Estimation of Stability Constants of Copper(II) Bis-chelates by the Overlapping Spheres Method

Ante Miličević and Nenad Raos*
Institute for Medical Research and Occupational Health, Ksaverska c. 2, P. O. Box 291, HR-10000 Zagreb, Croatia

RECEIVED NOVEMBER 2, 2005; REVISED DECEMBER 20, 2005; ACCEPTED DECEMBER 28, 2005

INTRODUCTION

Overlapping spheres (OS) is a vague term that covers all the methods based on the calculation of overlapping volumes of van der Waals radii of atoms and the sphere or spheres defined in a systematic way. The application of the method ranges from the calculation of hydration (solvation) energy of polymers ${ }^{1-5}$ to the search for low-energy conformations, ${ }^{6-10}$ construction of molecular connectivity (topology) from geometrical data, ${ }^{11-13}$ and drug design. ${ }^{14-16}$

Stability of coordination compounds is due to many specific interactions (hydration, additional water coordi-
nation, steric strain, etc.). Many of these interactions are dependent on the OS volume, and therefore stability constants should be correlated with this quantity. But, in spite of such a vague underlying theoretical concept, the OS method gives fairly good estimates. The difference in energy between the enantiomeric conformers of cop$\operatorname{per}($ II) chelates with N, N-dialkylated amino acids estimated by the OS method differs by less than $5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ from the energy calculated by more rigorous molecular mechanics calculations. ${ }^{17}$ In our recent papers, we estimated the stability constants of copper(II) complexes with amino acids in an error range $0.1-0.5 \log \beta$ units, ${ }^{18}$ and stability constants of copper(II) and nickel(II) mono-

[^0]complexes with diaminoethane and its derivatives within an error of $0.0-0.9 \log \beta$ units. ${ }^{19}$ These numbers are comparable with the results of topological analysis, which yielded an error of estimate usually less than 0.3 $\log \beta$ units. ${ }^{20-22}$ When comparing the estimates, one has also to bear in mind that the measured stability constants for the same system differ typically by up to $0.3 \log \beta$ units (e.g., for copper complex with glycine $\log \beta_{2}=$ $14.92-15.26 \log \beta$ units, $\left.T=298, I=0.1 \mathrm{~mol} \mathrm{~L}^{-1}\right) .{ }^{23}$

In our previous papers we applied the OS method to estimate the stability constants of mono- or bis-complexes starting from the structures of their molecules. The task appears to be a very complex one because the overlapping spheres volume is determined by the molecular conformation. Moreover, in the case of bis-complexes, the problem of cis/trans isomerism appears, and the number of possible structures rises enormously (N conformations of a chelate ring give $N(N+1)$ structures of the ML_{2} complex). As previously, ${ }^{19}$ we have taken into account only the structure with the minimal value of the OS volume for each molecule, but despite this simplification, the overlapping volume of a great number of isomers and conformers of the ML_{2} complex has to be calculated. Faced with such complexity, we decided to develop a method capable of estimating stability constants of bis-complexes from the overlapping volumes of the constituting chelate rings (ML models). Also, to simplify the calculations, we calculated overlapping volumes placing the central sphere only at the central atom, and not also at the bite atoms like in our previous calculations. ${ }^{18,19}$

METHODS

The overlapping spheres (OS) approach is based on evaluation of the function: ${ }^{23}$

$$
\begin{equation*}
V^{*}=\Sigma V_{j}\left(\mathrm{~S}_{\mathrm{v}} \cap \mathrm{~s}_{j}\right) \tag{1}
\end{equation*}
$$

where V^{*} is the sum of overlapping volumes of the central sphere S_{v} and volumes of van der Waals spheres s_{j} of the neighboring atoms: ${ }^{7,24}$

$$
\begin{gather*}
V_{j}=1 / 3 \pi\left[2 R_{\mathrm{v}}{ }^{3}+2 r_{j}^{3}+r_{\mathrm{v}}{ }^{3}\right]- \\
\pi\left[R_{\mathrm{v}}{ }^{3} x^{*}+\left(r_{\mathrm{vj}}-\mathrm{x}^{*}\right)\left(r_{j}^{2}+r_{\mathrm{v} j} x^{*}\right)\right] \tag{2}
\end{gather*}
$$

where

$$
\begin{equation*}
x^{*}=\left(R_{\mathrm{v}}^{2}-r_{j}^{2}+r_{\mathrm{vj}}^{2}\right) / r_{\mathrm{vj}} \tag{3}
\end{equation*}
$$

In Eqs. (2) and (3), r_{j} stands for the van der Waals radius of atom j penetrating the central sphere with radius R_{v}, and r_{vj} is the distance between the centers at atom j and the central sphere. Eq. (3) holds only for par-
tial overlaps; otherwise $V_{j}=0$ for $R_{\mathrm{v}}+r_{j}=r_{\mathrm{v} j}$, and $V_{j}=$ $4 / 3 r_{j}^{3} \pi$ for $r_{j}+r_{\mathrm{v} j}=R_{\mathrm{v}}$.

Central sphere is situated at the central atom (Figure 1). Set of the van der Waals radii is given elsewhere, ${ }^{7}$ except $r_{j}=255 \mathrm{pm}$ for sulphur. ${ }^{24}$

Figure 1. General scheme of the model of overlapping spheres (cf. Eq. 1).

