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V-PERSPECTIVES, DIFFERENCES, PSEUDO-NATURAL
NUMBER SYSTEMS AND PARTIAL ORDERS

A. Mani

Education School, Calcutta, India

Abstract. In this paper, we generalise the notion of partial well-
orderability and consider its relation to partial difference operations possi-
bly definable. Results on these and generalised PWO–posets with systems
of invariants for V–PWO posets are also formulated. These are relevant
in partial algebras with differences and pseudonatural number systems for
very generalised abstract model theory in particular.

1. Notations and terminology

For convenience the basic notations and terminology are presented below.
Set will mean a set in ZFC unless stated otherwise. A subset T of a poset S
is a µ–subset iff {x; ∀ y ∈ S (x ≤ y ∨ x ‖ y)} ⊂ T and ∀x ∈ S, ∃ y ∈ T
y ≤ x. A minimal subset T is a µ–subset which does not properly include any
µ–subsets i.e. {x; ∀ y ∈ S (x ≤ y ∨ x ‖ y)} = T and ∀x ∈ S ∃ y ∈ T y ≤ x.

A poset S = 〈S,≤, (2)〉 is well founded iff each nonempty subset has
at least one minimal element. A linear order is a PO which satisfies ∀x∀ y
x = y∨x < y∨y < x. A well ordered set X is a linearly ordered set for which
every nonempty set Y ⊆ X has a least element, w.r.t. <.

A poset S = 〈S,≤〉 is partially well ordered (PWO) iff every subset of
S has a finite µ–subset (but not necessarily a minimal subset) iff for every
infinite sequence (xn) in S there exists i, j with i < j, xi ≤ xj .

All PWO–posets are well founded but not conversely and the structure
is so total that every infinite PWO poset S contains a chain C satisfying
card(C) = card(S). All posets contain at least one µ–subset but this is not so
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for minimal subsets. The above notions extend to quasi ordered sets (qosets)
also.

Let S = 〈S,≤,−, (2, 2)〉 be a partial algebraic system with ≤ being a
PO relation and − being a binary partial operation satisfying (x ≤ y →
y − x ≤ y); (x ≤ y → y − (y − x) = x); (x ≤ y ≤ z → (z − y) ≤ (z − x),
((z − x) − (z − y)) = (y − x)), then S is called a poset with difference, (2,2)
being the arities of the predicate and operation respectively. A difference
poset is a poset with difference which includes two distinguished elements 0, 1
s.t. ∀x 0 ≤ x ≤ 1.

The dimension of a poset is the least cardinal k for which the partial
order is an intersection of k linear orders on S. An order ideal S1 of a poset
S is a subset which satisfies ∀ y ∈ S1 (x ≤ y ⇒ x ∈ S1). The set of order
ideals will be denoted by ζ(S). If both ζ(S) and S are PWO then S is called
normal.

We use weak equalities in particular portions. Terms tS , t′S ∈ TmΣ(S),

tS 7→ t′S will mean ∀x ∈ dom(tS ⊆ dom(t′S), tS(x) = t′S and ′tS
w∗

= t′S will
mean ∀x ∈ dom(tS) = dom(t′S), tS(x) = t′S(x). The usual weak equality

tS
w
= t′S (iff ∀x ∈ dom(tS) ∩ dom(t′S), tS(x) = t′S(x)) is also used.

2. V–PWO Posets with Difference Operations

One strong reason for introducing the notion of a V –perspective is that in
many contexts the perspective can be properly related to the basis (predicative
or otherwise) of existence of partiality in many contexts.

Definition 2.1. Let Proj (∪α≥ωS
α, S) denote the set of all projection

functions ∪α≥ωS
α → S. Then a V –perspective on a poset S is a subset V

of the union ∪α≥ωS
α which satisfies ∀x ∈ V ∃ ek′ , ek′ ∈ Proj (∪α≥ωS

α, S)
ekx > ek′x, k > k′. Posets with V –perspectives will be called V –PWO posets.

