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A UNIFORMLY ACCURATE FINITE ELEMENTS METHOD
FOR SINGULAR PERTURBATION PROBLEMS

Mirjana Stojanović

University of Novi Sad, Serbia and Montenegro

Abstract. We consider piecewise polynomial finite elements method
for a singular perturbation problem. The finite elements method of [9] for a
problem with non-constant coefficients was adapted by introducing piece-
wise polynomial approximation. We generate the tridiagonal difference
schemes which are second order accurate in uniform norm.

1. Introduction

Ordinary differential equations with a small parameter ε multiplying the
highest-order derivative terms are called singularly perturbed equation. We
consider numerical methods which are ε-uniform of order p on the mesh ∆n :
x0 < x1 < ... < xn, hi = xi − xi−1, i = 1, ..., n if there exists some h0

independent of ε such that for all hj ≤ h0, sup0<ε≤1 max∆n
|u(xi) − vi| ≤

M max0≤j≤i h
−p
j where u is the solution of the differential equation, vi is the

computed value to u, and M and p are independent of ε and n (cf. [11, 10]).
Petrov Galerkin method (PGM) is an old well established tool for solving

linear and nonlinear ODEs and PDEs. Description of Galerkin method in
Sobolev spaces, its qualitative analysis, energy estimates for different types of
PDEs and their transformation into a system of ODEs, existence and unique-
ness theorems for the solutions for some classes of PDEs can be found in, say,
[8]. Recall it.
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We intend to find a weak solution to PDE, say of parabolic type

(1.1)





ut +Du = 0 in Ω,

u = 0 on ∂Ω× [0, T ],

u = g on Ω× {t = 0},
where D is an elliptic operator, first by constructing solutions of certain finite-
dimensional approximation and then passing to the limits. Assume the func-
tions wk = wk(x), (k = 1, ..) are smooth, {wk}∞k=1 is an orthogonal basis of
H1

0 (Ω), Ω is an open set in Rn and {wk}∞k=1 is an orthonormal basis of L2(Ω).
Fix m as a positive integer. Find a function um : [0, T ]→ H1

0 (Ω) of the form

(1.2) um(t) :=

m∑

k=1

dk
m(t)wk,

where we choose dk
m(t), (0 ≤ t ≤ T ), (k = 1, ...,m) such to satisfy the initial

condition

(1.3) dk
m(0) = (g, wk), k = 1, ...,m,

and the weak form

(1.4) (u′m, wk) +B[um, wk; t] = (f, wk), 0 ≤ t ≤ T, k = 1, ...,m,

where B is the corresponding bilinear form. Thus, we look for a function um of
the form (1.2) that satisfies the projection (1.4) of our problem into the finite
dimensional subspace spanned by {wk}mk=1. This transforms our problem to
a system of ordinary differential equations

(1.5)

{
dk

m(0) = (g, wk), k = 1, ...,m,

(dk
m(t))′ +

∑m
l=1 e

kl(t)dl
m(t) = fk(t), k = 1, ...,m,

where fk(t) := (f(t), wk), k = 1, ...,m, ekl(t) := B[wl, wk; t]. Standard
existence theory of ODEs gives a unique absolutely continuous function
dm(t) = (d1

m(t), ..., dm
m(t)) satisfying (1.4) and (1.5) for a.e. 0 ≤ t ≤ T .

Then, (1.2) solves (1.4). So, we construct the approximate solutions. For
each integer m = 1, ... there exists a unique function um of the form (1.2) sat-
isfying (1.3) and (1.4). Then we set m → ∞ and show that the subsequence
of solutions um of the approximate problems (1.3),(1.4) converges to a weak
solution to (1.1). We pass to the limits as m → ∞, to build a weak solution
to PDE (1.1). Such solution exists.

