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Accurate computation of singular values and
eigenvalues of symmetric matrices∗

Ivan Slapničar†

Abstract. We give the review of recent results in relative
perturbation theory for eigenvalue and singular value problems and
highly accurate algorithms which compute eigenvalues and singular
values to the highest possible relative accuracy.

Key words: symmetric eigenvalue problem, singular value prob-
lem, perturbation theory, relative perturbation theory, relative accu-
racy

Sažetak. Točno računanje singularnih i svojstvenih vri-
jednosti simetričnih matrica. Dan je pregled recentnih rezultata
o relativnoj teoriji smetnje za probleme svojstvenih i singularnih vri-
jednosti, te algoritama visoke točnosti koji računaju svojstvene i sin-
gularne vrijednosti s najvećom mogućom relativnom točnošću.

Ključne riječi: simetrični problem svojstvenih vrijednosti, prob-
lem singularnih vrijednosti, teorija smetnje, teorija relativnih smet-
nji, relativna točnost

1. Introduction

The eigenvalue problem [?, ?, ?] reads

Hx = λx.

The scalar λ is the eigenvalue, and the vector x is the corresponding eigenvector
of the matrix H. If H is a symmetric or a Hermitian matrix of order n, then
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H has exactly n real eigenvalues, and the corresponding eigenvectors span the
bases of the n-dimensional space. More precisely, for a symmetric matrix H we
have

QT HQ = Λ,

where Λ = diag (λi) is a diagonal matrix with eigenvalues of H on the diagonal,
and Q is an orthogonal matrix whose columns are the corresponding eigenvec-
tors. For Hermitian matrix H we have Q∗HQ = Λ, where the eigenvector
matrix Q is unitary. Similarly, the singular value problem for the general matrix
G ∈ Cm×n reads [?]

U∗GV = Σ,

where Σ = diag (σi), Σ ∈ Rm×n, σi ≥ 0, and the matrices U and V are unitary.
The columns of the matrix U are the left singular vectors, and the columns
of the matrix V are the right singular vectors. If, for example, m ≥ n, then
obviously

V ∗G∗GV = diag (σ2
1 , · · · , σ2

n) ∈ Rn×n,

U∗GG∗U = diag (σ2
1 , · · · , σ2

n, 0, · · · , 0) ∈ Rm×m.

We see that the eigenvalue and singular value problems are closely related, that
is, the singular values of the matrix G can be obtained as the roots of the
eigenvalues of Hermitian matrices G∗G and GG∗.

Solution of many problems in technical applications is reduced to solving
eigenvalue and singular value problems. Thus, these problems attract consider-
able attention and represent one of the most important areas of numerical linear
algebra. The first method for solving the eigenvalue problem for symmetric ma-
trices is the Jacobi method [?, ?, ?, ?] which dates back in 1846. The Jacobi
method constructs a sequence of matrices

H1 = H, Hk+1 = RT
k HkRk,

which converges to the eigenvalue matrix Λ, while the sequence of products
R1R2 · · ·Rk converges to the eigenvector matrix Q. Matrices Rk are the or-
thogonal plane rotation matrices chosen to annihilate one off-diagonal element
of the matrix Hk. Due to the finite arithmetic of the computer this infinite
iterative procedure stops after a finite number of steps.

In 1950-ties and 60-ties the QR methods [?, ?, ?] were developed by many
authors. These methods first reduce the symmetric matrix H to the tridiagonal
matrix T by using orthogonal similarity transformations, and then use QR iter-
ations to solve the eigenvalue problem for the matrix T . Although both meth-
ods require O(n3) floating-point operations, the QR methods are on sequential
(single processor) computers about five times faster than Jacobi type methods.
Other methods for solving the eigenvalue problem [?, ?, ?] are LR methods,
iterative methods like the power method, the inverse iterations, the method
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of Krylov subspaces, the Lanczos method, the subspace iteration method, and
the bisection method and the divide-and-conquer method which are particularly
efficient for tridiagonal matrices.

