
GLASNIK MATEMATIČKI
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Abstract. In this paper we study the effect of block diagonalization
of a nearly diagonal matrix by iterating the related Riccati equations. We
show that the iteration is fast, if a matrix is diagonally dominant or scaled
diagonally dominant and the block partition follows an appropriately de-
fined spectral gap. We also show that both kinds of diagonal dominance
are not destroyed after the block diagonalization.

1. Introduction

In this note we consider block analoga of plane transformations in order
to block diagonalize a given matrix. Iterations of plane rotations were in-
troduced by Jacobi [4], however it does not seem to be broadly known (see
Sleipen, van der Vorst [6]) that Jacobi himself was not satisfied with the con-
vergence of his method and tried to accelerate it by using generalized rotations
which annihilate a whole off-diagonal block. Of course, this complicates the
computation of rotation parameters which are easily computable only if the
matrix is already diagonal enough in which case the corresponding Riccati
equations are solvable by a couple of iterations.1

We will consider the effect of a block diagonalization on matrices which
are diagonally dominant i.e.

||D−1(A−D)|| < 1

where D is the diagonal part of A as well as on the scaled diagonally dominant
matrices for which

|||D|−1/2(A−D)|D|−1/2|| < 1.

This work was done during the first author’s stay at the Fernuniversität Hagen.
1Block rotations with the corresponding Riccati equations were also used in [5] as

iterative improvement to a computed eigensolution.
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(Here ‖ · ‖ is the spectral norm. As it is known, on symmetric matrices
the scaled diagonal dominance is a weaker property than the usual scaled
dominance).

In Section 2 we prove that Jacobi or Gauss - Seidel like iterations solve
the Riccati equations with a number of steps independent of the dimension.
This allows to find few extremal eigenpairs in some n2 operations, both in
the diagonally dominant and the scaled diagonally dominant case.

In Section 3 we study the effect of block diagonalization and show that the
(scaled) diagonal dominance is preserved after the block diagonalization step.
This opens the prospective to use our block transformations as an iterative
correction on matrices whose eigensolution was poor because of their high
condition number (see [3]).

In Section 4 we present some simple illustrative numerical examples.

2. Block diagonalization

Let A ∈ Cn×n ,

(2.1) A =

[
a b
c d

]
,

where a = [aij ], [dij ] are square of order m, n−m, respectively.2

We will consider two types of block transformations

a)

(2.2) A→ A1 = V −1AV , A1 =

[
a1 b1
c1 d1

]

(2.3) V = V (u, t) =

[
I u

−t I

] [
(I + ut)−1/2 0

0 (I + tu)−1/2

]

(2.4) V −1 =

[
(I + ut)−1/2 0

0 (I + tu)−1/2

][
I −u
t I

]

Here the square root is taken as an analytic continuation of the binomial
series (if it exists, see [9]).

b)

(2.5) A→ A2 = U−1AU , A2 =

[
a2 b2
c2 d2

]

2We use lower case letters for matrix blocks to remind the connection with the classical
Jacobi algorithm.
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(2.6) U = U(u, t) =

[
I u

−t I

] [
L−1

1 0
0 L−1

2

]

(2.7) U−1 =

[
R−1

1 0
0 R−1

2

] [
I −u
t I

]

where

(2.8) I + ut = R1L1 , I + tu = R2L2 ,

with L1, L2 upper triangular, R1, R2 lower triangular and diagLi =
diagRi > 0, i = 1, 2.

These two types are the simplest block transfomations which tend to the
identity, if the matrix A is nearly block diagonal. The second transformation
avoids the use of matrix square roots. It should, however, be noted that even
in the first case the complexity in computing the square roots is tolerable, if
m � n , because I + ut, I + tu are low - rank perturbations of identity
matrices.

For instance, if m = 1 then in (2.3) ut is just a number and

(I + tu)−1/2 = I − tu

1 + ut+ (1 + ut)1/2

as is immediately seen by using the binomial formula. The variables u, t can
be understood as some kind of ”tangents”. In [9] it was shown how to use
”tanx

2 ” substitution to get rid of all square roots in (2.3) .