The development of this method with applications in numerical analysis
of singularly perturbed problems takes place 2D. In [12] is given stabilized
Galerkin method with a high accuracy away from the boundary and interior
layers where solution is smooth. Evaluation of this method goes towards finite
elements method (FEM) to PDEs, especially to stabilized Galerkin method
[12] for second order advection-diffusion-reaction model with the emphases
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on singularly perturbed problems appearing in the iterative solution of cou-
pled incompressible Navier-Stokes problems (cf. [5, 15, 16]). It gives resolu-
tion of boundary layers on layer-adopted meshes using anisotropic interpola-
tion estimates and sharp estimates of derivatives. Standard finite elements
Galerkin method is applied to singularly perturbed convection-diffusion prob-
lems in 2D, using adaptive refinement procedure for meshes which overcomes
many difficulties in getting higher order accuracy. Recently, three books ap-
peared dealing with the numerical solution of singularly perturbed problems
[17, 19, 24]. Also combination of different meshes equidistant away from the
boundary layer and non-equidistant in boundary layer and combination with
standard FEM are of great use (cf. [21, 22, 25]). Adaptive local mesh re-
finement Galerkin FEM procedure is applied for vector system of parabolic
PDEs in 1D in [20]. The development of this area goes to different schemes
for boundary layer and away from it with rectangular meshes and their com-
binations in 2D. Also, the fitted difference operators on piecewise uniform,
say Shishkin meshes, are used in [18]. Then, the solutions with two sharp
layers are considered: boundary layer and spike layer solution [6]. Families of
rectangular 2D and 3D mixed FEM for the approximation of acoustic wave
equations are given in [3].

Thus, the main directions in PG method continuous and discontinues are
towards the solutions of Navier-Stokes equations the problem of new millen-
nium because of its great importance for practice.

In this paper we use PGM to construct a difference scheme which approx-
imates the solution to the problem (2.1) with appropriate accuracy. Classical
methods are appropriately adapted to singularly perturbed problems in one
dimension space.

We revise PGM in 1D for singular perturbation two-point boundary value
problem in order to obtain (O(h2)) uniformly accurate convergent scheme.

In [23] El-Mistikawy and Werle difference scheme was derived by using
PGM of finite elements. For the test and trial space the exponential functions
were used which are the solution of the ”comparison” problem εu′′ + p̄iu

′ =
f̄i and its adjoint on each subinterval [xi−1, xi], where p̄i, f̄i are piecewise
constants. Using the properties of distributional derivatives they proved the
second order of uniform convergence of this scheme. In [1], was given an
analysis of PGM of finite elements as applied to the asymmetric two-point
boundary value problem with constant coefficients, for the space of a hat trial
functions and for a family of test spaces involving parameter α. We return
once again to classical PGM in order to improve the result for non-constants
coefficients. We try to find solution of the non-self adjoint problem using
polynomial method of finite elements. For this purpose we use the same test
and trial spaces as in [1], but for the approximation of the functions p(x),
f(x) we use the piecewise polynomials:
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1. the approximation by piecewise quadratics at the points xi−1, xi−1/2,
xi;

2. the approximation by piecewise cubic polynomial which is interpolated
at both end points and two interior one of subinterval [xi−1, xi].

We adopt this method to the exponential feature of the exact solution by
introducing parameter αi whose form is exponential and which follows the
exponential form of the exact solution. We try to improve this result by
introducing better approximation for the functions p(x), f(x) but the order of
uniform convergence still remains two because we introduced the same fitting
factor αi obtained as a solution of Lu = 0 for p = const in both cases. Special
discretization of non-self adjoint perturbation equation by finite elements leads
to a system of linear equations. The obtained difference schemes are second
order accurate in uniform norm.

The advantage of this method is its simplicity and explicit form of the
solution. We solve the tridiagonal system of linear equations and due to (2.3)
the given solution has a global character.

The paper is organized as follows: In the first part we give a description
of PGM of finite elements and its polynomial form. Then, we generate two
difference schemes by using different approximation for driving terms. We
give in the second section proof of the uniform convergence of these schemes.
Finally, we give some numerical tests to confirm the theoretical predictions.