Iterative methods are especially suitable for large matrices, sparse matrices,
and when only some of the values or vectors are needed. The bisection locates
an eigenvalue by using the Sturm sequence, and the corresponding eigenvectors
can be computed by inverse iteration. The divide-and-conquer method is very
suitable for multi-processor computers. The method first partitions the staring
matrix into blocks, then solves smaller eigenvalue problems, and finally connects
all solutions. We conclude that the choice of the method depends upon the
structure and the size of the matrix, on the requirements for speed and accuracy,
whether all or just some values/vectors are required, and the available hardware.

Using the computers in solving eigenvalue and singular value problems has
lead to two aspects of research: speed and accuracy. Due to need to solve larger
and larger problems, the first aspect of research is finding faster algorithms and
the analysis of their speed of convergence. This subject is beyond the scope
of this review. Computers use a discrete subset of rational (real) numbers and
every real number is represented by the closest approximation in that subset
[?, ?, ?, ?]. Numbers are usually represented with 8 (single precision) or 16
(double precision) significant digits. The question of accuracy can be stated
very simply: how many accurate digits does the computed eigenvalue have? In
applications four kinds of errors appear: errors of the model, since the chosen
mathematical model may not completely describe the actual real world system;
errors in data, since the data are most often acquired by measurements which
are not absolutely accurate; errors in storing the matrix into the computer
due to previously mentioned approximations; and the errors generated by the
computational method. Here we shall deal with the two latter sources of errors,
although by using the perturbation theory, which we describe later, one may
try to estimate the effect of the first two sources of error on the final solution.
When storing the matrix H into the computer, instead of the element Hij we
store the element

Hij + δHij , |δHij | ≤ ε|Hij |,
where ε is the machine precision, ε ≈ 10−8 or ε ≈ 10−16. Therefore, the last
stored digit does not need to be correct and instead of H we store some H +δH.
The condition is defined as the number κ which tells us how many times does
the error in original data increase. If λi is the i-th largest eigenvalue of the
matrix H, and λi + δλi is the i-th largest computed eigenvalue, then the answer
to the question about accuracy generally has the form

|δλi| ≤ κ‖δH‖|λi|.
Here ‖ · ‖ represents some matrix norm or some other way of measuring the size
of the perturbation which does not necessarily has to have all properties of the
norm. The condition κ depends on the matrix, but also on the computational
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method which we use. From this exposition it follows that we shall obtain the
answer to the question of how many accurate digits does the computed value
have when we answer the following two questions:

(A) Is the matrix “well behaved”, that is, do small relative changes in matrix
elements cause small relative changes in eigen/singular values?

(B) If the matrix is well-behaved which algorithm computes eigen/singular val-
ues with this accuracy?

In general, to answer the question (A) an appropriate perturbation theory for
the given type of problem needs to be developed, while the answer to (B) is
given by the numerical analysis of the algorithm. Many authors have noticed
that for some problems different methods give answers with widely varying ac-
curacy. For example, in 1968 Rosanoff et al. [?] performed experimental analysis
of many structural models and noticed that the Jacobi method often computed
tiny eigenvalues much more accurate than the QR method. The authors had
many excellent observations and gave interesting explanations for facts which
were much later established with complete mathematical rigor. We also need to
mention the important paper by Kahan [?]. In 1980-ties many articles appear
and the intensive research is still going on. First Demmel and Kahan [?] ana-
lyzed the singular value problem for bidiagonal matrices. Then the symmetric
(Hermitian) eigenvalue problems were analyzed by Barlow and Demmel [?] for
scaled diagonally dominant matrices, by Demmel and Veselić [?] for positive
definite matrices, as well as the SVD, and by Veselić and Slapničar [?, ?, ?]
for indefinite matrices. These works are followed by many others which we will
describe in the final section.