For V–PWO posets, the notions of dimension, normality, order ideals
and M -decompositions of a PWO set can be generalised/directly adapted.
Apart from the examples obtainable from diverse fields, most types of V–
PWO posets are explicity definable using set theoretic operations on PWO
posets and posets.

Lemma 2.2. Every PWO–poset is a (∪α≥ωS
α)–PWO–poset.

Definition 2.3. A perspective V will be called separable (finitely) iff V
is representable as a union (finite union) of sets of the form Sα

i , α ≥ ω and
(i 6= j → Si ∩ Sj = ∅).

Definition 2.4. A perspective V will be called nearly separable iff V is
representable as an extension of a separable perspective V0 contained in V
using the set theoretical operations (finite) ∩, ∪, \, ∆ alone on the elements
of V0.
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Theorem 2.5. (i) The different notions of separability are all distinct
and finite separability implies separability.

(ii) If a separable perspective exists then it generates maximal nearly sep-
arable extensions.

We formulate a principle which is particularly suitable for net based ap-
proaches and generalisations.

Perspectivity principle: On every poset S a unique maximal per-
spective Vm is definable relative to which S is a Vm–PWO poset. (Poset is
replaceable with qoset in the principle.)

This principle is quite distinct from AC and WO principles since it is a
sentence of a predicative nature given a PO and is closer to the maximality
principle (HMP). It can be used to obtain interesting generalisations based on
weakening over ZF and semiset theories. The equivalence of the perspectivity
principle with HMP, AC and WO in ZFC is easy to prove.

Theorem 2.6. PP ⇔ HMP ⇔ AC ⇔ WO in ZFC.

Remark 2.7. Theorem 2.5 (ii) can also be regarded as a foundational
principle. This is not equivalent to transfinite induction.

Definition 2.8. If S and ζ(S) are V–PWO and T–PWO respectively
with T ≺ 2V then S will be called (V, T )–normal, (V, 2V )–normality will be
normality.

The notions of PWO–posets with difference and V–PWO posets with
difference will be direct extensions from posets with difference. Different
structure theoretic results on these are proved in the next six results.

Theorem 2.9. A finite dimensional PWO–poset with difference is embed-
dable in a finite product of well–ordered sets with differences and conversely.

Proof. Let S = 〈S,≤,−, (2, 2)〉 be a PWO–poset with difference and let

its dimension be n < ∞. Consider the forgetful PWO poset Ŝ = 〈S,≤, (2)〉
of dimension n. There exist well order extensions (Ti)

n
1 of ≤ with ≤= ∩T n

i

(for PWO every linear extension must be a well–order).

If 〈H,≤〉 =
n∏
1

(S, Ti) then defining fx : {1, . . . , n} → S for x ∈ S via

fx(i) = x, i = 1, . . . , n it follows that 〈S,≤〉 is isomorphic to the subset
{fx, x ∈ S} ⊂ H . This allows the product representation of an extension
preserving the difference. The converse is obvious.

The proof of the existence of a compatible order coherent extension de-
pends on the existence of a linear extension for every PO on a set S and the
WO principle.

Remark 2.10. Uniqueness is not ensurable.
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Theorem 2.11. Theorem 2.9 is not true for V–PWO sets in general.

Theorem 2.12. The order ideal of a PWO–poset with difference is also
an order ideal with difference.

Proof. Let S1 be an order ideal of the PWO–poset with difference S =
〈S,≤,−〉. Let ∀ y ∈ S1 (x ≤ y → x ∈ S1) ≡ Φ. Then

x ≤ y → ∃ z (y − x) = z and y − x ≤ y, Φ→ x ∈ S1.

So the restriction of the difference from S to S1 is also closed. The other
conditions including (a ≤ b → b − (b − a) = a); (a ≤ b ≤ c → c − b ≤
c−a, (c−a)−(c−b) = b−a) are directly verifiable. S1 is a closed subalgebraic
system also.

