FREE STEINER LOOPS

Smile Markovski, Ana Sokolova
Faculty of Sciences and Mathematics, Republic of Macedonia

Abstract. A Steiner loop, or a sloop, is a groupoid $(L ; \cdot, 1)$, where . is a binary operation and 1 is a constant, satisfying the identities $1 \cdot x=$ $x, x \cdot y=y \cdot x, x \cdot(x \cdot y)=y$. There is a one-to-one correspondence between Steiner triple systems and finite sloops.

Two constructions of free objects in the variety of sloops are presented in this paper. They both allow recursive construction of a free sloop with a free base X, provided that X is recursively defined set. The main results besides the constructions, are: Each subsloop of a free sloop is free too. A free sloop \mathbf{S} with a free finite base $X,|X| \geq 3$, has a free subsloop with a free base of any finite cardinality and a free subsloop with a free base of cardinality ω as well; also \mathbf{S} has a (non free) base of any finite cardinality $k \geq|X|$. We also show that the word problem for the variety of sloops is solvable, due to embedding property.

1. Preliminaries

A Steiner loop, or a sloop, is an algebra $(L ; \cdot, 1)$, where \cdot is a binary operation and 1 is a constant, that satisfies the following identities

$$
\begin{align*}
& 1 \cdot x=x \tag{S1}\\
& x \cdot y=y \cdot x \tag{S2}\\
& x \cdot(x \cdot y)=y \tag{S3}
\end{align*}
$$

A Steiner triple system (STS) is a pair (L, M) where L is a finite set, M is a set containing three-element subsets of L with the property that for any $a, b \in L(a \neq b)$ there is a unique $c \in L$ such that $\{a, b, c\} \in M$. It is evident that any STS on a set L enables a construction of a sloop on the set $L \cup\{1\}$ where $1 \notin L$, and vice versa. So, there is a one-to-one correspondence between Steiner triple systems and finite sloops (see [4], [7]).

[^0]The class of involutory commutative loops is defined by the laws:
$1 x=x, x x=1, x y=y x, \forall x \forall y \exists!z \exists!u(x z=y \wedge u x=y)$.
Proposition 1. The variety of sloops is a proper subvariety of the class of involutory commutative loops.

Proof. If $(L ; \cdot, 1)$ is a sloop then the equation $a x=b$ for any $a, b \in L$ has a unique solution $x=a b$. What follows is an example of an involutory commutative loop which is not a sloop:

\cdot	1	a	b	c	d	e
1	1	a	b	c	d	e
a	a	1	c	d	e	b
b	b	c	1	e	a	d
c	c	d	e	1	b	a
d	d	e	a	b	1	c
e	e	b	d	a	c	1

Further on we use the term base for a minimal generating set of an algebra, and free base for a base of an algebra in a given variety which has the universal mapping property. So, a set X is a free base of a sloop $\mathbf{S}=(S ; \cdot, 1)$ iff X is its base and each mapping from X to L, where $\mathbf{L}=(L ; \cdot, 1)$ is a sloop, can be extended to a homomorphism from \mathbf{S} into \mathbf{L}.

2. Free sloops - Construction 1

Let X be a given set. We define a chain of sets X_{i} and a set F_{X} by:

$$
\begin{aligned}
& X_{1}:=X, \quad X_{i+1}:=X_{i} \cup\left\{\{u, v\} \subseteq X_{i} \mid u \neq v, u \notin v, v \notin u\right\} \\
& F_{X}:=\left(\cup\left(X_{i} \mid i \geq 1\right)\right) \cup\{1\} \quad \text { where } 1 \notin \cup\left(X_{i} \mid i \geq 1\right)
\end{aligned}
$$

Proposition 2. An element $x \in X_{i+1} \backslash X_{i}$ iff $x=\{u, v\}$ for some uniquely determined u and v such that $u \in X_{i} \backslash X_{i-1}$ or $v \in X_{i} \backslash X_{i-1}$.