2. Symmetric eigenvalue problem

The classical answer to the question of how big the relative changes in eigenval-
ues of the non-singular symmetric matrix H are when its elements are relatively
perturbed, |δHij | ≤ ε|Hij |, follows from Weyl’s theorem [?, ?, ?],

|δλi| ≤ ‖δH‖2.

From this it follows

|δλi| ≤ ε‖|H|‖2 |λi|
|λi| ≤ ε

√
n‖H‖2‖|H−1‖2|λi| ≡ ε

√
nκ2(H)|λi|.

Here κ2(H) ≡ ‖H‖2‖|H−1‖2 denotes the spectral condition of the matrix H. We
see that tiny eigenvalues, which are the most important in many applications,
are the most sensitive. This bound is almost attainable, but it is also in many
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cases inappropriate. The two extreme cases are illustrated by the following
examples:

H =
(

1 1
1 1 + 10−10

)
, H + δH =

(
1 1
1 1

)
,

where

λmin ≈ 0.5 · 10−10, λmin + δλmin = 0,
|δλmin|
|λmin| = 1, κ2(H) ≈ 4 · 1010,

and

H =
(

1010 0
0 −1

)
, H + δH =

(
1010(1 + 10−10) 0

0 −1 + 10−10

)
,

where |δλmin|
|λmin| = 10−10, κ2(H) = 1010.

Both, QR and Jacobi method always compute the eigenvalues at least as accu-
rately as predicted by the above perturbation bound [?, ?, ?]. However, as we
have just seen there exist matrices where the above bounds are inappropriate,
and there also exist matrices where not all methods attain the same accuracy.

Barlow and Demmel [?] analyzed symmetric scaled diagonally dominant ma-
trices of the form

H = D(J + N)D,

where D is a diagonal positive definite matrix, J is a diagonal matrix, Jii ∈
{−1, 1}, and ‖N‖2 < 1. They showed that symmetric relative perturbations
|δHij | ≤ ε|Hij | imply

|δλi| ≤ n2ε

1− ‖N‖2 |λi|.

It is important to notice that this bound depends upon ‖N‖2 independently of
the condition κ2(H). The authors also showed that a version of bisection on a
full matrix, a time consuming algorithm which needs O(n4) floating-point oper-
ations, computes the eigenvalues with this accuracy, and that inverse iteration
produces highly accurate eigenvectors in a norm-wise sense.

Demmel and Veselić [?] analyzed symmetric positive definite matrices. Let
the scaled matrix A be defined as H = DAD, where D is a diagonal positive def-
inite matrix such that Aii = 1. Then relative perturbations of matrix elements
imply

|δλi| ≤ nε

λmin(A)
≤ nεκ2(A)λi.

This bound is, of course, meaningful only if the quotient on the right-hand side
is less than one. According to the result by van der Sluis [?]

κ2(A) ≤ n min
D

κ2(DHD),
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where the minimum is taken over all diagonal positive definite matrices. Thus,
κ2(A) ≤ nκ2(H), so the above bound is never much worse than the classical
bound. On the other hand, it is possible that κ2(A) ¿ κ2(H) (the trivial ex-
ample is when H is diagonal) in which case the above bound is much better
than the classical one. The authors showed that the Jacobi method computes
the eigenvalues with this accuracy. The QR method can fail both in the tridi-
agonalization phase as well as during QR iterations. Another algorithm which
is also as accurate as predicted by perturbation bound consists of two steps:

1. H is factorized by the Cholesky factorization [?] H = LLT , where L
is a lower triangular matrix, or by the Cholesky factorization with diago-
nal pivoting H = PLLT PT , where L is a lower triangular and P is a
permutation matrix.