Calculation of the overlapping volume (Eq. 1) was performed by a special FORTRAN program. All molec-ular-mechanics calculations, needed to find the conformers of copper(II) chelates, were done using the program developed by Kj . Rasmussen and co-workers. ${ }^{25-27}$ Regression calculations, including the leave-one-out procedure of cross validation, cv, were done with the CROMRsel program. ${ }^{28}$ The standard error of cross validation estimate is defined as:

$$
\begin{equation*}
\text { S.E.cv }_{\text {cv }}=\left(\Sigma(\Delta \mathrm{X})^{2} / N\right)^{1 / 2} \tag{4}
\end{equation*}
$$

where $\Delta \mathrm{X}$ and N denote cv residuals and the number of reference points, respectively.

RESULTS AND DISCUSSION

Complexes of 1,2-Diaminoethane and its Derivatives

As the first test of the reliability of the OS method for estimation of stability constants of bis-complexes we chose 1,2-diaminoethane and its derivatives using the same set of ligands as in the previous paper. ${ }^{19}$ The set consists of 1,2-diaminoethane, its five N-alkylated and four N, N^{\prime}-dialkylated derivatives, along with four C-substituted 1,2-diaminoethanes (Table I). All stability constants $\left(\beta_{2}\right)$ were determined at the same temperature and ionic strength ($T=298 \mathrm{~K}, I=0.5 \mathrm{~mol} \mathrm{~L}^{-1}$).

In the models based on estimation of $\log \beta_{2}$ from the OS volume of the whole molecule (models Nos. 2, 3, 5, and 6, Table I, Supplement), we constructed the geometry of complexes from the chelate ring conformations defined in Table I. As a bis-complex may appear as a trans- or cis-isomer, we tested two types of models. In

TABLE I. Stability constants $\left(\log \beta_{2}\right)$ of copper(II) bis-complexes with 1,2-diaminoethane and its derivatives

No.	Ligand	Configuration/Conformation	$\log \beta_{2}$	Reference
$\mathbf{1}$	1,2 -diaminoethane	-	20.13	29
$\mathbf{2}$	N-methyl-1,2-diaminoethane	e	19.11	29
$\mathbf{3}$	N-ethyl-1,2-diaminoethane	$e(\mathrm{t})$	18.57	29
$\mathbf{4}$	N-propyl-1,2-diaminoethane	$e(\mathrm{tt})$	18.14	29
$\mathbf{5}$	N-butyl-1,2-diaminoethane	$e(\mathrm{ttt})$	18.21	29
$\mathbf{6}$	N-isopropyl-1,2-diaminoethane	$e(R) \mathrm{g}^{-(\mathrm{a})}$	16.52	29
$\mathbf{7}$	N, N^{\prime}-dimethyl-1,2-diaminoethane	$e(S), e(S)$	18.1	30
$\mathbf{8}$	N, N^{\prime}-diethyl-1,2-diaminoethane	$e(S) \mathrm{t}, e(S) \mathrm{t}$	15.62	30
$\mathbf{9}$	N, N^{\prime}-dipropyl-1,2-diaminoethane	$e(S) \mathrm{tt}, e(S) \mathrm{tt}$	14.34	30
$\mathbf{1 0}$	N, N^{\prime}-dibutyl-1,2-diaminoethane	$e(S) \mathrm{ttt}, e(S) \mathrm{ttt}$	13.51	30
$\mathbf{1 1}$	1,2 -diaminopropane	e	20.06	31
$\mathbf{1 2}$	(R, S)-2,3-diaminobutane	$e(R), a(S)$	20.06	31
$\mathbf{1 3}$	(R, R)-2,3-diaminobutane	$e(R), e(R)$	21.21	31
$\mathbf{1 4}$	2 -methyl-1,2-diaminopropane	-	19.58	31

${ }^{(a)}$ Critical torsion angle is defined as $\mathrm{Cu}-\mathrm{N}-\mathrm{C}-\mathrm{H}$.
the first type, only OS volumes of trans-isomers were taken into account; in the second type of models, the bis-complex with the minimal OS volume was selected among its cis- and trans-isomers. The models of the third type, where complexes appear as cis-isomers, were not tested because cis-configuration is not possible for all compounds.

The results of regression do not differ very much, irrespective of the model used. ML_{2} models calculated at $R_{\mathrm{v}}=300 \mathrm{pm}\left(\right.$ S.E. $_{\text {cv }}=0.94-0.95 \log \beta$ units, Nos. 2 and 3, Table I, Supplement, and Figure 2) appear to be

Figure 2. The best linear regression (3, Table I, Supplement) of log β_{2} on the OS volume $\left(\mathrm{V}^{*}\right)$ for bis-complexes of 1,2-diaminoethane and its derivatives $(N=14$, Intercept $=38.4(22)$, Slope $=$ $-0.142(15), r=0.937$, S.E. $=0.77$, S.E.cv $=0.94)$. The numbering scheme corresponds to the notation in Table I.
superior to the other models (S.E.cv $=1.08-1.12 \log \beta$ units). However, analysis of cv residuals for all the models shows virtually the same agreement between theory and experiment for ML (S.E.cv $=1.12 \log \beta$ units) and ML_{2} models (S.E. ${ }_{\mathrm{cv}}=1.02 \log \beta$ units; S.E. ${ }_{\mathrm{cv}}=0.94-$ 1.09). Despite the high estimation error, it has to be noted that the error is mainly due to complexes $\mathbf{7}$ and $\mathbf{1 0}$; the $\log \beta_{2}$ of N-alkylated 1,2-diaminoethanes (2-6) was reproduced with S.E.cv and the absolute error range of 0.27 (0.06-0.50), 0.19 (0.07-0.28), and 0.23 (0.01-0.29) log β units for the mean value of $\mathrm{ML}, \mathrm{ML}_{2}$, and both models, respectively (Table II, Supplement).

