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SUMMARY

Machine learning (ML) has experienced rapid development in recent
years and been widely applied to assist studies in various research
areas. Two-dimensional (2D) materials, due to their unique chemical
and physical properties, have been receiving increasing attention
since the isolation of graphene. The combination of ML and 2D ma-
terials science has significantly accelerated the development of new
functional 2D materials, and a timely review may inspire further
ML-assisted 2D materials development. In this review, we provide
a horizontal and vertical summary of the recent advances at the
intersection of the fields of ML and 2D materials, discussing ML-as-
sisted 2D materials preparation (design, discovery, and synthesis of
2D materials), atomistic structure analysis (structure identification
and formation mechanism), and properties prediction (electronic
properties, thermodynamic properties, mechanical properties, and
other properties) and revealing their connections. Finally, we high-
light current research challenges and provide insight into future
research opportunities.

INTRODUCTION

Machine learning (ML) has been developing for decades. The fast development of

new ML algorithms theories algorithms, data sources, and low-cost computation

have accelerated the application of ML in various research areas.1 Materials science,

as a key subject that influences our lives, has also been influenced by development in

ML.2 The science of materials has experienced different stages, from the empirical

paradigm, the model-based theoretical paradigm, to the computational third para-

digm involving simulations. The data-driven fourth paradigm has brought new tech-

niques and approaches capable of overcoming the limitations of its traditional pre-

decessors.3 Wider appreciation accompanied the announcement of the of materials

genome initiative (MGI) in 2011,4 a project aiming to integrate and share the data of

materials for future manufacturing, supported by the rapid development of algo-

rithms and the advancement of computational capability in the community.

Although the quality of data still needs to be improved,5 the integration of ML algo-

rithms and big data have assisted scientists in revealing the hidden relationships

among formation mechanisms, atomistic structures, and properties of materials.3

In particular, two-dimensional (2D) materials, with unique physical and chemical

properties, are widely studied for various reasons, each seeking a better understand-

ing of a functional relationship.6–8 The emerging superconductivity of 2D magic-

angle superlattices9 boosted the exploration of 2D materials and is an example of

the relationship between a structural feature that can be controlled (the angle)
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and a property that is highly desirable (the conductivity). However, the exploration of

2D materials is currently limited by the need for numerous tedious experiments, and

researchers are looking to ML as a new strategy to accelerate their development.

ML contributes in many ways to materials exploration, from data collection (mining

data from current references)10 and data analytics (optimizing data for efficient

analysis)11,12 to analyzing results.13 Several reviews have summarized the applica-

tions of ML in materials science, including the general progress of ML as applied

to existing molecular and materials systems,2 the design and discovery of new

materials,13,14 the development of new interatomic potentials,15 and the use of

these potentials in large-scale atomic simulations.16 Recently Momeni et al.17 sum-

marized the calculation methods at various scales including atomistic scale, meso-

scale, and macroscale, for the understanding and growth of 2D materials. This

encompassed a detailed discussion of a variety of computational methods including

density functional theory (DFT) and molecular dynamics (MD), mentioning the

application of ML as one of the computational methods for 2D materials without

elaboration. A more focused review of the applications of ML in 2D materials is

therefore timely.

This review summarizes the recent advances of the applications of ML in 2D mate-

rials, including materials preparation, structure analysis, and property prediction.

The review will begin with ML-guided 2D materials preparation, which includes

the design and discovery of new 2D materials and ML-assisted 2D materials synthe-

sis. ML-guided structure analysis will then be discussed based on structure identifi-

cation and formation mechanisms. Subsequently, the advances of ML-assisted

properties prediction and optimization will be summarized. Finally, a perspective

on the current challenges and opportunities of this research area will be discussed.
ML-GUIDED MATERIALS PREPARATION

Asmentioned above,ML can be a powerful and efficient tool to automatically extract

information and knowledge from data and conduct complex and implicit tasks

through the use of algorithms and sufficient computational power. ML has trans-

formed research in some scientific areas such as biology, physics, medicine, and

chemistry. In material science, a considerable amount of experimental and compu-

tational data has been generated, motivating researchers to explore data-driven sci-

ence to capitalize on this investment. Since the single-layer graphene was first

discovered by Novoselov, Geim, and their co-workers18 in 2004, 2D materials

have attracted tremendous interest from chemists, engineers, and material scien-

tists, inspired by the potential applications in many fields ranging from semiconduct-

ing,19 energy storage, sensing,20 flexible electronics,21 and catalysis.22,23 Since

there is a practical limitation to the fraction of all the possible 2D materials that a

researcher can synthesize, the combination of the experimental and computational

approaches, underpinned by the data handling ability of ML, could guide the design

and preparation of 2D materials. This must be preceded by suitable knowledge

extraction to identify meaningful patterns and relationships between chemical, me-

chanical, or topological features and functional properties as the target of materials

design and discovery.
Design and discovery of new 2D materials with ML

2D materials have fascinating and unique chemical, physical, and electronic proper-

ties that are specific to their unique physicochemical structure and are promising to

be applied in several different areas (as mentioned above). 2D materials include
2 Cell Reports Physical Science 2, 100482, July 21, 2021
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graphene (including graphene oxides),24,25 black phosphorus (BP),26,27 hexagonal

boron nitride (h-BN),28 transition metal dichalcogenides (TMDs),20,29 MXenes,30

MBenes,31 and silicene.32 The time and cost involved in traditional trial-and-error

methods are obstacles for large-scale design and discovery in each case, and are

vulnerable to human biases that negatively impact ML models. Therefore, the ML-

based data-driven workflow is promising to significantly promote efficiency and

reduce the cost of design and discovery of 2D material. Reliable and sufficient

data are the foundation of an ML process and 2D material databases. For example,

the computational 2D materials database (C2DB)33 and the joint automated repos-

itory for various integrated simulations using density functional theory (JARVIS-

DFT),34 which consists of �103 2D materials, have been constructed and are openly

available, to facilitate more open research and collaboration. With the ability of ML

to execute tasks and extract knowledge from available 2D material datasets such as

these, it is anticipated that the design and discovery of 2D materials could be ratio-

nally guided by the revealed complex correlations and implicit data patterns. Under

this subtitle, we focus on the process and application of ML in materials design and

discovery, while particularly focusing on 2D materials, as summarized in Table 1.

Key elements to train ML for 2D materials design and discovery

Successful training of ML models is the most important part of ML-assisted design

and discovery of 2D materials. Generally, the two most common types of problems

addressed by ML in this domain are property prediction and pattern recognition. A

simplified presentation of ML-participated case in material science is exhibited in

Figure 1. As shown in Figure 1, given a target label, basic ML model training requires

four key elements: the labeled data instances, the descriptor(s) of features, and the

selection of algorithms and their hyper-parameters. The schematic to prepare and

train an ML model in material science could be expressed as:53,54

Data
�
Target + Descriptors

�
+ Algorithms+Hyperparameters = ML Model

where the target presents the labels that can be material properties or classes. La-

bels should be SMART (specific, measurable, attainable, relevant, and timely) tar-

gets.53 Generally, a SMART target requires a comprehensive understanding of the

phenomena and problems, which can guide the selection and transformation of

data. For example, to study the stability of 2D materials, Siriwardane et al.41

employed regression ML models where the formation energies were set as labels.

The way a target is defined will determine the collection of data, the generation of

descriptors, and the selection of ML algorithms, leading to different types of results.

ML is not a panacea, capable of solving all problems without expertise, and the form

of input features and labels has an important influence on the outcome, as does the

quality and quantity of data itself. Data must be cleaned and processed to be ML-

ready.5 The data collection could be automated by high-throughput computation

or experiments, or fully autonomous, and can be in the form of tabular numerical

data, images, signals, or text. Hundi and Shahsavari39 used material microstructure

presented as tabular numerical data to train deep-learning models (including convo-

lutional neural networks [CNNs] and multilayer perceptrons [MLPs]) to accurately

predict residual strengths of hexagonal boron nitride and graphene under different

damage conditions of radiation and temperature. Lee et al.37 trained a deep-

learning model with the electron microscopy images of aberration-corrected scan-

ning transmission to locate and classify point defects in a monolayer 2D TMD,

WSe2�2xTe2x. Regardless of the source and form of data, the quantity of the data

should be sufficiently large to cover the structure-property (or feature-label) space

to be studied. The size of the dataset could influence the selection of ML models.
Cell Reports Physical Science 2, 100482, July 21, 2021 3



Table 1. The applications of data-intensive scientific revolution in 2D material discovery with machine learning

Target Materials Data source Highly related descriptors
Predicted properties/
Model outputs Algorithms Achievements Ref.

Materials discovery: h-BN, AlN, GeS,
MgI2

Computational 2D
Materials Database
(C2DB)

p valence electron number formation energy deep neural network
(DNN)

screened out 100
engineered point
defects 2D material
from 10,000 defect
structures

35

Point defects in 2D
materials

defect species
chemical potential

band gap transfer learning (TL)

Materials Project (MP) electronegativity Fermi energy MEGNet (Graph Network)

homo energy random forest (RF)

atomic weight

valence electron number

Van der Waals radius

Properties prediction:
Energy gap

graphene
nanoflakes

self-generated topological autocorrelation
scores

energy gap multiple linear regression
(MLR) and binary decision
tree (DT)

mapping energy
gap and topological
autocorrelation
vectors for 622
graphene nanoflakes

36

support vector machines
(SVM)

artificial neural networks
(ANN)

genetic algorithm (GA)

Properties prediction:
Strain fields

WSe2–2xTe2x
lattice

aberration-corrected
Thermo Fisher Themis
Z STEM, operated at
80 kV with probe
current around 30 Pa

aberration-corrected
STEM images

identification and
classification of point
defects in aberration-
corrected annular dark-
field (ADF) STEM images

fully convolutional networks
(FCNs) with ResUNet
architecture

generated high
signal-to-noise class
averages to measure
2D atomic spacings
with up to 0.2 pm
precision

37

Material discovery:
Two-dimensional
photovoltaic (2DPV)
materials

Sb2Se2Te,
Sb2Te3,
and Bi2Se3

inorganic crystal
structure
database (ICSD)

packing factor (PF) classification of PV/
non-PV materials

gradient boosting classifier
(GBC)

26 2DPV candidates
are successfully
ruled out from
187,093 candidates

38

Mulliken electronegativity support vector machine
(SVM)

Pauling electronegativity random forest classifier
(RFC)

cathode framework
coordination

Ada boosting (Ada)

lattice parameter stochastic gradient
descent classifier (SGDC)

average number of valence
electrons per atom count

decision tree classifier (DTC)

number of elements logistic regression (LR)

sublattice neighbor count

bond ionicity of sublattice

average atomic volume

anion framework coordination

(Continued on next page)
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Table 1. Continued

Target Materials Data source Highly related descriptors
Predicted properties/
Model outputs Algorithms Achievements Ref.

