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Abstract. Up to isomorphism there are precisely fifty-four symmet-

ric designs with parameters (47, 23, 11) admitting a faithful action of a
Frobenius group of order 55. From these fifty-four designs one can con-
struct 179 pairwise nonisomorphic 2-(23,11,10) designs as derived and 191
pairwise nonisomorphic 2-(24,12,11) designs as residual designs. We have
determined full automorphism groups of all constructed designs. One of 2-
(24,12,11) designs has full automorphism group of order 15840, isomorphic
to the group M11 × Z2, acting transitively on the set of points.

1. Introduction and Preliminaries

A 2-(v, k, λ) design is a finite incidence structure (P ,B, I), where P and
B are disjoint sets and I ⊆ P × B, with the following properties:

1. |P| = v,
2. every element of B is incident with exactly k elements of P ,
3. every pair of distinct elements of P is incident with exactly λ elements

of B.

The elements of the set P are called points and the elements of the set B are
called blocks.

Given two designs D1 = (P1,B1, I1) and D2 = (P2,B2, I2), an isomor-
phism from D1 onto D2 is a bijection which maps points onto points and
blocks onto blocks preserving the incidence relation. An isomorphism from
a design D onto itself is called an automorphism of D. The set of all auto-
morphisms of the design D forms a group; it is called the full automorphism
group of D and denoted by AutD. A symmetric (v, k, λ) design is a 2-(v, k, λ)
design with |P| = |B|.
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2 D. CRNKOVIĆ AND S. RUKAVINA

Let D = (P ,B, I) be a symmetric (v, k, λ) design and G ≤ AutD. The
group action of G produces the same number of point and block orbits (see [8,
Theorem 3.3]). We denote that number by t, the point orbits by P1, . . . ,Pt,
the block orbits by B1, . . . ,Bt, and put |Pr| = ωr and |Bi| = Ωi. We shall
denote the points of the orbit Pr by r0, . . . , rωr−1, (i.e. Pr = {r0, . . . , rωr−1}).
Further, we denote by γir the number of points of Pr which are incident with a
representative of the block orbit Bi. For those numbers the following equalities
hold (see [3]):

t∑

r=1

γir = k ,(1.1)

t∑

r=1

Ωj

ωr
γirγjr = λΩj + δij · (k − λ) .(1.2)

Definition 1.1. A (t× t)-matrix (γir) with entries satisfying conditions
(1.1) and (1.2) is called an orbit structure for the parameters (v, k, λ) and
orbit lengths distributions (ω1, . . . , ωt), (Ω1, . . . ,Ωt).

The algorithm used for constructing symmetric (v, k, λ) designs (P ,B, I)
admitting presumed automorphism group G is described in details in [3].
More about the elimination of isomorphic structures using elements of the
normalizer of the group G one can find in [2]. Here we give a short explanation
of the algorithm.

The first step - when constructing designs for given parameters and orbit
lengths distributions - is to find all compatible orbit structures (γir). Mutually
isomorphic orbit structures would lead to mutually isomorphic symmetric de-
signs. Therefore, during the construction of orbit structures we use elements
of the normalizer of the group G in the group S = S(P) × S(B) for elimi-
nation of isomorphic orbit structures, taking from each NS(G)-orbit of orbit
structures the representative which is first in the reverse lexicographical order.

The next step, called indexing, consists in determining exactly which
points from the point orbit Pr are incident with a fixed representative of the
block orbit Bi for each number γir. In this step we also use the elements
of the group NS(G) for elimination of mutually isomorphic structures, ap-
plying permutations from NS(G) which induce automorphisms of the orbit
structure (γir). At the end of this step, all symmetric designs with given
parameters admitting an automorphism group G acting with presumed orbit
lengths distributions will be constructed.

Symmetric designs described in this article are obtained by using the com-
puter programs written in programming language C which we have developed
following the above algorithm.

The authors will send the details on the algorithm and programs to the
interested readers.
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Definition 1.2. The set of those indices of points of the orbit Pr which
are incident with a fixed representative of the block orbit Bi is called the index
set for the position (i, r) of the orbit structure and the given representative.