N-alkylated Glycines and Aliphatic Amino Acids

The second set for testing our method consisted of 11 bis-complexes of amino acids (Table II). It is the same set as in reference 18. All stability constants were determined at the same temperature and ionic strength ($T=$ $298 \mathrm{~K}, I=0.1 \mathrm{~mol} \mathrm{~L}^{-1}$), with the exception for leucine ($I=0.01 \mathrm{~mol} \mathrm{~L}^{-1}$). All ML_{2} complexes were calculated as trans-isomers (Table III, Supplement). ${ }^{18}$ The best results were obtained with the ML model No. 9, Figure 3 (S.E.cv $=$ $0.50 \log \beta$ units), but the difference from the worst model (No. 7, S.E.cv $=0.55 \log \beta$ units) is rather small.

The S.E.cv ${ }_{\text {cv }}$ and error ranges (Table IV, Supplement) for $\operatorname{ML}\left(\right.$ S.E. $_{c \mathrm{cv}}=0.52$, range $=0.05-1.12 \log \beta$ units $)$ and ML_{2} models (S.E.cv $=0.51$, range $=0.06-0.93 \log \beta$ units) are virtually the same. However, the main obstacle is the complex with N-iso-propylglycine; by discarding it, substantially better results were obtained (S.E. ${ }_{\mathrm{cv}}=0.43$, range $=0.01-0.70 \log \beta$ units; calculated from the mean value of all regressions).

TABLE II. Stability constants $\left(\log \beta_{2}\right)$ of copper(II) bis-complexes with aliphatic amino acids and glycine derivatives

No.	Ligand	Conformation ${ }^{(\mathrm{a})}$	$\log \beta_{2}$	Reference
$\mathbf{1}$	Glycine	-	15.17	31
$\mathbf{2}$	Alanine	e	14.82	32
$\mathbf{3}$	Valine	$e\left(\mathrm{~g}^{-}\right)$	14.79	32
$\mathbf{4}$	Leucine	$e(\mathrm{gg})$	14.34	33
$\mathbf{5}$	N-Methylglycine	e	14.59	31
$\mathbf{6}$	N, N^{\prime}-Dimethylglycine	-	13.65	31
$\mathbf{7}$	N-Ethylglycine	$a\left(\mathrm{~g}^{-}\right)$	13.55	31
$\mathbf{8}$	N, N^{\prime}-Diethylglycine	$a(\mathrm{t})\left(\mathrm{g}^{-}\right)$	12.86	31
$\mathbf{9}$	N-Propylglycine	$a\left(\mathrm{tg}^{-}\right)$	31	
$\mathbf{1 0}$	N-Butylglycine	$a\left(\mathrm{~g}^{-t g}\right)$	31	
$\mathbf{1 1}$	N-iso-Propylglycine	$a(\mathrm{~g})$	13.51	31

*Torsion angles are defined for naturally occurring amino acids as $N-C^{\alpha}-C^{\beta}-X,(X=C$ for Leu and $X=H$ for Val) and for alkylated glycines as $\mathrm{Cu}-\mathrm{N}-\mathrm{C}-\mathrm{C}, \mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$, with the exception of iPr derivative $(\mathrm{Cu}-\mathrm{N}-\mathrm{C}-\mathrm{H})$.

Figure 3. The best linear regression (9, Table III, Supplement) of $\log \beta_{2}$ on the OS volume $\left(V^{*}\right)$ for bis-complexes of aliphatic Oamino acids and their N-alkylated derivatives ($N=11$, Intercept $=17.60(71)$, Slope $=-0.0164(31), r=0.869$, S.E. $=0.42$, S.E.cv $=0.50$). The numbering scheme corresponds to the notation in Table II.

Bis-complexes of Naturally Occurring Amino Acids

The third set of data for testing our model is a set coincident with the set used previously in order to estimate stability constants from topological indices. ${ }^{21}$ The set consists of nine aliphatic, aromatic, and hydroxy amino acids (Table III), $\log \beta_{2}$ values of which were measured at the same temperature and ionic strength ($T=298 \mathrm{~K}$, $I=0.05 \mathrm{~mol} \mathrm{~L}^{-1}$). All the models (Table V, Supplement) yielded results of virtually equal quality (S.E.cv $=$ $0.17-0.19 \log \beta$ units), but it has to be noted that the results are highly dependent on molecular conformation. Assuming all the chelate rings are in equatorial conformation (which has the lowest overlapping volume), a quite unrealistic regression was obtained ($r=0.825$, but

Figure 4. The best linear regression (12, Table V, Supplement) of $\log \beta_{2}$ on the OS volume $\left(V^{*}\right)$ for bis-complexes of naturally occurring amino acids ($N=9$, Intercept $=16.89(78)$, Slope $=$ $-0.0186(71), r=0.704, S . E .=0.14$, S.E.cv $=0.17$). The numbering scheme corresponds to the notation in Table III.
with a positive slope). Only when the conformation of one (a / e) or both (a / a) rings of aromatic and hydroxy amino acids was assumed, a realistic slope was obtained with a fair reproduction of experimental data (Figure 4). The rationale for the axial conformation for the chelate ring of aromatic and hydroxy amino acid is the assumption that in these complexes interactions between the side chain and the central atom occur, which in turn hinder the binding of the water molecule or the second ligand, leading to destabilization of the molecule.