In case a) we have

(2.9)

a1 = (I + ut)−1/2(a− uc− bt+ udt)(I + ut)−1/2

b1 = (I + ut)−1/2(au− ud+ b− ucu)(I + tu)−1/2

c1 = (I + tu)−1/2(ta− dt+ c− tbt)(I + ut)−1/2

d1 = (I + tu)−1/2(tau+ cu+ tb+ d)(I + tu)−1/2

and in case b):

(2.10)

a2 = R−1
1 (a− uc− bt+ udt)L−1

1

b2 = R−1
1 (au− ud+ b− ucu)L−1

2

c2 = R−1
2 (ta− dt+ c− tbt)L−1

1

d2 = R−1
2 (tua+ cu+ tb+ d)L−1

2 .

Block diagonalization means to solve the Riccati equations

(2.11) ta− dt+ c− tbt = 0

(2.12) au− ud+ b− ucu = 0 .
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Note that both

V (tH , t) and U(tH , t)

are unitary, in this case (2.8) are Cholesky decompositions. If A is Hermitian
then with t solving (2.11) the matrix u = tH solves (2.12) and vice
versa.

Furthermore the Riccati equation (2.11) determines the matrix

S = S(t) =

[
I 0

−t I

]
with S−1 =

[
I 0
t I

]

such that

S−1AS =

[
∗ ∗
0 ∗

]
.

The obtained upper block triangular matrix is then block diagonalized as
[
I −u
0 I

] [
∗ ∗
0 ∗

][
I u
0 I

]
=

[
∗ 0
0 ∗

]
;

the corresponding Riccati equation is now linear.

Next we will be solving Riccati equations (2.11) and (2.12) in the case
where the matrices b, c are small in some sense.

Let

(2.13) a = ∆a + au + al , d = ∆d + du + dl

where ∆a, au, al is the diagonal, strict upper triangular, strict lower trian-
gular part of a , respectively (and similarly for d ).

Gauss-Seidel iterates tj for the Riccati equation (2.11) are defined by

(2.14) tj+1(∆a + au) − (∆d + dl)tj+1 + tjal − dutj + c− tjbtj = 0,

t0 arbitrary. Similarly, the iteration for (2.12) reads

(2.15) (∆a + au)uj+1 − uj+1(∆d + dl) + aluj − ujdu + b− ujcuj = 0,

u0 arbitrary.
Besides (2.14) there are other iterations, defined by the leading terms

(2.16)

tj+1(∆a + au) − (∆d + du)tj+1

tj+1(∆a + al) − (∆d + dl)tj+1

tj+1(∆a + al) − (∆d + du)tj+1

tj+1(∆a + al) − ∆dt
j+1

tj+1(∆a + au) − ∆dt
j+1

tj+1∆a − (∆d + du)tj+1

tj+1∆a − (∆d + dl)tj+1

tj+1∆a − ∆dt
j+1
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(and similarly for the iteration (2.15) with u). The last choice is just the
Jacobi iteration. They are all treated in the same way. We will now state a
convergence result for the iteration (2.14).

We first consider the case in which the matrix A is nearly block-diagonal
in the standard sense.

Theorem 2.1. Let A be as in (2.1) , (2.13). Assume that

(2.17) 2
√
‖b‖E ‖c‖E + ‖au‖ + ‖al‖ + ‖du‖ + ‖dl‖ < β

where3

(2.18) β = min
i,j

|ajj − dii| .

Then the Riccati equation (2.11) has a unique solution t∗ in the ball
K = K(0, r) with

r =
2‖c‖E

β − ‖au‖ − ‖al‖ − ‖du‖ − ‖dl‖ .

Moreover, for the sequence tj from (2.14) we have

‖t∗ − tj‖E ≤ kj

1 − k
‖t1 − t0‖E ,

with

k =
‖al‖ + ‖du‖+ 2r‖b‖E

β − ‖au‖ − ‖dl‖ < 1 .

The estimates for the u - variables are obtained just by interchanging
the roles of b and c . Moreover, the same conditions imply the convergence
of any of the iterations in (2.16) , and similarly for uj .

We omit the proof of this theorem. It can be easily reconstructed from
the harder, scaled diagonally case below. The conditions (2.17), (2.18) in
fact imply that the spectra of a and d are sufficiently distant.