Throughout the paper M, δ, β denote different constants independent of
the mesh size h and perturbation parameter ε; p(xi) and f(xi) are exact values
at the point xi; pi and fi are computed values; Q is the negligible part in the
error estimate.

2. Scheme generation

Consider the non-self adjoint perturbation problem

(2.1) Lu ≡ εu′′ + p(x)u′ = f(x), u(0) = γ0, u(1) = γ1,

the functions p, f ∈ C2([0, 1]), p(x) ≥ p̄ > 0, x ∈ (0, 1), 0 < ε << 1, γ0, γ1

being given constants.
u ∈ H1((0, 1)) is a solution to (2.1) if and only if it is a solution of the

weak form to (2.1)

(2.2) u ∈ H1((0, 1)) and Bε(u,w) = (u′,−εw′ + pw) = (f, w)

where (, ) is the usual inner product in L2([0, 1]).
Choosing in H1([0, 1]) two finite subspaces T h and Sh of equal dimension

referred to as test and trial space, we obtain the following PG discretization
to (2.1). Let {ηi|i = 0(1)n} and {ζi|i = 1(1)n − 1} be the basis in the trial
and the test space T h and Sh respectively.

The unit interval is subdivided into n equal elements by the nodes xi = ih
(i = 0(1)n), and so nh = 1. For trial space we take the space of linear (hat)
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functions

ηi(x) = η(x/h− i), i = 0(1)n

where

η(s) =





0, |s| > 1,

1 + s, −1 ≤ s ≤ 0,

1− s, 0 ≤ s ≤ 1.

For the test space we use a family spaces involving parameter αi :

ζi(x) = ηi(x) + αiσ(x/h− i), i = 1(1)n− 1

where

σ(s) =





0, |s| > 1,

−3s(s− 1), −1 ≤ s ≤ 0,

−σ(−s), 0 ≤ s ≤ 1.

These test and trial spaces are taken from [9] and discussed in [4]. The
functions in the test and trial spaces satisfy the following properties:

1. supp(ηi(x)) = [xi−1, xi+1];
2. ηi(xj) = δij , where δij is the Kronecker symbol;

3.
∑n−1

j=1 ηj(x) = 1, for all x ∈ [x1, xn−1].

We seek an approximation {uh}, applying PGM of the form

(2.3) uh =

n∑

i=0

viηi, v0 = γ0, vn = γ1,

where {vi}, i = 0(1)n satisfies the system of equations

(2.4)

i+1∑

k=i−1

vkBε(ηk , ζi) = (f, ζi), i = 1(1)n− 1.

Case (a) : Replace p and f in (2.4) by p̄ and f̄ where p̄ = p̄i, f̄ = f̄i on
interval [xi−1, xi], i = 1(1)n, where

f̄i =fi−1

(
2/(h2)(x− xi−1/2)(x − xi)

)

+ fi

(
2/(h2)(x − xi−1/2)(x− xi−1)

)

+ fi−1/2

(
− 4/(h2)(x− xi−1)(x − xi)

)
,

p̄i analogously. Hence, to (2.4) is then associated difference scheme

r−i vi−1 + rc
i vi + r+i vi+1 =(2.5)

h2/ε(q−i fi−1 + qc
i fi + q+i fi+1 + fi−1/2q

−
i1/2 + fi+1/2q

+
i1/2),
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or in shortened form Rvi = h2/εQLvi, i = 1(1)n− 1, v0 = γ0, v1 = γ1, where
the corresponding coefficients are

r−i = 1− ρi−1(αi/20)− ρi(1/6 + αi/20)− ρi−1/2(1/3 + 2/5αi)

r+i = 1 + ρi(1/6− αi+1/20)− ρi+1(αi+1/20) + ρi+1/2(1/3− 2/5αi+1)

