ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR MAXIMUM EQUATIONS

Ljubomir P. Georgiev and Vasil G. Angelov
University of Mining and Geology "St. I. Rilski", Bulgaria

Abstract. An existence-uniqueness result for the Cauchy problem for a system of ordinary differential equations with maximums is established.

The paper is concerned with the following initial-value problem (IVP):

$$
\begin{cases}\dot{x}(t)=f\left(t, x(t),\|x(t)\|_{g}\right), & t>0 \tag{1}\\ x(t)=\varphi(t), & t \leq 0\end{cases}
$$

where

$$
\begin{aligned}
x(t) & =\left(x_{1}(t), \ldots, x_{n}(t)\right), \dot{x}(t)=\left(\dot{x}_{1}(t), \ldots, \dot{x}_{n}(t)\right), \\
\|x(t)\|_{g} & =\max _{g(t) \leq s \leq t}\|x(s)\|,\|x(s)\|=\max _{1 \leq i \leq n}\left|x_{i}(s)\right|,
\end{aligned}
$$

$g(t):[0, \infty) \rightarrow \mathbf{R}$ being a prescribed function, such that $-\infty<g(t) \leq t$, for every $t \geq 0$.

The mathematical formulation above mentioned arises in automatic regulations, integral electronics and measurement devices. In [2] (p.p. 29, 477, 565) the authors present various relay systems for automatic regulation - for instance, of the temperature in some chamber. For the variation of the temperature $\theta(t)$ the equation

$$
T \frac{d \theta}{d t}+\theta=-k \varphi+f
$$

is obtained, where T, k are constants, $f=f(t)$ - external perturbations, and φ is the variation of the regulating device (relay system), which depends on t and max $\left\{|\theta(s)|: t_{0} \leq s \leq t\right\}$.

[^0]The main interest of many authors is the existence of periodic and oscillating solutions of (1) ([8]-[7]). In many cases, however, various conditions are formulated which do not guarantee even an existence of a solution. That is why, here we present existence conditions applying fixed point technics, obtained in a previous paper [1].

As usually, using that

$$
x(t)=x(0)+\int_{0}^{t} \dot{x}(s) d s
$$

for $t>0$, we reduce the $\operatorname{IVP}(1)$ to the following one:

$$
\begin{cases}x(t)=\varphi(0)+\int_{0}^{t} f\left(\tau, x(\tau),\|x(\tau)\|_{g}\right) d \tau, & \tag{2}\\ x>0 \\ x(t)=\varphi(t), & \end{cases}
$$

First of all we have to investigate the measurability of $\|x(t)\|_{g}$ on $[0, \infty)$.
Proposition 1. Let $g(t)$ be defined and measurable on $[0, \infty)$ function, $-\infty<g(t) \leq t, \forall t \geq 0$. Then for every $x \in C\left(\mathbf{R} ; \mathbf{R}^{n}\right),\|x(t)\|_{g}$ is a measurable locally bounded function on $[0, \infty)$.

Proof. Inequality

$$
\|x(t)\|_{g} \leq \max \left\{\|x(s)\|: \inf _{\tau \in K} g(\tau) \leq s \leq \sup K\right\}
$$

for any compact interval $K \subset \mathbf{R}$, shows that $\|x(t)\|_{g}$ is a bounded function on every compact subset of \mathbf{R}.

Let us assume that $\|x(t)\|_{g}$ is not a measurable function. Then there exists $c \in(-\infty, \infty)$ such that the set $A_{c}=\left\{t \geq 0:\|x(t)\|_{g}<c\right\}$ is not measurable.

Consider the function

$$
\varphi_{\alpha}:[0, \infty) \rightarrow[0, \infty): \varphi_{\alpha}(t)=\|x(\alpha t+(1-\alpha) g(t))\|, \quad 0 \leq \alpha \leq 1
$$

For any fixed $\alpha \in[0,1]$ the function $\tau_{\alpha}(t)=\alpha t+(1-\alpha) g(t)$ is measurable on $[0, \infty)$ as a linear combination of measurable functions. Consequently $\left|x_{i}\left(\tau_{\alpha}\right)\right|$ is measurable for every $i=1,2, \ldots, n$, and so $\varphi_{\alpha}=\max \left\{\left|x_{i}\left(\tau_{\alpha}\right)\right|: 1 \leq i \leq n\right\}$ is measurable, which means that the set $A_{\alpha, a}=\left\{t \geq 0: \varphi_{\alpha}(t)<a\right\}$ is measurable for every $a \in \mathbf{R}$, and $\alpha \in[0,1]$.

