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FOR MAXIMUM EQUATIONS
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Abstract. An existence-uniqueness result for the Cauchy problem for
a system of ordinary differential equations with maximums is established.

The paper is concerned with the following initial–value problem (IVP):

(1)

{
ẋ(t) = f(t, x(t), ‖x(t)‖g), t > 0
x(t) = ϕ(t), t ≤ 0,

where

x(t) = (x1(t), . . . , xn(t)), ẋ(t) = (ẋ1(t), . . . , ẋn(t)),

‖x(t)‖g = max
g(t)≤s≤t

‖x(s)‖, ‖x(s)‖ = max
1≤i≤n

|xi(s)|,

g(t) : [0,∞) → R being a prescribed function, such that −∞ < g(t) ≤ t, for
every t ≥ 0.

The mathematical formulation above mentioned arises in automatic reg-
ulations, integral electronics and measurement devices. In [2] (p.p. 29, 477,
565) the authors present various relay systems for automatic regulation - for
instance, of the temperature in some chamber. For the variation of the tem-
perature θ(t) the equation

T
dθ

dt
+ θ = −kϕ+ f,

is obtained, where T, k are constants, f = f(t) - external perturbations, and
ϕ is the variation of the regulating device (relay system), which depends on t
and max {|θ(s)| : t0 ≤ s ≤ t}.
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The main interest of many authors is the existence of periodic and oscil-
lating solutions of (1) ([8]–[7]). In many cases, however, various conditions
are formulated which do not guarantee even an existence of a solution. That
is why, here we present existence conditions applying fixed point technics,
obtained in a previous paper [1].

As usually, using that

x(t) = x(0) +

∫ t

0

ẋ(s) ds,

for t > 0, we reduce the IVP(1) to the following one:

(2)





x(t) = ϕ(0) +

∫ t

0

f(τ, x(τ), ‖x(τ)‖g) dτ, t > 0

x(t) = ϕ(t), t ≤ 0.

First of all we have to investigate the measurability of ‖x(t)‖g on [0,∞).

Proposition 1. Let g(t) be defined and measurable on [0,∞) function,
−∞ < g(t) ≤ t, ∀t ≥ 0. Then for every x ∈ C(R; Rn), ‖x(t)‖g is a measurable
locally bounded function on [0,∞).

Proof. Inequality

‖x(t)‖g ≤ max{‖x(s)‖ : inf
τ∈K

g(τ) ≤ s ≤ supK}

for any compact interval K ⊂ R, shows that ‖x(t)‖g is a bounded function
on every compact subset of R.

Let us assume that ‖x(t)‖g is not a measurable function. Then there
exists c ∈ (−∞,∞) such that the set Ac = {t ≥ 0 : ‖x(t)‖g < c} is not
measurable.

Consider the function

ϕα : [0,∞)→ [0,∞) : ϕα(t) = ‖x(αt+ (1− α)g(t))‖, 0 ≤ α ≤ 1.

For any fixed α ∈ [0, 1] the function τα(t) = αt+ (1−α)g(t) is measurable on
[0,∞) as a linear combination of measurable functions. Consequently |xi(τα)|
is measurable for every i = 1, 2, ..., n, and so ϕα = max {|xi(τα)| : 1 ≤ i ≤ n}
is measurable, which means that the set Aα,a = {t ≥ 0 : ϕα(t) < a} is
measurable for every a ∈ R, and α ∈ [0, 1].

On the other hand ‖x(t)‖g = sup {ϕα(t) : 0 ≤ α ≤ 1} = ϕβ(t) is attained
for some β ∈ [0, 1], and the set Aβ,c is measurable. But Aβ,c = {t ≥ 0 :
ϕβ(t) < c} = {t ≥ 0 : ‖x(t)‖g < c} = Ac – contradiction, which completes
the proof.