2. One-sided implicit Jacobi method is applied from the right to the factor L
or PL.

Let us explain the second step of this algorithm. First note that H and LT L
have identical eigenvalues and closely related eigenvectors: if UT LT LU = Λ is
the eigenvalue decomposition of the matrix LT L, then the orthogonal matrix
Q = LUΛ−1/2 is the eigenvector matrix of H, that is, QT HQ = Λ. Applying
the Jacobi method to the matrix LT L would yield the sequence

LT
k+1Lk+1 = RT

k LT
k LkRk.

In the implicit method we multiply by rotation matrices just the factor from
the right, which creates the sequence

L1 = L, Lk+1 = LkRk.

In order to do this, in each step three elements of the implicitly defined matrix
LT

k Lk which are needed to compute the rotation matrix Rk need to be computed.
Only one scalar product suffices since the diagonal of the sequence LT

k Lk can
be updated in a separate vector. (for details see [?]). From this we see that the
convergence of the implicitly defined sequence LT

k Lk to the eigenvalue matrix
Λ is equivalent to the convergence of the sequence Lk to the matrix QΛ1/2.
Therefore, when the infinite iterative process stops on some matrix LM due to
the finite precision of the computer, then the squares of the norms of the columns
of LM are the computed eigenvalues of the matrix H and the normalized columns
of LM are the computed corresponding eigenvectors.

Veselić and Slapničar [?, ?] generalized the above results to indefinite ma-
trices. Their main result is the relative perturbation bound for the generalized
eigenvalue problem

Hx = λKx,

where H and K are Hermitian matrices and K is positive definite. Application
of this result to a single indefinite Hermitian matrix H gives the following bound:



Accurate computation of singular values 159

let H = QΛQ∗ be the eigenvalue decomposition of H. The spectral absolute
value of H is defined as

H† = Q|Λ|QT =
√

H2.

Let the matrix A be defined as H† = DAD, where D is a diagonal positive
definite matrix such that Aii = 1. Then ε-relative changes of the matrix elements
imply

|δλi| ≤ nεκ2(A)|λi|.
Note that for a positive definite matrix H† = H in which case this result re-
produces the bound by Demmel and Veselić. It was also shown that this bound
reproduces the bound by Barlow and Demmel for scaled diagonally dominant
matrices.

Veselić [?] proposed the following two-step algorithm in analogy to the pos-
itive definite case:

1. H is factorized by the symmetric indefinite factorization with complete
pivoting H = PGJGT PT , where G is a lower block-triangular matrix
with 1 × 1 and 2 × 2 diagonal blocks and has a full column rank (this
algorithm works if H is singular, as well, but in this case the above per-
turbation bound does not hold), P is a permutation matrix, and J is a
diagonal matrix, Jii ∈ {−1, 1}.

2. One-sided implicit J-orthogonal Jacobi method is applied to the pair (G, J)
from the right.

The above factorization is a modification of the well-known method by Bunch
and Parlett [?]. If H is a positive definite matrix, then this factorization be-
comes the Cholesky factorization with diagonal pivoting. Error analysis of the
factorization is given by Slapničar [?, ?]. It was shown that the factors G and
J computed in the floating-point arithmetic with machine precision ε are the
exact factors of the perturbed matrix H + δH, where

|δH| ≤ O(n)ε(|H|+ P |G||GT |PT ).

Here |H| is defined by |H|ij = |Hij |. Note that the same type of bound holds
for the Cholesky factorization with or without pivoting as well as for LU fac-
torization [?, ?]. The difference between the implicit Jacobi method and the
implicit J-orthogonal Jacobi method is that the J-orthogonal method uses J-
orthogonal plane rotations for which RT

k JRk = J . If Jii and Jjj have the same
sign, where (i, j) is the pivot pair in the k-th step, then the matrix Rk performs
the trigonometric (orthogonal) plane rotation as in the ordinary Jacobi method.
If Jii and Jjj have different signs, then a hyperbolic rotation is performed. Im-
plicit J-orthogonal Jacobi method forms a sequence of matrices

