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by Brendan Patrick McCORMICK

Picosecond-lifetime nuclear-state g factors are challenging to measure, with the transient-
field (TF) and recoil-in-vacuum (RIV) techniques best able to probe them. The TF is
experienced by a swift ion traversing a polarised ferromagnetic material, while RIV relies
on hyperfine interactions between the nucleus and its electrons that occur in isolated
ions. Both techniques often require independent calibration, a key limitation in their use.
The objective of this thesis is to improve the precision of g-factor measurements with
these techniques. This was achieved by developing procedures that minimise systematic
uncertainty in TF measurements to obtain reliable relative g factors, and then scaling
them by developing atomic-structure calculations that enabled absolute g factors to be
determined from RIV measurements focused on Na-like ions.

Relative TF measurements were used to determine the 2+1 -state g-factor ratio between
24Mg and 26Mg, which was then scaled using a literature value of g(24Mg), obtained
using RIV, to determine g(26Mg). TF measurements were also performed to obtain 2+1 -
state g-factor ratios between the stable even-A isotopes of Ge and Se, with the first-ever
simultaneous measurement performed on isobaric nuclides (74Ge,Se) in a cocktail beam.

An ab initio approach to modelling 56Fe 2+1 state time-differential RIV data focused on
Na-like ions was developed. Time-differential 76Ge and time-integral 54,56Fe 2+1 state data
were also analysed. The analysis utilised a Monte-Carlo simulation of atomic decays to
model the hyperfine interaction through time.

The combined use of relative TF and calibration-independent RIV measurements al-
lowed the determination of precise absolute g-factor values. These were used to interro-
gate TF-strength calibrations, and shell-model predictions. Together, TF and RIV proce-
dures presented in this work were effective in determining accurate g-factor values with
improved precision in picosecond-lifetime nuclear states.
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Chapter 1

Introduction

1.1 Aim

The aim of this thesis is to demonstrate the potential for the use of transient-field and
recoil-in-vacuum techniques in a complementary manner to perform g-factor measure-
ments on short-lived (. 10−11 ps) excited states in both stable and radioactive nuclei in
the region Z ∼ 30. These measurements should be demonstrably accurate, and precise,
in order to confidently challenge modern nuclear-structure theories and advance the field
of nuclear-structure physics.

1.2 Background

The atomic nucleus is a discrete quantum system comprised of two types of interacting
baryons: protons and neutrons. The behaviour of the nucleus’ constituent protons and
neutrons gives rise to a number of macroscopic properties, such as a mass, radius, spin,
magnetic dipole moment and electric quadrupole moment. In order to understand
the nucleus, the forces through which protons and neutrons interact, primarily being
the strong and electromagnetic forces, must be understood. Although electromagnetic
interactions are well-understood, nuclear interactions via the strong force are less
well known, and challenging to calculate ab initio. For most nuclei, models of nuclear
structure have been developed so that a more theoretically and mathematically tractable
approach can be taken to predict nuclear properties. These nuclear properties must then
be measured to validate the models.

The aim of this thesis was to interrogate and validate techniques developed to
measure nuclear magnetic dipole moments at the frontier of measurement capability.
The availability of radioactive-ion-beam facilities since the 1990s [35], along with their
gradual improvement in capability, is elevating our understanding of nuclear structure
to new heights. This capability also pushes our experimental techniques to their limits.
Nuclear-structure models, such as the multi-configuration nuclear shell model, must be
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challenged with new data to test our understanding of nuclear forces, and the assump-
tions built into these models. Since the 1950s it was suspected that nuclei away from
stability (radioactive nuclei) will exhibit deviations from the nuclear models that were
developed for stable nuclei [63]. This phenomenon, first observed in the 1960s [224], is
well-established today [159]. Radioactive-ion-beam facilities now allow measurements
on exotic nuclei far from stability, with which to confront nuclear models. Nuclear
magnetic moments (commonly expressed as the dimensionless “g factor”) provide a
unique probe to test multi-configuration shell-model predictions, due to their sensitivity
both to the angular momentum of the constituent nucleons, and the varying contribution
of protons versus neutrons, in a given nuclear state. The measurement of magnetic
moments requires that the spin-orientation of a nuclear state be measurably perturbed
in a magnetic field. However, many states of interest survive for only . 10−11 s;
such states will be referred to as short-lived states. In order to induce a measurable
spin-rotation or precession over such short timescales, magnetic fields of the order of
& 102 T are required [22]. Such strong fields are only produced on microscopic scales
by the hyperfine interactions between atomic nuclei and the electrons in their local
environment.