We now consider matrices with the scaled diagonal dominance i.e. we set

(2.19) A = DA0D =

[
Da 0
0 Dd

] [
a0 b0
c0 d0

] [
Da 0
0 Dd

]

3Here ‖ · ‖E is the Euclidean norm on matrices and ‖ · ‖ is the operator norm on
matrices or matrix operators, induced by the Euclidean matrix norm.
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where D is diagonal, diagonal entries of A0 have the absolute value one
and A0 is diagonally dominant in the usual sense.
We use the substitution

(2.20) t = Dd τD
−1
a , u = D−1

a νDd

such that (2.11) , (2.12) are equivalent to

(2.21) τa0 − d0D
2
d τD

−2
a + c0 − τb0D

2
d τD

−2
a = 0,

(2.22) a0ν −D−2
a νD2

dd0 + b0 −D−2
a νD2

dcoν = 0.

Let

(2.23) a0 = Ea + au
0 + al

0 , d0 = Ed + du
0 + dl

0

where Ea, au
0 , al

0 is the diagonal, strict upper triangular, strict lower trian-
gular part of a0 , respectively (and similarly for d0 ). The equations (2.14),
(2.15) are equivalent to

(2.24) τ j+1(Ea + au
0 ) − (Ed + dl

0)D
2
d τ

j+1D−2
a + τ jal

0 − du
0D

2
d τ

jD−2
a +

c0 − τ jb0D
2
d τ

jD−2
a = 0 ,

τ0 arbitrary,

(2.25) (Ea + au
0 )νj+1 −D−2

a νj+1D2
d(Ed + dl

0) + al
0 ν

j −D−2
a νjD2

d d
u
0+

b0 −D−2
a νjD2

d c0ν
j = 0,

ν0 arbitrary.

Theorem 2.2. Let A be as in (2.19) , (2.23). Assume that

(2.26) α =
maxi |dii|
minj |ajj |

≤ 1

and

(2.27) 2
√
α‖b0‖E ‖c0‖E + ‖au

0‖ + ‖al
0‖ + α(‖du

0‖ + ‖dl
0‖) < βs

where

(2.28) βs = min
i,j

(1 − dii

ajj
) .

Then the equation (2.21) has a unique solution τ ∗ in the ball K = K(0, r)
with

(2.29) r =
2γ||c0||E

1 − γ(||al
0|| + α‖du

0‖)
,

(2.30) γ =
1

βs − ||au
0 || − α||dl

0||
.
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Moreover, for the sequence τ j from (2.24) we have

‖τ∗ − τ j‖E ≤ kj

1 − k
‖τ1 − τ0‖E ,

with

(2.31) k = γ(||al
0|| + α||du

0 || + 2αr||b0||E) < l .

Again (2.27) and (2.26) ensure a sufficient distance of the spectra of a
and d but now this distance is measured in the ”relative sense”.

Proof. We can write the equation (2.21) as

(2.32) τ(Ea + au
0 + al

0) − (Ed + du
0 + dl

0)D
2
d τD

−2
a + c0 − τb0D

2
d τD

−2
a = 0.

Let L be the linear operator defined by

(2.33) Lτ = τ(Ea + au
0 ) − (Ed + dl

0)D
2
d τD

−2
a .

The equation (2.32) is equivalent to

Lτ = −τal
0 + du

0 D
2
d τD

−2
a − c0 + τb0D

2
d τD

−2
a .

If L is invertible then this equation is written as

P(τ) = τ

with
P(τ) = L−1(−τal

0 + du
0D

2
d τD

−2
a − c0 + τb0D

2
d τD

−2
a ) .

Set L = L0 + L1, where

L0τ = τEa −EdD
2
d τD

−2
a , L1τ = τau

0 − dl
0D

2
d τD

−2
a .

Then L0 is obviously invertible and

||L−1
0 || =

1

βs
.

Thus
L = (I + L1L−1

0 )L0 .

By (2.27) and

||L1|| ≤ ||au
0 || + α||dl

0||
we obtain

‖L1‖‖L−1
0 ‖ ≤ 1

βs
(‖au

0‖ + α‖dl
0‖) < 1 .

Thus, L is invertible and

(2.34) ‖L−1‖ ≤ ‖L−1
0 ‖

1 − ‖L1‖‖L−1
0 ‖ ≤ γ,

γ =
1

βs − ||au
0 || − α||dl

0||
.



278 E. KOVAČ STRIKO AND K. VESELIĆ

We will find r such that P : K −→ K, K = K(0, r). Let τ ∈ K. Then

‖P(τ)‖E ≤ γ
[
(‖al

0‖ + α‖du
0‖)‖τ‖E + α‖b0‖E ‖τ‖2

E + ‖c0‖E

]
.