Theorem 2.13. The order ideal S1 of a V–PWO–poset S with difference
is also a V|S1

–PWO set with difference (V|S1
being the set of infinite sequences

over S1 in V ).

Proof. This is fairly in direct verification. S1 is not necessarily a closed
subalgebra but can be termed a V|S1

–relative subalgebra.

Theorem 2.14. Finite direct products of PWO–posets with difference
(Sk)n

1 are also PWO–posets with difference.

Theorem 2.15. Transfinite products of normal PWO–posets with differ-
ence are also PWO–posets with difference.

We consider the relation between V–PWO–posets and other difference–
operation endowed partial algebraic systems in what follows.

Theorem 2.16. (i) A PWO–poset with difference is not necessarily
a difference poset.

(ii) The order ideal of a normal PWO–difference poset is not necessarily a
difference poset but is a generalised difference poset.

Proof. (ii) refers a counter example. This is provided by a forgetful
countable/ finite MV–algebra S with difference operation defined by (x ≤
y → y − x = (x + y∗)∗). As ∀x ∈ S 0 ≤ x ≤ 1, S is a difference poset. It
is also a PWO–poset with ζ(S) being obviously a PWO–poset. Order ideals
are however not difference posets but α ∈ ζ(S) ⇒ 0 ∈ α and (a ≤ b a ≤
c, c− a = b− a→ b = c) are satisfied.

Clones are partial algebras of the form S = 〈S,⊕, 0, (2, 0)〉 which satisfy

a⊕ b w∗

= b⊕ a, (a⊕ b)⊕ c 7→ a⊕ (b⊕ c); (a ⊕ b = a⊕ c → b = c); a⊕ 0 = a;
and (a ⊕ b = 0 → a = b = 0) (cf [2] for example). Generalised orthoalgebras
are clones satisfying (a⊕ a = b→ b = 0).

Theorem 2.17. Finite dimensional PWO–posets with difference are all
clones.
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Proof. It is proved in [2] in essence that the class of clones are categor-
ically equivalent to the class of posets with cancellative difference [(b − a =
c − a → b = c) and (a − b = c ↔ a ⊕ c = b)]. It, therefore, suffices to prove
the cancellativeness aspect.

Let L be an arbitrary finite dimensional PWO–poset with difference.
Then

(i) L is normal and ζ(L) is a normal PWO set.

(ii) L ∼= F ⊆
n∏
1

Wi where Wi are well ordered sets and n <∞.

Since − is a partial difference operation on L, its composition with pro-
jection functions ei on restriction must also be partial difference operations.
But each of these compositions restricted suitably determines a cancellative
difference obviously. Let (Ki) be the sequence of subsets of Wi over which
ei− is inconsistent for the difference definition, then by (ii) (or equivalently as
the PO is the intersection of n number of well orders on L), the only possible
form of x ∈ Ki is (a, a) but by the PWO all subsets have minimal elements,
so Ki must be empty.

Cancellativeness and the other condition of⊕–definition are consequences.

Remark 2.18. For difference posets in the context there is nothing to
prove.

Theorem 2.19. There exist normal PWO difference posets of finite di-
mension with complementation which are not generalised orthoalgebras or or-
thoalgebras.

Proof. Generalised orthoalgebras are clones satisfying (a⊕a = b→ b =
0) and this need not hold in finite dimensional PWO–difference posets.

Theorem 2.20. Every chain in a PWO–set with difference has a gener-
alised poset structure and is necessarily complemented.

Proof. Every chain in a PWO poset with difference has a minimal ele-
ment as every subset must have a minimal subset [3, 4]. The complementation
is easy.

A PO will be called faintly linear iff ∃! o ∀x (o < x∨x < o∨x = o) while
PO will be called skew linear iff ∃ o ∀x, y (o ≤ x, o ≤ y → x ≤ y or y ≤ x).
Examples of such orders are abundant. The notions are related to positivity
of partial orders w.r.t. binary operations.

