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Vol. 39(59)(2004), 245 – 255

CONSTRAINED ABSTRACT REPRESENTATION
PROBLEMS IN SEMIGROUPS AND PARTIAL GROUPOIDS

A. Mani

Calcutta Mathematical Society, India

Abstract. In this paper different constrained abstract representa-
tion theorems for partial groupoids and semigroups are proved. Methods
for improving the retract properties of the structures are also developed.
These have strong class-theoretical implications for many types of gener-

alized periodic semigroups and related partial semigroups. The results are
significant in a model-theoretical setting.

1. Introduction

In this paper different new methods for improving the retract properties
of semigroups and partial semigroups are developed. The results are of much
significance in model-theoretical settings too. Given an ideal or a generalised
ideal in a semigroup and two or more subsemigroups subject to certain restric-
tions, new semigroups are derived over the same base set via multiple derived
partial semigroups. The method is significant from the classification and em-
beddability viewpoints too. The connections between the retract properties
of the structures is then shown to be significant. The results are extended
to CSM-partial semigroups -these being defined by the constraints on their
process of generation [12].

Within the classes of semigroups/partial semigroups for which the method
is definable a classification theory appears possible. This directly relates to
the automorphism group of the structures. New class-closure operators are
introduced in the light of the above. From the model-theoretic viewpoint
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the theory is interpretable over different logics including FOPL, 3-valued in-
complete predicate logic and FOPL+(FOPL enhanced with weak equalities).
The binary partial/total operation · is interpretable as a ternary predicate R
with a weakened functionality (R(a, b, c), R(a, b, e) → c = e) in the 3-valued
logic. A reason for not using presentations is the relative breadth of possible
applications. But key issues in using presentations in the context for finitely
generated commutative monoids are considered.

The reader is expected to be familiar with generalized periodic semi-
groups, partial semigroups and retracts in semigroup theory or algebra. Some
references are [2, 10, 16, 8, 19, 15] and [9]. Some of the essential notions and
terminology are repeated for convenience.

A Partial Semigroup is a tuple of the form S = 〈S, ·, 2〉 satisfying

(xy)z
w∗
= x(yz),

the strong weak equality meaning ’if either side is defined then the other is
and the two are equal’. The usual omission of · will be followed. If S1, S2 are
two partial semigroups then a map φ : S1 −→ S2 is called a Morphism if

φ(xy)  φ(x)φ(y),

i.e. if the LHS is defined then so is the RHS and the two are equal. A Closed
Subsemigroup K is a tuple of a subset K of S together with the · symbol and
an interpretation of it on K, satisfying

∀x, y ∈ K(xy = z ∈ S −→ z ∈ K).

If K is a closed subsemigroup of a partial semigroup S s.t. there exists a
morphism φ : S −→ K, under

φ|K ≡ IK and φ2 = φ,

then it will be called a Closed Retract. If S is total then it is a retract. A
Strong Retract K of a semigroup S is a retract which satisfies,

∀x, y ∈ S xy = φ(x)φ(y),

φ being the associated retraction. S is then said to be a Strong Retract
Extension of K. It may be noted that the notion of f-Clone Extension in [19]
also reduces to this in case of semigroups.

A Tabular Partial Algebra will be a finite partial algebra with operations
of at most arity two with an explicit representation of the partial algebra as a
set of ordered elements. Equivalently it can be required that the interpretation
of the signature be decidable from the defining conditions. It is a constrained
version of categoricity.

An Abstract CSM-Type is a tabular partial algebra T = 〈T ,Σ, γ, 0, 1, U〉
with T being a set of deemed types except for 0,1,U being distinguished ele-
ments, Σ being some set of partial function symbols and γ an interpretation
of it on T subject to
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1. ∀fT ∈ ΣT ∀x (0 ∈ x −→ fT (x) = 0)
2. ∀fT ∈ ΣT ∀x (U ∈ x,¬(0 ∈ x) −→ fT (x) = U)
3. ∀fT ∈ ΣT ∀x (1 ∈ x −→ fT (x) ∈ {0, 1, U}).
A UCSM-Type is a CSM-type which is idempotent in all of its operations

except atmost for the unary ones.

2. Constrained Abstract Representation

The theorems in this section can also be seen from the viewpoint of ac-
tions as in the classification theory of groups. First it is proved that given a
semigroup which contains a pair of subsemigroups satisfying a coherence con-
dition and a retract ideal then there is a process of defining a new semigroup
with improved retract properties. This result is then extended in different
directions and to partial semigroups.