Define an operation $*$ on F_{X} as follows. If $u, v \in F_{X} \backslash\{1\}$ then

$$
u * v:= \begin{cases}\{u, v\} & u \neq v, u \notin v, v \notin u \\ 1 & u=v \\ t & v=\{u, t\} \text { or } u=\{v, t\}\end{cases}
$$

and $1 * u:=u, \quad u * 1:=u, \quad 1 * 1:=1$.
Theorem 2.1. $\quad \mathbf{F}_{X}=\left(F_{X} ; *, 1\right)$ is a free object in the variety of sloops with free base X.

Proof. The commutativity is obvious. We check the identity $u *(u * v)=$ v in the following cases.

1) $u \neq v, u \notin v, v \notin u: \quad u *(u * v)=u *\{u, v\}=v$,
2) $v=\{u, t\}: \quad u *(u * v)=u * t=\{u, t\}=v$,
3) $u=\{v, t\}: \quad u *(u * v)=u * t=v$.

In every other case, the statement is straightforward. So, \mathbf{F}_{X} is a sloop.
It is clear that X is a base of \mathbf{F}_{X} and it is a free one too. Namely, let $(L ; \cdot, 1)$ be a sloop and $\phi: X \longrightarrow L$ a mapping. Define inductively a chain of mappings $\left(\phi_{i}: X_{i} \longrightarrow L \mid i \geq 1\right)$ as follows. $\phi_{1}=\phi$ and if ϕ_{i} is defined, then for $x \in X_{i+1}$,

$$
\phi_{i+1}(x):= \begin{cases}\phi_{i}(x) & x \in X_{i} \\ \phi_{i}(u) \cdot \phi_{i}(v) & x=\{u, v\} \in X_{i+1} \backslash X_{i}\end{cases}
$$

By Proposition 2, ϕ_{i} is well defined for each $i \geq 1$.
Let $\phi^{*}:=\cup\left(\phi_{i} \mid i \geq 1\right) \cup\{(1,1)\}$. In order to prove that ϕ^{*} is a homomorphism we consider the following cases.

1) $u \neq v, u \notin v, v \notin u\left(u, v \in X_{i}\right.$ for some $\left.i \geq 1\right): \quad \phi^{*}(u * v)=$ $\phi^{*}(\{u, v\})=\phi_{i+1}(\{u, v\})=\phi_{i}(u) \cdot \phi_{i}(v)=\phi^{*}(u) \cdot \phi^{*}(v)$.
2) $u=\{v, t\} \in X_{i}$ for some $i>1: \quad \phi^{*}(u * v)=\phi^{*}(t)=\phi_{i-1}(t)=$ $\left(\phi_{i-1}(v) \cdot \phi_{i-1}(t)\right) \cdot \phi_{i-1}(v)=\phi_{i}(\{v, t\}) \cdot \phi_{i-1}(v)=\phi^{*}(u) \cdot \phi^{*}(v)$, since $t=$ $v *(t * v)$ by (S2) and (S3).

The remaining cases are trivial.
Assuming that the set X is already well ordered (i.e. we work with sets of ZFC set theory (see [8])), we define an order on F_{X} extending the order of X, by induction on the number of pairs of braces, in the following way.

The element 1 is the smallest in F_{X}. If $\alpha, \beta \in F_{X}$ and α has smaller number of (pairs of) braces than β, then $\alpha<\beta$. If $\{\alpha, \beta\} \neq\{\gamma, \delta\} \in F_{X}$, $\{\alpha, \beta\},\{\gamma, \delta\}$ have the same number of pairs of braces and $\alpha<\beta, \gamma<\delta$, then we set
$\{\alpha, \beta\}<\{\gamma, \delta\}$ if either $\alpha<\gamma$ or $\alpha=\gamma, \beta<\delta$ and
$\{\gamma, \delta\}<\{\alpha, \beta\}$ if either $\gamma<\alpha$ or $\alpha=\gamma, \delta<\beta$.
Proposition 3. $\left(F_{X}, \leq\right)$ is a well ordered set.
Proof. Let $A \subseteq F_{X}$. If A contains an element without braces, then the smallest element in $(X \cup\{1\}) \cap A$ is the smallest in A. Else, let $k>0$ be the smallest number of braces of an element of A and $A^{\prime}=\{a \in A \mid$ the number of braces in a is $k\}$. Consider the set $A^{\prime \prime}=\left\{u \in F_{X} \mid\{u, v\} \in A^{\prime}, u<v\right\}$. By the inductive hypothesis $A^{\prime \prime}$ has the least element α and $A^{\prime \prime \prime}=\left\{v \in F_{X} \mid\{\alpha, v\} \in\right.$ $\left.A^{\prime}\right\}$ has the least element β. Then $\{\alpha, \beta\}$ is the least element in A^{\prime} i.e. A.