On the other hand $\|x(t)\|_{g}=\sup \left\{\varphi_{\alpha}(t): 0 \leq \alpha \leq 1\right\}=\varphi_{\beta}(t)$ is attained for some $\beta \in[0,1]$, and the set $A_{\beta, c}$ is measurable. But $A_{\beta, c}=\{t \geq 0$: $\left.\varphi_{\beta}(t)<c\right\}=\left\{t \geq 0:\|x(t)\|_{g}<c\right\}=A_{c}$ - contradiction, which completes the proof.

We are going to look for a continuous solutions of (2).
Consider the linear space $C\left(\mathbf{R} ; \mathbf{R}^{n}\right)$ with a saturated family of seminorms

$$
p_{K}(y)=\sup _{t \in K} e^{-\lambda t}\|y(t)\|,
$$

where $\lambda>0$ and K runs over all compact subsets of \mathbf{R}. It defines a locally convex Hausdorff topology on $C\left(\mathbf{R} ; \mathbf{R}^{n}\right)$.

We denote by Ψ the set of all compact subsets of \mathbf{R} and we define the $\operatorname{map} j: \Psi \rightarrow \Psi$:

$$
j(K)= \begin{cases}K, & \sup K \leq 0 \\ {[0, \sup K],} & \sup K>0\end{cases}
$$

It is obvious that $j^{2}(K)=j(j(K))=j(K)$ and consequently, $j^{m}(K)=j(K)$ for all $m \in \mathbf{N}$.

Now we make the following assumptions (I):
(i) The function $f(t, u, v):[0, \infty) \times \mathbf{R}^{n} \times[0, \infty) \rightarrow \mathbf{R}^{n}$ satisfies the Caratheodory condition (measurable in t and continuous in u, v), $\|f(\cdot, 0,0)\| \in L_{l o c}^{1}([0, \infty))$ and

$$
\left\|f\left(t, u_{1}, v_{1}\right)-f\left(t, u_{2}, v_{2}\right)\right\| \leq \Omega\left(t,\left\|u_{1}-u_{2}\right\|,\left|v_{1}-v_{2}\right|\right)
$$

where the comparison function $\Omega(t, x, y)$ satisfies the Caratheodory condition. It is non-decreasing in x and y and for any fixed $y \geq$ $0, \Omega(\cdot, y, y) \leq y \omega(\cdot)$ with some $\omega \in L^{p}([0, \infty) ;[0, \infty)), p \geq 1 ;$
(ii) The initial function $\varphi:(-\infty, 0] \rightarrow \mathbf{R}^{n}$ is continuous.

THEOREM 2. If conditions (I) are fulfilled, then for any measurable function $g(t):-\infty<g(t) \leq t$ there exists a unique continuous global solution of the $\operatorname{IVP}(2)$.

We shall use the fixed point theorems from [1]. Let X be a Hausdorff sequentially complete uniform space with uniformity defined by a saturated family of pseudometrics $\left\{\rho_{\alpha}(x, y)\right\}_{\alpha \in \mathcal{A}}, \mathcal{A}$ being an index set. Let $\Phi=\left\{\Phi_{\alpha}(t): \alpha \in \mathcal{A}\right\}$ be a family of functions $\Phi_{\alpha}(t):[0, \infty) \rightarrow[0, \infty)$ with the properties

1) $\Phi_{\alpha}(t)$ is monotone non-decreasing and continuous from the right on $[0, \infty)$;
2) $\Phi_{\alpha}(t)<t, \forall t>0$,
and $j: \mathcal{A} \rightarrow \mathcal{A}$ is a mapping on the index set \mathcal{A} into itself, where $j^{0}(\alpha)=$ $\alpha, j^{k}(\alpha)=j\left(j^{k-1}(\alpha)\right), k \in \mathbf{N}$.

