A Method for Creating Ruled Surfaces and its Modifications

Metoda stvaranja pravčastih ploha i njihovih modifikacija

SAŽETAK

U članku je dana netradicionalna metoda za definiranje pravčastih ploha. Ta metoda omogućuje jednostavnu konstrukciju izvodnica pravčaste plohe prvenstveno pomoću računala, a ne samo u klasičnom smislu. Opisana je metoda za definiranje i konstrukciju poznatih ploha, ali i za modeliranje novih. Uvedeni matematički opis omogućuje stvaranje interaktivnog modeliranja ploha pomoću računala i vrlo brzi dizajn plohe te projekcije njezinih odabranih dijelova. Slike prikazuju računalne grafičke izlaze.

Ključne riječi: pravčaste plohe, razvojne plohe, vitopere plohe

1 Definition of a ruled surface and construction of generating lines

We will work in the Euclidean space \mathbf{E}_{3} and in the vector space $V\left(\mathbf{E}_{3}\right)$ with the Cartesian coordinates system $\left\langle O, x_{1}, x_{2}, x_{3}\right\rangle$.
Let these vector functions be set:

$$
\begin{array}{ll}
\mathbf{y}_{1}\left(x_{1}\right)=\left(x_{1}, 0, f\left(x_{1}\right)\right), & x_{1} \in I_{1}, \\
\mathbf{y}_{2}\left(x_{2}\right)=\left(0, x_{2}, g\left(x_{2}\right)\right), & x_{2} \in I_{2} \tag{1}
\end{array}
$$

Let the real functions f and g in (1) be continuous and differentiable on the intervals I_{1} and I_{2}. These intervals can contain many points for which derivative of the functions f and g are improper. Vector functions (1) describe curves $k_{1} \subset x_{1} x_{3}$ and $k_{2} \subset x_{2} x_{3}$. We assume that these curves k_{1} and k_{2} are not intersected (Fig. 1).
Let the curve m be defined by the vector function (2) in the plane $x_{1} x_{2}$

A Method for Creating Ruled Surfaces and its Modifications

ABSTRACT

The paper presents a non-traditional method for defining ruled surfaces. This method enables a simple construction of the ruled surfaces generating lines, not only with the classical means, but first of all with a computer. The method for defining and constructing known surfaces and also modelling of new surfaces is described here. The introduced mathematical description enables creation of the interactive modelling of surfaces by using a computer and very quick surface design and projection of its arbitrary segments. The pictures are presenting the graphical output from a computer.

Key words: developable surface, ruled surface, skew surface

MSC 2000: 65D17, 51N05, 51N20

Fig. 1

$$
\begin{equation*}
\mathbf{x}(t)=(x(t), y(t), 0), \quad t \in I \tag{2}
\end{equation*}
$$

where for any $t \in I$ is $x(t) \in I_{1}, y(t) \in I_{2}$ and $\frac{\mathrm{d} \mathbf{x}(t)}{\mathrm{d} t}=\mathbf{x}^{\prime}(t)$ is a non-zero vector.

Now, we will construct the generating line p in this way (Fig. 1):
a) We choose a point M on the curve m and mark its orthogonal projections to the axes x_{1} and x_{2} as K_{1} and L_{1}.
b) Points K and L are points located on curves k_{1} and k_{2} respectively, while K_{1} and L_{1} are their orthogonal projections to the plane $x_{1} x_{2}$.
c) The line p joins the points K and L.

The line p is a generating line of the ruled surface φ and with this method we would construct next generating lines of the surface φ.

2 Parametric representation of the ruled surface φ

We obtain the coordinates of the points K and L with the substitution of (2) to (1). Then

$$
K=[x(t), 0, F(t)] \quad \text { and } \quad L=[0, y(t), G(t)],
$$

where $F(t)=f(x(t))$ and $G(t)=g(y(t))$.
Let the generating line p be defined for example by the centre

$$
S=\left[\frac{x(t)}{2}, \frac{y(t)}{2}, \frac{F(t)+G(t)}{2}\right]
$$

of the line segment $K L$ and by the direction vector

$$
\begin{equation*}
\mathbf{p}(t)=\frac{1}{2}(x(t),-y(t), F(t)-G(t)) . \tag{3}
\end{equation*}
$$

