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Abstract. Let X be a continuum and Y a subcontinuum of X. The
purpose of this paper is to investigate the relation between the conditions
“X is unicoherent at Y ” and “Y is unicoherent”. We say that X is strangled

by Y if the closure of each component of X \ Y intersects Y in one single
point. We prove: If X is strangled by Y and Y is unicoherent then X is
unicoherent at Y . We also prove the converse for a locally connected (not
necessarily metric) continuum X.

1. Introduction

In this paper continuum means a compact, connected and metric space.
A subcontinuum of a space X is a subspace of X which is a continuum.
In section 3 we also consider compact, connected and Hausdorff spaces (not
necessarily metric). These spaces will be called Hausdorff continua.

The continuum X is said to be unicoherent if every pair of subcontinua of
X whose union is X has connected intersection. The concept of unicoherence
at a subcontinuum of a metric continuum is due to M. A. Owens [8]. The same
definition may include the nonmetric case. It is said that X is unicoherent at
a subcontinuum Y of X if for every pair H and K of subcontinua of X whose
union is X , the intersection H ∩K ∩ Y is a subcontinuum of X .

First of all, observe that neither one of the following implications is true:
1) X is unicoherent at a subcontinuum Y ⇒ Y is unicoherent.
2) Y is unicoherent ⇒ X is unicoherent at Y .
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Indeed, as a counterexample to the first one, let X consists of a circum-
ference Y and a spiral (homeomorphic copy of [0,∞)) converging to Y. For
the second, take X as a two dimensional cell and Y any subarc of X. (Notice
that, in this example, X is unicoherent and locally connected).

The purpose of this paper is to investigate under which additional prop-
erties, the concepts “X is unicoherent at a subcontinuum Y ” and “Y is uni-
coherent” are equivalent.

We define: A continuum X is strangled by a subcontinuum Y if the
intersection of Y with the closure of each component of X \ Y consists of a
single point. When X is a semi-locally connected continuum, X is strangled
by Y if and only if Y is the union of cyclic elements (see [9,IV, Theorem 3.3,
p.67]). We also observe that every locally connected (metric) continuum is
semi-locally connected [9,I,Corollary 13.21, p.20]

We prove the following result. Assume that X is strangled by Y and
Y is unicoherent. Then X is unicoherent at Y. Since the converse is not
true (Example 1) we discuss the problem under properties concerning local
connectedness.

In section 3 we prove Theorem 11 which characterizes those subcontinua
Y of a locally connected (not necessarily metric) continuum X such that X
is unicoherent at Y.

A dendrite is a locally connected and hereditarily unicoherent metric
continuum. Characterizations of dendrites in terms of unicoherence at sub-
continua are given in [1, 3, 7, 8]. As a corollary of our results, we prove the
following generalization of Theorem 1 in [3]: If a locally connected metric
continuum X is unicoherent at a one-dimensional subcontinuum Y then Y is
a dendrite. (Theorem 13)

Recently, some papers have been written about unicoherence at subcon-
tinua ([3, 4, 10]). In particular, these papers deal with some questions posed
in [2] about mappings preserving unicoherence at subcontinua.

We will use the following notation in this paper:

P(X) denotes the family of subsets of X , C(X) is the set of all subcon-
tinua of X and Γ(X) = C(X) \ ({X}∪ {{x} : x ∈ X}). If Z is a subset of X ,
the set of components of Z will be denoted by K(Z).

2. Strangled.

We prove here that under the condition “X is strangled by Y ”,
Y is unicoherent implies X is unicoherent at Y , the converse is
discussed in this section.
The following results will be used below:

Theorem 2.1. [6, ChV., 48, V III, Theorem 5, p.220] If a space K is ir-
reducibly connected between the closed sets M and N then K \ (M ∪ N) is
connected and dense in K.
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Theorem 2.2. [6, ChV., 48, IX, Theorem 3, p.223] If an indecomposable
continuum X is irreducibly connected between two closed sets M and N , then
there exists a composant L such that L ∩ (M ∪N) = ∅.

If X is strangled by Y and C ∈ K(X \ Y ) we call the unique point in
Cl(C) ∩ Y the attaching point of C, and we denote it by att(C).