rc
i = −r−i − r+i , q−i = αi/20, qc

i = (1/6 + αi/20) + (1/6− αi+1/20),

q+i = −αi+1/20, q−i1/2 = 1/3 + 2/5αi, q+i1/2 = 1/3− 2/5αi+1, ρi = pih/ε,

where vi denotes approximating solutions to (2.1) obtained by (2.4).
Case (b). Set in (2.4) instead of f and p the interpolation cubic polyno-

mials p̄ and f̄ where p̄ = p̄i, f̄ = f̄i on [xi−1, xi], i = 1(1)n, such that f̄i has
the following form:

f̄i =
(
9/(2h3)(x− xi−1)(x − xi−1/3)(x − xi−2/3)

)
fi

−
(
9/(2h3)(x − xi−1/3)(x− xi−2/3)(x− xi)

)
fi−1

+
(
27/(2h3)(x− xi−1)(x − xi−2/3)(x − xi)

)
fi−1/3

−
(
27/(2h3)(x− xi−1)(x − xi−1/3)(x − xi)

)
fi−2/3,

p̄i analogously. The difference scheme is now Rvi = h2/εQLvi, i = 1(1)n− 1,
v0 = γ0, v1 = γ1, or

r−i vi−1 + rc
i vi + r+i vi+1 =h2/ε(q−i fi−1 + qc

i fi + q+i fi+1 + fi−1/3q
−
i1/3(2.6)

+ fi−2/3q
−
i2/3 + fi+1/3q

+
i1/3 + fi+2/3q

+
i2/3),

where

r−i =1− ρi(13/120 + αi/40)− ρi−1(1/60 + αi/40)

− ρi−1/3(3/40 + 9αi/40)− ρi−2/3(3/10 + 9αi/40)

r+i =1 + ρi+1(1/60− αi+1/40) + ρi(13/120− αi+1/40)

+ ρi+1/3(3/10− 9αi+1/40) + ρi+2/3(3/40− 9αi+1/40)

rc
i =− r−i − r+i

qc
i = (13/120 + αi/40) + (13/120− αi+1/40), q−i = 1/60 + αi/40

q−i1/3 = 3/40 + 9αi/40, q−i2/3 = 3/10 + 9αi/40, q+i = 1/60− αi+1/40

q+i1/3 = 3/10− 9αi+1/40, q+i2/3 = 3/40− 9αi+1/40, ρi = pih/ε.
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3. Determination of the parameter

We determine parameter αi such that the truncated error to (2.5) (resp.
(2.6)) would be equal to zero for p = const, i.e. τi(u) = Rui −QLui = 0, on
each subinterval [xi−1, xi], i = 1(1)n. We set

10. αi = 2/ρ̃i − coth(ρ̃i/2), ρ̃i = (pi + pi−1)h/(2ε), pi = p(xi).

By requiring that r−i /r
+
i = exp(−ρ0), ρ0 = p0h/(2ε), p0 = p(0), we obtain

20. α1i = (1−ρi/2−exp(−ρ0)(1+ρi/2))/(1−exp(−ρi)), i = 1(1)n−1.

The both give the same rate of uniform convergence, but the second one gives
the better approximation to the exact solution.

4. Proof of the uniform convergence

Consider two comparison functions ϕi = −2+xi and ψi = − exp(−βxi/ε)
(cf. [13]).

Lemma 4.1 ([2]). Let p, f ∈ C2([0, 1]). Then the solution to (2.1) has the
form u(x) = u0(x) + w0(x) where

u0(x) = −εu′(0) exp(−p(0)x/ε)/p(0), γ = γ(ε) = −εu′(0)/p(0),

(4.1) |w(i)
0 (x)| ≤M(1 + ε−i+1 exp(−2δx/ε)), i = 0(1)4, |γ| ≤M,

i.e.

|u(x)| ≤ exp(−p(0)x/ε) + |w0(x)|.
Lemma 4.2 ([1], Maximum principle). Let {vi} be a set of values at mesh

points xi, satisfying v0 ≤ 0, vn ≤ 0 and Rvi ≥ 0, i = 1(1)n− 1. Then, vi ≤ 0,
i = 0(1)n.