G1 = G, Gk+1 = GkRk,
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which converges to the matrix Q|Λ|1/2. Thus, GM is the last matrix on which the
algorithm has stopped, then ‖GM,:i‖2Jii is the i-th computed eigenvalue and the
normalized i-th column is the corresponding eigenvector. The convergence of the
method was proved by Veselić [?], and the quadratical convergence was proved
by Drmač and Hari [?]. Slapničar [?] proved that this algorithm computes the
eigenvalues as accurately as predicted by the perturbation theory. On the other
hand, the QR method and the standard two-sided Jacobi method sometimes do
not achieve this accuracy. We shall illustrate this on the following example: let

H =




1600 −300 14 300000
−300 43.5 −4.75 −423212
14 −4.75 0.1875 19800

300000 −423212 19800 3207938 · 103


 .

All elements are the sums of the powers of 2 and are exactly stored in the IEEE
single precision [?], ε ≈ 10−8. Since

κ2(A) ≈ 18, κ2(H) ≈ 1010,

we expect 6-7 accurate digits from the above algorithm in single precision. The
eigenvalues of H are

λ1 = −54.043364 λ2 = −0.0283096849
λ3 = 1613.74866 λ4 = 3207938084.0105

Here the digits common to the above algorithm and the LAPACK QR routine
dsyev.f [?] computed IEEE double precision , ε ≈ 10−16, are shown. Our
algorithm, LAPACK QR algorithm ssyev.f and the two-sided Jacobi method
computed the following eigenvalues in single precision:

Ouralg. ssyev.f Jacobi

λ1 −54.043369 −55.990593 −54.043369
λ2 −0.02830968 −0.0326757 −0.02830995
λ3 1613.7487 1651.6652 1613.7486
λ4 3207938000 3207938000 3207938000

We see that our algorithm behaves as predicted, the QR method has completely
missed the tiniest eigenvalue and two more are insufficiently accurate, while the
Jacobi method is somewhat less accurate than the our algorithm.

Let us now discuss perturbations of the eigenvectors. Let λi and λi + δλi be
simple eigenvalues in the same order and let xi and xi+δxi be the corresponding
eigenvectors, respectively. Then the classical perturbation theory applied to
relative changes of matrix elements gives [?]

‖δxi‖2 ≤ nε‖H‖2
minj 6=i |λi − λj | + O(ε2).
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Therefore, the perturbation of the eigenvectors is proportional to the norm of the
perturbation and inversely proportional to the distance between the eigenvalues
and the rest of the spectrum. For scaled diagonally dominant matrices Barlow
and Demmel [?] proved the following result:

‖δxi‖2 ≤ nε

(1− ‖N‖2)relgap(λi)
+ O(ε2), relgap(λi) = min

j 6=i

|λi − λj|
|λiλj|1/2

.

Therefore, the perturbation of the eigenvector depends upon ‖N‖2, the size of
the relative perturbations of matrix elements and the relative distance between
the eigenvalue and the rest of the spectrum. As in the case with eigenvalues,
this bound is in some cases much better than the classical bound. Demmel and
Veselić [?] proved the similar result for positive definite matrices:

‖δxi‖2 ≤
√

nε

λmin(A)relgap(λi)
+ O(ε2) ≤

√
nεκ2(A)

relgap(λi)
+ O(ε2).

Veselić and Slapničar [?, ?, ?] generalized these results to indefinite matrices.
Instead of analyzing perturbations of eigenvectors they stated their results in
terms of perturbations of the eigenprojection Pi onto the invariant subspace
which corresponds to the eigenvalue λi, thus making it possible to deal with
multiple eigenvalues. Let Pi + δPi be the spectral projection to the invariant
subspace corresponding to those eigenvalues of the matrix H + δH which cor-
respond to λi. Let η = nεκ2(A). Then

‖δPi‖2 ≤ η

relgap(λi)
· 1

1− η

relgap(λi)

, relgap(λi) = min
λj 6=λi

|
√
|λi| −

√|λj||
max{

√
|λi|,

√|λj|}

if the right-hand side is positive. The described highly accurate algorithms
compute the eigenvectors and eigenprojections according to these bounds.