Then the ruled surface φ has the following parametric representation:

$$
\begin{align*}
& x_{1}=\frac{x(t)}{2}(1+u) \\
& x_{2}=\frac{y(t)}{2}(1-u) \\
& x_{3}=\frac{F(t)+G(t)}{2}+u \frac{F(t)-G(t)}{2} \\
& t \in I, \quad u \in R \tag{4}
\end{align*}
$$

Example 1: The surface of an elliptic movement
The vector functions (1) are

$$
\begin{array}{ll}
\mathbf{y}_{1}\left(x_{1}\right)=\left(x_{1}, 0, q_{1}\right), & x_{1} \in R \\
\mathbf{y}_{2}\left(x_{2}\right)=\left(0, x_{2}, q_{2}\right), & x_{2} \in R \tag{5}
\end{array}
$$

where q_{1} and q_{2} are non-zero constants from $R, q_{1} \neq q_{2}$.

Curves k_{1} and k_{2} are lines, $k_{1} \| x_{1}$ and $k_{2} \| x_{2}$. Let the curve m become a circle defined by the vector function

$$
\begin{equation*}
\mathbf{x}(t)=(a \cos t, a \sin t, 0), \quad t \in\langle 0,2 \pi\rangle \tag{6}
\end{equation*}
$$

The surface φ defined in this way has the following parametric representation according to equation (4):

$$
\begin{align*}
& x_{1}= \frac{a \cos t}{2}(1+u), \\
& x_{2}= \frac{a \sin t}{2}(1-u), \\
& x_{3}= \frac{q_{1}+q_{2}}{2}+u \frac{q_{1}-q_{2}}{2}, \\
& t \in\langle 0,2 \pi\rangle, \quad u \in R . \tag{7}
\end{align*}
$$

In Fig. 2a the curves k_{1}, k_{2} and m are shown.
In Fig. 2b a surface segment, which is called the surface of an elliptic movement is shown.

Fig. 2a

Fig. 2b

3 The section of the surface φ by the plane $x_{1} x_{2}$

If the curve k_{3} is the section of the surface φ by the plane $x_{1} x_{2},\left(x_{3}=0\right)$, then we get its parametric representation from (4)

$$
\begin{equation*}
x_{1}=\frac{G(t) x(t)}{G(t)-F(t)}, x_{2}=\frac{-F(t) y(t)}{G(t)-F(t)}, x_{3}=0, t \in I . \tag{8}
\end{equation*}
$$

If for any $t \in I$ is

$$
\begin{equation*}
G(t)=F(t), \tag{9}
\end{equation*}
$$

then the corresponding generating line $p \| x_{1} x_{2}$ and its intersection point with the plane $x_{1} x_{2}$ is a point at infinity.
The section of the surface φ of elliptic movement by the plane $x_{1} x_{2}$ (from the example 1 according to (8)) has the following parametric representation

$$
\begin{array}{cl}
x_{1}=\frac{a q_{2}}{q_{2}-q_{1}} \cos t, & x_{2}=\frac{-a q_{1}}{q_{2}-q_{1}} \sin t \\
x_{3}=0, & t \in\langle 0,2 \pi\rangle \tag{10}
\end{array}
$$

This section is the ellipse k_{3} with the centre in the origin of the coordinate system, values of the semiaxes are

$$
\left|\frac{a q_{2}}{q_{2}-q_{1}}\right| \quad \text { and } \quad\left|\frac{a q_{1}}{q_{2}-q_{1}}\right|
$$

In the case when the equation (9) expresses identity for the interval I all generating lines of the surface φ are parallel to the plane $x_{1} x_{2}$ and the section of the surface by the plane $x_{1} x_{2}$ cannot be described by equations (8).
If we choose the vector functions (1) as

$$
\begin{array}{ll}
\mathbf{y}_{1}\left(x_{1}\right)=\left(x_{1}, 0, f\left(x_{1}\right)\right), & x_{1} \in I_{1}, \\
\mathbf{y}_{2}\left(x_{2}\right)=\left(0, x_{2}, f\left(x_{2}\right)\right), & x_{2} \in I_{1}, \quad I_{1}=I_{2} \tag{11}
\end{array}
$$