Properties prediction: h-BN, graphite self-generated voxelization residual strength of the
processing condition

convolutional neural
networks (CNNs)

trained two low
computational
cost models to
predicted the
structure and
properties relations

39

Residual strengths of
various levels of
radiation and
temperature from the
final atomic positions

hole score statistics multilayer perceptrons
(MLPs)

atomic displacement statistic transfer learning (TL)

Properties prediction: MoS2, WS2,
MoSSe, WSSe,
WsTe, GeTe, PbTe,
Phosphorene, and
PtSe2

C2DB prototype classification of low,
medium, or high
thermostability

combination of stochastic
gradient boosting (GB)

10 potential
candidates were
found of which two
are yet unreported for
photoelectrocatalytic
(PEC) water splitting

40

Thermodynamic
stability

statistical functions convex hall energy decision tree classifier
(DTC)

SISSO generated features formation energy sure independence
screening and sparsifying
operator (SISSO)

Properties prediction: hexagonal MAB
phases

MP atomic volume formation energy support vector machine
(SVM)

machine learning
models are trained
to predict the
formation energies
of the MAB phases
to research their
stability

41

Formation energy number of P valence
electrons

deep neural network
(DNN)

ionization energies random forest regressor
(RFR)

metallicity

boiling temperature

density

geat molar capacity

Properties prediction: MoS2�X Ox bilayer self-generated average of the tangent
of the Mo�S/O bond angle

formation energy random forest (RF) discovery of two
features that mainly
characterize the SMT
(concentration gradient
of the chalcogen atom
across the vdW gap
and strain within the
interface)

42

Semiconductor-metal
transition

features based on the
difference of oxygen
fraction between two layers

Van der Waals (vdW) gap

(Continued on next page) ll
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Table 1. Continued

Target Materials Data source Highly related descriptors
Predicted properties/
Model outputs Algorithms Achievements Ref.

Properties prediction: MXene self-generated formation energy score of synthesizability transductive bagging
SVM

PU ML was adapted
and applied to predict
2D materials synthesis

43

Synthesizability of
metal carbides and
nitrides (MXenes)
and their precursors

MAX phases C2DB cohesive energy k-Means

atom Bader charge Decision tree (DT)

mass per atom robust ensemble SVM
(RESVM)

Properties prediction: monolayer Tungsten
diselenide (1L-WSe2)

self-generated position-dependent
information extracted from
its photoluminescence
(PL) spectra at room
temperature

low-temperature exciton
valley polarization
landscape

random forest (RF) demonstration of
representative
empirical prediction
of the low-temperature
exciton valley
polarization landscape
of 1L-WSe2

44

Exciton valley polarization
landscape of 2D
semiconductors

Properties prediction:
Fracture strain, fracture
strength, and Young’s
modulus

tungsten disulfide
(WS2)

self-generated WS2 type fracture strain,
fracture strength,
and Young’s modulus

random forest (RF) mechanical properties
prediction of tungsten
disulfide by application
of random forest

45

chirality

temperature

strain rate

defect ratio

Material discovery:
Hierarchically structured
allotropes of phosphorus

hierarchically
structured allotropes
of phosphorus

self-generated smooth overlap of
atomic positions (SOAP)

crystal structure Gaussian approximation
potential (GAP) driven
random structure
searching (GAP-RSS)

identification of a
family of hierarchically
structured allotropes
based on a P8 cage as
principal building unit

46

Property prediction:
Critical superconducting
temperature

25 unknown predicted
superconductors were:
12 Cuprates, 7 iron-
based crystals, and
6 others, with Tc
ranging from �32 K
to �138 K

inorganic crystal
structure database
(ICSD)

atomic mass critical superconducting
temperature

random forest regression
(RFR),

accuracy of critical
superconducting
temperature achieves
over 92% confidence

47

average number of electrons support vector regression
(SVR),

average atomic magnetic
moment

neural network regression

atomic electronegativity

Material discovery:
Li-rich layered oxide
cathode materials

Li-rich layered oxides
compounds

self-generated compositional initial discharge capacity support vector regression
(SVR)

parameters for
property enhancement
and responsibility for
initial discharge and
Coulombic efficiency
were proposed

48

eisorder for site Coulombic efficiency

synthesis data capacity fade

ionic radii

electronegativity

work function

electron affinity

(Continued on next page)
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Table 1. Continued

Target Materials Data source Highly related descriptors
Predicted properties/
Model outputs Algorithms Achievements Ref.

Property prediction:
Electron affinity, energy
of the Fermi level,
electronic band gap,
ionization potential

graphene nanoflakes self-generated number of hydrogen atoms electron affinity linear multiple regression
(MLR)

electronic properties
were predicted by
using geometrical
features with assistance
of machine learning

49

fraction of Zig-Zag edges
(0 < FZZ < 1, where all
other edges are armchair)

energy of the Fermi
level

decision tree (DT)

surface area of graphene electronic band gap k-nearest neighbor (kNN)

ratio between the two
main structural axis

ionization potential artificial neural
networks (ANN)

average carbon atom
coordination number

support vector
machines (SVM)

average C-C bond length

average C-C-C bond angle

average C-H bond length

average C-C-H bond angle

Material discovery:
Porous graphene
with low thermal

porous graphene Molecular Dynamics
(MD)

Hole density thermal conductivity convolutional neural
networks (CNN)

thermal conductivity
were found efficiently
and can inverse design
optimal material by
the revealed relation

50

Conductivity 2D distribution of holes

Property prediction:
Twist angle

twisted bilayer
graphene (TBLG)

self-generated Raman spectra twist angle kernel ridge regression
(KRR)

model of the one-to-
one correspondence
between given Raman
spectrum and twist
angle of TBLG is
established

12

random forest regressor
(RFR)

artificial neural
networks (ANN)

principal-component
analysis (PCA)

Property prediction:
Band gap

functionalized
MXene

self-generated volume per atom band gap kernel ridge regression
(KRR)

trained ML model
could bypass the
band gap
underestimation and
avoid time-costly
GW method

51

standard deviations
of the group number in
periodic table

support vector
regression (SVR)

standard deviation of
melting point

Gaussian process
regression (GPR)

mean boiling point bootstrap aggregating
regression

least absolute shrinkage
and selection operator
(LASSO)

Material discovery:
Efficient solar cell
materials

CdTe, GaAs,
CuInSe2, CuGaSe2,
ZnSnP2, CdSnP2,
CH3NH3PbI3, etc.

JARVIS-DFT classic force-field
inspired descriptors (CFID)

spectroscopic limited
maximum efficiency
(SLME)

gradient boosting
decision tree (GBDT)

general framework
for the design of
optimal solar cell
materials with high
efficiency was
provided

52

decision tree (DT)

random forest (RF)

k-nearest neighbor (kNN)

multilayer perceptron
(MLP)
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Figure 1. A general process to employ ML in materials science

A typical ML process includes data processing, feature engineering, ML models fitting, evaluation of model performance, comparison of performance

across models, and visualization of results.55 Copyright 2020, ACS Publications.
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For instance, neural networks typically require larger dataset than classic statistical

ML models to be feasible and useful.55 There are techniques such as transfer

learning and data augmentation that could be applied if the dataset size is small.

For example, Frey et al.35 used transfer learning to train a deep neural network to

predict vital properties of promising defect/host systems in 2Dmaterials. Compared

with alternative studies, only 10% of the data typically required, around �103 2D

structures, was needed to train the model. In terms of data quality, data biases

and the type of distribution are critical issues that need to be addressed. Bias could

come from experiments and computation errors56 or from poor choices made by re-

searchers.57 An imbalanced dataset would lead to poor performance of ML models.

To improve data quality, processing can be undertaken to reduce imbalance,

change or normalize the distribution, and deal with systematic bias, but little can

be done to expand the feature space once data collection and feature extraction

has concluded.

The process of information gathering is called feature extraction, and the relevant

characterization information is known as the feature set. Descriptors, which are often

confused with features, are actually vectors of features with a common source. There

may be dozens or even hundreds of features in a single descriptor, and multiple de-

scriptors required to comprehensively represent a material. Features can either be

measured characteristics of the molecules or materials (either numerical, images

or spectra) or theoretical values calculated using formulas or algorithms.58 There

are some universal prerequisites for an ideal feature or descriptor suitable for ML.

For example, descriptors should be unique and complete (in terms of features) to

avoid evaluation bias. Descriptors should be capable of discrimination.53 Features

within descriptors should be differentiable and invariant to transformations. Once

the features and descriptors are characterized or computed, sparsity and missing

data (resulting in NaNs) must be corrected using feature selection or imputation.

Care must be taken to ensure the number of features does not exceed the number

of training instances. The feature space can be reduced using feature selection,
8 Cell Reports Physical Science 2, 100482, July 21, 2021
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feature engineering, and dimension reduction methods if the set suffers from the

curse of dimensionality.

Another critical fundamental stage of ML workflow is the algorithm selection, which

is informed by the properties of the dataset (size, dimensionality, sparsity, imbal-

ance) and the type of label (continuous or discrete). There is no one superior ML al-

gorithm that is suitable for all problems, and every algorithm has its own advantages

and disadvantages. Generally, there are three main categories of ML algorithms: su-

pervised learning, unsupervised learning, and reinforcement learning. The most

widely applied ML algorithm category in 2D material informatics is supervised

learning, which uses labeled data to establish a mapping between chemical space

and functional space. Supervised learning includes regression and classification,

which predict continuous and discrete labels, respectively. In ML-assisted 2D mate-

rial design and discovery processes, supervised learning is mainly employed for the

property prediction and the exploration relationships between physicochemical

structures and target properties.12,35,36,38–45,47–49,51 Besides, supervised learning

could also be used as a component in automated laboratories and can predict reac-

tion conditions and process parameters.59

Most ML conducted outside of the scientific domain is unsupervised. Unsupervised

learning is used for pattern recognition and does not require labeled data; the

feature space will suffice. Two unsupervised learning techniques of interest to the

2D materials community are clustering and dimensionality reduction. Clustering

groups the data based on similarity in the high dimensional feature space, and there

are dozens of different clustering algorithms. The principal-component analysis

(PCA) is a popular method for reducing the dimensionality of the feature space by

transforming the features into principal components (that have no physical mean-

ing). Manifold learning methods such as t-distributed stochastic neighbor embed-

ding (t-SNE)60 are applicable for visualizing high-dimensional data by providing

each point corresponding coordination in a two or three-dimensional space.

Reinforcement learning (RL) is another subfield of ML, which mainly learns the rela-

tion between the action strategy and outcome to acquire the highest rewards to

guide and enhance the next move. There are a few of studies that apply RL in mate-

rial science. For example, Putin et al.61 presented a framework that combines a

generative adversarial network (GAN) and reinforcement learning trained on simpli-

fied molecular-input line-entry system (SMILES) string representation to generate

the structure of small-molecule organic structures with target properties. Similarly,

with the use of SMILE string, Popova et al.62 employed RL to design molecules

with desired properties. Furthermore, Zhou et al.63 applied deep reinforcement

learning trained on the descriptors selected by LASSO to optimize chemical reaction

conditions.