A Hadamard matrix of order m is an (m × m)-matrix H = (hi,j),
hi,j ∈ {−1, 1}, satisfying HHT = HTH = mI , where I is the unit ma-
trix. From each Hadamard matrix of order m one can obtain a symmet-
ric (m − 1, 1

2m − 1, 1
4m − 1) design (see [8]). Also, from any symmetric

(m−1, 1
2m−1, 1

4m−1) design we can recover a Hadamard matrix. Symmetric

designs with parameters (m−1, 1
2m−1, 1

4m−1) are called Hadamard designs.
It is known that Hadamard matrices of order 48 could be obtained from

Hadamard matrices of order 12 or 24, using Kronecker product. As far as
we know, symmetric (47, 23, 11) designs constructed from such Hadamard
matrices of order 48 are not investigated and classified. According to [9] only
one symmetric (47, 23, 11) design has been constructed so far, and that had
been obtained via cyclic difference set (see [5]). Applying the [7, Teorem 4.1]

one gets that there are at least
23!

47 ∗ 232 ∗ 112
designs, but this article doesn’t

give us an information about structure of designs and automorphism groups.
The aim of this article is to construct all symmetric (47, 23, 11) designs

having Frobenius group of order 55 as an automorphism group and to deter-
mine full automorphism groups of these designs and their derived and residual
designs. It turns out that Mathieu group M11 acts as an automorphism group
on one of obtained residual designs.

For further basic definitions and construction procedures we refer the
reader to [4] and [13].

2. A Frobenius Group of Order 55 Acting on a Symmetric
(47, 23, 11) Design

Let D be a symmetric (47,23,11) design and G a Frobenius group of order
55, further denoted by Frob55. Since there is only one isomorphism class of
nonabelian groups of order 55 we may write

G = 〈ρ, σ | ρ11 = 1, σ5 = 1, ρσ = ρ3〉.

Lemma 2.1. Let D be a symmetric (47, 23, 11) design and let 〈ρ〉 be a
subgroup of AutD. If |〈ρ〉| = 11, then 〈ρ〉 fixes precisely three points and three
blocks of D.

Proof. By [8, Theorem 3.1], the group 〈ρ〉 fixes the same number of
points and blocks. Denote that number by f . Obviously, f ≡ 47 (mod 11),
i.e., f ≡ 3 (mod 11). Using the formula f ≤ k +

√
k − λ of [8, Corollary 3.7],

we get f ∈ {3, 14, 25}. For f = 14 or f = 25 one cannot solve the equations
(1.1) and (1.2) for block orbits of the length 11.
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For f = 3, solving equations (1.1) and (1.2) by the method described in [3],
one can get up to isomorphism and duality exactly two orbit structures:

OS1 1 1 1 11 11 11 11
1 1 0 0 11 11 0 0
1 0 1 0 11 0 11 0
1 0 0 1 11 0 0 11
11 1 1 1 5 5 5 5
11 1 0 0 5 5 6 6
11 0 1 0 5 6 5 6
11 0 0 1 5 6 6 5

OS2 1 1 1 11 11 11 11
1 1 0 0 11 11 0 0
1 0 1 0 11 0 11 0
1 0 0 1 11 0 0 11
11 1 1 0 5 5 5 6
11 1 0 1 5 5 6 5
11 0 1 1 5 6 5 5
11 0 0 0 5 6 6 6

Orbit structure OS1 is self-dual, and OS2 is not self-dual.

Let G be an automorphism group of a symmetric design D, acting with
orbit lengths distributions (ω1, . . . , ωt), (Ω1, . . . ,Ωt). Automorphism group
G is said to be semistandard if, after possibly renumbering orbits, we have
ωi = Ωi, for i = 1, . . . , t.

Lemma 2.2. Let G = 〈ρ, σ〉 be the Frobenius group of order 55 defined
above, D a symmetric (47, 23, 11) design, and G ≤ AutD. Then G acts semi-
standardly on D with orbit lengths distribution (1, 1, 1, 11, 11, 11, 11).