and the curve m is a line parametrized by the vector function

$$
\begin{equation*}
\mathbf{x}(t)=(t, t, 0), \quad t \in R \tag{12}
\end{equation*}
$$

then $F(t)=G(t)=f(t)$.
The ruled surface φ has the following parametric representation according to (4):

$$
\begin{align*}
x_{1} & =\frac{t}{2}(1+u), \\
x_{2} & =\frac{t}{2}(1-u), \\
x_{3} & =f(t), \quad t \in I_{1}, \quad u \in R \tag{13}
\end{align*}
$$

and it is a cylindrical surface. Its generating lines are parallel to the plane $x_{1} x_{2}$. The curves k_{1} and k_{2} are congruent. Revolving the curve k_{1} about the axis x_{3} by the angle 90° we would get the curve k_{2}.
The section k_{3} of the cylindrical surface (13) by the plane $x_{1} x_{2}$ is composed from the surface generating lines. Their number is equal to the number of common points of the curve k_{1} and the axis x_{1}.
Example 2: Circular cylindrical surface
Curves k_{1} and k_{2} are semicircles with centres $S_{1} \in x_{1}$, $S_{2} \in x_{2}$, with the same radius r and $\left|O S_{1}\right|=\left|O S_{2}\right|=p$. The semicircles are parametrized by the vector functions

$$
\begin{aligned}
\mathbf{y}_{1}\left(x_{1}\right)= & \left(x_{1}, 0, \sqrt{r^{2}-\left(x_{1}-p\right)^{2}}\right) \\
& x_{1} \in\langle p-r, p+r\rangle \\
\mathbf{y}_{2}\left(x_{2}\right)= & \left(0, x_{2}, \sqrt{r^{2}-\left(x_{1}-p\right)^{2}}\right), \\
& x_{2} \in\langle p-r, p+r\rangle, \quad 0<p-r .
\end{aligned}
$$

The surface φ is a half of the circular cylindrical surface which has the following parametric representation according to (13)

$$
\begin{align*}
& x_{1}= \frac{t}{2}(1+u) \\
& x_{2}= \frac{t}{2}(1-u) \\
& x_{3}= \sqrt{r^{2}-(t-p)^{2}}, \\
& t \in\langle p-r, p+r\rangle, \quad u \in R . \tag{14}
\end{align*}
$$

Fig. 3a illustrates curves k_{1}, k_{2}, m, and the section of the surface by the plane $x_{1} x_{2}$ which is created by lines l_{1} and l_{2}.
In Fig. 3b the segment of the circular cylindrical surface is shown.

Fig. 3a

Fig. 3b

4 Developable and skew surfaces φ

The generating line of the surface φ is defined by choice of the parameter $t \in I$. When we substitute the parametric representation (2) of the curve m to the vector functions (1) and differentiate the vector functions (1) according to argument t, then we get:

$$
\begin{aligned}
& \mathbf{y}_{1}^{\prime}(t)=x^{\prime}(t)\left(1,0,\left[\frac{\mathrm{~d} f\left(x_{1}\right)}{\mathrm{d} x_{1}}\right]_{x_{1}=x(t)}\right) \quad \text { and } \\
& \mathbf{y}_{2}^{\prime}(t)=y^{\prime}(t)\left(0,1,\left[\frac{\mathrm{~d} g\left(x_{2}\right)}{\mathrm{d} x_{2}}\right]_{x_{2}=y(t)}\right)
\end{aligned}
$$

These vector functions for chosen $t \in I$ are defining the direction vectors of the tangent lines of curves k_{1} and k_{2}. To make the generating line of the surface φ torsal, vectors $\mathbf{y}_{1}^{\prime}(t), \mathbf{y}_{2}^{\prime}(t)$ and (3) must be linearly dependent. From this condition we get equation:

$$
\begin{align*}
& x^{\prime}(t) y^{\prime}(t)\left(F(t)-x(t)\left[\frac{\mathrm{d} f\left(x_{1}\right)}{\mathrm{d} x_{1}}\right]_{x_{1}=x(t)}\right. \\
& \left.-\left(G(t)-y(t)\left[\frac{\mathrm{g}\left(x_{2}\right)}{\mathrm{d} x_{2}}\right]_{x_{2}=y(t)}\right)\right)=0 \tag{15}
\end{align*}
$$