Forward and inverse design of 2D materials

The conventional forward design of materials typically starts from a chemical space

with features such as atomic identities, composition, and structure (ACS)14 and ends

at the functional space with the predictions of the material properties. The forward

design has been widely successful but is restricted by prior knowledge. There could

be many unreported compounds being omitted from the chemical space that might

actually have the desired properties. Almost no datasets are truly exhaustive, and

this introduces selection bias, the impact of which depends on how well (or how

poorly) the configuration space has been sampled. Zunger14 and Schleder et al.53

have suggested that there are three types of forward design: (1) descriptive
Cell Reports Physical Science 2, 100482, July 21, 2021 9



Figure 2. Schematic illustration of the application of GAN in 2D materials

The flow diagram demonstrates the architecture of applying GAN (RCGAN) for inverse structural design and discovery of 2D graphene/BN hybrids.65

Copyright 2020, Elsevier.
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methods, which are generally used for the interpretation and confirmation of exper-

iment observations; (2) predictive methods, which are used for the prediction of new

materials or properties; and (3) predictive methods for the design and discovery by

predicting the function space for a class of materials.

In recent years, inverse design, which attempts to discover materials starting from a

specific desired functionality, has been receiving attention. One approach is to

comprehensively sampling the chemical space of material candidates with target

properties with high-throughput computation or experiments and then select the

compounds that have the best performance against some selection criteria.

Zunger14 has concluded that there are three modalities of inverse design: (1) with

the implementation of optimization and search algorithms such as evolutionary al-

gorithms and generative models to search the functional space, the ACS of material

that has the optimal value of desired properties could be determined; (2) with the

setting up of several filters based on some specific design principle and key proper-

ties, hierarchical virtual screening process could be applied to indicate the optimal

material on a certain chemical space; (3) is slightly different from modality (2), in that

modality three is to discover potential unknown compounds with optimal properties,

so after the screening is completed, it is necessary to perform high-throughput cal-

culations on the convex hull to identify the thermal stability of unknown materials.

Although there are different approaches to inverse design, deep generative models

have been most widely applied in this field,64 using algorithms such as GANs, vari-

ational autoencoders (VAEs). and RL. For example, Dong et al.65 present an inverse

design framework (Figure 2) by using a regressional and conditional generative

adversarial networks (RCGAN) to generate structures of 2D graphene/hexagonal

boron nitride hybrids with specific bangap values.

Materials synthesis automation with ML

The possibility of ML-assisted chemical synthesis has drawn significant attention

from the scientific community.59 In particular, autonomous laboratories are

becoming more widespread as next-generation facilities integrate an automated
10 Cell Reports Physical Science 2, 100482, July 21, 2021



Figure 3. Demonstration of materials synthesis automation with ML

(A) Flowchart of both traditional and automated chemical synthesis execution process.71 Copyright 2020, AAAS.

(B) The mobile chemist was transforming the samples to the photolysis station.59 Copyright 2020, Springer Nature.
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experimentation platform and artificial intelligence, leveraging ML methods to

enable rapid self-guided experimentation.66 Notably, ML models aimed at finding

correlations between macroscopic variables such as the operating conditions, the

reaction conditions, the plant operation parameter, and the yields of the products

are enabling better prediction of process/structure relationships.67,68 This has

been demonstrated in synthesis planning69,70 and reaction optimization.63 Ding

et al.69 developed a data-intensive ML workflow to understand process dynamics

and guide the atomic layer deposition of SiO2 thin films. Based on the assumption

that a well-trained ML model could conduct experiments without the supervision

of humans, Mehr et al.71 have proposed a universal system (Figure 3A) that could

be used for the automatic synthesis of chemicals from the literature. Moreover,

Burger et al.59 employed a mobile robot (Figure 3B) performing 688 experiments

autonomously for searching photocatalysts driven by a Bayesian search algorithm,

which gave insights into using ML techniques in the automatic synthesis of 2D mate-

rials. It is expected that the integration of ML and automated experimentation plat-

forms will substantially improve the rate of scientific discovery and provide more

opportunities 2Dmaterial synthesis using more productive and innovative methods.
ML IN STRUCTURE ANALYSIS

Following preparation, materials characterization, including atomistic structure

analysis, is the next step. The information on materials structure is fundamental to

understanding the properties of the material and could be investigated by synergis-

tic integration of experimental and theoretical approaches, e.g., transmission

electron microscopy (TEM)72 and Raman spectra73 from the experiment, MD simula-

tions,74 and DFT75 from theory, using appropriate data fusion methods. Combining

ML with materials characterization has increased development and compensated for

some of the shortcomings of these standalone approaches. ML-assisted structure

identification and the understanding of the formation mechanisms will be discussed

separately in this section.
Cell Reports Physical Science 2, 100482, July 21, 2021 11



Table 2. The recent research on the integration of experimental techniques and ML for 2D materials characterization.

Techniques for characterization Object ML method
Image segmentation and
classification Ref.

Scanning transmission electron
microscopy (STEM)

identify atomic species and type
of defects

fully convolutional networks (FCNs) pixel-wise classification 80

Scanning transmission electron
microscopy (STEM)

locate and classify point defect fully convolutional networks (FCNs) pixel-wise classification 37

Scanning transmission electron
microscopy (STEM)

identify defects convolutional neural network (CNN) pixel-wise classification 81

Transmission electron
microscopy (TEM)

recognize the local atomic structure convolutional neural network (CNN) Meyer’s algorithm 82

Atomic force microscopy (AFM)
and Raman spectra

identify thicknesses, impurities, and
stacking order

support vector machine (SVM) red, green, and blue
(RGB) channel intensities

83

Atomic force microscopy (AFM)
and friction force microscopy (FFM)

identify the number of layers spectral clustering (SClust) spectral clustering
algorithm

79
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Structure identification

Structure identification, which is also called feature extraction (see above), is the basis

for ML-assisted materials design. Structural information can be obtained from experi-

ments or computer simulations and often requires manual analysis. However, with

advances in computer vision, these repetitive tasks can be partially conducted auto-

matically by an ML algorithm. Databases of images can directly provide quantitative

predictions of complex correlations, especially for 2D materials at the nanoscale.

Reducing the need for manual feature extraction also has the advantage of reducing

evaluation bias, information bias in feature extraction, and confidence bias in labeling.

Among the existing techniques and tools, TEM76 and electron diffraction, scanning

transmission electron microscopy (STEM),72 atomic and molecular resolved atomic

force microscopy (AFM),77 X-ray diffraction (XRD), field emission scanning electron

microscopy (FESEM),78 friction force microscopy (FFM),79 and Raman spectros-

copy73 are typically used for characterization of the experimentally synthesized 2D

structures, such as crystal size and morphology, phase, layer number, lattice dis-

tances, and facets from the micro scale to the atomic scale. However, these existing

techniques still experience bottlenecks for 2D materials characterization and explo-

ration, as well as introducing the risk of researcher errors. The studies in Table 2 com-

bined ML and existing characterization techniques and tools to compensate for

some of these bottlenecks. For instance, though the spatial resolution of STEM

has reached down to the atomic level in 2D materials, the precision of atom-by-

atom structural analysis has been limited to 8–20 pm, which is deficient in detecting

local strain originated from substitutions and long-range strain fields from point de-

fects.72 For point defects, Ziatdinov et al.80 developed a ‘‘weak supervision’’ method

based on a deep neural network (DNN) that uses information about the coordinates

of all atomic species in the image to identify multiple defects (Figure 4A). This

method resembles the ‘‘human eye,’’ which returns information about the atomic

species and the location and type of defects on the surface of the sample in real

time (Figure 4B). This work demonstrated an application of DNN to extract informa-

tion from atomically resolved images including location of the atomic species and

type of defects, which could be potentially refactored to overcome limitations in

other 2D materials characterization.

The evaluation of defects of 2Dmaterials also received attention from researchers. In

2020, Lee et al.37 used ML to mine aberration-corrected STEM images to locate and

classify point defects for 2D materials. The authors first applied fully convolutional

networks (FCNs) to locate and classify each point defect in datasets of atomic-reso-

lution images (Figures 5A and 5B) and then generated class-averaged images based
12 Cell Reports Physical Science 2, 100482, July 21, 2021



Figure 4. Applications of ML to a problem of finding atomic species and defects in a crystal lattice

(A) The schematic architecture of the fully convolutional networks has an encoder-decoder type of structure (or convolution-‘‘deconvolution’’ structure).

The final softmax layer outputs a pixel-wise classification for atomic species and/or defects.

(B) Schematics of a ‘‘weakly supervised’’ approach toward identifying lattice configurations and defects in the experimental data (see text for details).

The parts of the process that require (do not require) human input is denoted as ‘‘Human’’ (‘‘Machine’’).80

Copyright 2017, ACS Publications.
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on the data to visualize the strain fields induced by single-atom defects in the 2Dma-

terials. The results show that Se vacancies introduce a complex, oscillating strain

field in the WSe2-2xTe2x lattice, which corresponds to the alternating ring of lattice

expansion and contraction. At the same time, Maksov et al.81 also introduced

CNN into STEM to extract thousands of lattice defects from raw STEM data in a mat-

ter of seconds. Madsen et al.82 performed CNN to recognize the local atomic
Cell Reports Physical Science 2, 100482, July 21, 2021 13



Figure 5. Applications of ML in structure identification of 2D materials

(A) Atomic-resolution ADF-STEM image of WSe2�2xTe2x. Scale bar = 2 nm.

(B) Chalcogen-site defects identified by fully convolutional networks (FCNs) overlaid on an image

from (A). Scale bar = 2 nm.37 Copyright 2020, ACS Publications.

(C) The test result of the sample, where regions of different layers have different colors. The as-

identified regions of adhesive residues are blacked and the overexposed regions are grayed. Scale

bar = 5 mm.83 Copyright 2018, Springer Nature Publications.

(D) Friction (FFM) map and ML (SClust) friction map of epitaxial graphene film. Scale bar = 1 mm.79

Copyright 2019, IOP Publications.

(E) Schematic of ML for defect identification in MoS2 monolayer.74 Copyright 2019, ACS

Publications.
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structure of single layers of defected graphene in TEM images. Since the assumption

was that the sample will not have any strain, this situation is idealized and still needs

to be validated for more 2D materials. These studies successfully took advantage of

computer vision to mine atomic resolution datasets to assist in improving the mea-

surement accuracy of STEM/TEM for electron beam sensitive materials.

The development of high-efficiency and large-area characterization technology has

traditionally been a major obstacle in basic research and commercial applications of

2D nanostructures. When it comes to complex atomic construction, structural char-

acterization faces an even greater challenge. Although 2D van der Waals (vdW) ma-

terials have abundant and unique functional properties,84 characterizing the inter-

face, surface doping, and counting the number of layers is still difficult. AFM with

rational design and analysis can overcome this issue85 but is still limited by an

inability to observe the presence of surface adsorbates.86 Lin et al.83 introduced
14 Cell Reports Physical Science 2, 100482, July 21, 2021
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the support vector machine (SVM) to optical identify 2D nanostructure, developing a

method they referred to as ML optical identification (MOI). By identifying the char-

acteristic color (red, green, and blue [RGB]) information in the optical photograph

by using SVM, intelligent identification of individual 2Dmaterials with different thick-

nesses, impurities, and stacking order can be realized (Figure 5C). The optical iden-

tification processes have also become more accurate. Using fast Fourier transform

(FFT) on an images from electron and scanning probe microscopies is a typical

example of image processing that can assist.78 Since crystallographic domains

have clearly different FFTs, Borodinov et al.77 selected the absolute values of the

FFT of the sliding window of AFM image as a feature for DNNs. After dimension

reduction of the resulting dataset and extraction of abundance maps to populate

the feature space, the DNNs-assigned the image pixels to relevant structure types

and classified the pixels based on the values found in the maps. This work demon-

strated the effective use of ML-assisted AFM to characterize and classify the crystal-

lographic structure of 2Dmaterials. Cellini et al.79 performed detailed Å-indentation

experiments and spectral clustering algorithm clustering to discover how the phase

transition and interlayer elasticity of ultra-stiff diene-graphene affects the graphene-

substrate interaction and the number of layers in epitaxial graphene grown on SiC

and exfoliated graphene on SiO2. With the help of spectral clustering algorithm,

as shown in Figure 5D, this work realized layer number recognition and reconstruc-

tion of complex domains for graphene films, especially in areas with limited frictional

contrast.