We are going to look for a continuous solutions of (2).
Consider the linear space C(R; Rn) with a saturated family of seminorms

p
K

(y) = sup
t∈K

e−λt‖y(t)‖,
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where λ > 0 and K runs over all compact subsets of R. It defines a locally
convex Hausdorff topology on C(R; Rn).

We denote by Ψ the set of all compact subsets of R and we define the
map j : Ψ→ Ψ:

j(K) =

{
K, supK ≤ 0
[0, supK] , supK > 0.

It is obvious that j2(K) = j(j(K)) = j(K) and consequently, jm(K) = j(K)
for all m ∈ N.

Now we make the following assumptions (I):

(i) The function f(t, u, v) : [0,∞) × Rn × [0,∞) → Rn satisfies the
Caratheodory condition (measurable in t and continuous in u, v),
‖f(·, 0, 0)‖ ∈ L1

loc([0,∞)) and

‖f(t, u1, v1)− f(t, u2, v2)‖ ≤ Ω(t, ‖u1 − u2‖, |v1 − v2|),
where the comparison function Ω(t, x, y) satisfies the Caratheodory
condition. It is non-decreasing in x and y and for any fixed y ≥
0,Ω(·, y, y) ≤ yω(·) with some ω ∈ Lp([0,∞); [0,∞)), p ≥ 1;

(ii) The initial function ϕ : (−∞, 0]→ Rn is continuous.

Theorem 2. If conditions (I) are fulfilled, then for any measurable func-
tion g(t) : −∞ < g(t) ≤ t there exists a unique continuous global solution of
the IVP(2).

We shall use the fixed point theorems from [1]. Let X be a Haus-
dorff sequentially complete uniform space with uniformity defined by a sat-
urated family of pseudometrics {ρα(x, y)}α∈A,A being an index set. Let
Φ = {Φα(t) : α ∈ A} be a family of functions Φα(t) : [0,∞) → [0,∞) with
the properties

1) Φα(t) is monotone non-decreasing and continuous from the right on
[0,∞);

2) Φα(t) < t, ∀t > 0,

and j : A → A is a mapping on the index set A into itself, where j0(α) =
α, jk(α) = j(jk−1(α)), k ∈ N.

Definition 3. The map T : M →M is said to be a Φ− contraction on
M if ρα(Tx, Ty) ≤ Φα(ρj(α)(x, y)) for every x, y ∈M and α ∈ A,M ⊂ X.

Theorem 4 ([1]). Let us suppose

1. the operator T : X → X is a Φ-contraction;
2. for each α ∈ A there exists a Φ-function Φα(t) such that

sup {Φjn(α)(t) : n = 0, 1, 2, ...} ≤ Φα(t)

and Φα(t)/t is non-decreasing;
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3. there exists an element x0 ∈ X such that

ρjn(α)(x0, Tx0) ≤ p(α) <∞ (n = 0, 1, 2, ...).

Then T has at least one fixed point in X.

Theorem 5 ([1]). If, in addition, we suppose that

4. the sequence {ρjk(α)(x, y)}∞k=0 is bounded for each α ∈ A and x, y ∈ X,
i.e.

ρjk(α)(x, y) ≤ q(x, y, α) <∞ (k = 0, 1, 2, ...),

then the fixed point of T is unique.

Proof of Theorem 2. Let X be the uniform sequentially complete
Hausdorff space consisting of all functions, belonging to C(R; Rn), which are
equal to ϕ(t) ∀t ≤ 0, with a saturated family of pseudometrics ρ

K
(x, y) =

p
K

(x − y), where K runs over all compact subsets of R. The operator
T : X → X is defined by the formula:

T (x)(t) =





ϕ(0) +

∫ t

0

f(τ, x(τ), ‖x(τ)‖g) dτ, t > 0

ϕ(t), t ≤ 0.

The function τ → f(τ, x(τ), ‖x(τ)‖g) is measurable, since f satisfies the
Caratheodory condition, and ‖x(τ)‖g is a measurable function.