Theorem 2.1. Let S = 〈S, ·, τ1, τ2, τ3, 2, 1, 1, 1〉 be a model of a semigroup
endowed with three unary predicates subject to Σ0 ∪ Σ1 ∪ Σ2.

Σ0 : ∀x, y ∃a, bxy = a, yx = b

∀x, y, z(xy)z = x(yz);

Σ1 : (x)(y)(a)(b)(τ3y, xy = a, yx = b −→ τ3a, τ3b)

(x)(y)(z)(τ1x,¬τ1y, xy = z −→ ¬τ1z)
(x)(y)(z)(τ1x,¬τ2y, xy = z −→ ¬τ2z)
(x)(y)(z)(¬τ1x, τ2y, xy = z −→ ¬τ1z)
(x)(y)(z)(¬τ2x, τ2y, xy = z −→ ¬τ2z)]

Σ2 : [(x)(τ3x −→ ∃yφ(y) = x, τ3y)

(x)(τ3x −→ τ3φ(x))

φ ∈ Mor(S, τ3), then the models of the partial semigroups P1 = 〈S,�, τ1, τ2,
τ3, (2, 1, 1, 1)〉 defined via

(x)(y)(z)(τ1x ∨ τ2y, xy = z ↔ x� y = z),

and P2 = 〈S, ∗, τ1, τ2, τ3, (2, 1, 1, 1)〉 defined via

(x)(y)(z)(τ3x, τ3y, xy = z −→ x ∗ y = z)

and the functorial compatibility

(x)(y)(a)(b)(x � y = a, x ∗ y = b −→ a = b),

admit of embedding into a semigroup on the same base set S with three extra
predicates of the same form.

Proof. The proof consists in defining the required semigroup by an uni-
versalization of restricted quantification. The initial universal quantifiers are
omitted wherever they are clear.
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Let S∗ = 〈S,⊕, τ1, τ2, τ3, (2, 1, 1, 1)〉 be a semigroup under the functorial
correspondences

(τ1x ∨ τ2y, xy = z −→ x⊕ y = z)

and

(¬τ1x,¬τ2y, φ(x) � φ(y) = z −→ x⊕ y = z).

The consequences include

(φ(x) ⊕ φ(y) = a↔ φ(x) ⊕ y = a),

(τ1(x), τ1(y), τ1(z), x⊕ y = a, a⊕ z = b −→ y ⊕ z = c, x⊕ c = b)

and

(φ(x) ⊕ y = a↔ x⊕ φ(y) = a).

The coherence condition on S1, S2 also results in

(φ(x) ⊕ φ(y) = a, a⊕ φ(z) = b↔ φ(y)⊕ φ(z) = c, φ(x) ⊕ c = b.

(τ1(x), τ1(y), τ1(z), y ⊕ z = c, x⊕ c = b −→ x⊕ y = a, a⊕ z = b)

is a consequence of

(τ1(x), τ1(y), x⊕ y = z −→ τ1(z), x · y = z)

and the other sentences.

(τ1(x),¬τ1(y),¬τ2(z), x⊕ y = a, a⊕ z = b −→ y ⊕ z = c, x⊕ c = b)

and

(τ1(x),¬τ1(y),¬τ2(z), y ⊕ z = c, x⊕ c = b −→ x⊕ y = a, a⊕ z = b)

are a consequence of

(τ1(x),¬τ1(y), x⊕ y = a −→ ¬τ1(a))
and the other sentences. The restriction of the quantifications to ¬τ1(x),
τ1(y), ¬τ2(y) follows as a consequence of

(τ1(y),¬τ2(y), y ⊕ a = b −→ ¬τ2b).
The other restrictions corresponding to

[τ1(x),¬τ1(y), τ2(z)], [¬τ1(x), τ2(y),¬τ2(z)], [¬τ1(x),¬τ1(y),¬τ2(z)],
[τ1(x),¬τ1(y),¬τ2(z)], [¬τ1(x), τ2(y), τ2(z)], [¬τ1(x),¬τ1(y),¬τ2(y),¬τ2(z)]

and [¬τ1(x),¬τ1(y),¬τ2(y), τ2(z)]
allow the universal.

Remark 2.2. In the above theorem three unary predicates respectively
correspond to two subsemigroups satisfying a strong condition and the third
to an ideal admitting a retraction from the semigroup.
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Remark 2.3. If a subsemigroup is involved in two instances of the em-
bedding with the ideal remaining fixed, then it is not necessary that the other
two subsemigroups allow a similar embedding.

Theorem 2.4. In the context of the above theorem if H is a retract ideal
of the semigroup S which is also a subsemigroup of {x : x ∈ S, τ3(x)} then
the unary predicate can be replaced with τ0 defined via

τ0(x)↔ τ3(x) ∧ x ∈ H.