To move from successful synthesis of 2Dmaterials to mass production, many synthe-

sis methods have been improved and developed, including hydrothermal synthesis,

mechanical exfoliation, physical vapor deposition (PVD), and chemical vapor depo-

sition (CVD). However, optimal conditions for the synthesis of high-quality 2D mate-

rials are still a bottleneck. This is another area that ML can have an impact. For

example, Hong et al.74 performed multimillion-atom reactive molecular dynamics

(RMD) simulations combined with a neural network to study a CVD-grown MoS2
monolayer. By performing neural network-based analysis of the local atomic config-

uration at the origin of the grain growth, migration, and defect healing during the

quenching-annealing steps, RMD simulations suggest that multiple heating-cooling

treatments can contribute to the repair of grain boundaries for CVD-grown MoS2
synthesis. The schematic for defect identification in MoS2 monolayer is shown in Fig-

ure 5E. However, the approachmay not be extensible. Low-symmetry configurations

with complex features of 2Dmaterials can fatally hamper DFT simulations of this type

for some researchers due to the prohibitive computational cost involved, and ML

could offer some promising strategies to overcome this challenge. Sheremetyeva

et al.12 compared kernel ridge regression (KRR), random forest regressor (RFR),

and artificial neural networks (ANN)-based method to predict a continuous relation-

ship between the twist angle and the stimulated Raman spectrum of twisted bilayer

graphene. Different supervised regressors were used to predict the vibrational prop-

erties by extracting the structural information of the twist angle from Raman spectra

supported by the semiempirical polarizability model. Unfortunately, the experi-

mental Raman spectra of 2D materials are quite complicated, and some important

features are missing in this work. A more reliable and accurate computational Raman

spectra database needs to be established. In the case of experimental Raman

spectra, Silva et al.73 presented two complementary protocols using Raman spec-

troscopy developed by a neural network algorithm for themeasurement of interlayer

coupling and number of layers in graphene systems for statistical analysis, including

the stacking order in mass-produced graphene. Iakovlev et al.87 reported a neural

network-based classification to identify the magnetic phase of a 2D ferromagnet
Cell Reports Physical Science 2, 100482, July 21, 2021 15
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with Dzyaloshinskii-Moriya interaction within a certain magnetic field and tempera-

ture range. An advantage of neural network-based classification was presented by

recognizing skyrmions of different types, and further introduced to experimental

skyrmion magnetic configurations.

Structure-formation mechanism

Formationmechanisms that play a key role in synthesis involve physics and chemistry

that are often poorly understood, creating obstacles for material structure predic-

tion. ML methods can identify trends of the formation of structures based on histor-

ical data, but this is not the same as predicting synthesis routes. For the large-scale

synthesis of uniform ultrathin metal sulfide nanocrystals, Du et al.88 reported that the

concentration of precursors, the composition of solvents, and the reaction temper-

ature and time have coupled and complex relationship. This kind of relationship in

the experiment is often difficult to merely rely on humans to judge the law and distin-

guish the relationship between the parameters and the structure formation. A better

understanding of these complex relationships, with the help of experiments, simula-

tion, and ML, will promote the development of high-efficiency and large-area 2D

material synthesis technology, enabling mass production.

Structure-formation mechanisms are also a topic of theoretical investigation. Gra-

phene oxide (GO), which is a hydrophilic 2D material based on graphene, contains

O functional groups decorated in the sp2 basal plane. Because the distribution of O

functional groups largely determines the performance of GO, the complex relation-

ship between formation conditions, concentration, and distribution of O present a

challenge.89 Motevalli et al.75 used classification, regression, and causal inference

to understand the relationship between the formation and concentration of defects

and the concentration and distribution of oxygen groups. This work considered over

20,000 electronic structure simulations based on the density functional tight-binding

(DFTB) method and extracted structural features in 220 dimensions. Primary causes,

secondary causes, associatives and observations were used to assist in the layout

and interpretation of the Bayesian network fitted to the 16 important features, as

shown in the directed graph in Figure 6A and the self-organizing map (SOM), a

type of unsupervised ANN also known as a Kohonenmap, colored by defect concen-

trations, is shown in Figure 6B. The nanoflakes were classified using logistic regres-

sion to automatically separate the defective class, upon which ridge regression was

used to identify the important features relating the defect concentration with the

physicochemical structure. The possible causes of ruptured C�C bond defects in

GO nanoflakes in this work were identified using Bayesian inference, and a probabi-

listic graph model was shown to provide to guide for the experimental synthesis of

suitable GO nanoflakes by tuning the concentration of hydrogen.

Trends in the formation of different structures were identified by Siriwardane et al.41

using SVM, DNN, and RFRmodels to predict formation energies of theMAB (M is the

transition-metal element, A is one of group III-A or IV-A elements, and B is boron)

phase. By using materials information on existing materials databases to train their

model, they reported that the formation energy of MAB phases can be tuned by

varying the A element, as opposed to M or B. This work inspired the full use of the

existing materials database to mine the importance of available information and

to reduce the estimated cost of experiments and simulations.

Phase transformations are closely related to the formation mechanisms. One of the

TMDs, MoS2, exhibits the unique physical, optical, and electrical properties correlated

with its 2D ultrathin atomic layer structure.29 2H (semiconductor) and 1T (metallic)
16 Cell Reports Physical Science 2, 100482, July 21, 2021



Figure 6. Applications of ML in structure-formation mechanism

(A) Directed graph of the Bayesian network causation model.

(B) Self-organizing map of the feature space colored by defect concentrations.75 Copyright 2020,

ACS Publications.

(C) Atomic-resolved high-angle annular dark-field scanning TEM image of monolayer MoS2 shows

various defect configurations. Scale bar = 2 nm.

(D) Atomic snapshot after 1 ns of MD simulation at 900 K. The top view of the sheet is shown where

blue regions represent extended defects, and yellow beads are the S atoms in the top layer.90

Copyright 2018, ACS Publications.
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phases of MoS2 show different properties, but the mechanisms underlying the 2H-to-

1T transition during this phase transformation have not been fully investigated. This

represents an ideal problem or simulation, but the main obstacle for using predictions

from a computational simulation of the synthesis of 2D materials is the lack of connec-

tion between the simulation model and experimentally controllable parameters. In 2D

material experiments and simulations, the spatial scale and timescale of the target sys-

tem are often not fully accessible simultaneously, especially in the spatial distribution

and dynamics of defects. Patra et al.90 integrated the genetic algorithm (GA), in situ

high-resolution transmission electron microscopy (HRTEM) and MD simulations to

overcome this issue. A combination of GA and MD simulations was used to efficiently

sample extended defect configurations (shown in Figures 6C and 6D) and HRTEM was

used to verify the identification of stable structures throughout the evolutionary search.

This work elucidates the defect aggregation and defect-driven phase transition mech-

anism in 2D TMDmaterials and also introduces a way to solve complex phenomena of

2D materials in multiple scales and across scales.

Numerous problems persist in understanding the formation mechanism for materials,

even when utilizingML. Bartel et al.91 tested sevenML systems for formation energy on

stability predictions, that is, ElFrac, Meredig, Magpie, AutoMat, ElemNet, Roost, and

crystal graph convolutional neural network (CGCNN). It was reported that, even
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Table 3. Summary of ML-assisted study of 2D materials properties

Materials Properties Algorithms Function of ML Performance of ML Ref.

Graphene electronic properties GA, SVM predict the electronic
properties from
distribution of
interatomic distances

accuracy >83% for energy
of Fermi level and ionization
potential; accuracy of �80%
for electron affinity; accuracy
< 70% for energy of band gap

93

Graphene electronic properties MLR, DT, kNN,
ANN, SVM

build QSPR model of
each electronic
properties with most
relevant features

prediction of electronic
properties: R2 �0.9

94

Graphene electronic properties MLR, DT, RF,
SVM, ANN

predict the difference
between the calculation
results of DFTB and DFT.

accuracy of 94% for energy
of Fermi level; accuracy of
88% for energy of band gap

49

Graphene band gap MLR, DT, SVM,
ANN, GA

predict the band gap
by using topological
information.

prediction accuracy >80%
with absolute error < 0.5 eV

36

Graphene-h-BN band gap ANN predict the bandgap
based on atomic system
configuration

ANN method 1: R2 = 0.950 95

ANN method 2: R2 = 0.888

MXene band gap KRR, SVR, GPR,
Bagging

predict the band gap KRR: R2 = 0.68, RMSE = 0.19 eV 51

SVR: R2 = 0.71, RMSE = 0.17 eV

GPR: R2 = 0.83, RMSE = 0.14 eV

bagging: R2 = 0.73,
RMSE = 0.16 eV

MXene band gap GPR predict the band edges RMSE = 0.12 eV 96

MoS2-xOx bilayer band gap RF reveal the factors dominate
SMT process

R2 = 0.9 42

Stanene
nanostructures

thermal conductivity GA assist the study of stanene
nanostructures

enhance simulation efficiency 97

MoS2(1-x)Se2x
monolayer

thermal conductivity SNAP predict the parameters for
EMD simulations

enhance simulation efficiency 98

2D materials phononic properties MTP predict phonon dispersions,
and phonons group velocity

accurately and efficiently
replace DFPT method to
evaluate phononic properties
of complex structures

99

2D carbon nitrides thermal conductivity MTP accelerate the MD simulation enhance simulation efficiency 100

Diamanes thermal conductivity MTP accelerate the MD simulation enhance simulation efficiency 101

Porous graphene thermal conductivity CNN search the structure with
lowest thermal conductivity

efficient screening 50

2D materials thermodynamic stability GBDT, SISSO evaluate thermodynamic
stability of 2D materials

SISSO: RMSE = 0.165 eV/atom
(low stability); RMSE = 0.245
eV/atom (medium stability);
RMSE = 0.207 eV/atom
(high stability)

40

MoSe2 monolayer mechanical properties SVM reveal the material type is the
impact factor to influence the
mechanical properties

– 102

WS2 monolayer mechanical properties RF reveal both the material type
and defect ratio dominate the
mechanical properties

– 45

Ti3C2 nanosheet mechanical properties MTP reveal the correlation between
strength and defects

– 103

WSe2 monolayer exciton valley
polarization landscape

RF predict the exciton valley
polarization landscape at 15 K
by using the data from 300 K

– 44

vdW layered CuInP2S6 ferroelectric properties k-Means assist to analyze the correlation
between structure and property

– 104

A2B2X6 monolayer magnetic properties KRR, ANN,
SVM, extremely
randomized trees
(extra trees)

predict the magnetic properties
and reveal the correlation
between magnetic order and
composition

extra forests: R2 = 0.95, MAE =
0.30 for magnetic moment

105

SVM: 82% success rate
for ferromagnetic order;
80% success rate for
antiferromagnetic order

(Continued on next page)
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Table 3. Continued

Materials Properties Algorithms Function of ML Performance of ML Ref.