3. Singular value problem

Demmel and Kahan [?] showed that bidiagonal matrices determine well their
singular values in the sense that relative changes of matrix elements cause rela-
tive changes of the same order in singular values independent of the magnitude
of the matrix elements. They showed that the QR algorithm for bidiagonal ma-
trices with zero-shift computes the singular values with almost complete relative
accuracy. Since use of the zero-shift can result in slow convergence, a hybrid
algorithm was suggested. As long as there is no danger of generating large rel-
ative errors this algorithm uses the standard QR method with shifts, and when
the danger of making unrecoverable errors appears, then the algorithm switches
to zero-shift. This algorithm is a part of the numerical linear algebra library
LAPACK [?] as a subroutine dbdsqr.f. Another algorithm which was shown
to attain almost complete accuracy is the bisection.
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By using this result and the accuracy of the Cholesky factorization, Barlow
and Demmel [?] proposed the following algorithm for highly accurate solution of
the tridiagonal positive definite eigenvalue problem: (1) the matrix is factorized
as H = LLT by Cholesky factorization; (2) the eigenvalue problem is solved
by solving the bidiagonal singular value problem for the factor L by the highly
accurate QR method for a bidiagonal matrix. This class of matrices is very
important since it arises in many engineering applications.

Demmel and Veselić [?] analyzed the singular value problem for the general
matrix G of full (column) rank. The results are similar to those for the positive
definite eigenvalue problem. Let G = BD, where D is a diagonal positive
definite matrix such that the columns of B have a unit norm. Then relative
perturbations |δGij | ≤ ε|Gij | imply relative changes in singular values

|δσi| ≤ nεκ2(B)σi.

It was also shown that the already described implicit Jacobi method applied to
the matrix G from the right computes the singular values with this accuracy. On
the other hand, the QR method which first reduces G to a bidiagonal matrix by
using orthogonal transformations and then solves the bidiagonal singular value
problem often does not attain the required accuracy. This is due to the fact
that the bidiagonal reduction can cause large errors. The relative bounds for
the perturbations of the singular vectors ui and vi which correspond to a simple
singular value are similar to the bounds in the positive definite case: norm of
the perturbation is proportional to the size of relative perturbations of matrix
elements and the condition of the matrix B, and inversely proportional to the
relative distance between the singular value and the rest of the spectrum:

‖δui‖2, ‖δvi‖2 ≤
√

nε

σmin(B)relgap(σi)
+ O(ε2) ≤

√
nεκ2(B)

relgap(σi)
+ O(ε2),

where relgap(σi) = minj6=i |σi − σj|/(σi + σj).
Veselić and Slapničar [?, ?] showed that the above bound for the perturbation

of singular values also holds for the hyperbolic singular value problem for the
pair (G, J),

U∗GV = Σ,

where G is a complex matrix with full column rank, U is a unitary matrix, V is
a J-unitary matrix, V ∗JV = J , Σ is a diagonal matrix with positive diagonal
elements, and J is a diagonal matrix, Jii ∈ {−1, 1}. Slapničar [?] proved that
for the real matrix G the implicit J-orthogonal Jacobi method described in pre-
vious section computes hyperbolic singular values with this accuracy. Slapničar
and Veselić [?, ?] also derived relative bounds for norm of perturbations of
the orthogonal projections to left invariant subspaces corresponding to possibly
multiple singular values. It is interesting to note that J-orthogonal transfor-
mations are as stable as the orthogonal transformations. This appears to be
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contrary to the established opinion that hyperbolic transformations need to be
avoided since the condition of the matrix Rk can be large. In [?] it is shown
that κ2(V ) ≤ κ2(B), which implies that in the k-t step