If the equation (15) is identity on the interval I, the surface φ is created by torsal lines only and it is a developable surface. If the equation (15) is not identity, the surface φ is a skew surface on which torsal generating lines can exist.
The equation (15) of the surface of an elliptic movement has the form:

$$
a^{2}\left(q_{1}-q_{2}\right) \sin t \cos t=0, \quad t \in\langle 0,2 \pi\rangle .
$$

Then the lines for parameters $t=0, \pi / 2, \pi, 3 \pi / 2$ are torsal lines located in the planes $x_{1} x_{3}$ and $x_{2} x_{3}$.
In the case when the cylindrical surface has the parametric presentation (13) we can simply verify that the equation (15) is an identity and the cylindrical surface will be a developable surface. The intersection points K_{1} and L_{1} of the line l_{1} with the semicircles k_{1} and k_{2} from the example 2 (Fig. 3a) are examples of points in which derivative of the functions f and g is improper. The tangent lines of the curves k_{1} and k_{2} in the points K_{1} and L_{1} are parallel with the axis x_{3}. Analogously for the line l_{2}.

5 Continuity between the surfaces φ and skew surfaces

Continuity between the mentioned ruled surfaces φ and skew surfaces, which are defined by three basic curves, is clearly seen on the surface of an elliptic movement. If the
section of the surface φ by the plane $x_{1} x_{2}$ is the curve k_{3}, then it is possible to define the surface φ by basic curves k_{1}, k_{2} and k_{3}. The generating lines of the surface φ are lines intersecting the basic curves.

6 Envelope of orthographic views of the ruled surface generating lines in the plane $x_{1} x_{2}$

Generating lines of the ruled surface are orthogonally projected to the plane $x_{1} x_{2}$ and parametric representation of these orthographic views can be given by the first two equations in (4) without the parameter u :

$$
\begin{equation*}
y(t) x_{1}+x(t) x_{2}-x(t) y(t)=0, \quad t \in I \tag{16}
\end{equation*}
$$

The equation (16) is the equation of a one-parametric line system and its envelope can be found by differentiating of the equation (16) according to parameter t :

$$
\begin{equation*}
y^{\prime}(t) x_{1}+x^{\prime}(t) x_{2}-x^{\prime}(t) y(t)-x(t) y^{\prime}(t)=0 . \tag{17}
\end{equation*}
$$

From the equations (16) and (17) we get:

$$
\begin{align*}
& x_{1}=\frac{x^{2}(t) y^{\prime}(t)}{x(t) y^{\prime}(t)-x^{\prime}(t) y(t)}, \\
& x_{2}=\frac{-y^{2}(t) x^{\prime}(t)}{x(t) y^{\prime}(t)-x^{\prime}(t) y(t)}, \\
& x_{3}=0, \quad t \in I . \tag{18}
\end{align*}
$$

If an envelope exists and it is a curve marked as m^{\prime}, then the equations (18) are its parametric representation. The points for which $x(t) y^{\prime}(t)-x^{\prime}(t) y(t)=0$ do not have to be necessarily troublesome points. This problem will be not investigated here.

The envelope m^{\prime} depends only on the curve m, what is evident from the equations (18) and the geometric view, too.
If the curve m is a circle parametrized by the function (6), then according to (18) the envelope m^{\prime} has the following parametric representation:

$$
\begin{equation*}
x_{1}=a \cos ^{3} t, x_{2}=a \sin ^{3} t, x_{3}=0, t \in\langle 0,2 \pi\rangle \tag{19}
\end{equation*}
$$

the curve m^{\prime} is an asteroid (Fig. 4a).

Fig. 4 a

Fig. 4b

Orthographic views of the cylindrical surface generating lines (example 2) in the plane $x_{1} x_{2}$ are examples for the one-parametric system of lines which has not any envelope.

7 Modification of the method for the creation of ruled surfaces

The idea described above allows us to define and create ruled surfaces by a method which we could call dual for defining and creating the surfaces φ. The surface is defined by the curves k_{1} and k_{2} which are parametrized by the functions (1). Let the curve m^{\prime} be without singular points in the plane $x_{1} x_{2}$. Tangent lines of the curve m^{\prime} create a one-parametric system of lines. Let K_{1} and L_{1} be the intersections of one tangent line (which is the intersecting line with the axes x_{1} and x_{2} too) of the one-parametric system with the axis x_{1} and x_{2}. We can construct the surface generating line p by means of points K_{1} and L_{1} with the same method as in the first part (see Fig. 1).