Theorem 2.5. In the context of the first theorem, if Σ1 is replaced by Σ!

then also the result holds.

Σ! : [(τ1(x),¬τ1(y), τ2(z), xy = a, az = b −→ ¬τ1(b))
(τ1(x),¬τ2(y), τ2(z), xy = a, az = b −→ ¬τ2(b))

(τ1(x), τ2(y) −→ xy = yx)

(τ3(y), xy = a, yx = b −→ τ3(a), τ3(b))

∀x ∃y, a, b(
∨

α

∧

i∈α

τi(y), xy = a, yx = b)].

Proof. The proof is similar to that of Thm 2.1.

Theorem 2.6. In the context of the first theorem if Σ1 is replaced by Σ4

then also the result holds provided † holds.

Σ4 : [(¬τ1(x),¬τ2(x), τ1(y), xy = z −→ ¬τ1(z))
(τ2(x),¬τ1(y),¬τ2(y), xy = z −→ ¬τ2(z))
(¬τ1(x),¬τ2(x), τ2(y), xy = z −→ ¬τ2(z))
∀x ∃y, a, b(

∨

α

∧

i∈α

τi(y), xy = a, yx = b)]

† ≡ {x : τi(x) ∩ τj(x)} |= Σ0 i, j = 1, 2, 3.

Proof. Clearly if i 6= j, i, j = 1, 2, 3, then

(τi(x), τi(y), τj(y), xy = a, yx = b −→ τi(a), τi(b), τj(a), τj(b)).

The functorial definitions

(τ1(x) ∨ τ2(y), xy = z −→ x⊕ y = z)

and

(¬τ1(x),¬τ2(y), φ(x)φ(y) = z −→ x⊕ y = z)

suffice for the model definition.

The following are some of the types of semigroups in which the results are of
direct interest. The results have strong implications in semigroups where the
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predicates are representable [11]. They also ’improve’ presentations and nor-
mal identities in particular, but identifying semigroups from such perspectives
is less convenient.

1. Weakly Periodic Semigroups for which there exist a generating set
partible into a set of finite semigroup generators.

2. Periodic Semigroups, i.e.semigroups in which ∀x〈x〉 is finite holds.
3. Cyclic Group-Bound Semigroups, i.e. semigroups in which ∀x ∃n ∈
N xn ∈ G-a cyclic subgroup of S is true.

4. Weakly Periodic Semigroups satisfying

∀x, a ∃!y∀k ∈ N ∃zka
nx = any, y = akzk

and

∀a, x ∃!y ∃z1, z2, . . . , zr, . . .a
nx = any ∧ y = az1 = a2z2 = . . . .

In such semigroups {x : ∀k ∈ N ∃xkx = akzk} is an r-ideal. The
context of the first theorem is attainable with commutativity or with
weakened forms thereof.

5. Commutative and submedial semigroups with Tol(S) atomic, Tol(S)
being the set of compatible tolerances on S.

6. Quasiregular Semigroups endowed with l/r- or 2-sided bases [6]. S1 ⊂
S is an l-base if S1 ∪ S1S = S and S1 is minimal among such sets.
Similarly S1 ∪ SS1 ∪ S1S ∪ SS1S = S correspond to r- and two-sided
bases. If S admits of an r-base, then S contains maximal left ideals. If
the intersection of all nontrivial maximal left ideals is empty or a left
covered ideal, then S contains at least one r-base.

7. Semigroups with compatible natural partial order [17] with maximal
left ideals and

∀x, e(e2 = e −→ (ex)n = (ex)n+l); l ∈ N

2.1. Presentations. Many of the structures in which the theorems are rele-
vant are f.g. commutative monoids. These have nice representation theories
associated [20] and all principal ideals are determinable upto isomorphism by
specifying a tuple of integers and a finite subset of N p × Np. More specif-
ically, let S = 〈S,+〉 be a commutative monoid with a finite generating set
{s1, s2 . . . , sp}, then there exists a morphism ϕ : Np 7−→ S defined via

ϕ(x1, x2, . . . , xp) = x1s1 + . . .+ xpsp,

Np being the monoid over the p-th power of the set of natural numbers. If
ρϕ is the kernel congruence then

S ∼= Np | ρϕ.

For a pair (m, γ) with m ∈ Np and

γ ∈ Np ×Np, γ = {(a1, b1), . . . , (at, bt)},
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let I = m+Np and

Γ = {(a1 +m, b1 +m), . . . , (at +m, bt +m)} ⊂ I × I.