Note that if X is a recursive set, then F_{X} is recursive too.

3. Free sloops - Construction 2

Here we will present another description of the free sloops by using the free term algebra $\operatorname{Term}_{X}=($ Term; $\cdot, 1$) (i.e. the absolutely free algebra) over a set of free generators X, in the signature $\cdot, 1$. Any free sloop with free base
X can be obtained as a quotient algebra of $\operatorname{Term}_{X}([7,2])$. Instead of that, our new construction will use a subset of Term as a universe of a free sloop.

Define inductively a mapping $d: \operatorname{Term} \longrightarrow \mathbb{N}$, where \mathbb{N} is the set of non-negative integers, by:
$d(1):=0, \quad d(x):=0$ for $x \in X, \quad d\left(t_{1} \cdot t_{2}\right):=d\left(t_{1}\right)+d\left(t_{2}\right)+1$.
We shall refer to $d(t)$ as weight of the term $t \in$ Term.
By induction on weight, define a mapping $C:$ Term $\longrightarrow F_{X}$ in the following way:

$$
C(t):= \begin{cases}1 & t=1 \text { or } t=t_{1} \cdot t_{2}, C\left(t_{1}\right)=C\left(t_{2}\right) \\ t & t \in X \\ C\left(t_{1}\right) & t=t_{1} \cdot t_{2}, C\left(t_{2}\right)=1 \\ C\left(t_{2}\right) & t=t_{1} \cdot t_{2}, C\left(t_{1}\right)=1 \\ C\left(t_{3}\right) & t=t_{1} \cdot t_{2}, C\left(t_{2}\right)=\left\{C\left(t_{1}\right), C\left(t_{3}\right)\right\} \text { or } \\ & t=t_{1} \cdot t_{2}, C\left(t_{1}\right)=\left\{C\left(t_{2}\right), C\left(t_{3}\right)\right\} \\ \left\{C\left(t_{1}\right), C\left(t_{2}\right)\right\} & t=t_{1} \cdot t_{2} \text { and none of the previous holds }\end{cases}
$$

Proposition 4. The mapping C is an epimorphism from Term_{X} onto \mathbf{F}_{X}.

Now, by the homomorphism theorem we have $\operatorname{Term}_{X} / k e r C \cong \mathbf{F}_{X}$. Further on we will determine a canonical representative for each congruence class as follows.

Assuming that X is a well ordered set we define a mapping $T: F_{X} \longrightarrow$ Term using the well ordering of F_{X}, by:
$T(1):=1, \quad T(x):=x$ for $x \in X, \quad T(\{u, v\}):=T(u) \cdot T(v)$ where $u<v$.
Proposition 5. T is injective.
Proposition 6. $T C T=T, \quad C T C=C$.
Proof. Let $\alpha \in F_{X}$. If $\alpha=1$ or $\alpha \in X$, the statement holds trivially. Let $\alpha=\{u, v\}, u, v \in F_{X}, u<v$. Assume that the statement holds for any element of F_{X} smaller than α. So, $T C T(u)=T(u), T C T(v)=T(v)$. Then $C T(u)=u, C T(v)=v$ by Proposition 5, and since $\alpha \in F_{X}$ we have $C T(u) \neq C T(v), C T(u) \notin C T(v), C T(v) \notin C T(u)$. Hence, $T C T(\alpha)=$ $T C(T(u) \cdot T(v))=T(\{C T(u), C T(v)\})=T(\{u, v\})=T(\alpha)$.