2D graphene-based
catalyst

binding energy RF, SVR predict binding energy between
molecules and 2D catalysts

relaxed output structures:
R2 = 0.952, MAE = 0.166

106

unrelaxed input structures:
R2 = 0.865, MAE = 0.307

MXenes layered
materials

toxicity RF, SVM,
extremely
randomized
trees
(extra trees)

predict toxicity – 107
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though the formation energies can indeed be predicted well, all of the composition

models perform poorly in predicting compound stability. In other words, formation en-

ergies do not completely determine the stability of thematerials. The chemical formula

proved to be far from an adequate descriptor to distinguish stable from unstable com-

pounds within an arbitrary chemical space. Instead, the authors encourage the use of

structural representations for materials discovery. This work emphasized the impor-

tance of assessing model performance and caution against the abuse of ML results

that can be easily misunderstood.
ML-ASSISTED PROPERTY EXPLORATION

Since the properties of materials significantly influence their applications,7 the rapid

screening of materials properties may accelerate the development of various tech-

nologies. However, experimental and traditional theoretical screening requires sig-

nificant investment of time and money, which may be reduced by integrating ML in

the pipeline.92 In the following sections, we will present the current advances of ML

to predict specific properties (Table 3), including electronic properties, thermody-

namic properties, mechanical properties, exciton valley polarization, ferroelectric

properties, magnetic properties, binding energy, and toxicity.
Electronic properties

Electronic applications of 2D materials have been intensively studied,85,108–110 and

unsurprisingly these applications of are highly dependent on their electronic prop-

erties111 such as the band gap, which is one of the fundamental properties that

can be modulated to meet specific requirements. The discovery of new ways to con-

trol the electronic properties of 2D materials is essential for the advancement of

electronic applications. Successful examples using ML to predict the electronic

properties of 2D materials will be discussed in this section.

A dataset of electronic properties of graphene nanoflakes with various structures

was generated via the DFTB method by Shi et al.,112 and later ML was used to build

models to predict the electronic properties of unknown structure that were not in the

set. The 622 computational optimized graphene structures, including trigonal, hex-

agonal, and rectangular structures (Figures 7A–7C) from this dataset were used by

Fernandez et al.93 to study the structure-property relationship using the partial-

least-square regression (PLSR) and radial distributions function (RDF) scores (Fig-

ure 7D). The results showed that the energy of the Fermi level and electron affinity

correlates to the RDF scores at interatomic distances ranging from 2.0 to 10.0 Å,

while band gap and ionization potential correlate to the corresponding value in

the range of 3.0 to 30.0 Å. The as-built QSPR model can accurately predict Fermi

level and ionization potential with more than 83% accuracy rate, where the predic-

tion accuracy of ionization potential, and band gap reached �80%, and 70%,
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Figure 7. Applications of ML in the study of electronic properties of graphene and related materials

(A–C) Examples of (A) trigonal, (B) hexagonal, and (C) rectangular graphene structures in the dataset.

(D) Schematic illustration of electronic properties prediction via RDF scores.93 Copyright 2015, ACS Publications.

(E) Molecular graph representation of a graphene nanoflake with edges connected by solid lines and all other interior nodes connected by dashed lines.

(F) Histograms of the ATS in the optimum SVM models of the energy gap of graphene nanoflakes in 200 independent GA runs.

(G) Scatterplot of the predictions for the energy gap of the graphene nanoflakes in the test set of 30% of the entire dataset, where ‘‘actual’’ refers to the

values calculated by DFTB simulations and ‘‘predicted’’ corresponds to the SVM predictions.36 Copyright 2016, ACS Publications.

(H) A typical graphene nanoflake with an embedded rectangular h-BN domain. The edges are passivated with hydrogen. Each system contains N = 166

C, B, or N atoms, colored in black, pink, and light blue, respectively, and NH = 34 hydrogen atoms.

(I and J) Predicted ANN gap versus reference DFT gap, for typical fully connected networks with three layers: (I) method 1 (166/100/1 neurons) and (J)

method 2 (20/100/1 neurons). The results corresponding to the training and test sets are represented in blue and red colors, respectively.95 Copyright

2020, Hindawi.
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respectively. Subsequently, they introduced more geometrical features to predict

these electronic properties based on the same dataset of optimized graphene struc-

tures.94 The nine inputs features (number of hydrogen atoms, fraction of zig-zag

edges, surface area of graphene, ratio between the twomain structural axis, average

carbon atom coordination number, average C-C bond length, average C-C-C bond

angle, average C-H bond length, and average C-C-H bond angle) yield a total of 511

input combinations. A collection of ML methods including multiple linear regression

(MLR), decision tree (DT), k-nearest neighbor (kNN), ANNs, and SVMwere applied to

filter these input combinations and build rational models to predict the electronic

properties of graphene including all four electron charge transfer properties.

As mentioned above, DFT is often not suitable for the problems involving a large

number (>103) of atoms, which limits its applications, especially to 2D materials.
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The DFTB method, an efficient quantum chemical approximation of DFT with self-

consistent charges (SCC-DFTB), can be applied to calculate electronic properties

of large 2D materials,112 but with reduced accuracy than DFT. A fast and accurate

correction term connecting the differences between the calculation results of DFT

and DFTB can simultaneously improve accuracy and retain efficiency. Based on

this goal, Fernandez et al.49 built different MLmodels trained with structural features

of graphene nanoflakes to predict the differences between DFT and DFTB calcula-

tions of two electronic properties (energy of the Fermi level and energy of the

band gap), using the nine inputs features shown to be efficacious in their previous

study,94 and MLR, DT, random forest (RF), ANNs, and SVM. The RF model showed

the best prediction accuracy of 94% in the prediction of the difference of the energy

of the Fermi level, whereas the SVM model successfully predicted the difference of

the energy of band gap with the highest prediction accuracy of 88%.

While these ML studies were highly successful, the requirement for complex features

may be prohibitive and may not be suitable for rapid screening. Therefore, Fernan-

dez et al. developed amethod to accurately predict the band gap of graphene using

the topology of its molecular graph, regardless of atom position information that can

be difficult to assess experimentally.36 The set of topological autocorrelation scores

(ATSs) was introduced to conveniently describe the topology of graphene. As shown

in Figure 7E, the structure of graphene can be represented as a molecular graph and

be further transformed into a numerical ATS code. Different ML methods including

MLR, DT, SVM, ANN, and GA were applied to optimize the model. As a result, the

final model revealed that the topological distances in the range of 1 to 42 are the

most informative ATS to predict band gaps (Figure 7F), with a high prediction accu-

racy of over 80% (Figure 7G) with a mean absolute error lower than 0.5 eV in the

range of energy gap from 0 to 7 eV.

Nemnes et al. have also studied the band gap of graphene nanoflakes embedded

with hexagonal boron nitride (Figure 7H) by using the combination of ab initio

DFT and ANN.95 As distinct from the single graphene that only contains C atoms,

the hybrid structure of graphene-h-BN introduces additional B and N atoms, as

well as the H atoms on the edges of hybridmaterial, which necessitatemore complex

structural information. It was previously known that both the size and position of the

h-BN domains can influence the band gap of graphene-h-BN hybrid, so these were

explicitly considered when using DFT to calculate band gaps as dataset. The authors

designed two ANNmodels with different input neurons. The first model was a simple

fully connected backpropagation ANN with the 200 inputs neurons for all the atoms

of the graphene-h-BN hybrid, though is not necessary that the number of neurons

matches the number of atoms. The second model simplified the number of inputs

neurons from 200 to 20, with 4 of them represent the corresponding proportions

of C, B, N, and H atoms, and 16 of them represent the normalized counts of atom

quadruplets (Xi = C, B, N; Y1, Y2, Y3 represent three nearest neighbors of Xi). Both

ANN models showed good performance in band gap prediction, with accuracy

over 90% (Figures 7I and 7J). With the simplified inputs the second model was sug-

gested to be suitable for extension to other systems, though the improvement of this

prediction was likely due to the reduction of the feature set, as opposed to the spe-

cific structure of the ANN.

MXene is a key 2D material since the different compositions exhibit various proper-

ties for a large range of applications. Singh et al. estimated the band gaps of MXenes

by using different ML models using KRR, SVR, GPR, and bootstrap aggregating

regression algorithms, with the input features including the boiling and melting
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Figure 8. Prediction of band gaps of MXenes by using ML

(A) MXene composition. With 11 early transition metals M (blue) of IIIB to VIB groups; X, (C, N) (colored in yellow); and 14 surface functional groups

T/T0 (red), a pool of 23 870 MXenes is generated. T/T0 consists of functionalization with elements (H, F, Cl, Br, O) and groups (CN, NO, PO, OH,
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points, atomic radii, phases, bond lengths.51 As shown in Figure 8A, a dataset of

23,870 MXenes with different compositions was developed, with 7,200 MXenes

randomly selected for DFT structural optimization and band gap calculation. There-

after, 76 semiconducting MXenes simulated with DFT (Perdew-Burke-Ernzerhof

[PBE]) were selected to build the prediction models. After feature engineering,

the number of input features was reduced from 47 to 8. As a result, the GPR model

showed the best band gap prediction performance with the lowest root-mean-

squared error (RMSE) of 0.14 eV (Figures 8B–8I). However, the result may not be

convincing since the training dataset of 76 samples is very small, and convergence

with respect to the training set size was not shown. For some of the applications

of functionalized MXenes, such as photocatalysis, the position of the band edges

is also important in addition to band gap. Hence, Singh et al. developed a GPR-

based ML model to study the position of band edges of MXenes.96 After a similar

optimization process with previous study,51 76 MXenes having PBE band gap

were selected from the dataset of MXenes, and 7 elemental and computed proper-

ties were chosen, on the basis of weighted importance that yielded by neighbor-

hood component analysis (NCA), as input features (Figures 8J and 8K). In this

work, GPR was selected as the basis for two approaches: (1) valence band maxima

(VBM)-centric approach; and (2) conduction band minima (CBM)-centric approach.

The CBM-centric approach showed better performance with a lower RMSE of 0.12

eV, which was attributed to better agreement between the calculated GW and

PBE values of the CBM than the corresponding values of the VBM (Figure 8L).

Semiconductor-metal transition (SMT) is highly relevant to band gap modulation. By

adjusting the band gap of a material it can switch between semiconductor and

metallic states. Sun et al. used a cluster expansion method to determine that

MoS2-xOx bilayers can realize SMT.42 In their study, a RF was applied to study the

relationship between the calculated band gap and a set of structural features. In

addition to the features generated by Matminer,113 a few predefined features for

the bilayer system were introduced. The results showed that the difference of the ox-

ygen fraction in the two chalcogen-atom layers across the vdW gap (DFinter) domi-

nates the SMT process (Figure 9), with the assistance of average of the tangent of

the Mo-S/O bond angle ðtanqÞ as the secondary factor (Figure 9).
Thermodynamic properties

Thermodynamic properties of materials are essential for materials science since

they directly reflect the influence of heat to the performance of materials. In this

section, thermodynamic properties including thermodynamic stability and thermal

conductivity and predictions of various ML algorithms will be compared and

discussed.