Theorem 2.21. There exist faintly linear PWO sets with difference which
are not generalised difference posets.

Proof. A counter example for the proposition can be based at J2 as
defined in [7]. Let Y = X ∪J2; X being a set and J2 = ω×ω. If a = (a1, a2),
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b = (b1, b2) ∈ J2 then (a1 = b1 =⇒ a ≤ b
∆←→ a2 ≤ b2) and (a1 < b1 → a <

b
∆←→ a1 +a2 ≤ b1). It sufficies to consider a two element X for ensuring that

Y is not a difference poset and the proposition.

Theorem 2.22. Skew–linear finite dimensional upper bounded PWO sets
are all endowable with orthoalgebra structure. The converse is not necessarily
true.

Proof. It suffices to show that (a = b − a → a = 0) is also defined/is
true nontrivially in skew–linear finite dimensional PWO upper bounded posets
whenever a generalised co-difference poset structure is defined. The existence
of the minimal subset and skew linearity along with a contradiction argument
is one strategy.

Remark 2.23. In Theorems 2.21, 2.22, o is not necessarily a difference 0.

Remark 2.24. PWO is necessary for the definability.

3. Intervals, Convex Sets and V–PWO Posets

The structure of collections of intervals and convex intervals has been
well–studied for lattices. Important extensions to posets have been obtained
in [3, 4]. These include a classification of interval posets based on particular
types of binary relations and the relation between posets with isomorphic
convex interval collections. The implications of those results on PWO and
V–PWO sets are naturally very relevant.

An interval in a poset S is a subset of the form [a, b] = {x; a ≤ x ≤ b}.
A convex interval or a strict interval is an interval [a, b] with ∀x, y ∈ [a, b]
x ≤ y or y ≤ x. A convex set A is a subset for which ∀x1, x2 ∈ A ∀x ∈
S(x1 ≤ x ≤ x2 → x ∈ A). IntS, CINT(S) and CNV(S) will respectively
be the associated collections of sets of the type. Posets S1, S2 are convexly
isomorphic iff CNV(S1) ≡ CNV(S2).

Theorem 3.1. If S = 〈S,≤〉 is a poset, then the posets convexly iso-
morphic to S are just those, (up to isomorphism) obtainable by the successive
application of the following three constructs

1) S1 = 〈S,≤1〉 where x ≤1 y iff x ≤ y and (x, y) /∈ P for a subset P of
{(x, y); (x, y) ∈ S2; x ≺ y, x ∈ Min(S), y ∈ Max(S)}.

2) Given S1, S2 is definable via S2 = 〈S,≤2〉, where x ≤2 y iff [[x, y ∈
C, x ≤1 y] or [x, y ∈ D, y ≤1 x]], for a decomposition S = C ∪D of
S with ∀ c ∈ C, d ∈ D c ‖1 d.

3) Given S2, S3 is definable via S3 = 〈S,≤3〉, where x ≤3 y iff x ≤2 y or
(x, y) ∈ Q, for a subset Q of {(x, y) ∈ S2; x ‖2 y, x ∈ Min(S2), y ∈
Max(S2)} under (α).
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(α) ∀u, v, w ∈ Q ∼ [(u, v) ∈ Q; (v, w) ∈ Q]. So if posets A = 〈A,≤〉
and B = 〈B,≤∗〉 are convexly isomorphic then there exists a poset
A′ = 〈A,≤〉 isomorphic to B s.t. CNV(A) = CNV(A′).

Proposition 3.2. If a finite dimensional PWO–poset A is convexly iso-
morphic to a finite dimensional PWO–poset B, it does not necessarily follow
that B is isomorphic to A or its dual.

Proof. Consider, the figure below, A, B are convexly isomorphic finite
dimensional PWO–posets but B is not isomorphic to A or its dual.
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Remark 3.3. In Proposition 3.2 the posets can also be endowed with
difference operations. The constructs of Theorem 3.1 are also interesting
from the view point of modification of difference operations (especially in the
sense of internalised valuation).