Definition 3. The map $T: M \rightarrow M$ is said to be $a \Phi$-contraction on M if $\rho_{\alpha}(T x, T y) \leq \Phi_{\alpha}\left(\rho_{j(\alpha)}(x, y)\right)$ for every $x, y \in M$ and $\alpha \in \mathcal{A}, M \subset X$.

Theorem 4 ([1]). Let us suppose

1. the operator $T: X \rightarrow X$ is a Φ-contraction;
2. for each $\alpha \in \mathcal{A}$ there exists a Φ-function $\bar{\Phi}_{\alpha}(t)$ such that

$$
\sup \left\{\Phi_{j^{n}(\alpha)}(t): n=0,1,2, \ldots\right\} \leq \Phi_{\alpha}(t)
$$

and $\bar{\Phi}_{\alpha}(t) / t$ is non-decreasing;
3. there exists an element $x_{0} \in X$ such that

$$
\rho_{j^{n}(\alpha)}\left(x_{0}, T x_{0}\right) \leq p(\alpha)<\infty(n=0,1,2, \ldots)
$$

Then T has at least one fixed point in X.
Theorem 5 ([1]). If, in addition, we suppose that
4. the sequence $\left\{\rho_{j^{k}(\alpha)}(x, y)\right\}_{k=0}^{\infty}$ is bounded for each $\alpha \in \mathcal{A}$ and $x, y \in X$, i.e.

$$
\rho_{j^{k}(\alpha)}(x, y) \leq q(x, y, \alpha)<\infty(k=0,1,2, \ldots)
$$

then the fixed point of T is unique.
Proof of Theorem 2. Let X be the uniform sequentially complete Hausdorff space consisting of all functions, belonging to $C\left(\mathbf{R} ; \mathbf{R}^{n}\right)$, which are equal to $\varphi(t) \forall t \leq 0$, with a saturated family of pseudometrics $\rho_{K}(x, y)=$ $p_{K}(x-y)$, where K runs over all compact subsets of \mathbf{R}. The operator $T: X \rightarrow X$ is defined by the formula:

$$
T(x)(t)= \begin{cases}\varphi(0)+\int_{0}^{t} f\left(\tau, x(\tau),\|x(\tau)\|_{g}\right) d \tau, & t>0 \\ \varphi(t), & t \leq 0\end{cases}
$$

The function $\tau \rightarrow f\left(\tau, x(\tau),\|x(\tau)\|_{g}\right)$ is measurable, since f satisfies the Caratheodory condition, and $\|x(\tau)\|_{g}$ is a measurable function.

By condition (I)

$$
\begin{aligned}
\left\|f\left(\tau, x(\tau),\|x(\tau)\|_{g}\right)\right\| & \leq\|f(\tau, 0,0)\|+\Omega\left(\tau,\|x(\tau)\|,\|x(\tau)\|_{g}\right) \\
& \leq\|f(\tau, 0,0)\|+\|x(\tau)\|_{g} \omega(\tau)
\end{aligned}
$$

which belongs to $L_{l o c}^{1}([0, \infty))\left(\|x(\cdot)\|_{g}\right.$ is locally bounded!) Thus $T(x) \in$ $C\left(\mathbf{R} ; \mathbf{R}^{n}\right)$. Choosing

$$
x_{0}(t)= \begin{cases}\varphi(0), & t>0 \\ \varphi(t), & t \leq 0\end{cases}
$$

we obtain

$$
\rho_{K}\left(x_{0}, T\left(x_{0}\right)\right) \leq \rho_{j^{m}(K)}\left(x_{0}, T\left(x_{0}\right)\right)=\rho_{j(K)}\left(x_{0}, T\left(x_{0}\right)\right) \leq c(K, f, \varphi)<\infty
$$

that is condition 3 of Theorem 4 is fulfilled.
The sequence $\left\{\rho_{j^{m}(K)}(x, y)\right\}_{m=0}^{\infty}$ in our case turns into

$$
\rho_{K}(x, y), \rho_{j(K)}(x, y), \ldots, \rho_{j(K)}(x, y), \ldots
$$

$\rho_{K}(x, y) \leq \rho_{j(K)}(x, y)$ for every $K \in \Psi$ and $x, y \in X$. Consequently condition 4 of Theorem 5 is also fulfilled.