Since the 1970s, two techniques have primarily been used to perform g-factor mea-
surements on the aforementioned short-lived states [22]. The first, and most commonly
used technique, relies on the hyperfine interaction arising for an ion moving swiftly
through a polarised ferromagnetic medium, known as the transient field. The second
technique relies on the hyperfine interaction arising between the nucleus and electrons of
a free ion as it recoils into vacuum. In both of these techniques, the hyperfine interaction
induces a precession in the nuclear spin-alignment within the ion, measurable through a
perturbation of the γ rays emitted from the nuclear state as it de-excites.

The transient-field technique has been very successful in measuring g factors in stable
nuclei, and is sensitive to not only the magnitude, but also the sign of the g factor [22].
However, the complex ion-solid interactions upon which the transient field depends are
poorly understood. To overcome this challenge, the field’s strength has been param-
eterised, but this relies on measurements from alternate methods that are sometimes
imprecise or questionable. Its behaviour is also not consistent with the parameterisations
across all element and velocity ranges. Furthermore, this technique has proven to be
limited in application to radioactive ion beams [204], due to the reduced particle rates,
and accumulation of radioactive ions within view of the detectors. This introduces a
hard limit on beam intensity, significantly impacting measurement precision within
limited beam time.
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The recoil-in-vacuum technique has also proven to be a viable technique. The
hyperfine interaction for highly stripped light ions, having only one or a few electrons,
is calculable from atomic theory. For heavier elements, having many-electron ion
ensembles, the hyperfine interaction may be calibrated using the g factors of other
isotopes, if known. In this technique only the magnitude, not the sign, of the g factor can
be measured. This technique has proven effective for measurements using radioactive
ion beams, as it allows for the radioactive ions to pass out of view of the detectors after
measurement. However, the hyperfine interaction has proven to be challenging to model
in medium-mass elements, and over the few picoseconds after ions have left the solid
and enter vacuum.

Used together, the two techniques provide an excellent opportunity to study the
properties of both stable and radioactive nuclei along isotopic chains. The transient-field
technique allows for measurement campaigns on stable isotopes to be performed, giving
relative g-factor values, along with their signs. These relative values can then be scaled
by a single absolute measurement using the recoil-in-vacuum technique. Radioactive-
ion-beam measurements using the recoil-in-vacuum technique are now feasible, with
the hyperfine interaction either calibrated using the known properties of stable isotopes
(heavier nuclei), or determined from atomic theory (lighter nuclei). By systematically
moving along the nuclear chart, the g factors of short-lived and previously inacces-
sible states in both stable and radioactive nuclei can be obtained accurately and precisely.

To fully realise the goal of using the transient-field and recoil-in-vacuum techniques
together, two challenges must be overcome. First, a standard must be set by which rela-
tive g-factor measurements are reliably and robustly performed using the transient-field
technique. Second, the complex hyperfine interactions present in the recoil-in-vacuum
technique when measuring g factors in medium- and heavy-mass elements must be un-
derstood without any calibration measurements, i.e. from the underlying atomic physics.
Once these two challenges are surmounted g-factor values may be obtained for nuclei in
the f pg-shell space, and beyond, allowing for nuclear structure models to be confronted
with the accurate and precise measurements that the theory demands. It is by undertak-
ing such stringent tests of shell-model theory that the field of nuclear-structure physics
may advance.
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1.3 Thesis Scope

This thesis can be broken into two major components: transient-field measurements
and recoil-in-vacuum measurements. For the transient-field component of this project,
an experiment was performed in which the nuclear g factors of the first-excited state
in stable, even-mass isotopes of germanium and selenium were measured in a relative
fashion using the transient-field technique. These measurements were performed with
the intention of understanding the relative behaviour of the g factors between these
isotopes and elements, and to demonstrate a robust method by which relative g-factor
values may be measured. Another experiment was performed with these nuclei using
a similar technique, the ion-implantation perturbed-angular-correlation technique, in
order to interrogate discrepancies present in a historical measurement of these nuclides,
relevant to a widely used parameterisation of the transient-field’s strength.

Data from a relative transient-field measurement of the first-excited-state g factors
in 24Mg and 26Mg were also analysed. A recent, high-precision g-factor value obtained
using the recoil-in-vacuum technique, performed on the 24Mg first-excited state, was
used to scale the 26Mg value. This was performed to verify a suspect value in the
literature, as well as a proof-of-concept for using a recoil-in-vacuum measurement to
scale a transient-field measurement.