Proposition 3.4. (a) In the context of Theorem 3.1, if − is a differ-
ence operation on S, then the restricted difference operation −1 on S1

is obtainable from − via a−1 b = x, iff a− b = x and (b, a) /∈ P .
(b) In the context of Theorem 3.1 if − is a difference operation on S and if

the second construction is directly applied on S, then a new difference
operation −2 is definable on S2 via x−2 y = b iff {x, y ∈ C, x−y = b}
or {x, y ∈ D, y − x = b}.

(c) In the context of Theorem 3.1 3), if − is a difference operation on S
and if the ≤3 definition is interpreted relative ≤ itself then a set of ≤3

”extensions −′” of − are definable under, x ≤ y y − x = z → x ≤3 y,
y −′ x = z. (x, y) ∈ Q→ x ≤3 y, y −′ x is definable. There is at least
one nontrivial extension within S.

Proof. The proofs consist in verification and are not difficult.

In general some strong connections between the nature of a V–PWO,
PWO–poset and their set of convex subsets are expectable. A study of such
connections under different conditions including cardinality is of interest.
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The distribution of intervals and convex intervals in a PWO or V–PWO–
posets are relatively more easily determined under normality or finite dimen-
sionality. The classificatory theorem proved in [3, 4] becomes simpler for finite
dimensional PWO and V–PWO posets (when V is an union of intervals or
maximal intervals).

Let U, V be tolerances (reflexive and symmetrical relations) on a poset
S, under

(P1) U, V ⊆ {(x, y) ∈ S × S;∼ (x ‖ y)};
(P2) ∀x, y (x ≤ y → ∃! p, q ∈ [x, y], pV xUqV yUp);
(P3) ∀x, y, u (u ≤ x, y, xV uUy → u = inf{x, y}, ∃ v = Sup{x, y}yV vUx));

(P3’) ∀x, y, v (x, y ≤ v, yV vUx → v = Sup{x, y} ∃u, u = inf{x, y},
xV uUy);

(P4) a = a1Ua2U . . . Uan = a′, a = aV a′2V . . . V a
′
m = a′ → a = a′; n,m ∈

N;
(P5) ∀ a, a′ ∈ S, ∃n,m ∈ N, ∃ a1 . . . an, a′1 . . . a

′
m ∈ S a = a1Ua2U . . . Uan =

a′1V a
′
2V . . . V a

′
m = a′.

Then

Theorem 3.5. (i) Let S be a connected poset. Then there exists a
mapping φ of the system of all couples of relations U, V on S under
(P1)–(P3) onto the system of all isomorphism classes of posets B with
IntB ∼= IntS. If (U, V ) satisfies (P1)–(P5), then φ(U, V ) consists of
all posets isomorphic to Sδ

1 × S2 for a direct decomposition S1 × S2

of S. Conversely the class of all posets isomorphic to Sδ
1 × S2 for a

direct decomposition S1 × S2 of S is φ(U, V ) for some (U, V ) under
(P1)–(P5).

(ii) If S is a directed poset, and B a poset with IntS ∼= IntB then there
exist posets C, D with S ∼= C × D and B ∼= CS ×D. Given S,B as
above the converse is also true.

Theorem 3.6. Let S1, S2 be two V–PWO posets (when V – is a union of
powers of covering maximal intervals) with IntS1

∼= IntS2, then there exist
posets C,D, S1

∼= C × D and S2
∼= CD × D. The union of the maximal

intervals is S1.

Theorem 3.7. In Theorem 3.6, V–PWO is replaceable by finite dimen-
sional posets.