Proof. The Frobenius kernel 〈ρ〉 of order 11 acts on D with orbit lengths
distribution (1, 1, 1, 11, 11, 11, 11). Since 〈ρ〉/G, the element σ of order 5 maps
〈ρ〉-orbits onto 〈ρ〉-orbits. Therefore, the only possibility for orbit lengths
distribution is (1, 1, 1, 11, 11, 11, 11).

The stabilizer of each block from a block orbit of length 11 is conjugate
to 〈σ〉. Therefore, the entries in the orbit structures corresponding to point
and block orbits of length 11 must satisfy the condition γir ≡ 0, 1 (mod 5).
Both orbit structure OS1 and OS2 satisfy this condition.

3. Construction of the Symmetric Designs

Theorem 3.1. Up to isomorphism there are precisely fifty-four symmetric
designs with parameters (47, 23, 11) admitting a faithful action of a Frobenius
group of order 55. Six of these designs have Frob55 as a full automorphism
group, thirty-nine designs have Frob55×Z2 and six designs have Frob55×S3

as a full automorphism group. Full automorphism groups of three designs are
isomorphic to the group L2(11)× S3 of order 3960.

Proof. We denote the points by 10, 20, 30, 4i, 5i, 6i, 7i, i = 0, 1, . . . , 10
and put G = 〈ρ, σ〉, where the generators for G are permutations defined as
follows:

ρ = (10)(20)(30)(I0, . . . , I10), I = 4, 5, 6, 7,
σ = (10)(20)(30)(K0)(K1,K3,K9,K5,K4)(K2,K6,K7,K10,K8),

K = 4, 5, 6, 7.
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Indexing the fixed part of an orbit structure is a trivial task. Therefore, we
shall consider only the right-lower part of the orbit structures of order 4.
To eliminate isomorphic structures during the indexing process we have used
the permutation which - on each 〈ρ〉-orbit of length 11 of points - acts as
x 7→ 2x (mod 11), and - in addition - automorphisms of our orbit structures
OS1 and OS2.

As representatives for the block orbits of length 11 we chose blocks fixed
by 〈σ〉. Therefore, the index sets - numbered from 0 to 3 - which could occur
in the designs constructed from OS1 and OS2 are among the following:

0 = {1, 3, 4, 5, 9}, 1 = {2, 6, 7, 8, 10}, 2 = {0, 1, 3, 4, 5, 9}, 3 = {0, 2, 6, 7, 8, 10}.

The indexing process of the orbit structure OS1 led to the eighteen de-
signs, denoted by D1, . . . ,D18. Using a computer program by V. Krčadinac
(see [6] and [10]) we get that these designs are pairwise nonisomorphic. Pairs of
mutually dual designs are (D2,D9), (D4,D12), (D5,D14), (D6,D11), (D7,D17),
(D8,D18) and (D10,D13). The designs D1, D3, D15 and D16 are self-dual. Full
automorphism groups of designs D10 and D13 are isomorphic to Frob55, full
automorphism groups of D2, D3, D4, D5, D6, D7, D9, D11, D12, D14, D15, D16

and D17 are isomorphic to Frob55 × Z2, AutD8 and AutD18 are isomorphic
to Frob55 × S3, and AutD1 is isomorphic to the group L2(11) × S3 of order
3960.

Orbit structure OS2 led to the eighteen designs, denoted by D19, . . . ,D36.
Full automorphism groups of designs D20 and D30 are isomorphic to Frob55,
full automorphism groups of D19, D21, D24, D25, D26, D27, D28, D29, D31,
D32, D33, D34 and D35 are isomorphic to Frob55×Z2, AutD23 and AutD36 are
isomorphic to Frob55×S3, and AutD22 is isomorphic to the group L2(11)×S3.

Orbit structure OS2 is not self-dual. Therefore, dual structure of OS2
must produce also eighteen designs, which are dual to designs obtained from
OS2. Those designs are denoted by D37, . . . ,D54.

