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Abstract

The sparse grid method is a special discretisation technique used to solve high

dimensional problems. There are a wide range of applications of the sparse grid

method in calculating high dimensional integrals and the solution of high dimen-

sional PDEs. The sparse grid combination technique is a kind of method used

to approximate the numerical result of the sparse grid method. The general idea

of the sparse grid combination technique is to compute a linear combination of

approximations of the solution of the problem. The approximations are com-

puted on some anisotropic regular grids. The combination technique is based on

the inclusion-exclusion principle. Compared with the sparse grid method, there

are two advantages of the combination technique. First, only nodal basis func-

tions are required in combination technique rather than the hierarchical basis

functions in sparse grid method. Second, the combination technique is easier for

parallelisation. Generalised combination techniques, e.g. the truncated combina-

tion technique, the dimension-adaptive combination technique etc, are developed

to further reduce the cost when solving a high dimensional problem.

For many real world problems, people are interested in some functionals re-

lated to the solution of the problem rather than the solution itself. These func-

tionals which capture the important features of the problem are usually key for

people to further understand it. When a high dimensional problem is consid-

ered, the computational cost of the functionals can be large since the numerical

solution of a high dimensional partial differential equation is usually expensive

to compute. We apply the generalised combination techniques to reducing the

cost of computation of important functionals. Our method is based on the error

models of the functionals. We build the error models for some special types of

functionals when numerical schemes used to compute the PDEs and the function-

als are known. We show the connection between the decay of the surpluses and

the error models. By using the connection, we can also apply generalised com-

bination techniques to functionals when we only know their computed surpluses.
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Numerical experiments are provided to illustrate error models for the functionals

and the performance of our generalised combination techniques.

Stochastic optimisation problems minimise expectations of random cost func-

tions. Thus they require accurate quadrature methods in order to evaluate the

objective, gradient and Hessian which appear in the computation. Two cate-

gories of methods are studied here. One is the discretise then optimise method,

the other is the optimise then discretise method. For the methods in the first

category, the application of the sparse grid methods leads to high quadrature

accuracy in approximating the objective. However, the sparse grid surrogates

have negative quadrature weights which potentially destroy the convexity of the

objective and thus may lead to totally wrong results. We prove that the sparse

grid surrogates maintain the convexity of the objective for sufficiently fine grids.

For the methods in the second category, it is more flexible for us to choose the

numerical schemes which used to approximate the objective, gradient and Hes-

sian. Therefore, the application of the dimension adaptive method is possible

and reasonable for optimise then discretise approaches. It further reduces the

computational costs and has even better performance compared with the classi-

cal sparse grid method for many stochastic optimisation problems. Applications

are provided to demonstrate the superiority of our approaches over the classical

Monte Carlo and product rule based approaches.



Notation and terminology

Notation

X closed set in Rn

∆ Laplace operator

L2(X) space of square-integrable function over X

Lp(X) space of p-integrable function over X

Ck(X) set of functions with continuous derivatives up to order k over

X

C∞(X) set of smooth functions over X

Ck
0 (X) subspace of Ck(X) of functions with compact support

C∞0 (X) subspace of C∞(X) of functions with compact support

Hm(X) Sobolev space of L2 functions with square-integrable deriva-

tives up to order m

Hs
mix(X) Sobolev space of L2 functions with square-integrable mixed

derivatives up to order s = [s1, . . . , sd]

Hm
0 (X) Subspace of Hm(X) of functions which are zero on the bound-

ary

Hs
0,mix(X) Subspace ofHs

mix(X) of functions which are zero on the bound-

ary

‖ · ‖L2(X) L2 norm

‖ · ‖L2 L2 norm

xi



xii NOTATION AND TERMINOLOGY

‖ · ‖2 L2 norm

‖ · ‖Hm(X) Sobolev norm of order m

‖ · ‖Hm Sobolev norm of order m

‖ · ‖Lp(X) Lp norm

‖ · ‖Lp Lp norm

‖ · ‖p Lp norm

| · |p lp norm

|α| l1 norm if α is a vector

1 vector (1, · · · , 1)

0 vector (0, · · · , 0)

F s
1 Space Cs[−1, 1] where s ∈ N

F s
d Set of functions with continuous mixed derivatives up to order

s = [s1, · · · , sd]

‖ · ‖sd The norm defined on set F s
d . ‖f‖ = max

{
‖Dif‖∞, i ∈ Nd, ik ≤ s

}
‖ · ‖sd Induced operator norm

‖ · ‖ Simplified notation of ‖ · ‖sd in Chapter 1

Kγ Piecewise linear interpolation operator, Kγ : V → Vγ, f 7→ fγ

I Integration operator, If =
∫
X
f(x) dx

Ln(f) n+ 1 points (Lagrangian) polynomial interpolation operator

f cI Interpolant generated by the sparse grid combination tech-

nique with respect to a downset I

Qc
I Quadrature operator generated by the sparse grid combination

technique with respect to a downset I

f cn Interpolant generated by the level n classical sparse grid com-

bination technique



xiii

Qc
n Quadrature operator generated by the level n classical sparse

grid combination technique

C1(x, hγ1) coefficient (function) in the 2D error splitting model of f(x)−
fγ(x)

C2(x, hγ2) coefficient (function) in the 2D error splitting model of f(x)−
fγ(x)

C1,2(x, hγ1 , hγ2) coefficient (function) in the 2D error splitting model of f(x)−
fγ(x)

P(Nd) power set if the set of all multi-indices

D(Nd) subset of P(Nd) which only contains finite downsets

Ln(X, Y ) the space of all continuous multilinear maps from X×· · ·×X
to Y

g(ξ) amplification factor

‖ · ‖N a new norm defined in Chapter 4

‖ · ‖F Frobenius norm of a matrix, ‖A‖F =
√

trace (AA∗)

supp Φ The support of a function Φ

f |supp Φ f on the support of a function Φ and 0 elsewhere





Contents

Acknowledgements vii

Abstract ix

Notation and terminology xi

1 An introduction to Sparse Grid 1

1.1 Sparse Grid Interpolation . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 1D Interpolation . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Multidimensional Interpolation . . . . . . . . . . . . . . . 6

1.2 Sparse Grid Quadrature . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 1D Quadrature Rules of Interpolatory Type . . . . . . . . 13

1.2.2 Sparse Grid Quadrature Based on Interpolation . . . . . . 19

1.2.3 Integration Rules of Gauss Type . . . . . . . . . . . . . . . 22

1.3 Number of Grid Points Used in a Sparse Grid . . . . . . . . . . . 28

1.4 Error of Sparse Grid Approximations . . . . . . . . . . . . . . . . 33

1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2 The Sparse Grid Combination Technique 47

2.1 The Classical Sparse Grid Combination Technique . . . . . . . . . 48

2.2 Number of Grid Points in the Sparse Grid Combination Technique 50

2.3 Error of the Combination Technique . . . . . . . . . . . . . . . . 54

2.3.1 Error Models For 2D Piecewise Linear Interpolation . . . . 55

2.3.2 Error Models for Polynomial Interpolation . . . . . . . . . 61

2.3.3 Error of the Combination Technique . . . . . . . . . . . . 73

2.3.4 d Dimensional Case . . . . . . . . . . . . . . . . . . . . . . 77

2.4 Generalised Combination Technique . . . . . . . . . . . . . . . . . 81

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xv



xvi CONTENTS

3 Sparse Grid Combination Technique applied to Functionals 99

3.1 Differential Calculus in Banach Space and Hilbert Space . . . . . 100

3.1.1 Banach Space . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.1.2 Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.2 Examples and Numerical Schemes . . . . . . . . . . . . . . . . . . 105

3.2.1 Galerkin Method . . . . . . . . . . . . . . . . . . . . . . . 106

3.2.2 Finite Difference Method . . . . . . . . . . . . . . . . . . . 109

3.2.3 Gyrokinetic Equations and GENE . . . . . . . . . . . . . . 112

3.2.4 Error Splitting Models . . . . . . . . . . . . . . . . . . . . 113

3.3 Error Splitting Model for Functionals . . . . . . . . . . . . . . . . 114

3.4 Error Splitting Model and Surpluses Decay . . . . . . . . . . . . . 119

3.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.5.1 Poisson Problem . . . . . . . . . . . . . . . . . . . . . . . 122

3.5.2 Advection Equation and Diffusion Equation . . . . . . . . 125

3.5.3 Quantity of Interest from GENE Experiment . . . . . . . . 126

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4 The Application of Sparse Grid Method in Stochastic Optimisa-

tion 133

4.1 Stochastic Optimisation . . . . . . . . . . . . . . . . . . . . . . . 135

4.2 Surrogate Method and Convexity . . . . . . . . . . . . . . . . . . 137

4.3 Dimension Adaptive Quadrature . . . . . . . . . . . . . . . . . . . 141

4.3.1 1D quadrature rules . . . . . . . . . . . . . . . . . . . . . 143

4.3.2 Accuracy of the Dimension Adaptive Quadrature . . . . . 143

4.3.3 The Dimension Adaptive Surrogate . . . . . . . . . . . . . 146

4.4 The ’Optimise then Discretise’ Method . . . . . . . . . . . . . . . 147

4.5 The OTDM and the DTOM . . . . . . . . . . . . . . . . . . . . . 154

4.6 Convergence and Stopping Criterion . . . . . . . . . . . . . . . . 155

4.7 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 159

4.7.1 A High Dimension Example . . . . . . . . . . . . . . . . . 159

4.7.2 Application to stochastic control . . . . . . . . . . . . . . 161

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Bibliography 170



Chapter 1

An introduction to Sparse Grid

The underlying ideas of the sparse grid method [86] can be dated back to Smolyak

when he was studying the quadrature on tensor product function spaces. In 1990,

Zenger first formally introduced the sparse grid and applied it to the solution of

partial differential equations [91]. He noticed many high frequencies of the solu-

tion of a problem resolved on the full grid contribute little to the solution if the

problem is sufficiently smooth. Thus, one can greatly reduce the cost of com-

putation by neglecting these high frequencies while only slightly increasing the

error of the solution. Griebel and Bungartz extended Zenger’s idea and wrote

a survey [16] of sparse grids which is a key reference in this area. A conciser

introduction [36] of sparse grids is written by Garcke. In the past 30 years, many

other mathematicians, computer scientists and engineers worked in this area.

They further extended and generalised the original sparse grid concept. Some of

their works will be mentioned in the following Chapters. Sparse grid methods

are widely used to accelerate the computation of high dimensional partial differ-

ential equations [1, 5, 15, 31, 42, 44] and high dimensional integrals [14, 27, 39].

There are also many applications in data science [75, 4, 35, 37]. In this Chapter,

we will introduce the classical sparse grid interpolation and quadrature. We will

study numbers of grid points which are required in different types of sparse grids.

Finally, we will look into the errors of different sparse grid approximations. Com-

pared with previous works in [45], the results in this Chapter are not restricted

to the sparse grids which are built based on regular equally spaced grids.

1



2 CHAPTER 1. AN INTRODUCTION TO SPARSE GRID

1.1 Sparse Grid Interpolation

We consider multi-indices i, j ∈ Nd with the partial ordering i ≤ j iff ik ≤ jk

for all k = 1, . . . , d. Suppose X ⊂ Rd, L2(X) is the space of square-integrable

function over X. L2(X) is a Hilbert space with the scalar product

(f, g)L2(X) :=

∫
X

f(x)g(x) dx

and the corresponding norm

‖f‖L2(X) :=

∫
X

f 2(x) dx.

Definition 1.1. f ∈ L2(X) has the weak derivative g = Dif in L2(X) provided

that g ∈ L2(X) and

(Ψ, g) = (−1)|i|(∂iΨ, f), ∀Ψ ∈ C∞0 (X)

where C∞0 (X) is the subspace of all infinitely differentiable functions which are

nonzero only on a compact subset of X.

Suppose m ∈ N. Hm(X) is the Sobolev space of L2(X) functions with square-

integrable derivatives up to order m. We then introduce the function space

Hs
mix(X), s ∈ Nd.

Definition 1.2. Suppose X ⊂ Rd. A real valued function f ∈ L2(X) and s ∈ Nd
then f ∈ Hs

mix(X) if for each 0 ≤ i ≤ s, i ∈ Nd the weak derivative Dif exists

and has finite L2 norm. The function space is equipped with the norm

‖f‖2
Hs
mix(X) :=

∑
0≤i≤s

∥∥∥∥∂|i|f∂xi

∥∥∥∥2

L2(X)

=
∑

0≤i≤s

‖Dif‖2
L2(X).

In particular, if s = [s1.s2, . . . , sd] and si = sj, ∀i, j, we take Hs1
mix(X) as a conciser

notation of Hs
mix(X). We further denote its subset consisting functions which are

zero on the boundary as Hs1
0,mix(X). By the definition, we have

H2
mix(X) ⊂ H2(X) ⊂ L2(X).

1.1.1 1D Interpolation

We first consider 1D sparse grid interpolation. Then we will generalise it to the

multidimensional case.
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Suppose we have a 1D real valued function f : X → R. We further assume

f is continuous and bounded. X is a bounded closed interval. In particular, we

set our standard interval X = [0, 1]. For any other closed interval X = [a, b]. We

can apply the transformation

y =
x− a
b− a

to f(x), then we get f̃(y) = f((b − a)y + a) which is a function defined on the

standard interval [0, 1].

Next, we consider discretisation of our standard domain [0, 1]. In order to

build the sparse grid, we need a sequence of grids Gγ, γ ∈ N. On each grid, the

standard domain [0, 1] is discretised by grid points

0 = xγ,0 ≤ xγ,1 ≤ · · · ≤ xγ,nγ = 1

where the total number of grid points of Gγ is nγ + 1. We also require these grids

to be nested, which means

Gα ⊂ Gβ, α ≤ β.

In particular, it is common to use equally spaced grids. The common choice of

the spacing is 2−γ for grid Gγ. In this case, Gγ, γ ∈ N is a sequence of nested

grids. We will further study the interpolation on unequally spaced grids in the

next section.

Notation 1.3. Given domain X = [0, 1]. We define a sequence of girds Gγ, γ ∈ N
such that each grid Gγ includes 2γ+1 equally spaced points xγ,i, 0 ≤ i ≤ 2γ where

xγ,i = i2−γ. Here γ is called the level of grid.

It is commonplace to use a piecewise polynomial fγ as an interpolant of the

function f . For simplicity, in this section, we will only consider the piecewise

linear interpolants. More general cases will be discussed in the next section. The

piecewise linear interpolants can be written as a linear combination of linear nodal

basis functions.

Definition 1.4. The linear nodal basis function Φγ,i is defined as

Φγ,i(x) =

{
1− 2i|x− xγ,i|, x ∈ [xγ,i − 2−γ, xγ,i + 2−γ] ∩ [0, 1]

0, otherwise

We have Φγ,i(xγ,i) = 1 and Φγ,i(xγ,j) = 0 for any i 6= j. In addition, the basis

function Φγ,i is linear on the intervals [xγ,i−1, xγ,i] and [xγ,i, xγ,i+1]. By using these

linear nodal basis functions, we have following interpolant.
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Definition 1.5. The piecewise linear interpolant fγ on the grid Gγ is defined as

fγ := Kγf =
2γ∑
i=0

f(xγ,i)Φγ,i(x)

where Kγ is denoted as the interpolation operator.

Suppose f is an element of a function space V ⊂ H2
mix(X). The piecewise

linear interpolation fγ is in a subspace Vγ of V . Vγ is spanned by the linear nodal

basis functions, i.e.

Vγ := span {Φγ,i, i = 0, . . . , 2γ} .

Now we start to construct fγ in an alternative way which can be generalised

to construct a sparse grid in the multidimensional case. First, we define the

hierarchical basis functions and hierarchical spaces.

Definition 1.6. Given the index sets

Bγ =

{
{1, 3, 5, . . . , 2γ − 3, 2γ − 1} , if γ > 0,

{0, 1} , if γ = 0.

The level γ hierarchical basis functions are the Φγ,i with i ∈ Bγ. The hierarchical

space Wγ is defined as the space spanned by all the level γ hierarchical basis

functions, which is denoted as

Wγ := span {Φγ,i, i ∈ Bγ} .

By using the hierarchical basis, we can write a linear interpolant of f as

f ′γ =

γ∑
α=0

∑
i∈Bα

cα,iΦα,i.

Here we take the hierarchical coefficients

cα,i =



[
−1

2
, 1,

1

2

]
α,i

f, α ≥ 1

f(x0,0), α = 0, i = 0

f(x0,1), α = 0, i = 1

where [
−1

2
, 1,

1

2

]
α,i

f = f(xα,i)−
f(xα−1, i−1

2
) + f(xα−1, i+1

2
)

2
.

The following Lemma shows that the linear interpolants f
′
γ and fγ are the same.
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Lemma 1.7. f ′γ = fγ = Kγf

Proof. Since we use linear basis function, the interpolants f ′γ and fγ are piecewise

linear functions. Thus we only need to show on any grid points xγ,j

f ′γ(xγ,j) = fγ(xγ,j).

Here we prove this by mathematical induction. First, when γ = 0, we have

f0(x) = f(x0,0)Φ0,0(x) + f(x0,1)Φ0,1(x)

and

f ′0(x) = c0,0Φ0,0(x) + c0,1Φ0,1(x).

By definition, we know c0,0 = f(x0,0) and c0,1 = f(x0,1). Thus, f0 = f ′0.

Next we need to show f ′γ = fγ, when f ′γ−1 = fγ−1. For any grid point xγ,j, we

have

f ′γ(xγ,j) =

γ−1∑
α=0

∑
i∈Bα

cα,iΦα,i(xα,j) + cγ,jΦγ,j(xγ,j)

= f ′γ−1(xγ,j) + cγ,j

= fγ−1(xγ,j) + cγ,j

=
1

2
(f(xα−1, i−1

2
) + f(xα−1, i+1

2
)) + cγ,j

= f(xγ,j) = fγ(xγ,j).

In the first equality, we use the property that the supports of Φγ,i, i ∈ Bγ are

nonoverlapping. The second equality is satisfied because Φγ,j(xγ,j) = 1. In the

third equality, we use our assumption. The fourth equality is obtained by directly

using the definitions of fγ−1 and cγ,j.

The proof of Lemma 1.7 actually implies

Vγ = Vγ−1 ⊕Wγ.

Consequently, we can write

Vγ =

γ⊕
α=0

Wα = span {Φα,i, α = 0, . . . , γ and i ∈ Bα}

We can also write the hierarchical coefficients into an integral form if the

function f ∈ H2(X).
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Lemma 1.8 ([16],[36]). Let f ∈ H2(X) and cα,i be hierarchical coefficients such

that fγ = Kγf =
∑γ

α=0

∑
i∈Bα cα,iΦα,i. Then for α > 0, one has

cα,i = −2−α

2

∫
X

Φα,i
d2f

dx2
dx

Proof. Using integration by parts, one obtains∫
X

Φα,i
d2f

dx2
dx = Φα,i

df

dx

∣∣∣∣xα,i+1

xα,i−1

−
∫ xα,i+1

xα,i−1

dΦα,i

dx

df

dx
dx

= 0− 1

2−α

∫ xα,i

xα,i−1

df

dx
dx+

1

2−α

∫ xα,i+1

xα,i

df

dx
dx

=
1

2−α
(−(f(xα,i)− f(xα,i−1)) + (f(xα,i+1)− f(xα,i)))

= − 2

2−α
cα,i.

From Lemma 1.8, as ∣∣∣∣∫
X

Φα,i
d2f

dx2
dx

∣∣∣∣ ≤ ||Φα||2||f ||2,

the hierarchical coefficients decrease like O(2−α). The level α hierarchical surplus

from the hierarchical space Wα is bounded by∣∣∣∣∣
∣∣∣∣∣∑
i∈Bα

cα,iΦα,i

∣∣∣∣∣
∣∣∣∣∣
2

≤
∑
i∈Bα

|cα,i| ‖Φα,i‖2

where ‖Φα,i‖2 =
(

2
3

)1/2
2−α/2 by direct computation. Combined with the result

in Lemma 1.8, the level α hierarchical surplus also decreases exponentially with

respect to α. However, the number of the basis functions which span the space

Wα increases exponentially as α increases. This means the computational cost

increases exponentially while only little improvement is obtained in the accuracy.

This insight in the relation between computational cost and accuracy motivates

the idea of the sparse grid interpolation in high dimensional case.

1.1.2 Multidimensional Interpolation

Now we consider to build the sparse grid for the dimension d ≥ 2. Suppose the

domain X ⊂ Rd, where d is the dimension of domain X and it is a integer. In

particular, we consider the domain X with the following tensor product structure

X = χ1 × · · · × χd
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where χk = [ak, bk], k = 1, . . . , d are closed intervals. Suppose f is a multivariate

real valued function defined on the domain X. Similar as we did in 1D case, we

apply the transformation

yk =
xk − ak
bk − ak

, k = 1, . . . , d,

then we get a function defined on standard d dimensional unit cube [0, 1]d.

We again assume our function f is continuous and thus bounded. In order to

build the sparse grid, we first consider the discretisation of our standard domain

[0, 1]d. We construct the d dimensional full grid point set with multi-index∗

γ = (γ1, . . . , γd) as the product set of 1D grid points set Gγ, which is

Gγ = Gγ1 × · · · ×Gγd .

All the multi-indices γ form a set {γ = (γ1, . . . , γd) | γi ∈ N}. We can define

the natural partial ordering on this set, which for any multi-index α ≤ β iff

αk ≤ γk for all k = 1, . . . , d. The set {Gγ} which contains all the full grids

inherits the partial ordering from the multi-index set, which is

Gα ⊂ Gβ, α ≤ β.

If we further choose the spacing as 2−γk for the kth dimension, following Notation

1.3, we have

Gγ =
{
x = (x1, . . . , xd) ⊂ Rd |xk = ik2

−γk for ik = 0, . . . , 2γk and k = 1 . . . , d
}
.

We denote elements in Gγ as

xγ,i = (xγ1,i1 , . . . , xγd,id) = (i12−γ1 , . . . , id2
−γd)

for any ik ∈ {0, . . . , 2γk} for each k = 1, . . . , d. Again in the above notation

i = (i1, . . . , id) is a multi-index.

The d dimensional nodal basis function is defined as product of 1D nodal basis

functions.

Notation 1.9. The d dimensional nodal basis functions are

Φγ,i(x) =
d∏

k=1

Φγk,ik(xk).

∗Here we still use the same index notation as the notation for 1D case. In this thesis, we

will mostly focus on the multidimensional case unless otherwise notified.
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The support of Φγ,i(x) is

[xγ1,i1−1, xγ1,i1+1]× · · · × [xγd,id−1, xγd,id+1] ∩ [0, 1]d.

We have Φγ,i(xγk,ik) = 1 and Φγ,i(x) = 0 for any other grid points in Gγ.

By using the d dimensional nodal basis functions, we can write the d dimen-

sional piecewise linear interpolant of function f as

fγ := Kγf =
2γ∑
i=0

f(xγ,i)Φγ,i(x)

where 2γ := (2γ1 , . . . , 2γd) and the summation

2γ∑
i=0

:=
2γd∑
id=0

· · ·
2γ1∑
i1=0

. (1.1)

We denote the function space which is spanned by the d dimensional nodal

basis functions as

Vγ := span {Φγ,i, 0 ≤ i ≤ 2γ} .

It can be also written as the tensor product of the 1D function spaces spanned

by 1D nodal basis functions, i.e.

Vγ = Vγ1 ⊗ · · · ⊗ Vγd .

Next, we define the d dimensional hierarchical basis functions and hierarchical

spaces as we did for 1D case.

Notation 1.10. Let γ ∈ Nd, then we define the following multi-index set

Bγ : = Bγ1 × · · · ×Bγd

=

{
{i | ik = 1, 3, 5, . . . , 2γk − 1} , if γk > 0, k = 1, . . . , d

{i | ik = 0, 1} , if γk = 0, k = 1, . . . , d

(1.2)

and denote

Wγ = span {Φγ,i, i ∈ Bγ}

as the hierarchical space with respect to the multi-index γ. The d dimensional

nodal basis functions which generates the space Wγ are called the hierarchical

basis functions.
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Like we did for space Vγ, the d dimensional hierarchical space Wγ can also be

written into tensor product of 1D hierarchical spaces, i.e.

Wγ = Wγ1 ⊗ · · · ⊗Wγd .

Actually, we can write the function space Vγ as a direct sum of hierarchical spaces

Wα, 0 ≤ α ≤ γ. We can check this by

Vγ =
d⊗

k=1

Vγk =
d⊗

k=1

γk⊕
αk=0

Wαk =
⊕

0≤α≤γ

d⊗
k=1

Wαk =
⊕

0≤α≤γ

Wα. (1.3)

From the decomposition, we can write the d dimensional piecewise linear

interpolant of function f in the following alternative way

fγ =
∑
α≤γ

∑
i∈Bα

cα,iΦα,i. (1.4)

The coefficients cα,i can also be obtained from the tensor product structure, we

have

cα,i =

(
d∏

k=1

Hαk,ik

)
f

where

Hαk,ik :=

[−1

2
1 − 1

2
]αk,ik , if αk > 0,

[0 1 0]αk,ik , if αk = 0.
(1.5)

The following Lemma is an extension of Lemma 1.8 in d dimensional case.

Again the lemma shows the exponential decay of the coefficients in the interpo-

lation formula 1.4.

Lemma 1.11 ([16],[36]). Let X = [0, 1]d and f ∈ H2
mix(X) and cγ,i be hierarchical

coefficients such that fγ = Kγf =
∑

α≤γ
∑

i∈Bα cα,iΦα,i, then for γ ≥ 1, one has

cα,i = (−1)d2−|α|−d
∫
X

Φα,iD
2f dx

where | · | is the l1 norm. Additionally for α ≥ 1(and α ≥ 0), let k be the

number of non zero components of α and {m1, . . . ,mk} ⊂ {1, . . . , d} be such that

αm1 , . . . , αmk 6= 0 and {mk+1, . . . ,md} are the remaining indices, then one has

cα,i = (−1)k2−|α|−k
∫ 1

0

· · ·
∫ 1

0

Φα,i
∂

∂2xm1

. . .
∂

∂2xmk
f

∣∣∣∣
xmk+1

=xik+1
,...,xmd=xid

dxm1 . . . dxmk .
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Proof. Similar as the proof in Lemma 1.8, by using the integration by parts and

noticing the product structure of basis functions, we can achieve the result.

From the decomposition (1.3), we can write the approximation as

fγ =
∑

0≤α≤γ

fhα (1.6)

where each fhα ∈ Wα and fhα =
∑

γ∈Bα cα,iΦα,i. Here fhα is called the hierarchical

surplus. The following Lemma provides a bound to the hierarchical surplus from

Wα.

Lemma 1.12 ([16],[36]). Let f ∈ H2
mix and fγ is the piecewise linear approxima-

tion of f and fhα are hierarchical surpluses. Then for α ≥ 1

‖cα,iΦα,i‖2 ≤ 3−d2−2|α|‖ D2f
∣∣
supp Φα,i

‖2

where the notation supp is the support. The hierarchical surplus from Wα

‖fhα‖ ≤
(

1

3

)d
2−2|α|‖D2f‖2.

Proof. For any α ≥ 1, the L2 norm of the basis function Φα,i is(
1

3

) d
2

2
d
2
− |α|

2 .

By using the result in Lemma 1.11 and the Hölder inequality, we have

‖cα,iΦα,i‖2
2 = |cα,i|2‖Φα,i‖2

2

= (−1)2d2−2|α|−2d

(∫
Ω

Φα,iD
2f dx

)2(
1

3

)d
2d−|α|

=

(
1

6

)d
2−3|α|

(∫
Ω

Φα,iD
2f dx

)2

≤
(

1

6

)d
2−3|α|‖Φα,i‖2

2‖ D2
∣∣
supp Φα,i

f‖2
2

=

(
1

9

)d
2−4|α|‖ D2

∣∣
supp Φα,i

f‖2
2.

For any i 6= j ∈ Bα, we have

supp Φα,i ∩ supp Φα,j = ∅.
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and ⋃
i∈Bα

supp Φα,i = X.

Therefore, we can bound the hierarchical surplus by

‖fhα‖2 = ‖
∑
i∈Bα

cα,iΦα,i‖2 ≤
∑
i∈Bα

‖cα,iΦα,i‖2

≤
(

1

3

)d
2−2|α|

∑
i∈Bα

‖ D2
∣∣
supp Φα,i

f‖

=

(
1

3

)d
2−2|α|‖D2f‖2.

From Lemma 1.12, we see that the L2 norm of the hierarchical surplus decays

exponentially as the L1 norm of multi index(level) α increases. At the same

time, in order to compute the level α hierarchical surplus, we have to use |Bα| =
2|α|−d nodal basis functions. The computational cost grows exponentially as the

L1 norm of level α increases. These observations lead us to consider if we can

only leave these hierarchical surplus terms with multi index α which has relative

small L1 norm and throw away the rest terms to get a cheaper but still accurate

approximation of the original function f . The following classical sparse grid

method is one of the most commonly used way to do that. The level n classical

sparse grid interpolation formula is

f sn =
∑
|α|≤n

fhα . (1.7)

Its corresponding full grid interpolation is when we take multi index γ as (n, . . . , n)

in formula 1.6. The sparse grid interpolant f sn is in the following defined classical

sparse grid function space

V s
n :=

⊕
|α|≤n

Wα.

V s
n is a subset of Vn from the definition. The computing grid we used when we

find the sparse grid interpolant f sn in the space V s
n is called sparse grid.

1.2 Sparse Grid Quadrature

As mentioned in the previous section, the sparse grid method has originally been

developed to compute high dimensional integrals by Smolyak [86]. In 1998, Ger-

stner and Griebel reviewed this idea in their paper [40] and extended it by trying
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several new 1D quadrature rules. The error analysis of general sparse grid quadra-

ture can be found in Novak and Ritter’s paper [68]. They also studied Polynomial

exactness of the sparse grid quadrature. Holtz [49] gave a thorough review of the

sparse grid quadrature in his PhD thesis. In addition, he also tested and com-

pared the performances of different kinds of sparse grid quadrature by many high

dimensional applications in Finance and Insurance.

We consider computing the following integral

If =

∫
X

f(x) dx. (1.8)

X ⊂ Rd is again assumed to be tensor product of closed intervals. In most cases,

we will take X as the standard d dimensional unit cube [0, 1]d. The integrand

f ∈ H2
mix(X) is a multidimensional function.

The product rule is the most common way to construct a computational

method for the multidimensional integral (1.8). However, the computational

cost will be very expensive if d is large. As the sparse grid method can mitigate

the curse of dimensionality in the interpolation of high dimensional functions, it

can also be used here to reduce the huge computational cost when we compute

high dimensional integrals. Both product rule and sparse grid quadrature are

built upon 1D quadrature rules. Many 1D quadrature rules we consider here are

of interpolatory type, e.g. Newton Cotes formulas [25] and the Clenshaw Curtis

rule [23, 25]. We say a 1D quadrature is of interpolatory type if the quadrature

formula can be obtained by first interpolating f(x) by a polynomial and then

integrating the interpolating polynomial [25]. In the previous section, we only

consider using piecewise linear basis function when we interpolate a function.

Here we will generalise it to piecewise (Lagrangian) polynomial basis function

of degree n, ∀n ∈ N in order to construct more general 1D quadrature rules

of interpolatory type. Another class of 1D quadrature rule is the quadrature

rule of Gauss type. However, this type of quadrature rule does not have nested

structure. Nested 1D quadrature rules are required to construct a sparse grid.

Patterson [72, 70] found a way to add new quadrature points to the original 1D

Gauss rules to make it nested while still keep high polynomial degree of exactness.

The so called Gauss Patterson rule is among one of the best 1D quadrature rules

used to construct sparse grid quadrature.
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1.2.1 1D Quadrature Rules of Interpolatory Type

Suppose we have a sequence of grids Gγ,γ ∈ N. On grid Gγ, the domain X = [a, b]

is spaced by nγ + 1 grid points

a = xγ,0 ≤ xγ,1 ≤ · · · ≤ xγ,nγ = b.

Definition 1.13. If lγ,j(x), j = 0, . . . , nγ are polynomials of degree nγ and satisfy

lγ,j(xγ,k) =

{
1, k = j

0, k 6= j
j, k = 0, . . . , nγ,

then lγ,j(x), j = 0, . . . , nγ are the (Lagrangian) polynomial basis functions of

degree nγ associated to the grid Gγ.

In fact, the Lagrangian basis functions can be expressed as

lγ,j(x) =

nγ∏
k=0,k 6=j

(x− xγ,k)
(xγ,j − xγ,k)

, j = 0, . . . , nγ.

The nγ + 1 points (Lagrangian) polynomial interpolant is

Lnγ (x) =

nγ∑
j=0

f(xγ,j)lγ,j(x).

The grids Gγ, γ ∈ N here are not restricted to be equally spaced grids. However,

we still need to assume Gγ, γ ∈ N is a sequence of nested grids in order to apply

the sparse grid method. A common choice of the number of grid points is 2γ−1 +1

for each γ.

A well known result states that the Lagrangian interpolant is unique.

Theorem 1.14 (Uniqueness of Lagrangian Interpolation). Given any n+ 1 dis-

tinct numbers x0, . . . , xn and any set of numbers y0, . . . , yn, there is exactly one

polynomial pn(x) of degree n or less that satisfies the interpolation conditions

pn(xi) = yi, 0 ≤ i ≤ n.

The associated quadrature of interpolatory type is

Qγf =

∫
X

Lnγ (x) dx =

nγ∑
j=0

wγ,jf(xγ,j)
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where wγ,j, j = 0, . . . , nγ are weights and

wγ,j =

∫
X

lγ,j(x) dx (1.9)

according to the linearity of integration.

Next we will introduce two classes of quadrature formulas of interpolatory

type. The first class is the Newton-Cotes formulas. Newton-Cotes formulas are

frequently used quadrature formulas of interpolatory type computed on equally

spaced grids. Here we will construct the 2-point trapezoidal rule and the 3-

point Simpson’s rule using Lagrangian basis functions as examples. Other higher

accuracy Newton-Cotes formulas can be similarly derived.

• 2-point Trapezoidal rule on domain X = [0, 1]

Suppose the grid used is G0 = {0, 1}. The two basis functions are

l0,0(x) = x− 1, l0,1(x) = x

according to the definition of Lagrangian basis function. They are actually

linear basis functions as we used in the previous section. From (1.9), we

can compute the weights of two points are

w0,0 = w0,1 =
1

2
.

Thus

Q0f =
1

2
(f(0) + f(1)).

• 3-point Simpson’s rule on domain X = [0, 1]

Suppose the grid used is G0 = {0, 0.5, 1}. The three Lagrangian basis

functions are

l0,0(x) = 2(x− 1

2
)(x− 1)

l0,1(x) = −4x(x− 1)

l0,2(x) = 2x(x− 1

2
).

They are quadratic basis functions and their associated weights are

w0,0 =
1

6
, w0,1 =

2

3
, wγ,2 =

1

6
.

Thus

Qγf =
1

6

(
f(0) + 4f(

1

2
) + f(1)

)
.
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In practice, Newton Cotes formulas are mostly used in its composite form.

Definition 1.15 ([25]). A composite rule arises when the interval of integration

is subdivided into a number of equal subintervals and a fixed rule of integration

is applied to each of the subintervals.

Here we take the composite trapezoidal rule as our example. Suppose we

compute on the equally spaced grid Gγ. The number of grid points is 2γ + 1. As

in the previous section, we approximate the function f using the piecewise linear

interpolant

fγ =
2γ∑
i=0

f(xγ,i)Φγ,i(x).

In fact, Φγ,i can be viewed as combination of two linear transformed Lagrangian

basis functions on the neighbouring subintervals. Integrating the interpolant fγ

on space X = [0, 1], we will get the following composite trapezoidal rules

Tγf : =

∫
X

fγ dx =
2γ∑
i=0

f(xγ,i)

∫
X

Φγ,i(x) dx

=
1

2γ
(
1

2
f(xγ,0) +

2γ−1∑
i=1

f(xγ,i) +
1

2
f(xγ,2γ ))

=
1

2γ

2γ∑
i=0

′′
f(xγ,i).

The double dash of the summation means the first and the last terms are to be

halved in the computation. Similar as constructing the composite trapezoidal

rule, we can also derive higher accuracy composite rules by integrating corre-

sponding higher order piecewise interpolant on domain X.

The composite trapezoidal rule is exact for linear functions. The error of the

composite trapezoidal rule is O(2−2γ) if the integrand has a continuous second

order derivative.

Lemma 1.16. Let f ∈ C2[0, 1]. Then

If − Tγf = − 1

12

d2f

dx2

∣∣∣∣
x=θ

2−2γ, for some θ ∈ [0, 1].

Proof. See in [25].

The second class is the Clenshaw-Curtis quadrature which is a quadrature

formula of interpolatory type computed on an unequally spaced grid. As we did
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before, we first construct the interpolating polynomial for the integrand f , then

we integrate it over domain X to get the weights in the quadrature formula. The

corresponding interpolating polynomial is called the Chebyshev interpolant of f .

We take domain X as [−1, 1] for simplicity when we discuss the Clenshaw-Curtis

quadrature and the Chebyshev interpolant.

We begin with introducing the following Chebyshev Polynomials

Tk(x) = cos(k arccos(x)), k = 0, 1, 2 . . . .

They are orthogonal polynomials with respect to the weight function

w(x) = (1− x2)−
1
2 .

For each k, Tk(x) is a polynomial of degree k.