Proof of Theorems 3.6, 3.7. In both cases it suffices to take the base
sets to be the same S and the orders as ≤1, ≤2, S1, S2 are decomposable into
maximal connected sets (S1δ) and (S2δ)δ∈D with, IntS1δ = IntS2δ necessar-
ily. Applying Theorem 3.5 to these S1δ , S2δ pairs, it remains to prove the
reconstructibility of C,D which is possible in both the contexts.
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Definition 3.8. A PWO–interval will be an interval, partially well–
ordered as a poset. The set of all PWO–intervals of a poset S will be PWI(S).
A Co–µ–subset X of a poset Y is a subset satisfying {x; ∀ y ∈ S; y ≤ x or
x ‖ y} ⊂ Y and ∀ y ∈ S ∃ ∈ X y ≤ x.

Clearly,

Proposition 3.9. (a) PWI(S) ⊂ Int(S). CNV(S) ∩ PWI(S) ⊂
CINT(S).

(b) If a subcollection ξ ≺ PWI(S) is s.t. ∪ξ = S then S is a PWO–poset.
(c) If every subinterval of an element of PWI(S) is also in PWI(S) then

PWI(S) is endowable with a partial lattice structure, otherwise it is a
poset in general. In particular when the Co–µ–subsets of PWI(S) are
normal, PWI(S) has a partial lattice structure.

The notion of isomorphism determined by proposition 3.9 allows the pos-
sible equivalence PWI(S1) ∼= PWI(S2) between two posets. A problem is the
characterisation of S1 and S2 when such an equivalence is true.

4. Generalised Closure Operators, Invariant Systems

In general posets can be characterised up to different desired levels by
different sets of invariants. These include the dimension, height, cardinalities
of maximal antichains, invariants associated with order ideals and collections
of intervals and invariants related to different types of denseness among others.
For PWO–posets and V-PWO–posets (with/without differences) most of these
are relevant, V-PWO–posets are naturally more difficult to characterise via
invariants. A modified set of partial invariants are developed below. These
are partial in the characterisation of V–perspectives and also so from the dual
semantic (preservation by special morphism) point of view.

In all that follows S = 〈S,≤,−, (2, 2)〉 will be a V-PWO–poset with par-
tial difference operation. Four different generalised closure operators are ini-
tially defined. These also lead to corresponding notions of simpler types of
PWO–posets. The proper invariant system for a V-PWO–poset must cor-
rectly be considered contextually, but the fragment developed below is almost
always useful.

The first operator CW is motivated by the connections with order ideals.

Definition 4.1. A subset H ⊆ ζ(S) will be called relevant for S0 (S0 ⊂ S)
iff

(i) ∃x0 ∈ H ∀x ∈ H x ⊆ x0,
(ii) ∀x ∈ H S0 ⊆ x,

(iii) ∀H, H′ ⊆ ζ(S) (H ⊂ H′ → ∃x0 ∈ H′ ∀x′ ∈ H′ x′ ⊆ x′0 6= S,
∩H′ = ∩H).
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Definition 4.2. CW : P (S)→ ζ(S) will be an operator s.t.

CX(S0) =




∩H, if all relevant subcollections for S0

have identical intersection.

∩α, otherwise (Su ⊆ α and α ∈ ζ(S)).

Proposition 4.3. In the contexts of Definitions 4.1, 4.2, the statements
(i)–(iv) hold

(i) CW(φ) = φ; CW(S) = S,
(ii) CW(CW(S0)) = S0,

(iii) S0 ⊆ CW(S0),
(iv) S0 ⊆ S′

0 ⊆ CW(S0)→ CW(S0) ⊆ CW(S′
0).

Proof. The verification of (i)–(iii) is obvious, (iv) is a case by case ver-
ification.

Remark 4.4. CW does not satisfy monotony in general. In a weaker
setting this operator has been used by the present author to obtain a concrete
representation theorem for nonmonotonic consequence operators satisfying
inclusion, idempotence and cautious monotony.