Example 3:

Let the surface φ be defined by curves k_{1} and k_{2}, which are parametrized by the vector functions (5) and the curve $m^{\prime} \subset x_{1} x_{2}$ is a parabola expressed by parametric representation

$$
x_{1}=-\frac{1}{2 p} t^{2}, \quad x_{2}=t, \quad x_{3}=0, \quad t \in R
$$

The vector function

$$
\begin{equation*}
\mathbf{y}(v)=\left(-\frac{1}{2 p} t^{2}-\frac{1}{p} t v, t+v, 0\right), \quad v \in R \tag{20}
\end{equation*}
$$

of the parameter v describes the system of tangent lines to the parabola m^{\prime} for any value of parameter $t \in R$ (Fig. 4b).
The intersections of the tangent lines with the axes x_{1} and x_{2} are the points K_{1} and L_{1} with the following coordinates

$$
\begin{equation*}
K_{1}=\left[\frac{1}{2 p} t^{2}, 0,0\right] \quad \text { and } \quad L_{1}=\left[0, \frac{t}{2}, 0\right] . \tag{21}
\end{equation*}
$$

The coordinates of the points K and L are

$$
K=\left[\frac{1}{2 p} t^{2}, 0, q_{1}\right] \quad \text { and } \quad L=\left[0, \frac{t}{2}, q_{2}\right] .
$$

The surface parametric representation according to (4) has the following form:

$$
\begin{align*}
x_{1}= & \frac{t^{2}}{4 p}(1+u) \\
x_{2}= & \frac{t}{4}(1-u) \\
x_{3}= & \frac{q_{1}+q_{2}}{2}+u \frac{q_{1}-q_{2}}{2} \\
& t \in R, \quad u \in R \tag{22}
\end{align*}
$$

The set of points M which are projected orthogonally to the points K_{1} and L_{1} on the axes x_{1} and x_{2} can be parameterized according to (21) by the function

$$
\mathbf{x}(t)=\left(\frac{t^{2}}{2 p}, \frac{t}{2}, 0\right), \quad t \in R
$$

The points M are therefore located on the parabola m which is the generatrix of the ruled surface φ constructed by the method described in the first part.
The both modifications of the presented method are illustrated in Fig. 4b showing the construction of the surface φ projected orthogonally to the plane $x_{1} x_{2}$. A similar construction can be seen in Fig. 4a, where the curve m is a circle and the curve m^{\prime} is an asteroid.

Description of the surface φ construction is shown in Fig. 5a. The segment of the surface is shown in Fig. 5b.

Fig. 5a

Fig. 5b
The section of the surface φ by the plane $x_{1} x_{2}$ has the following parametric representation according to (8):
$x_{1}=\frac{q_{2}}{2 p\left(q_{2}-q_{1}\right)} t^{2}, \quad x_{2}=\frac{-q_{1}}{2\left(q_{2}-q_{1}\right)} t, \quad x_{3}=0, \quad t \in R$,
the curve k_{3} is a parabola.
The equation (15) has the form

$$
\frac{1}{2 p} t\left(q_{2}-q_{1}\right)=0
$$

and therefore the surface has only one torsal basic line correspondent to the parameter $t=0$.

Now we will show some examples of the surfaces φ.

Example 4: Conical surface

The vector functions (1) are

$$
\begin{aligned}
& \mathbf{y}_{1}\left(x_{1}\right)=\left(x_{1}, 0, q_{1}\right), \quad x_{1} \in R, \\
& \mathbf{y}_{2}\left(x_{2}\right)=\left(0, x_{2}, \frac{1}{2 p} x_{2}^{2}+q_{2}\right), \quad x_{2} \in R .
\end{aligned}
$$