If we take all these orthogonal polynomials as the basis functions of L2 space,

then any function in L2 space can be expressed by this basis. We have the

following Chebyshev expansion for the integrand f

f(x) =
∞∑
k=0

′
ckTk.

where

ck =
2

π

∫ 1

−1

(1− x2)−
1
2f(x)Tk(x) dx. (1.10)

As we used the double dash in the trapezoidal rule formula, the single dash here

indicates that the first term of the summation is to be halved. We denote the

N + 1 terms truncated Chebyshev expansion as

SN(x) =
N∑
k=0

′
ckTk(x). (1.11)

If f is continuous in [−1, 1], then we have

SN(x)→ f(x), N →∞

pointwise.

In the truncated Chebyshev expansion (1.11), the coefficients ck, k = 0, 1, . . .

are still in integral forms. They can not be computed exactly in most cases.

The discrete Chebyshev expansion is an approximation of the truncated Cheby-

shev expansion. It is obtained by approximating the integrals in (1.10) using

trapezoidal rule after applying polar coordinates transformation x = − cos θ,∫ 1

−1

(1− x2)−
1
2f(x)Tk(x) dx =

∫ π

0

f(− cos θ)Tk(− cos θ) dθ.
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Suppose we discretise the interval [0, π] by a sequence of equally spaced grid. We

denote the γth grid as Θγ. It contains the following grid points.

0 = θγ,0 ≤ θγ,1 ≤ · · · ≤ θγ,nγ = π

Transforming these grid points back to onto the original domain X, we get the

following unequally spaced grid points

−1 = xγ,0 ≤ xγ,1 ≤ · · · ≤ xγ,nγ = 1.

We denote the set

Gγ = {xγ,i, i = 0, , . . . , nγ}

as γth grid. In order to make sure Gγ, γ ∈ N are nested, we require Θγ, γ ∈ N are

nested. The common choice of the spacing is 2−γ/π for Θγ. The grid points xγ,i,

i = 0, . . . , nγ are the extreme points of the Chebyshev polynomial. They are called

the Chebyshev-Gauss-Lobatto (CGL) points in the literature [60]. Approximating

the integral by trapezoidal rule, we get

bk =
2

π

∫ π

0

f(cos θ)Tk(cos θ) dθ

≈ 2

nγ

nγ∑
i=0

′′
f(cos θγ,i)Tk(cos θγ,i)

=
2

nγ

nγ∑
i=0

′′
f(xγ,i)Tk(xγ,i)

(1.12)

We take N = nr in the truncated Chebyshev expansion which means we approxi-

mate f by a polynomial of degree less or equal to nγ. The corresponding discrete

Chebyshev expansion is

Jγf(x) =

nγ∑
k=0

′
bkTk(x)

Next we will show that the discrete Chebyshev expansion Jγf is the same poly-

nomial as the Lagrangian interpolant Lnγf defined on the unequally spaced grid

Gγ.

Lemma 1.17 (discrete orthogonality,[60]). Let

dγ,pq =

nγ∑
i=0

′′
Tp(xγ,i)Tq(xγ,i)
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for any γ. We have

dγ,pq = 0, p 6= q, p, q ≤ nγ

dγ,pp =
1

2
nγ, 0 < p < nγ

dγ,00 = dγ,nγnγ = nγ.

Proof. Direct computation by using the definition of the Chebyshev polynomials

and trigonometric identities. See details in [60].

Lemma 1.18. For any grid points xγ,i ∈ Gγ, we have

f(xγ,i) = Jγf(xγ,i).

Proof.

Jγf(xγ,i) =

nγ∑
k=0

2

nγ

[
nγ∑
j=0

′′
f(xγ,j)Tk(xγ,j)

]
Tk(xγ,i)

=

nγ∑
j=0

2

nγ
f(xγ,j)

nγ∑
k=0

′′
Tk(xγ,j)Tk(xγ,i)

=

nγ∑
j=0

2

nγ
f(xγ,j)

nγ∑
k=0

′′
Tj(xγ,k)Ti(xγ,k)

= f(xγ,i).

In the second equality we change the order of summation. The third equality

is obtained by using the definition of the Chebyshev polynomial. The fourth

equality is achieved by applying the discrete orthogonality.

Combining the result in Lemma 1.18 and the uniqueness of the Lagrangian

interpolant, we have

Jγf(x) = Lnγf(x) =

nγ∑
i=0

f(xγ,i)lγ,i(x).

We can obtain weights of the Clenshaw-Curtis quadrature rule by integrating the

Lagrangian basis functions lγ,i(x) over the domain X = [−1, 1]. However, these

integrals are not easy to compute in this case. The following method gives a

conciser way to find out the weights of the Clenshaw-Curtis quadrature rule. It

was first given in the literature [83] by Sloan and Smith. Instead of integrating

the Lagrangian basis functions, they derived the expression of weights from the

discrete Chebyshev expansion Jγf .
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Let

ak =

∫ 1

−1

Tk(x) dx, k = 0, . . . nγ

Computing it by using the polar coordinate, we have

ak =

∫ π

0

cos kθ sin θ dθ.

Then ak is straightforward to calculate. Integrating Jγf over the domain [−1, 1],

we get

Qnγf =

∫ 1

−1

Jγf(x) dx =

∫ 1

−1

nγ∑
k=0

′
bkTk(x) dx

=

nγ∑
k=0

′
bk

∫ 1

−1

Tk(x) dx =

nγ∑
k=0

′
bkak.

(1.13)

Plug (1.12) into (1.13), we can obtain

Qnγf =

nγ∑
k=0

ak
2

nγ

nγ∑
i=0

′′
f(xγ,i)Tk(xγ,i)

=

nγ∑
i=0

f(xγ,i)

nγ∑
k=0

′′ 2ak
nγ

Tk(xγ,i).

Comparing with the general quadrature formula

Qnγf =

nγ∑
i=0

wγ,if(xγ,i),

we have

wγ,i =

nγ∑
k=0

′′ 2ak
nγ

Tk(xγ,i).

1.2.2 Sparse Grid Quadrature Based on Interpolation

Now, we start to construct the sparse grid quadrature based on these 1D quadra-

ture rules of interpolatory type. First the multidimensional grid Gγ is the Carte-

sian product of 1D grids. Suppose the dimension is d. Then

Gγ = Gγ1 × · · · ×Gγd

where γ = (γ1, . . . , γd). The sequences of 1D grid Gγk , γk = 0, 1, . . . ,,k = 1, . . . , d

are required to be nested but can be unequally spaced. The d dimensional La-

grangian basis functions are defined as product of 1D Lagrangian basis functions,
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namely,

lγ,i(x) =
d∏

k=1

lγk,ik(xk).

The d dimensional Lagrangian interpolant† of integrand f defined on grid Gγ is

fγ := Lnγf =

nγ∑
i=0

f(xγ,i)lγ,i(x). (1.14)

Here we follow the notation in (1.1). The product rule can be derived by inte-

grating the interpolant fγ over space X. If we denote the product rule as the

operator Qγ where γ = (γ1, . . . , γd), then we have

Qγf =

nγ∑
i=0

wγ,if(xγ,i)

where the weights are

wγ,i =
d∏

k=1

wγk,ik ,

wγk,ik =

∫
Xk

lγk,ik(xk) dxk, k = 1, . . . , d.

We still denote the function space which is spanned by the d dimensional

Lagrangian basis functions as

Vγ = span {lγ,i | 0 ≤ i ≤ nγ} .

If we denote Vγk as the space spanned by 1D Lagrangian basis functions, i.e.

Vγk = span {lγk,ik | 0 ≤ ik ≤ nγk} , k = 1, . . . , d

and Pnk , k = 1, . . . , d as the set contains all polynomials of degree up to nγk , then

Vγk = Pγk . We can rewrite the space Vγ as

Vγ = Vγ1 ⊗ · · · ⊗ Vγd = Pγ1 ⊗ · · · ⊗ Pγd .

The hierarchical space with respect to the multi-index γ is

Wγ = span {lγ,i, i ∈ Bγ}
†Piecewise polynomial interpolation is not discussed here. For this case, in order to construct

a sparse grid, we require the domain of function to be subdivided into several equal subintervals

and a fixed interpolation method to be applied to each of these subintervals. A composite

quadrature rule will be derived if we integrate such interpolant over the domain.
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where Bγ is the multi-index set defined in Notation 1.2. It can also be written as

the tensor product of 1D hierarchical spaces

Wγ = Wγ1 ⊗ · · · ⊗Wγd

where

Wγk = span {lγk,ik , ik ∈ Bγk} .

By using the definition of Wγk , we can decompose the the 1D space Vγk as the

direct sum of Wαk , 0 ≤ αk ≤ γk, namely,

Vγk =

γk⊕
αk=0

Wαk .

For the multidimensional case, we have

Vγ =
d⊗

k=1

Vγk =
d⊗

k=1

γk⊕
αk=0

Wαk =
⊕

0≤α≤γ

d⊗
k=1

Wαk =
⊕

0≤α≤γ

Wα.

From the decomposition of Vγ, the d dimensional Lagrangian interpolants can

also be written into the following expression

fγ =
∑
α≤γ

∑
i∈Bα

cα,ilα,i (1.15)

where the coefficients are

cα,i =

(
d∏

k=1

Hαk,ik

)
f.

Here Hαk,ik is the same as we defined in (1.5). This is because by using the

uniqueness of the Lagrangian interpolant, we only need to check if the two ex-

pressions (1.14) and (1.15) achieve the same value on every grid points for 1D

case. This has already been shown in the proof of the Lemma 1.7.

Dropping the terms in (1.15) for which the multi-index α which has large l1

norm, we get the d dimensional classical sparse grid Lagrangian interpolants

f sn =
∑
|α|≤n

∑
i∈Bα

cα,ilα,i.

The classical sparse grid function space is

V s
n =

⊕
|α|≤n

Wα.
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We again integrate the sparse grid Lagrangian interpolant over domain X.

Then we get the following computing formula of sparse grid quadrature

Qs
nf =

∫
X

f sn(x) dx =

∫
X

∑
|α|≤n

∑
i∈Bα

cα,ilα,i(x) dx.

=
∑
|α|≤n

∑
i∈Bα

cα,i

∫
X

lα,i(x)dx

=
∑
|α|≤n

∑
i∈Bα

cα,iwα,i.

1.2.3 Integration Rules of Gauss Type

In general, we hope the quadrature formula

Qf =
n∑
j=0

wjf(xj)

can exactly integrate as many functions as possible. From the Weierstrass Ap-

proximation Theorem [78], we know that any real valued continuous function on

a closed interval can be approximated by a polynomial. Thus, it is common to use

polynomials as the test function class. The following definition of the polynomial

degree of exactness is frequently used in the discussion of the performance of a

quadrature formula.

Definition 1.19. The polynomial degree of exactness is the largest value of n so

that all the polynomials of degree n and below are integrated exactly.

Suppose Ln(x) is the n+1 points Lagrangian interpolant. If we further denote

the remainder as

Rn(x) = f(x)− Ln(x),

then we have

Theorem 1.20 ([25]). If f (n)(x) is continuous on [a, b] and f (n+1)(x) exists in

(a, b), then for any x ∈ [a, b], the remainder

Rn(x) = f(x)− Ln(x) =
f (n+1)(θ)

n+ 1
wn+1(x).

Here θ ∈ (a, b) and it depends on the choice of x. wn+1(x) is defined as

wn+1(x) = (x− x0) . . . (x− xn).
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Proof. See in [25].

From this remainder theorem, we can prove the following result

Theorem 1.21. An n+ 1 points quadrature rule is an integration rule of inter-

polatory type if and only if its polynomial degree of exactness is at least n.

Proof. Suppose the n + 1 points interpolating polynomial of integrand is Ln(x)

and the remainder is Rn(x). By using the result in the remainder theorem, we

have ∫ b

a

f(x) dx−
∫ b

a

Ln(x) dx =

∫ b

a

Rn(x) dx = 0

provided that f is a polynomial of degree less or equal than n. This is because

f (n+1)(x) = 0 for such polynomial f .

If the polynomial degree of exactness is at least n, then for each Lagrangian

basis function lk(x), k = 0, . . . , n, the following integral∫ b

a

lk(x) dx =
n∑
j=0

wjlk(xj)

is computed exactly. Using the definition of the Lagrangian basis function, the

right-hand side of the equation is wk. Thus the quadrature rule is of interpolatory

type.

From the above Theorem, we have the following remarks

Remark 1.22. The 2-point trapezoidal rule is exact for all polynomials of degree

less or equal than 1.

Remark 1.23. The 3-point Simpson’s rule is exact for all polynomials of degree

less or equal than 2.

Remark 1.24. The 2γ−1 + 1 points Clenshaw-Curtis rule is exact for all polyno-

mials of degree less or equal than 2γ−1.

Next we further look into the polynomial degree of exactness of these quadra-

ture rules. The degree of exactness of the 2-point trapezoidal rule is 1. We can

check this by applying it to compute the integral
∫ 1

0
x2 dx. The trapezoidal rule

gives the value 1/2 while the exact value is 1/3. Similarly, we can also check the

degree of exactness of a 2γ−1 + 1 points Clenshaw-Curtis rule is 2γ−1. However,

for 3-point Simpson’s rule, the exact value of the integral is∫ b

a

x3 dx =
b4 − a4

4
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which is equal to the result obtained from Simpson’s rule

b− a
6

[
a3 + 4

(
a+ b

2

)3

+ b3

]
.

In addition, it is not exact when we apply it to integrating f(x) = x4. Thus, the

polynomial degree of exactness of 3-point Simpson’s rule is 3.

We now consider the quadrature rules for the integral with a weight function

ρ(x), ∫ b

a

f(x)ρ(x) dx ≈ Qf =
n∑
j=0

wjf(xj). (1.16)

It is natural to consider when the 1D quadrature rule (1.16) achieves the

highest polynomial degree of exactness. How to choose the weights wj, j =

0, . . . , n and the quadrature points xj, j = 0, . . . , n for such a case?

There are 2n + 2 unknowns in total in the quadrature rule (1.16). Thus it

is possible for us to derive a quadrature rule of degree of exactness 2n + 1. In

particular, if the quadrature points are given, then there are n + 1 unknowns in

total. If we further assume the quadrature rule is interpolatory, then according

to the Theorem 1.21, we know the degree of exactness of such a quadrature rule

is at least n.

Definition 1.25. If the degree of exactness of the quadrature rule (1.16) is 2n+1,

then the quadrature points are defined as Gauss points and the quadrature rule

is defined as Gauss quadrature.

In order to obtain the Gauss points and its corresponding weights, we take

f(x) = xm, m = 0, . . . , 2n+1 and then we get the following system of polynomial

equations
n∑
j=0

wjx
m
j =

∫ b

a

xmρ(x) dx, m = 0, . . . , 2n+ 1.

Since this system of equations is nonlinear, it is not easy to solve it directly.

The commonly used way to tackle this system of equations is to first find the

Gauss points xj, j = 0, . . . , n and then solve the linear system with unknowns

wj, j = 0, . . . , n.

The following theorem provides a way to find the Gauss points. Actually, the

Gauss points are the zeros of a polynomial which is orthogonal to any polynomial

with degree less than n with respect to the weight function ρ(x).
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Theorem 1.26 ([25]). The quadrature points of an integration rule of interpola-

tory type is the Gauss points iff the following defined polynomial

wn+1(x) = (x− x0) . . . (x− xn)

is orthogonal to any polynomial p(x) with degree less than n with respect to weight

function ρ(x),i.e. ∫ b

a

p(x)wn+1(x)ρ(x) dx = 0.

Proof. See in [25].

It is natural to consider constructing a sparse grid quadrature based on the

1D Gauss rules. Since 1D Gauss rules achieve maximal polynomial degree of

exactness, one can expect the new sparse grid quadrature built upon these rules

also has high polynomial degree of exactness. However, unfortunately, when we

take a sequence of Gauss grids which consist of Gauss points, these grids are

not nested. Since nested 1D grids are required to construct a sparse grid, it is

impossible to use the sequence of Gauss rules directly as our 1D quadrature rules.

Suppose we have some preassigned quadrature points. Can we build a new

quadrature rule such that it has as high as possible polynomial degree of exactness

after adding some new quadrature points? If this is possible, we can iterate this

procedure to build a sequence of nested 1D grids which can be used in constructing

a sparse grid with high polynomial degree of exactness.

Suppose

a ≤ y1 ≤ · · · ≤ ym1 ≤ b

are the preassigned m1 quadrature points. We add m2 new quadrature points

a ≤ x1 ≤ · · · ≤ xm2 ≤ b.

Then the integral with weight function ρ(x) is approximated by∫ b

a

ρ(x)f(x) dx ≈
m1∑
j=1

wyj f(yj) +

m2∑
j=1

wxj f(xj). (1.17)

The weights

wyj , j = 1, . . . ,m1

wxj , j = 1, . . . ,m2

and the newly added quadrature points

xj, j = 1, . . . ,m2
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are 2m2+m1 unknowns. Thus it is possible to design the extended quadrature rule

such that it is exact for polynomials of the highest possible degree 2m2 +m1 − 1

by choosing these weights and new quadrature points.

The following Theorem is a generalisation of the Theorem 1.26.

Theorem 1.27 ([25]). The extended quadrature rule (1.17) is of degree of exact-

ness 2m2 +m1 − 1 if and only if

(a)it is exact for all polynomials of degree less than 2m2 +m1 − 1

(b)Let the polynomials

r(x) = (x− y1) . . . (x− ym1),

s(x) = (x− x1) . . . (x− xm2).

Their product r(x)s(x) is orthogonal to any polynomials of degree less than m2

with respect to the weight function ρ(x), i,e.∫ b

a

ρ(x)r(x)s(x)p(x) dx = 0.

Proof. See in [25].

Kronrod [55] first extended an n-points Gauss quadrature rule by adding

n + 1 new quadrature points. The polynomial degree of exactness of the new

quadrature rule is 3n + 1 if n is even and is 3n + 2 if n is odd. In particular,

if we further take the weight function ρ(x) = 1, a = −1 and b = 1 in Theorem

1.17, then it turns out that the newly added quadrature points are zeros of the

Stieltjes polynomial [25] En+1 satisfying∫ 1

−1

pn(x)En+1(x)xk dx = 0, k = 0, . . . , n

where pn(x) is the nth Legendre polynomial. The polynomial En+1 can be com-

puted by expanding it in terms of Legendre polynomials and solving the resulting

linear system. The roots of the Stieltjes polynomials [25] can be solved by ap-

plying Newton’s method. The weights can then be computed by solving the

corresponding linear system of equations.

Patterson [72] generalised Kronrod’s idea by iterating the Kronrod scheme.

Finally a sequence of nested grid with maximal degree of exactness is derived. If

we start from the 3-point Gauss rule G3, then the sequence of quadrature rule we

obtained is

G3 = P3
3 ,K7 = P3

7 ,P3
15,P3

31, . . .
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where we denote P as Patterson scheme and K as Kronrod scheme. The super-

script in the Patterson scheme means the starting rule is a 3-point Gauss rule.

The γth rule is of nγ = 2γ+1 − 1, γ = 1, 2, . . . number of grid points and is of

polynomial degree of exactness 3× 2γ − 1 when γ = 1, 2, . . . .

Remark 1.28. Not all Gauss formulas can be extended. For example, only four

possible extensions are possible for the 2-point Gauss rule [71].

Next, we will give a more general way to construct a sparse grid quadrature

rule. The construction not only works for the simple interpolatory rules which

have already been discussed in the previous section, but also for composite rules

and the quadrature rules of non-interpolatory type. In order to do that, we only

require function values on a sequence of nested grids. The grid points of each

grid in the sequence can be the quadrature points of any simple/composite 1D

rule of interpolatory/non-interpolatory type.

We again denote the sequence of grids as Gγ, γ ≥ 1. For each grid, the grid

points are

a ≤ xγ,0 ≤ xγ,1 ≤ · · · ≤ xγ,nγ ≤ b.

Notice here we also allow integration rules of open type of where the end points

are omitted from the evaluation. Suppose the weight which is associated with

quadrature point xγ,i, i = 0, . . . , nγ is wγ,i. The 1D quadrature rule on grid Gγ

can be computed as

Qγf =

nγ∑
i=0

wγ,if(xγ,i).

Then we can define the following difference operator

∆γf := Qγf −Qγ−1f = (Qγ −Qγ−1)f,

and set

Q0f := 2f(
a+ b

2
).

Then we can rewrite the nth 1D quadrature as the following telescoping sum

Qnf =
∑
α≤n

∆αf.

Now we consider computing the multi-dimensional integral. Let γ, α to be d

dimensional vectors in this case. By applying the product rule to 1D quadrature
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rules Qγi , i = 1, . . . , d, the d dimensional integral can be approximated by the

following quadrature formula

Qγf = (Qγ1 ⊗ · · · ⊗Qγd)f =

nγ1∑
i1=1

· · ·
nγd∑
id=1

wγ1,i1 . . . wγd,idf(xγ1,i1 , . . . , xγd,id).

The d-dimensional difference operator ∆γ is defined as the tensor product of 1D

difference operators

∆γ := (∆γ1 ⊗ · · · ⊗∆γd)f.

By using the d-dimensional difference operator, the product rule Qγ where γ =

(n, . . . , n) can be written as

Qγf = (Qn ⊗ · · · ⊗Qn)f =
∑

α≤(n,...,n)

∆αf

where the summation is defined in (1.1). Then the classical sparse grid quadrature

is defined as

Qnf =
∑
|α|≤n

∆αf. (1.18)

1.3 Number of Grid Points Used in a Sparse

Grid

From the previous sections, we know a d dimensional sparse grid is constructed

from sequences of 1D grids. In order to find out the number of grid points used

in the d dimensional sparse grid, we first review and sum up the number of grid

points in different 1D grids we have discussed before.

Case 1. In piecewise linear interpolation and the composite trapezoidal rule,

we use the equally spaced 1D grid. It is common to take a grid with 2γ + 1,

γ = 1, 2, . . . points as the γth grid in the sequence. If the function f is zero on

the boundary , the number of grid points is reduced to 2γ − 1, γ = 1, 2, . . . .

Case 2. In the simple Chebyshev interpolation and Clenshaw Curtis rule, a set

which contains Chebyshev-Gauss-Lobatto(CGL) points forms a grid. Although

the grid points are not equally spaced, we can map these CGL points one to one

onto an equally spaced grid. Therefore, as the common choice of grid in Case 1,

the number of grid points is 2γ + 1, γ = 1, 2, . . . with non-zero boundary while

2γ − 1, γ = 1, 2, . . . with zero boundary.

Case 3. In the simple Gauss-Patterson rule, we also use a sequence of un-

equally discretised grids. However, we can’t find a one to one map from its grid
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(a) trapezoidal rule (b) Clenshaw–Curtis

(c) Gauss–Patterson

Figure 1.1: 2D sparse grids with respect to trapezoidal rule, Clenshaw–Curtis and Gauss–

Patterson rules for level l = 5. More quadrature points are close to the boundary in the

Clenshaw–Curtis and Gauss–Patterson rules.
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to an equally discretised grid for all grids generated by a certain Gauss-Patterson

extension. For the commonly used Patterson extensions G3, K7, P 3
15, P 3

31, . . . , the

number of grid points are 2γ+1 − 1, γ = 1, 2, . . . . Notice that we do not require

any points in the boundary when we use Gauss-Patterson rule.

In the first two cases, the number of grid points of the product rule

Qn ⊗ · · · ⊗Qn (1.19)

is (2n + 1)d with non-zero boundary while (2n − 1)d with zero boundary. For

Patterson’s extensions G3, K7, P 3
15, P 3

31, . . . , the product rule (1.19) requires

(2n+1 − 1)d grid points.

Proposition 1.29 ( [36]). For Case 1 and Case 2, the number of grid points in

a d dimensional level n sparse grid without boundaries is

(−1)d + 2n−d+1

d−1∑
k=0

(
n

d− 1− k

)
(−2)k. (1.20)

Proof. We only need to discuss the piecewise linear interpolation since the number

of grid points of other sparse grids discussed in Case 1 and Case 2 can be computed

in the same way. Since we do not count the points on the boundary, the number

of elements in the index set Bγ where γ is a d dimensional vector is

|Bγ| = 2γ1−1 × · · · × 2γd−1 = 2|γ|−d.

Thus the total number of grid points in the sparse grid is

∑
γ≥1,|γ|≤n

|Bγ| =
n∑
k=d

 ∑
γ≥1,|γ|=k

2k−d

 =
n∑
k=d

(
k − 1

d− 1

)
2k−d =

n−d∑
k=0

(
k + d− 1

d− 1

)
2k.

The right-hand side can be computed as following

N(n, d) :=
d∑

k=0

(
k + d− 1

d− 1

)
2k

=
1

(d− 1)!

n−d∑
k=0

(xk+d−1)(d−1)
∣∣
x=2

=
1

(d− 1)!

(
xd−1 − xn

1− x

)(d−1)
∣∣∣∣∣
x=2

.
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Applying the product rule to the last expression, we have

N(n, d) =
1

(d− 1)!

d−1∑
k=0

((
d− 1

k

)
(xd−1 − xn)(k)

(
1

1− x

)(d−1−k)
)∣∣∣∣∣

x=2

=
1

(d− 1)!

d−1∑
k=0

(
d− 1

k

)(
xd−1−k(d− 1)!

(d− 1− k)!
− xn−kn!

(n− k)!

)(
(d− 1− k)!

(1− x)d−k

)∣∣∣∣
x=2

=
d−1∑
k=0

((
d− 1

k

)
xd−1−k −

(
n

k

)
xn−k

)
(1− x)−(d−k)

∣∣
x=2

Taking x = 2, then

N(n, d) =
d−1∑
k=0

((
d− 1

k

)
2d−1−k −

(
n

k

)
2n−k

)
(−1)−(d−k)

=−
d−1∑
k=0

(
d− 1

k

)
(−2)d−1−k − 2n

d−1∑
k=0

(
n

k

)
(−1)d−k2−k

=(−1)d − 2n
d−1∑
k=0

(
n

d− 1− k

)
(−1)k+12−(d−1−k)

=(−1)d + 2n−d+1

d−1∑
k=0

(
n

d− 1− k

)
(−2)k.

In the third equation, we apply the binomial theorem

(x+ y)d−1 =
d−1∑
k=0

(
d− 1

k

)
xkyd−1−k

to the case x = 1 and y = −2.

Proposition 1.30. For Case 3, the number of grid points in a d dimensional

level n sparse grid without boundaries is

(−1)d + 2n
d−1∑
k=0

(
n+ d− 1

k

)
(−2)d−1−k. (1.21)

Proof. Since the numbers of grid points of the nested girds generated by Patter-

son’s extension are 2γ+1 − 1, γ = 1, 2, . . . . Thus the index set Bg
γ is

Bg
γ =

{{
1, 3, 5, . . . , 2γ+1 − 3, 2γ+1 − 1

}
, if γ > 0,

{0} if γ = 0.
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in 1D case. Here we follow the construction in (1.18). In d dimensional case, let

γ be a vector, the number of elements in d dimensional index set

Bg
γ = Bg

γ1
× · · · ×Bg

γd

is

|Bg
γ | = 2γ1 × · · · × 2γd = 2|γ|

where γ ≥ 0. Then we have

∑
γ≥0,|γ|≤n

|Bg
γ | =

∑
γ≥1,|γ|≤n+d−1

|Bγ| =
n+d−1∑
k=d

∑
γ≥1,|γ|=k

2k−d

=
n+d−1∑
k=d

(
k − 1

d− 1

)
2k−d =

n−1∑
k=0

(
k + d− 1

d− 1

)
2k.

In the first equation, we shift the origin in the summation from γ = 0 to γ = 1.

By using the same method in Proposition 1.29, we can get the desired result.

The number of grid points in a full grid without boundary points is approxi-

mately O(2dn). From the result of Proposition 1.29, the largest term in the sum

of the (1.20) is when we take k = 0, i.e.

2n−d+1

(
n

d− 1

)
=2n−d+1 n!

(n− d+ 1)!(d− 1)!

=2n−d+1

(
nd−1

(d− 1)!
+O(nd−2)

)
.

From the result of Proposition 1.30, the largest term in the sum of (1.21) is when

we take k = d− 1, i.e.

2n
(
n+ d− 1

d− 1

)
= 2n

(n+ d− 1)!

n!(d− 1)!

= 2n
(

nd−1

(d− 1)!
+O(nd−2)

)
.

Thus, the numbers of grid points in both cases grow asymptotically as O(2nnd−1).

This much slower than O(2dn) for full grid.

The computation of the number of grid points in a sparse grid with boundary

points is more complicated. The following proposition gives an upper bound of

the number of grid points used.
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Proposition 1.31 ( [45]). For Case 1 and Case 2, for a level n ≥ 2(d−1) sparse

grid with boundary points, the number of grid points is bounded above by

1 + 2n−d+1(6d − 5d)

(
n

d− 1

)
.

Proof. See in [45].

From the proposition, we see the number of grid points in a d dimensional

level n sparse grid also grows asymptotically as O(2nnd−1).

1.4 Error of Sparse Grid Approximations

In this section, we will consider the error of sparse grid interpolations and sparse

grid quadratures. First, we will focus on the interpolation and quadrature using

sparse grid which is build upon a sequence of equally spaced grids. In particular,

we will review the result of the piecewise linear interpolation and the composite

trapezoidal rule. These results are well known and can be found in the litera-

ture [16, 36]. Then we will consider more general case when the sparse grid is

allowed to be constructed by a sequence of unequally spaced grids. In this case,

we only discuss the simple polynomial interpolations and the simple quadrature

rules of interpolatory type. The results for the composite interpolations and com-

posite rules can be derived by using the results of the simple rules. The error of

the sparse grid quadrature rules of high order polynomial interpolatory type was

first discussed by Novak and Ritter in [68]. Later, the result on the error of high

dimensional polynomial interpolation on sparse grids was given by Barthelmann,

Novak and Ritter in [6]. We give new proofs for the main results in [68, 6].

First, we consider the piecewise linear interpolation with zero boundary con-

dition. We require the function f ∈ H2
0,mix(X). The result in Lemma 1.12 ,i.e.

‖fhα‖2 ≤ 3−d2−2|α|‖D2f‖2

for any multi-index α ≥ 1 provides an upper bound for the contribution from the

hierarchical space Wα. Using this bound together with the full grid approximation

formula

fγ =
∑

0≤α≤γ

fhα =
∑

1≤α≤γ

fhα . (1.22)

We can bound the error of the full grid approximation

εγ = f − fγ =
∑

α�γ,α≥1

fhα .
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Similarly, for the level n sparse grid approximation

f sn =
∑
|α|≤n

fhα ,

the (1.22) can be used in bounding the error

εsn = f − f sn =
∑
|α|>n

fhα .

For the multidimensional integration, if the integrand f ∈ H2
0.mix(X) and X

is a bounded domain, by using the Cauchy-Schwarz inequality, we have∣∣∣∣∫
X

fhα dx

∣∣∣∣ ≤ ∫
X

|fhα | dx ≤ |X|
1
2 ||fhα ||2. (1.23)

If we further assume the composite trapezoidal rule is used in building product

rule and sparse grid quadrature and let fγ and f sn be the underlying interpolating

polynomials, then the error of the product rule is

eγ = If − Tγf =

∫
X

f dx−
∫
X

fγ dx =
∑

α�γ,α≥1

∫
X

fhα dx (1.24)

and the error of the corresponding sparse grid quadrature is

esn = If − T snf =

∫
X

f dx−
∫
X

f sn dx =
∑
|α|>n

∫
X

fhα dx. (1.25)

The following two Propositions(adapted from [45]) give detailed computation

of the bound of the error εγ, ε
s
n and eγ, e

s
n.

Proposition 1.32. Let f ∈ H2
0,mix(X), where X is a bounded domain. Then the

error of the piecewise multi-linear interpolant fγ satisfies

‖εγ‖2 ≤ 9−d‖D2f‖2

d∑
k=1

4−γk ,

the error eγ of the composite trapezoidal rule Tγ satisfies

|eγ| ≤ 9−d|X| 12‖D2f‖2

d∑
k=1

4−γk .
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Proof.

‖εγ‖2 ≤
∑

α�γ,α≥1

‖fhα‖2

≤ 3−d‖D2f‖2

∑
α�γ,α≥1

2−2|α|

= 3−d‖D2f‖2

∑
α≥1

4−|α| −
∑

1≤α≤γ

4−|α|


= 3−d‖D2f‖2

(
d∏

k=1

(
∞∑

αk=1

4−αk

)
−

d∏
k=1

(
γk∑

αk=1

4−αk

))

= 9−d‖D2f‖2

(
1−

d∏
k=1

(1− 4−γk)

)

≤ 9−d‖D2f‖2

d∑
k=1

4−γk .

The first inequality is due to the triangle inequality. The second inequality is

derived by applying the Lemma 1.12. The following three equalities are definitions

and direct computations. The last inequality satisfies because of the following

result. Given y1, . . . , yd ∈ (0, 1), we have

d∑
k=1

yk ≥ 1−
d∏

k=1

(1− yk). (1.26)

This inequality can be proved by using the methods of mathematical induction.

For the error of the composite trapezoidal rule, we have

|eγ| ≤
∑

α�γ,α≥1

∣∣∣∣∫
X

fhα dx

∣∣∣∣
≤ |X| 12

∑
α�γ,α≥1

‖fhα‖2

≤ 9−d|X| 12‖D2f‖2

d∑
k=1

4−γk .

The first inequality is an application of the triangle inequality to (1.24). In the

second inequality, we use the result in (1.23). The third inequality is due to the

estimation in the piecewise multi-linear interpolant proof.
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Proposition 1.33. Let f ∈ H2
0,mix(X), where X is a bounded domain. Then the

error of the sparse grid interpolant f sn satisfies

‖εsn‖2 ≤ 2−2n1

3

(
1

3

)d
‖D2f‖2

d−1∑
k=0

(
n

k

)(
1

3

)d−1−k

.

The error of the sparse grid quadrature T sn satisfies

‖esn‖2 ≤ 2−2n1

3

(
1

3

)d
|X| 12‖D2f‖2

d−1∑
k=0

(
n

k

)(
1

3

)d−1−k

.

Proof.

‖εsn‖2 ≤
∑

|α|>n,γ≥1

‖fhα‖2

≤
∑

|α|>n,γ≥1

(
1

3

)d
2−2|α|‖D2f‖2

=

(
1

3

)d
‖D2f‖2

∞∑
k=n+1

∑
|α|=k,α≥1

2−2k

=

(
1

3

)d
‖D2f‖2

∞∑
k=n+1

(
k − 1

d− 1

)
2−2k

= 2−2(n+1)

(
1

3

)d
‖D2f‖2

∞∑
k=0

(
k + n

d− 1

)
2−2k

= 2−2(n+1)

(
1

3

)d
‖D2f‖2

[
4

3

d−1∑
k=0

(
n

k

)(
1

3

)d−1−k
]

= 2−2n1

3

(
1

3

)d
‖D2f‖2

d−1∑
k=0

(
n

k

)(
1

3

)d−1−k

.

In the first inequality, we apply the triangle inequality. We use the Lemma 1.12

to get the second inequality. The first equality is the direct computation. The

second equality is due to the fact(
k − 1

d− 1

)
=

∑
|α|=k,α≥1

1.

In the third equality, we change the starting index in the summation. For the

following equality, we apply a similar approach as in the proofs of the Propositions
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1.29 and 1.30. Suppose x ∈ (0, 1), then

∞∑
k=0

xk
(
k + n

d− 1

)
=

x−n

(d− 1)!

(
∞∑
k=0

xk+n

)(d−1)

=
x−n

(d− 1)!

(
xn

1− x

)(d−1)

=
x−n

(d− 1)!

d−1∑
k=0

(
d− 1

k

)
(xn)(k)

(
1

1− x

)(d−1−k)

=
x−n

(d− 1)!

d−1∑
k=0

(
d− 1

k

)
xn−kn!

(n− k)!

(d− 1− k)!

(1− x)(d−k)

=
d−1∑
k=0

(
n

k

)(
x

1− x

)(d−1−k)
1

1− x.

If we take x = 2−2, then

∞∑
k=0

(
k + n

d− 1

)
2−2k =

4

3

d−1∑
k=0

(
n

k

)(
1

3

)d−1−k

. (1.27)

For the error of the sparse grid quadrature T sn, as we did in the proof of the

previous proposition, we have

|eγ| ≤
∑

|α|>n,α≥1

∣∣∣∣∫
X

fhα dx

∣∣∣∣
≤ |X| 12

∑
|α|>n,α≥1

‖fhα‖2

≤ 2−2n1

3

(
1

3

)d
|X| 12‖D2f‖2

d−1∑
k=0

(
n

k

)(
1

3

)d−1−k

.

The first inequality is an application of the triangle inequality to (1.4). In the

second inequality, we again use the result in (1.23).

In the Proposition 1.33, if we further assume that n > 2(d− 1), then we have

‖εsn‖2 ≤ 2−2n1

2

(
1

3

)d
‖D2u‖2

(
n

d− 1

)
.

Therefore, the convergence rate of the sparse grid methods f sn and T sn is approx-

imately O(2−2nnd−1).
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Now we start to further study the errors of full grid approximation and sparse

grid approximation in more general cases, i.e. the multi-dimensional polyno-

mial interpolation and quadrature of polynomial interpolatory type. Faster con-

vergence will be expected if the function or the integrand f has higher order

smoothness. Therefore, new function spaces are required to be used for further

discussion since functions in the function space H2
0,mix are not ’smooth’ enough.