For the recoil-in-vacuum measurements, experimental data from both time-
dependent and time-integral measurements were analysed with the aim of determining
g factors and developing a better understanding of the hyperfine interaction. Two sets
of time-differential measurement data were analysed, one on the first-excited state in
56Fe, and the other on the first-excited state in 76Ge. The primary focus of their analysis
was to model the time-dependent behaviour of the hyperfine interaction, and use this
to determine the g factor. The model developed from the measurement analysis was
then used to interpret time-integral measurement data taken on the first-excited states
in 54,56Fe. For these nuclear states the g factors had been determined, allowing the
hyperfine-interaction model to be tested against the time-integral data.

Finally, the results of these measurements were compared with previous measure-
ments of these nuclear g factors, and compared with contemporary multi-configuration
nuclear shell-model calculations. Recent advances in the theory are used to interpret
deviations from the models. This thesis then summarises the outcomes of the measure-
ments, and proposes that these two techniques work as complementary approaches with
which to probe both stable and radioactive nuclei in the region Z ∼ 30.
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1.4 Thesis Overview

In Chapter 2 the theory underpinning the measurements and analyses performed in
this project is presented. Building from basic nuclear-structure principles, models of
nuclear structure, along with γ-ray spectroscopy and the use of Coulomb-excitation
in nuclear-structure measurements, will be introduced. The particular measurement
techniques used in this project, namely the transient-field, ion-implantation perturbed-
angular-correlation, and recoil-in-vacuum techniques are described. Details of the
atomic-structure-calculation software package used to aid in the analysis of recoil-in-
vacuum data are also presented. Finally, the literature motivating this project is reviewed
with both a historical and contemporary justification for the work.

In Chapter 3 the instrumentation, data acquisition, and data analysis techniques used
in the course of this project are described.

In Chapter 4 the transient-field and ion-implantation perturbed-angular-correlation
measurement details, results and analysis are presented. First, the data analysis
procedure is described, followed by the methods and results of the relative 24,26Mg
transient-field measurements, the Ge and Se isotope transient-field measurements, and
finally the Ge and Se ion-implantation perturbed-angular-correlation measurements.

In Chapter 5 a computer program developed during this candidature to model the
hyperfine interaction for feasibility testing and analysis of recoil-in-vacuum experi-
ments and data, RIV Simulate, is presented. The various features of the program are
described, along with comparisons of its outputs to theoretical predictions of effects that
are expected to be present in recoil-in-vacuum data.

In Chapter 6 the recoil-in-vacuum measurement details, results and analysis are
presented. First, the 56Fe 2+1 time-differential measurement methods and results are
presented, followed by an in-depth analysis of the time-differential behaviour of the
hyperfine interaction using RIV Simulate, and finally proposing a new, precise g-factor
value. This is followed by a description of the 54,56Fe 2+1 time-integral measurement
methods and results, and further interrogation of the hyperfine interaction using the
understanding developed from the 56Fe 2+1 time-differential analysis. Finally, the 76Ge
time-differential measurement methods and results are presented, again using the
understanding developed in the 56Fe 2+1 time-differential measurement to determine the
g factor.
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In Chapter 7 the hyperfine-interaction model developed while interpreting the recoil-
in-vacuum measurements is discussed, highlighting what is understood and where this
understanding breaks down. The advances in understanding are then considered in
the context of performing accurate and precise g-factor measurements in challenging
cases, particularly in radioactive nuclei. The g factors determined in this project are
then compared to multi-configuration shell-model predictions, and the discrepancies are
interpreted in the context of changing nuclear structure and possible short-falls in the
model. The chapter closes with an analysis of the transient-field measurements available
in the literature, and using the newly obtained g factors to interrogate the transient-field
strength and compare with commonly used parameterisations.

In Chapter 8 the key findings of this project are summarised and conclusions drawn
from the results. An argument is made for application of these techniques as complemen-
tary experimental probes, which will be necessary in confronting the nuclear shell model
with future accurate and precise g-factor measurements, including radioactive nuclei.
Such comparisons are necessary to advance the field of nuclear-structure physics.
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Chapter 2

Literature Review

As discussed in the introductory chapter, this thesis focuses primarily on using two
prominent methods for the measurement of nuclear g factors for excited states of nuclei
in the region Z ∼ 30. These methods are the transient-field technique, and the recoil-
in-vacuum technique. Both techniques utilise the large magnetic fields arising from
hyperfine interactions between the nucleus and its bound atomic electrons. These large
fields are necessary due to the short lifetimes of the states of interest. The ultimate goal in
pursuing these measurements is to perform accurate and precise g-factor measurements
on these nuclear states, with which nuclear models can be confronted.