Cherukara et al.97 introduced a bond order potential (BOP) to study the thermal con-

ductivity of stanine via MD simulations. They have found that stanene has a highly

rippled structure, compared to other 2D materials such as graphene, and this soft-

ness and high anharmonic response resulted in significantly lower thermal
OCl, OBr, OCN, SCN, NCS) (shown at the bottom). Two prominent phases of MXene, namely, bb0 and cb, are shown at the top left and right,

respectively.

(B–I) Band gap predictions of MXene. Scatterplots showing band gap predictions versus true (i.e., GW) gaps of important primary (B–E) and compound

(F–I) feature-combinations.51 Copyright 2018, ACS Publications.

(J and K) Heatmaps showing the correlation between 7 selected features via (J) the VBM centric approach and (K) the CBM centric approach.

(L) Hexabin distribution plot showing the distribution of PBE (blue) and GW (red) VBM and CBM at the absolute scale.96 Copyright 2019, ACS

Publications.
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Figure 9. Study of SMT of MoS2-xOx bilayers by ML

(A) Classification result of one typical test set, where y = �1 represents the metal structures; y = 1

represents semiconductor structures.

(B) Regression result of one typical test set using the random forest algorithm.

(C) Schematic diagram of the most important feature DFinter.

(D) The relationship between the band gap data and DFinter is shown below.

(E) Definition of the Mo-S/O bond angle tanq.

(F) The relationship between the band gap data and tanq shown below.42 Copyright 2020, ACS

Publications.
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conductivity. During the simulation the Tersoff parameters were optimized using

GA, which indirectly contributed to the study of stanene nanostructures.

MD simulation is considered as an alternative method to Peierls-Boltzmann trans-

port equation (PBTE) for the calculation of thermal conductivity; however, classic

MD simulations can be influenced by inaccurate empirical interatomic potentials.

For some thermodynamic studies, the availability and transferability of interatomic

potentials has become a bottleneck for performing the simulations. Therefore, a

newmethod namedML interatomic potential (MLIP) was proposed, to provide inter-

atomic potential for further MD simulations, with both accuracy and efficiency.114 Gu

and Zhao98 studied thermal conductivity of monolayer MoS2(1-x)Se2x alloys based on
24 Cell Reports Physical Science 2, 100482, July 21, 2021
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the combination of MD simulations and MLIP using a spectral neighbor analysis

approach (SNAP). The introduction of SNAP, which demonstrated high accuracy in

predicting phonon dispersion and anharmonic phonon properties, assisted the

equilibrium MD (EMD) simulations to predict the thermal conductivity of monolayer

MoS2(1-x)Se2x alloys. Although the exclusion of long-range interaction in SNAP, and

the absence of higher-order phonon scatterings (such as four-phonon scatterings) in

PBTE, introduced slight differences between the results of EMD and PBTE, SNAP-as-

sisted EMD still showed good accuracy in predicting thermal conductivity of mono-

layer MoS2(1-x)Se2x alloys with potential for extension to other MoS2, MoSe2, and

their mixtures-based nanostructures. Later, Mortazavi et al.99 used the moment

tensor potential (MTP), a fast and convenient method derived from MLIP, to study

phononic properties of low-symmetry and porous 2Dmaterials to replace traditional

DFT simulations and improve computational efficiency. MTP was compared to the

traditional density functional perturbation theory (DFPT) in the calculations of force

constants, which can be used to evaluate photonic properties. The training dataset

consists of a wide range of 2D materials, including monoelemental 2D lattices (such

as graphene, and black phosphorene), binary 2D systems (such as CN, and BN),

and ternary 2D lattices (such as BC6N6, and BrCuTe2), allgenerated by using ab initio

MD (AIMD) simulations. The MTP was trained with hundreds of parameters and

yielded a competitive level of accuracy and reproducibility compared to the tradi-

tional DFPT in the prediction of phonon dispersions and phonons group velocity.

It is expected that the combination of MD andMLIP can be extensively used to study

thermal conductivity of many other 2D materials as well. For instance, Mortazavi

et al.100 used MTP to accelerate the non-equilibrium MD simulation to predict the

thermal conductivity of several novel 2D carbon nitrides, including C3N4, C3N5,

and C3N6. Subsequently, they used MTP to obtain the anharmonic force constants

to further accelerate the study of thermal conductivity of semiconducting diamanes,

including Janus C4HF, C4HCl, and C4FCl and non-Janus C2H, C2F, and C2Cl

diamanes.101

The introduction of holes to 2Dmaterials can efficiently tune their thermal conductivity,

since the density and distribution of the holes dominate the thermal conductivity. Jiang

et al. applied a CNN-based inverse design method to study the relationship between

thermal conductivity reduction and hole distribution in monolayer graphene.50 For the

given structure shown in Figure 10A, there are 14 candidature sites for pores, yielding a

total of 214 = 16,384 possible porous graphene structures as training dataset. The ther-

mal conductivity is related to the pore size and pore-size distribution (the number of

holes out of the 14 possible hole sites), such that as the porosity increases the thermal

conductivity decreased. However, each of the porosity levels covered a wide range of

thermal conductivity (Figure 10B), indicating the spatial distribution of holes in signif-

icant. Using the trained CNNmodel as a first generation, the authors repeated the pro-

cess through successive generations based on a larger dataset of porous graphene

with 24 possible hole sites and porosity of 0.5, to search for porous graphene structures

with the lowest thermal conductivity (Figure 10C). The top 5 porous graphene

structures with the lowest thermal conductivity from different generations, along

with 3 typical structures, are presented in Figure 10D, demonstrating the use of

CNN for screening.

As pointed out by Zunger,115 predicting the thermodynamic stability of materials in

addition to desirable properties is necessary for practical translation. Schleder

et al.40 used ML to identify thermodynamically stable 2D materials using C2DB, to

classify 2D materials as having low, medium, or high stability (Figure 11) according

to the formation energy by using a combination of stochastic GBDT classifier and
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Figure 10. ML-assisted study of thermal conductivity of porous graphene

(A) The structure of porous graphene.

(B) Thermal conductivity versus the density of holes for porous graphene at room temperature.

(C) Schematic of the search algorithm based on the CNN model.

(D) The porous structure of the top 5 configurations from different generations (showed in left) with the lowest thermal conductivity searched by CNN

model. I–III: three representative porous structures and their thermal conductivity value.50 Copyright 2020, Elsevier.
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the sure independence screening and sparsifying operator (SISSO) approach. The

proposed approach can evaluate the stability of 2D materials using only the struc-

tural symmetry and compositions without information on the atomic positions.

The approach was also used to predict the potential of these stable materials for

photoelectrocatalytic water splitting.40

Mechanical properties

Mechanical properties, such as the Young’s modulus and tensile strength, can

directly influence the range of usefulness and durability of 2D materials.116 The
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Figure 11. ML-assisted study of thermodynamic stability of 2D materials

(A) A schematic of ML-assisted process to explore 2D materials’ thermodynamic stability.

(B) Classification of low, medium, or high stability based on the formation energy.

(C) Receiver operating characteristic (ROC) curve for the classification model and the corresponding area under curve (AUC) metric for each class: low

(red), medium (orange), and high stability (green).

(D) Importance for the 20 most important features in the classification model.

(E) Correlation scatterplot of formation energies comparing the DFT calculated values with the regression model obtained via SISSO ML.40 Copyright

2020, ACS Publications.
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determination of mechanical properties usually needs complex and long-term ex-

periments, whereas ML-assisted prediction may yield accurate results in a shorter

period of time, as discussed in this section.
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Figure 12. Study of mechanical properties of TMDs by ML

(A and B) Top and side views of (A) h-MoSe2 and (B) t-MoSe2.

(C) Standard correlation coefficients between the impact factors and the predicted mechanical

properties of MoSe2.
102 Copyright 2019, RSC Publishing.

(D and E) Top and side views of (D) h-WS2 and (E) t-WS2.

(F) Pearson’s correlations among different features and target outputs.45

Copyright 2019, ACS Publications.
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Zhang et al.102 studied the mechanical properties of h-MoSe2 and t-MoSe2 in both

armchair and zigzag directions (Figures 12A and 12B) by using MD simulations

and an SVM. The correlation betweenmechanical properties (fracture strain, fracture

strength, and Young’s modulus) of MoSe2 and various impact factors (MoSe2 type,

chirality, temperature, and strain rate) were investigated. A dataset of 700 samples

yielded from experiments and simulations were split into training and testing sets us-

ing a stratified 80/20 split. After the training with 4 input features (MoSe2 type, chiral

direction, temperature, and strain rate), the results showed that the type of MoSe2 is

the most important feature influencing the mechanical properties (Figure 12C). Sub-

sequently, they have extended their study to the mechanical properties of both

h-WS2 and t-WS2 monolayers (Figures 12D and 12E).45 A larger dataset with a

total of 3,600 MD simulations combining 2 types of WS2, 2 directions, 6 tempera-

tures, 5 strain rates, 6 defect ratios, and 5 initial conditions were generated for

training and testing using RF. Five features including the type or material, chirality,

temperature, strain rate, and defect ratio were considered as inputs, where fracture

strain, fracture strength, and Young’s modulus were used as the target labels. As
28 Cell Reports Physical Science 2, 100482, July 21, 2021



Figure 13. ML-assisted study of mechanical properties of Ti3C2 nanosheets

(A) Representation of a Ti3C2 nanoribbon (top and side views). Black and red spheres correspond to Ti and C atoms, respectively.

(B) Dependence of UTS (black) and Poisson ratio (red) on the inverse ribbon width W.

(C) Dependence of UTS in nN/nm (left axis) and GPa (right axis) units on monovacancy concentration for the Ti3C2 monolayer (triangles) and nanoribbon

with a chosen width of 3.4 nm (upside down triangles).103

Copyright 2020, ACS Publications.
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shown in Figure 12F, both WS2 type and defect ratio dominate the mechanical prop-

erties of WS2.

Firestein et al.103 have fabricated Ti3C2 nanosheets and studied their Young’s

modulus and tensile strength by using a combination of experiments and simula-

tions. In contrast with previous studies that are mostly based on computational data-

sets, this work has conducted a series of experimental characterizations prior to

simulation. The Young’s modulus of Ti3C2 was measured by AFM, where the tensile

tests and the ultimate tensile strength (UTS) were conducted andmeasured by in situ

TEM techniques, respectively. The experimental results showed the correlation of

UTS and the thickness of nanosheets, which may be attributed to the presence of de-

fects. To further understand the mechanical deformation of Ti3C2, the MLIP method

was introduced to study the influence of geometrical parameters and structural de-

fects on mechanical properties, revealing the negative correlation between the

strength of Ti3C2 nanoribbons and vacancy concentration (Figure 13).
Other properties

Other properties and potential applications that have received less systemic study

include the exciton valley polarization, ferroelectric properties, magnetic proper-

ties, binding energy, and toxicity of 2D materials. These properties are also impor-

tant to the development of this domain and will be listed and discussed in this

section.