Here we use the spaces introduced in [68, 6]. For d = 1, we denote

F s
1 = Cs([−1, 1]), s ∈ N

with the norm

‖f‖ = max
{
‖Dif‖∞, i = 0, . . . , s

}
. (1.28)

For d > 1, we consider

F s
d =

{
f : X → R |Dif continuous if ik ≤ s for all k

}
(1.29)

with the norm‡

‖f‖ = max
{
‖Dif‖∞ | i ∈ Nd, ik ≤ s

}
. (1.30)

For any f ∈ F s
d , it can be written as a finite linear combination of functions

(f1 ⊗ · · · ⊗ fd)(x1, . . . , xd) = f1(x1) · · · fd(xd)

where fi ∈ F s
1 are dense in F s

d and

‖f1 ⊗ · · · ⊗ fd‖ = ‖f1‖ · · · ‖fd‖.

Suppose U is a bounded linear operator defined as

U : F s
1 → V1

f 7→ Uf.

The V1 here is a subspace of F s
1 . Then we have

‖Uf‖ ≤ ‖U‖‖f‖

where the norm of the operator U is induced by the norm ‖ · ‖. If Ui, i = 1, . . . , d

are above defined operators, then the operator U1 ⊗ · · · ⊗ Ud is defined as

U1 ⊗ · · · ⊗ Ud : F s
d → Vd

f 7→ (U1 ⊗ · · · ⊗ Ud)f
‡The formal way to write this norm is ‖f‖F s

d
. Since this norm is frequently used in our

proof, we simplify the notation here when d and s are known.
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where Vd is a subspace of F s
d . The norm of the operator U1 ⊗ · · · ⊗ Ud is

‖U1 ⊗ · · · ⊗ Ud‖ = ‖U1‖ . . . ‖Ud‖. (1.31)

We first study the error bound of the polynomial interpolation and integration

rule of the polynomial interpolatory type for 1D case. The d dimensional error

bound can be derived by using the result from 1D case.

According to the Lebesgue’s Lemma [29], the nγ + 1 points Lagrangian inter-

polant operator Lnγ satisfies

‖f − Lnγf‖p ≤ (1 + ‖Lnγ‖)Ep
nγ (f), 1 ≤ p ≤ ∞ (1.32)

where ‖Lnγ‖ is the Lebesgue constant [22] and Ep
nγf is the error of the best

approximation by polynomial of degree up to nγ in Lp norm.

Let C be a constant. By using the Jackson’s theorem [21], we have for f ∈ F s
1

Ep
nγ (f) ≤ Cn−sγ ‖f (s)‖p. (1.33)

The constant C here depends on the smoothness s.

The Lebesgue constant depends on the choice of the grid points used in an

interpolation/quadrature formula and also the norm. Here we only focus on the

two kinds of grid points mentioned in the previous sections, i.e. the Chebyshev-

Gauss-Lobatto points and quadrature points used in the Kronrod’s scheme. For

both cases, the Lebesgue constants are of O(log nγ)(CGL points [29, 32], Kron-

rod’s scheme [34, 33]) when we use the Lp, p = 1,∞ norm. The operator Lnγ are

bounded [29, 34] when we use the Lp, 1 ≤ p ≤ ∞ norm.

Combining the results on the Lebesgue constant with (1.32) and (1.33), we

have

‖f − Lnγf‖p =

{
C log nγn

−s
γ ‖f (s)‖p, p = 1,∞,

Cn−sγ ‖f (s)‖p, 1 < p <∞
(1.34)

Since we are only interested in the convergence rate, all the constant terms are

denoted as C here and in the following proofs.

Lemma 1.34. Suppose f ∈ F s
1 . If we again denote the level α 1D hierarchical

surplus as fhα , i.e.

fhα = Lnαf − Lnα−1f = (Lnα − Lnα−1)f,

then we have

‖Lnα − Lnα−1‖ ≤ Cα2−αs.
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where C is a constant. For the quadrature rule of interpolatory type, the 1D

hierarchical surplus is∫
X

fhα dx = Qαf −Qα−1f = (Qα −Qα−1)f

and the operator Qα −Qα−1 satisfies

‖Qα −Qα−1‖ ≤ C2−αs.

C is again a constant.

Proof. We have

‖fhα‖ = ‖Lnαf − Lnα−1f‖
≤ ‖f − Lnαf‖+ ‖f − Lnα−1f‖
≤ C1 log nαn

−s
α ‖f‖+ C2 log nα−1n

−s
α−1‖f‖

≤ Cα2−αs‖f‖+ C(α− 1)2−(α−1)s‖f‖
= Cα2−αs(1 + 2s)‖f‖
= Cα2−αs‖f‖.

The first inequality is due to the triangle inequality. In the second inequality we

use the result (1.34). We take C = max {C1, C2} and use the fact

nα = 2α−1 + 1 ≤ 2α, α ≥ 1

for the third inequality. The following two equations are direct computation and

the term 1+2s is absorbed into the constant term C. For the hierarchical surplus

of integral, we have∣∣∣∣∫
X

fhα dx

∣∣∣∣ ≤ |X| 12‖fhα‖2

≤ |X| 12‖Lnαf − Lnα−1f‖2

≤ |X| 12 (‖f − Lnαf‖2 + ‖f − Lnα−1f‖2)

≤ C|X| 12 (n−sα + n−sα−1)‖f (s)‖2

≤ C|X|(n−sα + n−sα−1)‖f‖
≤ C|X|(2−αs + 2−(α−1)s)‖f‖
≤ C2−αs‖f‖.

We apply the Cauchy Schwarz inequality in the first inequality. The fourth in-

equality is the result of the Jackson’s Theorem. In the fifth inequality, we use
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fact that the L2 norm is bounded by the infinite norm on a bounded domain, i.e.

‖f (s)‖2 =

(∫
X

(f (s))2 dx

) 1
2

≤
(∫

X

‖f (s)‖2
∞ dx

) 1
2

≤ |X| 12‖f (s)‖∞.

Lemma 1.35. Suppose f ∈ F s
d . Let α = (α1, . . . , αd) be a vector. The d di-

mensional level α hierarchical surplus is fhα for the polynomial interpolation. It

is bounded by

‖fhα‖ ≤ ‖Lnα − Lnα−1‖‖f‖ ≤ C

(
d∏
i=1

αi

)
2−|α|s‖f‖.

The d dimensional level α hierarchical surplus is
∫
X
fhα dx for the quadrature rule

of interpolatory type. It is bounded by∣∣∣∣∫
X

fhα dx

∣∣∣∣ ≤ ‖Qα −Qα−1‖‖f‖ ≤ C2−|α|s‖f‖.

Proof. According to (1.31), we have

‖Lnα − Lnα−1‖ =
d∏
i=1

‖Lnαi − Lnαi−1‖ ≤ C

(
d∏
i=1

αi

)
2−|α|s.

and

‖Qα −Qα−1‖ ≤
d∏
i=1

‖Qαi −Qαi−1‖ ≤ C2−|α|s.

Lemma 1.36. Suppose we have an arithmetic sequence {aα}, α = 1, 2, . . . and a

geometric sequence {bα}, α = 1, 2, . . . . The αth term of the arithmetic sequence

is given by

aα = a1 + (α− 1)d, α ≥ 2

where the initial value a1 and the difference d are given. The αth term of the

geometric sequence is given by

bα = b1q
α−1, α ≥ 2.

where the initial value b1 and the ratio q are given. In addition |q| < 1. Then the

sum of the first n term of the sequence {aαbα}, α = 1, 2, . . . is

Sn =
a1b1

1− q +
db1(q − qn−1)

(1− q)2
− [a1 + (n− 1)d]b1q

n

1− q . (1.35)

and its limit is

lim
n→∞

Sn =
a1b1

1− q +
db1q

(1− q)2
. (1.36)
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Proof. By direct computation, we have

(1− q)Sn =
n∑

α=1

(a1 + (α− 1)d)b1q
α−1 −

n∑
α=1

(a1 + (α− 1)d)b1q
α

= a1b1 +
n−1∑
α=1

(a1 + αd)b1q
α −

n∑
α=1

(a1 + (α− 1)d)b1q
α

= a1b1 +
n−1∑
α=1

db1q
α − [a1 + (n− 1)d]b1q

n

= a1b1 +
db1(q − qn−1)

(1− q) − [a1 + (n− 1)d]b1q
n.

Since |q| < 1, we can divide both sides by 1− q and get the (1.35) and (1.36).

Proposition 1.37. Let f ∈ F s
d . X is a bounded domain. Then the error of the

polynomial interpolant Lnγf satisfies

‖f − Lnγf‖ ≤ C
d∑

k=1

2−s(γk−1)‖f‖.

The error of the quadrature rule Qγ of the interpolatory type satisfies

|If −Qγf | ≤ C
d∑

k=1

2−sγk‖f‖.

Proof. For the polynomial interpolation error, we have

‖f − Lnγf‖ ≤
∑

α�γ,α≥1

‖fhα‖

≤
∑

α�γ,α≥1

C

(
d∏
i=1

αi

)
2−|α|s‖f‖

= C

(∑
α≥1

(
d∏
i=1

αi

)
2−|α|s −

∑
1≤α≤γ

(
d∏
i=1

αi

)
2−|α|s

)
‖f‖

≤ C

(
d∏
i=1

(∑
αi≥1

αi2
−αis

)
−

d∏
i=1

( ∑
1≤αi≤γi

αi2
−αis

))
‖f‖

By using the Lemma 1.36, we have∑
1≤αi≤γi

αi2
−αis = 2−s

[
1

1− 2−s
+

2−s − 2−s(γi−1)

(1− 2−s)2
− γk2

−sγi

1− 2−s

]
≤ 2−s

(1− 2−s)2
(1− 2−s(γi−1)).
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and ∑
αi≥αi

αi2
−αis =

2−s

(1− 2−s)2
.

By applying the inequality (1.26) in Proposition 1.32. We have

‖f − Lnγf‖ ≤C
2−sd

(1− 2−s)2d

d∏
i=1

[1− (1− 2−s(γi−1))]‖f‖

≤C 2−sd

(1− 2−s)2d

d∑
i=1

2−s(γi−1)‖f‖.

For the quadrature error, we have

|Qf −Qγf | ≤
∑

α�γ,α≥1

∣∣∣∣∫
X

fhα dx

∣∣∣∣
≤

∑
α�γ,α≥1

C2−|α|s‖f‖

= C

(∑
α≥1

2−|α|s −
∑

1≤α≤γ

2−|α|s

)
‖f‖

≤ C

(
d∏
i=1

(∑
αi≥1

2−αis

)
−

d∏
i=1

( ∑
1≤αi≤γi

2−αis

))
‖f‖

By applying the inequality (1.26) in Proposition 1.32. We have

|Qf −Qγf | ≤ C

(
1−

d∏
i=1

(1− 2−γis)

)
‖f‖

≤ C

d∑
i=1

2−γis‖f‖.

Proposition 1.38. Let f ∈ F s
d . X is a bounded domain. Then the error of the

sparse grid polynomial interpolant f sn satisfies

‖f sn − f‖ ≤ C2−sn
2d−1∑
k=0

(
n+ d

k

)(
2−s

1− 2−s

)2d−k

.

The error of the sparse grid quadrature Qs
nf which is built on the quadrature rules

of the interpolatory type satisfies

‖Qs
nf − f‖ ≤ C2−sn

d−1∑
k=0

(
n

k

)(
2−s

1− 2−s

)d−1−k

.
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Proof. From the Lemma 1.35 and using the inequality

α1 . . . αd ≤
(
α1 + · · ·+ αd

d

)d
,

we have

‖fhα‖ ≤ Cα1 . . . αd2
−s|α|

≤ C
1

dd
|α|d2−s|α|

= C|α|d2−s|α|.

Similar as the estimation in Proposition 1.33, the interpolation error bound can

be computed by

‖f sn − f‖ ≤
∑

|α|≥n,α≥1

‖fhα‖

≤
∑

|α|≥n,α≥1

C|α|d2−s|α|

= C
∞∑

k=n+1

∑
|α|=k,α≥1

kd2−sk

= C
∞∑

k=n+1

(
k − 1

d− 1

)
kd2−sk

= C
∞∑
k=0

(
k + n

d− 1

)
(k + n+ 1)d2−s(k+n+1)

= C2−s(n+1)

∞∑
k=0

(
k + n

d− 1

)
(k + n+ 1)d2−sk.

(1.37)

Here we estimate the following power series when x ∈ (0, 1).

∞∑
k=0

(
k + n

d− 1

)
(k + n+ 1)dxk

=
∞∑
k=0

1

(d− 1)!
(k + n) . . . (k + n− d+ 2)(k + n+ 1)dxk

≤ 1

(d− 1)!

∞∑
k=0

(k + n+ d) . . . (k + n− d+ 2)xk

=
x−n+d−1

(d− 1)!

∞∑
k=0

(xk+n+d)(2d−1)

(1.38)
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Figure 1.2: We compute the integral
∫
[0,1]d

∏d
i=1 exp(xi) dx when d = 6 using sparse grids

generated by the three different univariate quadrature rules. The Gauss–Patterson(gp) and

Clenshaw–Curtis(cc) rules perform much better than the trapezoidal rule.

=
x−n+d−1

(d− 1)!

(
xn+d

1− x

)(2d−1)

=
x−n+d−1

(d− 1)!

(
2d−1∑
k=0

(
2d− 1

k

)
(xn+d)(k)

(
1

1− x

)2d−1−k
)

=
x−n+d−1

(d− 1)!

(
2d−1∑
k=0

(
2d− 1

k

)
xn+d−k(n+ d)!

(n+ d− k)!

(2d− 1− k)!

(1− x)(2d−k)

)

=
(2d− 1)!

(d− 1)!

2d−1∑
k=0

(
n+ d

k

)(
x

1− x

)(2d−k−1)
1

1− x.

(1.39)

If we take x = 2−s in the (1.38), (1.39) and combine the result in (1.39), we

get

‖f sn − f‖ ≤ C
(2d− 1)!

(d− 1)!
2−sn

2d−1∑
k=0

(
n+ d

k

)(
2−s

1− 2−s

)2d−k

.

For the error of the sparse grid quadrature built on the quadrature rules of the

interpolatory type, the proof is the same as the proof in the Proposition 1.33

except we replace the L2 norm with the norm ‖ · ‖ defined in (1.28) and take

x = 2−s instead of x = 2−2 in (1.27) .

In the Proposition 1.38, if we further assume that n > 3d− 2, then we have

‖f sn − f‖ ≤ C2−sn
(
n+ d

2d− 1

)
.
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Therefore, the convergence rate of the sparse grid polynomial interpolant f sn is

approximately O(2−snn2d−1). The error of the sparse grid quadrature Qs
nf is

approximately O(2−snnd−1) according to the Proposition 1.38.

In the Figure 1.4, we show the convergence of three sparse grid quadratures.

As shown in the error bounds, The Gauss Patterson and Clenshaw Curtis rules

perform much better than the trapezoidal rule.

1.5 Conclusions

In this Chapter, we review the constructions of the sparse grid interpolation and

the sparse grid quadrature. Since all the 1D quadrature rules we have discussed

are rules of interpolatory type, sparse grid interpolations and sparse grid quadra-

tures are closely related in this case. We also look into the error of the sparse grid

interpolation and quadrature. From the error analysis, we can see the superiority

of the sparse grid method in solving high dimensional problems.



Chapter 2

The Sparse Grid Combination

Technique

The sparse grid combination technique [43, 36, 16] is used to approximate the

numerical result of the sparse grid method. The general idea of the sparse grid

combination technique is to first compute approximations of the function or the

integral on several anisotropic regular grids. Then we compute a linear combi-

nation of these approximations to get a new approximation. The coefficients in

the linear combination can be obtained by the inclusion-exclusion principle. The

advantage of the sparse grid combination technique is that we can avoid using

hierarchical basis functions. The usage of the hierarchical basis functions leads

to a dense stiffness matrix which makes it hard to implement a fast matrix-vector

product. Another advantage of the sparse grid combination technique is that the

underlying algorithm is suitable for parallel computation which makes it possible

to solve high dimensional problems and large scale problems.

In Chapter 2, we will first introduce the classical sparse grid combination

technique. Then we will discuss the number of unknowns and the error splitting

models [59, 19, 18]. Next, we will study the how to derive an error splitting model

for linear and polynomial interpolation. Finally, we will give an introduction to

generalised sparse grid combination techniques [46, 38, 45, 48]. Different from

previous works in [43, 76], we establish new error splitting models when the

underlying grids are not equally spaced. We also prove a new convergence result

of the generalised combination technique based on the works in [46, 45].

47
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2.1 The Classical Sparse Grid Combination Tech-

nique

Suppose we have a sequence of 1D nested grids. Here we do not require these

1D grids to be equally spaced. The multidimensional grid Gγ where γ is now a

vector is the Cartesian product of these 1D grids. Using the same notation as in

the Chapter 1, the anisotropic regular grid is defined as

Gγ = Gγ1 × · · · ×Gγd .

The interpolant of function f on grid Gγ is fγ. The quadrature rule computed

on grid Gγ is Qγf with the integrand f . Suppose we have a multi-indices set I.

The sparse grid combination technique with respect to I gives the interpolant

f cI =
∑
γ∈I

cγfγ

and the quadrature rule

Qc
If =

∑
γ∈I

cγQγf.

Since all commonly used quadrature rules discussed in Chapter 1, i.e. the

trapezoidal rule, the Clenshaw Curtis rule and the Gauss Patterson rule are

interpolatory, we only need to study the sparse grid combination technique for

function interpolation. The sparse grid combination technique for integration can

then be obtained by

Qc
If =

∫
X

f cI dx =

∫
X

∑
γ∈I

cγfγ dx =
∑
γ∈I

cγ

∫
X

fγ dx =
∑
γ∈I

cγQγf.

Therefore, we will only focus on the sparse grid combination technique for inter-

polation in the following discussion.

In particular, if we take the multi-indices set I as

I = {γ | γ1 + · · ·+ γd = n− k, k = 0, . . . , d− 1, γ ≥ 0}

We get a combination technique which approximates the classical sparse grid

interpolant f sn. It is defined as

f cn := f cI :=
d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
|γ|=n−k

fγ. (2.1)
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Figure 2.1: 2D classical sparse grid combination technique with n = 3. All the component

grids are arranged according to the frequency of data points in each dimension. The colored

component grids are used in the computation. Red component grids have plus signs while blue

component grids have minus signs in the combination technique formula.

When d = 2, we have

f cn =
∑
|γ|=n

fγ −
∑
|γ|=n−1

fγ.

The Figure 2.1 shows the 2D combination technique when n = 3.

In fact, we have f cn = f sn ∈ V s
n . In the following Lemma, we prove this result

in 2D case∗. The proof is adapted from [36]. The difference is the original proof

is considered on equally discretised grid. Here we consider computing on a more

generalised grid.

Lemma 2.1. For a given 2D function f , the interpolant f cn given by the 2D

combination technique (2.1) is equal to the classical sparse grid interpolant f sn.

Proof. Here we replace the vector index γ with two indices γ1 and γ2 for simplicity.

Then the 2D combination technique is

f cn =
∑

γ1+γ2=n

fγ1,γ2 −
∑

γ1+γ2=n−1

fγ1,γ2 . (2.2)

For the interpolant fγ1,γ2 computed on the regular anisotropic grids, we can de-

compose it as a sum of all the hierarchical surpluses fhα1,α2
, α1 ≤ γ1, α2 ≤ γ2 as

we did in (1.6), namely,

fγ1,γ2 =
∑
α1≤γ1

∑
α2≤γ2

fhα1,α2
. (2.3)

∗The d dimensional case can be similarly derived. This will be further discussed in the

Section 2.4
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Insert (2.3) into (2.2), we have

f cn =
∑

γ1+γ2=n

∑
α1≤γ1

∑
α2≤γ2

fhα1,α2
−

∑
γ1+γ2=n−1

∑
α1≤γ1

∑
α2≤γ2

fhα1,α2

=
∑
γ1≤n

∑
α1≤γ1

∑
α2≤n−γ1

fhα1,α2
−
∑

γ1≤n−1

∑
α1≤γ1

∑
α2≤n−γ1−1

fhα1,α2

=
∑
γ1=n

∑
α1≤γ1

∑
α2=n−γ1

fhα1,α2

+

( ∑
γ1≤n−1

∑
α1≤γ1

∑
α2≤n−γ1

fhα1,α2
−
∑

γ1≤n−1

∑
α1≤γ1

∑
α2≤n−γ1−1

fhα1,α2

)
=
∑
γ1=n

∑
α1≤γ1

∑
α2=n−γ1

fhα1,α2
+
∑

γ1≤n−1

∑
α1≤γ1

∑
α2=n−γ1

fhα1,α2

=
∑
γ≤n

∑
α1≤γ1

∑
α2=n−γ1

fhα1,α2

=
∑

α1+α2≤n

fhα1,α2
= f sn.

The underlying idea of the above computation is based on the inclusion-exclusion

principle.

2.2 Number of Grid Points in the Sparse Grid

Combination Technique

Suppose the number of grid points in an anisotropic regular grid Gγ is |Gγ|.
According to the classical sparse grid combination technique formula (2.1), the

number of points used in computing it is

d−1∑
k=0

∑
|γ|=n−k

|Gγ|. (2.4)

Since the grid points are considered only once on a classical sparse grid while

they are considered multiple times in (2.4), the number of grid points used in a

classical sparse grid combination technique is more than those used in a classical

sparse grid.

In Chapter 1, we discuss the number of grid points used in a sparse grid

in details. It grows asymptotically as O(2nnd−1) for all the cases we discussed.

These cases include the equally discretised grid/CGL points(which is defined in

the previous Chapter) with or without boundary and the grid generated in the
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Gauss Patterson method. We need to show that the number of grid points used in

a classical sparse grid combination technique still grows approximately O(2nnd−1),

otherwise the cost of combination technique can be far more expensive than that

of computing the sparse grid directly.

For the number of grid points in an anisotropic grid Gγ, we have

Case 1: Equally discretised grid/CGL points without boundary

|Gγ| =
d∏

k=1

(2γk − 1).

Case 2: Equally discretised grid/CGL points with boundary

|Gγ| =
d∏

k=1

(2γk + 1).

Case 3: Grid used in Gauss Patterson method

|Gγ| =
d∏

k=1

(2γk+1 − 1).

We first consider the case when d = 2. We have the following Lemma

Lemma 2.2. Suppose d = 2. The total number of grid points used in computation

of f cn is

Case 1: Equally discretised grid/CGL points without boundary

2n+ 5 +

(
3

2
n− 5

)
2n

Case 2: Equally discretised grid/CGL points with boundary

2n− 3 +

(
3

2
n+ 7

)
2n

Case 3: Grid used in the Gauss Patterson method

2n+ 9 + (6n− 8)2n

Thus, the total number of grid points grows approximately as O(2n n).

Proof. For Case 1, let

an,2 =
∑

γ1+γ2=n

(2γ1 − 1)(2γ2 − 1)
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where the subscript 2 denotes dimension. Then

an,2 =
∑

γ1+γ2=n

(2γ1+γ2 − 2γ1 − 2γ2 + 1)

=
n∑

γ1=0

(2n − 2γ1 − 2n−γ1 + 1)

= (n+ 3) + (n− 3)2n.

The number of grid points used in this case is

an,2 + an−1,2 = 2n+ 5 +

(
3

2
n− 5

)
2n.

For Case 2, let

bn,2 =
∑

γ1+γ2=n

(2γ1 + 1)(2γ2 + 1)

where the subscript 2 denotes dimension. Then

bn,2 =
∑

γ1+γ2=n

(2γ1+γ2 + 2γ1 + 2γ2 + 1)

=
n∑

γ1=0

(2n + 2γ1 + 2n−γ1 + 1)

= (n− 1) + (n+ 5)2n.

The number of grid points used in this case is

bn,2 + bn−1,2 = 2n− 3 +

(
3

2
n+ 7

)
2n.

For Case 3, let

cn,2 =
∑

γ1+γ2=n

(2γ1+1 − 1)(2γ2+1 − 1)

where the subscript 2 denotes dimension. Then

cn,2 =
∑

γ1+γ2=n

(2γ1+γ2+2 − 2γ1+1 − 2γ2+1 + 1)

=
n∑

γ1=0

(2n+2 − 2γ1+1 − 2n−γ1+1 + 1)

= (n+ 5) + (4n− 4)2n.

The number of grid points used in this case is

cn,2 + cn−1,2 = 2n+ 9 + (6n− 8)2n.
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The an,d, bn,d and cn,d can be computed recursively when d ≥ 2 by

an,d =
n∑

γd=0

(2γd − 1)an−γd,d−1,

bn,d =
n∑

γd=0

(2γd + 1)bn−γd,d−1,

cn,d =
n∑

γd=0

(2γd+1 − 1)cn−γd,d−1.

Therefore, for a specific d, we can exactly compute the total number of grid points

used in combination technique. One can find a detailed computation for the case

2 when d = 3 in [45] and the method can be generalised to compute all three

cases for any d. In fact, we do not really need a very complicated expression for

exact number of grid points. We only require an asymptotically growth rate to

compare with growth rate in classical sparse grid method. The following lemma

motivated by the idea in [76] provides us the asymptotically growth rate.

Lemma 2.3. The number of grid points used in a d dimensional classical sparse

grid combination technique grows as O(nd−12n) for all three cases discussed in

Lemma 2.2.

Proof. For Case 1, the following inequalities hold.

2|γ|−d =
d∏
i=1

2γi−1 ≤
d∏
i=1

(2γi − 1) ≤
d∏
i=1

2γi = 2|γ|.

The inequalities provides us an upper bound and a lower bound for an,d, namely,(
n− 1

d− 1

)
2n−d ≤ an,d ≤

(
n− 1

d− 1

)
2n.

Thus, the number of grid points used in this case is approximately

d−1∑
k=0

(
n− k − 1

d− 1

)
2n−k = O(nd−1 2n).

Similar as what we did for Case 1, we have the following inequalities for Case

2 and Case 3

2|γ| =
d∏
i=1

2γi ≤
d∏
i=1

(2γi + 1) ≤
d∏
i=1

2γi+1 = 2|γ|+d

2|γ| =
d∏
i=1

2γi ≤
d∏
i=1

(2γi+1 − 1) ≤
d∏
i=1

2γi+1 = 2|γ|+d.
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The upper and lower bounds for both bn,d and cn,d are(
n+ d− 1

d− 1

)
2n ≤ bn,d, cn,d ≤

(
n+ d− 1

d− 1

)
2n+d.

Therefore, the number of grid points used in these two cases are approximately

d−1∑
k=0

(
n− k + d− 1

d− 1

)
2n−k = O(nd−1 2n).

From Lemma 2.3, we know the total number of grid points used in a clas-

sical sparse grid combination technique is similar to that of a classical sparse

grid for all the cases discussed above. Therefore, the classical sparse grid com-

bination technique can be viewed as an alternative way to compute sparse grid

interpolation/integration.

2.3 Error of the Combination Technique

The classical error analysis [43] of the sparse grid combination technique is based

on an error splitting model [43]. The analysis can be applied to both interpolation

and integration. Suppose we have the following simple 2D error splitting model

on the anisotropic regular grids Gγ = Gγ1 ×Gγ2

f − fγ = C1(x, hγ1)h
p
γ1

+ C2(x, hγ2)h
p
γ2

+ C1,2(x, hγ1 , hγ2)h
p
γ1
hpγ2 (2.5)

where hγk , k = 1, 2 is the spacing for each dimension. We can figure out the error

bound of the sparse grid combination technique f cn by using the model when the

coefficients in the model are bounded. The method can also be generalised to

d-dimensional case [76, 43] if we have a d dimensional error splitting model. In

this section, we take the (piecewise) Lagrangian interpolation as an example and

study the error of the combination technique for the Lagrangian interpolation.

We start with deriving different 2D error splitting models based on different

smoothness conditions and choices of the grid points. Then we show how to get

the error bounds of the combination technique solution for 2D case in details and

generalise the analysis to d dimensional case. We make a general assumption that

f ∈⊗d
i=1C

p(Xi) for some integer p > 0 where X =
∏d

i=1Xi is a bounded set in

the analysis. In fact, we have

Cp
mix(X) =

d⊗
i=1

Cp(Xi)
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where Cp
mix(X) is the same as the space Hp

mix(X) except we use derivative but

not the weak derivative†.

2.3.1 Error Models For 2D Piecewise Linear Interpolation

The 2D error splitting model is based on the tensor product of 1D Taylor expan-

sion. If we expand the 1D Taylor series at 0 for both coordinates, we get the

following 2D expansion.

Lemma 2.4. Suppose f ∈ C2(X)⊗ C2(X). We have the following expansion

f(x1, x2) =f(0, 0) + x1∂1f(0, x2) + x2∂2f(x1, 0)− x1x2∂1∂2f(0, 0)

+

∫ x1

0

(x1 − s1)∂2
1f(s1, 0) ds1 +

∫ x2

0

(x2 − s2)∂2
2f(0, s2) ds2

+

∫ x1

0

∫ x2

0

(x1 − s1)(x2 − s2)∂2
1∂

2
2f(s1, s2) ds1ds2.

Proof. We first define the following operators

I : C2(X)→ C2(X)

g 7→ g.

L1 : C2(X)→ C2(X)

g 7→ g(0).

L2 : C2(X)→ C2(X)

g 7→ xg′(0).

E3 : C2(X)→ C2(X)

g 7→
∫ x

0

(x− s)g(2)(s) ds.

By using the notation above, the 1D Taylor expansion with the integral remainder

can be written as

g = Ig = L1g + L2g + E3g = (L1 + L2 + E3)g.

†The choice of the space depends on the problem we have.
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For 2D case, when f ∈ C2(X2), we have

f = (I ⊗ I)f = [(L1 + L2 + E3)⊗ (L1 + L2 + E3)]f

= (L1 ⊗ L1)f + (L2 ⊗ L2)f + [L2 ⊗ (L1 + E3)]f

+ [(L1 + E3)⊗ L2]f + (L1 ⊗ E3)f + (E3 ⊗ L1)f + (E3 ⊗ E3)f

= (L1 ⊗ L1)f + (L2 ⊗ L2)f + [L2 ⊗ (I − L2)]f

+ [(I − L2)⊗ L2]f + (L1 ⊗ E3)f + (E3 ⊗ L1)f + (E3 ⊗ E3)f

= (L1 ⊗ L1)f + (L2 ⊗ I)f + (I ⊗ L2)f − (L2 ⊗ L2)f

+ (L1 ⊗ E3)f + (E3 ⊗ L1)f + (E3 ⊗ E3)f.

Applying the tensor product operators to function f based on the definitions of

I, L1, L2 and E3, we get the expansion formula.

If the function f has higher order smoothness, then we can generalise the

Lemma 2.4 to the following Lemma.

Lemma 2.5. Suppose f ∈ Cp(X)⊗ Cp(X). We have the following expansion

f(x1, x2) = f(0, 0) +

p∑
i=2

1

(i− 1)!
xi−1

1 ∂i−1
1 f(0, x2) +

p∑
i=2

1

(i− 1)!
xi−1

2 ∂i−1
2 f(x1, 0)

−
p∑
i=2

p∑
j=2

1

(i− 1)!(j − 1)!
xi−1

1 xj−1
2 ∂i−1

1 ∂j−1
2 f(0, 0)

+
1

p!

∫ x1

0

(x1 − s1)p−1∂p1f(s1, 0) ds1 +
1

p!

∫ x2

0

(x2 − s2)p−1∂p2f(0, s2) ds2

+
1

(p!)2

∫ x1

0

∫ x2

0

(x1 − s1)p−1(x2 − s2)p−1∂p1∂
p
2f(s1, s2) ds1ds2.

Proof. We again define the following operators for 1D case.

I : Cp(X)→ Cp(X)

g 7→ g.

For i = 1, . . . , p, we define

Li : Cp(X)→ Cp(X)

g 7→ 1

(i− 1)!
xi−1g(i−1)(0).

For the integral remainder operator

Ep+1 : Cp(X)→ Cp(X)

g 7→ 1

p!

∫ x

0

(x− s)p−1g(p)(s) ds.
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Then the 1D Taylor expansion with the integral remainder can be expressed as

g = Ig = (

p∑
i=1

Li + Ep+1)g.

For the 2D case, we have

f = (I ⊗ I)f = [(

p∑
i=1

Li + Ep+1)⊗ (

p∑
i=1

Li + Ep+1)]f

= (L1 ⊗ L1)f +

p∑
i=2

(Li ⊗ I)f +

p∑
i=2

(I ⊗ Li)f

−
p∑
i=2

p∑
j=2

(Li ⊗ Lj)f + (Ep+1 ⊗ L1)f + (L1 ⊗ Ep+1)f

+ (Ep+1 ⊗ Ep+1)f.

(2.6)

The inclusion-exclusion principle is used in the computation of (2.6). Finally, we

use the defined operators to (2.6) and obtain the desired result.

Next, we derive the 2D error splitting model for the piecewise linear inter-

polant on equally discretised grid based on the expansions in the Lemma 2.4. We

first focus on the simplest case when f ∈ C2(X)⊗ C2(X), X = [0, 1]. The proof

here is adapted from the proof in [76].

Theorem 2.6. Suppose f ∈ C2(X) ⊗ C2(X) and X = [0, 1]. Kγf is the 2D

piecewise linear interpolant of f on equally discretised grid Gγ. Then we have the

following error splitting model

f(x)−Kγf(x) = C1(x, hγ1)h
2
γ1

+ C2(x, hγ2)h
2
γ2

+ C1,2(x, hγ1 , hγ2)h
2
γ1
h2
γ2

where

‖C1(x, hγ1)‖∞ ≤
1

4
‖∂2

1f‖∞,

‖C2(x, hγ2)‖∞ ≤
1

4
‖∂2

2f‖∞,

‖C1,1(x, hγ1 , hγ2)‖∞ ≤
(

1

4

)2

‖∂2
1∂

2
2f‖∞.

Proof. Without loss of generality, we consider a point x = (x1, x2) located in the

block [0, hγ1 ]× [0, hγ2 ]. The four corner points are denoted as

(p0
1, p

0
2) = (0, 0)

(p1
1, p

0
2) = (hγ1 , 0)

(p0
1, p

1
2) = (0, hγ2)

(p1
1, p

1
2) = (hγ1 , hγ2).
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The two 1D linear basis functions on interval [0, h] are

b0(x) =
1

h
x

b1(x) = 1− 1

h
x.

The 2D linear basis function is the tensor product of 1D linear basis functions.

Therefore, the four 2D linear basis functions in the block [0, hγ1 ]× [0, hγ2 ] are

b0,0(x1, x2) =
1

hγ1
x1

1

hγ2
x2

b0,1(x1, x2) =
1

hγ1
x1(1− 1

hγ2
)x2

b1,0(x1, x2) = (1− 1

hγ1
)x1

1

hγ2
x2

b1,1(x1, x2) = (1− 1

hγ1
)x1(1− 1

hγ2
)x2.

Using these basis functions, we can get the following four points linear interpolant

on the block

L(2,2)f(x1, x2) =
1∑
i=0

1∑
j=0

|pi1 − (hγ1 − x1)|
hγ1

|pj2 − (hγ2 − x2)|
hγ2

f(pi1, p
j
2).

We apply the Lemma 2.4 to f(pi1, p
j
2)(expand at point (x1, x2)). We can get

L2,2f(x1.x2) =
1∑
i=0

1∑
j=0

|pi1 − (hγ1 − x1)|
hγ1

|pj2 − (hγ2 − x2)|
hγ2

[
f(x1, x2) + (pi1 − x1)∂1f(x1, p

j
2) + (pj2 − x2)∂2f(pi1, x2)

− (pi1 − x1)(pj2 − x2)∂1∂2f(x1, x2)

+

∫ pi1

0

(pi1 − s1)∂2
1f(s1, x2) ds1 +

∫ pj2

0

(pj2 − s2)∂2
2f(x1, s2) ds2

+

∫ pi1

0

∫ pj2

0

(pi1 − s1)(pj2 − s2)∂2
1∂

2
2f(s1, s2) ds1ds2

]
.
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If we notice that

1∑
i=0

1∑
j=0

|pi1 − (hγ1 − x1)|
hγ1

|pj2 − (hγ2 − x2)|
hγ2

= 1

1∑
i=0

1∑
j=0

|pi1 − (hγ1 − x1)|
hγ1

|pj2 − (hγ2 − x2)|
hγ2

(pi1 − x1) = 0

1∑
i=0

1∑
j=0

|pi1 − (hγ1 − x1)|
hγ1

|pj2 − (hγ2 − x2)|
hγ2

(pi2 − x2) = 0

1∑
i=0

1∑
j=0

|pi1 − (hγ1 − x1)|
hγ1

|pj2 − (hγ2 − x2)|
hγ2

(pi1 − x1)(pj2 − x2) = 0,

We can obtain the following error formula for the linear interpolant

L2,2f(x1, x2)− f(x1, x2)

=
1∑
i=0

1∑
j=0

|pi1 − (hγ1 − x1)|
hγ1

|pj2 − (hγ2 − x2)|
hγ2

[
∫ pi1

0

(pi1 − s1)∂2
1f(s1, x2) ds1 +

∫ pj2

0

(pj2 − s2)∂2
2f(x1, s2) ds2

+

∫ pi1

0

∫ pj2

0

(pi1 − s1)(pj2 − s2)∂2
1∂

2
2f(s1, s2) ds1ds2

]
.

We further denote

C1(x, hγ1) =
1

h2
γ1

1∑
i=0

1∑
j=0

|pi1 − (hγ1 − x1)|
hγ1

|pj2 − (hγ2 − x2)|
hγ2∫ pi1

0

(pi1 − s1)∂2
1f(s1, x2) ds1

C2(x, hγ2) =
1

h2
γ2

1∑
i=0

1∑
j=0

|pi1 − (hγ1 − x1)|
hγ1

|pj2 − (hγ2 − x2)|
hγ2∫ pj2

0

(pj2 − s1)∂2
1f(x1, s2) ds2

C1,2(x, hγ1 , hγ2) =
1

h2
γ1
h2
γ2

1∑
i=0

1∑
j=0

|pi1 − (hγ1 − x1)|
hγ1

|pj2 − (hγ2 − x2)|
hγ2∫ pi1

0

∫ pj2

0

(pi1 − s1)(pj2 − s2)∂2
1∂

2
2f(s1, s2) ds1ds2.
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Let M1 = ‖∂2
1f(x1, x2)‖∞, we can obtain a bound for the coefficient C1(x, hγ1).