Let zi = u(xi)− vi where vi is computed solution and u(xi) is the exact
one at mesh point xi and let τi be the truncated error to (2.5) (resp. (2.6)).
Then, the truncated error of the difference scheme is τi = Rui − h2/εQLui,
i = 0(1)n.

Corollary 4.3. If k1(h, ε) ≥ 0, k2(h, ε) ≥ 0 are such functions that
R(k1ϕi + k2ψi) ≥ R(±zi) = ±τi, then |zi| ≤ k1|ϕi|+ k2|ψi|.

Lemma 4.4. Let p ∈ C2([0, 1]). There are constants M and β such that
the following inequalities hold:

1. Rϕi ≥Mh2/ε, when h < 1, ε ∈ (0, 1];
2. Rψi ≥Mµi(β)(h/ε) min(h/ε, 1),

where µi(β) = exp(−βxi/ε), (β is a constant which will be chosen).

Proof. (a) We have: Rϕi = h(r+i − r−i ). When h/ε ≤ 1 after Taylor
expansion at the point ρi = pih/ε, where pi = p(xi) on each subinterval
[xi−1, xi], i = 1(1)n, we obtain |Rϕi| ≥ hρi + O(h4/ε3), i.e. |Rϕi| ≥ Mh2/ε.
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When h/ε ≥ 1 we have |Rϕi| ≥ Mh2/ε. Thus, |Rϕi| ≥ Mh2/ε for h < 1,
ε ∈ (0, 1].

(b)Rψi = µi−1(β)r+i (1− µ(β))(µ(β) − r−i /r+i ).
Since r−i /r

+
i = exp (−ρi)+O(h2/ε), |µ(β)− r−i /r+i | ≥Mh/ε exp(−θh/ε),

0 < θ < 1. r+i = 1 + ρi/2 + ρ2
i /12 + O(ρ4

i ), |r+i | ≥ M, we obtain |Rψi| ≥
µ(h2/ε2)µi−1(β), when h/ε ≤ 1. In the opposite case we have |r+i | ≥ Mh/ε,
|1− µ(β)| ≥M, |µ(β) − r−i /r+i | ≥M. Then, |Rψi| ≥Mh/ε.

Theorem 4.5. Let p, f ∈ C2([0, 1]), and let {vi}, i = 1(1)n − 1 be the
set of computed values for the solution to (2.1) obtained by (2.5). Then, the
following inequality holds

|zi| ≤Mh2, i = 0(1)n.

Proof. Truncated error to (2.5) is according to Lemma 4.1 sum of the
truncated errors of dividing functions, τi(u) = τi(u0) + τi(w0). We shall esti-
mate the first contribution to the nodal errors of the function w0. Since τi is the
linear operator then τi(w0) = Rw0i − h2/εQLw0i. Set in Rw0i = h2/εQLw0i,
fi±1 = εw′′0i±1 + pi±1w

′
0i±1, and fi±1/2 = εw′′0i±1/2 + pi±1/2w

′
0i±1/2, expend

into Taylor series each term w0 at the point w0(xi) and collect the terms
followed the same derivatives. The appropriate expansion for τi(w0) obtained
by Taylor expansion of w0 at the point xi has the form