Regressions presented in Table V (Supplement) yielded very similar residuals (Table VI, Supplement). They range from 0.04 to $0.24 \log \beta$ units (absolute value), with the exception of molecule No. 3 (serine)

TABLE III. Stability constants $\left(\log \beta_{2}\right)$ of copper(II) bis-complexes with a representative set of amino acids

No.	Ligand	Conformation	$\log \beta_{2}$	Reference
$\mathbf{1}$	Glycine	-	15.11	34
$\mathbf{2}$	Alanine	e	14.99	34
$\mathbf{3}$	Serine	$e\left(\mathrm{tg}^{-}\right), a(\mathrm{gt})$	14.57	34
$\mathbf{4}$	Valine	$e\left(\mathrm{~g}^{-}\right)$	14.91	35
$\mathbf{5}$	Threonine	$e\left(\mathrm{~g}^{-} \mathrm{g}^{-}\right), a(\mathrm{gt})$	14.77	34
$\mathbf{6}$	Leucine	$e(\mathrm{gg})$	15.13	36
$\mathbf{7}$	Phenylalanine	$e(\mathrm{tg}), a(\mathrm{gg})$	14.77	34
$\mathbf{8}$	Tyrosine	$e(\mathrm{tg}), a(\mathrm{gg})$	14.78	34
$\mathbf{9}$	Methionine	$e(\mathrm{ttg}), a(\mathrm{ggg})$	14.53	35

${ }^{(a)}$ Torsion angles are defined as $N-C^{\alpha}-C^{\beta}-X,\left(X=C\right.$ for Leu and $X=H$ for Val); N-C $C^{\alpha}-C^{\beta}-O$ and $C^{\alpha}-C^{\beta}-O-H$ for Ser and Thr; N-C $C^{\alpha}-C^{\beta}-C^{1}$ and $\mathrm{C}^{\alpha}-\mathrm{C}^{\beta}-\mathrm{C}^{1}-\mathrm{C}^{2}$ for Phe and Tyr; N-C ${ }^{\alpha}-\mathrm{C}^{\beta}-\mathrm{C}, \mathrm{C}^{\alpha}-\mathrm{C}^{\beta}-\mathrm{C}-\mathrm{S}$ and $\mathrm{C}^{\beta}-\mathrm{C}-\mathrm{S}-\mathrm{C}$ for Met.
with residuals from -0.36 to $-0.40 \log \beta$ units. Models based on the OS volume of one chelate ring (Nos. 11 and 13, Table V, Supplement) and the OS volume of biscomplex (Nos. 12 and 14, Table V, Supplement) yielded the same agreement with experimental data in terms of the overall cv parameters (S.E.cv $=0.18 \log \beta$ units; mean residuals are from -0.36 to 0.22 and from -0.39 to 0.23 $\log \beta$ units for ML and ML_{2} models, respectively). However, by refuting the serine complex, S.E.cv ${ }_{\text {ct }}$ drops to 0.14 and $0.13 \log \beta$ units for the mean values of ML and ML_{2} models, respectively.

Estimation of the stability constants of mixed complexes in this series proved to be tedious (Table IV). Because of the enormous number of ring combinations in

TABLE IV. Stability constants (log β_{2}) of copper(II) mixed bis-complexes with the set of amino acids defined in Table III

No.	Ligands (A, L)	$\log \beta_{2}{ }^{(\mathrm{a})}$	Reference
$\mathbf{1}$	Glycine, alanine	15.10	34
$\mathbf{2}$	Glycine, serine	15.09	34
$\mathbf{3}$	Glycine, threonine	15.13	34
$\mathbf{4}$	Glycine, tyrosine	15.35	34
$\mathbf{5}$	Glycine, phenylalanine	15.36	34
$\mathbf{6}$	Alanine, serine	15.07	34
$\mathbf{7}$	Alanine, threonine	15.08	34
$\mathbf{8}$	Alanine, tyrosine	15.30	34
$\mathbf{9}$	Alanine, phenylalanine	15.26	34
$\mathbf{1 0}$	Valine, tyrosine	15.25	37
$\mathbf{1 1}$	Serine, threonine	14.55	34
$\mathbf{1 2}$	Serine, tyrosine	14.78	34
$\mathbf{1 3}$	Serine, phenylalanine	14.77	34
$\mathbf{1 4}$	Threonine, tyrosine	14.98	34
$\mathbf{1 5}$	Threonine, phenylalanine	14.96	34
$\mathbf{1 6}$	Tyrosine, phenylalanine	14.92	37

[^1]these chelates, estimation of the $\log \beta_{2}$ values from the structure of ML_{2} chelates appears to be quite impractical; we therefore solved the problem by using only models based on the calculation of the OS volumes of constituting chelate rings.