In this chapter the physical concepts underlying the experimental work, along with
the prerequisite theory required to understand the historical and contemporary moti-
vations of this thesis, will be covered. First, basic nuclear structure theory will be in-
troduced, building to modern concepts that are the primary motivation of much cur-
rent work in nuclear-structure studies. The conceptual basis underpinning the present
nuclear-structure measurements will then be covered, first for general γ-ray spec-
troscopy, and then more specifically for the implantation perturbed-angular-correlation,
transient-field and recoil-in-vacuum techniques, and atomic-structure calculations. The
chapter closes with a review of the literature motivating this thesis in particular, provid-
ing both a historical and contemporary justification for its undertaking.

2.1 The Structure of the Atomic Nucleus

The scientific revolutions that have resulted from a microscopic understanding of the
world around us, in particular those arising from the discovery of atoms and subatomic
particles, have outcomes that are ever-present in our modern world. However, even
though an enormous amount of progress has been made using the theory of atomic
matter, there is still a great deal that we are yet to understand. Measurements on micro-
scopic systems governed by quantum mechanics continue to uncover an increasingly
esoteric hierarchy of patterns against which our mathematical capabilities are ever
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challenged. An enduring enigma of the natural world is the atomic nucleus and the
physics of nuclear matter. The nucleus is a unique quantum physics laboratory, owing
to its exhibition of complex many-body interactions mediated by the strong, weak and
electromagnetic forces. It exhibits both classical and quantum behaviours, and has a
great variety of studiable forms ranging from the “simple” nuclei of hydrogen isotopes,
to gargantuan neutron stars.

Much of the information covered in this section has been taken from Krane’s Introduc-
tory Nuclear Physics [127], and any material not explicitly referenced has been sourced
from this text. This information can be found in any good introductory textbook on nu-
clear science, nuclear physics and nuclear models, such as Refs. [42, 47, 185, 223].

2.1.1 Discovery of the Nucleus

The study of nuclear phenomena dates back to the late 19th century, with the discovery
of radioactive elements. The early efforts of Becquerel, and the Curies, towards charac-
terising the different radioactive materials began the study of nuclear phenomena. In
the early 20th century Rutherford, Geiger and Marsden used these newly discovered ra-
diations to probe the structure of the atom, and consequently uncovered the existence
of the nucleus. It was discovered that chemical isotope masses were all approximately
integer multiples of the hydrogen atom’s mass, and the nuclear charge was the same
as the atomic number. With Chadwick’s discovery of the neutron in the 1930s the final
piece of the nuclear puzzle was in place, and the proton-neutron model, as proposed by
Heisenberg, was established [108]. Despite the constituents of the nucleus having been
identified almost a century ago, a microscopic description of their interactions still re-
mains a challenge, owing to the sub-nucleonic structure, complexities of the quantum
many-body problem, and large energies required to probe them.

2.1.2 Basic Nuclear Structure

The nucleus, composed of a number of nucleons (A), specifically protons (Z) and
neutrons (N) (A = Z + N), can be described by macroscopic properties such as rest
mass, radius, spin, parity, magnetic dipole moment, and electric quadrupole moment.
The nucleus is a quantum system, with protons and neutrons being described by
their wavefunctions, and, being fermions, obeying the Pauli exclusion principle. As a
consequence, discrete, excited nuclear states exist with their own unique radius, spin,
and electromagnetic properties. The general structure of the nucleus, and interactions
between nucleons, was intensely studied throughout the 20th century. Some significant
findings were that the spatial extent of the nucleus is not sharply defined but rather
there is a central, approximately constant, nuclear density that gradually drops to zero
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at the ‘edge’ of the nucleus. The distance over which this gradual drop in density occurs
is referred to as the “skin thickness”. Both the central density and skin thickness are
fairly constant across the nuclear chart. Another important observation is the very small
number of stable odd-Z, odd-N nuclei and, conversely, the large number of stable even-
Z, even-N nuclei. These observations indicate that proton-proton and neutron-neutron
pairing is energetically favourable, and has implications for how nucleons may arrange
themselves in a structural model.

In the modern era of nuclear physics, the study of nuclear matter focuses on the
development of models to predict nuclear structure properties. These models are tested
by comparing the measured properties of nuclear states with predictions for nuclei
having different Z, N, spin and excitation energy. Through this interplay of theory and
experiment, our understanding of the nucleus improves.