The inclusion P(K) ⊆ K will follow, if

(2.35) αγ ‖b0‖E r2 −
[
1 − γ(‖al

0‖ + α‖du
0‖)
]
r + γ ‖c0‖E ≤ 0.

The assumption (2.27) implies the positivity of the discriminant of the
quadratic function above. Consequently, the solutions of (2.35) make the
closed interval [rmin, rmax] with

rmin =
2γ‖c0‖E

gs +
√
g2

s − 4αγ2‖b0‖E ‖c0‖E

,

rmax =
2γ‖c0‖E

gs −
√
g2

s − 4αγ2‖b0‖E ‖c0‖E

,

with
gs = 1 − γ(‖al

0‖ + α‖du
0‖) .

For simplicity we take

(2.36) r =
2γ ‖c0‖E

gs
∈ (rmin, rmax) .

We prove the contractivity. Let τ̄ , τ ∈ K , then

P(τ̄ ) −P(τ) =

L−1[−(τ̄ − τ)al
0 +du

0 D
2
d(τ̄ − τ)D−2

a + τ̄ b0D
2
d(τ̄ − τ)D−2

a +(τ̄ − τ)b0D2
d τD

−2
a ] ,

and
‖P(τ̄) −P(τ)‖E ≤ k‖τ̄ − τ‖E .

with k from (2.31). The condition (2.27) implies k < 1.
Let τ1 = P(τ0) for any τ0 ∈ K ,

τ j = P(τ j−1) = L−1(−τ j−1al
0 + du

0 D
2
dτ

j−1D−2
a − c0 + τ j−1b0D

2
dτ

j−1D−2
a ) .

By Banach fixed-point theorem [8] there is a unique solution τ ∗ ∈ K of the
equation (2.21) satisfying

‖τ∗ − τ j‖E ≤ kj

1 − k
‖τ1 − τ0‖E .

Q.E.D.

The estimates for ν are again obtained by interchanging the roles of b0

and c0 .4

Analogous results are valid for all iterations listed in (2.16), more pre-
cisely, same assumptions lead to same results, although optimal constants,
like respective rmin and k actually vary from case to case.

4In fact our assumption (2.27) is made a bit stronger to accommodate both iterations.
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Example 2.3. Let A in (2.1)

(2.37) A =




1 2ε
√
ε ε

√
ε

2ε
√
ε 4ε2 2ε2

√
ε

ε
√
ε 2ε2√ε ε2




and

a =

[
1 2ε

√
ε

2ε
√
ε 4ε2

]

with 0 < ε < 1.
Here the assumption (2.17) of Theorem 2.1 is not fullfilled.

The matrix (2.37) can be written in form (2.19) as

(2.38) A =




1 0 0
0 2ε 0
0 0 ε






1
√
ε

√
ε√

ε 1
√
ε√

ε
√
ε 1






1 0 0
0 2ε 0
0 0 ε




with

a0 =

[
1

√
ε√

ε 1

]
.

Here are the assumptions of Theorem 2.2 satisfied for ε small enough. In
fact, we obtain

α =
1

4
, ‖b0‖E = ‖c0‖E =

√
2ε, ‖au

0‖ = ‖al
0‖ =

√
ε, βs =

3

4
,

( du
0 , d

l
0 are not existent) and for (2.27)

(
√

2 + 2)
√
ε < 3/4 .

3. Preserving of block diagonality

The rest of the paper gives estimates of the changes of the diagonal blocks
of A after the similarity transformations (2.3) and (2.6) . Due to the
special type of these block transformations this change will be quadratically
small thus generalizing similar properties of Jacobi - like diagonalization in
the 2 × 2 case. Similar results hold for scaled matrices.

In case a) by (2.9) we obtain

a− a1 = (I + ut)−1/2[w + (uc+ bt− udt)(I + ut)−1/2]

with

w = (I + ut)1/2a− a(I + ut)−1/2 .

For ‖ut‖ < 1 using binomial expansion we obtain

(3.1) ‖(I + ut)−1/2‖ ≤ 1√
1 − ‖ut‖
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and

‖w‖E ≤ ‖ut‖‖a‖E√
1 − ‖ut‖

.

Then

(3.2) ‖a− a1‖E ≤ 1

1 − ‖ut‖(‖ut‖‖a‖E + ‖uc+ bt− udt‖E) .

Similarly, for ‖tu‖ < 1

(3.3) ‖d− d1‖E ≤ 1

1 − ‖tu‖(‖tu‖‖d‖E + ‖cu+ tb+ tua‖E) .