Unfortunately, one-dimensional linear regression of the sum of the OS volumes of two chelate rings, $V_{1}{ }^{*}+$ $V_{2}{ }^{*}$, yielded a very low regression coefficient and showed very distinct grouping of points (Figure 5). However, introduction of a new variable, $V_{1}{ }^{*}-V_{2}{ }^{*}\left(V_{1}{ }^{*}>V_{2}{ }^{*}\right)$, made it possible to make a correction for the asymmetric coordination. An estimate from the bivariate regression of $\log \beta_{2}$ on $\left.\left(V^{*}+V^{*}\right)^{2}\right)$ and $\left.\left(V^{*}{ }_{1}-V^{*}\right)_{2}\right)$ taking into account all the 16 complexes did not yield very satisfactory results $\left(R=0.650\right.$, S.E. ${ }_{\mathrm{cv}}=0.345$ for $\left.R_{\mathrm{v}}=400 \mathrm{pm}\right)$. However, a close inspection of the data showed that the worst results were obtained for the mixed complex of both aromatic amino acids in the set, phenylalanine and tyrosine $($ residual $=0.28 \log \beta$ units, cv residual $=1.18 \log \beta$ unit). Discarding this point, fairly good results were ob-

Figure 5. Linear regression of $\log \beta_{2}$ on the OS volume (V^{*}) for mixed bis-complexes of naturally occurring amino acids ($N=16$, Intercept $=15.51(86)$, Slope $=-0.0039(74), r=0.140)$. The numbering scheme corresponds to the notation in Table IV.

Figure 6. The best bivariate linear regression (15, Table VII, Supplement), experimental vs. calculated $\log \beta_{2}$ values, for mixed biscomplexes of naturally occurring amino acids ($N=15$, Intercept $=19.66(47)$, Slope $\left(V^{*}{ }_{1}+V^{*}{ }_{2}\right)=-0.0452(44)$, Slope $\left(V^{*}{ }_{1}-V^{*}{ }_{2}\right)$ $=0.0658(55), r=0.961$, S.E. $=0.06$, S.E.cv $=0.08)$. The numbering scheme corresponds to the notation in Table IV.
tained $(r=0.961$, S.E.cv $=0.08$, Table VII, Supplement, Figure 6). The stability constants were reproduced very well for all the mixed complexes (Table VIII, Supplement). Residual values are in the absolute range of $0.00-0.16$ ($R_{\mathrm{v}}=300 \mathrm{pm}$), 0.01-0.20 ($R_{\mathrm{v}}=400 \mathrm{pm}$), and $0.00-0.18$ $\log \beta$ units (mean value of both sets). However, mixed complexes with aliphatic amino acids ($\mathbf{1} \mathbf{- 1 0}$) yielded considerably lower residuals ($0.00-0.07 \log \beta$ units, absolute mean values for all models) compared to other chelates.

CONCLUSIONS

Taking into account all the results presented, it can be concluded that estimation of the stability constant of a bis-complex from its whole structure is not substantially better than its estimation from the structure of the corresponding ML complexes. Moreover, estimation of \log β_{2} for mixed complexes is practically possible only from the structures of ML complexes. Since ML_{2} procedure is more demanding, we recommend the estimation of \log β_{2} from the overlapping volumes of mono-complexes.

As a general conclusion on the suitability of the OS method for the estimation of stability constants of bis-complexes, it has to be pointed out that the success is not so dependent on the type of the model used as on the set of the compounds used in regression. Results on the same set differ by less than 20% in the S.E.cv $v a l u e$, but the S.E.cv values for all regressions and sets span the range from 0.08 to $1.12 \log \beta$ units. (This span is about twice as large as the span for ML complexes, ${ }^{18,19}$ but one has to bear in mind that $\log \beta_{2}$'s are twice as large as $\log \beta_{1}$'s.) Thus, a good choice of the training set is the first prerequisite for a successful application of the OS method for the estimation of stability constants of complex compounds.

Acknowledgements. - The present research was performed within the project No. 0022016 of the Ministry of Science and Technology, Croatia. We thank Professor Nenad Trinajstić and Doctor Bono Lučić for supporting us with the CROMRsel program.

ABBREVIATIONS

M , metal (Cu);
ML, mono-complex;
ML_{2}, bis-complex;
β_{1}, stability constant of ML complex,
β_{2}, stability constant of ML_{2} complex;
OS, overlapping spheres;
S.E., standard error;
S.E.cv, standard error of cross validation;
a, axial conformation;
e, equatorial conformation.