‖C1(x, hγ1)‖∞

≤
∣∣∣∣M1

h2
γ1

1∑
i=0

1∑
j=0

|pi1 − (hγ1 − x1)|
hγ1

|pj2 − (hγ2 − x2)|
hγ2

∫ pi1

0

(pi1 − s1) ds1

∣∣∣∣
=

∣∣∣∣ M1

2h2
γ1

1∑
i=0

1∑
j=0

|pi1 − (hγ1 − x1)|
hγ1

|pj2 − (hγ2 − x2)|
hγ2

(pi1 − s1)2

∣∣∣∣
=
M1

2

∣∣∣∣∣
(
x1

hγ1

)2(
1− x1

hγ1

)
+

(
x1

hγ1

)(
1− x1

hγ1

)2
∣∣∣∣∣

≤M1

2

∣∣∣∣ x1

hγ1

(
1− x1

hγ1

)∣∣∣∣
≤1

4
M1.

The coefficients C2(x, hγ2) and C1,2(x, hγ1 , hγ2) can be similarly bounded by the

infinite norm of the corresponding derivatives.

If we consider more general domain X1×X2, then we get the following revised

Theorem.

Theorem 2.7. Suppose f ∈ C2(X1) ⊗ C2(X2) and X1 = [a1, b1], X2 = [a2, b2].

Kγf is the 2D piecewise linear interpolant of f on equally discretised grid Gγ.

The grid Gγ = Gγ1 ×Gγ2 where Gγk consists of the following grid points

ak ≤ x0
k ≤ x1

k ≤ · · · ≤ x
nγk
k ≤ bk

where k = 1, 2. Let

h̃γ1 =
b1 − a1

nγ1

h̃γ2 =
b2 − a2

nγ2
.

Then we have the following error splitting model

f(x)−Kγf(x) = C1(x,Gγ1)h̃
2
γ1

+ C2(x,Gγ2)h̃
2
γ2

+ C1,2(x,Gγ1 , Gγ2)h̃
2
γ1
h̃2
γ2

where

‖C1(x,Gγ1)‖∞ ≤
1

4
‖∂2

1f‖∞,

‖C2(x,Gγ2)‖∞ ≤
1

4
‖∂2

2f‖∞,

‖C1,1(x,Gγ1 , Gγ2)‖∞ ≤
(

1

4

)2

‖∂2
1∂

2
2f‖∞.
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Further, if the grid Gγ is not equally spaced, we have the following result.

Theorem 2.8. Suppose f ∈ C2(X1) ⊗ C2(X2) and X1 = [a1, b1], X2 = [a2, b2].

Kγf is the 2D piecewise linear interpolant of f on grid Gγ. Gγ is not necessarily

to be equally spaced. The grid Gγ = Gγ1×Gγ2 where Gγk consists of the following

grid points

ak ≤ x0
k ≤ x1

k ≤ · · · ≤ x
nγk
k ≤ bk

where k = 1, 2. Let

h̃γ1 = max
i=1,...,nγk

(xi1 − xi−1
1 )

h̃γ2 = max
i=1,...,nγk

(xi2 − xi−1
2 ).

Then we have the following error splitting model

f(x)−Kγf(x) = C1(x,Gγ1)h̃
2
γ1

+ C2(x,Gγ2)h̃
2
γ2

+ C1,2(x,Gγ1 , Gγ2)h̃
2
γ1
h̃2
γ2

where

‖C1(x,Gγ1)‖∞ ≤
1

4
‖∂2

1f‖∞,

‖C2(x,Gγ2)‖∞ ≤
1

4
‖∂2

2f‖∞,

‖C1,1(x,Gγ1 , Gγ2)‖∞ ≤
(

1

4

)2

‖∂2
1∂

2
2f‖∞.

2.3.2 Error Models for Polynomial Interpolation

Next, we consider the case when f has higher order smoothness and use the poly-

nomial interpolant to approximate f . We first study the case when f is discretised

on the equally spaced grid Gγ. In order to obtain the error splitting model, we

need the following results on 1D Lagrangian interpolation and Lagrangian basis

functions.

Theorem 2.9 ([25]). If f ∈ Cn+1(X), X ⊂ R is bounded, for any x ∈ X, the

remainder

Rn(x) = f(x)− Lnf(x) =
f (n+1)(θ)

(n+ 1)!
wn+1(x).

Here θ ∈ X and it depends on the choice of x. wn+1(x) is defined as

wn+1(x) = (x− x0) . . . (x− xn).

Corollary 2.10. Suppose li(x), i = 0, . . . , n are the Lagrangian basis function

and xi, i = 0, . . . , n are grid points. We have
n∑
i=0

xki li(x) = xk, k = 0, . . . , n.



62 CHAPTER 2. THE SPARSE GRID COMBINATION TECHNIQUE

Proof. Taking f(x) = xk, k = 0, . . . , n in the above theorem, we have

Rn(x) = xk −
n∑
i=0

xki li(x) = 0.

Lemma 2.11. The following equation holds for any n ∈ N
n∑
i=0

(
n

i

)
(−1)i = 0. (2.7)

Proof. Using the binomial theorem, we have

(−1 + x)n =
n∑
i=0

(
n

i

)
(−1)ixn−i.

We get the equation (2.7) when we take x = 1.

Lemma 2.12. Suppose li(x), i = 0, . . . , n are the Lagrangian basis function and

xi, i = 0, . . . , n are grid points. We have

n∑
i=0

li(x)(xi − x)k = 0, k = 1, . . . , n.

Proof. For any k = 1, . . . , n., we have

n∑
i=0

li(x)(xi − x)k =
n∑
i=0

li(x)
n∑
j=0

(
n

j

)
xji (−x)n−j

=
n∑
j=0

(
n

j

)
(−x)n−j

n∑
i=0

xji li(x)

=
n∑
j=0

(
n

j

)
(−1)n−jxn

= (−1)n
n∑
j=0

(
n

j

)
(−1)jxn

= 0.

In the first equation, we use the binomial theorem. We exchange the order of

summation in the second equation. For the third equation, we apply the corollary

2.10. Finally, we simplify the equation, use the Lemma 2.11 and obtain the desired

result.
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Theorem 2.13. If f ∈ Cn+1(X), X ⊂ R is bounded, Lnf is the n + 1 points

Lagrangian interpolant of f , then

Rn(x) = f(x)− Lnf(x) = − 1

n!

n∑
i=0

li(x)

∫ xi

x

(xi − s)nf (n+1)(s) ds.

where xi, i = 0, . . . , n are grid points and li(x), i = 0, . . . , n are the corresponding

Lagrangian basis functions.

Proof.

Rn(x) = f(x)− Lnf(x)

=
n∑
i=0

f(x)li(x)−
n∑
i=0

f(xi)li(x)

= −
n∑
i=0

(f(xi)− f(x))li(x)

= −
n∑
i=0

li(x)

[
f (1)(x)(xi − x) +

1

2!
f (2)(xi − x)2+

· · ·+ 1

n!
f (n)(x)(xi − x)n +

1

n!

∫ xi

x

(xi − s)nf (n+1)(s) ds

]
Using Lemma 2.12, we have

n∑
i=0

n∑
j=1

1

j!
f (j)(x)li(x)(xi − x)j = 0

and we get

Rn(x) = − 1

n!

n∑
i=0

li(x)

∫ xi

x

(xi − s)nf (n+1)(s) ds.

Corollary 2.14. If f ∈ Cn+1(X), X ⊂ R is bounded, then for any x ∈ X, there

exists a θ ∈ X such that

f (n+1)(θ)

(n+ 1)!
wn+1(x) = − 1

n!

n∑
i=0

li(x)

∫ xi

x

(xi − s)nf (n+1)(s) ds.

The choice of θ depends on the choice of x.

Proof. Combined the results in Theorem 2.9 and Theorem 2.13, we get the desired

result.
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Theorem 2.15. Suppose f ∈ Cnγ1+1(X)⊗Cnγ2+1(X) and X = [0, 1] ⊂ R. Lnγf

is the 2D polynomial interpolant of f on the equally spaced grid Gγ. Let hγ1
and hγ2 be the spacings with respect to different dimensions.Then we have the

following result

f(x)− Lnγf = C1(x, hγ1)h
nγ1+1
γ1 + C2(x, hγ2)h

nγ2+1
γ2

+ C1,2(x, hγ1 , hγ2)h
nγ1+1
γ1 h

nγ2+1
γ2

and

‖C1(x, hγ1)‖∞ ≤ ‖∂
nγ1+1
1 f‖∞,

‖C2(x, hγ2)‖∞ ≤ ‖∂
nγ2+1
2 f‖∞,

‖C1,2(x, hγ1 , hγ2)‖∞ ≤ ‖∂
nγ1+1
1 ∂

nγ2+1
2 f‖∞.

Proof. Without loss of generality, we consider a point x = (x1, x2) located in the

block [0, 1]× [0, 1]. For each dimension, the interval [0, 1] is equally discretised by

0 = x0
k ≤ x1

k ≤ · · · ≤ x
nγ
k = 1, k = 1, 2.

The spacing is hnγi = n−1
γi

, k = 1, 2. Then the 2D lagrangian basis functions are

li,j(x1, x2) = l1i (x1)l2j (x2), i = 0, . . . , nγ1 , j = 0, . . . , nγ2

where

l1i (x1) =

∏
s 6=i(x

s
1 − x1)∏

s 6=i(p
s
1 − pi1)

l2i (x2) =

∏
s 6=i(x

s
2 − x2)∏

s 6=i(p
s
2 − pi2)

.

The 2D interpolant is

Lnγ1 ,nγ2f(x1, x2) =

nγ1∑
i=0

nγ2∑
j=0

li,j(x1, x2)f(xi1, x
j
2).

We consider the error

Lnγ1 ,nγ2f(x1, x2)− f(x1, x2) =

nγ1∑
i=0

nγ2∑
j=0

li,j(x1, x2)(f(xi1, x
j
2)− f(x1, x2)).
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Using Lemma 2.5, we have the following expansion

f(xi1, x
j
2) = f(x1, x2) +

nγ1+1∑
l=2

1

(l − 1)!
(xi1 − x1)l−1∂l−1

1 f(x1, x
j
2)

+

nγ2+1∑
m=2

1

(m− 1)!
(xj2 − x2)m−1∂m−1

2 f(xi2, x2)

−
nγ1+1∑
l=2

nγ2+1∑
m=2

1

(l − 1)!

1

(m− 1)!
(xi1 − x1)l−1(xj2 − x2)m−1∂l−1

1 ∂m−1
2 f(0, 0)

+
1

(nγ1)!

∫ xi1

x1

(xi1 − s1)nγ1∂
nγ1+1
1 f(s1, x2) ds1

+
1

(nγ2)!

∫ xj2

x2

(xj2 − s2)nγ2∂
nγ2+1
2 f(x1, s2) ds2

+
1

(nγ1)!

1

(nγ2)!

∫ xi1

x1

∫ xj2

x2

(xi1 − s1)nγ1 (xj2 − s2)nγ2∂
nγ1+1
1 ∂

nγ2+1
2 f(s1, s2) ds1ds2.

We next show that

nγ1∑
i=0

nγ2∑
j=0

li,j(x1, x2)

nγ1+1∑
l=2

1

(l − 1)!
(xi1 − x1)l−1∂l−1

1 f(x1, x
j
2) = 0

nγ1∑
i=0

nγ2∑
j=0

li,j(x1, x2)

nγ2+1∑
m=2

1

(m− 1)!
(xj2 − x2)m−1∂m−1

2 f(xi2, x2) = 0

nγ1∑
i=0

nγ2∑
j=0

li,j(x1, x2)

nγ1+1∑
l=2

nγ2+1∑
m=2

1

(l − 1)!

1

(m− 1)!
(xi1 − x1)l−1(xj2 − x2)m−1∂l−1

1 ∂m−1
2 f(0, 0) = 0.

Without loss of generality, we only prove the first equation. By using the Lemma

2.12, we have

nγ1∑
i=0

nγ2∑
j=0

li,j(x1, x2)

nγ1+1∑
l=2

1

(l − 1)!
(xi1 − x1)l−1∂l−1

1 f(x1, x
j
2)

=

nγ1+1∑
l=2

nγ2∑
j=0

1

(l − 1)!
lj2(x2)∂l−1

1 f(x1, x
j
2)

nγ1∑
i=0

li1(x1)(xi1 − x1)l−1

=0.
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Finally, we define

C1(x, hγ1) =
1

nγ1 !h
nγ1+1
γ1

∫ xi1

x1

(xi1 − s1)nγ1∂
nγ1+1
1 f(s1, x2) ds1

C2(x, hγ2) =
1

nγ2 !h
nγ2+1
γ2

∫ xj2

x2

(xj2 − s2)nγ2∂
nγ2+1
2 f(x1, s2) ds2

C1,2(x, hγ1 , hγ2) =
1

nγ1 !h
nγ1+1
γ1

1

nγ2 !h
nγ2+1
γ2∫ xi1

x1

∫ xj2

x2

(xi1 − s1)nγ1 (xj2 − s2)nγ2∂
nγ1+1
1 ∂

nγ2+1
2 f(s1, s2) ds1ds2

and prove they are bounded. Without loss of generality, we only prove for

C1(x, hγ1). Applying the Corollary 2.14 to f(·, x2), we have

C1(x, hγ1) =
1

(nγ1 + 1)!h
nγ1+1
γ1

∂
nγ1+1
1 f(θ1, x2)wnγ1+1(x1)

=
1

(nγ1 + 1)!
∂
nγ1+1
1 f(θ1, x2)(

x1

hγ1
)(
x1

hγ1
− 1) . . . (

x1

hγ1
− nγ1)

where θ1 ∈ X. Since f ∈ Cnγ1+1(X)⊗Cnγ1+1(X) and X is bounded, we have for

any x2 ∈ X
|∂nγ1+1

1 f(θ1, x2)| ≤ ‖∂nγ1+1
1 f‖∞.

We now only need to show for t ∈ (0, nγ1)∣∣∣∣ 1

(nγ1 + 1)!
t(t− 1) . . . (t− nγ1)

∣∣∣∣ ≤ 1.

We use mathematical induction to prove this result. For nγ1 = 1, we have∣∣∣∣ 1

2!
t(t− 1)

∣∣∣∣ ≤ 1

8
≤ 1.

Suppose we have ∣∣∣∣ 1

(k + 1)!
t(t− 1) . . . (t− k)

∣∣∣∣ ≤ 1.

Then ∣∣∣∣ 1

(k + 2)!
t(t− 1) . . . (t− k)(t− (k + 1))

∣∣∣∣ ≤ |t− k|k + 2
≤ 1.

Using a similar method, we can also achieve the following result in the space

Hnγ1+1(X)⊗Hnγ2+1(X).
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Theorem 2.16. Suppose f ∈ Hnγ1+1(X)⊗Hnγ2+1(X) and X = [0, 1] ⊂ R. Lnγf

is the 2D polynomial interpolant of f on the equally spaced grid Gγ. Then we

have the following result

f(x)− Lnγf = C1(x, hγ1)h
nγ+1
γ1

+ C2(x, hγ2)h
nγ2+1
γ2 + C1,2(x, hγ1 , hγ2)h

nγ1+1
γ1 h

nγ2+1
γ2

and
‖C1(x, hγ1)‖2 ≤ ‖∂nγ1+1

1 f‖2,

‖C2(x, hγ2)‖2 ≤ ‖∂nγ2+1
2 f‖2,

‖C1,2(x, hγ1 , hγ2)‖2 ≤ ‖∂nγ1+1
1 ∂

nγ2+1
2 f‖2.

As shown in the Chapter 1, some interpolants are built on the unequally

spaced grid. For this case, we have the following Theorem.

Theorem 2.17. Suppose f ∈ Cnγ1+1(X1)⊗ Cnγ2+1(X2) and X1 = [a1, b1], X2 =

[a2, b2]. The function f is approximated on the grid Gγ = Gγ1 × Gγ2 where Gγk

consists of the following grid points

ak ≤ x0
k ≤ x1

k ≤ · · · ≤ x
nγk
k ≤ bk

where k = 1, 2.

Lnγf is the 2D polynomial interpolant of f on the grid Gγ. Gγk , k = 1, 2 are

not necessary to be equally spaced grid. Let

h̃γ1 =
b1 − a1

nγ1

h̃γ2 =
b2 − a2

nγ2
.

We further define

w̃nγk+1(xk) =
1

(nγk + 1)!h̃
nγk+1
γk

wnγk+1(xk)

where

wnγk+1(xk) = (xk − x0
k) . . . (xk − x

nγk
k ).

k = 1, 2. If there exists M1 > 0, M2 > 0 such that

|w̃kn+1(xk)| ≤Mk, k = 1, 2,

then we have the following result

f(x)−Lnγf = C1(x,Gγ1)h̃
nγ1+1
γ1 +C2(x,Gγ2)h̃

nγ2+1
γ2 +C1,2(x,Gγ1 , Gγ2)h̃

nγ1+1
γ1 h̃

nγ2+1
γ2
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and
‖C1(x,Gγ1)‖∞ ≤M1‖∂nγ1+1

1 f‖∞,
‖C2(x,Gγ2)‖∞ ≤M2‖∂nγ2+1

2 f‖∞,
‖C1,2(x,Gγ1 , Gγ2)‖∞ ≤M1M2‖∂nγ1+1

1 ∂
nγ2+1
2 f‖∞.

Proof. Comparing with the result in Theorem 2.15, we only need to give the

definitions of the coefficients C1(x,Gγ1), C2(x,Gγ2), C1,2(x,Gγ1 , Gγ2) and show

they are bounded. We define

C1(x,Gγ1) =

nγ1∑
i=0

li(x)
1

nγ1 !h̃
nγ1+1
γ1

∫ xi1

x1

(xi1 − s1)nγ1∂
nγ1+1
1 f(s1, x2) ds1

C2(x,Gγ2) =

nγ2∑
j=0

lj(x)
1

nγ2 !h̃
nγ2+1
γ2

∫ xj2

x2

(xj2 − s2)nγ2∂
nγ2+1
2 f(x1, s2) ds2

C1,2(x,Gγ1 , Gγ2) =

nγ1∑
i=0

nγ2∑
j=0

li(x)lj(x)
1

nγ1 !h̃
nγ1+1
γ1

1

nγ2 !h̃
nγ2+1
γ2∫ xi1

x1

∫ xj2

x2

(xi1 − s1)nγ1 (xj2 − s2)nγ2∂
nγ1+1
1 ∂

nγ2+1
2 f(s1, s2) ds1ds2

Without loss of generality, we again only prove C1(x,Gγ1) is bounded. Applying

the Corollary 2.14 to f(·, x2), we have

C1(x,Gγ1) =
1

(nγ1 + 1)!h̃
nγ1+1
γ1

∂
nγ1+1
1 f(θ1, x2)wnγ1+1(x1)

= ∂
nγ1+1
1 f(θ1, x2)w̃nγk+1(x1).

where θ1 ∈ X1. Since f ∈ Cnγ1+1(X1)×Cnγ1+1(X2) and X1 is bounded, we have

for any x2 ∈ X2

|∂nγ1+1
1 f(θ1, x2)| ≤ ‖∂nγ1+1

1 f‖∞.
Using the assumption that w̃kn+1(xk), k = 1, 2 are bounded, we obtain the desired

result.

For general choices of the unequally spaced grid Gγ, the condition

w̃knγk+1(xk), k = 1, 2

is not necessarily to be bounded. However, for some specific grid points, we can

prove the condition holds. Here we show the results for the CGL points and the

grid points generated from a Kronrod scheme.

We only need to consider 1D grid because of the tensor product structure.

Therefore, we omit the index k in the following analysis. In order to show
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w̃nγ+1(x) is bounded for CGL points, we need some results of the Chebyshev

polynomial of the second kind.

Definition 2.18. The Chebyshev polynomial Un(x) of the second kind is a poly-

nomial of degree n in x defined by

Un(x) =
sin(n+ 1)θ

sin θ
, x = cos θ.

Using the definition, we can find Un(x) satisfies the recurrence relation

Un(x) = 2xUn−1(x)− Un−2, n = 2, 3, . . .

with the initial conditions

U0(x) = 1, U1(x) = 2x.

From the recurrence relation, we can compute the leading term of Un(x) is 2nxn.

Lemma 2.19. The zeros of Un(x) are

x = cos
iπ

(n+ 1)
, i = 1, 2, . . . , n.

Proof. When θ = iπ
n+1

, we have sin(n+ 1)θ = 0 and thus Un(x) = 0. By using the

definition of the Chebyshev polynomial of the second kind, the zeros of Un(x) are

x = cos
iπ

(n+ 1)
, k = 1, 2, . . . , n.

Lemma 2.20. If we take the following CGL points as our grid points

xi = cos
iπ

n
, i = 1, . . . , n.

Then the corresponding polynomial is

wn+1(x) =
1

2n−1
(1− x2)Un−1(x).

Proof. According to the definition, the polynomial

wn+1(x) = (x− x0)(x− x1) . . . (x− xn).

From Lemma 2.19, x1, . . . , xn−1 are zeros of Un−1(x). Thus, all the CCP points

are the zeros of the polynomial

pn(x) = (1− x2)Un−1(x).
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The degrees of the polynomials wn+1(x) and pn(x) are both n+ 1. Therefore, we

claim that

wn+1(x) = Cpn(x)

where C is a constant. Comparing the leading terms of wn+1(x) and pn(x), we

have

wn+1(x) =
1

2n−1
(1− x2)Un−1(x).

Lemma 2.21. The polynomial wn+1(x) is defined as in the previous Lemma, we

have the following estimation

|wn+1(x)| ≤ n

2n−1
, x ∈ [−1, 1].

Proof. First, we compute maxx∈[−1,1] |Un−1(x)|. We first compute

d

dx
Un(x) =

d

dx

sinnθ

sin θ
=
−n sin θ cosnθ + cos θ sinnθ

sin3 θ
.

The extreme value is taken when d
dx
Un(x) = 0. We get

tannθ = n tan θ 6= 0.

Thus the extreme values of Un are taken at x = 1 and x = −1. We have

maxx∈[−1,1] |Un(x)| = n+ 1 and therefore

max
x∈[−1,1]

|Un−1(x)| = n.

Using the result in the previous Lemma, we have

|wn+1(x)| ≤ 1

2n−1
|1− x2||Un−1(x)|

≤ 1

2n−1
max
x∈[−1,1]

|1− x2| max
x∈[−1,1]

|Un−1(x)|

≤ n

2n−1
.

Theorem 2.22. If we take the following CGL points as our grid points

xi = cos
iπ

nγ
, i = 0, . . . , nγ,

then the polynomial

w̃nγ+1(x) =
1

(nγ + 1)!h̃
nγ+1
γ

wnγ+1(x)

is bounded on [−1, 1].
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Proof. For large nγ, we have the following Stirling’s formula

(nγ + 1)! ∼
√

2π(nγ + 1)

(
nγ + 1

e

)nγ+1

.

Using the result in the previous Lemma, we have the following result

|w̃nγ+1(x)| ≤
∣∣∣∣ 1

(nγ + 1)!

(nγ
2

)nγ+1 nγ
2nγ−1

∣∣∣∣
∼

∣∣∣∣∣∣∣
1√

2π(nγ + 1)
(
nγ+1

e

)nγ+1

(nγ
2

)nγ+1 nγ
2nγ−1

∣∣∣∣∣∣∣
=

∣∣∣∣∣ 4nγ√
2π(nγ + 1)

(e
4

)nγ+1
(

nγ
nγ + 1

)nγ+1
∣∣∣∣∣ .

Using the fact that (
1− 1

nγ + 1

)nγ+1

→ 1

e

as nγ →∞. We get

lim
nγ→∞

|w̃nγ+1(x)| = 0.

Therefore, there exists a constant M such that for any nγ, we have

|w̃nγ+1(x)| ≤M.

Next, we consider the grid points generated from a Kronrod scheme. We first

show some properties of the Legendre polynomials and the Stieltjes polynomials.

We use the following expression of the Legendre polynomials

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n, n = 1, 2, . . .

with the initial condition P0(x) = 1 where x ∈ [−1, 1].

Lemma 2.23. |Pn(x)| achieves maximum value at points 1 and −1. The maxi-

mum is 1.

Definition 2.24. The Stieltjes polynomials En+1 is defined by∫ 1

−1

En+1(x)Pn(x)xk dx = 0, k = 0, 1, . . . , n.



72 CHAPTER 2. THE SPARSE GRID COMBINATION TECHNIQUE

We use the method in [34, 63] to normalise the Stieltjes polynomial. The

polynomial En+1(x) can be expanded as the following Chebyshev series

Γn
2
En+1(cos θ) =a0,n cos(n+ 1)θ + a1,n cos(n− 1)θ

+ · · ·+

a
n
2
,n cos θ, n even

1

2
an+1

2
,n, n odd,

(2.8)

where a0,n = 1 and

Γn =
√
π

22n+1(n!)2

(2n+ 1)!
.

By using the definition of the Chebyshev polynomial of the first kind, the leading

term of En+1(x) appears in the first term of the expansion formula. The first

term can be written as
2

Γn
a0,nTn+1(x)

=
2

Γn
2nxn+1 + pn(x).

where pn(x) here is a polynomial with degree less or equal than n. Therefore, the

leading coefficient is 2n+1

Γn
.

Lemma 2.25 ( [34, 62]). Under the normalisation (2.8), the Stieltjes polynomials

are bounded by

|En+1(x)| ≤ 4

Γn
, x ∈ [−1, 1].

Theorem 2.26. If we take the zeros of the Legendre polynomial Pn(x) as the grid

points, then the corresponding polynomial w̃n(x) is bounded on x ∈ [−1, 1].

Proof. Suppose x0, . . . , xn−1 are the zeros of Pn(x). Then we have

wn(x) = (x− x0) . . . (x− xn−1) =
2n(n!)2

(2n)!
Pn(x).

Using the Lemma 2.23, we have

|w(x)| ≤ 2n(n!)2

(2n)!
.

Therefore

|w̃n(x)| ≤ n!(n− 1)n

(2n)!
→ 0

as n→∞.
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Theorem 2.27. If we use the Kronrod scheme to extend the grid points in the

Theorem 2.26, the newly added grid points are the zeros of the Stieljes polynomial

En+1(x). In addition, the polynomial w̃2n+1(x) is bounded on x ∈ [−1, 1].

Proof. Suppose x0, . . . , xn−1 are the zeros of Pn(x) and y0, . . . , yn are the zeros of

En+1(x). Then

w̃2n+1 =
1

(2n+ 1)!
n2n+1(x− x0) . . . (x− xn−1)(x− y0) . . . (x− yn).

Using the results in Lemma 2.23 and Lemma 2.25, we have

|w̃2n+1(x)| ≤ n2n+1

(2n+ 1)!
max
x∈[−1,1]

∣∣∣∣∣
n−1∏
i=0

(x− xi)
∣∣∣∣∣ max
y∈[−1,1]

∣∣∣∣∣
n−1∏
j=0

(x− yi)
∣∣∣∣∣

≤ n2n+1

(2n+ 1)!

2n(n!)2

(2n)!

Γn
2n+1

4

Γn

=
2n2n+1(n!)2

(2n+ 1)!(2n)!

=
2n2n+1(n!)2

[(2n+ 1) . . . (n+ 1)(2n) . . . (n+ 1)](n!)2
→ 0

as n→∞.

For the Gauss-Patterson method, the analysis is much more complicated than

that of the pure Kronrod scheme. We need to consider the problem that if the

newly added grid points satisfy a polynomial of a certain type as we consider the

Stieljes polynomial for Kronrod scheme. Then we need to study the properties

of this type of polynomial in order to bound |w̃nγ+1(x)|. However, it is still an

open problem to find the polynomial [67].

2.3.3 Error of the Combination Technique

Based on the error splitting models, we can derive the error bound for the com-

bination technique. The following lemma gives an upper bound for the error of

the 2D classical sparse grid combination technique on equally spaced grid.

Theorem 2.28 ([43]). Suppose f is a 2D function defined on domain [0, 1]×[0, 1].

Let fγ be an interpolant of f on the equally spaced grid Gγ = Gγ1 ×Gγ2 with the

spacings hγ1 and hγ2, and hi = 2−i where i = γ1, γ2. Suppose fγ satisfies the error

expansion

f − fγ = C1(x, hγ1)h
p
γ1

+ C2(x, hγ2)h
p
γ2

+ C1,2(x, hγ1 , hγ2)h
p
γ1
hpγ2
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with p > 0 and for any γ = (γ1, γ2), |C1(x, hγ1)| ≤ K, |C2(x, hγ2)| ≤ K and

|C1,2(x, hγ1 , hγ2)| ≤ K for some K > 0. Then the error of the classical sparse

grid combination technique f cn satisfies

|f − f cn| ≤ (3 + (1 + 2p)n)Khpn.

Proof. First we notice that∑
|γ|=n

f −
∑
|γ|=n−1

f = (n+ 1)f − nf = f,

then we can write the error as

f − f cn = f −

∑
|γ|=n

fγ −
∑
|γ|=n−1

fγ


=
∑
|γ|=n

(f − fγ)−
∑
|γ|=n−1

(f − fγ).

Now by using the error splitting model (2.5) and the fact hpn−1 = 2phpn, we obtain

the error

f − f cn

=
n∑

γ1=0

C1(x, hγ1)h
p
γ1
−

n−1∑
γ1=0

C1(x, hγ1)h
p
γ1

+
n∑

γ2=0

C2(x, hγ2)h
p
γ2
−

n−1∑
γ2=0

C2(x, hγ2)h
p
γ2

+
∑

γ1+γ2=n

C1,2(x, hγ1 , hγ2)h
p
n −

∑
γ1+γ2=n−1

C1,2(x, hγ1 , hγ2)h
p
n−1

=

(
C1(x, hn) + C2(x, hn) +

∑
γ1+γ2=n

C1,2(x, hγ1 , hγ2)− 2p
∑

γ1+γ2=n−1

C1,2(x, hγ1 , hγ2)

)
hpn.

Taking the absolute value of we have

|f − f cn| ≤|C1(x, hn)|hpn + |C2(x, hn)|hpn

+

( ∑
γ1+γ2=n

|C1,2(x, hγ1 , hγ2)|+ 2p
∑

γ1+γ2=n−1

|C1,2(x, hγ1 , hγ2)|
)
hpn

≤ Khpn +Khpn + (n+ 1)Khpn + 2pnKhpn

= (3 + (1 + 2p)n)Khpn,

as claimed.

For interpolation on unequally spaced grid, we again need to introduce the

average spacing. The coefficients C1, C2 and C1,2 depend on the choices of the

grids for this case.
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Theorem 2.29. Suppose f is a 2D function defined on domain [a1, b1]× [a2, b2].

Let fγ be an interpolant of a function f on the unequally spaced grids Gγ =

Gγ1 × Gγ2. The numbers of grid points are nγ1 + 1 and nγ2 + 1 with respect to

different dimensions. The average spacings are defined as

h̃γ1 =
b1 − a1

nγ1

h̃γ2 =
b2 − a2

nγ2
.

We further assume the grids Gγ are hierarchical.

Gγk ⊂ Gγk+1

ni = 2i, i = γ1, γ2.

Suppose the interpolant fγ satisfies the error expansion

f − fγ = C1(x,Gγ1)h̃
p
γ1

+ C2(x,Gγ2)h̃
p
γ2

+ C1,2(x,Gγ1 , Gγ2)h̃
p
γ1
h̃pγ2

with p > 0 and for any γ = (γ1, γ2), |C1(x,Gγ1)| ≤ K, |C2(x,Gγ2)| ≤ K and

|C1,2(x,Gγ1 , Gγ2)| ≤ K for some K > 0. Then the error of the classical sparse

grid combination technique f cn satisfies

|f − f cn| ≤ (3 + (1 + 2p)n)Kh̃pn

where

h̃n =

(
b1 + b2 − a1 − a2

2

)2

2−n.

Proof. The proof is the same as the proof of the Theorem 2.28 if we replace the

spacings hγ1 and hγ2 with the average spacings h̃γ1 and h̃γ2 and notice that

(b1 − a1)(b2 − a2) ≤
(
b1 + b2 − a1 − a2

2

)2

.

Corollary 2.30. Suppose f ∈ C2(X) ⊗ C2(X) and X = [0, 1]. If we use the

piecewise linear interpolant fγ = Kγf to approximate the function f on equally

spaced grid Gγ = Gγ1 × Gγ2 with the spacings hγ1 and hγ2, and hi = 2−i where

i = γ1, γ2. then in this case the error of the 2D classical sparse grid combination

technique interpolant f cn

f cn =
∑
|γ|=n

fγ −
∑
|γ|=n−1

fγ
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satisfies

|f − f cn| ≤ (3 + 5n)Kh2
n

where

K = max

{
1

4
‖∂2

1f‖∞,
1

4
‖∂2

2f‖∞,
(

1

4

)2

‖∂2
1∂

2
2f‖∞

}
.

Proof. Combine the results in the Theorem 2.6 and Theorem 2.28.

Corollary 2.31. Suppose f ∈ Cnγ1+1(X1)⊗Cnγ2+1(X2) and X1 = [a1, b1], X2 =

[a2, b2]. The function f is approximated on the grid Gγ where Gγ = Gγ1 × Gγ2

where Gγk consists of the following grid points

ak ≤ x0
k ≤ x1

k ≤ · · · ≤ x
nγk
k ≤ bk, k = 1, 2.

Suppose we further assume the grids Gγ are hierarchical.

Gγk ⊂ Gγk+1

ni = 2i, i = γ1, γ2.

fγ = Lnγf is the 2D Lagrangian interpolant of f on the grid Gγ. We define the

average spaceings

h̃γ1 =
b1 − a1

nγ1

h̃γ2 =
b2 − a2

nγ2
.

We further define

w̃nγk+1(xk) =
1

(nγk + 1)!h̃
nγk+1
γk

wnγk+1(xk)

where

wnγk+1(xk) = (xk − x0
k) . . . (xk − x

nγk
k ).

k = 1, 2. If there exists M1 > 0, M2 > 0 such that

|w̃kn+1(xk)| ≤Mk, k = 1, 2

then the error of the 2D classical sparse grid combination technique interpolant

f cn =
∑
|γ|=n

fγ −
∑
|γ|=n−1

fγ

satisfies

|f − f cn| ≤ (3 + 5n)Kh̃p+1
n
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where

p = min {nγ1 , nγ2} ,
K = max

{
M1‖∂p+1

1 f‖∞, M2‖∂p+1
2 f‖∞, M1M2‖∂p+1

1 ∂p+1
2 f‖∞

}
.

and

h̃n =

(
b1 + b2 − a1 − a2

2

)2

2−n.

Proof. Combine the results in the Theorem 2.15 and Theorem 2.29.

2.3.4 d Dimensional Case

Here we review the result of interpolation on equally spaced grid in [76]. We

also generalise the result to the interpolation on unequally spaced grid using the

similar approach as we did in 2D case. In order to analyse the error for the d

dimensional sparse grid, we need to first introduce the following notations and

combinatorial identities. We first define

S(n, d) :=
∑
|γ|=n

fγ

for the multi-index γ ∈ Nd. Then we define the difference operator δ on a function

g : N→ R,

δg(n) := g(n)− g(n− 1).

Lemma 2.32 ([76]). The combination formula in d dimensions is given by

δd−1S(n, d) =
d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
|γ|=n−k

fγ.

Proof. The original proof can be found in [76]. A more detailed proof is in [45].

Next, we show the consistency of the combination technique.

Lemma 2.33 ([76]). Let

N(n, d) :=
∑
|γ|=n

1 =

(
n+ d− 1

d− 1

)
,

then

δd−1N(n, d) = 1.
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Proof. We refer [76] and [45] for the proof here.

By using the Lemma 2.32 and Lemma 2.33, we have when fγ = 1 for all γ

1 = δd−1N(n, d) = δd−1S(n, d) =
d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
|γ|=n−k

1.

[76] Next, we leave the following Leibniz rule for the difference operator.

Lemma 2.34. Let g1, g2 : N→ R, then for all k ≤ n

δk(g1(n)g2(n)) =
k∑
j=0

(
k

j

)
(δk−1g1(n− j))(δjg2(n)).

Proof. We refer [76] and [45] for the proof here.

Next, we have the following Lemma

Lemma 2.35 ([76]). Let d ∈ N and g : N→ R and define

F (n) :=
n∑
l=0

(
n− l + d− 1

d− 1

)
g(l).

If 0 ≤ k < d ≤ n then δkF (n) = Gk(n) +Hk(n) where

Gk(n) :=


0 k = 0

k∑
l=1

(
d− l − 1

k − l

)
g(n− k + l) k ≥ 1

,

Hk(n) :=
n−k∑
l=0

(
n− k − l + d− 1

d− k − 1

)
g(l).

Additionally, δdF (n) = g(n).

Proof. We refer [76] and [45] for the proof here.

The last lemma shows the combination of individual error terms in the error

splitting.

Lemma 2.36 ([76]). Let m, d, p ≥ 1, v : Rm+ → R and for n ∈ N

F (n) :=
∑
|α|1=n

v(2−α1 , . . . , 2−αm)2−pα1 . . . 2−pαm

Then

δd−1F (n) = 2−pn
m−1∑
j=0

(
m− 1

j

)
(−2p)jsn−j

where sl :=
∑
|α|1=l v(2−α1 , . . . , 2−αm).
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Proof. We refer [76] and [45] for the proof here.