Now, $C T C=C$ follows by Proposition 5 and $T C T=T$.
For an element $t \in$ Term we say that it is reduced if $T C(t)=t$. The mapping $R=T C$ will be called reduction. Note that $(R(t), t) \in \operatorname{ker} C$ and in each congruence class there is only one reduced element which will be the canonical representative of the class.

The mapping R has the following properties.
Proposition 7. $\quad R^{n}=R$, for each $n \geq 2$, and for all $t, s \in$ Term we have:
(i) $R(1 \cdot t)=R(t)$;
(ii) $\quad R(t \cdot s)=R(s \cdot t)$;
(iii) $R(t \cdot(t \cdot s))=R(s)$;
(iv) $R(t \cdot s)=t \cdot s \Longrightarrow R(t)=t, R(s)=s$;
(v) $\quad R(R(t) \cdot s)=R(t \cdot s)$;
(vi) $\quad R(R(t) \cdot R(s))=R(t \cdot s)$.

Proof. $\quad R^{n}=R$ for $n \geq 2$ follows from Proposition 6. (i), (ii) and (iii) are straightforward since C is a homomorphism and \mathbf{F}_{X} is a sloop, and (vi) is a consequence of (ii) and (v).
(iv) $R(t \cdot s)=T C(t \cdot s)=t \cdot s$ implies that $C(t \cdot s)=\{\alpha, \beta\}$ where $\alpha<\beta, T(\alpha)=t, T(\beta)=s$. Now, $T C(t)=T C T(\alpha)=T(\alpha)=t$ by Proposition 6, and in the same way $T C(s)=s$.
(v) Since $C R(t)=C T C(t)=C(t)$ we have
$C(R(t) \cdot s)= \begin{cases}1 & C(t)=C(s) \\ C(s) & C(t)=1 \\ C(t) & C(s)=1 \\ C(l) & C(t)=\{C(s), C(l)\} \text { or } C(s)=\{C(t), C(l)\} \\ \{C(t), C(s)\} & \text { otherwise }\end{cases}$
i.e. $C(R(t) \cdot s)=C(t \cdot s)$ and hence $T C(R(t) \cdot s)=T C(t \cdot s)$.

Let G_{X} be the set of reduced terms i.e. $G_{X}=R($ Term $)=T\left(F_{X}\right)$. Define an operation \circ on G_{X} by

$$
t \circ s:=R(t \cdot s) \text { for all } t, s \in G_{X}
$$

Theorem 3.1. $\quad \mathbf{G}_{X}=\left(G_{X} ; \circ, 1\right)$ is a free sloop with free base X.
Proof. We will prove that the bijective mapping T is an isomorphism between $\left(F_{X} ; *, 1\right)$ and $\left(G_{X} ; \circ, 1\right)$. For each $t, s \in$ Term $_{X}$ by Proposition 4 and 5 we have that $t / \operatorname{ker} C \cdot s / \operatorname{ker} C=(t \cdot s) / \operatorname{ker} C=(R(t \cdot s)) / \operatorname{ker} C=$ $R(R(t) \cdot R(s)) / \operatorname{ker} C=(R(t) \circ R(s)) / \operatorname{ker} C$. Since $\operatorname{Term}_{X} / \operatorname{ker} C \cong \mathbf{F}_{X}$ we obtain $C(t) * C(s)=C(R(t) \circ R(s))$ and if $u=C(t), v=C(s)$, then $T(u *$ $v)=T(C(t) * C(s))=T(C(R(t) \circ R(s)))=R(R(t) \circ R(s))=R(t) \circ R(s)=$ $T C(t) \circ T C(s)=T(u) \circ T(v)$.

Note that if X is a recursive set, then since C and T are recursively defined, we have that G_{X} is a recursive set too.

4. Some properties of free sloops

Proposition 8. If X is a free base of a free sloop \mathbf{S}, then \mathbf{S} is finite if and only if $|X| \leq 2$.