REFERENCES

1. K. D. Gibbson and H. A. Scheraga, Proc. Natl. Acad. Sci. USA 58 (1967) 420-427.
2. A. J. Hopfinger, Macromolecules 4 (1971) 731-737.
3. J. L. Klepeis, I. P. Androulakis, M. G. Ierapetritou, and C. A. Floudas, Computer Chem. Eng. 22 (1998) 765-788.
4. K. T. No, S. G. Kim, K.-H. Cho, and H. A. Scheraga, Biophys. Chem. 78 (1999) 127-145.
5. W. Cornell, R. Abseher, M. Nilges, and D. A. Case, J. Mol. Graph. Modell. 19 (2001) 136-145.
6. N. Raos, Croat. Chem. Acta 72 (1999) 727-736.
7. N. Raos, J. Comput. Chem. 21 (2000) 1353-1360.
8. M. Cetina, A. Hergold-Brundić, N. Raos, and L. Žuža-Mak, J. Mol. Struct. 657 (2003) 145-155.
9. N. Raos and L. Žuža-Mak, Croat. Chem. Acta 75 (2002) 909-925.
10. N. Raos and L. Žuža-Mak, Croat. Chem. Acta 77 (2004) 53-60.
11. T. Pisanski, B. Plestenjak, and A. Graovac, Croat. Chem. Acta 68 (1995) 283-292.
12. T. Pisanski, M. Razinger, and A. Graovac, Croat. Chem. Acta. 69 (1996) 827-836.
13. A. Graovac, A. Orbanić, and T. Pisanski, MATCH Commun. Math. Comput. Chem. 44 (2001) 305-317.
14. A. J. Hopfinger, J. Am. Chem. Soc. 102 (1980) 7196-7210.
15. M. H. Foglio and G. Duester, Biochim. Biophys. Acta 1432 (1999) 239-250.
16. I. D. Kuntz, J. M. Blaney. S. J. Oattey, R. Langridge, and T. E. Ferrin, J. Mol. Biol. 161 (1982) 269-288.
17. N. Raos, Croat. Chem. Acta 70 (1997) 913-924.
18. N. Raos, Croat. Chem. Acta 78 (2005) 175-180.
19. A. Miličević and N. Raos, Croat. Chem. Acta 78 (2005) 525-534.
20. B. Grgas, S. Nikolić, N. Paulić, and N. Raos, Croat. Chem. Acta 72 (1999) 885-895.
21. S. Nikolić and N. Raos, Croat. Chem. Acta 74 (2001) 621631.
22. N. Raos, Croat. Chem. Acta 75 (2002) 117-120.
23. D. D. Perrin, Stability Constants of Metal-Ion Complexes: Part B. Organic Ligands, Pergamon Press, Oxford, 1979.
24. A. J. Hopfinger, Conformational Properties of Macromolecules, Academic Press, New York, 1973.
25. S. R. Niketić and Kj. Rasmussen, The Consistent Force Field: A Documentation, Lecture Notes in Chemistry, Vol 3, Springer-Verlag, Berlin, 1977.
26. Kj. Rasmussen, Potential Energy Functions in Conformational Analysis, Lecture Notes in Chemistry, Vol 37, SpringerVerlag, Berlin, 1985.
27. Kj. Rasmussen, S. B. Engelsen, J. Fabricius, and B. Rasmussen in: R. Fausto (Ed.), Proceedings of the NATO Advanced Study Institute on Molecular Spectroscopy, Ponta Delgada, Sao Miguel, Açores, Portugal, 1992, NATO ASI Series C: Mathematical and Physical Sciences, Vol. 406, Kluwer Academic Publishers, Dodrecht, 1993, pp. 381419.
28. B. Lučić and N. Trinajstić, J. Chem. Inf. Comput. Sci. 39 (1999) 121-132.
29. F. Basolo and R. K. Murmann, J. Am. Chem. Soc. 74 (1952) 5243-5246.
30. F. Basolo and R. K. Murmann, J. Am. Chem. Soc. 76 (1954) 211-214.
31. F. Basolo, Y. T. Chen, and R. K. Murmann, J. Am. Chem. Soc. 76 (1954) 956-959.
32. T. P. I and G. H. Nancolas, Inorg. Chem. 11 (1972) 2414 2425.
33. P. Bretton, J. Chim. Phys. 54 (1957) $827-836$.
34. A. Gergely, I. Sovago, I. Nagypal, and R. Kiraly, Inorg. Chim. Acta 6 (1972) 435 - 439.
35. G. Brookes and L. D. Pettit, J. Chem. Soc., Dalton Trans (1977) 1918 - 1924.
36. H. Sigel, R. Tribolet, and K. H. Scheller, Inorg. Chim. Acta 100 (1985) 151-164.
37. O. Yamauchi and A. Odani, Inorg. Chim. Acta 100 (1985) $165-172$.
38. M. Tabata and M. Tanaka, Inorg. Chem. 27 (1988) 31903192.