Lemma 2.3. Let X be a metric continuum which is strangled by Y ∈
C(X). Then

i) For every H ∈ C(X), H ∩ Y is connected.
ii) att(C) ∈ H whenever C ∈ K(X \ Y ), and H ∩ C 6= ∅ 6= H ∩ (X \ C).
iii) H ∩ Cl(C) is connected for every C ∈ K(X \ Y )

Proof. i) Suppose H ∩ Y is not connected, so that H ∩ Y = M | N. Let
K ∈ C(H) be irreducible between M and N. We consider the following two
cases:
Case 1) K is decomposable. Since K is irreducibly connected between the
closed sets M ∩K and N ∩K, it follows from Theorem 1 that K \ (M ∪N)
= K \Y is a connected subset which is dense in K. Therefore K \ (M ∪N) is
contained in C ∈ K(X \Y ) and K = Cl(K \ (M ∪N)) ⊂ Cl(C). But this is a
contradiction since Cl(C) ∩ Y contains a single point, while K ∩ Y contains
at least two points (one in M and one in N).
Case 2) K is indecomposable. Then by Theorem 2 there exists a composant
L of K contained in K \ (M ∪N). Being a composant, L is a connected subset
which is dense in K . Since L is contained in K \ Y, L is contained in some
C ∈ K(X \Y ) so that K ∩ Y = Cl(L)∩ Y is contained in Cl(C)∩ Y and this
again is a contradiction.
ii) The hypothesis imply that H ∩ Y 6= ∅. Let K ∈ C(H) be irreducible
between H ∩Y and a point p ∈ H ∩C . We consider the same two cases than
in the proof of i) and proceed in the same way with {p} = M and H ∩Y = N.
Case1) K is decomposable. Then the set L = K \ (M ∪N) is a connected
subset of K which is dense in K. Since L is contained in X \ Y then it is
contained in D ∈ K(X \ Y ). Therefore K = Cl(L) ⊂ Cl(D) = D ∪ att(D).
Since p ∈ K, D = C so that att(C) ∈ K ⊂ H.
Case 2)K is indecomposable. The composant L is contained in D ∈ K(X\Y ).
On the other hand since K = Cl(L) ⊂ Cl(D) = D ∪ att(D), then D = C and
att(C) ∈ K ⊂ H.
iii) Suppose that H ∩ Cl(C) is not connected, so it is clear that H ∩ C 6= ∅.
Therefore, by ii) att(C) ∈ H . Write H ∩ Cl(C) = M |N and suppose that
att(C) ∈ N . Let K ∈ C(H) be irreducible between M and Y . As above, we
consider two cases and again we get a connected and dense subset L of K \Y
which intersects C. Therefore L ⊆ C which implies K ⊆ Cl(C). This shows
that H ∩ Cl(C) contains a connected set intersecting M and N contrary to
the assumption.
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Figure 1

Theorem 2.4. Let X be a continuum and Y ∈ C(X). Suppose that X is
strangled by Y and Y is unicoherent. Then X is unicoherent at Y.

Proof. Follows from Lemma 2.3 i)
The following example shows that the converse of Theorem 3 is not true.

Example 2.1 (See Figure 1). Let Y ⊆ IR2 be the union of S1 and the
arc [1, 2] × {0}. Let Cn =

{
(1 + 1

2n )(cos θ, sin θ) : θ ∈
[
0, (2− 1

2n )π
]}

and
X = Y ∪ ⋃n∈IN Cn. It is easy to verify that X is strangled by Y . In order
to prove that X is unicoherent at Y , suppose that X = H ∪ K. Then, for
infinitely many indices n ∈ IN , Cn ⊂ H. Since S1 ⊂ Cl(

⋃
Cn) then we can

assume that for some a ≤ 2, H ∩Y = S1 ∪ ([1, a]×{0}), so that H ∩K ∩Y =
K ∩ (S1 ∪ [1, a]× {0}) which is a connected set by Lemma 2.3 i).

Nevertheless we have the following Theorem

Theorem 2.5. Let X be a continuum and Y ∈ C(X). Assume that X
is locally connected at each point of Bd(Y ). If X is strangled by Y and X is
unicoherent at Y then Y is unicoherent.