κ2(Rk) ≤ κ2(( (Bk):,i (Bk):,j )) ≤ κ2(Bk),

where Gk = BkDK and Dk is a diagonal positive definite matrix such that Bk

has columns of unit norm. Here (Bk):,i denotes the i-th column of the matrix
Bk. Partial theoretical bounds as well as overwhelming numerical evidence
[?, ?] show that the growth of the condition κ2(Bk) during Jacobi process is
very small, thus we can claim that for each k

κ2(Rk), κ2(R1R2 · · ·Rk) ≤ cκ2(B),

where c is a moderate constant.
The stated perturbation results and the error analysis of implicit Jacobi

type methods are the essential components of the proof of the accuracy of the
two-step methods. However, in practice it is also important to note that

in two-step algorithms the factorization with pivoting almost always
results in factors with very low κ2(B). Thus, the main error comes
from factorization while the implicit Jacobi type method contributes
practically nothing to the final error.

The multiplicative relative perturbation theory by Eisenstat and Ipsen [?,
?] and later Li [?, ?], where perturbations of matrix elements are given by
congruences, G + δG = D1GD2, are bases for the recent research on highly
accurate computation of singular values by Demmel et al. [?]. The rank-revealing
factorization, RRF, of the matrix G is defined as any factorization G = XDY ,
where X and Y are well-conditioned and D is diagonal. Some examples of
RRF are the singular values decomposition itself and the LDU factorization
(Gaussian elimination) with complete pivoting. If there exists a RRF which is
accurately determined by the data then so are the eigen/singular values, and
if small relative changes in matrix elements cause large relative changes in D
then, eigen/singular values also undergo large relative changes. Further, if there
exists a RRF which is accurate in this sense, then the eigen/singular values can
be computed to high relative accuracy.

Some classes of matrices which have an accurate RRF are already described
in this and the previous section. Further, such classes which are described in
[?] are: matrices which satisfy some analytic conditions, matrices which satisfy
some sparsity and sign pattern conditions, some rationally structured matrices,
and some finite element matrices. The first class includes well-scaled positive
definite and indefinite matrices and matrices of the form G = BD which are
already described, matrices of the form G = D1BD2, where D1 and D2 are
diagonal and non-singular and all minors of B are well conditioned, and matrices
of the form G = D1BD2, where D1 and D2 are diagonal and non-singular
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with (nearly) decreasing diagonal elements and all leading minors of B are well
conditioned. The second class includes bidiagonal and acyclic matrices (sparsity
conditions), and total sign compound matrices (sparsity and sign conditions).
The third class includes Cauchy matrices, and the fourth class includes matrices
which come from linear mass spring systems (see also [?]), two-dimensional
trusses, and the Sturm-Liouville problem.

Means of obtaining an accurate RRF for these classes of matrices are dif-
ferent. Generally speaking, one always computes some variant of Gaussian
elimination with complete pivoting but the details vary. In the finite element
case the factors are obtained by using the natural factor formulation.

Once an accurate RRF is obtained, its singular values can be found to high
relative accuracy by several algorithms. We mention two algorithms from [?].
The first algorithm uses the J-orthogonal Jacobi method to compute the eigen-
values of the pair

((
XD1/2 XD1/2

Y T D1/2 −Y T D1/2

)
,

(
I 0
0 −I

))
.

The positive eigenvalues of this pair are the singular values of the original ma-
trix G. The second algorithm is based on the algorithm for product singular
value decomposition by Drmač [?]. The algorithm computes the singular value
decomposition G ≡ XDY T = UΣV T as follows:

1. perform QR factorization with pivoting to compute XD = QRP , where Q
is orthogonal, R is upper triangular and P is a permutation matrix,

2. compute a diagonal matrix D′ such that R = D′R′ and R′ is well-conditioned,

3. compute the singular value decomposition D′Z = ŪΣV T by the implicit
Jacobi method,

4. multiply U = QŪ .

