhäuser, Basel, pp. 247-278.
[22] Langer, H., Spectral functions of definitizable oprators in Krein space, Lecture Notes in Math. 948(1982), pp.1-46, Springer-Verlag.
[23] Langer, H., Najman, B., Instability of singular critical points of definitizable operators, Int. Equ. Oper. Theory, 28(1997), 60-71.
[24] Mingarelli, A. B., A survey of the regular weighted Sturm-Liouville problem-the nondefinite case, Proc. Workshop Appl. Diff. Equ., Tsinghua Univ., Beijing, 1985.
[25] Najman, B., Ye, Q., A minimax characterization for eigenvalues of hermitian pencils, Lin. Alg. Appl. 144 (1991), 217-230.
[26] Najman, B., Ye, Q., A minimax characterization for eigenvalues of hermitian pencils II, Lin. Alg. Appl., 191(1993), 183-197.
[27] Richardson, R.G.D., Das Jacobische Kriterium der Variationsrechnung und die Oszillationseigenschaften linearer Differentialgleichungen 2 Ordnung, Math. Ann. 68(1910), 279-304.
[28] Richardson, R.G.D., Theorems of oscillation for two linear differential equations of the second order with two parameters, Trans. Amer. Math. Soc., 13(1912), 22-34.
[29] Svarzman, P.A., Inequalities for the eigenvalues of J-Hermitian and J-unitary operators, (Russian), Mat. Issled. 4(1969), 33-45.

[^1]
[^0]: 2000 Mathematics Subject Classification. 15A22, 47A13, 47A56, 49R05.
 Research supported by NSERC of Canada and the I. W. Killam Foundation.
 Professor Najman died suddenly while this work was nearing its final stages. His research was supported by the Ministry of Science of Croatia.

[^1]: Paul Binding
 Department of Mathematics and Statistics
 University of Calgary
 2500 University Drive N.W.
 Calgary, Alberta
 Canada T2N 1N4
 E-mail: binding@ucalgary.ca

 Received: 14.09.98
 Revised: 04.08.99