Proof. Suppose that Y is not unicoherent so that Y = H ∪K where H,
K ∈ C(X) and H ∩K is not connected. Let H̃ = H ∪ ∇H where ∇H is the
closure of the union of all components of X \ Y whose attaching point is in

H. Similarly define K̃ = K ∪ ∇K

We want to prove that H̃ ∩ K̃ ∩ Y is not connected, contrary to the
hypothesis.

Let x ∈ (H ∩ ∇K) \K. Then x = limxn where xn ∈ Cn ∈ K(X \ Y ) and
att(Cn) ∈ K. Since x /∈ K there is an open and connected subset U of X such
that x ∈ U ⊆ Cl(U) ⊆ H \K so that xn ∈ Cl(U) for n large enough. This
implies that for some fixed n ∈ IN , Cl(U) ∩Cn 6= ∅ and Cl(U) ∩X \Cn 6= ∅.
Therefore, by Lemma 2.3 ii) att(Cn) ∈ Cl(U) and this is a contradiction.
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This proves that H ∩∇K ⊆ H ∩K. Similarly K ∩∇H ⊆ H ∩K. On the other
hand, since Y = H ∪K, then (∇H ∩ ∇K) ∩ Y ⊆ H ∩K.
Therefore the equality
H̃ ∩ K̃ ∩ Y = (H ∩K) ∪ (H ∩ ∇K) ∪ (K ∩ ∇H) ∪ (∇H ∩∇K) ∩ Y
becomes
H̃ ∩ K̃ ∩ Y = H ∩ K and this proves that H̃ ∩ K̃ ∩ Y is not connected, as
desired.

Question: Let X be a continuum and Y ∈ C(X). Assume that X is locally
connected at each point of Bd(Y ) and X is unicoherent at Y . Is it true that
Y intersects the closure of each component of X \Y in a connected set? Is X
strangled by Y ?

Example 2.1 shows that, in Theorem 2.5, the hypothesis X is locally con-
nected at every point of Bd(Y ) cannot be changed byX is locally connected at
some points of Bd(Y ). Indeed It is easy to verify that X is locally connected
at every point in (1, 2] × {0}.

Theorem 2.6. Let X be strangled by a subcontinuum Y . Assume that
X contains two open and connected disjoint subsets U1, U2 such that Y \ Ui

is connected, i = 1, 2 but Y \ (U1 ∪ U2) is not connected. Then X is not
unicoherent at Y .

Proof. LetHi = (Y \Ui)∪Cl({Cl(C) : C ∈ K(X \ Y ), att(C) ∈ Y \ Ui}).
Clearly, Hi ∈ C(X), i = 1, 2 and X = H1 ∪ H2. It follows from Lemma 2.3
ii), that Hi ∩ Ui = ∅ whenever i, j ∈ {1, 2}, i 6= j. This implies that
H1 ∩H2 ∩ Y = Y \ (U1 ∪ U2) which is not connected.

In particular, suppose that X is strangled by S1 and that there exist
y1, y2 ∈ S1 and connected disjoint neighborhoods of y1 and y2. Then it follows
from Lemma 2.3 i), that the hypothesis of the last theorem are satisfied.

3. Locally Connected Hausdorff Continua

In this section we consider Hausdorff continua, which are lo-
cally connected. For such spaces X we prove Theorem 11 which
characterizes those Y ∈ C(X) such that X is unicoherent at Y .

Recall that Hausdorff continuum means compact, connected and Haus-
dorff space (not necessarily metric). We will use the following definitions and
results:

A chain in a space X is a finite family {U1, ..., Um} of open subsets of X
(called links of the chain) such that Ui ∩ Uj 6= ∅ iff | i− j |≤ 1

Theorem 3.1. [5, Theorem 3.4, p.108] Let W ⊆ P(X) be an open cover
of a connected space X. Then for every u, v ∈ X there is a chain from u to v
whose links are elements of W.
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Theorem 3.2. [6, ChV., 47, I, Theorem 3, p.168] Let X be a Hausdorff
continuum and C ∈ C(X). Suppose that X \ C = A ∪ B is a separation
of X \ C (A and B are open and nonempty subsets of X \ C and they are
disjoint). Then C ∪ A and C ∪ B are Hausdorff continua

Theorem 3.3. [6, ChV., 47, III, Theorem 2, p.172] Let E be a proper and
non-empty subset of a Hausdorff continuum X. If U ∈ K(E) then Cl(U) ∩
Bd(E) 6= ∅.