The curve k_{1} is a line, the curve k_{2} is a parabola. Let the curve m be a line parallel to the axis x_{2} defined by the vector function

$$
\begin{equation*}
\mathbf{x}(t)=(k, t, 0), \quad t \in R, \tag{23}
\end{equation*}
$$

where k is a non-zero constant from R (Fig. 6a).
The surface φ has the following parametric representation according to (4):

$$
\begin{align*}
x_{1}= & \frac{k}{2}(1+u) \\
x_{2}= & \frac{t}{2}(1-u) \\
x_{3}= & \frac{2 p\left(q_{1}+q_{2}\right)+t^{2}}{4 p}+u \frac{2 p\left(q_{1}-q_{2}\right)-t^{2}}{4 p} \\
& t \in R, \quad u \in R \tag{24}
\end{align*}
$$

Fig. 6a

Fig. 6b
It is evident that the surface φ is a conical surface with a vertex in the point K, so this surface is developable. In this case the equation (15) is an identity, because in the vector function (23) is $x^{\prime}(t)=0$ for all $t \in R$. The segment of the surface is illustrated in Fig. 6b.
We could construct generating lines by the means of a oneparametric system of lines in the plane $x_{1} x_{2}$, too. In this case, the system of lines would be a pencil of lines with the centre in the point K_{1} (without the line m). The line p_{1} is one line from the pencil of lines (see Fig. 6a). This is nothing new for us, it is a classical construction of conical surface generating lines.

Example 5: Frezier's cylindroid
The vector functions (1) are

$$
\begin{aligned}
\mathbf{y}_{1}\left(x_{1}\right)= & \left(x_{1}, 0, \sqrt{r^{2}-\left(x_{1}-p\right)^{2}}\right) \\
& x_{1} \in\langle p-r, p+r\rangle, \quad 0<p-r \\
\mathbf{y}_{2}\left(x_{2}\right)= & \left(0, x_{2}, \sqrt{r^{2}-\left(x_{2}-p\right)^{2}}+q\right) \\
& x_{2} \in\langle p-r, p+r\rangle
\end{aligned}
$$

where q is a non-zero constant from R .
The curves k_{1} and k_{2} are semicircles as in the example 2 for the cylindrical surface, but the circle k_{2} is translated by the translation vector $(0,0, q)$. The curve m is a line defined by the vector function (12), Fig. 7a.

This surface is so called Frezier's cylindroid and its segment is shown in Fig. 7b. The surface is a skew surface which has two torsal generating lines. The equation (15) has the form

$$
\begin{aligned}
& \sqrt{r^{2}-(t-p)^{2}}+\frac{t(t-p)}{\sqrt{r^{2}-(t-p)^{2}}} \\
= & \sqrt{r^{2}-(t-p)^{2}}+q+\frac{t(t-p)}{\sqrt{r^{2}-(t-p)^{2}}}
\end{aligned}
$$

and this is fulfilled only for the points $t=p \pm r$, in which derivative of the functions f and g is improper. Orthographic views of torsal lines in the plane $x_{1} x_{2}$ are the lines l_{1} and l_{2} (Fig. 7a).
It is possible to construct cylindroid generating lines analogously using the one-parametric system of lines as at a conical surface. It this case the system of lines is parallel to the line l_{1}.

Fig. 7a

Fig. 7b

At the end of this paper there are illustrated two complicated surfaces (see Figs 8 and 9). The segment of the surface demonstrated in Fig. 8 is defined by curves k_{1}, k_{2} and m, where the curve k_{1} is the Witch of Agnési, k_{2} is a parabola and the curve m is an epicycloid. In Fig. 9 is a segment of the surface for which the curve k_{1} is a parabola, the curve k_{2} is Witch of Agnési and the curve m is a circle with its centre in the origin.

Fig. 8

Fig. 9

References

[1] MEDEK, V., ZÁMOŽÍK, J.: Konštruktívna geometria pre technikov, Alfa-Bratislava, SNTL-Praha, 1978
[2] BUDINSKÝ B., KEPR. B: Základy diferenciální geometrie s technickými aplikacemi, SNTL, Praha 1970

Kamil Maleček

Department of Mathematics
Faculty of Civil Engineering
Czech Technical University
Thákurova 7
16629 Praha 6, Czech Republic
tel: +420 224354384
e-mail: kamil@mat.fsv.cvut.cz

Dagmar Szarková

Department of Mathematics
Faculty of Mechanical Engineering
Slovak University of Technology
Námestie Slobody 17
81231 Bratislava, Slovakia
tel: +421 257296394
e-mail: szarkova@sjf.stuba.sk