We present symmetric designs D1 and D22 by (4 × 4)-matrices of index
sets as follows:

D1 D22




0 0 0 0
0 0 3 3
0 3 0 3
0 3 3 0







0 0 0 3
0 0 3 0
0 3 0 0
0 3 3 3




From these matrices it is easy to obtain incidence matrices of designs.
A computer program by Vladimir D. Tonchev [12] computes the orders as
well as the generators of the full automorphism groups of these designs. The
structures of these automorphism groups are determined by using GAP [11].
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Remark 3.2. Application of the computer program by Tonchev [12]
yields the following assertion about the 2-ranks:

1. Designs with 2-rank equals 13 are D1, D2, D5, D8, D9, D14 and D18.
2. Designs with 2-rank equals 14 are D19, D22, D23, D26, D27, D33, D36,
D37, D40, D41, D44, D45, D51 and D54.

3. Designs with 2-rank equals 23 are D3, D4, D6, D7, D10, D11, D12, D13,
D15, D16, D17.

4. Designs with 2-rank equals 24 are D20, D21, D24, D25, D28, D29, D30,
D31, D32, D34, D35, D38, D39, D42, D43, D46, D47, D48, D49, D50, D52

and D53.

4. 2-(23,11,10) and 2-(24,12,11) Designs

Excluding the block x and all points that do not belong to that block
from a symmetric (47,23,11) design D, one can obtain its derived design Dx,
i.e. 2-(23,11,10) design. Also, excluding the block x and all points belonging
to that block from the design D, one can obtain its residual design Dx, i.e.
2-(24,12,11) design (see [8]).

Our aim is to investigate full automorphism groups of all pairwise noniso-
morphic derived and residual designs that can be obtained from symmetric de-
signs D1, . . . ,D54. Because of the following corollary, it is enough to consider
derived and residual designs with respect to the block orbits representatives
of full automorphism groups of constructed (47,23,11) designs.

Corollary 4.1. Let D = (P ,B, I) be a symmetric design, x, x′ ∈ B and

G ≤ AutD. If x′ ∈ xG, then Dx
∼= Dx′ and Dx ∼= Dx′

.

Proof. [1, Corollary 1].

We obtained 179 such pairwise nonisomorphic derived designs. Further
investigation of constructed 2-(23,11,10) designs led us to the results in Ta-
ble 1.

Among constructed 2-(23,11,10) designs there are three quasi-symmetric
designs: one with full automorphism group of order 660 isomorphic to the
group L2(11) and two with full automorphism group of order 55 isomorphic
to the group F55.

Investigating all residual designs with respect to the block orbits repre-
sentatives, we have constructed all pairwise nonisomorphic 2-(24,12,11) de-
signs that can be obtained from constructed symmetric (47,23,11) designs
D1, . . . ,D54. We obtained 191 such pairwise nonisomorphic designs. Fur-
ther investigation of constructed 2-(24,12,11) designs led us to the results in
Table 2.

Among constructed 2-(24,12,11) designs there are three quasi-symmetric
designs: one with full automorphism group of order 15840 isomorphic to the
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groupM11×Z2 and two with full automorphism group of order 110 isomorphic
to the group F55 × Z2.

Order of the full The full automorphismgroup Number of
automorphismgroup is isomorphic to the group designs

1320 L2(11)× Z2 1
720 A5 : D12 2
660 L2(11) 1
360 A5 × S3 1
240 A5 : E4 2
120 A5 × Z2 1
110 F55 × Z2 7
60 S3 ×D10 1
55 F55 13
40 Z2 × (Z5 : Z4) 2
30 S3 × Z5 4
20 D20 1
10 Z10 80
5 Z5 63

Table 1. The derived designs 2-(23,11,10).