In what follows X stands for a locally connected, Hausdorff continuum.

Lemma 3.4. Let Y ∈ C(X) and U ⊂ K(X \ Y ). Then

Cl(
⋃

{U : U ∈ U}) \
⋃

{U : U ∈ U} ⊂ Bd(Y )

Proof. Let x ∈ Cl(
⋃ {U : U ∈ U}) \ ⋃ {U : U ∈ U} and suppose x /∈

Bd(Y ). Then x ∈ X \ Y, so that x ∈ U0 for some U0 ∈ K(X \ Y ).
Therefore U0 /∈ U and since x ∈ Cl(

⋃ {U : U ∈ U}) and U0 is open,
U0 ∩ (

⋃ {U : U ∈ U}) 6= ∅. But this is is impossible since the components
are disjoint.

A similar version of Lemma 3.5, below, was proved in section 2 (Lemma
2.3 i). In the present case we do not require that X be metric and we only
require connectedness for the subset V of X . Instead, X is assumed to be
locally connected.

Lemma 3.5. Let Y ∈ C(X). Suppose that X is strangled by Y . Then for
each connected subset V of X, V ∩ Y is also a connected subset of X.

Proof. We may assume that V ∩ Y 6= ∅. Let V ∩ Y = A ∪ B where
Cl(A)∩B = ∅ = Cl(B)∩A. It follows immediately that Cl(A)∩Cl(B) ⊂ Y \V.

Define M∗ = Cl(
⋃ {U ∈ K(X \ Y ) : att(U) ∈ A}) and M = M∗ ∩ V .

Analogously, let N∗ = Cl(
⋃ {U ∈ K(X \ Y ) : att(U) ∈ B} and N = N∗ ∩ V.

In what follows it will be proved that V is the union of the sets M ∪ A and
N ∪B and that these two sets are separated. Therefore one of them shall be
empty, sayN∪B = ∅. This implies B = ∅ and proves that V ∩Y is connected.

We assert that V \Y ⊆M∪N. Indeed, if x ∈ V \Y then x ∈ U ∈ K(X\Y )
so that x ∈ V ∩ U. On the other hand V ∩ (X \ U) 6= ∅ because V ∩ Y 6= ∅.
Then, since V is connected, V ∩ Bd(U) 6= ∅ and therefore Bd(U) = att(U) =
V ∩ Bd(U) ⊂ V ∩ Y = A ∪ B and it follows that Cl(U) ⊆ M ∗ ∪N∗. Hence
Cl(U) ∩ V ⊂M ∪N and therefore x ∈ (M ∪N).

It follows now that V = (V ∩ Y ) ∪ (V \ Y ) = (A ∪ B) ∪ (M ∪ N) =
(M ∪ A) ∪ (N ∪ B). In order to verify that these two sets are separated
it will be enough to prove that Cl(M ∪ A) ∩ (N ∪ B) = ∅. ( Similarly
(M ∪ A) ∩ Cl(N ∪ B) = ∅).

We assert that M∗ ∩ Bd(Y ) ⊂ Cl(A) (1)
Let x ∈ M∗ ∩ Bd(Y ). Any open set containing x, contains an open and

connected set W containing x. Since x ∈ M∗, then W ∩ U 6= ∅ for some U
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in the set defining M∗. Hence W ∩ Bd(U) 6= ∅ so that W ∩ A 6= ∅ and this
proves that x ∈ Cl(A).

Similarly N∗ ∩ Bd(Y ) ⊂ Cl(B) (2)

Now we consider the equality:
Cl(M ∪ A) ∩ (N ∪ B) = (Cl(M) ∩N) ∪ (Cl(M) ∩ B)

∪(Cl(A) ∩N) ∪ (Cl(A) ∩ B)
and prove that each one of the parenthesis on its right side is an empty set.

Let x ∈ Cl(M)∩N . Then x ∈M∗ \⋃ {U ∈ K(X \ Y ) : att(U) ∈ A}. By
Lemma 3.4, x ∈ Bd(Y ) and by (1), x ∈ Cl(A). Similarly, x ∈ Cl(B), so that
x ∈ Cl(A) ∩ Cl(B) ⊆ Y \ V . This contradicts that x ∈ V and proves that
Cl(M) ∩N = ∅.