We need the following
Lemma 6. Let $y(t), x(t) \in C\left(\mathbf{R} ; \mathbf{R}^{n}\right), g(t):[0, \infty) \rightarrow \mathbf{R}$ is a measurable function, $-\infty<g(t) \leq t$. Then $\left|\|x(t)\|_{g}-\|y(t)\|_{g}\right| \leq\|x(t)-y(t)\|_{g}$.

The proof of Lemma 6 is obtained as a consequence of Minkowski's inequality.

Let $p>1$. Define $\Phi_{K}:[0, \infty) \rightarrow[0, \infty)$ by the formula:

$$
\Phi_{K}(y)= \begin{cases}(\lambda q)^{-\frac{1}{q}} y\|\omega\|_{L^{p}([0, \sup K])}, & \sup K>0 \\ 0, & \sup K \leq 0\end{cases}
$$

where $1 / p+1 / q=1$, or $q=1$, if $p=\infty$, and λ is fixed such that $(\lambda q)^{-1 / q}\|\omega\|_{L^{p}([0, \infty))}<1$. Then Φ_{K} is a continuous, non-decreasing function, $\Phi_{K}(y)<y$ for every $y>0$ and $\Phi_{K}(y) / y$ does not depend on y, in particular it is non-decreasing. We have $\Phi_{K}(y)=\Phi_{j^{m}(K)}(y)=\bar{\Phi}_{K}(y)$ for all $m=1,2, \ldots$, consequently $\bar{\Phi}_{K}(y) / y$ is non-decreasing (i.e. condition 2 of Theorem 4).

We are able to prove that the operator $T: X \rightarrow X$ is a Φ-contraction on X, i.e. $\rho_{K}(T(x), T(y)) \leq \Phi_{K}\left(\rho_{j(K)}(x, y)\right)$ for every $x, y \in X$, and $K \in \Psi$.

If $\sup K \leq 0$, then $T(x)(t)-T(y)(t)=\varphi(t)-\varphi(t)=0$ for every $t \in K$.
For $t \in K \cap(0, \infty) \neq \varnothing$, we have

$$
\begin{aligned}
& \| T(x)(t)-T(y)(t)\left\|\leq \int_{0}^{t}\right\| f\left(\tau, x(\tau),\|x(\tau)\|_{g}\right)-f\left(\tau, y(\tau),\|y(\tau)\|_{g}\right) \| d \tau \\
& \leq \int_{0}^{t} \Omega\left(\tau,\|x(\tau)-y(\tau)\|,\left|\|x(\tau)\|_{g}-\|y(\tau)\|_{g}\right|\right) d \tau \\
& \leq \int_{0}^{t} \Omega\left(\tau, \sup _{0 \leq s \leq \tau}(\|x(s)-y(s)\|), \sup _{0 \leq s \leq \tau}(\|x(s)-y(s)\|)\right) d \tau \\
& \quad \leq \int_{0}^{t} \Omega\left(\tau, e^{\lambda \tau} \sup _{0 \leq s \leq \tau}\left(e^{-\lambda s}\|x(s)-y(s)\|\right), e^{\lambda \tau} \sup _{0 \leq s \leq \tau}\left(e^{-\lambda s}\|x(s)-y(s)\|\right)\right) d \tau \\
& \quad \leq \rho_{j(K)}(x, y) \int_{0}^{t} e^{\lambda \tau} \omega(\tau) d \tau \leq \rho_{j(K)}(x, y)\|\omega\|_{L^{p}[0, t]}\left(\int_{0}^{t} e^{\lambda q \tau} d \tau\right)^{\frac{1}{q}} \\
& \quad \leq \rho_{j(K)}(x, y)\|\omega\|_{L^{p}[0, \sup K]} e^{\lambda t}(\lambda q)^{-\frac{1}{q}}=e^{\lambda t} \Phi_{K}\left(\rho_{j(K)}(x, y)\right) .
\end{aligned}
$$