Theorem 2.37 ([76]). For γ ∈ Nd, let fγ : [0, 1]d 7→ R be an approximation to

f : [0, 1]d 7→ R satisfying the pointwise error expansion

f − fγ =
d∑

m=1

∑
{j1,...,jm}⊂{1,...,d}

vj1,...,jm(hγj1 , . . . , hγjm )hpγj1 . . . h
p
γjm

.

Additionally, suppose there exists some K > 0 such that

|vj1,...,jm(hγj1 , . . . , hγjm )| ≤ K, ∀1 ≤ m ≤ d and ∀ {j1, . . . , jm} ⊂ {1, . . . , d} .

Then the combination

f cn =
d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
|γ|=n−k

fγ

satisfies the pointwise error bound

|f − f cn| ≤ K2−pm(1 + 2p)d−1

(
n+ 2d− 1

d− 1

)
.

Proof. Here we provide a sketch of the proof shown in [76] and [45]. The idea is

similar as the idea of the proof of the Theorem 2.28. Applying the Lemma 2.33,

we have that

δd−1
∑
|γ|=n

f = fδd−1
∑
|γ|=n

1 = fδd−1N(n, d) = f.

Combining the above equation and the result in the Lemma 2.32, we obtain

f − f cn = δd−1
∑
|γ|=n

f − fγ.

Let

Fj1,...,jm(n) =
∑
|γ|=n

vj1,...,jm(hγj1 , . . . , hγjm )hpγj1 . . . h
p
γjm

.

Using the error expansion and changing the order of summation, we have

f − f cn =
d∑

m=1

∑
{j1,...,jm}⊂{1,...,d}

δd−1Fj1,...,jm(n).

Applying the Lemma 2.36, we get

f − f cn = 2−pn
d∑

m=1

∑
{j1,...,jm}⊂{1,...,d}

m−1∑
j=0

(
m− 1

j

)
(−2p)jsn−j,m
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where sl,m :=
∑
|γ|=l vj1,...,jm . Using the triangle inequality and the assumption

|vj1,...,jm | ≤ K, we have

max
j=0,...,m−1

|sn−j,m| ≤
(
n+m− 1

m− 1

)
K.

Therefore,

|f − f cn| ≤ 2−pn
d∑

m=1

∑
{j1,...,jm}⊂{1,...,d}

∣∣∣∣∣
m−1∑
j=0

(
m− 1

j

)
(−2P )jsn−j,m

∣∣∣∣∣
≤ 2−pn

d∑
m=1

∑
{j1,...,jm}⊂{1,...,d}

K

(
n+m− 1

m− 1

)
(1 + 2p)m−1

≤ K2−pn(1 + 2p)d−1

d∑
m=1

(
d

m

)(
n+m− 1

m− 1

)
.

Using the equality (
n+ 2d− 1

d− 1

)
=

d∑
m−1

(
d

m

)(
n+m− 1

m− 1

)
,

we finally obtain the result

|f − f cn| ≤ K2−pn(1 + 2p)d−1

(
n+ 2d− 1

d− 1

)
.

Theorem 2.37 gives us the same asymptotic result as we get from Theorem

2.5 for 2D case. In [43], the authors also provide a bound for 3D case. Comparing

their result with the result from Theorem 2.37 when d = 3, we also get the same

asymptotic property.

Similar as we did for the 2D case, we can get the corresponding Theorem

for approximation on unequally spaced grids if we further introduce the average

spacing and have an error splitting model with respect to the average spacing.

Theorem 2.38. Suppose f is a d dimensional function defined on the box domain∏d
k=1[ak, bk]. Let fγ be an interpolant of a function f on the unequally spaced

grids Gγ =
∏d

k=1Gγk . The numbers of grid points are nγk + 1, k = 1, . . . , d. The

average spacings are defined as

h̃γk =
bk − ak
nγk

, k = 1, . . . , d
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We further assume the grids Gγ are hierarchical.

Gγk ⊂ Gγk+1

ni = 2i, i = γ1, γ2.

Suppose the d dimensional interpolant fγ satisfies the error expansion

f − fγ =
d∑

m=1

∑
{j1,...,jm}⊂{1,...,d}

vj1,...,jm(Gγj1
, . . . , Gγjm

)h̃pγj1 . . . h̃
p
γjm

.

Additionally, suppose there exists some K > 0 such that

|vj1,...,jm(Gγj1
, . . . , Gγjm

)| ≤ K, ∀1 ≤ m ≤ d and ∀ {j1, . . . , jm} ⊂ {1, . . . , d} .

Then the combination

f cn =
d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
|γ|=n−k

fγ

satisfies the pointwise error bound

|f − f cn| ≤ Kh̃pn(1 + 2p)d−1

(
n+ 2d− 1

d− 1

)
where

h̃n =

(∑d
k=1(bk − ak)

d

)d

2−n.

Proof. The proof is the same as the proof of the Theorem 2.37 if we replace the

spacings hγ1 and hγ2 with the average spacings h̃γ1 and h̃γ2 and notice that

d∏
k=1

(bk − ak) ≤
(∑d

k=1(bk − ak)
d

)d

.

2.4 Generalised Combination Technique

The 2D classical sparse grid combination technique is based on the error splitting

model

f − fγ = C1(x, hγ1)h
p
γ1

+ C2(x, hγ2)h
p
γ2

+ C1,2(x, hγ1 , hγ2)h
p
γ1
hpγ2 .
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In this model, the error decays with the same rate in both dimensions. In fact,

we can generalise the model to be

f − fγ = C1(x, hγ1)h
p
γ1

+ C2(x, hγ2)h
q
γ2

+ C1,2(x, hγ1 , hγ2)h
p
γ1
hqγ2

with p 6= q. From the symmetry of the classical sparse grid, we know it can not

be the ’optimal’ grid to compute a problem with such generalised model. Even

when we consider a problem with the standard error splitting model, sometimes

the classical sparse grid is not the ’optimal’ choice since the coefficients C1(x, hγ1)

and C2(x, hγ2) can be largely different. In order to improve the sparse grid and

take advantage of the asymmetry of the problem, more generalised combination

technique is required. The generalised combination technique can be subdivided

into two categories. In the first kind of combination technique [48, 45, 47], the

combination scheme is decided before the computation. In the second kind of

combination technique [48, 46, 38, 45, 49], the combination scheme is chosen

during the computation, in other words, the (dimension) adaptive approach. The

combination scheme for combination technique in both categories is chosen based

on the error splitting model or equivalent surplus decay model.

In this section, we first introduce an abstract framework which can be used

to define generalised combination technique in both categories. Then, we review

some important theoretic results. Finally, we give a few numerical examples.

We begin with introducing the concept of partially ordered set.

Definition 2.39. Suppose I is a set and ≺ is a homogeneous binary relation

defined on set I. The set I is a partially ordered set if for any element α, β and

γ in I satisfy

• reflexive: α ≺ α,

• antisymmetry: if α ≺ β and β ≺ α, then α = β,

• transitivity: if α ≺ β and β ≺ γ, then α ≺ γ.

For example, the set Nd of integer tuples is a partially ordered set if we define

the following partial order on it,

α ≺ β if αk ≤ βk, k = 1, . . . , d.

In the previous chapter, we have already denoted this particular partial order

α ≺ β on lattice Nd as α ≤ β. We will follow this notation here. If any two
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elements in a partially ordered set have a least upper bound and a greatest lower

bound, then it forms a lattice [24]. For example, Nd is a lattice, we have

η = α ∨ β : ηk = max {αk, βk} , k = 1, . . . , d,

γ = α ∧ β : γk = min {αk, βk} , k = 1, . . . , d.

Suppose we have a function f ∈ U . We assume α, β, γ ∈ Nd are d-dimensional

multi-indices. We say finite dimensional spaces Uγ ⊂ U are hierarchical if Uα ⊂
Uβ when α ≤ β. Here we actually defined a partial order on a lattice of function

spaces {Uγ}γ∈Nd . The partial order relation ({Uγ}γ∈Nd ,⊂) is lifted from the

partial order relation (Nd,≤). Similarly, we can define the least upper bound and

the greatest lower bound for any two spaces Uα and Uβ as

Uα ∪ Uβ = Uα∨β,

Uα ∩ Uβ = Uα∧β.

Then, we denote projections from U → Uγ as Pγ and fγ = Pγ(f). The operator

Pγ is the tensor product of the 1D projection operator Pγk , k = 1, . . . , d, i.e.

Pγ =
⊗d

k=1 Pγk . We have the following proposition for the projection operator

Pγ.

Proposition 2.40 ([46]). For every lattice space generated from a tensor product

hierarchical space we have

• There are linear operators Pα on U with range R(Pα) = Uα and PαPβ =

Pα∧β.

• Consequently, PαPα = Pα and PαPβ = PβPα.

Proof. Using the tensor product structure of the operator Pα, Pβ and the defini-

tion of the projection operator.

When we define a generalised combination technique, we need the following

concepts.

Definition 2.41. A multi-indices set I is a downset if when

α ∈ I and β ≤ α,

then β ∈ I. If a multi-indices set J is not a downset, we define the smallest

downset that contains J as J ↓.
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Definition 2.42. We denote the power set of the set of all multi-indices as P(Nd)
and its subset which only contains finite downsets as D(Nd).

(D(Nd),⊂) is a partially ordered set if we check reflexive, antisymmetry and

transitivity. If we further define the least upper bound and greatest lower bound

for any two multi indices sets I, J ∈ D(Nd) as set union and set intersection, we

can prove (D(Nd),⊂) also forms a lattice.

Definition 2.43. We define ({UI}I∈D(Nd) ,⊂) as combination space lattice where

UI :=
∑
γ∈I

Uγ.

The least upper bound and the greatest lower bound for any two spaces VI and

UJ are defined as
UI ∪ UJ = UI∪J ,

UI ∩ UJ = UI∩J .

The lifting from D(Nd) to {UI}I∈D(Nd) is similar as the lifting from Nd to

{Vγ}γ∈Nd .

Proposition 2.44 ([46]). Let the lattice {Uγ}γ∈I have the projections Pγ as in

Proposition 2.40 then there are linear operators PI on U with range R(PI) = UI

such that PIPJ = PI∩J . Conversely, if PI is a family of projections with these

properties then Pγ := P{γ}↓ defines a family of projections as in Proposition 2.40.

Proof. We first define the following linear operators

PI = 1−
∏
γ∈I

(1− Pγ)

and define the set max I as

max I = {γ ∈ I : If there is no α ∈ I \ {γ} such that γ ≤ α} .

Let β ∈ I \max I. We have

1−
∏
γ∈I

(1− Pγ) = 1− (1− Pβ)
∏

γ∈I\{β}

(1− Pγ)

= 1−
∏

γ∈I\{β}

(1− Pγ) + Pβ
∏

γ∈I\{β}

(1− Pγ).

Since β ∈ I \max I, there exists an α ∈ max I such that β ≤ α and therefore

Pβ(1− Pα) = 0.
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Hence

Pβ
∏

γ∈I\{β}

(1− Pγ) = 0.

By repeating the computation above for all other η ∈ I \max I, we finally obtain

that

PI = 1−
∏

γ∈max I

(1− Pγ).

Using the properties of Pγ in Proposition 2.40, we first have PαPβ = Pα∧β and

therefore

PI =
∑
γ∈I

cγPγ (2.9)

where the combination coefficients cγ = 1 if γ ∈ max I and cγ = 0 if γ is not in

the sublattice generated by max I. Therefore, the range of PI is UI .

Next, we prove PI ∩PJ = PI∩J . Let Q = PIPJ −PI∩J . The range of operator

Q is UI∩J . We have

Q2 = (PIPJ − PI∩J)(PIPJ − PI∩J)

= PIPJ − 2PI∩J + PI∩J

= PIPJ − PI∩J = Q.

Therefore Q = 0. The converse follows directly.

According to the proof of Proposition 2.44, we can actually write PI as a linear

combination of the projections Pγ, γ ∈ I. The projection PI can be computed

once we know the combination coefficients. The following Proposition provides

another method to compute the projection PJ when J is a covering of a known

I.

Proposition 2.45 ([46]). Let J = I ∪ {α} be a covering element of I and let PI

be the family of projections as in the Proposition 2.44 and Pγ = P{γ}↓. Then one

has

PJ − PI =
∑
γ∈J

dγPγ

where dα = 1 and for γ ∈ I, we have

dγ = −
∑
β∈Iγ|α

cβ

with Iγ|α := {β ∈ I : α ∧ β = γ}.
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Proof. Using the definition in the proof of the previous Proposition, we have

PJ − PI = (1− (1− Pα)
∏
γ∈I

(1− Pγ))− (1−
∏
γ∈I

(1− Pγ))

= Pα
∏
γ∈I

(1− Pγ)

= Pα − Pα(1−
∏
γ∈I

(1− Pγ))

= Pα − PαPI .

Using the combination formula (2.9), we further have

PJ − PI = Pα − Pα
∑
γ∈I

cγPγ

= Pα −
∑
γ∈I

cγPα∧γ

= Pα −
∑
γ

Pγ
∑
β∈Iγ|α

cβ

=
∑
γ∈J

dγPγ.

In the second equation, we use the Proposition 2.40. In the third equation, we

group the all the terms with Pγ.

We can compute PI by using the result in either Proposition 2.44 or Proposi-

tion 2.45. However, both propositions do not provide a concrete expression used

to compute the combination coefficients cγ. In order to get the expressions for

the coefficients, we first introduce the hierarchical surpluses operator and study

their connections with the projections Pγ. We define the hierarchical surpluses

operator ∆d
α as followings

∆d
α := ∆1

α1
⊗ · · · ⊗∆1

αd
(2.10)

where ∆1
αk

, k = 1, . . . , d are 1D hierarchical surplus operators

∆1
αk

= Pαk − Pαk−1.

In Figure 3.1, we show how to compute the 2D surplus ∆2,2 by the projections.

By following proposition, we can also reconstruct the projection Pγ by the

hierarchical surpluses operators.
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P0,0f P1,0f P2,0f

P0,1f P1,1f P2,1f

P0,2f P1,2f P2,2f

∆0,0f∆1,0f∆2,0f

∆0,1f∆1,1f∆2,1f

∆0,2f∆1,2f∆2,2f

Figure 2.2: Take d = 2 and α = (2, 2).By using the definition, we have ∆2
2,2 = ∆1

2 ⊗ ∆1
2 =

(P2 − P1)⊗ (P2 − P1) = P2,2 − P1,2 − P2,1 + P1,1.

Proposition 2.46 ([48]). Suppose f ∈ U . Let Uγ be a sequence of finite dimen-

sional subspaces of U with γ ∈ Nd such that Uα ⊂ Uβ if α ≤ β and let Pγ be the

projections from U → Uγ. ∆α are defined in (2.10). Then we have∑
α≤γ

∆α(f) = Pγ(f)

Moreover, the ∆γ are uniquely determined and one has

∆γ(f) =
∑

γ∈B(α)

(−1)|α−γ|Pγ(f)

where B(α) = {γ ≥ 0 |α− 1 ≤ γ ≤ α}.

Proof. By using the defination of the surplus operator

∆γ =
d⊗

k=1

∆γk =
d⊗

k=1

(Pγk − Pγk−1
)

= Pγ1 ⊗ · · · ⊗ Pγd − Pγ1−1 ⊗ · · · ⊗ Pγd + . . .

+ (−1)dPγ1−1 ⊗ · · · ⊗ Pγd−1

=
∑

γ∈B(α)

(−1)|α−γ|Pγ.

By direct computation, we have

∑
α≤γ

∆d
α(f) =

∑
α≤γ

d⊗
k=1

∆αk =
∑
α≤γ

d⊗
k=1

(Pαk − Pαk−1
)

=
d⊗

k=1

∑
α≤γ

(Pαk − Pαk−1
) =

d⊗
k=1

Pγk = Pγ.

Based on the result in the previous proposition, we define the (generalised)

combination technique as follow
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Definition 2.47. Given I ∈ P(Nd) where P(Nd) is the power set of the set of

all multi-indices. Then the (generalised) combination technique on set I is

P
′

I(f) =
∑
α∈I

∆α(f). (2.11)

Though there is no restriction for the choices of set I, we usually take I as a

downset. We say I is a downset if α ∈ I and β ≤ α, then β ∈ I. In particular, if

I = {γ | |γ| ≤ n}, we get level n classical sparse grid.

Lemma 2.48 ([45]). Given I ∈ D(Nd). then P
′
I = PI .

Proof. Using the result in Proposition 2.44, we have

PI = 1−
∏

γ∈max I

(1− Pγ).

Expand the product and use the Proposition 2.40 and the Proposition 2.46, we

get

1−
∏

γ∈max I

(1− Pγ) = 1−
∑

J⊂max I

(−1)|J |
∏
α∈J

Pα

= 1−
∑

J⊂max I

(−1)|J |P∧α∈Jα

=
∑

J⊂max I,J 6=∅

(−1)|J |+1
∑

β≤∧α∈Jα

∆β.

(2.12)

Therefore, after rearranging the summations, we have

PI =
∑
β∈I

dβ∆β

where dβ, β ∈ I are some coefficients. We only need to show dβ = 1, β ∈ I. First

we notice that for any η and ε, we have

∆η∆ε =

{
∆η, if η = ε,

0, otherwise.

This can be verified directly by using the definition. Based on this result, we get

for any η ∈ I
∆ηPI =

∑
β∈I

dβ∆η∆β = dη∆η.
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Using (2.12), we also have for any η ∈ I

∆ηPI =
∑

J⊂max I,J 6=∅

(−1)|J |+1
∑

β≤∧α∈Jα

∆η∆β

=

|Jη |∑
m=1

∑
{β1...βm⊂Jη}

(−1)m+1∆η

= ∆η

|Jη |∑
m=1

∑
{β1...βm⊂Jη}

(−1)m+1

= ∆η

|Jη |∑
m=1

(|Jη|
m

)
(−1)m+1

= ∆η

1−
|Jη |∑
m=0

(|Jη|
m

)
(−1)m+1


= ∆η(1− (1− 1)|Jη |) = ∆η.

Therefore

dη∆η = ∆ηPI = ∆η

and hence dη = 1.

Using the result in Lemma 2.48, we can further compute the combination

coefficients in (2.9).

Lemma 2.49 ([45]). Given I ∈ D(Nd). The projection PI can be written in the

form

PI =
∑
γ∈I

cγPγ.

For any γ ∈ I, the coefficient

cγ = 1−
∑
γ<α∈I

cα.

Proof. We first apply Proposition 2.46

PI =
∑
γ∈I

cγPγ =
∑
γ∈I

cγ
∑
α≤γ

∆α.

Next, using Lemma 2.48, for any η ∈ I, we get

∆η = ∆ηPI =
∑
γ∈I

cγ
∑
α≤γ

∆η∆α =
∑
η≤γ∈I

cγ∆η
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and therefore

1 =
∑
η≤γ∈I

cγ = cη +
∑
η<γ∈I

cγ.

After changing the indices, we get the desired result.

Moreover, if we further define the characteristic function of a set of indices I,

χI(γ) :=

{
1, if γ ∈ I,
0, otherwise,

we can express the combination coefficients using the characteristic function.

Proposition 2.50 ([48, 45]). Given I ∈ D(Nd). The projection PI can be written

in the form

PI =
∑
γ∈I

cγPγ.

For any γ ∈ I, the coefficient

cγ =
∑

γ≤α≤γ+1

(−1)|α−γ|χI(α).

Proof. First we have for any γ ∈ Nd

χI(γ) =
∑
γ≤α

cαχI(α).

This is a direct result from Lemma 2.49

1 =
∑
γ≤α∈I

cα =
∑
γ≤α

cαχI(α).

By direct computation, we have∑
γ≤α≤γ+1

(−1)|α−γ|χI(α) =
∑

γ≤α≤γ+1

(−1)|α−γ|
∑
α≤η

cηχI(η)

=

(
∞∑

η1=γ1

−
∞∑

η1=γ1+1

)
. . .

(
∞∑

ηd=γd

−
∞∑

ηd=γd+1

)
cηχI(η)

= cγχI(γ).

In particular, if d = 2 and I = {γ | |γ| ≤ n}, we will have

PI(f) = P c
n(f) =

∑
γ1+γ2=n+1

Pγ1,γ2(f)−
∑

γ1+γ2=n

Pγ1,γ2(f)
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(b) A generalised SGCT PI

Figure 2.3: The figures show how to apply the proposition 2.50 to the computation of (gener-

alised) combination technique approximations. In each case, the final approximation is obtained

by adding all the red block approximations and subtracting all the blue block approximations.

The red contour line shows the blocks with indices included in the set I in (2.11).

which is the 2D classical sparse grid combination technique. In Figure 2.3, we

compare it (when n = 3) with a generalised 2D combination technique.

We can also compute the updating combination coefficients in Proposition

2.45 by using the surplus operator.

Proposition 2.51 ([45]). Let I, J ∈ D(Nd) such that J = I ∪ {γ}. Then

PJ − PI =
∑

γ−1≤α≤γ

(−1)|γ−α|Pα

where Pα := 0 if any of the jk ≤ 0.

Proof. Using the definition of the surplus operator, we have

PJ − PI = ∆γ =
d⊗

k=1

∆γk =
d⊗

k=1

(Pγk − Pγk−1)

=
∑
α≤1

(−1)α
d⊗

k=1

Pγk−αk =
∑
α≤1

(−1)|α|Pγ−α

=
∑

γ−1≤α≤γ

(−1)|γ−α|Pα.

For the combination coefficients, we have the following properties.

Remark 2.52. The combination coefficients cγ = 0, γ ∈ I if γ + 1 ∈ I. We have

α ∈ I for any α ≤ γ + 1 according to the condition. Using proposition 2.50, we

have

cγ =
∑

γ≤α≤γ+1

(−1)|α−γ|χI(α) =
∑

γ≤α≤γ+1

(−1)|α−γ| = 0.
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Remark 2.53. If ∅ 6= I ∈ D(Nd), then the combination coefficients satisfy∑
γ∈I

cγ = 1.

Since I 6= ∅, we have 0 ∈ I. Use the fact ∆0 = P0

P0 = ∆0 = ∆0PI = P0PI = P0

∑
γ∈I

cγPγ = P0

∑
γ∈I

cγ

and therefore
∑

γ∈I cγ = 1.

Remark 2.54. In particular, if we take I = {γ | |γ| ≤ n} in the generalised com-

bination technique PI =
∑

γ∈I cγPγ, the combination technique can be computed

using Proposition 2.50

cγ =
∑

γ≤α≤γ+1

(−1)|α−γ|χI(α) =

n−|γ|∑
l=0

(−1)l
(
d

l

)
.

Using the recursion relation(
d

l

)
−
(
d− 1

l − 1

)
=

(
d− 1

l

)
,

we finally get

cγ = (−1)n−|γ|
(
d− 1

n− |γ|

)
.

Next, we show the convergence of the generalised combination technique under

suitable assumptions.

Proposition 2.55. Suppose f ∈ U ⊂ L2(Ω), Ω ⊂ Rd. Let Uγ, γ ∈ Nd be a

sequence of hierarchical finite dimensional subspaces of U . Let Pγ be orthogonal

projections from U → Uγ. Furthermore, we assume the surpluses ∆γf satisfy

∆γ(f)(x) = C(x, γ) 2−γ1p1 . . . 2−γdpd

for some pk ∈ R+, k = 1, . . . , d and |C(x, γ)| ≤ K for any x ∈ Ω and γ ∈ Nd.
Then we have the following error bound for the generalised combination technique.

‖PI(f)− f‖2 ≤ K

(
d∏

k=1

2pk

2pk − 1
−
∑
γ∈I

2−γ1p1 . . . 2−γdpd

)
.
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Proof. We first have

‖PI(f)− f‖2 = ‖
∑
γ∈I

∆γ(f)−
∑
γ∈Nd

∆γ(f)‖2 ≤
∑

γ∈Nd\I

‖∆γ(f)‖2.

Using the assumption on surpluses, we have ‖∆γ(f)‖2 ≤ K2−γ1p1 . . . 2−γdpd and

therefore

‖PI(f)− f‖2 ≤ K
∑

γ∈Nd\I

2−γ1p1 . . . 2−γdpd

= K

∑
γ∈Nd

2−γ1p1 . . . 2−γdpd −
∑
γ∈I

2−γ1p1 . . . 2−γdpd


= K

(
d∏

k=1

2pk

2pk − 1
−
∑
γ∈I

2−γ1p1 . . . 2−γdpd

)
.

as required.

If we have a sequence of downsets It ∈ D(Nd), t ∈ N such that

I1 ⊂ I2 ⊂ · · · ⊂ It ⊂ . . . ,

PIt(f), t ∈ N does not necessarily converge to f as t → ∞ or |It| → ∞. For

example, in 2D case, if we take

It = {γ, γ ≤ (0, t) | t ∈ N}

and assume we have the following error splitting model

f(x)− Pγ(f)(x) = C1(x, γ1)2−γ1p + C2(x, γ2)2−γ2p +D1,2(x, γ1, γ2)2−γ1p2−γ2p,

then when t→∞ or |It| → ∞, we have

lim
t→∞
‖f − PIt(f)‖ = ‖f − P(0,∞)‖ = ‖C1(·, 0)‖2.

‖C1(·, 0)‖2 does not necessarily equal to 0. Therefore, PIt(f), t ∈ N can not

converge to f . In order to exclude such cases and further study the convergence of

the generalised combination technique, we define the following effective sequence

of downsets

Definition 2.56. Suppose we have a sequence of downsets It ∈ D(Nd), t ∈ N
such that

I1 ⊂ I2 ⊂ · · · ⊂ It ⊂ . . . .
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If there exists a subsequence Itr , r ∈ N of It such that

Sd0 ⊂ It0 ⊂ Sd1 ⊂ It1 ⊂ Sd2 ⊂ It2 ⊂ . . .

where the auxiliary sequence of downsets Sdr , r ∈ N is defined as

Sdr = {γ | γ ≤ r1d} ,

then the sequence It ∈ D(Nd), t ∈ N will be called an effective sequence of

downsets.

By using this concept, we can prove the convergence of the generalised com-

bination technique.

Proposition 2.57. Suppose f ∈ U ⊂ L2(Ω), Ω ⊂ Rd. Let Uγ, γ ∈ Nd be a

sequence of hierarchical finite dimensional subspaces of U . Let Pγ be orthogonal

projections from U → Uγ. Furthermore, we assume Pγ(f) satisfy

f(x)− Pγ(f)(x) =
d∑

k=1

∑
{j1,...,jk}⊂{1,...,d}

Cj1...jm(x, γj1 , . . . , γjm)2−γj1p . . . 2−γjkp.

(2.13)

for some p ∈ R+ and

|Cj1...jm(x, γj1 , . . . , γjm)| ≤ K

for any x ∈ Ω and γ ∈ Nd. Suppose It ∈ D(Nd), t ∈ N is an effective sequence of

downsets. The generalised combination technique with downset It is

PIt =
∑
γt∈It

cγtPγt .

Then we have

lim
t→∞
‖f − PIt(f)‖2 = 0.

Proof. According to the definition, we first have

Pr−1(f)− f +
∑

γ∈Itr−1\S
d
r−1

∆γ(f) = PItr−1
(f)− f

PItr−1
(f)− f +

∑
γ∈Sdr \Itr−1

∆γ(f) = Pr(f)− f.

Using the triangle inequality and the reverse triangle inequality, we have

‖Pr(f)− f‖2 −

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

γ∈Sdr \Itr−1

∆γ(f)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ ‖PItr−1
(f)− f‖2

‖PItr−1
(f)− f‖2 ≤ ‖Pr−1(f)− f‖2 +

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
γ∈Itr−1\S

d
r−1

∆γ(f)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

.
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Applying the triangle inequality to the sum of the surpluses and using

Sdr \ Itr−1 ⊂ Sdr \ Sdr−1

Itr−1 \ Sdr−1 ⊂ Sdr \ Sdr−1,

we get

‖Pr(f)− f‖2 −
∑

γ∈Sdr \Sdr−1

‖∆γ(f)‖2 ≤ ‖PItr−1
(f)− f‖2

‖PItr−1
(f)− f‖2 ≤ ‖Pr−1(f)− f‖2 +

∑
γ∈Sdr \Sdr−1

‖∆γ(f)‖2.

Using the error splitting model, we can prove that‡

‖∆γ(f)‖2 ≤ L2−γ1p . . . 2−γdp.

for some L ∈ R+. Based on this bound, the largest ‖∆γ(f)‖ on Sdr \ Sdr−1 is 2−rp

and therefore ∑
γ∈Sdr \Sdr−1

‖∆γ(f)‖2 ≤ L[rd − (r − 1)d]2−rp.

As r →∞, by using squeeze Theorem [78], we have

‖PItr (f)− f‖2 → 0.

Now we consider the sequence It, t ∈ N. For any t ∈ N, let

i : = max
k
{k ∈ N, Itk ⊂ It}

j : = min
k
{k ∈ N, It ⊂ Itk} .

Then we have

Sdti−1
⊂ Iti ⊂ It ⊂ Itj ⊂ Sdtj+1

.

Consequently, we have

‖PItj f − f‖2 −
∑

γ∈Sdtj+1
\Sdti−1

‖2∆γf‖ ≤ ‖PIt(f)− f‖2

‖PIt(f)− f‖2 ≤ ‖PItif − f‖2 +
∑

γ∈Sdtj+1
\Sdti−1

‖2∆γf‖

and ∑
γ∈Sdtj+1

\Sdti−1

‖∆γf‖2 ≤ L((j + 1)d − (i− 1)d)2−(i−1)p.

‡We give a proof for 2D case in Chapter 3. d dimensional case can be proved by using

induction.
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Therefore, using the convergence of the subsequence and applying the squeeze

theorem again, we have

lim
t→∞
‖f − PIt(f)‖2 = 0.

Remark 2.58. In practice, the sequence of downsets It, t ∈ N can be selected

by

It = {γ | ‖∆γ(f)‖2 ≥ εt}
where εt, t ∈ N is a sequence of given decreasing thresholds. When we generate

It, t ∈ N by the above strategy, we also need to make sure the newly generated

It is still a downset. The algorithm can be find in [38, 46].

Remark 2.59. In fact, we can also replace the auxiliary sequence of downsets

Sdr , r ∈ N with other sequences of downsets in the definition, e.g. the sequence

of rectangular downsets

Rd
α =

{
γ ∈ Nd | γ ≤ α

}
,

or even a sequence of downsets of a sparse grid

SGd
n =

{
γ ∈ Nd | |γ| ≤ n

}
.

If we choose It, t ∈ N using the strategy in Remark 2.58, a good choice of

the auxiliary sequence of downsets can help us estimate the convergence rate

of the generalised combination technique theoretically according to the proof of

Proposition 2.57. We can construct such auxiliary sequence of downsets based on

the error splitting model of the problem if we know it before the computation.

We can obtain a concrete (generalised) combination technique after we choose

specific spaces Uγ and projections Pγ. Commonly used choices of Uγ and Pγ are

shown as examples below. The first example is the Lagrangian interpolation.

Suppose the domain of function f is Ω = [0, 1]d and Gγ is regular d dimensional

grid with spacing hγk = 2−γk in the kth coordinate. The d dimensional basis

function is defined as the tensor product of 1D Lagrangian basis functions lγk,ik

lγ,i(x) := ⊗dk=1lγk,ik(xk).

Uγ is the space spanned by lγ,i. We take the projections Pγ as Lagrangian inter-

polation operators Lγ

Lγ(f) =
∑

0≤i≤2γ

f(xγ,i)lγ,i(x).
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Therefore the generalised combination technique for the Lagrangian interpolation

is

LI(f) =
∑
γ∈I

cγLγ(f).

The second example is the Newton Cotes formulas. The Newton Cotes formulas

are quadrature rules of interpolatory type, i.e.

Qγ(f) =

∫
Ω

Lγ(f)(x) dx

where Lγ here are the Lagrangian interpolation associated to the Newton Cotes

formulas Qγ. Using linearity of integral, we can define the generalised sparse grid

combination technique for computing the integral

QI(f) =

∫
Ω

PI(f)(x) dx =

∫
Ω

∑
γ∈I

cγPγf(x) dx =
∑
γ∈I

cγQγ(f).

2.5 Conclusions

In this Chapter, we review the classical combination technique and the generalised

combination technique. The convergence of the combination technique, either the

classical one or the generalised one, is based on the error splitting models. A lot

of research has been done to find the error splitting models for approximations

on equally spaced grids. Here we explore a little on error models on unequally

spaced grids. For frequently used CGL points and the Kronrod’s scheme, we

prove we can construct an error splitting model with bounded coefficients. For

the generalised combination technique, we show its convergence is closely related

to the convergence of the classical combination technique(sparse grid). Therefore,

find an error splitting model is also crucial to prove its convergence.
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Chapter 3

Sparse Grid Combination

Technique applied to Functionals

In many real world problems, people are more interested in some important func-

tionals(Quantities of interest [85]) of the solution of a problem rather than the

solution itself. For example, in an uncertainty quantification(UQ [85]) problem

A(u(·, w), w) = 0, w ∈ W (3.1)

where W is a parameter space and u(·, w) : Ω→ R is the solution to the problem

when we take parameter w, people are more interested in computing the following

moments

F (u)(x) = EW (uk(x, ·)), k ∈ Z+.

In the above uncertainty quantification problem, in order to obtain an accurate

approximation of these moments, we need to solve the equation many times.

This makes the whole UQ problem expensive to compute when W is high di-

mensional. Numerical methods such as Quasi Monte Carlo methods [57, 41, 56],

sparse grid methods and sparse grid combination techniques [79, 85] are widely

used here to reduce the cost of the computation of such UQ problems. While

functionals related to a randomised problem are expensive to compute, for some

deterministic problems, the computational cost of the related functionals can also

be unaffordable. In addition, such computation appears frequently in real world

applications.

In this Chapter, we discuss the following two-stage approximation problem.

Suppose u ∈ U ⊂ X is the solution of a partial differential equation

A(u) = 0.

99
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We compute the following functional

T : U → R

u 7→ T (u).

Such functional can be important quantity used to capture feature of the prob-

lem. It widely appears in applied mathematics and Physics. When the problem

is multidimensional, the computational cost of the functional can be large since

the numerical solution of a multidimensional partial differential equation(e.g. 3D

to 100D) is usually expensive to compute. We apply the generalised combination

technique to the problem. The generalised combination technique can reduce the

computational cost of the functional. It depends on the error splitting model of

the problem. We study the error splitting models of such problem when numer-

ical schemes used to compute the PDEs and the functionals are known. Besides

the error splitting model, it is more convenient to design and analyse the gen-

eralised combination technique by studying the decay of the surpluses for many

problems. We explore the connections between the error splitting model and the

surpluses decay model. By using the connection, we can also apply the gener-

alised combination technique to the problems when we only know the computed

surpluses.

This Chapter is organised as follows. We first introduce the space we work

with, the Banach space and the Hilbert space and the functional defined on these

spaces. We then further study the differential calculus and the Taylor expansion

on these spaces. Next, we work through the PDE examples and numerical schemes

to solve the PDEs. We also review some important results on the error splitting

models for the PDE examples. After that, we study the error splitting model

for the two-stage approximation problem. We then build the connection between

the surpluses decay model and the error splitting model. Finally, we show a few

numerical experiments to illustrate our method.

3.1 Differential Calculus in Banach Space and

Hilbert Space

3.1.1 Banach Space

Definition 3.1. A Banach space is a complete vector space V with a norm ‖ · ‖.
The norm is a real valued function defined on space V such that
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• ‖v‖ ≥ 0, v ∈ V,

• ‖av‖ = |a|‖v‖, v ∈ V, a ∈ R,

• ‖v + w‖ ≤ ‖v‖+ ‖w‖, v, w ∈ V,

• If ‖v‖ = 0, then v = 0.

Definition 3.2. Let X, Y be two Banach space, we denote the set of all the

linear continuous operators from X to Y as L(X, Y ). In particular, if Y = R,

then L(X,R) contains all functionals on Banach space X.

As we define the differential and the derivatives in the Euclidean spaces, we

define the following Fréchet differential and Fréchet derivatives in the Banach

spaces.

Definition 3.3. Let X, Y be two Banach space. F maps X to Y . Suppose U

is an open subset of X and u ∈ U . Then F is Fréchet differentiable at u if there

exists B ∈ L(X, Y ) such that, if we set

R(h) = F (u+ h)− F (u)−B(h),

then

R(h) = o(‖h‖),

i.e. ‖R(h)‖
‖h‖ → 0 as ‖h‖ → 0.

The operator B is unique and is called the Fréchet differential of F at u and

denoted by

B = dF (u).

If F is differentiable at all u ∈ U , then F is said to be differentiable in U .

Definition 3.4. Suppose F : U → Y is differentiable in U . We define

F
′
: U → L(X, Y )

u 7→ dF (u)

as the Fréchet derivative of F . We further define C1(U, Y ) as a set which contains

all F : U → Y with continuous Fréchet derivative in U

The following properties of Fréchet derivative are the same as those of the

derivative in Euclidean space.
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• Linearity: Given Fréchet differentiable functions F , G : U → Y , u ∈ U .

Then for any a, b ∈ R

(aF + bG)
′
(u) = aF

′
(u) + bG

′
(u).

• Chain rule: Given F : U → Y and G : V → Z with F (U) ⊂ V . U and V

are open subsets of X and Y , respectively. F is differentiable at u ∈ U and

G is differentiable at v := F (u) ∈ V . Then the composite operator F ◦ G
is also differentiable and

(G ◦ F )
′
(u) = G

′
(v)F

′
(u).