Proof. $S=\{1\}$ for $X=\emptyset, S=\{1, a\}$ for $X=\{a\}$ and $S=\{1, a, b, a b\}$ for $X=\{a, b\}$. If $X=\{a, b, c, \ldots\}$ where $|\{a, b, c\}|=3$, consider the set $M=\left\{x_{i} \mid i \geq 1\right\}$ where $x_{1}=a, x_{2}=b, x_{2 n+1}=a x_{2 n}, x_{2 n+2}=c x_{2 n+1}$ for $n \geq 1$. We have $M \subseteq S$, and M is infinite since $x_{i} \neq x_{j}$ for $i \neq j$.

Theorem 4.1. Every subsloop of a free sloop is free too.
Proof. Let $\mathbf{G}_{X}=\left(G_{X} ; \circ, 1\right)$ be a free sloop as in Construction 2, and let G^{\prime} be a subsloop of \mathbf{G}_{X}. Recall that $R(t)=t$ for each $t \in G_{X}$.

If $x, y \in G^{\prime} \backslash\{1\}$, then we say that x is a divisor of y if and only if there is a $t \in$ Term $\backslash\{1\}$ such that $y=t \cdot x$ or $y=x \cdot t$. Then also $t \in G^{\prime} \backslash\{1\}$, since by Proposition 7, (iv), the definition of \circ and (S2), (S3) we have $t \in G_{X}$ and $t=x \circ y$. Note that if x is a divisor of y then $d(x)<d(y)$, which implies that any sequence $t_{1}, t_{2}, \ldots, t_{n}, \ldots$ such that t_{i+1} is a divisor of $t_{i}, i \geq 1$, is finite.

We shall prove that $B=\left\{t \in G^{\prime} \backslash\{1\} \mid t\right.$ has no divisors $\}$ is a free base for G^{\prime}.

At first, by an induction on weight we show that B is a generating set of G^{\prime}. Let $z \in G^{\prime} \backslash\{1\}$. If $z \notin B$, then z has divisors, i.e. $z=x \cdot y$ for some $x, y \in G^{\prime}$ and $z=R(z)=R(x \cdot y)=x \circ y$. By the inductive hypothesis x and y are generated by B and so is z.

Next we show that B is a base of G^{\prime}. Namely, let $b \in B$ and let $G^{\prime \prime}$ be the subsloop of G^{\prime} generated by $B \backslash\{b\}$. Then $G^{\prime \prime}=\cup\left(G_{i}^{\prime \prime} \mid i \geq 1\right)$ where $G_{1}^{\prime \prime}=B \backslash\{b\}, G_{i+1}^{\prime \prime}=\left\{t \circ s \mid t, s \in G_{i}^{\prime \prime}\right\}$. Now, $b \notin G_{2}^{\prime \prime}$ since if $b=t \circ s$ for some $t, s \in G_{1}^{\prime \prime}=B \backslash\{b\}$, then $b=t \cdot s$. If $b \in G_{i+1}^{\prime \prime} \backslash G_{i}^{\prime \prime}$ for some $i \geq 2$, then $b=t \circ s$ for some $t, s \in G_{i}^{\prime \prime}$ such that $t \in G_{i}^{\prime \prime} \backslash G_{i-1}^{\prime \prime}$ (or $s \in G_{i}^{\prime \prime} \backslash G_{i-1}^{\prime \prime}$). We have to consider several cases. The case $t=s$ is not possible, since $t \circ t=1$ and $b \neq 1$. If $t=s \circ u$ (or $s=t \circ u$) for some $u \in G_{i-1}^{\prime \prime}$, then $b=u \in G_{i-1}^{\prime \prime}$. The only case left is $b=t \cdot s$, contradicting $b \in B$.

Let $(L ; *, 1)$ be an arbitrary sloop and $f: B \rightarrow L$ a mapping. We extend f to homomorphism $f^{\prime}: G^{\prime} \rightarrow L$ by an induction on weight in the following way: $f^{\prime}(1):=1, f^{\prime}(b):=b$ for each $b \in B, f^{\prime}(t):=f^{\prime}(x) * f^{\prime}(y)$ when $t=x \cdot y \in G^{\prime} \backslash B$.