In case b) we need the following lemma.

Lemma 3.1. Let ‖X‖E ≤ 1/4. Then I +X can be decomposed as

(3.4) I +X = RL

R, LT upper triangular with positive diagonal and

(3.5) R = I + Y , L = I + Z

(3.6) ‖Y ‖E , ‖Z‖E ≤ ρmin = ρ(X) =
2‖X‖E

1 +
√

1 − 4‖X‖E

.

For the proof see [7], Th. 2.1.

By (2.10) we obtain

a− a2 = R−1
1 [R1a− aL−1

1 + (uc+ bt− udt)L−1
1 ] .

Since
R1L1 = I + ut

by Lemma 3.1
R1 = I + Y1 and L−1

1 = I + Z1

with

‖Y1‖E ≤ ρ(ut) ≤ 2‖ut‖E and ‖Z1‖E ≤ ρ(ut)

1 − ρ(ut)
≤ 2‖ut‖E

1 − 2‖ut‖E

it follows

(3.7) ‖a− a2‖E ≤ ‖R−1
1 ‖[(‖Y1‖ + ‖Z1‖)‖a‖E + ‖uc+ bt− udt‖E‖L−1

1 ‖] .
Similarly,

(3.8) ‖d− d2‖E ≤ ‖R−1
2 ‖[(‖Y2‖+ ‖Z2‖)‖d‖E + ‖cu+ tb+ tua‖E ‖L−1

2 ‖]
with

‖Y2‖E ≤ 2‖tu‖E and ‖Z2‖E ≤ 2‖tu‖E

1 − 2‖tu‖E
.



BLOCK DIAGONALIZATION OF NEARLY DIAGONAL MATRICES 281

As we see in all these formulae the change of diagonal blocks is quadratical
in r from Theorem 2.1.

Now we consider the case when u, t are the solutions of the Riccati
equations in case a). From (2.12) we have

(3.9) udt = aut+ bt− ucut .

Inserting (3.9) in (2.9) we obtain

(3.10) a1 = (I + ut)−1/2(a− uc)(I + ut)1/2 .

Similarly, from (2.11)

(3.11) tau = dtu− cu+ tbtu .

Inserting (3.11) in (2.9) we obtain

(3.12) d1 = (I + tu)−1/2(d+ tb)(I + tu)1/2 .

Now

a− a1 = (I + ut)−1/2[w1 + uc(I + ut)1/2]

with

w1 = (I + ut)1/2a− a(I + ut)1/2 .

For ‖ut‖ < 1 we obtain

(3.13) ‖(I + ut)1/2‖ ≤ 1 +
‖ut‖

1 +
√

1 − ‖ut‖
≤ 1 + ‖ut‖

and

(3.14) ‖w1‖E ≤ 2‖ut‖‖a‖E

1 +
√

1 + ‖ut‖
.

Using (3.1) , (3.14) and (3.13) we obtain

(3.15) ‖a− a1‖E ≤ 1√
1 − ‖ut‖

[
2‖ut‖‖a‖E

1 +
√

1 + ‖ut‖
+ (1 + ‖ut‖)‖uc‖E

]

and for ‖tu‖ < 1

(3.16) ‖d− d1‖E ≤ 1√
1 − ‖tu‖

[
2‖tu‖‖d‖E

1 +
√

1 + ‖tu‖
+ (1 + ‖tu‖)‖tb‖E

]
.

In case b) we have b2 = 0 and c2 = 0 with (2.8) we obtain

(3.17) a2 = R−1
1 (a− uc)R1,

(3.18) d2 = R−1
2 (d+ tb)R2
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By (2.8) and Lemma 3.1 we have

R1 = I + Y1 , R2 = I + Y2

with

‖Y1‖E ≤ 2‖ut‖E , ‖Y2‖E ≤ 2‖tu‖E .

It follows

(3.19) ‖a− a2‖E ≤ ‖R−1
1 ‖(2‖Y1‖‖a‖E + ‖uc‖E ‖R1‖) ,

(3.20) ‖d− d2‖E ≤ ‖R−1
2 ‖(2‖Y2‖‖d‖E + ‖tb‖E ‖R2‖) .