The proofs of these two properties are similar as the proof in Euclidean space

and can be found in [7].

We can also define higher order Fréchet differential and derivative. We start

with the definition of the twice differential and second derivative.

Definition 3.5. Let X, Y be two Banach space. F maps X to Y . Suppose U

is an open subset of X and u ∈ U . Let F be differentiable in U . Then F is

twice Fréchet differentiable at u if F
′

is differentiable at u. The second Fréchet

differential of F at u is defined as

d2F (u) = dF
′
(u).

If F is twice differentiable at all u ∈ U , then F is said to be differentiable in U

From the definition, we know that d2F (u) is a linear continuous map from X

to L(X, Y ), therefore we have

d2F (u) ∈ L(X,L(X, Y )).

If we further define L2(X, Y ) as the space of all continuous bilinear maps from

X ×X to Y , we can prove that the space L(X,L(X, Y )) and the space L2(X, Y )

are isometric [2]. Therefore, the twice differential operator d2F (u) can also be

viewed as a continuous bilinear map. The value of d2F (u) at pair (h, k) is denoted

by d2F (u)[h, k].

Definition 3.6. Suppose F is twice differentiable in U . We define

F
′′

: U → L2(X, Y )

u 7→ d2F (u)

as the second Fréchet derivative of F . We define C2(U, Y ) as a set which contains

all F : U → Y with continuous second Fréchet derivative in U .
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If the nth derivative is given, we can define the (n + 1)th Fréchet derivative

by induction. Let Ln(X, Y ) be the space of all continuous n-linear map from

X ×X × · · · ×X(n times) to Y. If F : U → Y is n times differentiable in U , we

denote its nth Fréchet derivative as

F (n) : U → Ln(X, Y )

u 7→ dnF (u).

The (n+ 1)th differential at u is defined by induction

d(n+1)F (u) = dF n(u).

According to the definition, we know that dn+1F (u) ∈ L(X,Ln(X, Y )). Let

Ln+1(X, Y ) be the space of all continuous (n+ 1)-linear map from X ×X ×· · ·×
X((n+1) times) to Y. We can similarly prove the space L(X,Ln(X, Y )) and the

space Ln+1(X, Y ) are isometry.

If the nth Fréchet derivative is continuous, then we denote F ∈ Cn(U, Y ).

The value of dnF (u) at (h1, . . . , hn) is

dnF (u)[h1, . . . , hn].

In particular, if h1 = · · · = hn = h, we write it in a conciser form dnF (u)[h]n.

In Euclidean spaces, we use Taylor’s theorem to approximate an n times

differentiable function around a given point by a polynomial of degree n. In

Banach spaces, we also have similar Taylor’s theorem.

Theorem 3.7 (Adapted from [2]). Suppose F ∈ Cn(Q, Y ) and u, u+v ∈ Q such

that the interval [u, u+ v] ⊂ Q. Then we have the following Taylor expansion

F (u+ v) = F (u) + dF (u)[v] +
1

2!
d2F (u)[v]2 + · · ·+ 1

n!
dnF (u)[v]n + ε(u, v)[v]n

where the operator ε(u, v) in the remainder term is defined as

ε(u, v) =
1

(n− 1)!

∫ 1

0

(1− t)n−1[d(n)F (u+ tv)− d(n)F (u)] dt, (3.2)

and

ε(u, v)→ 0 as v → 0. (3.3)

Proof. Let γ(t) = u+ tv, t ∈ [0, 1] and define function

Φ : [0, 1]→ Y

t 7→ F (γ(t)).



104 CHAPTER 3. FUNCTIONAL

Using the chain rule and the definition of the higher derivatives, we have

Φ
′
(t) = dF (u+ tv)[v],

Φ
′′
(t) = d2F (u+ tv)[v]2,

...

Φn(t) = dnF (u+ tv)[v]n.

(3.4)

Applying Taylor expansion of function Φ at 0 in R, we have

Φ(1) =Φ(0) + Φ
′
(0) +

1

2!
Φ
′′
(0) + · · ·+ 1

(n− 1)!
Φ(n)(0)

+
1

(n− 1)!

∫ 1

0

(1− t)n−1Φ(n)(t) dt.

(3.5)

Therefore, combining (3.4) and (3.5), we have

F (u+ v) =F (u) + dF (u)[v] +
1

2!
d2F (u)[v]2 + · · ·+ . . .

1

(n− 1)!

∫ 1

0

(1− t)n−1d(n)F (u+ tv)[v]n dt.

Using definition (3.2), the last integral can be written as

1

(n− 1)!

∫ 1

0

(1− t)n−1d(n)F (u+ tv)dt[v]n

=
1

n!
dnF (u)[v]n + ε(u, v)[v]n.

Since F ∈ Cn(Q, Y ), d(n)F (u) is continuous. Therefore, we have (3.3).

3.1.2 Hilbert Space

In many applications, we work with a special type of the Banach Space, the

Hilbert Space.

Definition 3.8. A Hilbert space is a complete vector space V with an inner

product 〈·, ·〉. The inner product is a binary operation defined on the space V

such that

• 〈u, v〉 = 〈v, u〉, u, v ∈ V,

• 〈au1 + bu2, v〉 = a〈u1, v〉+ b〈u2, v〉, u1, u2, v ∈ V,

• 〈v, v〉 > 0, if v 6= 0, 〈v, v〉 = 0, if v = 0
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The norm on a Hilbert space can be induced by the inner product on it, i.e.

‖v‖ = 〈v, v〉 12 , v ∈ V.

One can check such norm satisfies the norm conditions in definition 3.1. Hence

a Hilbert space is a Banach space. Therefore, the differential calculus and the

Taylor expansion also hold in a Hilbert space.

Definition 3.9. If X is a normed space, we denote

X∗ = L(X,R)

as the dual space of X. X∗ is itself a normed space with the operator norm.

Theorem 3.10 (Riesz representation theorem). If T is a bounded linear func-

tional on a Hilbert space H, then there is a unique element y ∈ H such that

T (x) = 〈y, x〉, ∀x ∈ H.

Proof. See in [12].

Using the Riesz representation theorem, we can prove that a real Hilbert space

is self-dual [87]. In particular, we consider a functional T : U → R where U ⊂ H

and H is a Hilbert space. Suppose T is Fréchet differentiable, then according to

the definition, we have

T
′
: U → L(H,R)

u 7→ T
′
(u).

Since we have H = L(H,R), the Fréchet derivative T
′
(u) ∈ H. If the functional

T is twice Fréchet differentiable, then we have

T
′′

: U → L(H,L(H,R))

u 7→ T
′′
(u).

Therefore the second Fréchet derivative T
′′
(u) ∈ L(H,H). By using induction,

the nth Fréchet derivative T n(u) ∈ L(n−1)(H,H).

In the previous Chapters, the spaces Cs(X), Cs
mix(X) are Banach spaces. The

spaces Hs(X), Hs
mix(X), Hs

0(X),, L2(X) are Hilbert spaces.

3.2 Examples and Numerical Schemes

In this section, we discuss three examples we will use in numerical experiments

and the numerical methods to solve these examples.
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3.2.1 Galerkin Method

The first one is the following 2D Poisson equation with Dirichlet boundary con-

dition. {
−∆u = f in [0, 1]2

u = 0 on ∂[0, 1]2

where f ∈ L2([0, 1]2). We use Galerkin method to solve this problem. The weak

form of the problem is we find u ∈ H1
0 ([0, 1]2) such that

〈∇u,∇v〉 = 〈f, v〉, ∀v ∈ H1
0 ([0, 1])×H1

0 ([0, 1]). (3.6)

In order to compute it, we first look into the underlying abstract problem, i.e.

find u ∈ H where H is a Hilbert space such that

a(u, v) = b(v), ∀v ∈ H.

Here a(u, v) is a continuous bilinear form defined onH×H and b(v) is a continuous

linear functional on H. If we further assume the bilinear form is H-elliptic, then

we can prove the abstract problem has a unique solution.

Definition 3.11. A bilinear form is H-elliptic(strict coercivity) if there exists an

α > 0 such that for all v ∈ H one has

a(v, v) ≥ α‖v‖2
H .

Theorem 3.12 (Lax-Milgram). Let H be a Hilbert space, a(·, ·) a continuous

H-elliptic bilinear form on H and b ∈ H∗. Then there exists exactly one u ∈ H
such that

a(u, v) = b(v), ∀v ∈ H.

Proof. See in [12].

According to the Lax-Milgram theorem, in order to prove the existence and

the uniqueness of the solution to the weak form of 2D Poisson equation, we only

need to check if the bilinear form

a(v, v) = 〈∇v,∇v〉, ∀v ∈ H (3.7)

is H-elliptic.

Theorem 3.13 (Poincaré-Friedrichs Inequality). Suppose Ω is contained in an

n-dimensional cube with side length s. Then

‖v‖2 ≤ s‖v‖H1
0
, ∀v ∈ H1

0 (Ω). (3.8)
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Proof. See in [12].

The H-ellipticity of the bilinear form a follows immediately from the Poincaré-

Friedrichs Inequality. Therefore, the solution of the weak problem (3.6) exists and

it is unique.

For the abstract formulation, suppose Hγ is a finite dimension subspace of

H. Our aim is to find the finite dimension approximation uγ ∈ Hγ such that it

satisfies the following Galerkin equation

a(uγ, vγ) = b(vγ), ∀vγ ∈ Hγ.

In order to find suitable finite dimension space for the 2D Poisson problem,

we first consider the 1D case {
−u′′ = f in [0, 1]

u = 0 on ∂[0, 1].

Its weak form is

〈u′ , v′〉 = 〈f, v〉,∀v ∈ H1
0 ([0, 1]). (3.9)

We first define the 1D grid on [0, 1]. Suppose [0, 1] is equally spaced by the

following grid points

0 = xγ,0 < xγ,1 < · · · < xγ,2γ = 1.

We denote the set contains all these grid points as grid Gγ. The spacing is

hγ = 1/2γ. We consider the following finite dimensional space

Hγ = span {φγ,i, i = 0, . . . , 2γ}

where φγ,i are the nodal basis functions defined on given grid Gγ. Using these

basis functions, the left-hand side of the weak form (3.9) can be expressed as

〈u′ , v′〉 = 〈
2γ∑
i=0

uγ,iφ
′

γ,i,
2γ∑
i=0

vγ,iφ
′

γ,i〉 = vTKu (3.10)

where

K =

 〈φ
′
γ,0, φ

′
γ,0〉 . . . 〈φ′γ,0, φ

′
γ,2γ〉

...
. . .

...

〈φ′γ,2γ , φ
′
γ,0〉 . . . 〈φ′γ,2γ , φ

′
γ,2γ〉

 , u =

 uγ,0...

uγ,2γ

 , v =

 vγ,0...

vγ,2γ

 .



108 CHAPTER 3. FUNCTIONAL

K is the (global) stiffness matrix. Using different nodal basis functions can result

in different stiffness matrices K. Here we consider two cases: linear basis and

quadratic basis. The right-hand side can be written as

〈f, v〉 = 〈f,
2γ∑
i=0

viφγ,i〉 = vTF (3.11)

where F = [〈f, φγ,i〉, . . . , 〈f, φγ,2γ〉]T . Therefore, combining (3.10) and (3.11), we

get

vTKu = vTF, ∀v ∈ Hγ. (3.12)

The unknowns in this equation actually include the boundary points. However,

we know the value on the boundary from the Dirichlet boundary condition. Thus

we need to further deal with these boundary points. First, we write the stiffness

matrix K as the following block matrix[
k0, . . . , k2γ

]
where kj, j = 0, . . . , 2γ is the jth column of the stiffness matrix K. Then we have

vTKu = (vTK)u = [vTk0, . . . , v
Tk2γ ]u

= vTk0u0 +
2γ−1∑
j=1

vTkjuj + vTk2γu2γ .

Hence (3.12) can be written as

vT
2γ−1∑
j=0

kjuj = vT (F − k0u0 − k2γu2γ ), ∀v ∈ Hγ.

Therefore,

[k1, . . . , k2γ−1]

 u1

...

u2γ−1

 = F − k0u0 − k2γu2γ = F.

Removing the rows with the boundary information in the matrix [k1, · · · , k2γ−1]

and vector F , we finally get the linear system

K1:2γ−1,1:2γ−1u1:2γ−1 = F1:2γ−1.

Now we consider the 2D problem. The weak form (3.6) can be further written

into

〈ux, vx〉+ 〈uy, vy〉 = 〈f, v〉, ∀v ∈ H1
0 ([0, 1])×H1

0 ([0, 1]). (3.13)
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We compute the problem on the grid Gγ = Gγ1 × Gγ2 where Gγi , i = 1, 2 is

defined as that in the 1D problem. The 2D nodal basis function is the tensor

product of 1D nodal basis function. Therefore, the 2D finite dimension subspace

Hγ of H1
0 ([0, 1])×H1

0 ([0, 1]) is

Hγ = Hγ1,γ2 = span {φγ1,i1 ⊗ φγ2,i2 | i1 = 0, . . . 2γ1 , i2 = 0, . . . , 2γ2} .

By using the property of the tensor product, we have

〈φ′γ1,i1 ⊗ φγ2,i2 , φ
′

γ1,j1
⊗ φγ2,j2〉 = 〈φ′γ1,i1 , φ

′

γ1,j1
〉 ⊗ 〈φγ2,i2 , φγ2,j2〉.

and

〈φγ1,i1 ⊗ φ
′

γ2,i2
, φγ1,j1 ⊗ φ

′

γ2,j2
〉 = 〈φγ1,i1 , φγ1,j1〉 ⊗ 〈φ

′

γ2,i2
, φ
′

γ2,j2
〉.

Therefore, the left-hand side of the weak form can be written as

(vec v)T (Kγ1 ⊗Mγ2 +Mγ1 ⊗Kγ2) vecu

where vec v and vecu are vectorisation of the matrix [vij]2γ+1,2γ+1 and [ui,j]2γ+1,2γ+1

respectively. Kγi , i = 1, 2 is the 1D stiffness matrix and Mγi , i = 1, 2 is the 1D

(global) mass matrix where

Mγ =

 〈φγ,0, φγ,0〉 . . . 〈φγ,0, φγ,2γ〉
...

. . .
...

〈φγ,2γ , φγ,0〉 . . . 〈φγ,2γ , φγ,2γ〉


The right-hand side of the weak form∗ can be written as

〈f, v〉 = (vec v)T vec([〈f, φγ1,j1 ⊗ φγ2,j2〉]2γ+1,2γ+1)

Similar as we did in 1D problem, we move the left-hand side weak form terms

which include boundary points to the right and remove the corresponding rows.

Finally we obtain a solvable linear system.

3.2.2 Finite Difference Method

We study the following 2D advection equation

∂u

∂t
+ a1

∂u

∂x
+ a2

∂u

∂y
= 0, (x, y) ∈ R2, t > 0.

∗The notation ⊗ here is the tensor product of two matrices. We also use ⊗ as the tensor

product of two functions. Both of them are standard notations
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with the initial condition

u(x, y, 0) = u0(x, y), (x, y) ∈ R2,

and the 2D diffusion equation

∂u

∂t
= ν

(
∂2u

∂x2
+
∂2u

∂y2

)
, (x, y) ∈ R2, t > 0, ν > 0

with the initial condition

u(x, y, 0) = u0(x, y), (x, y) ∈ R2.

In the computation, concrete boundary conditions are required for both PDEs.

For the advection equation, we use the periodic boundary condition on [0, 1]2 for

both directions. This is generally equivalent to the Cauchy problem with periodic

initial data [58]. For the diffusion equation, we restrict the domain on [0, 1]2 and

use zero boundary condition.

We use the upwind scheme to compute the advection equation. Without loss

of generality, we assume a1, a2 > 0. The upwind scheme is

uk+1
l,j − ukl,j

τ
+ a1

ukl,j − ukl−1,j

h1

+ a2

ukl,j − ukl,j−1

h2

= 0

where the domain [0, 1]2 is equally spaced in both directions with spacing h1 and

h2 respectively. τ is the time step size and

ukl,j = u(lh1, jh2, kτ).

The truncation error is O(τ + h1 + h2).

We use the forward Euler central difference scheme to compute the diffusion

equation. It is

uk+1
l,j − ukl,j

τ
= ν

(
ukl+1,j − 2ukl,j + ukl−1,j

h2
1

+
ukl,j+1 − 2ukl,j + ukl,j−1

h2
2

)

The grid setting is the same as that of the upwind scheme. The truncation error

is O(τ + h2
1 + h2

2).

Both numerical schemes are consistent. According to the Lax equivalence

theorem [58], in order to make sure the numerical schemes are convergent, we

also require stability of both schemes. Here we follow the standard Von Neumann

analysis [58] and use it to find out the stability condition for both numerical
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schemes. The idea of the Von Neumann approach is to use the Fourier analysis.

The core is to compute the amplification factor [58] g(ξ) where ξ is a single wave

number. In 2D case†, the amplification factor is g(ξ1, ξ2). ξs, s = 1, 2 is single

wave number of different direction. If we set

uklj = eilh1ξ1eijh2ξ2

and expect

uk+1
lj = g(ξ1, ξ2)eilh1ξ1eijh2ξ2 ,

the amplification factor of the 2D upwind scheme is

g(ξ1, ξ2) = 1− λ1(1− e−ih1ξ1)− λ2(1− e−ih2ξ2)

where

λ1 =
a1τ

h1

, λ2 =
a2τ

h2

.

The modulus of the amplification factor is

|g(ξ1, ξ2)|2

=1− 4(
√
λ1(1− λ1) sin

h1ξ1

2
−
√
λ2(1− λ2) sin

h2ξ2

2
)2

− 8 sin
h1ξ1

2
sin

h2ξ2

2
(
√
λ1(1− λ1)λ2(1− λ2)− λ1λ2 cos(

h1ξ1 − h2ξ2

2
))

when sin h1ξ1
2

sin h2ξ2
2
≥ 0, and it is

|g(ξ1, ξ2)|2

=1− 4(
√
λ1(1− λ1) sin

h1ξ1

2
+
√
λ2(1− λ2) sin

h2ξ2

2
)2

+ 8 sin
h1ξ1

2
sin

h2ξ2

2
(
√
λ1(1− λ1)λ2(1− λ2) + λ1λ2 cos(

h1ξ1 − h2ξ2

2
))

when sin h1ξ1
2

sin h2ξ2
2

< 0. For both cases, in order to achieve |g(ξ1, ξ2)|2 ≤ 1, we

require

λ1(1− λ1) ≥ 0

λ2(1− λ2) ≥ 0√
λ1(1− λ1)λ2(1− λ2) ≥ λ1λ2.

Since λ1 > 0 and λ2 > 0, we finally get

λ1 + λ2 =
a1τ

h1

+
a2τ

h2

≤ 1.

†Since the computation of the amplification factor of the 2D upwind scheme is not in [58]

and it is not trivial, the computation is included here.
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Similarly, the amplification factor of the 2D forward Euler central difference

scheme is

g(ξ1, ξ2) = 1− 4µ1 sin2 h1ξ1

2
− 4µ2 sin2 h2ξ2

2

where

µ1 =
ντ

h2
1

, µ2 =
ντ

h2
2

.

If

µ1 + µ2 =
ντ

h2
1

+
ντ

h2
2

≤ 1

2
,

then the modulus of the amplification factor |g(ξ1, ξ2)| ≤ 1.

3.2.3 Gyrokinetic Equations and GENE

In plasma physics, the following Gyrokinetic equations(Vlasov equation)

∂f

∂t
+ v

∂f

∂x
+ q(E(f) +

v

c
×B(f)) · ∂f

∂v
= 0

is used to describe the evolution of the specie in the plasma. Here f is the

particle distribution function of the specie at a certain position in real and velocity

space(the phase space). It is a seven dimensional function with 3D in real space,

3D in velocity space and 1D in time. c is the speed of light. E and B are

electric field and magnetic field respectively. E and B here should also depend

on x, v and t. They can be computed from Maxwell’s equations. Since it is a

high dimensional problem, the time cost to compute this equation is usually very

expensive.

We use an existing code GENE to compute it. It is a software package de-

veloped to solve the nonlinear gyrokinetic equations in a flux-tube domain. As

mentioned in the GENE user’s manual [88], it first reduces the original six dimen-

sional phase space to a five dimensional one by removing the fast gyromotion.

Then the ’method of lines’ is used to solve the reduced PDEs. During the compu-

tation, different dimensions are treated differently, e.g. for one of the dimensions

in real space, they use the fourth-order Arakawa scheme [3] while for the other two

dimensions, they apply a pseudospectral approach. The whole numerical scheme

is too complex to do the analysis as we did previously for the 2D Galerkin method

and finite difference method.

In many cases, some quantities of interest are more important than the so-

lution of the gyrokinetic equation itself. They can help us better understand

the state of the plasma. However, these quantities of interest are related to the
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solution of the gyrokinetic equation which means we have to compute the high

dimensional PDEs first then we can compute the quantities of interest. This

sometimes makes the computation cost unaffordable. We will further discuss a

concrete example in the numerical results.

3.2.4 Error Splitting Models

For the Galerkin method, we define the following operator Pγ

Pγ :H → H

u 7→ uγ

where we follow the notation in the previous section. u is the exact solution and

uγ is the solution computed from the Galerkin Method. According to the weak

formulation, we have

a(u− uγ, vγ) = 0, ∀vγ ∈ Hγ.

Therefore, the operator Pγ is a projection. For the 2D finite difference method,

we define the following operator Pτ,h1,h2

Pτ,h1,h2 :X → X

u 7→ uτ,h1,h2

where uτ,h1,h2 is the interpolant of the data computed from the linear finite differ-

ence method. We can check Pτ,h1,h2uτ,h1,h2 = uτ,h1,h2 . Thus Pτ,h1,h2 is a projection.

Therefore, for both methods we can apply the generalised combination technique

directly to its solution.

In order to make sure the convergence of the generalised combination tech-

nique, we further require the error splitting models. Now we review some results

of the error splitting models for the Galerkin Method and the finite difference

method. For the Gyrokinetic equations, it is hard to get an error splitting model

for the solution since the underlying numerical scheme is too complex. For the

2D Galerkin method, the error splitting model [17, 74, 73] is

u(x, y)− uγ(x, y) = C1(x, y, hγ1)h
p
γ1

+ C2(x, y, hγ2)h
p
γ2

+ C1,2(x, y, hγ1 , hγ2)h
p
γ1
hpγ2

where hγ1 and hγ2 are the spacings. When the linear basis is used in the ap-

proximation, we have p = 2. When the quadratic basis is used, we have p = 3.

The coefficients C1(x, hγ1), C2(x, hγ2) and C12(x, hγ1 , hγ2) are bounded under suit-

able assumptions of regularity. The error splitting model [76] for upwind scheme
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applied to the 2D advection equation is

u(p)− uγ(p) =C1(p, τγ1)τγ1 + C2(p, hγ2)hγ2 + C3(p, hγ3)hγ3

+ C1,2(p, τγ1 , hγ2)τγ1hγ2 + C1,3(p, τγ1 , hγ3)τγ1hγ3

+ C2,3(p, hγ2 , hγ3)hγ2hγ3

(3.14)

where p = (t, x, y) and γ = (γ1, γ2, γ3). The error splitting model [76] for forward

Euler central difference scheme applied to the 2D diffusion equation is

u(p)− uγ(p) =C1(p, τγ1)τγ1 + C2(p, hγ2)h
2
γ2

+ C3(p, hγ3)h
2
γ3

+ C1,2(p, τγ1 , hγ2)τγ1h
2
γ2

+ C1,3(p, τγ1 , hγ3)τγ1h
2
γ3

+ C2,3(p, hγ2 , hγ3)h
2
γ2
h2
γ3

(3.15)

where p = (t, x, y) and γ = (γ1, γ2, γ3). For both cases, the coefficients are

bounded if the solution of the PDEs satisfies the suitable regularity assump-

tion [76].

3.3 Error Splitting Model for Functionals

For a complicated real world problem, multi-stage approximations can be required

during the computation of the quantities related to the problem(e.g. solution,

norms, functionals of the solution, etc.). In order to obtain the corresponding

error splitting model of these quantities, we need to keep track of all those ap-

proximations used in the computation. Here, we consider a specific two-stage

approximation problem which can be used as a model for computation of some

important quantities of a given partial differential equation or system of partial

differential equations. The two-stage approximation problem is as follow. Sup-

pose u ∈ U ⊂ X is the solution of partial differential equation

A(u) = 0.

We denote the discretisation on a grid Gγ of the operator A as Aγ and the

numerical solution of the discretised problem as uγ. We further assume that we

have the following error splitting model of uγ

u(x)− uγ(x) = C1(x, hγ1)h
p
γ1

+ C2(x, hγ2)h
q
γ2

+ C1,2(x, hγ1 , hγ2)h
p
γ1
hqγ2 . (3.16)

We compute the following functional

T : U → R

u 7→ T (u).
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We denote the discretisation of the functional T on grid Gτ as Tτ and further

assume that for any u ∈ U , we have the error splitting model

T (u)− Tτ (u) = V1(u, hτ1)h
r
τ1

+ V2(u, hτ2)h
s
τ2

+W (u, hτ1 , hτ2)h
r
τ1
hsτ2 . (3.17)

Our purpose is to find out the error splitting model for

T (u)− Tτ (uγ).

In fact, we have

T (u)− Tτ (uγ) = (T (u)− T (uγ)) + (T (uγ)− Tτ (uγ)). (3.18)

Therefore, we first need to know the error splitting models for T (u)− T (uγ) and

T (uγ)− Tτ (uγ).
We first the consider the first term T (u)− T (uγ). We consider a special case

when

T = T0 ◦ · · · ◦ Tt.

Ti, i = 0, . . . , t is either an integral operator or a polynomial operator. In order

to get the error splitting model for T (u)− T (uγ), we need the following Lemmas

Lemma 3.14. Suppose u, uγ ∈ U ⊂ RΩ1×Ω2, Ω1 and Ω2 are bounded. uγ satisfies

the error splitting model in (3.16). Then we have∫
Ω1

u(x1, x2) dx1 −
∫

Ω1

uγ(x1, x2) dx1 =C̃1(x2, hγ1)h
p
γ1

+ C̃2(x2, hγ2)h
q
γ2

+ C̃1,2(x2, hγ1 , hγ2)h
p
γ1
hqγ2

where

C̃1(x2, hγ1) =

∫
Ω1

C1(x, hγ1) dx1

C̃2(x2, hγ2) =

∫
Ω1

C1(x, hγ2) dx1

C̃1,2(x2, hγ1 , hγ2) =

∫
Ω1

C1,2(x, hγ1 , hγ2) dx1.

Furthermore, if for some K > 0, |C1(x, hγ1)| ≤ K, |C2(x, hγ2)| ≤ K and

|C1,2(x , hγ1 , hγ2)| ≤ K, then

|C̃1(x2, hγ1)| ≤ K, |C̃2(x2, hγ2)| ≤ K, |C̃1,2(x2, hγ1 , hγ2)| ≤ K.

Proof. Using the linearity of the integration.
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Lemma 3.15. Suppose M is a polynomial operator of degree t, i.e. for function

u ∈ U , we have

M(u) =
t∑

k=0

aku
k

where ak ∈ R for k = 0, . . . , t. Suppose uγ ∈ U . Then we have

M(uγ)−M(u) =
t∑

j=1

gj(uγ − u)j

where

gj =
t∑

k=j

(
k

j

)
aku

k−j.

Proof. Using Taylor expansion or direct computation.

Lemma 3.16.

(x+ y + z)k =
k∑
i=0

i∑
j=0

(
k

i

)(
i

j

)
xjyi−jzk−i

Proof. Applying binomial theorem twice.

Lemma 3.17. Suppose M is a polynomial operator as defined in Lemma 3.15.

Suppose uγ satisfies the error splitting model in (3.16). Then we have

M(u)(x)−M(uγ)(x) = C̃1(x, hγ1)h
p
γ1

+ C̃2(x, hγ2)h
q
γ2

+ C̃1,2(x, hγ1 , hγ2)h
p
γ1
hqγ2 .

Furthermore, if for some K > 0, |C1(x, hγ1)| ≤ K, |C2(x, hγ2)| ≤ K and |C1,2(x

, hγ1 , hγ2)| ≤ K, and for some K ′, |u| ≤ K ′, then there exists some constant

K
′′
(K,K ′), such that

|C̃1(x, hγ1)| ≤ K
′′
, |C̃2(x, hγ2)| ≤ K

′′
, |C̃1,2(x, hγ1 , hγ2)| ≤ K

′′
.

Proof. Sketch of the proof. Combining the result in Lemma 3.15 and the error

splitting model, we have

M(uγ)−M(u) =
t∑

j=1

gj(uγ − u)j

=
t∑

j=1

gj(C1(x, hγ1)h
p
γ1

+ C2(x, hγ2)h
q
γ2

+ C1,2(x, hγ1 , hγ2)h
p
γ1
hqγ2)

j.
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Then we apply Lemma 3.16 to expand all brackets in the summation. After

rearranging the terms, we can get the expressions of C̃1(x, hγ1), C̃2(x, hγ2) and

C̃1,2(x, hγ1 , hγ2). Here we take C̃1(x, hγ1) for an example. We have

C̃1(x, hγ1) =
t∑

j=1

gjh
(j−1)p
γ1

Cj
1(x, hγ1).

When u(x) and C1(x, hγ1) are bound for any x ∈ Ω, we can prove that C̃1(x, hγ1)

is also bounded for any x ∈ Ω.

Combining the results in Lemma 3.14 and Lemma 3.17, we actually proved

that when error splitting (3.16) holds, the first term in the right-hand side of

(3.18) have the following error splitting

T (u)− T (uγ) = C̃1(hγ1)h
p
γ1

+ C̃2(hγ2)h
q
γ2

+ C̃1,2(hγ1 , hγ2)h
p
γ1
hqγ2 . (3.19)

Here the coefficients do not have x dependency since T is assumed to be a func-

tional. We still use the notation C̃ and C̃ for simplicity though they will change

every time when we composite a new operator Tk, k = 0, . . . , t. The coefficients

are bounded when the coefficients in (3.16) are bounded.

Now we consider more general choice of the functional T . If T ∈ Ck(U,R),

we have the following Taylor expansion in Banach space X,

T (uγ)− T (u) =dT (u)[u− uγ] +
1

2!
d2T (u)[u− uγ]2 + . . .

+ . . .
1

k!
dkT (u)[u− uγ]k + ε(u, uγ)[u− uγ]k

where diT (u) ∈ Li(X,R), i = 1, . . . , k is the ith Fréchet derivative. It is an

i-linear map from X × · · · × X(i times) to R. If we plug in the error splitting

model (3.16), the first term in the expansion can be written as

dT (u)[u− uγ] =dT (u)[C1(·, hγ1)hpγ1 + C2(·, hγ2)hqγ2 + C1,2(·, hγ1 , hγ2)hpγ1hqγ2 ]
=dT (u)[C1(·, hγ1)]hpγ1 + dT (u)[C2(·, hγ2)]hqγ2

+ dT (u)[C1,2(·, hγ1 , hγ2)]hpγ1hqγ2

Since dT (u) is a bounded operator, we get an error splitting model for the first

term. Similarly, we can compute other terms in the Taylor expansion and add

them together. We get an error splitting model for the first k term of the Taylor

expansion.
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Next we consider the term T (uγ)− Tτ (uγ) in (3.18). Using the error splitting

(3.29), we first have

T (uγ)−Tτ (uγ) = V1(uγ, hτ1)h
r
τ1

+V2(uγ, hτ2)h
s
τ2

+W1,2(uγ, hτ1 , hτ2)h
r
τ1
hsτ2 . (3.20)

Since V1(·, hτ1) and V2(·, hτ2) are continuous functionals, we have

V1(uγ, hτ1)− V1(u, hτ1)

=E1(hτ1 , hγ1)h
p
γ1

+ E2(hτ1 , hγ2)h
q
γ2

+ F1,2(hτ1 , hγ1 , hγ2)h
p
γ1
hqγ2 ,

V2(uγ, hτ2)− V2(u, hτ2)

=G1(hτ2 , hγ1)h
p
γ1

+G2(hτ2 , hγ2)h
q
γ2

+H1,2(hτ2 , hγ1 , hγ2)h
p
γ1
hqγ2 ,

W1,2(uγ, hτ1 , hτ2)−W1,2(u, hτ1 , hτ2)

=I1(hτ1 , hτ2 , hγ1)h
p
γ1

+ I2(hτ1 , hτ2 , hγ2)h
q
γ2

+ J1,2(hτ1 , hτ2 , hγ1 , hγ2)h
p
γ1
hqγ2 .

(3.21)

Substitute expansions in (3.21) into expansion (3.20). We obtain

T (uγ)− Tτ (uγ)
=V1h

r
τ1

+ E1h
p
γ1
hrτ1 + E2h

q
γ2
hrτ1 + F1,2h

p
γ1
hqγ2h

r
τ1

+ V2h
s
τ2

+G1h
p
γ1
hsτ2 +G2h

q
γ2
hsτ2

+H1,2h
p
γ1
hqγ2h

s
τ2

+W1,2h
r
τ1
hsτ2 + I1h

p
γ1
hrτ1h

s
τ2

+ I2h
q
γ2
hrτ1h

s
τ2

+ J1,2h
p
γ1
hqγ2h

r
τ1
hsτ2 .

(3.22)

Here we omit the variables in the coefficients for a concise expression. Although

(3.22) is quite complicated and has connections with both (3.16) and (3.29), we

will usually choose

hγ1 = hτ1 ,

hγ2 = hτ2

in practice. This is because we can directly use the computed function values

in computing the functional value without further interpolation or extrapolation.

In order to make sure the final error splitting model achieves the highest possible

accuracy, we will choose

r ≥ p

s ≥ q.

We also want to reduce the computational cost. Therefore, a reasonable choice

is r = p and s = q. In this case, we have

T (uγ)− Tγ(uγ) = Ṽ1(hγ1)h
p
γ1

+ Ṽ2(hγ2)h
q
γ2

+ W̃1,2(hγ1 , hγ2)h
p
γ1
hqγ2 . (3.23)

Therefore, combining (3.18), (3.19) and (3.23), we finally get

T (u)− Tγ(uγ) = X1(hγ1)h
p
γ1

+X2(hγ2)h
q
γ2

+ Y1,2(hγ1 , hγ2)h
p
γ1
hqγ2 . (3.24)

It is possible that for different functionals, the convergence processes are also

different due to the different coefficients in the error splitting models.
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3.4 Error Splitting Model and Surpluses Decay

Using the error splitting model, we can further develop a corresponding model

describe the decay of surpluses. The following Theorem explains the idea for 2D

functions.

Theorem 3.18. [93] Suppose u ∈ U = R[0,1]×[0,1]. Let uγ ∈ U be an approxima-

tion of u on the equally spaced grid Gγ = Gγ1 ×Gγ2 with the spacings

hγk = 2−γk , k = 1, 2.

uγ satisfies a more general error splitting model

u(x)− uγ(x) = C1(x, hγ1)h
p
γ1

+ C2(x, hγ2)h
q
γ2

+ C1,2(x, hγ1 , hγ2)h
p
γ1
hqγ2

for p, q ∈ N. Then the surpluses

∆γ(u)(x) = uγ1,γ2(x)− uγ1−1,γ2(x)− uγ1,γ2−2(x) + uγ1−1,γ2−1(x) (3.25)

satisfy

∆γ(u)(x) = Θ(x, hγ1 , hγ2)h
p
γ1
hqγ2

for p, q ∈ N. If the coefficients |C1(x, hγ1)| ≤ K, |C2(x, hγ2)| ≤ K and |C1,2(x, h1,

h2)| ≤ K for some K > 0, then

|Θ(x, hγ1 , hγ2)| ≤ K(1 + 2p)(1 + 2q).

Proof. Using the definition of the surplus and the error splitting model, we have

∆γ(u)(x) = ∆γ1,γ2(u)(x)

=(Pγ1,γ2 − Pγ1−1,γ2 − Pγ1,γ2−1 + Pγ1−1,γ2−1)(u)(x)

=[(Pγ1,γ2 − I) + (I − Pγ1−1,γ2) + (I − Pγ1,γ2−1) + (Pγ1−1,γ2−1 − I)](u)(x)

=Θ(x, hγ1 , hγ2)h
p
γ1
hqγ2

where
Θ(x, hγ1 , hγ2)

=[−C1,2(x, hγ1 , hγ2) + C1,2(x, hγ1−1, hγ2)2
p

+ C1,2(x, hγ1,, hγ2−1)2q − C1,2(x, hγ1−1, hγ2−1)2p+q].

Since the coefficients in the error splitting model are bounded, we have

|Θ(x, hγ1 , hγ2)| ≤ K(1 + 2p)(1 + 2q)

by using the triangle inequality.
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Conversely, if we know the model which describes the decay of surpluses, i.e.

∆γ(u)(x) = Θ(x, hγ1 , hγ2)h
p
γ1
hqγ2 ,

we can also rebuild the error splitting model.

Theorem 3.19. [93] Suppose u ∈ U = R[0,1]×[0,1]. Let uγ ∈ U be an approxima-

tion of u on the equally spaced grid Gγ = Gγ1 ×Gγ2 with the spacings

hγk = 2−γk , k = 1, 2.

If the surpluses defined in (3.25) satisfy

∆γ(u)(x) = Θ(x, hγ1 , hγ2)h
p
γ1
hqγ2 , ∀γ,

then we have the following error splitting model for uα, ∀α

u(x)− uα(x) = C1(x, hα1)h
p
α1

+ C1(x, hα2)h
q
α2

+ C1,2(x, hα1 , hα2)h
p
α1
hqα2

.