SAŽETAK

Procjena konstanta stabilnosti bis-kelata bakra(II) metodom preklapanja kugla

Ante Miličević i Nenad Raos

Abstract

Metodu preklapanja kugla (overlapping spheres, OS) primijenili smo za procjenu konstanta stabilnosti, β_{2}, skupova (binarnih) bakrovih(II) bis-kompleksa s 1,2-diaminoetanima ($N=14$), alifatskim aminokiselinama i njihovim N-alkiliranim derivatima ($N=11$), te prirodnim aminokiselinama $(N=9)$, zajedno sa skupom 16 miješanih (ternarnih) bakrovih(II) bis-kompleksa s prirodnim aminokiselinama. Središnja kugla, radijusa, $R_{\mathrm{V}}, 300$ ili 400 pm , smještena je na bakrovom atomu. Izračunani volumeni preklapanja središnje kugle i van der Waalsovih sfera okolnih atoma iz struktura bis-kompleksa ili odgovarajućih mono-kompleksa korelirani su s vrijednostima $\log \beta_{2}$. Oba su pristupa dala slične rezultate, razlikujući se u procjeni konstanti stabilnosti za manje od 20%. Za miješane je komplekse provedena i bivarijatna linearna regresija, $\left.\left.\mathrm{s}\left(V^{*}{ }_{1}+V^{*}\right)_{2}\right) \mathrm{i}\left(V^{*}-V^{*}\right)_{2}\right)$ kao nezavisnim varijablama ($V^{*} 1 \mathrm{i} V^{*}$ odgovaraju vrijednostima volumena OS za dva pripadna kelatna prstena). Bivarijatna linearna regresija dala je $r=0,961$ i reproducirala eksperimentalne vrijednosti od 0,0 do $0,16 \log \beta$ jedinica (S.E. ${ }_{c \mathrm{cv}}=0,08 \log \beta$ jedinica).

SUPPLEMENT

Estimation of Stability Constants of Copper(II) Bis-chelates by the Overlapping Spheres Method

TABLE I. Linear regressions of $\log \beta_{2}$ on the overlapping volume $\left(V^{*}\right)$; molecules $1-14$, Table I (Text)

Regression No.	$R_{\mathrm{V}} / \mathrm{pm}$	Variable	Intercept (S.E.)	Slope (S.E.)	r	S.E.	S.E.cv
1		$2 V^{*}(\mathrm{M})_{\mathrm{ML}}$	$38.3(27)$	$-0.141(19)$	0.910	0.92	1.12
2	300	$V^{*}(\mathrm{M})$ trans	$38.6(22)$	$-0.143(16)$	0.936	0.78	0.95
3		$V^{*}(\mathrm{M})$ cis $/$ tr	$38.4(22)$	$-0.142(15)$	0.937	0.77	0.94
4		$2 V^{*}(\mathrm{M})_{\mathrm{ML}}$	$31.7(18)$	$-0.0528(69)$	0.911	0.92	1.12
5	400	$V^{*}(\mathrm{M})$ trans	$31.7(17)$	$-0.0528(67)$	0.916	0.89	1.09
6		$V^{*}(\mathrm{M})$ cis $/$ tr	$31.7(17)$	$-0.0528(66)$	0.917	0.88	1.08

TABLE II. Cross-validated residuals for all regression models referred to in Table I

Regression No. Molecule No.	1	2	3	4	5	6	Mean		
							ML models	ML_{2} Models	All models
1	-1.19	-1.15	-1.05	-1.69	-1.67	-1.64	-1.44	-1.38	-1.40
2	0.66	0.43	-0.12	0.34	0.27	0.13	0.50	0.18	0.29
3	0.38	0.13	0.22	0.23	0.15	0.18	0.30	0.17	0.21
4	-0.08	-0.32	-0.25	-0.20	-0.28	-0.28	-0.14	-0.28	-0.23
5	0.00	-0.24	-0.15	-0.12	-0.21	-0.17	-0.06	-0.19	-0.15
6	0.09	-0.05	-0.29	0.15	0.11	-0.04	0.12	-0.07	-0.01
7	2.54	1.89	1.97	2.17	2.00	2.04	2.35	1.97	2.10
8	0.29	0.74	0.82	0.37	0.47	0.52	0.33	0.64	0.53
9	-1.28	-0.85	-0.79	-1.17	-1.06	-1.02	-1.22	-0.93	-1.03
10	-2.32	-1.93	-1.87	-2.22	-2.11	-2.08	-2.27	-2.00	-2.09
11	-1.05	-1.01	-0.92	-1.07	-1.05	-1.03	-1.06	-1.00	-1.02
12	0.72	0.90	0.92	1.05	1.12	1.13	0.88	1.02	0.97
13	0.53	0.56	0.64	0.92	0.94	0.96	0.72	0.78	0.76
14	0.24	0.43	0.45	0.56	0.64	0.64	0.40	0.54	0.49

TABLE III. Linear regressions of $\log \beta_{2}$ on the overlapping volume $\left(V^{*}\right)$; molecules $\mathbf{1}-\mathbf{1 1}$, Table II (Text)

Regression No.	$R_{\mathrm{v}} / \mathrm{pm}$	Variable	Intercept (S.E.)	Slope (S.E.)	r	S.E.	S.E.cv
7		$2 V^{*}(\mathrm{M})_{\mathrm{ML}}$	$18.9(11)$	$-0.0404(87)$	0.840	0.46	0.55
8		$V^{*}(\mathrm{M})$ trans	$19.13(99)$	$-0.0426(80)$	0.871	0.41	0.52
9							
10	400	$2 V^{*}(\mathrm{M})_{\mathrm{ML}}$	$17.60(71)$	$-0.0164(31)$	0.869	0.42	0.50

TABLE IV. Cross-validated residuals for all regression models referred to in Table III