Consequently

$$
\begin{aligned}
\rho_{K}(T(x), T(y)) & =\sup \left\{e^{-\lambda t}\|T(x)(t)-T(y)(t)\|: t \in K\right\} \\
& =\sup \left\{e^{-\lambda t}\|T(x)(t)-T(y)(t)\|: t \in K \cap(0, \infty)\right\} \\
& \leq \Phi_{K}\left(\rho_{j(K)}(x, y)\right)
\end{aligned}
$$

for every $x, y \in X$. Hence condition 1 of Theorem 4 is fulfilled. Therefore T has a unique fixed point in X, which is a solution of the $\operatorname{IVP}(2)$.

Let $p=1$. Extending ω as 0 on $(-\infty, 0]$ and denote again by ω the resulting extension, we obtain a function $\omega \in L^{1}(\mathbf{R})$. Then $\forall \varepsilon>0 \exists h=h_{\varepsilon} \in$ $C_{0}^{\infty}(\mathbf{R})$ such that ([3], p.71)

$$
\int_{-\infty}^{+\infty}|\omega(\tau)-h(\tau)| d \tau<\varepsilon
$$

Fixing $\varepsilon \in\left(0, \frac{1}{2}\right)$ and $\lambda \geq 2 \int_{-\infty}^{+\infty} h^{2}(\tau) d \tau$, we define $\Phi_{K}:[0, \infty) \rightarrow[0, \infty)$ as follows:

$$
\Phi_{K}(y)= \begin{cases}y\left(\varepsilon+\left(\frac{1}{2 \lambda} \int_{0}^{\sup K} h^{2}(\tau) d \tau\right)^{\frac{1}{2}}\right), & \sup K>0 \\ 0, & \sup K \leq 0\end{cases}
$$

Φ_{K} is a continuous, non-decreasing function, $\Phi_{K}(y) \leq y\left(\varepsilon+\frac{1}{2}\right)<y$ for every $y>0 ; \Phi_{K}(y) / y$ does not depend on y, in particular it is non-decreasing. $\Phi_{K}(y)=\Phi_{j^{m}(K)}(y)=\bar{\Phi}_{K}(y)$ for every $m \in \mathbf{N}$, consequently $\bar{\Phi}_{K}(y) / y$ is non-decreasing (i.e. condition 2 of Theorem 4).

For $t \in K \cap(0, \infty) \neq \varnothing$, we have

$$
\begin{aligned}
& \|T(x)(t)-T(y)(t)\| \leq \int_{0}^{t} \Omega\left(\tau, e^{\lambda \tau} \rho_{j(K)}(x, y), e^{\lambda \tau} \rho_{j(K)}(x, y)\right) d \tau \\
& \quad \leq \rho_{j(K)}(x, y) \int_{0}^{t} e^{\lambda \tau} \omega(\tau) d \tau \\
& \quad \leq \rho_{j(K)}(x, y)\left(\int_{0}^{t} e^{\lambda \tau}|\omega(\tau)-h(\tau)| d \tau+\left(\int_{0}^{t} e^{2 \lambda \tau} d \tau\right)^{\frac{1}{2}}\left(\int_{0}^{t} h^{2}(\tau) d \tau\right)^{\frac{1}{2}}\right) \\
& \quad \leq e^{\lambda t} \rho_{j(K)}(x, y)\left(\varepsilon+\left(\frac{1}{2 \lambda} \int_{0}^{\sup K} h^{2}(\tau) d \tau\right)^{\frac{1}{2}}\right)=e^{\lambda t} \Phi_{K}\left(\rho_{j(K)}(x, y)\right)
\end{aligned}
$$

Thus T is a Φ-contraction on X, which is a condition 1 of Theorem 4.
Therefore T has a unique fixed point in X. The proof of the Theorem 2 is complete.