Definition 4.5. Let S be a difference poset, then the operators CTc,CF,
CT : 2S → 2S will be called C–top closure, F–closure and top closure respec-
tively, whenever they satisfy

(i) ∀S1 ∈ 2S CF(S1) = {1− x; x ∈ S1} ∪ S1 with the induced difference
operation;

(ii) ∀S1 ∈ 2S CTc(S1) is the least closed forgetful subalgebra (w.r.t. −)
containing S1 ∪ {1};

(iii) ∀S1 ∈ 2S CT(S1) = S1 ∪ {1} with the induced difference operation.

Remark 4.6. Definition 4.5 is extendable to posets with difference by
adjoining a top element 1 if not present under ∀x x ≤ 1 or x ‖ 1 and suitably
extending the difference operation on S to S ∪ {1}.

Proposition 4.7. If S is a difference poset and CTc, CF, CT c–top
closure, F–closure and top closure operators on it respectively, then the state-
ments (i)–(ix) are satisfied in S.

(i) CTc(φ) 6= φ; CTc(S) = S; S1 ⊂ CTc(S1),
(ii) CTc CTc(S1) = CTc(S1),

(iii) S1 ⊆ S2 → CTc(S1) ⊆ CTc(S2),
(iv) CF(φ) 6= φ, CF(S) = S, S1 ⊆ CTc(S1),
(v) CF CF(S1) ⊇ CF(S1),

(vi) S1 ⊆ S2 → CF(S1) ⊆ CF(S2),
(vii) CT(φ) = 1, CT(S) = S, S1 ⊆ CT(S1)

(viii) CT CT(S1) = CT(S1),
(ix) S1 ⊆ S2 → CT(S1) ⊆ CT(S2).
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Proposition 4.8. If S is a difference V –PWO–poset and g is any one of
the four operators defined above, then the relation ρg defined via (x, y) ∈ ρg

iff g(x) = g(y) is an equivalence on the power set 2S.

CTc, CF and CT operators allow interesting notions of generalised sim-
plicity in PWO–posets. These posets have better structural properties.

Definition 4.9. A difference PWO–poset S will be called CTc– simple
(respectively CF; CT) as ∀α ∈ ζ(S) \ {φ} CTc(α) = S (respectively CF(α) =
S; CT(α) = S) is satisfied in S.

Theorem 4.10. For difference PWO–posets CT–simplicity implies CTc–
simplicity while CF–simplicity implies CTc–simplicity.

Proof. Let α ∈ ζ(S) \ {φ}, then CT(α) = α ∪ {1} with the induced
difference operation, so that the underlying set in α is essentially S \ {1}.
Clearly this α satisfies that CTc(α) is the closed algebraic closure of α ∪ {1},
which is S. The converse obviously fails.

CF(α) = S implies {1− x; x ∈ α} ∪ α when endowed with the difference
operation on S. This yields CTc(α) = S as CTc(α) is the closed algebraic clo-
sure of {1−x; x ∈ α}∪α∪{1}, which must coincide with S. Counterexamples
for the failure of the converse are easy.

Theorem 4.11. If g is one of CTc, CT or CF, then closed (isotone)
morphic images of g–simple difference PWO–posets are g–simple.

Some representation theory based at g–simple difference PWO–posets are
possible [5]. The following conjecture appears possible.

Conjecture 4.12. All normal g–simple difference PWO–posets are
finite-dimensional.

Definition 4.13. The PWO–type L = 〈L,∧,∨, ϕ, θ, (2, 2, 1, 0)〉 of a poset
S will be a lower, complete partial lattice endowed with a partial unary oper-
ation ϕ s.t.

(i) L is a bijective image of 2S (i.e. L is forgetfully isomorphic to 2S in
the category of sets).

(ii) ϕx = x iff x is a PWO–poset, else ϕ is undefined.
(iii) If x′ denotes the natural bijective image of x in 2S, then for x, y, a ∈ 2S

x ∩ y = a, ϕL(a′) = a′ ←→ x′ ∧ y′ = a′.
x ∪ y = a, ϕL(x′) = x′, ϕL(y′) = y′, ϕL(a′) = a′ ←→ x′ ∨ y′ = a′.