Now, let x ∈ Cl(M) ∩ B. Again, by Lemma 3.4, x ∈ Bd(Y ) and by (1),
x ∈ Cl(A). But this is a contradiction since Cl(A) ∩ B = ∅.

Since Cl(A)∩B = ∅, it only remains to prove that Cl(A)∩N = ∅. Let x ∈
Cl(A)∩N. Then x ∈ Bd(Y ). By (2) x ∈ Cl(B). Therefore x ∈ Cl(A)∩Cl(B)
so that x /∈ V .

Theorem 3.6. Assume that X is unicoherent at Y ∈C(X). Then, X is
strangled by Y.

Proof. Let U be any component of X \ Y , then we have to prove that
Cl(U) ∩ Y is a single point. Since the boundary of every nonempty, proper
subset of a connected space X is nonempty, we only need to prove that Bd(U)
contains no more than one point. Since X is a regular and locally connected
space, then U is open [5,Theorem 3.2,p.106] and for each u∈ U there is an
open and connected subset Wu of U such that u ∈ Wu ⊂ Cl(Wu) ⊂ U . Let us
suppose that there are two different points p and q in Bd(U) and let P and
Q be open and connected neighborhoods of p and q respectively such that
Cl(P )∩Cl(Q) = ∅. Let u ∈ P ∩U and v ∈ Q∩U . Since U is connected, there
exists, by Theorem 3.1, a finite set F ⊂ U such that the set {Wx : x ∈ F}
is a chain from u to v. Therefore H = (

⋃
x∈F Cl(Wx)) ∪ Cl(P ) ∪ Cl(Q) is a

subcontinuum of X (in the metric case, by [7,Theorem 8.26 p.132] an arc from
u to v can be taken instead of

⋃
x∈F Cl(Wx)). Now we consider two cases:

i) X \ H is connected. Then Cl(X \ H) is a subcontinuum of X and X =
H ∪Cl(X \H). It follows from the definition of H , that H ∩Cl(X \H)∩Y =
(Bd(P ) ∪ Bd(Q)) ∩ Y , so that H ∩ Cl(X \ H) ∩ Y = BdY (P ) ∪ BdY (Q).
Since Y is connected then BdY (P ) and BdY (Q) are nonempty subsets of Y .
Moreover each one of them is closed and they are disjoint. This proves that
H ∩ Y ∩ Cl(X \H) is not connected.
ii) X \ H is not connected. Let X \ H = A ∪ B be a separation of X \ H .
Then, by Theorem 3.1, X = (A ∪H) ∪ (B ∪H) is a decomposition of X into
two of its subcontinua. On the other hand (A∪H)∩ (B ∪H)∩ Y = H ∩Y =
(Cl(P )∩Y )∪ (Cl(Q)∩Y ) gives a separation of the set (A∪H)∩ (B∪H)∩Y ,
so that it is not connected.
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The following example shows that the converse of Theorem 3.6 fails to be
true.

Example 3.1. Let X be a figure eight. In other words, X is the union
of two circumferences intersecting in exactly one point p. Let Y be one of
the two circumferences.Then X is a locally connected continuum which is not
unicoherent at Y ∈ Γ(X). Nevertheless, the boundary of the connected set
X \ Y is the singleton {p}.

We recall that a cut point of a connected space X is a point p ∈ X such
that X \ {p} is not connected.

Corollary 3.7. Assume that X has no cut points. Then X is not uni-
coherent at any Y ∈ Γ(X).

Proof. We notice that the boundary of a nonempty and open subset U
of X whose complement contains more than one point, contains at least two
points. Indeed, Bd(U) is nonempty since X is connected. On the other hand
if Bd(U) = {p} then Bd(X \U) = {p} and X \ {p} = U ∪ (X \ (U ∪{p})) is a
separation of X \ {p}, so that p is a cut point of X . Now, since X \Y is open
and X is locally connected, then each U ∈ K(X \ Y ) is an open set. Since
Y ∈ Γ(X) then U is a proper subset of X whose complement is not a single
point. Therefore, Bd(U) has more than one point and hence, by Theorem
3.6, X is not unicoherent at Y .