In what follows we consider a maximum equation

$$
L \dot{I}(t)+M\|I(t)\|_{h}=k \frac{I^{3}(t)}{1+I^{2}(t)}
$$

where the unknown function $I(t)$ is electric current, $L \neq 0, M, k$ are constants and $\|I(t)\|_{h}=\max \{|I(s)|: t-h \leq s \leq t\}$, with some $h>0$. It is derived treating the original automatic regulation phenomenon ([2]) without linearization. Then we can formulate an initial-value problem for the above equation as follows:

$$
\begin{cases}\dot{I}(t)=f\left(I(t),\|I(t)\|_{h}\right), & \tag{3}\\ I>0 \\ I(t)=\varphi(t), & t \leq 0\end{cases}
$$

where φ is a prescribed initial continuous function, and

$$
f(u, v)=L^{-1}\left(k \frac{u^{3}}{1+u^{2}}-M v\right)
$$

We check conditions of the Theorem $2: \varphi:(-\infty, 0] \rightarrow \mathbf{R}$ is a continuous function - that is the condition (ii) of the Theorem 2.

$$
\begin{aligned}
\left|f\left(u_{1}, v_{1}\right)-f\left(u_{2}, v_{2}\right)\right| & \leq|L|^{-1}\left(\frac{9}{8}|k|\left|u_{1}-u_{2}\right|+|M|\left|v_{1}-v_{2}\right|\right) \\
& =\Omega\left(\left|u_{1}-u_{2}\right|,\left|v_{1}-v_{2}\right|\right)
\end{aligned}
$$

Here $\Omega(u, v)=|L|^{-1}\left(C_{k} u+|M| v\right)$ is a homogeneous polynomial of the nonnegative variables $u, v . \Omega(v, v)=|L|^{-1}\left(C_{k}+|M|\right) v=\omega v$, where ω does not depend on t and in particular $\omega \in L^{\infty}([0, \infty) ;[0, \infty))$. Thus condition (i) of the Theorem 2 is also fulfilled, which implies an existence of solution of (3).

Acknowledgements.
The authors thank Prof. Kosarov for his useful suggestions.

References

[1] V. G. Angelov, Fixed point Theorem in uniform spaces and applications, Czechoslovak Math. J. 37 (112) (1987), 19-33.
[2] V. A. Besekerski and E. P. Popov, Theory of automatic regulation systems, Nauka, Moskow, 1975 (in Russian).
[3] V. C. L. Hutson and J. S. Pim, Applications of Functional Analysis and Operator Theory, Mir, Moskow, 1983 (in Russian).
[4] G. Köthe, Topological vector spaces I, Springer-Verlag, Berlin, Heidelberg, New York, 1969.
[5] A. R. Magomedov, Investigation of solutions of linear differential equations with maximums, Akad. Nauk ASSR Dokl. 36 (1980), 11-14 (in Russian).
[6] A. R. Magomedov, Investigation of solutions of linear differential equations with maxima for problems with control, Akad. Nauk ASSR Dokl. 39 (1983), 12-18 (in Russian).
[7] A. R. Magomedov and G. M. Nabiev, Theorems on nonlocal solvability of the initial value problem for systems of differential equations with maxima, Akad. Nauk ASSR Dokl. 40 (1984), 14-20 (in Russian).
[8] V. R. Petuhov, Investigation of solutions of equations with "maximums", Izv. Vysš. Učebn. Zaved. Matematika 3 (1964) (in Russian).
[9] U. A. Rjabov and A. R. Magomedov, On the periodic solutions of linear differential equations with maxima, Naukova dumka, Kiev, 1 (1978), 3-9 (in Russian).

University of Mining and Geology "St. I. Rilski"
Department of Mathematics 1700 Sofia, Bulgaria

E-mail address: angelov@mgu.bg
Received: 23.02.2001.
Revised: 15.01.2002.

[^0]: 2000 Mathematics Subject Classification. 34K05, 34G20, 34K35.
 Key words and phrases. Maximum equations, fixed points, uniform spaces, automatic control regulations.