τi(w0) = τ
(0)
i w0(xi) + τ

(1)
i w′0(xi) + τ

(2)
i w′′0 (xi) + τ

(3)
i w′′′0 (xi) + ...+R

where τ
(0)
i = r−i + rc

i + r+i ,

τ
(1)
i =h(r+i − r−i − ρi−1q

−
i − ρiq

c
i − ρi+1q

+
i − ρi+1/2q

+
i1/2 − ρi−1/2q

−
i1/2),

τ
(2)
i =h2

(
1/2(r+i + r−i ) + ρi−1q

−
i − ρi+1q

+
i + 1/2ρi−1/2q

−
i1/2

− 1/2ρi+1/2q
+
i1/2 − q−i − q+i − qc

i − q−i1/2 − q+i1/2

)
,

τ
(3)
i =h3

(
1/6(r+i − r−i )− q+i + q−i − 1/2(q+i1/2 − q−i1/2)− 1/2(ρi−1q

−
i

+ ρi+1q
+
i + 1/4(ρi+1/2q

+
i1/2 + ρi−1/2q

−
i1/2))

)
,

R =τ
(n+1)
i w

(n+1)
0 (ξi), xi−1/2 ≤ ξi ≤ xi+1/2, i = 1(1)n− 1.

In our case τ
(0)
i = τ

(1)
i = 0. For p = const, τ

(2)
i = 0. Setting the coefficients

in τ
(2)
i we obtain τ

(2)
i = h2{αi+1/40(ρi+1−ρi)+αi/40(ρi−1−ρi)+1/2(αi+1−

αi)}. Since |ρi±1 − ρi| ≤ Mh2/ε, |αi+1 − αi| ≤ Mh2/ε and |αi+1| ≤ M, we

obtain when h/ε ≥ 1 that |τ (2)
i | ≤Mh4/ε. When h/ε ≤ 1 we have

τ
(2)
i =h2{αi/40(ρi+1 − ρi−1) + 1/40(−1/6 + ρi/120)(ρi+1 − ρi)

2

+ 1/2(ρi+1 − ρi)(−1/6 + ρ2
i /120)}+Q.
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Since αi+1 = αi+(ρi+1−ρi)
∂αii+1

∂ρi+1
(ρi) = −ρi/6+1/200ρ3

i +(ρi+1−ρi)(−1/6+

1/120ρ2
i ) +Q and αi+1 − αi = (ρi+1 − ρi)(−1/6 + 1/120ρ2

i ) + q, |ρi±1 − ρi| ≤
Mh2/ε, |ρi+1 − ρi−1| ≤ Mh2/ε, αi = −ρi/6 + ρi/200 + Q we have |τ (2)

i | ≤
Mh4/ε, when h/ε ≤ 1. Then, by (4.1)

|τ (2)
i w′′0 | ≤Mh4/ε(1 + ε−1 exp−2δxi/ε), h < 1, ε ∈ (0, 1].

Setting the coefficients of the scheme into τ
(3)
i we obtain that τ

(3)
i ≡

h3(ρi/12 + αi/2), where ρi = pih/ε+ Q, pi = const. When h/ε ≥ 1, |τ (3)
i | ≤

Mh4/ε and when h/ε ≤ 1, after Taylor expansion of coth ρi = 1/ρi + ρi/3−
ρ3

i /45 + Q in αi and after ordering the terms we obtain τ (3) = h3ρ3
i /720 +

O(h8/ε5). Thus, |τ (3)
i | ≤ Mh6/ε3 for h/ε ≤ 1. Similarly we have that the

remainders are of the lower order.Thus,

|τi(w0)| ≤Mh4/ε(1 + ε−1 exp (−2δxi/ε)), h < 1, ε ∈ (0, 1].

The last inequality, Lemma 4.4 (1) and Corollary 4.3 give the contribution
to the nodal errors due to the function w0:

(4.2) |z(w0)| ≤Mh2(1 + ε−1 exp (−2δxi/ε)) h < 1, ε ∈ (0, 1].