By condition (I)

‖f(τ, x(τ), ‖x(τ)‖g)‖ ≤ ‖f(τ, 0, 0)‖+ Ω(τ, ‖x(τ)‖, ‖x(τ)‖g)

≤ ‖f(τ, 0, 0)‖+ ‖x(τ)‖gω(τ),

which belongs to L1
loc([0,∞)) (‖x(·)‖g is locally bounded!) Thus T (x) ∈

C(R; Rn). Choosing

x0(t) =

{
ϕ(0), t > 0
ϕ(t), t ≤ 0

we obtain

ρ
K

(x0, T (x0)) ≤ ρjm(K)(x0, T (x0)) = ρj(K)(x0, T (x0)) ≤ c(K, f, ϕ) <∞,
that is condition 3 of Theorem 4 is fulfilled.

The sequence {ρjm(K)(x, y)}∞m=0 in our case turns into

ρK(x, y), ρj(K)(x, y), . . . , ρj(K)(x, y), . . . ,

ρ
K

(x, y) ≤ ρj(K)(x, y) for every K ∈ Ψ and x, y ∈ X . Consequently condition
4 of Theorem 5 is also fulfilled.

We need the following

Lemma 6. Let y(t), x(t) ∈ C(R; Rn), g(t) : [0,∞) → R is a measurable
function, −∞ < g(t) ≤ t. Then |‖x(t)‖g − ‖y(t)‖g| ≤ ‖x(t)− y(t)‖g.
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The proof of Lemma 6 is obtained as a consequence of Minkowski’s in-
equality.

Let p > 1. Define ΦK : [0,∞)→ [0,∞) by the formula:

ΦK(y) =

{
(λq)−

1

q y‖ω‖Lp([0,supK]), supK > 0
0, supK ≤ 0,

where 1/p + 1/q = 1, or q = 1, if p = ∞, and λ is fixed such that
(λq)−1/q‖ω‖Lp([0,∞)) < 1. Then ΦK is a continuous, non-decreasing func-
tion, ΦK(y) < y for every y > 0 and ΦK(y)/y does not depend on y, in
particular it is non-decreasing. We have ΦK(y) = Φjm(K)(y) = ΦK(y) for

all m = 1, 2, . . ., consequently ΦK(y)/y is non-decreasing (i.e. condition 2 of
Theorem 4).

We are able to prove that the operator T : X → X is a Φ-contraction on
X , i.e. ρ

K
(T (x), T (y)) ≤ ΦK(ρj(K)(x, y)) for every x, y ∈ X , and K ∈ Ψ.

If supK ≤ 0, then T (x)(t)− T (y)(t) = ϕ(t) − ϕ(t) = 0 for every t ∈ K.
For t ∈ K ∩ (0,∞) 6= Ø, we have

‖T (x)(t)− T (y)(t)‖ ≤
∫ t

0

‖f(τ, x(τ), ‖x(τ)‖g)− f(τ, y(τ), ‖y(τ)‖g)‖ dτ

≤
∫ t

0

Ω (τ, ‖x(τ)− y(τ)‖, |‖x(τ)‖g − ‖y(τ)‖g|) dτ

≤
∫ t

0

Ω(τ, sup
0≤s≤τ

(‖x(s) − y(s)‖), sup
0≤s≤τ

(‖x(s)− y(s)‖)) dτ

≤
∫ t

0

Ω(τ, eλτ sup
0≤s≤τ

(e−λs‖x(s)− y(s)‖), eλτ sup
0≤s≤τ

(e−λs‖x(s)− y(s)‖)) dτ

≤ ρj(K)(x, y)

∫ t

0

eλτω(τ) dτ ≤ ρj(K)(x, y)‖ω‖Lp[0,t]

(∫ t

0

eλqτ dτ

) 1

q

≤ ρj(K)(x, y)‖ω‖Lp[0,sup K]e
λt(λq)−

1

q = eλtΦK(ρj(K)(x, y)).