Then for any $t, s \in G^{\prime}$ we have:

$$
t \circ s=R(t \cdot s)= \begin{cases}1 & t=s \\
s & t=1 \\
t & s=1 \\
l & s=t \cdot l \text { or } s=l \cdot t \text { or } \\
& \begin{array}{l}
t=s \cdot l \text { or } t=l \cdot s
\end{array} \\
t \cdot s & \begin{array}{l}
\text { if none of the previous } \\
\text { holds and } C(t)<C(s) \\
\text { otherwise }
\end{array}\end{cases}
$$

In all of the cases listed, from the definition of f^{\prime} and the fact that $(L ; *, 1)$ is a sloop, it follows that $f^{\prime}(t \circ s)=f^{\prime}(t) * f^{\prime}(s)$.

Corollary 1. Every free sloop with at least 3 element free base has a free subsloop with infinite free base, and a free subsloop with free base of any finite cardinality.

Proof. Let \mathbf{G}_{X} be the free sloop with free base X obtained by the construction 2, and let $a, b, c \in X$. Let $M=\left\{x_{i} \mid i \geq 1\right\} \subseteq$ Term, where $x_{1}=a b, x_{2}=a c, x_{2 n+1}=\left(x_{2 n-1} c\right)\left(x_{2 n} b\right), x_{2 n+2}=\left(x_{2 n} b\right)\left(x_{2 n+1} c\right)$. Let G^{\prime} be the subsloop of \mathbf{G}_{X} generated by M. Since M is the set of elements of G^{\prime} that have no divisors, by Theorem 3 we have that G^{\prime} is a free subsloop of \mathbf{G}_{X} with infinite free base M. Out of the same reason, if $K=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subset$ M, then the subsloop of \mathbf{G}_{X} generated by K is a free one with k-element free base K.

Proposition 9. A free sloop with free base $X,|X| \geq 3$, has infinitely many free bases.

Proof. Let $X=\{a, b, c\}$ be a free base of a free sloop S. Denote a sequence of elements of S by $b_{0}=b, b_{2 k+1}=a b_{2 k}, b_{2 k+2}=c b_{2 k+1}, k \geq 0$. Then $X_{i}=\left\{a, b_{i}, c\right\}$ is a free base of S as well.

The variety of sloops has nontrivial finite algebras, so there are no two isomorphic free sloops with finite free bases of different cardinality [7]. Nevertheless, we will show that any free sloop with finite base $X,|X| \geq 3$, has a base of any finite cardinality greater than $|X|$. Namely, it is a consequence of the following property, where \mathbf{G}_{X} denotes the free sloop of construction 2.

Proposition 10. If $X=\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{k}\right\}, k \geq 3$, is a base of \mathbf{G}_{X}, then \mathbf{G}_{X} has also a base $\left\{b_{1}, b_{2}, b_{3}^{\prime}, b_{3}^{\prime \prime}, b_{4}, \ldots, b_{k}\right\}$, where

$$
b_{3}^{\prime}=\left(b_{1} \cdot\left(b_{2} \cdot b_{3}\right)\right) \cdot\left(b_{2} \cdot\left(b_{1} \cdot b_{3}\right)\right), \quad b_{3}^{\prime \prime}=b_{3}^{\prime} \cdot b_{3}
$$

Proof. Let S be the subsloop of \mathbf{G}_{X} generated by $\left\{b_{1}, b_{2}, b_{3}\right\}$, and let S^{\prime} be the subsloop of \mathbf{G}_{X} generated by $\left\{b_{1}, b_{2}, b_{3}^{\prime}, b_{3}^{\prime \prime}\right\}$. Since $b_{3}=b_{3}^{\prime} \cdot b_{3}^{\prime \prime}$, it is clear that $S^{\prime}=S$. We shall prove that $\left\{b_{1}, b_{2}, b_{3}^{\prime}, b_{3}^{\prime \prime}\right\}$ is a base for S^{\prime}.

Let $S^{\prime \prime}$ be the subsloop of \mathbf{G}_{X} generated by $\left\{b_{1}, b_{2}, b_{3}^{\prime}\right\}$. We shall prove that $b_{3} \notin S^{\prime \prime}$.