Now as before we consider matrices with scaled diagonal dominance
(2.19). By substituting (2.20) in (2.3) , (2.4) , (2.6) , (2.7) for

A1 = V −1DA0DV

and

A2 = U−1DA0DU

we obtain

(3.21)

a1 = Da[(I +D−2
a νD2

dτ)
−1/2ā0(I + νD2

dτD
−2
a )−1/2]Da

b1 = Da[(I +D−2
a νD2

dτ)
−1/2b̄0(I +D2

dτD
−2
a ν)−1/2]Dd

c1 = Dd[(I + τD−2
a νD2

d)
−1/2c̄0(I + νD2

dτD
−2
a )−1/2]Da

d1 = Dd[(I + τD−2
a νD2

d)
−1/2d̄0(I +D2

dτD
−2
a ν)−1/2]Dd

and

(3.22)

a2 = Da(D
−1
a R−1

1 Daā0DaL
−1
1 D−1

a )Da

b2 = Da(D−1
a R−1

1 Dab̄0DdL
−1
2 D−1

d )Dd

c2 = Dd(D
−1
d R−1

2 Ddc̄0DaL
−1
1 D−1

a )Da

d2 = Dd(D
−1
d R−1

2 Ddd̄0DdL
−1
2 D−1

d )Dd

with

(3.23)

ā0 = a0 −D−2
a νD2

dc0 − b0D
2
dτD

−2
a +D−2

a νD2
dd0D

2
dτD

−2
a

b̄0 = a0ν −D−2
a νD2

dc0ν + b0 −D−2
a νD2

dd0

c̄0 = τa0 + c0 − τb0D
2
dτD

−2
a − d0D

2
dτD

−2
a

d̄0 = τa0ν + c0ν + τb0 + d0 .

Now by (2.19) and (3.21) after a lengthy calculation we obtain

(3.24) ‖D−1
a (a− a1)D

−1
a ‖E ≤ αs

and

(3.25) ‖D−1
d (d− d1)D

−1
d ‖E ≤ s
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where α is as in (2.26) and α‖ν‖‖τ‖ < 1 and

(3.26) s =
‖ν‖‖τ‖(‖a0‖E + α‖d0‖E) + ‖τ‖‖b0‖E + ‖ν‖‖c0‖E

1 − α‖ν‖‖τ‖ .

Similarly, by (2.19) and (3.22) we obtain

‖D−1
a (a− a2)D

−1
a ‖E ≤

(3.27)
‖R−1

1 ‖[(‖Y1‖+‖Z1‖)‖a0‖E+α(α‖ν‖‖τ‖‖d0‖E+‖τ‖‖b0‖E+‖ν‖‖c0‖E)‖L−1
1 ‖] ,

‖D−1
d (d− d2)D

−1
d ‖E ≤

(3.28)
‖R−1

2 ‖[(‖Y2‖ + ‖Z2‖)‖d0‖E + (‖ν‖‖τ‖‖a0‖E + ‖τ‖‖b0‖E + ‖ν‖‖c0‖E)‖L−1
2 ‖]

where

‖Y1‖E , ‖Y2‖E ≤ 2α‖ν‖E ‖τ‖E and ‖Z1‖E , ‖Z2‖E ≤ 2α‖ν‖E ‖τ‖E

1 − 2α‖ν‖E ‖τ‖E
.

The estimates (3.24) , (3.25) are ”scaled” analogs of (3.15) , (3.16) and
similarly (3.27) , (3.28) are analogs of (3.7), (3.8), respectively. If b1 = 0
and c1 = 0 then ν, τ is the solution of (2.22) , (2.21) respectively. Inserting
(2.19) and (2.20) in (3.10) and (3.12) we obtain

a1 = Da(I +D−2
a νD2

dτ)
−1/2(a0 −D−2

a νD2
dc0)(I + νD2

dτD
−2
a )1/2Da ,

and

d1 = Dd(I + τD−2
a νD2

d)−1/2(a0 + τb0)(I +D2
dτD

−2
a ν)1/2Dd .

For α‖ν‖‖τ‖ < 1 ,

‖D−1
a (a− a1)D

−1
a ‖E ≤

≤ α‖ν‖√
1 − α‖ν‖‖τ‖

[
2‖τ‖

1 +
√

1 + α‖ν‖‖τ‖
‖a0‖E + (1 + α‖ν‖‖τ‖)‖co‖E

]
,

‖D−1
d (d− d1)D

−1
d ‖E ≤

≤ ‖τ‖√
1 − α‖ν‖‖τ‖

[
2α‖ν‖

1 +
√

1 + α‖ν‖‖τ‖
‖d0‖E + (1 + α‖ν‖‖τ‖)‖b0‖E

]
.