Consequently

ρ
K

(T (x), T (y)) = sup {e−λt‖T (x)(t)− T (y)(t)‖ : t ∈ K}
= sup {e−λt‖T (x)(t)− T (y)(t)‖ : t ∈ K ∩ (0,∞)}
≤ ΦK(ρj(K)(x, y))

for every x, y ∈ X . Hence condition 1 of Theorem 4 is fulfilled. Therefore T
has a unique fixed point in X , which is a solution of the IVP(2).

Let p = 1. Extending ω as 0 on (−∞, 0] and denote again by ω the
resulting extension, we obtain a function ω ∈ L1(R). Then ∀ε > 0 ∃h = hε ∈
C∞

0 (R) such that ([3], p.71)
∫ +∞

−∞

|ω(τ)− h(τ)| dτ < ε.
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Fixing ε ∈ (0, 1
2 ) and λ ≥ 2

∫ +∞

−∞

h2(τ) dτ , we define ΦK : [0,∞)→ [0,∞)

as follows:

ΦK(y) =





y


ε+

(
1
2λ

∫ sup K

0

h2(τ) dτ

) 1

2


 , supK > 0

0, supK ≤ 0.

ΦK is a continuous, non-decreasing function, ΦK(y) ≤ y(ε+ 1
2 ) < y for every

y > 0; ΦK(y)/y does not depend on y, in particular it is non-decreasing.
ΦK(y) = Φjm(K)(y) = ΦK(y) for every m ∈ N, consequently ΦK(y)/y is
non-decreasing (i.e. condition 2 of Theorem 4).

For t ∈ K ∩ (0,∞) 6= Ø, we have

‖T (x)(t)− T (y)(t)‖ ≤
∫ t

0

Ω(τ, eλτρj(K)(x, y), eλτρj(K)(x, y)) dτ

≤ ρj(K)(x, y)

∫ t

0

eλτω(τ) dτ

≤ ρj(K)(x, y)

(∫ t

0

eλτ |ω(τ)− h(τ)| dτ +

(∫ t

0

e2λτ dτ

)1

2
(∫ t

0

h2(τ) dτ

)1

2

)

≤ eλtρj(K)(x, y)


ε+

(
1

2λ

∫ sup K

0

h2(τ) dτ

)1

2


 = eλtΦK(ρj(K)(x, y)).

Thus T is a Φ-contraction on X , which is a condition 1 of Theorem 4.
Therefore T has a unique fixed point in X . The proof of the Theorem 2

is complete.

In what follows we consider a maximum equation

Lİ(t) +M‖I(t)‖h = k
I3(t)

1 + I2(t)
,

where the unknown function I(t) is electric current, L 6= 0,M, k are con-
stants and ‖I(t)‖h = max {|I(s)| : t− h ≤ s ≤ t}, with some h > 0. It is
derived treating the original automatic regulation phenomenon ([2]) without
linearization. Then we can formulate an initial-value problem for the above
equation as follows:

(3)

{
İ(t) = f(I(t), ‖I(t)‖h), t > 0
I(t) = ϕ(t), t ≤ 0,

where ϕ is a prescribed initial continuous function, and

f(u, v) = L−1(k
u3

1 + u2
−Mv).
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We check conditions of the Theorem 2: ϕ : (−∞, 0] → R is a continuous
function – that is the condition (ii) of the Theorem 2.

|f(u1, v1)− f(u2, v2)| ≤ |L|−1

(
9

8
|k||u1 − u2|+ |M ||v1 − v2|

)

= Ω(|u1 − u2|, |v1 − v2|).
Here Ω(u, v) = |L|−1(Cku+ |M |v) is a homogeneous polynomial of the non-
negative variables u, v. Ω(v, v) = |L|−1(Ck + |M |)v = ωv, where ω does not
depend on t and in particular ω ∈ L∞([0,∞); [0,∞)). Thus condition (i) of
the Theorem 2 is also fulfilled, which implies an existence of solution of (3).
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