(iv) x ∧ y w∗

= y ∧ x; x ∨ y w∗

= y ∨ x.
x ∧ (y ∧ z)

w∗

= (x ∧ y) ∧ z; x ∨ (y ∨ z)
w∗

= (x ∨ y) ∨ z.
x ∧ 0 = 0, x ∨ 0 = x, x ∧ (y ∨ z)

w∗

= (x ∨ y) ∧ (x ∨ z).
(ϕ(x ∨ y) = ϕx ∨ ϕy = x ∨ y → ϕ(x ∧ y) = ϕx ∧ ϕy = x ∧ y).
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Remark 4.14. ∧, ∨ are restrictions of ∩, ∪ in 2S. Partial complementa-
tions can be induced on L by the complementation c on 2S . But widely dif-
ferent abstractions including set–valued partial–complementation (poly com-
plementations) are possible.

At least two cases of embeddability of one PWO–type in another are of
interest.

Problem 4.1. Let L1, L2 be two PWO–types with antichains of Co µ–
subsets T1, T2 respectively. If CardT1 = CardT2, find necessary and sufficient
conditions for L1 to be embeddable in L2. Consider also the case without the
restriction.

Theorem 4.15. Two posets S1, S2 with PWO perspectives V1, V2 respec-
tively, with isomorphic PWO–poset types need not necessarily be isomorphic
to each other even if CardS1 = CardS2 and CardV1 = CardV2.

Proof. Counterexamples are easy.

For posets, associatable invariants include the dimension, rank, collections
of intervals, collections of convex intervals, lattice of antichains, cardinalities
of sets of atoms and coatoms, invariants derivable via CW, PWO–types and
height. For PWO–posets all these remain applicable, but it suffices to re-
strict to a smaller subcollection, but the type of decomposition into partial
ordinals becomes useful. For V –PWO–posets too all these are applicable.
All these invariants do not strongly relate to products on the underlying set.
This generally results in irregular characterisation of V from the mentioned
invariants, even when as many as five of them are specified. In the context
of V –PWO–posets these will be therefore be referred to as partial invariants.
For difference V –PWO–posets, it is necessary to make use of CTc, CT and
CF also.

Based on the nature of sets of invariants we can classify them into car-
dinal, gross and restricted invariants. These will respectively correspond to
the component invariants being cardinal numbers, cardinals and structures
and restricted versions thereof. An example of a cardinal invariant system
is 〈Card(S), dim(S), ht(S),Card(At(S)),Card(mac(S)),Card(cat(S))〉 where
At(S), ht(S), mac(S) and cat(S) correspond respectively to the set of atoms,
height, set of maximal antichain and set of coatoms of S.

If we include Int(S) and PWI(S) in the above we have an example of a
gross invariant system. But if we use a forgetful version of Int(S) then we
have a restricted invariant system.

Interesting partial invariant systems for difference V –PWO–posets inclu-

de 〈Card(S),CF(S),PWO(S),CT̂c,CŴ,CT̂,CF̂〉, 〈PWO(S),CT̂c,CŴ,CT̂,

CF̂,CNV(S)〉 and 〈dim(S),At(S),CNV(S),PWI(S),PWO(S),CŴ,mac(S)〉
(CT̂,CŴ and other operators with symbols ̂mean the associated collections
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of closed sets in 2S). Some gross invariant systems have been considered for
difference V –PWO–posets in [5] by the present author.

The results obtained therein have connections with partial ordinals. Fur-
ther work in the above are naturally motivated. The best forms of invariants
for the context are apparently those which use special products.

Problem 4.2. Let S be a V –difference PWO–poset. Find generalised
product processes H for which special products of the form Sω|H coincide
with the perspective V .

Conclusion. In this original research paper, we have generalised the no-
tion of PWO to V –PWO, considered the relation between PWO and difference
operations, formulated notions of invariants, considered the relation with the
different types of intervals and have proved interesting results on all of them.
We continue with different applications and extensions in a subsequent paper.
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