Similarly, for b2 = 0 and c2 = 0 we obtain

a2 = Da[D−1
a R−1

1 Da(a0 −D−2
a νD2

dc0)(I + νD2
dτD

−2
a )DaL

−1
1 D−1

a ]Da ,
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d2 = Dd[D
−1
d R−1

2 Dd(d0 + τb0)(I +D2
dτD

−2
a ν)DdL

−1
2 D−1

d ]Dd .

Then

‖D−1
a (a− a1)D

−1
a ‖E ≤

‖R−1
1 ‖[(‖Y1‖+‖S1‖+‖Y1‖‖S1‖+α‖ν‖‖τ‖)‖a0‖E+α‖ν‖(1+α‖τ‖)‖c0‖E ]‖L−1

1 ‖ ,

‖D−1
d (d− d1)D

−1
d ‖E ≤

≤ ‖R−1
2 ‖[(‖Y2‖+‖S2‖+‖Y2‖‖S2‖+α‖ν‖‖τ‖)‖d0‖E+‖τ‖(1+α‖ν‖)‖b0‖E ]‖L−1

2 ‖

R1 = I + Y1 , R2 = I + Y2 , L1 = I + S1 , L2 = I + S2

and

‖Y1‖E, ‖Y2‖E , ‖S1‖E , ‖S2‖E ≤ 2α‖ν‖E ‖τ‖E .

In concluding this section we can say that in all cases the change of
the diagonal elements is quadratically small in the measure of the (scaled)
diagonal dominance and the same kind of diagonal dominance is shared by the
transformed matrix as well. In view of the results in [1] and [2] this strongly
suggests that all these transformations, at least in the Hermitian case, are
candidates for an eigenvalue algorithm with high relative accuracy. The basis
of our last estimates are the formulae (3.10), (3.12), (3.17) and (3.18) for
the transformed diagonal blocks. These formulae are of independent interest.
To illustrate this, assume that A is Hermitian and V unitary and that block
diagonalization took place, i.e. c1 = bH1 = 0. Then using binomial expansion
and ‖t‖ = O(‖c‖) the formula (3.10) yields

a1 = a− tHc+
atH t− tH ta

2
+ O(‖c‖4).

Since a1 has to be Hermitian we obtain

a1 = a− tHc+ (tHc)H

2
+ O(‖c‖4),

i.e.

(3.29) a1 = Hermitian part of (a− tHc)

up to a quartic error. The same is true of d1. A scaled variant of this
approximation could be derived as well.
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4. Some numerical examples

We have tried some typical iterations with a MATLAB - based code which
just yields the number of iterations which, in turn allows to estimate the real
efficiency. As predicted by our theory the number of iterations is independent
of the dimensions n, m, which allows to compute few eigenpairs with the cost
of some n2 operations. Our first example were (in the MATLAB notation)

A = diag(1:300)+ rand(300)/80

which looks ”diagonally dominant” but is well-beyond the Gershgorin sepa-
ration. For m = 3, 5, 20, 150 we obtained block diagonality to working
accuracy after 10 Jacobi iterations or 6− 8 Gauss-Seidel iterations (2.14),
(2.15). The second example

A = diag(200:-1:1)(eye(200) + rand(200)/10000)diag(200:-1:1)

is only scaled diagonally dominant according to [1]. For m = 2, 5, 20, 100
we needed 10− 13 Jacobi iterations and 9 − 12 Gauss-Seidel iterations.

To illustrate high relative accuracy of the algorithm consider the matrix

A =




1 · 1020 2 3 4
2 4 · 1020 5 6
3 5 7 8
4 6 8 9




whose small eigenvalues are up to a 10−20 error equal to those of
[

7 8
8 9

]
.

Both eigenvalues are correctly reproduced by our method (standard eigen-
solver from MATLAB yielded completely wrong values 0 and 104).

A rigorous justification of the above illustrated accuracy as well as exten-
sive numerical experiments shall be presented elsewhere.
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[7] G. W. Stewart, On the perturbation of LU, Cholesky, and QR factorizations, SIAM J.
Matrix Anal. Appl. 14 (1993) 551-566.

[8] J. Stoer, R. Bulirsch, Introduction to numerical analysis, Spinger, Berlin 1980
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