Furthermore, if for some K > 0

|Θ(x, hγ1 , hγ2)| ≤ K, ∀γ, (3.26)

the coefficients in the error splitting model are also bounded, i.e.

|C1(x, hα1)| ≤
K2−p

(1− 2−q)(1− 2−p)

|C2(x, hα2)| ≤
K2−q

(1− 2−q)(1− 2−p)

|C1,2(x, hα1 , hα2)| ≤
K2−p2−q

(1− 2−q)(1− 2−p)
.

Proof. Using the inclusion-exclusion principle, we have

u(x)− Pα(u)(x) = u(x)− Pα1,α2(u)(x)

=

(∑
γ1>α1

∞∑
γ2=0

+
∞∑
γ1=0

∑
γ2>α2

−
∑
γ1>α1

∑
γ2>α2

)
∆γ1,γ2(u)(x)

=

(∑
γ1>α1

∞∑
γ2=0

+
∞∑
γ1=0

∑
γ2>α2

−
∑
γ1>α1

∑
γ2>α2

)
Θ(x, hγ1 , hγ2)h

p
γ1
hqγ2 .

(3.27)
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If we denote

Θ1(x, hγ1) =
∞∑
γ2=0

Θ(x, hγ1 , hγ2)h
q
γ2

C1(x, hα1) =
∑
γ1>α1

Θ1(x, 2(α1−γ1)phpα1
)2(α1−γ1)p

the first term in the right hand side of (3.27) can be written as

∑
γ1>α1

∞∑
γ2=0

Θ(x, hγ1 , hγ2)h
q
γ2

=
∑
γ1>α1

Θ1(x, hγ1)h
p
γ1

=hpα1

∑
γ1>α1

Θ1(x, 2(α1−γ1)phpα1
)2(α1−γ1)p

=C1(x, hα1)h
p
α1
.

For the second term in the right hand side of (3.27), we have similar result. For

the last term. if we denote

C1,2(x, hγ1 , hγ2) =
∑
γ1>α1

∑
γ2>α2

Θ(x, 2(α1−γ1)phα1 , 2
(α2−γ2)phα2)2

(α1−γ1)p2(α2−γ2)p,

we have ∑
γ1>α1

∑
γ2>α2

Θ(x, hγ1 , hγ2)h
p
γ1
hqγ2 = C1,2(x, hα1 , hα2)h

p
α1
hqα2

.

If (3.26) holds, we have

|Θ1(x, hγ1)| ≤ K
∞∑
γ2=0

hqγ2 = K

∞∑
γ2=0

2−γ2q =
K

1− 2−q

and

|C1(x, hα1)| ≤
K

1− 2−q

∑
γ1>α1

2(α1−γ1)p =
K2−p

(1− 2−q)(1− 2−p)
.

Using similar method, we can also compute bound for C2(x, hα2). We have

|C1(x, hα1)| ≤
K2−q

(1− 2−q)(1− 2−p)

For C1,2(x, hα1 , hα2), we have

|C1,2(x, hα1 , hα2)| ≤ K
∑
γ1>α1

2(α1−γ1)p
∑
γ2>α2

2(α2−γ2)p =
K2−p2−q

(1− 2−q)(1− 2−p)
.
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Theorem 3.18 and Theorem 3.19 give the connection between the error split-

ting model and the decay of the surpluses. If we know the error splitting model,

the result in Theorem 3.18 can be used to check the numerical result obtained

from computation. On the other hand, if we solve a complicated problem and

implement multiple times of approximations during our computation, it will be

hard for us to get a concrete error splitting model. In this case, we can first com-

pute the surpluses use the numerical scheme and then use Theorem 3.19 to study

the corresponding error splitting model. Also, due to the connection between

the error splitting model and the decay of the surpluses, one can check the con-

vergence of the numerical scheme and design a more sophisticated combination

technique by directly studying the computed surpluses instead of the unknown

error splitting model.

The result in Theorem 3.18 and Theorem 3.19 can be easily generalised to

functionals. Suppose we have an error splitting model (3.24) with bounded coef-

ficients. By using similar idea in the proofs of the Theorems, we can get its error

decay model is

∆γ(T (u)) = Θ(hγ1 , hγ2)h
p
γ1
hqγ2

where
∆γ(T (u)) =Tγ1,γ2(uγ1,γ2)− Tγ1−1,γ2(uγ1−1,γ2)

− Tγ1,γ2−1(uγ1,γ2−1) + Tγ1−1,γ2−1(uγ1−1,γ2−1)

and the coefficient is bounded.

3.5 Numerical Results

In the following, we show numerical experiments of the examples in the section

3.2.

3.5.1 Poisson Problem

The 2D Poisson equation

−∆u = f in [0, 1]2,

u = 0 on ∂[0, 1]2.

In particular, we take f = 1 here. We consider the following functional

T (u) =

∫
Ω

u(x, y) dxdy. (3.28)
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We use the Galerkin method to solve the Poisson equation. Linear nodal basis

functions and quadratic nodal basis functions are used in the computation. Also,

we use two different quadrature rules, trapezoidal rule and Simpson’s rule to

compute the integral in (3.28).

The error splitting model for the Galerkin method

u(x)− uγ(x) = C1(x, hγ1)h
p
γ1

+ C2(x, hγ2)h
p
γ2

+ C(x, hγ1 , hγ2)h
p
γ1
hpγ2

as we discussed in Section 3.2.4. For the tensor product trapezoidal rule and

Simpson’s rule, we have the following error splitting model

T (u)− Tτ (u) = V1(u, hτ1)h
r
τ1

+ V2(u, hτ2)h
r
τ2

+W (u, hτ1 , hτ2)h
r
τ1
hrτ2 (3.29)

where hτ1 , τ1 = 0, 1, 2, . . . are the length of the spacing in x and hτ2 , τ2 =

0, 1, 2, . . . are the length of the spacing in y. The coefficients V1(u1, hτ1), V2(u, hτ2)

and W12(u, τ1, τ2) are bounded if u is smooth enough. r = 2 if T is the trapezoidal

rule and r = 3 if T is the Simpson’s rule.

If we further assume hγ1 = hτ1 and hγ2 = hτ2 , according to the combined error

splitting model (3.22), we have the following error splitting model for the case of

quadratic basis and Simpson’s rule

T (u)− Tγ(uγ) = X1(hγ1)h
3
γ1

+X2(hγ2)h
3
γ2

+ Y1,2(hγ1 , hγ2)h
3
γ1
h3
γ2
.

For other cases(linear basis and trapezoidal rule, linear basis and Simpson’s rule

and quadratic basis and trapezoidal rule), we have

T (u)− Tγ(uγ) = X1(hγ1)h
2
γ1

+X2(hγ2)h
2
γ2

+ Y1,2(hγ1 , hγ2)h
2
γ1
h2
γ2
.

The surpluses of the functional are ∆γ(T (u)). According to the Theorem 3.19,

we have

∆γ(T (u)) = O(h3
γ1
h3
γ2

) and ∆γ(T (u)) = O(h2
γ1
h2
γ2

)

respectively. In the Figure 3.1, we compute the exponents of the corresponding

surpluses for four different cases. In all four plots, the absolute values of the sur-

pluses decay when we increase the grid points in either x direction or y direction.

We can see the convergence of all four methods from these decays. As we ex-

pected, the most accurate numerical scheme, using quadratic basis and Simpson’s

rule, achieves the fastest convergence. If we compare these plots in more details,

we can actually find these absolute value of surpluses decrease with different

patterns, especially when we compare the last plot with the other three. These

differences lead to different ’optimal choice’ of the downsets of the generalised

combination technique.
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Figure 3.1: These figures show the absolute values of exponents of the corresponding surpluses,

i.e. | log(∆γ(T (u))/ log 4|. The corsest grid surplus is at the left bottom corner. The grid size

is 5 × 5. The finest grid surplus is at the top right corner. The grid size is 129 × 129. By

comparing the marks on the colorbar, we can know the exponents of each surplues.
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3.5.2 Advection Equation and Diffusion Equation

Consider the 2D advection equation and 2D diffusion equation

∂u

∂t
+ a1

∂u

∂x
+ a2

∂u

∂y
= 0,

and
∂u

∂t
= ν

(
∂2u

∂x2
+
∂2u

∂y2

)
.

In the computation, the initial condition for the advection equation is

u0(x, y) = (x− 1

2
)2 + (y − 1

2
)2

and we use the periodic boundary condition on [0, 1]2. Without loss of generality,

we take a1 = 1 and a2 = 2 here. The initial condition for the diffusion equation

is

u0(x, y) =
1

0.04π
exp

{
1

0.04
[(x− 1

2
)2 + (y − 1

2
)2]

}
.

We use zero boundary condition on [0, 1]2 and set ν = 0.01. We want to show

for more complicated functionals T , we can also apply combination technique

directly to the computed functionals. Here we tested the following functionals

T 1(u) =

∫
[0,1]2

u2(x, y, t) dxdy,

T 2(u) =

(∫
[0,1]2

u(x, y, t) dxdy

)2

,

T 3(u) =

∫
[0,1]2

cos(u(x, y, t)) dxdy,

T 4(u) = cos(

∫
[0,1]2

u(x, y, t) dxdy),

T 5(u) =

∫
[0,1]2

exp(u(x, y, t)) dxdy,

T 6(u) = exp(

∫
[0,1]2

u(x, y, t) dxdy)

(3.30)

for fixed time t for both equations. If we use the same notation as in the (3.14)

and (3.15) where τγ1 is the length of time step and hγ2 , hγ3 is the length of the

spacings in x, y respectively, the error is

T (u)− Tγ2,γ3(uγ1,γ2,γ3) = T (u)− T (uγ1) + T (uγ1)− Tγ2,γ3(uγ1,γ2,γ3).
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We consider the case when τγ1 is fixed and apply the combination technique in

the space (x, y). Therefore, we need an error splitting model for

T (uγ1)− Tγ2,γ3(uγ1,γ2,γ3). (3.31)

In fact, the first two functionals in (3.30) fit in the setting when T can be writ-

ten as compositions of integral operators and polynomial operators. Therefore,

according to our theory, we can exactly derive an error splitting model for (3.31)

from the error splitting model of the solutions of the PDEs(with τγ1 fixed) and the

numerical methods used to compute the integrals. For the other four functionals,

we can use the Taylor expansion and obtain an error splitting model for the first

k terms of it. Since these functionals are smooth, we can take a sufficiently large

k. Thus, the error splitting model for the first k terms will be close to the true

error splitting model.

We can also study the computed surpluses of these functionals. Here we use

the trapezoidal rule to compute the integrals. In the Figure 3.2, we show the

result for the advection equation. In all six plots, the absolute values of the sur-

pluses decay when we increase the grid points in either x or y direction. This

means the surpluses of each functional satisfy a decay model as in the Theorem

3.18 and 3.19. Thus, we also have an error splitting model for the (3.31). There-

fore, the (generalised) combination techniques for the functionals are convergent.

If we further look into the details of all six plots, we will find they show similar

decay pattern. If we truncate the row 0 and the column 0, the absolute val-

ues of surpluses along all diagonals from top-left to bottom-right are almost the

same(almost same color in the plots). This suggests a truncated classical com-

bination technique is a good choice used to compute all six functionals. In the

Figure 3.3, we show the result for the diffusion equation. We also have error de-

cay models for all six functionals which suggests the combination techniques are

convergent. However, the decay patterns are different for each case. Therefore,

in order to achieve fast convergence, different generalised combination techniques

need to be used.

3.5.3 Quantity of Interest from GENE Experiment

We now consider computing the quantities of interest of the Gyrokinetic equation.

Here we focus on those spatially averaged normalized fluctuating quantities which

can be written into high dimensional integrals. In particular, we take following
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Figure 3.2: Here is the result for the advection equation. These figures show the absolute

values of exponents of the corresponding surpluses on the anisotropic grids. The surpluses are

in phase space (x, y) when we take T = 1 in the functionals. The coarsest grid surplus is at the

left bottom corner. The grid size is 5 × 5. The finest grid surplus is at the top right corner.

The grid size is 129× 129.
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Figure 3.3: Here is the result for the diffusion equation. These figures show the absolute

values of exponents of the corresponding surpluses on the anisotropic grids. The surpluses are

in phase space (x, y) when we take T = 3 in the functionals. The coarsest grid surplus is at the

left bottom corner. The grid size is 3 × 3. The finest grid surplus is at the top right corner.

The grid size is 65× 65.
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spatially averaged, normalized fluctuating quantity as an example

〈|n1|2〉
(n0ρ∗ref )

2
, (3.32)

other physical quantities can be similarly computed by our method. In (3.32), n0

is the equilibrium density of the corresponding species and ρ∗ref is the reference

gyroradius-to-machine-size ratio‡,

n1 =

∫
V

f
(pc)
1 (x, v, t) dv

is the velocity space average/moments of the fluctuating part of a time-dependent

particle distribution function f (pc). Here f (pc) can be obtained by solving the

nonlinear gyrokinetic equations [13]. The phase space of the distribution function

f (pc) is 6D of which 3D in real space and 3D in velocity space. 〈·〉 is the spatial

average over real space X. In fact, the 6D phase space is reduced into 5D in

GENE simulation since the fast gyromotion can be removed from the nonlinear

gyrokinetic equations. Thus, if we ignore the constant n0, ρ∗ref and keep using the

notation f
(pc)
1 and f (pc) after fast gyromotion is removed. (3.32) can be written

explicitly as

T (f
(pc)
1 (:, :, t)) =

∫
X

(∫
V

f
(pc)
1 (x, v, t) dv

)2

dx.

It is a time-dependent quantity. x describes the position of the gyrocenter in 3D

real space and v is a 2D space of which two coordinates are the parallel velocity

and the magnetic moment.

Similar as the Poisson problem, GENE problem also requires two stage ap-

proximations. GENE first computes f
(pc)
1,γ as an approximation of f

(pc)
1 . Then it

uses a quadrature rule Tτ to compute the quantity of interest. These two approx-

imations are also treated on the same grid for one simulation, therefore γ = τ .

However, unlike the Poisson problem, it is not easy to obtain an error splitting

model for

T (f
(pc)
1 (:, :, t))− Tγ(f (pc)

1,γ (:, :, t))

because the whole computation process in GENE is too complex for us to obtain

an accurate analysis. Since GENE can provide us with the solution of the non-

linear gyrokinetic equations and the value of quantities of interest on anisotropic

full grid, the surpluses are easy to obtain from these data. Therefore, using the

‡Details can be found on [88] page 45.
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Figure 3.4: We compute the absolute values of exponents of all the surpluses for our quantity

of interest. Compare the color to the color bar, the absolute value of a surplus is around 4−c

where c is its value on the color bar. The data of missing blocks is expensive to compute and

not available. The left bottom block shows the data computed from a grid with size 9× 9.

equivalence of the error splitting model and surpluses decay model shown in The-

orem 3.18 and 3.19, we switch to use the surpluses decay model for this problem.

In order to visualise the surpluses, we only consider the combination in the ve-

locity space, which physicists are most interested in. Let η = (η1, η2) be the new

multi-index. The generalised combination technique on velocity space is

SI(f
(pc)
1 (:, :, t)) =

∑
η∈I

cηSη(f
(pc)
1 (:, :, t)) =

∑
η∈I

cηTη(f
(pc)
1,η (:, :, t)).

By studying the surpluses decay, we are able to design combination technique

with high accuracy.

The surpluses of the quantity of interest are shown in the Figure 3.4. As the

surpluses of the Poisson problem, the absolute value of the surpluses (almost) de-

cay while we increase the grid in either v1 and v2 direction. Unlike the previous

problems, the absolute value of surpluses decay much faster in one direction(v1)

than the other(v2). In Figure 3.5, we show two generalised combination tech-

niques according to the observation in the previous surpluses plot. In the first

(generalised) combination technique, we combine all the blocks when the absolute

value of the hierarchical surpluses are greater than 4−11. The downset I of the

combination technique is not symmetric. In the second (generalised) combination

technique, we combine these three blocks on the top right corner which is the best
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Figure 3.5: We show two (generalised) combination techniques for computing the quantity of

interest according to the previous surpluses figure. The green and red borders show downsets

of two different (generalised) combination techniques. Number in each block is the absolute

value of exponent of the surplues. inf means the surplus on the block is very small. The block

with number nan is expensive to compute and not available.
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combination for the given data.

3.6 Conclusions

In this Chapter, we actually covered two topics. The first one is how to obtain an

error splitting model for the two-stage approximation problem. It is common to

check if there is an error splitting model for the problem before we implement the

(generalised) combination technique. This is because the error splitting model is

the basis for the convergence of the (generalised) combination technique as shown

in the Chapter 2. However, for many real world problems, this is impossible or

very difficult. First, a real world problem can be a multi-stage approximation

problem which is more difficult to analyse than a standard textbook problem.

Second, one may use many different legacy codes to solve a complex problem

without knowing any details about the algorithms of the legacy codes. There-

fore, the (generalised) combination technique which can be used without knowing

much information about the numerical scheme is required. Our second topic is

studying the basis for such combination technique. By studying the connections

between the error splitting model and the surpluses decay model, we can directly

implement the (generalised) combination technique when we only know the com-

puted surpluses of the functionals. This is convenient and can be widely used in

many applications.



Chapter 4

The Application of Sparse Grid

Method in Stochastic

Optimisation

Stochastic optimisation is a useful tool in decision making and has many applica-

tions [10, 80, 11]. It minimises the expectation of a random cost function. In this

Chapter, we will mostly focus on unconstrained stochastic optimisation problems

since techniques for constrained problem are often extensions of unconstrained

methods(though we include several simple constrained stochastic optimisation

examples in our numerical experiments).

Stochastic optimisation can be solved by either randomised algorithms or de-

terministic algorithms. Randomised algorithms are aimed to solve problems with

both high dimensions in optimisation space and probability space. Randomised

algorithms have been widely used in many real world problems. The first and

one of the most important randomised optimisation algorithm is the stochastic

gradient descent(SGD) method [11, 50, 66]. The deterministic gradient vectors

in ordinary gradient decent method are replaced by stochastic gradient vectors.

Although SGD is a simple algorithm, it is the standard choice for most optimi-

sation problems in data science even today. Another frequently used randomised

algorithm is the adaptive gradient method(AdaGrad) [11, 26]. AdaGrad is an

improved version of SGD by using some curvature information while retaining

computational efficiency. Higher-order methods, such as Newton or quasi-Newton

methods are not commonly used in randomised algorithms because of some prac-

tical difficulties and lack of convergence theory. However, people are getting more

and more interested in this topic because their potential fast convergence.

133
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In a deterministic algorithm, the objective function is treated as a high dimen-

sional integral and quadrature rules are used to discretised the integrals which

appear in the algorithm. Then the stochastic optimisation problem is solved

by using common optimisation algorithm for deterministic optimisation problem.

There are two advantages of such deterministic algorithms. First, the problem

can be solved with high accuracy if suitable quadrature rules and optimisation

algorithms are used. Second, theory of the convergence of such deterministic

algorithm can be build upon the convergence theory of the quadrature methods

and optimisations methods used.

In this Chapter, we will only focus on the deterministic algorithms for stochas-

tic optimisation problem. There are two categories of detereministic approaches

to solve the stochastic optimisation problems. One is based on the idea of ’dis-

cretise then optimise’(DTOM) while the other is based on ’optimise then discre-

tise’(OTDM). The methods in the first category are also known as the surrogate

methods or scenario generation methods. The main idea of these methods is

to first approximate the expectation in the cost function, which is an integral,

using some quadrature rules, then minimise the discretised cost function. Thus

accurate quadrature rules are required in order to get accurate minimiser and

minimum of the optimisation problem. Monte Carlo [77, 61, 51] and quasi Monte

Carlo methods [64, 65, 81, 30, 82, 84] has been commonly used in the ’discretise

then optimise’ method. Promising methods based on classical sparse grids [20]

were shown to display high quadrature accuracy for smooth integrands. But they

have negative quadrature weights which potentially destroy the convexity of the

objective and thus may lead to totally wrong results. We prove here that, due

to their high accuracy, sparse grids maintain the convexity of the objective for

sufficiently fine grids. In order to further increase the accuracy, we also explore

applying the dimension adaptive approach in solving high dimensional stochastic

optimisation problems. The main idea of the ’optimise then discretise’ method

is we first solve the optimisation problem by some algorithms, which can be ei-

ther gradient based or Hessian based, then we discretised the objective, gradient

and Hessian which appear in the algorithm. For methods in the second category,

different numerical schemes are allowed to evaluate the objective and each com-

ponent of the gradient and the Hessian. The ’discretise then optimise’ method

is a special case of the the ’optimise then discretise’ method when we fix to use

the same numerical scheme when computing the objective, gradient and Hessian.

The application of the dimension adaptive approaches is also possible in the ’op-

timise then discretise’ methods, which help us further reduce the computational
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cost. Applications are provided to demonstrate the superiority of our approaches

over the classical Monte Carlo and product rule based approaches.

4.1 Stochastic Optimisation

The general form of a stochastic optimisation problem is

min
u∈U

E[h(u,W )], (4.1)

where W is a d dimensional random vector which is defined on the probabil-

ity space (Ω,B,P), B is the Borel σ-algebra and P is the associate probability

measure. U is a subset of Rn which contains all possible decisions∗.

If the random vector W subjects to a probability density† p(w) on Rd the

objective is of the form

F (u) := E [h(u,W )] =

∫
Rd
h(u,w)p(w) dw =

∫
Rd
f(u,w) dw (4.2)

where f(u,w) = h(u,w)p(w).

First we begin with introducing some basic concepts of optimisation.

Definition 4.1. u∗ is a global minimizer of F if F (u) ≥ F (u∗) for all u ∈ Rn.

Definition 4.2. F is convex when F satisfies

F (tu+ (1− t)v) ≤ tF (u) + (1− t)F (v), ∀u, v ∈ Rn, t ∈ [0, 1].

F is γ-strongly convex when there exists γ > 0 such that

F (tu+(1−t)v) ≤ tF (u)+(1−t)F (v)− 1

2
γt(1−t)‖u−v‖2

2, ∀u, v ∈ Rn, t ∈ [0, 1].

We then make some smoothness assumptions on the cost function F such that

the global minimiser of the stochastic optimisation problem exists.

∗The u here is a vector. It is different from the function u we used in previous Chapter.

In most standard textbooks, the notation u denotes the solution of a PDE. Also, in Stochastic

Optimisation and Stochastic Optimal Control, people use u as a standard notation for the

solution or the control.
†p(ω) is a density function respect to the probability measure. (4.2) gives a general method

to solve the stochastic optimisation problem. Detailed methods used to calculate the integral

are discussed in examples on page 139 and page 159 in later sections. For different density

functions, we use different quadrature methods.
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Definition 4.3. A function g : Rp → Rq is Lipschitz continuous with constant

L > 0 if

‖g(x)− g(y)‖2 ≤ L‖x− y‖2, ∀x, y ∈ Rq.

Assumption 4.3.1. The function F is continuously differentiable and ∇F is

Lipschitz continuous with constant L > 0. In this case, we call F L-smooth.

By using Taylor expansion, we have ‖∇2F (u)‖2 ≤ L if F is L-smooth and

twice continuously differentiable.

The following Lemma gives connection between convexity of a function and

its smoothness.

Lemma 4.4 ( [66]). If F is continuously differentiable, then F is convex if and

only if F lies on or above any tangent line:

F (v) ≥ F (u) +∇F (u)T (v − u), ∀u, v ∈ Rn.

Also, F is γ-strongly convex if and only if

F (v) ≥ F (u) +∇F (u)T (v − u) +
γ

2
‖v − u‖2

2, ∀u, v ∈ Rn.

If F is twice continuously differentiable, then F is convex if and only if ∇2F (w)

is positive semidefinite for every w ∈ Rn. Also, F is γ-strongly convex if and

only if ∇2F (w) ≥ γI.

By using this Lemma, we can show the existence and uniqueness of global

minimizers for strongly convex functions.

Theorem 4.5 ( [66]). If F : Rn → R is continuously differentiable and strongly

convex, then it has a unique global minimizer.

If the function f satisfies assumptions in Theorem 4.5, we can make sure the

stochastic optimisation problem is well defined. Next, we consider the numerical

solvers to solve the problem. In order not to be too general, we will use Newton-

type methods as our solvers. According to the optimality condition, solving the

stochastic optimisation problem is equivalent to solve the following system of

equations

G(u) = ∇uF (u) = 0. (4.3)

The Newton-type methods generate following sequence {up}

up+1 = up − A−1
p G(up), p = 0, 1, 2, . . . (4.4)
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and one expects the limit of this sequence will be the solution of (4.3). In the

iteration, Ap ∈ L(U) is an approximation to the derivative G
′
(u), namely, the

Hessian of F . Ap can be generated in many different ways and different choices

of Ap lead to different kinds of Newton-type methods. For example, if we take

Ap = ∇2
uF (up),

this is exactly Newton’s method. If we take

Ap = α−1
p Bp,

where αp is chosen by exact/inexact line search and Bp is updated from the

previously computed value Bp−1

Bp = Bp−1 +
yp−1y

T
p−1

sTp−1yp−1

− (Bp−1sp−1)(Bp−1sp−1)T

sTp−1Bp−1sp−1

,

where B0 = I, sp := up+1 − up and yp := ∇F (up+1)−∇F (up), then the iteration

(4.4) becomes the BFGS method [52, 53], one of the most frequently used Quasi

Newton methods.

If we further assume ∇2
uF (u) is definite, bounded and Lipschitz continuous,

see details in [52, 53], the Newton method is quadratically convergent when

the initial value is close enough to the minimiser while the BFGS method is

superlinearly convergent. We can similarly assume the positive definiteness and

boundedness of ∇2
uf(u,w), ∀w ∈ Ω and the Lipschitz continuity of ∇2

uf(u,w),

∀w ∈ Ω to make sure Newton method and BFGS method are convergent.

When we consider high dimensional problems, the difficulty lies in the approx-

imations of F (u), ∇uF (u) and ∇2
uF (u).The objective F (u) and each component

of ∇uF (u) and ∇2
uF (u) are high dimensional integrals in such case. Moreover,

we have to compute them at each iteration in the solvers. This will result in the

curse of dimensionality. Thus, we need to find efficient way to compute these

integrals.

4.2 Surrogate Method and Convexity

Suppose the objective F (u) = E[h(u,W )] satisfies assumptions in Theorem 4.5.

Here we approximate this objective using sparse grid quadrature. Unlike Monte

Carlo (MC) or Quasi Monte Carlo (QMC) methods, the quadrature weights of
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sparse grids can be negative. As a consequence, the surrogate Fl(u) may no longer

be convex. The surrogate is defined as

Fl(u) =
N∑
i=1

cif(u,wi)

where ci and wi are the level l sparse grid weights and quadrature points, respec-

tively. We choose sparse grids as they have superior approximation properties

for smooth integrands compared to MC and QMC. Using the linearity of the

derivatives, the gradient and Hessian used in the computation is

∇Fl(u) =
N∑
i=1

ci∇uf(u,wi),

and

∇2Fl(u) =
N∑
i=1

ci∇2
uf(u,wi).

Therefore, the weights and the grid points are the same when we compute the

objective and each component of the gradient and Hessian.

In order to address the problem on nonconvexity of the sparse grid surrogate

(for a convex objective) , we define the following norm in C2(U):

‖F‖N = sup
u∈U

[
|F (u)|2 +∇F (u)T∇F (u) + trace (∇2F (u)T∇2F (u))

]1/2
for F ∈ C2(U). We will show that for sufficiently large l, Fl(u) is convex under

certain conditions.

Theorem 4.6 ([92]). Let U ⊂ Rn be convex and compact and Ω = [−1, 1]n, and

let

(i) Fl ∈ C2(U) and F ∈ C2(U),

(ii) Fl → F in the C2(U) norm for l→∞ and

(iii) ∇2F (u) > γI for all u ∈ U for some γ > 0 independent of u.

Then there exists l0 > 0 such that Fl(u) is strongly convex for u ∈ U and all

l ≥ l0.

Proof. According to (iii), we have

∇2Fl(u) > γI +∇2Fl(u)−∇2F (u). (4.5)
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We use the Frobenius norm as our matrix norm here, then we get

∇2Fl(u)−∇2F (u) ≤ ‖∇2Fl(u)−∇2F (u)‖F I. (4.6)

Using the definition of the Frobenius norm and the norm we defined, we have

sup
u∈U
‖∇2Fl(u)−∇2F (u)‖F

= sup
u∈U

[
trace (∇2Fl(u)−∇2F (u))T (∇2Fl(u)−∇2F (u))

]1/2
≤ sup

u∈U

[
|F (u)− Fl(u)|2 +∇(F (u)− Fl(u))T (∇F (u)− Fl(u))

+ trace (∇2(F (u)− Fl(u))T∇2(F (u)− Fl(u))
]1/2

=‖F − Fl‖N .

(4.7)

Combining the result in (4.5), (4.6), (4.7) and applying the reverse triangle in-

equality, we have

∇2Fl(u) ≥ (γ − ‖F − Fl‖N) I.

Then the result follows directly from (ii).

In Figure 4.1 we compute a simple stochastic optimisation problem with cost

function

h(u,W ) = u2 + (W 2
0 + 10W 2

1 )u, (4.8)

where u ∈ U = [−5, 5] and Wi, i = 1, 2 are i.i.d. random variables satisfying

Wi ∼ Beta(α, β).

Rewriting the cost function explicitly in integral form, the problem becomes com-

puting

min
u∈U

∫ 1

0

∫ 1

0

[u2 + (w2
0 + 10w2

1)u]p(w0)p(w1) dw0dw1, (4.9)

where p is the probability density function of Wi.

The objective function is strictly convex over U and ∂2F
∂u2

= 2 at any point of

U . The exact solution u∗ is

u∗ = −1

2
(E
[
W 2

0

]
+ 10E

[
W 2

1

]
). (4.10)

We consider the following two cases. When α = β = 50, the exact solution of

(4.9) is u∗ ≈ −1.38861. When α = β = 100, the exact solution is u∗ ≈ −1.38184.

Figure 4.1 shows the sparse grid surrogates of the example with levels 4, 5, 6

and 7 for the above two cases. The univariate quadrature rule we used in this
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(a) α = β = 50

(b) α = β = 100

Figure 4.1: The dependence of the convexity of the sparse grid surrogate on the level



4.3. DIMENSION ADAPTIVE QUADRATURE 141

example is Gauss–Patterson rule. In the first case, we see from Figure 4.1(a) that

the surrogate function is concave when l = 4, 5 and becomes convex when the

level increases to l = 6, 7. The minimizer of the surrogate function with l = 4, 5

is 5 on the boundary of U which is far from the the exact solution u∗ which is an

interior point. However, the computed minimizers are −1.50965 and −1.39318 for

l = 6, 7 respectively which are much better approximations for u∗. Figure 4.1(b)

presents a more extreme example. It shows the same pattern of the change of

convexity as that in Figure 4.1(a). The computational results in Figure 4.1 agree

with Theorem 4.6 since the sparse grid surrogate becomes strictly convex when

the level l is large enough under given assumptions.

4.3 Dimension Adaptive Quadrature

In section 2.7, we have defined the generalised combination technique with downset

I as

PI(f) =
∑
α∈I

∆α(f)

where ∆α, α ∈ I is a d dimensional surplus operator which is the tensor product

of the 1D surplus operators ∆αk = Pαk−Pαk−1, k = 1, . . . , d. Pαk is the projection

as defined in section 2.7. For the quadrature rules of Lagrangian interpolatory

type on domain Ω = Ω1 × · · · × Ωd, we have

QI(f) :=

∫
Ω

LI(f) dx =

∫
Ω

∑
α∈I

∆α(f)(x) dx =
∑
α∈I

δα(f) (4.11)

where

δα(f) : =

∫
Ω

∆α(f)(x) dx =

∫
Ω

(
d⊗

k=1

∆αk)(f)(x) dx

=

∫
Ω1

· · ·
∫

Ωd

d∏
k=1

(I ⊗ · · · ⊗∆αk ⊗ · · · ⊗ I)︸ ︷︷ ︸
kth slot

(f)(x) dx

=
d∏

k=1

[Ek ◦ (I ⊗ · · · ⊗∆αk ⊗ · · · ⊗ I)︸ ︷︷ ︸
kth slot

](f).

Here Ek is the integral operator defined by

Ek(f) =

∫
Ωk

f(x) dxk.

If we define the 1D quadrature surplus for a 1D function g as

δαk(g) :=

∫
Ωk

∆αk(g)(xk) dxk,
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then we have

δα =
d∏

k=1

(I ⊗ · · · ⊗ δαk ⊗ · · · ⊗ I)︸ ︷︷ ︸
kth slot

=
d⊗

k=1

δαk .

From the definition of the 1D quadrature surplus, we can also write it as

δαk = Qαk −Qαk−1

where Qαk is the quadrature rule derived from the 1D interpolant Lαk .

If the downset I is chosen before we compute the quadrature, the equation

in (4.11) computes a generalised combination technique. A dimension adaptive

combination technique/sparse grid is a special kind of generalised combination

technique when the downset I is decided during the computation according to the

importance of each dimension. We have mentioned the idea of it in the Remark

2.58. We now look into details.

There are two important things which need to be considered before designing

the dimension adaptive algorithm. First, when we add a new surplus ∆αf to

the sum, we need to make sure the newly generated index set I ∪ {α} is still a

downset. This is because we need to use the method of differences to compute

the telescope sum and thus every index β which have smaller entries than α in at

least one dimension must be included in I. Second, the algorithm is required to

detect the ’important dimension’ and do refinement first in ’the most important

dimension’ at each iteration.

Algorithm 1 Dimension Adaptive Sparse Grid Quadrature

Initialize I = {1} and s = δαf

while Termination condition not reached do

Consider all possible covering elements to I and put them in a heap A
Select α from heap A with largest δαf

s = s+ δαf

end while

The termination condition we considered here is

|δαf | < ε or αk > γk, for some k. (4.12)

Therefore, the corresponding downset I is

I = {α ≤ γ | |δαf | ≥ ε} .
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The termination condition |δαf | < ε has been used in many dimension adaptive

sparse grid algorithms to stop the while loop [46, 45, 49, 75]. The additional

condition α ≤ γ we added here is aimed at avoiding excessive refinement in some

dimensions. Here, we say {α} is a covering element of a downset I if I ∪ {α} is

also a downset.

We use Qγ,ε as the operator for the dimension-adaptive sparse grid quadrature

in Algorithm 1 with the termination condition (4.12). The choice of the downset

I depends on f , γ, ε, so we have

Qγ,ε(f) = QI(f,γ,ε)(f).

It should be noted here we have to use different notations for the quadrature

method(Qγ,ε) and the computing formula(QI). This is because when the same

quadrature method applied to approximate different integrals, e.g. integrals with

integrand f and g, respectively, we can get different downsets If and Ig,

If = I(f, γ, ε) 6= I(g, γ, ε) = Ig.

Thus, the formulas used to approximate the integrals are different, that is,

QIf 6= QIg .

For the non-adaptive approach, we don’t have such problem. We use the same

notation(Q) to denote both quadrature method and computing formula.

4.3.1 1D quadrature rules

We will use 1D quadrature rules introduced in the Section 1.2 to build the di-

mension adaptive sparse grid quadrature. They are the trapezoidal rule/Newton

Cotes formulas, Clenshaw-Curtis rule and Gauss-Patterson rule. All of these

quadrature rules are quadrature rules of interpolatory type. Therefore, the defi-

nition (4.11) is applicable to all three cases.

4.3.2 Accuracy of the Dimension Adaptive Quadrature

We have studied the convergence of generalised combination technique when the

error splitting model (2.13) is given in the Section 2.6. Here we further study

the error of the dimension adaptive sparse grid quadrature with the termination

condition (4.12). In [48], the author gives an error analysis of the dimension-

adaptive sparse grid interpolation. Similar as their analysis, we first have the

following a priori bound on |QLf −QIf |.
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Proposition 4.7. (A priori error bound) Let I = {α ≤ γ | |∆αf | ≥ ε} and QLf−
QIf be the error of the dimension adaptive sparse grid quadrature on set I relative

to Qγf . Here L = {α |α ≤ γ}. Then we get the bound

|QLf −QIf | ≤ |L|ε.

Proof. According to the definition, we have

|QLf −QIf | = |
∑
α∈L

∆αf −
∑
α∈I

∆αf | = |
∑
α∈L\I

∆αf |

≤
∑
α∈L\I

|∆αf | ≤
∑
α∈L\I

ε ≤
∑
α∈L

ε = |L|ε.

The first inequality follows from the triangle inequality. The second inequality

holds because L\I = {α ≤ γ | |∆αf | < ε}. The third inequality follows by the

fact I ⊂ L.

From the proof of the proposition 4.7, we do not use any information about the

computational process of QIf . The error bound can be derived before computing

QIf . However, after we compute QIf by the dimension-adaptive sparse grid

method, we will know exactly what the downset I is. This can help us improve

this error bound.

Proposition 4.8. (Posteriori error bound) Suppose the downset I is known after

we computed the QIf . The error bound in 4.7 can be improved by

|QLf −QIf | ≤ (|L| − |I|)ε,

where the set L = {α |α ≤ γ}.

Proof. Since I = {α ≤ γ | |∆αf | ≥ ε} is a subset of L, we have

|QLf −QIf | = |
∑
α∈L\I

∆αf | ≤
∑
α∈L\I

|∆αf | = (|L| − |I|)ε.