Now, we shall consider the nodal errors due to the boundary layer function
u0. We determined αi so that the truncated error for boundary layer function
equals zero when p(x) = const. Denote the parts in the truncation error Rui

and h2/εQLui by τr and τq respectively. We have τi(u0) = τr − τq and

τr =u0i{r−i (exp (ρ0)− 1) + r+i (exp (−ρ0)− 1)},
τq =u0iρ0{(ρ0 − ρi−1)q

−
i exp (ρ0) + (ρ0 − ρi)q

c
i + (ρ0 − ρi+1) exp (−ρ0)q

+
i

+ (ρ0 − ρi−1/2)q
−
i1/2 exp (ρ0/2) + (ρ0 − ρi+1/2)q

+
i exp (−ρ0/2)}

where uoi = exp (−p(0)xi/ε). When h/ε ≥ 1 since |q±c
i | ≤M, |r±i1/2| ≤M, and

since by mean value theorem |p0 − pi±1| ≤ Mxi±1, |p0 − pi±1/2| ≤ Mxi±1/2

and (x/ε)k exp (−cx/ε) ≤M,C > 0, x ≥ 0 we obtain

|τq | ≤Mh2/ε exp (−δxi−1/ε), h/ε ≥ 1.

Recall, when pi = const we have r−i /r
+
i = exp (−ρi), ρi = pih/ε and τi(u0) =

0. Since τr = u0i{(r−i − r−i (ρi))(exp (ρ0)− 1) + (r+i − r+i (ρi))(exp (−ρ0)− 1)}
and by |r±i − r±i (ρi)| ≤Mh2/ε we obtain

|τr| ≤Mh2/ε exp (−δxi−1/ε)), h/ε ≥ 1.

Thus,

(4.3) |τi(u0)| ≤Mh2/ε exp (−δxi−1/ε), h/ε ≥ 1.

By Lemma 4.4 (b), Corollary 4.3 and by the inequality

tk exp (−t) ≤ C(θ) exp (−θt), t ∈ [0,∞), c(θ) = const(θ),
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we obtain the contribution to the nodal errors of the part τi(u0) as

(4.4) |z(u0)| ≤Mε exp (−δxi−1/ε), h/ε ≥ 1.

Let h/ε ≤ 1. We shall expand each term in τi(u0) into Taylor series and cancel
the hardest parts of τr and τq . We have

τr = u0ir
+
i {r−i /r+i (exp (ρ0)− 1) + (exp (−ρ0)− 1)}.

Since for pi = const, r−i /r
+
i = exp (−ρi) we have

τr = u0ir
+
i {exp (ρ0 − ρi)− exp (−ρi) + exp (ρ0)− 1)}+Q,

where Q is negligible part. After expanding into Taylor series and after or-
dering the terms we obtain

τr =u0ir
+
i (ρ0 − ρi)ρ0(1− ρi/3) +O(h5/ε4)

=u0i(ρ0 − ρi)ρ0(1 + 1/6ρi) +O(h5/ε4).

In a case of τq we have

τq =u0iρ0(ρ0 − ρi){αi/20 exp (ρ0) + 1/3 + αi/20− αi+1/20

− αi+1/20 exp (−ρ0) + (1/3 + 2/5αi) exp (ρ0/2)

+ (1/3− 2/5αi+1) exp (−ρ0/2))}.

Since αi+1−αi = (ρi+1−ρi)(−1/6+1/120ρ2
i )+Q, we obtain after expanding

into Taylor series and ordering the terms that

τq = u0iρ0(ρ0 − ρi)[1 + ρ0(ρ0 − ρi)/12] +O(h5/ε4).

Then, τi(u0) = τr − τq = u0iρ0(ρ0 − ρi)[1 + 1/6ρ − 1 − ρ0(ρ0 − ρi)/12]
+O(h5/ε4). After cancelling the hardest part we obtain |τi(u0)| ≤ u0iρ0(ρ0 −
ρi)ρi/6 +O(h5/ε4). Thus,

(4.5) |τi(u0)| ≤Mh4/ε3 exp (−δxi/ε), h/ε ≤ 1.

From (4.5), Lemma 4.4 (b) and Corollary 4.3 we obtain contribution to
the nodal errors due to the function u0 as

(4.6) |zi(u0)| ≤Mh2/ε exp (−δxi/ε), h/ε ≤ 1.