Order of the full The full automorphismgroup Number of
automorphismgroup is isomorphic to the group designs

15840 M11 × Z2 1
1320 L2(11)× Z2 1
360 A5 × S3 3
120 A5 × Z2 3
110 F55 × Z2 8
60 S3 ×D10 2
55 F55 22
30 S3 × Z5 4
20 D20 4
10 Z10 80
5 Z5 63

Table 2. Residual designs 2-(24,12,11).
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5. 2-(24,12,11) Design Having M11 as an Automorphism Group

As an example of constructed 2-(24,12,11) designs we present, according
to our judgment, the most interesting design: a quasi-symmetric design D
having full automorphism group G isomorphic to the group M11×Z2. It can
be constructed from presented design D1 as residual design with respect to
any of three blocks fixed by Frob55. We also present generators of G.

Blocks of a quasi-symmetric design D are:

0 2 3 4 5 6 7 8 9 10 11 12
1 13 14 15 16 17 18 19 20 21 22 23
0 1 3 5 6 7 11 14 16 17 18 22
0 1 4 6 7 8 12 15 17 18 19 23
0 1 2 5 7 8 9 13 16 18 19 20
0 1 3 6 8 9 10 14 17 19 20 21
0 1 4 7 9 10 11 15 18 20 21 22
0 1 5 8 10 11 12 16 19 21 22 23
0 1 2 6 9 11 12 13 17 20 22 23
0 1 2 3 7 10 12 13 14 18 21 23
0 1 2 3 4 8 11 13 14 15 19 22
0 1 3 4 5 9 12 14 15 16 20 23
0 1 2 4 5 6 10 13 15 16 17 21
2 4 8 9 10 12 13 15 19 20 21 23
2 3 5 9 10 11 13 14 16 20 21 22
3 4 6 10 11 12 14 15 17 21 22 23
2 4 5 7 11 12 13 15 16 18 22 23
2 3 5 6 8 12 13 14 16 17 19 23
2 3 4 6 7 9 13 14 15 17 18 20
3 4 5 7 8 10 14 15 16 18 19 21
4 5 6 8 9 11 15 16 17 19 20 22
5 6 7 9 10 12 16 17 18 20 21 23
2 6 7 8 10 11 13 17 18 19 21 22

3 7 8 9 11 12 14 18 19 20 22 23
0 3 5 6 7 11 13 15 19 20 21 23
0 4 6 7 8 12 13 14 16 20 21 22
0 2 5 7 8 9 14 15 17 21 22 23
0 3 6 8 9 10 13 15 16 18 22 23
0 4 7 9 10 11 13 14 16 17 19 23
0 5 8 10 11 12 13 14 15 17 18 20
0 2 6 9 11 12 14 15 16 18 19 21
0 2 3 7 10 12 15 16 17 19 20 22
0 2 3 4 8 11 16 17 18 20 21 23
0 3 4 5 9 12 13 17 18 19 21 22
0 2 4 5 6 10 14 18 19 20 22 23
1 2 4 8 9 10 12 14 16 17 18 22
1 2 3 5 9 10 11 15 17 18 19 23
1 3 4 6 10 11 12 13 16 18 19 20
1 2 4 5 7 11 12 14 17 19 20 21
1 2 3 5 6 8 12 15 18 20 21 22
1 2 3 4 6 7 9 16 19 21 22 23
1 3 4 5 7 8 10 13 17 20 22 23
1 4 5 6 8 9 11 13 14 18 21 23
1 5 6 7 9 10 12 13 14 15 19 22
1 2 6 7 8 10 11 14 15 16 20 23
1 3 7 8 9 11 12 13 15 16 17 21

Generators of G are:
g1=(4,7)(6,9)(8,10)(11,12)(15,18)(17,20)(19,21)(22,23)
g2=(3,4)(5,12)(6,7)(8,11)(14,15)(16,23)(17,18)(19,22)
g3=(2,3)(6,9)(8,11)(10,12)(13,14)(17,20)(19,22)(21,23)
g4=(0,1)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)
g5=(0,2)(1,13)(5,6)(7,12)(8,11)(16,17)(18,23)(19,22)

The group G acts transitively on the set of points of the design D. Ex-
cluding generator g4 one can obtain generators of the group G′ ∼= M11. The
group G′, isomorphic to the Mathieu group M11, acts on the set of points of
D in two orbits of the length 12.
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