When we compute a high dimensional integral, we do not set a very small ε,

e.g. 10−15, in the termination condition since the computational cost is usually

unaffordable for such small ε in most examples. Thus, neither a priori error bound

nor the posteriori error bound is accurate when we consider a high dimensional

problem since |L| will grow exponentially when the dimension increases while the

ε can’t be chosen as small as possible. In order to get a more accurate error
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bound, we need to utilise the smoothness of the integrand f . Recall in section

1.4 Lemma 1.34. We proved that if f ∈ F s
d , then the quadrature surplus with

multi-index α satisfies

|δα(f)| =
∣∣∣∣∫
X

fhα dx

∣∣∣∣ ≤ Cs,d2
−|α|s‖f‖sd

where the space F s
d and the norm defined on this space are defined in (1.29) and

(1.30). Therefore, we have

Theorem 4.9. Under the conditions of Lemma 1.35, we can further improve the

posteriori bound to

|QLf −QIf | ≤ K
∑
α∈L\I

2−r|α|. (4.13)

Proof. The Theorem (4.9) follows directly from the proposition (4.8) and the

Lemma (1.34). K = Cr,d‖f‖sd is a constant.

Corollary 4.10. Under the conditions of Lemma1.35, if m is one of the indices

such that |m| ≤ |α|,∀α ∈ L\I, then the posterior bound is

|QLf −QIf | ≤
ε

ρ

∑
α∈L\I

2r(|m|−|α|) (4.14)

where ρK2−r|m| = ε and

ρmin :=

∑
α∈L\I 2r(|m|−|α|)

|L| − |I| ≤ ρ < 2r.

Proof. We first notice we can rewrite (4.13) as

|QLf −QIf | ≤ K2−r|m|
∑
α∈L\I

2r(|m|−|α|).

By using ρK2−r|m| = ε, we get the inequality (4.14). For the lower bound of ρ,

we expect the error bound (4.14) is not worse than the posterior error bound in

the proposition (4.8),otherwise we can use the latter one. Thus, we have

ε

ρ

∑
α∈L\I

2r(|m|−|α|) ≤ ε(|L| − |I|),

This leads to the lower bound of ρ. For the upper bound, if we denote the kth

unit vector as ek = [0, . . . , 1, . . . , 0], then according to the definition of m, there

exists an index m − ek ∈ I, otherwise we should choose m − ek instead of m in
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the theorem. According to the Theorem 4.9 and the definition of the downset I,

we have

ε < |∆m−ekf | ≤ K2−r(|m|−1).

Thus, using the definition of ρ, we have

ρ =
ε

K2−r|m|
≤ K2−r(|m|−1)

K2−r|m|
= 2r.

By using the error estimation in the Theorem 4.10 and the error bound for

d-dimensional product rule, we can obtain a bound on |If −QIf | by using trape-

zoidal rule, that is

|If −QIf | ≤ |If −QLf |+ |QLf −QIf | ≤ cd2
−lr +K

∑
α∈L\I

2−r|α| (4.15)

In the above bound, isotropic grid Gγ, γi = l is used in the comparison. In [46],

the authors get an optimised priori error bound for |If −QIf | by balancing error

bounds for the term |If −QLf | and |QLf −QIf |. The ε need to be chosen very

small in order to achieve the optimized bound for high dimensional problems.

Here we are more interested in the case when

|If −QLf | � |QLf −QIf |

which means the approximation of the integral need to be accurate to some

extent on the corresponding full grid, otherwise we can not expect the dimensional

adaptive sparse grid method which uses a subset of quadrature points on the full

grid provides a good approximation. Larger ε is allowed in this situation.

4.3.3 The Dimension Adaptive Surrogate

According to the definition of the dimension adaptive quadrature, a dimension

adaptive surrogate of the stochastic optimisation problem (4.1) with parameters

ε and γ can be defined as

FI(u) = Qγ,ε(f(u, ·)).

However, since the function f also depends on u, we can not obtain a concrete

downset I. In fact, the choice of I also depends on the value of u, i.e.

I = I(f(u, ·), γ, ε).
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One way to deal with this problem is we take a specific u ∈ U . We can try the

initial value u0 in the optimisation algorithm. However, if the initial value u0 is

very far away from the exact solution u∗, the accuracy of the dimension adaptive

quadrature will be bad since we do not use the downset at u∗, i.e. I(f(u∗, ·), γ, ε).
Therefore, it is better to use different surrogates at different iterations. This leads

to the idea of the ’optimise then discretise’ method.

4.4 The ’Optimise then Discretise’ Method

We will show the framework of the ’optimise then discretise’ method and test

a 2D example to illustrate its performance. For simplicity, we first use Newton

method as our optimisation algorithm. It is shown in the Algorithm 2. The

Algorithm 3, 4, 5, 6 and 7 are discretised versions of the Newton method in

Algorithm 2 from simple to complex. In the Algorithm 3 and 4, we use non-

adaptive quadrature Q to compute the integrals. In the Algorithm 6 and 7, we

use the dimension adaptive quadrature Q to compute the integrals. The notation

Di denotes the ith discretised derivative and thus D2
ij is the ijth second order

discretised derivative. D denotes the discretised gradient and D2 denotes the

discretised Hessian.

In Algorithm 3, we use different non-adaptive surrogate at each iteration. The

non-adaptive quadrature operator Q and the discretised derivative operators Di,

Dij are commutative, i.e.

DiQp = QpDi and D2
ijQp = QpD

2
ij.

This is because both two operators are fixed finite summations. In Algorithm 4,

we further allow different choices of the non-adaptive quadrature for the objective

and different component of gradient and Hessian.

The Algorithm 5 looks almost the same as the Algorithm 3 except the quadra-

ture method is dimension adaptive. However, they have essential differences. The

dimension adaptive operator Q and the discretised derivative operators Di, Dij

are not commutative. This observation leads to a new Algorithm 6. The reason

why the dimension adaptive operator and the discretised derivative operators are

not commutative is because the downsets used in the computation are not equal,

i.e.
I(Dif,εp,γp) 6= I(f,εp,γp)

I(D2
ijf,εp,γp) 6= I(f,εp,γp).
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One can also generalise the Algorithm 6 to the Algorithm 7 by allowing the usage

of different parameters in dimension adaptvie quadrature for the objective and

different component of gradient and Hessian. Though Algorithm 7 will be more

flexible than Algorithm 6, we mostly use Algorithm 6 in practice because it is

usually hard to get information used for choose different parameters and the

algorithm 7 is too complex.

Algorithm 2 OPTIMISE

1: Take an initial u0 ∈ Rn and p := 0

2: Compute G0 = ∇F (u0)

3: while ‖Gp‖ > ε do

4: Compute the Hessian Hp = ∇2F (up)

5: Update

up+1 = up −H−1
p Gp

6: Set p := p+ 1

7: Compute Gp = ∇F (up)

8: end while

9: Output up and F (up)

Algorithm 3 DISCRETISED VERSION

1: Take an initial ū0 ∈ Rn and p := 0

2: Compute the approximation of the gradient Ḡ0 = DQ0(f(ū0, ·))
3: while ‖Ḡp‖ > ε do

4: Compute the approximation of the Hessian H̄p = D2Qp(f(ūp, ·))
5: Update

ūp+1 = ūp − H̄−1
p Ḡp (4.16)

6: Set p := p+ 1

7: Compute the approximation of the gradient Ḡp = DQp(f(ūp, ·))
8: end while

9: Output ūp and F̄p := Qp(f(ūp, ·))

For more complicated quasi Newton methods, we take BFGS method with

the exact line search as an example. The optimise algorithm and its adaptive

discretised version are shown in the Algorithm 8 and Algorithm 9 which are

extensions of the Algorithm 2 and the Algorithm 6, respectively. In practice,

the exact line search (4.21) is replaced with inexact line search for efficiency.
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Algorithm 4 GENERAL DISCRETISED VERSION

1: Take an initial ū0 ∈ Rn and p := 0

2: Compute the approximation of the gradient Ḡ0 = [QG
0,i(Dif(ū0, ·))]n×1

3: while ‖Ḡp‖ > ε do

4: Compute the approximation of the Hessian H̄p = [QH
p,i,j(D

2
ijf(ūp, ·))]n×n

5: Update

ūp+1 = ūp − H̄−1
p Ḡp (4.17)

6: Set p := p+ 1

7: Compute the approximation of the gradient Ḡp = [QG
p,i(Dif(ūp, ·))]n×1

8: end while

9: Output ūp and F̄p := QO
p (f(ūp, ·))

Algorithm 5 DISCRETISED VERSION(ADAPTIVE)

1: Take an initial ū0 ∈ Rn and p := 0

2: Compute the approximation of the gradient Ḡ0 = DQε0,γ0(f(ū0, ·))
3: while ‖Ḡp‖ > ε do

4: Compute the approximation of the Hessian H̄p = D2Qεp,γp(f(ūp, ·))
5: Update

ūp+1 = ūp − H̄−1
p Ḡp (4.18)

6: Set p := p+ 1

7: Compute the approximation of the gradient Ḡp = DQεp,γp(f(ūp, ·))
8: end while

9: Output ūp and F̄p := Qεp,γp(f(ūp, ·))

Algorithm 6 MODIFIED DISCRETISED VERSION(ADAPTIVE)

1: Take an initial ū0 ∈ Rn and p := 0

2: Compute the approximation of the gradient Ḡ0 = [Qε0,γ0(Dif(ū0, ·))]n×1

3: while ‖Ḡp‖ > ε do

4: Compute the approximation of the Hessian H̄p = [Qεp,γp(D2
ijf(ūp, ·))]n×n

5: Update

ūp+1 = ūp − H̄−1
p Ḡp (4.19)

6: Set p := p+ 1

7: Compute the approximation of the gradient Ḡp = [Qεp,γp(Dif(ūp, ·))]n×1

8: end while

9: Output ūp and F̄p := Qεp,γp(f(ūp, ·))
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Algorithm 7 GENERAL DISCRETISED VERSION(ADAPTIVE)

1: Take an initial ū0 ∈ Rn and p := 0

2: Compute the approximation of the gradient

Ḡ0 = [QGε0,i,γ0,i(Dif(ū0, ·))]n×1

3: while ‖Ḡp‖ > ε do

4: Compute the approximation of the Hessian

H̄p = [QHεp,i,j ,γp,i,j(D2
ijf(ūp, ·))]n×n

5: Update

ūp+1 = ūp − H̄−1
p Ḡp (4.20)

6: Set p := p+ 1

7: Compute the approximation of the gradient

Ḡp = [QGεp,i,γp,i(Dif(ūp, ·))]n×1

8: end while

9: Output ūp and F̄p := QOεp,γp(f(ūp, ·))
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The commonly used inexact line search is strong Wolfe’s rule. The sequence up

generated by BFGS with Wolfe’s rule is proved to converge to the exact minimizer

u∗ superlinearly [54]. It should be noted that we need to compute the objective

F in the line search methods(include the strong Wolfe’s rule used in practice)in

each iteration while this is not required if we use Newton method.

Algorithm 8 BFGS OPTIMISE

1: Take an initial u0 ∈ Rn , an initial positive definite matrix H0 and p := 0

2: while ‖G(up)‖ > ε do

3: Compute the search direction vp = −HpG(up)

4: Find the step length αp by exact line search

min
αp

F (up + αpvp). (4.21)

The underlying A−1
p here is αpHp.

5: Update

up+1 = up + αpvp

6: Define sp := up+1 − up and yp := G(up+1)−G(up)

7: Update

Hp+1 =

(
I − spy

T
p

sTp yp

)
Hp

(
I − yps

T
p

sTp yp

)
+
sps

T
p

sTp yp

8: p:=p+1

9: end while

10: Output up and F (up)

In order to illustrate our method, we provide the following 2D example. We

will look into this example and it will also be used to explain the idea of the next

two sections.

Example 4.10.1. We consider the following minimization problem

min
u∈R

F (u)

where F (u) = E [u2 + (W 2
1 + 10W 2

2 )u]. W1 and W2 are i.i.d. random variables.

Moreover, the objective function is strictly convex in this example, so we conclude

that there is a unique minimizer of this problem. By using the linearity of the

expectation, the minimizer of the problem is

u∗ = −E[W 2
1 ] + 10E[W 2

2 ]

2
.
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Algorithm 9 BFGS DISCRETISE

1: Take an initial ū0 ∈ Rn, an initial positive definite matrix H̄0 and p := 0

2: Compute Ḡ0 = [Qε0,γ0(Dif(ū0, ·))]n×1

3: while ‖Ḡp‖ > ε do

4: Compute the search direction v̄p = −H̄pḠp

5: Find the step length ᾱp by exact line search

min
ᾱp

F̄p(ūp + ᾱpv̄p)

where F̄p := Qεp,γp(f(ūp, ·)) and the corresponding Ā−1
p is ᾱpH̄p

6: Update

ūp+1 = ūp + ᾱpv̄p

7: Compute Ḡp+1 = [Qεp+1,γp+1(Dif(ūp+1, ·))]n×1

8: Define s̄p := ūp+1 − ūp and ȳp := Ḡp+1 − Ḡp

9: Update

H̄p+1 =

(
I − s̄pȳ

T
p

s̄Tp ȳp

)
H̄p

(
I − ȳps̄

T
p

s̄Tp ȳp

)
+
s̄ps̄

T
p

s̄Tp ȳp

10: Set p:=p+1

11: end while

12: Output ūp and F̄p := Qεp,γp(f(ūp, ·))
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In particular, here we further assume

Wk ∼ Beta(α, β), k = 1, 2.

with α = 5, β = 5. The exact minimizer is then u∗ = −1.5 and the minimum is

−2.25.

(a) Solution error (b) Solution error

(c) Objective error (d) Objective error

Figure 4.2: Computational results for the 2D problem: (a) errors of computed minimizer

vs. number of grid points used in each iteration(average for the dimension-adaptive sparse

grid method).(b) errors of computed minimizer vs. ε in the termination condition of the

dimension-adaptive algorithm. (c) errors of computed minimum vs. number of grid points

used in each iteration. (d) errors of computed minimum vs. ε in the termination condition

of the dimension-adaptive algorithm. We compare the dimension-adaptive sparse grid based

on Gauss–Patterson(dasg gp) and Clenshaw–Curtis(dasg cc) with sparse grid based on Gauss–

Patterson(sg gp) and Clenshaw–Curtis(sg cc).

In Figure 4.2, we apply the Algorithm 9 to solve the problem. We use for-

ward difference to approximate the derivatives of the integrand. We compare

the performance of the dimension-adaptive sparse grid quadrature and the sparse

grid quadrature. For the OTDM based on the sparse grid quadrature, we fix the

level l for each run which results in the same choices of the quadrature rule Qp

and Qp,i for any p. For the OTDM based on the dimension-adaptive sparse grid

quadrature, we also fix the ε and γ in the while condition 4.12. However, the

choices of the quadrature rule are no longer the same when we used to compute
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the objective and each component of the gradient and Hessian. This is because

the underlying downsets are not necessary to be the same. We see in Figure 4.2

that the convergence rates are improved for both Clenshaw–Curtis and Gauss–

Patterson when we apply the dimension-adaptive method. Especially, the average

number of the grid points used in each iteration is substantially reduced for the

same accuracy in the solution and the objective when Gauss– Patterson is used

as 1D rule. For Clenshaw–Curtis, we can also see this pattern, moreover, higher

accuracy is obtained for both computed minimizer and minimum.

4.5 The OTDM and the DTOM

From the Algorithm 3, 4, 5, 6 and 7, we know that the OTDM is a kind of gener-

alisation of the DTOM. Under the framework of OTDM, different discretisations

to the integrals from the objective, the gradient/Hessian in different iterations are

allowed. This will make the computation more flexible. First, since we can use

different quadrature rules at different iterations, the dimension-adaptive sparse

grid approach can achieve its full potential in saving computational cost. Oth-

erwise, under the framework of the DTOM, we have to fix the downset I at

all iteration and the fixed downset cannot be the ’best’ choice for all iterations.

Second, for some problems, we do not need very accurate approximation of the

gradient/Hessian (e.g. when the minimiser is on the boundary). In this case, we

can use low accuracy quadrature rule to approximate the gradient/Hessian while

high accuracy quadrature to approximate the objective. Third, if we can get the

exact value of the gradient/Hessian, we can make use of these information and

devise better numerical scheme for the problem when we apply the OTDM.

The exact expression of the gradient in the previous 2D Example 4.10.1 is

G(u) = ∇E[u2 + (W 2
1 + 10W 2

2 )u]

=

∫ 1

0

∫ 1

0

[2u+ (w1 + 10w2)]p(w1, α, β)p(w2, α, β) dw1dw2

(4.22)

where p is the probability density function.

In Figure 4.3, we again solved problem with the BFGS method. We use 100

points and 1000 points Monte Carlo method to approximate the integral G(u) re-

spectively. The sparse grid, the dimensional-adaptive sparse grid based on Gauss–

Patterson 1D quadrature and the Monte Carlo are used in approximating the ob-

jective function. We intentionally choose the same random points for Monte Carlo

in objective approximation with those in gradient approximation when number



4.6. CONVERGENCE AND STOPPING CRITERION 155

(a) Solution error (b) Objective error

(c) Solution error (d) Objective error

Figure 4.3: Computational results for the toy problem. Here we use the exact expression

of the gradient. Monte Carlo method is used to approximate the gradient and three different

quadrature methods are used to approximate the objective function. (a) number of grid points

vs. errors of computed minimizers(average of 10 runs of each method with gradient approxi-

mated by 100 points Monte Carlo method. (b)number of grid points vs. errors of computed

minimum. (c)number of grid points vs. errors of computed minimizers(1000 points Monte

Carlo). (d)number of grid points vs. errors of computed minimum.

of points equals to 100 in (a), (b) and 1000 in (c), (d). Thus, according to the

propositions, the Monte Carlo surrogate methods are actually used. We can see

from the Figure 4.3, both convergence performances of sparse grid and dimen-

sional adaptive sparse grid are better than the Monte Carlo method (include those

points which is actually surrogate method). The amount of work will be substan-

tially reduced in the objective function if we apply the dimension-adaptive sparse

grid in computing the objective. In addition, the dimension-adaptive sparse grid

method performs better than sparse grid method in computing both solution and

objective.

4.6 Convergence and Stopping Criterion

In the previous sections, we actually present a few optimisation algorithms in the

presence of errors. The error in the objective, gradient and Hessian evaluations

can affect the convergence of the original optimisation algorithms(Newton method
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and BFGS). Consider solving

min
u∈U

F (u)

where F (u) is defined in (4.2). For the Newton method without error in discreti-

sation, its convergence is based on the following assumptions [52, 53]. First, if

u∗ is a critical point of F , then ∇F (u∗) = 0 and ∇2F (u∗) is positive definite.

Second, ∇2F (u∗) is required to be Lipschitz continuous, i.e. there is L > 0 such

that

‖∇2F (u)−∇2F (v)‖2 ≤ L‖u− v‖2,∀u, v ∈ U.

For the BFGS method without error in discretisation, its convergence requires the

following assumptions [52, 53]. First, the objective function F ∈ C2(U). Second,

for the initial value u0, we require the sublevel set

L−1
F (F (u0)) := {u ∈ U ⊂ Rn |F (u) ≤ F (u0)}

is convex and there exists constants 0 < m ≤M such that

m‖v‖2
2 ≤ vT∇2F (u)v ≤M‖v‖2

2

for all v ∈ Rn and u ∈ L−1
F (F (u0)).

In the Algorithm 6 and Algorithm 9, if we let

εp → 0, γp →∞ as p→∞, (4.23)

then we will have

F̄p → Fp, Ḡp → Gp H̄p → Hp.

Therefore, in this case, the Algorithm 6/Algorithm 9 converges when the assump-

tions for Newton method/BFGS method(without errors) are satisfied. However,

if we fixed εp = ε and γp = γ in all iterations of the Algorithm 6 and Algorithm 9,

errors which appear in evaluations of the objective, gradient and Hessian will have

influence on the convergence result. The convergence of the Newton method with

errors is studied in [90, 28]. The result of the convergence of the BFGS method

with errors can be found in a recent paper [89]. For both methods, when the

errors are (uniformly) bounded, the sequence {ūp}, p ∈ N generated by the al-

gorithm converges to a neighbourhood of the exact solution that is determined

by the size of the errors. In addition, after the sequence {ūp}, p ∈ N reaches

that neighbourhood, the behaviour of the sequence generated by the successive

iterations is not predictable. It can be either converge to a point which is not

equal to the exact solution or even diverge. Therefore, we need to avoid more
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iterations after the first time the computed sequence {ūp}, p ∈ N reaches the

neighbourhood. A proper stopping criterion is required.

Here we provide a numerical way to estimate the time to stop iterations in

the Algorithms. Suppose ūp is the approximated minimizer generated by some

Newton-type methods after pth iteration. When ūp is close enough to the exact

minimizer u∗, we have the following Taylor expansion

F (ūp) = F (u∗) +∇F (u∗)(ūp−u∗) + (ūp−u∗)T∇2F (u∗)(ūp−u∗) + o(‖ūp−u∗‖2).

Since u∗ is the minimizer of F , we have ∇F (u∗) = 0. F is convex, therefore

∇2F (u∗) is positive semidefinite. Thus, if ‖ūp − u∗‖2 increases(decreases),

(ūp − u∗)T∇2F (u∗)(ūp − u∗)

will not decrease(not increase) and therefore F (ūp) will not decrease (not in-

crease). However, F (ūp) is a high dimensional integral in our case, we can not

get the exact value in most cases. Therefore, in our approach, instead of using

the exact function value at ūp, we use the value of some high accuracy approxi-

mations of the function. If we denote the high accuracy approximation(surrogate

of the objective) by dimension-adaptive sparse grid quadrature with ε∗ and γ∗ at

u as

F̄ε∗,γ∗(u) := Qε∗,γ∗(f(u, ·)),

then we can decide when to stop the algorithm based on Newton-type methods

by studying the trend of F̄ε∗,γ∗(ūp), p ∈ N.

The advantage of this method is that we only need to compute F̄ε∗,γ∗(ūp) with

ε∗ < ε and γ∗ > γ with the same algorithm which used to compute the objective,

gradient and Hessian in the iterations. Also, the additional computational cost

for computing F̄ε∗,γ∗(ūp) is affordable in most cases for even high dimensional

problems. This is because we use Newton-type method as our optimisation solver.

Thus the number of iterations will not be too large. Also, the computational

cost of getting such stopping criterion is much lower than that of computing the

gradient and Hessian in each iteration when the dimension of U is high.

In Figure 4.4 and Figure 4.5, we solve the Example 4.10.1 using surrogate

method with fixed ε = 0.1 and ε = 0.01 respectively. We do not set any restriction

on γ in this example which means γ =∞. We show the results for three frequently

used quadratures, i.e. the trapezoidal rule, the Clenshaw-Curtis rule and the

Gauss-Patterson rule. For both two figures, the subfigures in the first row show

the relation between error |u∗ − ūp| versus the number of iterations. We can see
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(a) Gauss Patterson (b) Clenshaw Curtis (c) Trapezoidal Rule

Figure 4.4: Solve the problem in the Example 4.10.1 with ε = 0.1.

(a) Gauss Patterson (b) Clenshaw Curtis (c) Trapezoidal Rule

Figure 4.5: Solve the problem in the Example 4.10.1 with ε = 0.01.
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from these figures, we should stop the algorithm after the first iteration in the

Figure 4.4 while after second iteration in the Figure 4.5. If we further increase

the number of iterations, the errors will not decrease for both cases. The reason

for this is the gradients are approximated with relatively low accuracy. From the

convergence theory, we know the convergence of the Newton-type method with

error might break down in this case. The subfigures in the second row present

function values on the surrogate versus the number of iterations. As we expected,

Fε,γ(ūp) are decreasing. The subfigures in the third row show the function values

of the surrogate functions with ε = 0.001 on point ūp. Comparing the subfigures

in the first row with the corresponding subfigures in the third row, we can see

that the trends of the functions are the same for all three quadrature rules. Thus,

we can predict when to stop the Newton-type method by studying the trends of

the functions in the third row respectively. Our method successfully predicts the

stopping times for all three quadrature rules in this example.

4.7 Numerical Experiments

4.7.1 A High Dimension Example

Consider the following minimization problem

min
u∈U

E

[
d∑
i=1

exp (−uiW 2
i )

]
where Wi are i.i.d random variables which are subject to the uniform distribution

on [0, 1] and u ∈ U = [0, 1]d. Thus the integral form of the objective function can

be written as

F (u) =

∫
[0,1]d

d∑
i=1

e−uiw
2
i dw.

The gradient G(u) is

G(u) = ∇uF (u)

= −
[∫

[0,1]d
w2

1e
−u1w2

1 dw1, . . . ,

∫
[0,1]d

w2
de
−udw2

d dwd

]
,

so we have G(u) ≤ 0 for any u ∈ U and thus the exact minimizer is u∗ = (1, . . . , 1)

for this problem.

The reference objective function value can be computed by

F (u) =

∫
[0,1]d

d∑
i=1

e−uiw
2
i dw =

d∑
i=1

∫
[0,1]

e−uiw
2
i dwi.
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At the minimizer, we have the exact objective

F (u∗) = d

∫
[0,1]

e−w
2
i dwi.

which can be computed by using the cumulative distribution function of a trans-

formed normal distribution.
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Error in objective function
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Figure 4.6: Compute the additive example with d = 50. Three different quadrature methods

are used to approximate the objective function. For the Clenshaw-Curtis(dasgcc) and the

Gauss-Patterson (dasggp) approaches, we average the number of quadrature points used in

computing the objective functions in all iterations.

Here we apply the ’optimize then discretise’ approach to solve the problem.

We use ’L-BFGS-B’ method in scipy.optimize package as our solver. We apply

the dimension adaptive sparse grid method to computing the objective function

while use the Monte-Carlo method to approximate the high dimensional integrals

which appear in the gradient.

We have the approximated gradient Ḡp(u) ≤ 0 for any u ∈ [0, 1]d. This

is because the integrand of each entry of the gradient is non-positive and only

positive weights are used in the Monte Carlo method. Thus, no matter how

many samples are used in the Monte Carlo method, we will always get a descent

direction at each step during optimization process. It is noteworthy here that

both low level sparse grid method and dimensional-adaptive sparse grid method

with large ε and small γ may change the sign of the integral approximated and

therefore lead to wrong search directions.
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In the example, we only use the Monte Carlo method with 10 samples to

compute the gradient components. In order to increase the accuracy in minimum,

when we approximate the objective function, we increase samples in the Monte

Carlo method. For the same reasons, we decrease ε and keep a fixed large γ in

the termination condition of the dimension-adaptive sparse grid. The result in

the Figure 4.6 shows all of the three methods achieve the exact minimizer as we

expected. The errors of the minimums of two dimension adaptive approaches

drop much faster than the Monte Carlo method.

4.7.2 Application to stochastic control

In this section, we illustrate our dimension-adaptive sparse grid method with an

instance of a discrete time open-loop stochastic control problem. The general

form of such a control problem can be found in [9, 8]. The control problem is

described by the following discrete time dynamic system

xi+1 = ψi(xi, ui, wi), i = 0, . . . , d− 1 (4.24)

Here xi and ui are states and controls respectively where the initial state x0

is given. wi are disturbances. Here we only consider a special case when the

states, the controls and the disturbances are in one dimensional space. When the

disturbances in the system are unknown, we usually model them as i.i.d. random

variables Wi with given probability density function. In this case, the open-loop

means the controls ui do not depend on the disturbances [69] and we can further

write the dynamic system in its random form:

Xi+1 = ψi(Xi, ui,Wi), i = 0, . . . , d− 1. (4.25)

If we further define the vectors of states,controls and noises, i.e.,

X = (x0, . . . , Xd−1), u = (u0, . . . , ud−1), W = (W0, . . . ,Wd−1),

then we can rewrite the dynamic system as

X = Ψ(X, u,W ). (4.26)

where Ψ is a function can be derived from ψi.

Our task now is to determine what is the ’best’ control for the dynamic system

(4.25) or (4.26) to minimize the expected cost

E [Φ(u,X)]
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where Φ is a given function.

Here we focus on the case when X can be solved explicitly from the dynamic

system (4.26), that is,

X = ξ(u,W ).

In this case, the original problem can be reduced into the standard form of the

stochastic optimization problem, namely,

min
u∈U

E [h(u,W )] ,

where

h(u,W ) = Φ(u, ξ(u,W )).

The integral form of the expected cost and its surrogate with N quadrature points

are ∫
Rd

Φ(u, ξ(u,w))p(w) dw ≈
N∑
j=1

ciΦ(u, ξ(u,wj))p(wj).

In order to illustrate the computational performance of our approach, we consider

a classical example with linear dynamic system

X = AX +Bu+ CW + x0e0. (4.27)

and the quadratic objective function Φ

Φ(u, x) = uTPu+ xTQx (4.28)

where A, B, C, P and Q are given d×d matrices and x0 is the given initial value.

By solving (4.27), we get ξ(u,W ) = (I − A)−1(Bu + CW + x0e0). Combining

the expression of ξ(u,W ) with (4.28), we know that h(u,W ) is again a quadratic

function.

The exact solution can be derived by using the certainty equivalence princi-

ple [9]. According to the principle, the solution of the stochastic control problem

is the same as that of a corresponding deterministic problem when the objective

function is quadratic and the constraints are linear. That means we can get the

reference solution by numerically solving the deterministic problem. Here is a

concrete example.

Consider minimizing the following quadratic cost functional over u

E

[(
d−1∑
i=0

(pix
2
i + qiu

2
i )

)
+ pdx

2
d

]
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where the expectation is with respect to the random variables Wi and

xi+1 = aixi + biui + ciWi, i = 0, 1, . . . , d− 1.

xi are state variables and ui are control variables. x0 refers to the initial state

which is given. The disturbancesWi are independent continuous random variables

with given probability density function p(Wi). This is a linear-quadratic open

loop control problem[69]. Similar to Feedback control, open loop control also has

a wide variety of applications.

We can rewrite the problem into matrix form

min
u
E
[
xTPx+ uTQu

]
with the linear system

x = Ax+Bu+ CW + x0.

where P is a d × d diagonal matrix with (p0, p1, . . . , pd−1) on its diagonal and

pd = 0 (boundary condition). Q is a d× d diagonal matrix with (q0, q1, . . . , qd−1)

on its diagonal. A, B and C are d × d matrices that only have nonzero entries

along their lower sub-diagonal.

A =



0 0 0 . . . 0 0

a0 0 0 . . . 0 0

0 a1 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 0

0 0 0 . . . ad−2 0


, x =



x0

x1

x2

...

xd−2

xd−1


B is a d× d diagonal matrix

B =



0 0 0 . . . 0 0

b0 0 0 . . . 0 0

0 b1 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 0

0 0 0 . . . bd−2 0


, u =



u0

u1

u2

...

ud−2

ud−1


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C is a d× d diagonal matrix

C =



0 0 0 . . . 0 0

c0 0 0 . . . 0 0

0 c1 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 0

0 0 0 . . . cd−2 0


, W =



W0

W1

W2

...

Wd−2

Wd−1


and x0 is a d× 1 vector

x0 =



x0

0

0
...

0

0


By using the above matrix and vector notation, we can solve the linear system

x = (I − A)−1(Bu+ CW + x0).

explicitly. Substituting the solution (9) into objective function, we get

E
[[

(I − A)−1(Bu+ CW + x0)
]T
P
[
(I − A)−1(Bu+ CW + x0)

]
+ uTQu

]
.

Next, we consider the numerical example. P and Q matrices are d×d identity

matrices and matrices A, B and C are

A =



0 0 0 . . . 0 0

1 + ∆t 0 0 . . . 0 0

0 1 + ∆t 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 0

0 0 0 . . . 1 + ∆t 0


,

B = C =



0 0 0 . . . 0 0

∆t 0 0 . . . 0 0

0 ∆t 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 0

0 0 0 . . . ∆t 0


,
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where ∆t = 1
d
. The disturbances Wi, i = 0, 1, . . . , d−1 are i.i.d random variables

subject to beta distribution beta(2, 3). If we denote

K = (I − A)−1,

then the objective function can be further written as

E
[
(∆tu+ ∆tW + x0)TKTK(∆tu+ ∆tW + x0) + uTu

]
.

Using the notation defined in (4.1)

h(u,W ) = uT [(∆t)2KTK + I]u+ 2∆tuTKTKx0

+ 2(∆t)2uTKTKW + 2(∆t)W TKTKx0

+ (∆t)2W TKTKW + x0
TKTKx0

By using the linearity of the expectation, we have

E
[
2(∆t)2uTKTKW

]
= 2(∆t)2uTKTK E [W ] ,

and

E
[
2(∆t)W TKTKx0

]
= 2(∆t)(E [W ])TKTKx0.

Then our expected objective function can be written as

E [h(u,W )] = uT [(∆t)2KTK + I]u+ 2uTKTK(∆tx0 + ∆t2 E [W ])

+ x0
TKTKx0 + 2(∆t)(E [W ])TKTKx0

+ E
[
(∆t)2W TKTKW

]
.

Since

uTKTKu ≥ 0,

KTK is a positive semidefinite matrix. Therefore, (∆t)2KTK + I is positive

definite and the expected objective function is strictly convex. Since this function

is also differentiable, the optimality condition for this problem is the first order

derivative equals to zero.

2[(∆t)2KTK + I]u+ 2KTK(∆tx0 + ∆t2 E [W ]) = 0.

Thus, the optimal solution of this example is

u = −[(∆t)2KTK + I]−1KTK(∆tx0 + ∆t2 E [W ]).
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Figure 4.7: We test nine methods for the open loop control problem. They are classi-

cal sparse grid method generated by 1D trapezoidal rule(tra), Clenshaw-Curtis rule(cc) and

Gauss-Patterson rule(gp), the product rule generated 1D trapezoidal rule(puretra), dimension

adaptive sparse grid method generated by 1D Clenshaw-Curtis rule(dasgcc), Gauss-Patterson

rule(dasggp) and the average of 10 runs of Monte Carlo method. For two dimension adap-

tive sparse grid approaches, we average the number of quadrature points which are used in

computing the objective functions in all iterations.
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Next, we consider following deterministic control problem,

min
u

(xTPx+ uTQu)

with the linear system

x = Ax+Bu+ C E [W ] + x0.

If we set the same parameters as that in the stochastic example and turn it into

an unconstrained minimization problem, then we have

min
u
J(u),

where

J(u) = (∆tu+ ∆tE [W ] + x0)TKTK(∆tu+ ∆tE [W ] + x0) + uTu.

The optimality condition for this deterministic control problem is also

2[(∆t)2KTK + I]u+ 2KTK(∆tx0 + ∆t2 E [W ]) = 0.

which means the above deterministic problem has the same minimizer as our

stochastic problem. This is usually called certainty equivalence principle [9] in

engineering. Here we actually provide a proof of the simple case of this principle.

One can actually prove this holds for general quadratic objective function with

linear constraints.

We test a 7 dimensional problem. We use an asymmetric distribution beta(2, 3)

here. We will get the exact solution with only rounding errors if we use a sym-

metric distribution. This is because the symmetric construction of the sparse grid

will lead to the cancellation of the quadrature points pairs. We still use BFGS

method as our optimisation solver. The computational results are shown in the

Figure 4.7. We compare the errors of 9 different methods. They are product

trapezoidal rule, the average of 10 runs Monte Carlo, three sparse grid method

and three dimension adaptive sparse grid. We only record the data when sparse

grid method and dimension adaptive sparse grid method start to converge. As

can be seen from the Figure 4.7, the dimension adaptive sparse grid methods

converge faster than classical sparse grid methods for both Clenshaw Curtis and

Gauss Patterson approaches. The results of sparse gird methods are much better

than the trapezoidal product rule and the Monte Carlo method.

In Figure 4.8, we test our stopping criterion for the stochastic control problem

with quadratic cost function and linear dynamic system. Here we focus on the

dimension adaptive sparse grid method generated by 1D Clenshaw Curtis rule.

For both 6D and 7D examples, our method successfully predicts that we should

stop at 7th iteration for 6D problem and 5th iteration for 7D problem.
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(a) Clenshaw Curtis with d = 6 (b) Clenshaw Curtis with d = 7

Figure 4.8: Solve the open loop control problem.
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4.8 Conclusions

We apply the Newton-type methods in solving the stochastic optimisation prob-

lem and the dimension adaptive sparse grid quadrature is used in approximating

the integrals involved. We study two categories of approaches to solve the stochas-

tic optimisation problem. They are ’discretise then optimise’ method(DTOM)

and the ’optimise then discretise’ method(OTDM). We show that the OTDM is

actually a kind of generalisation of the DTOM. In fact we can use more flexible

discretisation scheme during the computation if we apply the OTDM. The dimen-

sion adaptive sparse grid quadrature can effectively reduce the computational cost

when we use it to compute an integral of which the dimensions are not equally im-

portant. When we applied it to solve the stochastic optimisation problem, we find

it is more suitable to be used in the OTDM compared with the DTOM. This is

because the OTDM allows us to choose ’best’ downset in the dimension adaptive

sparse grid formula at each iteration and thus fully exploit the potential of the

dimension-adaptive approach. The convergence of the OTDM can be make sure

under the assumption (4.23). A good stopping criterion is crucial for reducing

the computational cost when we solve high dimensional stochastic optimisation

problems. We provide an accurate stopping criterion which only requires rea-

sonable additional computation. We focus on the convex objective function here.

For non-convex problems, our approach can only find an approximated local min-

imizer since Newton-type methods are locally convergent methods. In order to

solve more general stochastic optimisation problems, other solvers will be taken

into consideration in the future research. Also, we are currently unclear about

how to choose a good decreasing sequence εp, p ∈ N and increasing sequence

γp, p ∈ N for a practical problem. In most cases, when our stopping criterion

predicts no need for more iteration, we can only choose a smaller ε and larger γ

manually. We will consider how to generate the sequence εp, p ∈ N and γp, p ∈ N
automatically based on the data from the previous iterations in future.
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on stochastic programming: modeling and theory. SIAM, 2014.
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