From (4.2), (4.4) and (4.6) we have the nodal errors for difference scheme
(2.5) applied to the problem (2.1)

(4.7) |zi(u0)| ≤M(h2 + εmin ((h/ε)2, 1) exp (−δxi−1/ε)), i = 0(1)n,

which leads to the conclusion of Theorem 4.5.

Following precisely this approach we obtain the proof for the following
Theorem.
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Theorem 4.6. Let p, f ∈ C2([0, 1]) and let {vi} be the set of computed
values for the solution to (2.1) obtained by (2.6). Then, the following estimate
holds

|zi| ≤Mh2, i = 0(1)n.

5. Numerical Evidence

We consider two different examples

(5.1) −εu′′ + u′ = exp(x), u(0) = u(1) = 0,

with the exact solution u(x) = 1/(1 − ε) (exp(x) − 1 + (exp(x/ε) − 1)(e −
1)(− exp(1/ε) + 1) taken from [14] and

(5.2) εu′′ + (1 + x2)u′ = −(exp(x) + x2), u(0) = −1, u(1) = 0

taken from [7]. The mesh length h = 1/I was halved starting with I = 32 and
ending with I = 1024. The maximum nodal errors E∞ = maxi |u(xi) − vi| is
listed under E∞. The rate of convergence is determined from E∞ values for
two consecutive values of I. We have rate ≡ (lnE1

∞ − lnE2
∞)/ ln 2 where E1

∞
and E2

∞ correspond to h = 1/I and h = 1/(2I) respectively.
In Table 1 and 2 are given difference between exact and computed solution

listed in E∞ for the schemes (2.5) and (2.6) respectively. The example (5.2)
is tested in Table 3 on the scheme (2.5) by using the double mesh principle
([7, 23]); described above. αi is used.

Table 1

ε/I 32 64 128 256 512 1024
· E∞ E∞ E∞ E∞ E∞ E∞

2−4 .43E-6 .27E-7 .17E-8 .11E-9 .66E-11 .64E-12
2−6 .77E-5 .51E-6 .38E-7 .21E-8 .13E-9 .82E-11

Table 2

ε/I 32 64 128 256 512 1024
· E∞ E∞ E∞ E∞ E∞ E∞

2−3 .86E-7 .54E-8 .33E-9 .21E-10 .14E-11 .44E-12
2−6 .77E-5 .51E-6 .33E-7 .21E-8 .13E-9 .85E-11
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Table 3

ε/I 32 64 128 256 512
· E∞ Rate E∞ Rate E∞ Rate E∞ Rate E∞ Rate
1 .23E-4 2.00 .57E-5 2.00 .14E-5 2.00 .37E-6 2.00 .89E-7 2.00

2−1 .67E-4 2.00 .17E-4 2.00 .46E-5 2.00 .11E-5 2.00 .26E-6 2.00
2−2 .13E-3 2.00 .33E-4 2.00 .82E-5 2.00 .21E-5 2.00 .52E-6 2.00
2−3 .17E-3 1.99 .43E-4 1.99 .11E-4 2.00 .27E-5 2.00 .68E-6 2.00
2−4 .19E-3 1.90 .48E-4 1.99 .12E-4 2.00 .30E-5 2.00 .75E-6 2.00
2−5 .19E-3 1.99 .50E-4 1.91 .13E-4 1.99 .31E-4 2.00 .78E-6 2.00
2−6 .19E-3 1.81 .47E-4 1.99 .13E-4 1.92 .32E-5 1.99 .79E-6 2.00
2−7 .17E-3 2.27 .47E-4 1.81 .12E-4 1.99 .32E-5 1.92 .79E-6 1.99
2−8 .20E-3 2.24 .47E-4 2.28 .12E-4 1.81 .30E-5 1.99 .79E-6 1.91
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