For this purpose, first note that $S^{\prime \prime}=\cup\left(S_{i}^{\prime \prime} \mid i \geq 1\right)$ where $S_{1}^{\prime \prime}=\left\{b_{1}, b_{2}, b_{3}^{\prime}\right\}$ and $S_{i+1}^{\prime \prime}=S_{i}^{\prime \prime} \cup\left\{x \circ y \mid x, y \in S_{i}^{\prime \prime}\right\}$.

It is clear that $b_{3}, t_{1}=b_{1} \cdot\left(b_{2} \cdot b_{3}\right), t_{2}=b_{2} \cdot\left(b_{1} \cdot b_{3}\right) \notin S_{2}^{\prime \prime}$. Let $b_{3}, t_{1}, t_{2} \notin S_{i}^{\prime \prime}$. Then $b_{3} \notin S_{i+1}^{\prime \prime}$ since in order to extract b_{3}, b_{3}^{\prime} must be multiplied by t_{1} or t_{2}. Also, since $b_{3} \notin S_{i}^{\prime \prime}$ we have $t_{1}, t_{2} \notin S_{i+1}^{\prime \prime}$.

In a similar manner, it follows that the subsloops of S^{\prime} generated by each of the sets $\left\{b_{1}, b_{2}, b_{3}^{\prime \prime}\right\},\left\{b_{2}, b_{3}^{\prime}, b_{3}^{\prime \prime}\right\},\left\{b_{1}, b_{3}^{\prime}, b_{3}^{\prime \prime}\right\}$ are proper subsets of S^{\prime}.

5. The word problem for sloops

We show that the word problem for the variety of sloops is solvable. Namely, we use the following T. Evans' result ([3]):

If V is a variety with the property that any incomplete V-algebra can be embedded in a V-algebra, then the word problem is solvable for V.

According to Evans' definition of incomplete algebras, an incomplete sloop with universe G is a quadruple $(G, \cdot, 1, D)$, where $D \subseteq G^{2}, 1 \in G, \cdot: D \rightarrow G$
is a mapping (called an incomplete operation on G), satisfying the following conditions:
(IS1) $\quad(x, x) \in D \Longrightarrow x \cdot x=1$
(IS2) $\quad(x, y) \in D \Longrightarrow(y, x) \in D, x \cdot y=y \cdot x$
(IS3) $\quad(x, 1) \in D \Longrightarrow x \cdot 1=x$
(IS4) $\quad(x, y) \in D \Longrightarrow(x, x \cdot y) \in D, x \cdot(x \cdot y)=y$
Proposition 11. Any incomplete sloop can be embedded into a sloop.
Proof. Let $(G, \cdot, 1, D)$ be an incomplete sloop. Denote $G_{0}=G, D_{0}=$ $D \cup\{(x, x) \mid x \in G\} \cup\{(1, x),(x, 1) \mid x \in G\}$ and let $\cdot_{0}: D_{0} \rightarrow G$ be defined by $x \cdot{ }_{0} y:=x \cdot y$, for $(x, y) \in D, x \cdot 0 x:=1, x \cdot{ }_{0} 1:=x, 1 \cdot{ }_{0} x:=x$ for $x \in G$. Then $\left(G_{0},{ }_{\cdot}, 1, D_{0}\right)$ is an incomplete sloop such that $D \subseteq D_{0} \subseteq G_{0}^{2}$.

If $\left(G_{i},{ }_{i}, 1, D_{i}\right)$ is defined incomplete sloop, we form a new one as follows.
Denote $C_{i}=\left\{\{x, y\} \mid x, y \in G_{i},(x, y) \notin D_{i}\right\}$ and put $G_{i+1}=G_{i} \cup C_{i}$ (assuming that $C_{i} \cap G_{i}=\emptyset$). Define an incomplete operation ${ }_{i+1}$ by:

$$
\begin{array}{ll}
(x, y) \in D_{i} & \Longrightarrow x \cdot_{i+1} y:=x \cdot{ }_{i} y \\
(x, y) \in G_{i}^{2} \backslash D_{i} & \Longrightarrow x \cdot i+1 y:=\{x, y\} \\
x \in G_{i+1} \\
x \in G_{i},\{x, y\} \in C_{i} & \Longrightarrow x \cdot i+1 x:=1, x \cdot i+11:=1 \cdot{ }_{i+1} x:=x \\
& \Longrightarrow x \cdot{ }_{i+1}\{x, y\}:=y,\{x, y\} \cdot i+1 x:=y
\end{array}
$$