Theorem 3.8. Suppose that X is unicoherent at Y ∈ C(X). Then Y is
unicoherent.

Proof. Let H and K be subcontinua of Y such that Y = H ∪K. We
need to prove that H ∩K is connected.

Let H̃ (resp. K̃) be the family of U ∈ K(X \ Y ) such that U ∩ H 6= ∅
(resp. U ∩K 6= ∅).

Let M = H ∪ ⋃
{
U : U ∈ H̃

}
and N = K ∪ ⋃{

U : U ∈ K̃
}

. It is

clear that M and N are connected subsets of X. It follows from Theorem 3.3
that X = M ∪ N . To prove that M is a closed set, take x ∈ Cl(M) \M ,

hence x ∈ Cl(
⋃{

U : U ∈ H̃
}

) \ ⋃
{
U : U ∈ H̃

}
. Hence, by Lemma 3.4,

x ∈ Bd(Y ). Since x /∈ M then x /∈ H . Let W be an open set such that

x ∈ W ⊆ X \H . There exists U0 ∈ H̃ such that W ∩ U0 6= ∅. Since U0 is an
open set of X then W ∩ U0 is an open and nonempty subset of W and it is
also a proper subset of W since x ∈ W \U0. On the other hand, by Theorem
3.6, Bd(U0) = att(U0) ∈ H , so that W ∩ U0 is a closed subset of W . Hence
W is not a connected set. This contradicts that X is a locally connected
space and proves that X = M ∪ N is a decomposition of X into two of its
subcontinua. Therefore, by hypothesis, M ∩ N ∩ Y is a connected set and
since H ∩K = M ∩N ∩ Y then H ∩K is connected.
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Theorem 3.9. Let X be a locally connected and Hausdorff continuum.
Then X is unicoherent at Y if and only if the following two conditions are
satisfied:

i) X is strangled by Y and
ii) Y is unicoherent.

Proof. The necessity follows from Theorems 3.6 and 3.8 For the suffi-
ciency, let H and K be subcontinua of X such that X = H ∪K. By Lemma
3.5, H ∩Y and K ∩Y are subcontinua of Y and since Y = (H ∩Y )∪ (K ∩Y )
and Y is unicoherent then H ∩K ∩ Y is connected, so that X is unicoherent
at Y .

The following example shows that, if local connectedness is dropped in
the last theorem then conditions i) and ii) are not necessarily satisfied.

Example 3.2. let X consists of a circumference Y contained in the Eu-
clidean plane and a spiral (homeomorphic copy of a ray) converging to Y .
Then X is unicoherent at Y but neither i) nor ii) are satisfied.

Theorem 3.10. Let X be a locally connected continuum. X strangled by
Y and X is unicoherent, then X is unicoherent at Y .

Proof. Let H and K be subcontinua of X such that X = H ∪K. Then
H ∩K is connected and, by Lemma 3.4, H ∩K ∩ Y is connected, so that X
is unicoherent at Y .

Nevertheless, the converse is not true. Indeed, let X be the union of a
circumference C and an arc Y such that C ∩ Y is one of the end points of Y .
Then X is unicoherent at Y but X is not unicoherent.

As a consequence of Theorem 3.1 and Lemma 3.5 we have the following
Theorem.

Theorem 3.11. Let X be a locally connected continuum which is unico-
herent at Y ∈ C(X). Then Y is locally connected.

The following Theorem generalizes Theorem 1 in [3].

Theorem 3.12. Let X be a locally connected metric continuum. Suppose
that X is unicoherent at Y ∈ C(X) and Y is one dimensional. Then Y is a
dendrite.

Proof. By Theorems 3.8 and 3.11, Y is locally connected and unico-
herent. Every one dimensional, locally connected and unicoherent metric
continuum is a dendrite, [ 6,VIII,57,III,Corollary8,p.442] , so Y is a dendrite.

The following characterization of dendrites follows immediately from The-
orem 3.4:
A locally connected metric continuum X is a dendrite iff X is unicoherent at
Y for every Y ∈ C(X). A stronger version of this characterization is proved
in [8,Theorem 3.7 p.155 ]
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