The first algorithm computes the singular values with the relative error bounded
by O(εmax{κ(X), κ(Y )}), and the second algorithm computes the singular val-
ues with the relative error bounded by O(εmax{κ(X), κ(R′)κ(Y )}), where ε
is machine precision. The norm-wise error bounds for the computed singular
vectors are obtained by dividing these bounds by relative gaps, similarly as
above.

4. Concluding remarks

Let us briefly state some of the other results and research concerning the rel-
ative perturbation theory and highly accurate algorithms. Demmel and Gragg
[?] generalized the results by Demmel and Kahan to acyclic matrices, that is,
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matrices whose bipartite graph possesses no cycles, and showed that the bisec-
tion computes the singular values with almost complete accuracy. Pietzsch [?]
developed an algorithm for the skew-symmetric eigenvalues problem, and by
applying the perturbation theory for symmetric matrices proved the accuracy
of the algorithm. Singer [?] proved the relative accuracy of the Jacobi method
for Hermitian matrices. Deichmöller [?] analyzed the implicit variant of the
Falk-Langemeyer method for computing the generalized singular values. Drmač
[?, ?, ?] analyzed accurate computation of singular values and various general-
ized singular values, proved the relative perturbation bounds by using residuals,
analyzed the accuracy of the QR factorization which is used as a preprocessing
step for the implicit Jacobi method in the case when the matrix G has much
more rows than columns, and analyzed numerical aspects of accurate comput-
ing such as overflow/underflow and the accuracy of various implementations of
plane rotations. Fernando and Parlett [?] showed that various variants of the
differential QD algorithm compute the singular values of bidiagonal matrices to
high relative accuracy, and that this algorithm has some better properties than
the zero-shift QR algorithm. Gu and Eisenstat [?] further extended the rela-
tive perturbation theory for singular values. Eisenstat and Ipsen [?, ?] and Li
[?, ?] have given perturbation bounds for the perturbations which are given by
congruences. Truhar and Slapničar [?, ?] generalized the perturbation bounds
by Veselić and Slapničar to the projection to invariant subspace which corre-
sponds to a set of neighboring eigen/singular values. Barlow and Slapničar [?]
develop the local bounds for the relative perturbations of eigen/singular val-
ues. Namely, all bounds described so far are global in the sense that one bound
holds for all values/vectors. These bounds are attainable but only for some val-
ues and vectors, so the locally optimal bounds for each value and vector are of
great interest. Arbenz and Slapničar [?] are among many authors who analyzed
the implementation of Jacobi methods on multiprocessor computers. Due to
their simplicity, the Jacobi type methods, and in particular implicit methods,
are very suitable for such computers and attain almost optimal speedups. New
generation of processors prefers block version of matrix algorithms which can
also be easily implemented for Jacobi methods. Experiments have shown that
the Jacobi methods retain their high relative accuracy when implemented on
multiprocessor systems.

Majority of the described theoretical results hold in the complex case as well,
but, due to need in applications, mostly real versions of algorithms have been
analyzed so far. The existing analysis of complex algorithms [?, ?] is very similar
to analysis of their real counterparts, which also indicates that the algorithms
for complex matrices are as accurate as algorithms for real matrices.

Let us conclude by saying that the research area of the relative perturbation
theory and highly accurate algorithms is, due to its importance, very active.
Some basic results are simple but considerable improvements of the classical
linear algebra results and throw a new light on the behavior of eigen/singular
values and vectors under special types of perturbations of matrix elements which
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typically occur in practice. Due to good theoretical and experimental results
some algorithms are planned to be implemented in LAPACK [?]. Most impor-
tant open problems are: the problem of speed of the accurate algorithms since
Jacobi methods are several times slower than QR type methods, and further
application of the results to problems and matrices which appear in engineering
applications.
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mittels Jacobi–ähnlicher Verfahren, Ph. D. thesis, Fernuniversität Hagen,
Germany, 1991.

[7] J. Demmel, Z. Drmač,
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