Regression No. Molecule No.	7	8	9	10	Mean		
					ML models	M_{2} models	All models
$\mathbf{1}$	0.54	0.52	0.36	0.35	0.45	0.44	0.44
$\mathbf{2}$	0.15	0.14	0.09	0.10	0.12	0.12	0.12
$\mathbf{3}$	0.09	0.09	0.18	0.18	0.14	0.13	0.13
$\mathbf{4}$	-0.46	-0.47	-0.41	-0.32	-0.43	-0.4	-0.41
$\mathbf{5}$	0.63	0.65	0.54	0.53	0.58	0.59	0.59
$\mathbf{6}$	0.52	0.48	0.44	0.39	0.48	0.44	0.46
$\mathbf{7}$	0.03	-0.07	0.06	-0.04	0.05	-0.06	-0.01
$\mathbf{8}$	0.57	0.75	0.60	0.90	0.58	0.82	0.70
$\mathbf{9}$	-0.63	-0.58	-0.63	-0.63	-0.63	-0.6	-0.62
$\mathbf{1 0}$	0.00	-0.34	0.12	-0.08	0.06	-0.21	-0.08
$\mathbf{1 1}$	-1.16	-0.87	-1.08	-0.98	-1.12	-0.93	-1.02

TABLE V. Linear regressions of $\log \beta_{2}$ on the OS volume (V^{*}); molecules $\mathbf{1} \mathbf{- 9}$, Table III (Text)

Regression No.	R_{v} / pm	Variable	Intercept (S.E.)	Slope (S.E.)	r	S.E.	S.E.cv
11	300	$2 V^{*}(\mathrm{M})_{\mathrm{ML}} a / a$	$15.86(39)$	$-0.0088(33)$	0.707	0.14	0.17
12		$V^{*}(\mathrm{M}) \operatorname{tr} e / a$	$16.89(78)$	$-0.0186(71)$	0.704	0.14	0.17
13							
14	400	$2 V^{*}(\mathrm{M})_{\mathrm{ML}} a / a$	$15.38(24)$	$-0.0025(11)$	0.656	0.15	0.19

TABLE VI. Cross-validated residuals for the regression models referred to in Table V

Regression No. Molecule No.	11	12	13	14	Mean		
					$\begin{gathered} \text { ML } \\ \text { models } \end{gathered}$	$\begin{gathered} \mathrm{ML}_{2} \\ \text { models } \end{gathered}$	All models
1	0.18	0.17	0.17	0.15	0.17	0.16	0.17
2	0.04	0.04	0.04	0.04	0.04	0.04	0.04
3	-0.36	-0.40	-0.36	-0.39	-0.36	-0.39	-0.38
4	-0.06	-0.06	-0.04	-0.02	-0.05	-0.04	-0.05
5	-0.13	-0.07	-0.11	-0.09	-0.12	-0.08	-0.10
6	0.21	0.21	0.23	0.24	0.22	0.23	0.22
7	0.10	0.09	0.16	0.16	0.13	0.12	0.13
8	0.11	0.10	0.18	0.17	0.15	0.13	0.14
9	-0.06	-0.07	-0.19	-0.19	-0.13	-0.13	-0.13

TABLE VII. Bivariate linear regressions of $\log \beta$ on the sum and the differences of the $O S$ volumes $V^{*}(M)$ ML and $V^{*}(M) M A\left(V^{*} 1\right.$ and $\left.V^{*} 2\right)$; molecules 1-15, Table IV (Text)

	$R_{\mathrm{v}} / \mathrm{pm}$	Intercept (S.E.)	$\left(V_{1}^{*}+V_{2}{ }_{2}\right)$ Slope (S.E.)	$\left(V^{*}{ }_{1}-V^{*}{ }_{2}\right)$ Slope (S.E.)	r	S.E.	S.E.cv
$\mathbf{1 5}$	300	$19.66(47)$	$-0.0452(44)$	$0.0658(55)$	0.961	0.06	0.08
$\mathbf{1 6}$	400	$16.63(27)$	$-0.0098(15)$	$0.0153(19)$	0.921	0.09	0.11

TABLE VIII. Cross-validated residuals for the regression models referred to in Table VII

Regression No. Molecule No.	15	16	Mean
$\mathbf{1}$	0.08	0.07	0.07
$\mathbf{2}$	-0.04	-0.05	-0.05
$\mathbf{3}$	0.01	-0.02	-0.01
$\mathbf{4}$	0.00	-0.06	-0.03
$\mathbf{5}$	0.01	-0.04	-0.01
$\mathbf{6}$	0.01	0.08	0.04
$\mathbf{7}$	0.02	0.06	0.04
$\mathbf{8}$	0.02	0.04	0.03
$\mathbf{9}$	-0.03	-0.01	-0.02
$\mathbf{1 0}$	-0.07	0.07	0.00
$\mathbf{1 1}$	-0.13	-0.19	-0.16
$\mathbf{1 2}$	-0.10	-0.17	-0.13
$\mathbf{1 3}$	-0.11	-0.17	-0.14
$\mathbf{1 4}$	0.16	0.20	0.18
$\mathbf{1 5}$	0.14	0.18	0.16

[^0]: * Author to whom correspondence should be addressed. (E-mail: raos@mimi.imi.hr)

[^1]: ${ }^{\text {(a) }} \log \beta_{2} \equiv \log \beta_{\mathrm{CuAL}}=\log K_{1}+\log K_{2}-\log 2$;
 $K_{1}=[\mathrm{CuL}][\mathrm{Cu}]^{-1}[\mathrm{~L}]^{-1}, K_{2}=[\mathrm{CuAL}][\mathrm{CuL}]^{-1}[\mathrm{~A}]^{-1}$, Ref. 38.