If σI = σ ∩ (I × I), where σ is the least congruence containing Γ then I | σI

is a principal ideal of Np | σ.

Theorem 2.7. If S is a completely regular semigroup with all its ideals
being prime, and x : τ2(x) is a SA-ideal too, then the context of the first the-
orem is generable, other aspects remaining the same.

In the following section the extension and modifications of these to partial
semigroups and groupoids is considered. The global significance is considered
in the last section.

3. Partial Semigroups with CSM-Types

The results of the previous section are extended to partial semigroups with
CSM-types, though in not necessarily ’proper’ directions. Partial algebras
with CSM-types have been recently introduced in [13] by the present author.
These are basically partial algebras which admit explicit representation to a
level of their process of generation.

Definition 3.1. A Partial Groupoid with CSM-Type S will be a partial
groupoid with a generating set K and a surjective morphism σ : S 7−→ C with
C being a CSM-type of the same type and s.t. Im(σ|K) = C.

Definition 3.2. In the above definition if the CSM-type is replaced by a
UCSM-type then S will be said to be with a UCSM-Type.

Note that related notions have been considered in semigroups, as in [1],
[18] for example. In the following theorem, Thm 2.1 is extended in a modified
way to a partial semigroup with UCSM-type endowed with a weak retract
ideal and two closed subalgebras satisfying a coherence condition. The the-
orem allows a method of improving the retract properties of given partial
semigroups and also constructing embeddable semigroups under suitable re-
strictions. Importantly the use of UCSM-types allows the required flexibility
in contexts involving search for models.

Theorem 3.3. In a partial groupoid S with UCSM-type (K,σ) (K being
weak equationally axiomatizable), endowed with three extra unary predicates
of the form 〈S, ·, τ1, τ2, τ3〉 and satisfying Γ0 ∪Γ1 ∪Γ2, let τi satisfy Γ0 and τ3
satisfy Γ with φ : S 7−→ τ1 being a closed retraction. Then there exist partial
groupoid P1, P2 on the same base set for which an embedding analogous to
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that in Thm 2.1 is possible.

Γ0 : {x(yz) w
= (xy)z}

Γ1 : {(x)(y)(a)(b)(τ3y, xy = a, yx = b −→ τ3a, τ3b)

(x)(y)(z)(τ1x,¬τ1y, xy = z −→ ¬τ1z)
(x)(y)(z)(τ1x,¬τ2y, xy = z −→ ¬τ2z)
(x)(y)(z)(¬τ1x, τ2y, xy = z −→ ¬τ1z)

(x)(y)(z)(¬τ2x, τ2y, xy = z −→ ¬τ2z)}
Γ : {(x)(τ3x −→ ∃yφ(y) = x, τ3y)

(x)(τ3x −→ τ3φ(x))}.
Proof. The retraction classifies the defined instances of the partial op-

eration, and the resulting conditional implications allow the result.

Remark 3.4. Results in the same spirit but under quite different condi-
tions are proved in [14] by the present author. The related class operators are
also investigated in it.

Remark 3.5. Interestingly if the UCSM-type is assumed to satisfy
stronger conditions like being ’axiomatizable by a set of strongly regular equa-
tions’ ([23]), then the conditions in Γ1 can be weakened. This is considered
in [13].

4. Universal Aspects

An important aspect which arises from the first theorem in particular is
the necessity of developing ’measures of existence of retracts’ within classes of
partial/total algebras. Categorical properties relating to retracts do not help
in substantially comparing the distribution of retracts in two different struc-
tures with/without additional conditions. One natural way is via the proper-
ties of the associated endomorphism monoids. This is however not sufficiently
developed for the purpose. In [19], [15] stronger forms of retract extensions
are considered in varieties, but the issue in question is not addressed.

Definition 4.1. By the expression Υ(S, T1, T2, T3, φ) or Ω(S, τ1, τ2, τ3, φ)
will be meant a tuple for which the context of Thm 2.1 is valid, with Ti respec-
tively corresponding to τi for all ’i’. Υ(S) will denote the set of all semigroups
obtainable from S by the construction while Π(S) will denote the particular
semigroup.

Theorem 4.2. If H is a retract ideal of S and Υ(S, T1, T2, T3, φ) then
there exists a T0 = {x : x ∈ H, τ3(x)} such that Υ(S, T1, T2, T0, φ

0) for some
φ0.

Remark 4.3. Clearly this a restatement of Thm 2.2.
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Definition 4.4. θ will be a binary relation defined via SθS∗ if and only
if [S∗ is obtainable by a Υ(S, T1, T2, T3, φ) as a Π(S)].