The heterogeneity of exciton valley polarization is essential for both fundamental

scientific research and future applications of 2D materials in valleytronic devices.
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However, it is not simple to predict low-temperature heterogeneity of exciton valley

polarization by using room-temperature measurements. Miyauchi et al.44 used a RF

to predict the low-temperature (15 K) exciton valley polarization landscape of a

WSe2 monolayer using the information extracted from photoluminescence (PL)

spectra at room temperature (300 K). The decision trees were generated by input

variables of PL characteristics extracted from mapping results at 300 K and output

variables of position-dependent exciton valley polarization at 15 K, respectively.

Bootstrap aggregation was applied in building decision trees to overcome the

limited size of datasets. The RF showed good prediction capability, with 8 of 9 sam-

ples were successfully predicted, and discovered that PL intensity and trion-exciton

intensity ratio at 300 K are the most important features in determining exciton valley

polarization at low temperature.

Neumayer et al.104 studied the ferroelectric properties of vdW layered CuInP2S6
using a combination of piezoresponse force microscopy (PFM) and k-means clus-

tering. PFM was used to directly observe the correlation between strain and ferro-

electric properties in vdW layered CuInP2S6, and output data were reduced by

PCA prior to groups to reveal patterns in the experimental data. The combination

of PFM and unsupervised learning indicated that the strain can be used to locally

manipulate electromechanical behavior of CuInP2S6 and further enhance its

functionality.

The magnetic properties, of Cr2Ge2Te6, a monolayer A2B2X6 material, such as

magnetic order and magnetic moment, were studied using DFT calculations

and support vector classification (SVC) by Rhone et al.105 The DFT calculation

that includes non-collinear spin and pain-orbit interactions was employed to

generate a database of monolayer Cr2Ge2Te6 containing atomic features. They

achieved the accuracy rates of 82% and 80% for the prediction of ferromagnetic

order and antiferromagnetic order, respectively, and revealed that the X site is

important in determining the magnetic order of the structure and can significantly

affect the magnetic coupling between adjacent A sites, which drives the magnetic

ordering.

2D materials have also been widely employed as catalysts for various applications.

The binding energy between molecules and metal atoms is a key factor to influence

the attachment and detachment of small molecules to the catalysts and further influ-

ence the reaction efficiency and suitability. Barnard et al.106 used RF and SVM to

accurately predict the binding energies of 2D catalytic materials. A topological

descriptor containing hundreds of features that can be divided into three groups

(bond lengths/angles, statistical features, and partial radial distances) were used

to train the models. The RF model predicted the binding energy between the mol-

ecules and metal atoms stabilized with doped, defective graphene (Figures 14A–

14F), using a computational dataset containing approximate 1,700 samples. The

method showed good accuracy in the prediction of binding energy, with R2 =

0.952 (Figure 14G) for using the relaxed output structures (after quantum chemical

simulations), and R2 = 0.865 (Figure 14H) for unrelaxed input structures (without

costly simulations), respectively.

As another key application of 2D materials is in biomedical applications, their cyto-

toxicity cannot be ignored. Birowska et al.107 studied the cytotoxicity of MXenes by

using RF involving two essential factors: the presence of transition metal oxides, and

lithium atoms on surface. The model predicted toxicity for other 2D MXenes that

have not been studied in vitro based on inputs features of surface characteristics,
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Figure 14. ML-assisted prediction of 2D catalytic materials

(A–F) Typical configurations of the six different pores supporting single metal atoms or paired single metal atoms that were considered in this

study. Atoms are colored in gray (carbon), blue (nitrogen), pink (cobalt), and brown (platinum). Note: N and V refer to nitrogen and vacancy,

respectively.

(G and H) Scatterplot predicting the binding energy on (G) N-doped porous graphene paired single atoms metal catalysts using random forest

regression, and (H) porous graphene single atoms metal catalysts using random forest regression and only input features.106 Copyright 2020, Wiley.
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morphology, and physical structure. This work is inspiring since it showed that the

undesirable properties such as the toxicity of 2D materials can be predicted as

well as desirable electronic, thermodynamic, mechanical, or magnetic properties.

However, it was found that geometrical descriptors alone are insufficient to train a

ML model of toxicity, and inclusion of experimental information including material

synthesis methods and characterizations would be beneficial. More information on

materials themselves can assist in the interpretation of ML models, but the
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prediction of toxicity requires information about the environment, interactions, and

the biological availability. 2D materials with similar structural characteristics can

exhibit different toxicity when exposed to different cell lines.
OUTLOOK

In conclusion, this review has discussed the recent advances of the application of ML

in 2D materials, including materials preparation, structure analysis, and properties

prediction. The current studies have demonstrated the advantages of the combina-

tion of ML and 2Dmaterials data, either from simulations or experiments, pointing to

a positive future. Both challenges and opportunities are still present, and will be

highlighted in following paragraphs.

ML has a broad range of application scenarios and potential in every step of design,

discovery, and developing synthesis processes of 2D materials. During the material

design and discovery the difficulty and high cost of generating data could limit the

performance of some ML methods, potentially resulting in under-fitting, orderfit-

ting, low fidelity, or entirely misleading predictions due to selection bias. Some

methods worth exploring to address this include transfer learning to train the ML

model with the knowledge gained from related problems.35 ML models can also

be used as surrogates, replacing computationally intensive DFT,40 or for data-driven

feature selection to improve ML readiness of 2D material databases. ML could revo-

lutionize 2D material synthesis since conventional experimental methods are slow

and expensive and do not fulfill the growing demands in material manufacturing.66

With the assistance of ML experiments could be automatic, and even autonomous,

using guided high-throughput systems. For instance, a mobile robotic chemist

guided by ML59 was employed to perform 688 experiments within a ten-variable

experimental space in 8 days, which is 1,000 times faster than manual approaches,

and this autonomous system identified a six times more active photocatalyst mix-

tures. ML also has the potential to change the form of conventional experiments

and increase the efficiency of 2D material discovery.

From a future perspective, we can envision two main strategies for developing and

using ML in 2D material structure analysis, which will likely have long-term impact in

this field. One is to focus on experimentally relevant features and use experimental

designs informed by ML-assisted simulations of synthesis reactions, conditions, and

dynamics. Another is improving the efficiency and effectiveness of ML models to

accurately describe the underlying structural properties of 2D materials based on

experimental information at scale, to enable real-time prediction and monitoring.

Compared to the large demand for 2D materials for a variety of applications, the num-

ber of studies related to the ML-assisted property prediction is still small. Even a basic

strategy beginning with a simple 2D material, such as a graphene monolayer, and sys-

tematically introducing of more complexity (such as doping, multilayered materials, or

heterostructures) will benefit the scientific community and accelerate 2D materials

innovation. However, current studies are still worth improving for better performance,

such as the prediction of band gaps of MXenes. The studies of different types of prop-

erties are still limited, and many properties including optical properties, superconduc-

tivity, toxicity are worth extensive investigation.

We believe that a more widespread use of ML in 2D materials design will help meet

the increasing demands of industry and prepare 2D materials synthesis and charac-

terization for development under industry 4.0.
32 Cell Reports Physical Science 2, 100482, July 21, 2021
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66. Häse, F., Roch, L.M., and Aspuru-Guzik, A.
(2019). Next-Generation Experimentation
with Self-Driving Laboratories. Trends Chem.
1, 282–291.

67. Sakiewicz, P., Piotrowski, K., Ober, J., and
Karwot, J. (2020). Innovative artificial neural
network approach for integrated biogas –
wastewater treatment system modelling:
Effect of plant operating parameters on
process intensification. Renew. Sustain.
Energy Rev. 124, 109784.

68. Kumar, V., Kumar, A., Chhabra, D., and
Shukla, P. (2019). Improved biobleaching of
mixed hardwood pulp and process
optimization using novel GA-ANN and GA-
ANFIS hybrid statistical tools. Bioresour.
Technol. 271, 274–282.

69. Ding, Y., Zhang, Y., Ren, Y.M., Orkoulas, G.,
and Christofides, P.D. (2019). Machine
learning-based modeling and operation for
ALD of SiO2 thin-films using data from a
multiscale CFD simulation. Chem. Eng. Res.
Des. 151, 131–145.

70. Lai, F., Sun, Z., Saji, S.E., He, Y., Yu, X., Zhao,
H., Guo, H., and Yin, Z. (2021). Machine
Learning-Aided Crystal Facet Rational Design
with Ionic Liquid Controllable Synthesis. Small
17, e2100024.

71. Mehr, S.H.M., Craven, M., Leonov, A.I.,
Keenan, G., and Cronin, L. (2020). A universal

http://refhub.elsevier.com/S2666-3864(21)00182-X/sref31
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref31
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref32
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref32
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref32
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref32
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref32
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref32
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref33
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref33
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref33
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref33
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref33
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref33
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref33
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref34
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref34
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref34
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref34
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref34
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref34
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref34
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref35
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref35
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref35
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref35
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref35
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref35
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref36
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref36
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref36
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref36
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref36
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref36
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref37
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref37
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref37
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref37
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref37
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref37
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref37
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref38
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref38
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref38
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref38
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref38
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref39
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref39
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref39
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref39
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref39
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref40
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref40
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref40
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref40
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref40
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref41
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref41
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref41
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref41
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref41
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref41
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref41
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref42
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref42
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref42
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref42
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref42
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref42
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref43
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref43
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref43
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref43
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref43
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref43
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref44
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref44
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref44
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref44
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref44
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref45
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref45
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref45
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref45
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref45
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref46
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref46
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref46
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref46
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref46
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref47
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref47
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref47
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref48
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref48
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref48
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref48
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref48
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref49
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref49
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref49
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref49
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref49
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref49
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref50
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref50
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref50
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref50
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref51
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref51
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref51
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref51
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref51
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref52
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref52
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref52
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref52
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref52
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref52
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref54
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref54
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref54
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref54
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref54
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref55
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref55
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref55
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref53
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref53
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref53
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref53
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref53
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref53
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref56
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref56
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref56
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref56
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref57
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref57
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref57
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref57
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref57
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref58
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref58
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref58
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref58
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref58
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref59
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref59
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref59
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref59
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref60
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref60
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref60
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref60
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref60
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref60
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref61
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref61
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref61
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref61
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref61
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref61
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref62
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref62
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref62
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref63
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref63
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref63
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref63
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref64
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref64
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref64
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref64
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref65
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref65
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref65
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref65
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref65
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref66
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref66
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref66
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref66
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref67
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref67
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref67
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref67
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref67
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref67
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref67
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref68
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref68
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref68
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref68
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref68
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref68
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref69
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref69
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref69
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref69
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref69
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref69
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref70
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref70
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref70
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref70
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref70
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref71
http://refhub.elsevier.com/S2666-3864(21)00182-X/sref71


ll
OPEN ACCESS

Please cite this article in press as: Yin et al., The data-intensive scientific revolution occurring where two-dimensional materials meet machine
learning, Cell Reports Physical Science (2021), https://doi.org/10.1016/j.xcrp.2021.100482

Review
system for digitization and automatic
execution of the chemical synthesis literature.
Science 370, 101–108.