Let D_{i+1} be the set of all $(x, y) \in G_{i+1}$ for which $x \cdot_{i+1} y$ is defined.
It is clear that (IS1) - (IS3) hold for $\left(G_{i+1}, \cdot i+1,1, D_{i+1}\right)$. Several cases have to be considered in order to check (IS4) and the nontrivial ones are:

$$
(x, y) \in G_{i}^{2} \backslash D_{i} \Longrightarrow x \cdot_{i+1} y=\{x, y\} \Longrightarrow x \cdot_{i+1}\left(x_{\cdot+1} y\right)=x_{\cdot i+1}\{x, y\}=
$$ $y ;$

$x \in G_{i}, y=\{x, z\} \in C_{i} \Longrightarrow x \cdot_{i+1} y=x \cdot{ }_{i+1}\{x, z\}=z \quad \Longrightarrow$ $x \cdot{ }_{i+1}\left(x \cdot_{i+1} y\right)=x \cdot{ }_{i+1} z=\{x, z\}=y$.

That way we obtained chains of sets $\left(G_{i} \mid i \geq 0\right),\left(D_{i} \mid i \geq 0\right),\left({ }_{i} \mid i \geq 0\right)$, with the properties:

$$
G_{i} \subseteq G_{i+1}, \quad D_{i} \subseteq G_{i}^{2} \subseteq D_{i+1}, \cdot{ }_{i} \subseteq \cdot_{i+1}
$$

Let

$$
G^{*}=\bigcup_{i \geq 0} G_{i}, D^{*}=\bigcup_{i \geq 0} D_{i}, \cdot^{*}=\bigcup_{i \geq 0} \cdot_{i}
$$

Now for $x, y \in G^{*}$, there exists $i \geq 0$ such that $x, y \in G_{i}$, so $(x, y) \in D_{i+1}$, i.e. $(x, y) \in D^{*}$. Hence, $D^{*}=\left(G^{*}\right)^{2}$ i.e. $\left(G^{*}, \cdot^{*}, 1\right)$ is a sloop in which $(G, \cdot, 1, D)$ is embedded.

As a corrolary of Proposition 11 and [3] we get the following result.
THEOREM 5.1. The word problem for the variety of sloops is solvable.

References

[1] R. U. Bruck: A survey of Binary Systems, Berlin - Götingen - Heidelberg, 1958
[2] Ǵ. Čupona, S. Markovski: Primitive varieties of algebras, Algebra universalis 38 (1997), 226-234
[3] Trevor Evans: The word problem for abstract algebras, The Journal of The London Mathematical Society, vol. XXVI, 1951, 64-71
[4] P. M. Hall: Combinatorial Theory, Blaisdell publishing company, Walthand Massachusetts, Toronto, London, 1967
[5] S. Markovski, A. Sokolova: Free Basic Process Algebra, Contributions to General Algebra, vol. 11, 1998, 157-162
[6] S. Markovski, A. Sokolova: Term rewriting system for solving the word problem for sloops, Matematički bilten 24(L), 2000, 7-18
[7] R. N. McKenzie, W. F. Taylor, G. F. McNulty: Algebras, Lattices, Varieties, Wadsworth \& Brooks, Monterey, California, 1987
[8] J. R. Shoenfield: Mathematical Logic, Addison-Wesley Publ. Comp., 1967

Faculty of Sciences and Mathematics,
Institute of Informatics, p.f. 162 Skopje,
Republic of Macedonia
E-mail: smile,anas@pmf.ukim.edu.mk
Received: 07.07.1999.
Revised: 29.02.2000.

[^0]: 2000 Mathematics Subject Classification. 08B20,05B07,08A50.
 Key words and phrases. free algebra, sloop, Steiner loop, variety, word problem.