Theorem 4.5. θ is a reflexive, antisymmetric and nontransitive relation
in general over any subclass of semigroups.

Proof. The verification is direct.

Theorem 4.6. S is not necessarily a retract extension of every element
of Υ(S), but every retract of S is a retract of every other element of Υ(S) by
using the induced reinterpretation.

Note that in the context of Thm 2.1, T3 is a retract of both S and the
derived semigroup, but the range of values of the latter are more within it
than in case of S. This can be because T3 is a better retract of the latter than
of the former in a structure theoretic sense too. Measuring this is apparently
a qualitative aspect to supplement classification. But strong connections with
different types of relations are clear in particular algebras, while a lot more is
known in case of varieties.

Theorem 4.7. In the context of Thm 2.1 in particular if H ∈ Υ(S),
then Aut(H) is a subgroup of Aut(S), Aut(∗) being the automorphism group
associated with the semigroup.

Proof. If η ∈ Aut(H) then it is also an automorphism on reinterpre-
tation over the semigroup S. Let ι denote the operation of reinterpretation
(strictly speaking a functor) of the automorphisms, then

∀η1, η2 ∈ Aut(H) ι(η1 ◦ η2) = ι(η1) ◦ ι(η2).
Further the restriction of the composition from Aut(S) to Aut(H) results in
the composition of Aut(H). So the result follows.

Definition 4.8. If X ⊆ S then ρX will be a relation on S defined via

(x, y) ∈ ρX ←→ ∀a, b ∈ S axb ∈ X if and only if ayb ∈ S.
It is also called the principal congruence generated by X. If ϕ : S 7−→ S is a
morphism then ρϕ will denote ρIm(ϕ).

Theorem 4.9. The least congruence ρ∗ containing ρS
ϕ\ρS∗

ϕ over the semi-
group S is well defined.

Proof. The proof follows from basic properties.

Construction: Let S, S∗ be two semigroups on identical base sets as in the
context of Thm 2.1 (with S∗ being the derived semigroup), then letMor(S, S |
ρ∗) and Mor(S∗, S | ρ∗) be the set of all morphisms into S | ρ∗. Mor(S∗, S |
ρ∗) is a subgroup of Mor(S, S | ρ∗). Denoting these respectively by B(S) and
A(S), we will call Mor(A(S), B(S)) the Characteristic Group of the original
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construction. This is useful in comparing semigroups within equational classes
at least.

Definition 4.10. If S is a collection of semigroups then iS will be the
smallest collection of semigroups containing all the semigroups obtainable as
elements of Υ(S) for S ∈ S.

Definition 4.11. <,<s,Ξ,Ξs will denote the class-closure operators cor-
responding to closure under retracts, strong retracts, retract extensions and
strong retract extensions, respectively.

Theorem 4.12. For any collection S of semigroups the following holds.

1. iS(S) ⊂ Si(S)
2. i(S) ⊂ ΞS(S)
3. i(S) ⊂ ΞH(S).

Proof. The proof is easy.

Theorem 4.13. For any collection of semigroups S, the following holds.

1. S ⊂ i(S)
2. HSP (S) = HSPi(S)
3. <i(S) ⊂ i<(S)
4. <si(S) ⊂ i<s(S)
5. <i(S) ⊂ Ξ<(S)

Proof. The first statement follows because of Thm 2.1, we can take the
semigroup, the two subsemigroups and the retract ideal to be S.

Note that if S (in the context of Thm 2.1) is equational then the resulting
semigroup is also equational. This ensures the second statement.

Theorem 4.14. For any collection of semigroups S, the following holds.

1. iΞs(S) ⊂ Ξ<(S)
2. Ξsi(S) ⊂ Ξ<(S)
3. i(S) ⊂ ii(S)

Proof. The proof is left to the reader.

The above motivates the generalization of the constrained abstract rep-
resentation or transformation context in particular. This and related aspects
are also considered in [13].
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Czech. J. Math.51(126) (2001), 205–212.
[16] I.J. Melnik, Nilpotent shifts of varieties, Mat. Zametki 14 (1973), 703–712.
[17] H. Mitsch, Semigroups and their natural order, Math. Slovaca 44 (1994), 445–462.
[18] M. Petrich, Homomorphisms of a semigroup onto normal bands,

Acta. Sci. Math. Szeged 27 (1966), 185–196.
[19] J. Plonka, Clone compatible identities and clone extensions of algebras, Math. Slo-

vaca 47 (1997), 231–249.

[20] J.C. Rosales and J.I. Garcia-Garcia Principal ideals of finitely generated commutative

monoids, Czech. J. Math. 52(127) (2002), 75–85.
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