72. Huang, P.Y., Kurasch, S., Alden, J.S.,
Shekhawat, A., Alemi, A.A., McEuen, P.L.,
Sethna, J.P., Kaiser, U., and Muller, D.A.
(2013). Imaging atomic rearrangements in
two-dimensional silica glass: watching silica’s
dance. Science 342, 224–227.

73. Silva, D.L., Campos, J.L.E., Fernandes, T.F.D.,
Rocha, J.N., Machado, L.R.P., Soares, E.M.,
Miquita, D.R., Miranda, H., Rabelo, C., Vilela
Neto, O.P., et al. (2020). Raman spectroscopy
analysis of number of layers inmass-produced
graphene flakes. Carbon 161, 181–189.

74. Hong, S., Nomura, K.I., Krishnamoorthy, A.,
Rajak, P., Sheng, C., Kalia, R.K., Nakano, A.,
and Vashishta, P. (2019). Defect Healing in
Layered Materials: A Machine Learning-
Assisted Characterization of MoS2 Crystal
Phases. J. Phys. Chem. Lett. 10, 2739–2744.

75. Motevalli, B., Sun, B., and Barnard, A.S. (2020).
Understanding and Predicting the Cause of
Defects in Graphene Oxide Nanostructures
Using Machine Learning. J. Phys. Chem. C
124, 7404–7413.

76. Chen, X.-D., Xin, W., Jiang, W.-S., Liu, Z.-B.,
Chen, Y., and Tian, J.-G. (2016). High-
Precision Twist-Controlled Bilayer and
Trilayer Graphene. Adv. Mater. 28, 2563–
2570.

77. Borodinov, N., Tsai, W.-Y., Korolkov, V.V.,
Balke, N., Kalinin, S.V., and Ovchinnikova,
O.S. (2020). Machine learning-based
multidomain processing for texture-based
image segmentation and analysis. Appl. Phys.
Lett. 116, 044103.

78. Zhu, J., Yin, Z., Yang, D., Sun, T., Yu, H.,
Hoster, H.E., Hng, H.H., Zhang, H., and Yan,
Q. (2013). Hierarchical hollow spheres
composed of ultrathin Fe2O3 nanosheets for
lithium storage and photocatalytic water
oxidation. Energy Environ. Sci. 6, 987–993.

79. Cellini, F., Lavini, F., Berger, C., de Heer, W.,
and Riedo, E. (2019). Layer dependence of
graphene-diamene phase transition in
epitaxial and exfoliated few-layer graphene
using machine learning. 2D Mater. 6, 035043.

80. Ziatdinov, M., Dyck, O., Maksov, A., Li, X.,
Sang, X., Xiao, K., Unocic, R.R., Vasudevan, R.,
Jesse, S., and Kalinin, S.V. (2017). Deep
Learning of Atomically Resolved Scanning
Transmission Electron Microscopy Images:
Chemical Identification and Tracking Local
Transformations. ACS Nano 11, 12742–12752.

81. Maksov, A., Dyck, O., Wang, K., Xiao, K.,
Geohegan, D.B., Sumpter, B.G., Vasudevan,
R.K., Jesse, S., Kalinin, S.V., and Ziatdinov, M.
(2019). Deep learning analysis of defect and
phase evolution during electron beam-
induced transformations inWS2. npj Comput.
Mater. 5, 12.

82. Madsen, J., Liu, P., Kling, J., Wagner, J.B.,
Hansen, T.W., Winther, O., and Schiøtz, J.
(2018). A Deep Learning Approach to Identify
Local Structures in Atomic-Resolution
Transmission Electron Microscopy Images.
Adv. Theory Simul. 1, 1800037.

83. Lin, X., Si, Z., Fu, W., Yang, J., Guo, S., Cao, Y.,
Zhang, J., Wang, X., Liu, P., Jiang, K., and
Zhao, W. (2018). Intelligent identification of
two-dimensional nanostructures by machine-
learning optical microscopy. Nano Res. 11,
6316–6324.

84. Su, C., Yin, Z., Yan, Q.-B., Wang, Z., Lin, H.,
Sun, L., Xu, W., Yamada, T., Ji, X., Zettsu, N.,
et al. (2019). Waterproof molecular
monolayers stabilize 2D materials. Proc. Natl.
Acad. Sci. USA 116, 20844–20849.

85. Yin, Z., Tordjman, M., Lee, Y., Vardi, A., Kalish,
R., and Del Alamo, J.A. (2018). Enhanced
transport in transistor by tuning transition-
metal oxide electronic states interfaced with
diamond. Sci. Adv. 4, eaau0480.

86. Wastl, D.S.,Weymouth, A.J., andGiessibl, F.J.
(2014). Atomically resolved graphitic surfaces
in air by atomic force microscopy. ACS Nano
8, 5233–5239.

87. Iakovlev, I.A., Sotnikov, O.M., andMazurenko,
V.V. (2018). Supervised learning approach for
recognizing magnetic skyrmion phases. Phys.
Rev. B 98, 174411.

88. Du, Y., Yin, Z., Zhu, J., Huang, X., Wu, X.-J.,
Zeng, Z., Yan, Q., and Zhang, H. (2012). A
general method for the large-scale synthesis
of uniform ultrathin metal sulphide
nanocrystals. Nat. Commun. 3, 1177.

89. Chua, C.K., and Pumera, M. (2014). Chemical
reduction of graphene oxide: a synthetic
chemistry viewpoint. Chem. Soc. Rev. 43,
291–312.

90. Patra, T.K., Zhang, F., Schulman, D.S., Chan,
H., Cherukara, M.J., Terrones, M., Das, S.,
Narayanan, B., and Sankaranarayanan,
S.K.R.S. (2018). Defect Dynamics in 2-D MoS2
Probed by UsingMachine Learning, Atomistic
Simulations, and High-Resolution
Microscopy. ACS Nano 12, 8006–8016.

91. Bartel, C.J., Trewartha, A., Wang, Q., Dunn,
A., Jain, A., and Ceder, G. (2020). A critical
examination of compound stability
predictions from machine-learned formation
energies. npj Comput. Mater. 6, 97.

92. Barnard, A.S., and Opletal, G. (2019).
Predicting structure/property relationships in
multi-dimensional nanoparticle data using t-
distributed stochastic neighbour embedding
and machine learning. Nanoscale 11, 23165–
23172.

93. Fernandez, M., Shi, H., and Barnard, A.S.
(2015). Quantitative Structure-Property
Relationship Modeling of Electronic
Properties of Graphene Using Atomic Radial
Distribution Function Scores. J. Chem. Inf.
Model. 55, 2500–2506.

94. Fernandez, M., Shi, H., and Barnard, A.S.
(2016). Geometrical features can predict
electronic properties of graphene nanoflakes.
Carbon 103, 142–150.

95. Nemnes, G.A., Mitran, T.L., and Manolescu,
A. (2019). Gap Prediction in Hybrid Graphene-
Hexagonal Boron Nitride Nanoflakes Using
Artificial Neural Networks. J. Nanomater.
2019, 6960787.

96. Mishra, A., Satsangi, S., Rajan, A.C., Mizuseki,
H., Lee, K.-R., and Singh, A.K. (2019).
Accelerated Data-Driven Accurate
Positioning of the Band Edges of MXenes.
J. Phys. Chem. Lett. 10, 780–785.
Cell Repor
97. Cherukara, M.J., Narayanan, B., Kinaci, A.,
Sasikumar, K., Gray, S.K., Chan, M.K.Y., and
Sankaranarayanan, S.K.R.S. (2016). Ab Initio-
Based Bond Order Potential to Investigate
Low Thermal Conductivity of Stanene
Nanostructures. J. Phys. Chem. Lett. 7, 3752–
3759.

98. Gu, X., and Zhao, C.Y. (2019). Thermal
conductivity of single-layer MoS2(1�x)Se2x
alloys from molecular dynamics simulations
with a machine-learning-based interatomic
potential. Comput. Mater. Sci. 165, 74–81.

99. Mortazavi, B., Novikov, I.S., Podryabinkin,
E.V., Roche, S., Rabczuk, T., Shapeev, A.V.,
and Zhuang, X. (2020). Exploring phononic
properties of two-dimensional materials
using machine learning interatomic
potentials. Appl. Mater. Today 20, 100685.

100. Mortazavi, B., Shojaei, F., Shahrokhi, M., Azizi,
M., Rabczuk, T., Shapeev, A.V., and Zhuang, X.
(2020). Nanoporous C3N4, C3N5 and C3N6
nanosheets; novel strong semiconductors
with low thermal conductivities and appealing
optical/electronic properties. Carbon 167,
40–50.

101. Raeisi, M., Mortazavi, B., Podryabinkin, E.V.,
Shojaei, F., Zhuang, X., and Shapeev, A.V.
(2020). High thermal conductivity in
semiconducting Janus and non-Janus
diamanes. Carbon 167, 51–61.

102. Wang, X., Hong, Y., Wang, M., Xin, G., Yue, Y.,
and Zhang, J. (2019). Mechanical properties of
molybdenum diselenide revealed by
molecular dynamics simulation and support
vector machine. Phys. Chem. Chem. Phys. 21,
9159–9167.

103. Firestein, K.L., von Treifeldt, J.E., Kvashnin,
D.G., Fernando, J.F.S., Zhang, C., Kvashnin,
A.G., Podryabinkin, E.V., Shapeev, A.V.,
Siriwardena, D.P., Sorokin, P.B., and
Golberg, D. (2020). Young’s Modulus and
Tensile Strength of Ti3C2 MXene
Nanosheets As Revealed by In Situ TEM
Probing, AFM Nanomechanical Mapping,
and Theoretical Calculations. Nano Lett. 20,
5900–5908.

104. Neumayer, S.M., Susner, M.A., McGuire,
M.A., Pantelides, S.T., Kalnaus, S.,
Maksymovych, P., and Balke, N. (2021).
Lowering of Tc in Van Der Waals Layered
Materials Under In-Plane Strain. IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 68,
253–258.

105. Rhone, T.D., Chen, W., Desai, S., Torrisi,
S.B., Larson, D.T., Yacoby, A., and Kaxiras,
E. (2020). Data-driven studies of magnetic
two-dimensional materials. Sci. Rep. 10,
15795.

106. Melisande Fischer, J., Hunter, M., Hankel, M.,
Searles, D.J., Parker, A.J., and Barnard, A.S.
(2020). Accurate prediction of binding
energies for two-dimensional catalytic
materials using machine learning.
ChemCatChem 12, 5109–5120.

107. Marchwiany, M.E., Birowska, M., Popielski, M.,
Majewski, J.A., and Jastrzębska, A.M. (2020).
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