In order to understand the complexity of nuclear matter, consider first the atom,
having electrons that move in the Coulomb potential of the nucleus. Electron interac-
tions are explained almost solely by the electromagnetic force. The primary sources of
electromagnetic interaction are from an approximately radially uniform, central, electro-
static potential, and two-body interactions between electrons. The nucleus and electrons
may all be modelled as point-particles, except for in exceptionally high-precision calcu-
lations. In contrast, the nucleus consists of two distinct types of baryons experiencing
the electromagnetic, strong and weak forces. As the mean field originates from the
nucleons themselves, it cannot be precisely modelled by a simple central potential.
Protons and neutrons also experience different Coulomb forces due to their differing
charge. Nucleons have internal structure, and cannot be treated as point-charges,
making the nucleon-nucleon force challenging to model. Three-body forces, which don’t
need to be accounted for in the atomic picture, also appear to be significant in nuclear
interactions [159]. Due to its complexity and quantum nature, an ab initio description of
atomic nuclei beyond A ' 20 remains elusive.

The ab initio approach has become available only since the early 2000s [154], and has
generally been applied to nuclei no heavier than carbon isotopes (A . 15) [16, 50]. The
usual approach to the nuclear problem is to make approximations that aim to capture
the overall physics, while still remaining mathematically tractable. Due to the success
of the atomic shell model in describing the atom, a similar approach has been taken to
understanding the structure of the nucleus. As described in the previous paragraph,
there are several key differences between atomic and nuclear interactions. However, if
structural effects arising from quantum mechanical interactions existed in nuclei, there
should be evidence of them. The first key piece of evidence discovered in favour of a



10 Chapter 2. Literature Review

nuclear shell model was the stability of certain numbers of protons and neutrons, termed
“magic numbers”, which were known as early as 1934 [64]. There tends to be a large
number of stable isotopes if Z is magic, or isotones if N is magic, along the nuclear chart.
This implies these nucleon configurations are particularly stable, providing evidence for
a shell structure.

Another early observation having implications for nuclear structure models was
the pairing force between like-nucleons. It is energetically favourable for like-nucleons
to pair up. In the case of even-Z, even-N (even-even) nuclei, the ground state always
has a net spin of zero, indicating that if nucleons have fixed angular momentum, then
they have anti-parallel pairing. Due to this pairing force, two-proton and two-neutron
separation energies between even-Z, even-N nuclei were studied across the nuclear
chart to reveal trends. When these energies are plotted against the number of nucleons,
as shown in Fig. 2.1, a distinct shell structure appears. More evidence suggesting that
these magic numbers are analogous to atomic shell closures is that doubly-magic nuclei
(both Z and N are magic numbers) have first-excited states with very high energy
compared to nearby nuclei, analogous to the noble elements.

To support the hypothesis that the magic numbers correspond to shell closures, a
successful shell model of the nucleus must reproduce them. In analogy with the atomic
shell model, if a central potential in which nucleons orbit is assumed, then they will re-
quire principal (n), angular momentum (l) and intrinsic spin (s) quantum numbers to
describe their wavefunction. The magic numbers up to Z, N = 20 can be reproduced by
solving for the orbital energies using the Schrödinger equation, with an energy Hamil-
tonian having the form of a potential intermediate between an infinite square-well and
a harmonic oscillator. This potential is able to match the approximately uniform nuclear
density, and the sharp drop-off in density towards the unbound-particle region (edge of
the nucleus). The introduction of a term to the nuclear potential that relates the intrinsic
spin and angular momentum, termed the spin-orbit interaction, gives a solution which
reproduces the magic numbers observed in all stable nuclei [88, 105]. This spin-orbit
term causes a significant splitting in the coupled angular momentum and intrinsic spin,
producing two distinct orbital energies for each angular momentum quantum number
(with l = 0 being the one exception as there is no spin-orbit interaction when the angular
momentum has no magnitude). Because of this, nucleon orbitals are described by how l
and s are coupled, with total spin j = l ± s depending on if the coupling is parallel (+),
or antiparallel (−). The ordering of orbital energy levels and shell gaps resulting from
the intermediate-form potential is shown in Figure 2.2. This conception of the ordering
of nucleons, along with the known pairing force between like nucleons, has been very
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FIGURE 2.1: Plots of the difference between two-proton (S2p) and two-
neutron (S2n) separation energies obtained from a smoothly varying, semi-
empirical formulation, and from measurements. The S2p energies show se-
quences of even-Z isotones, with the lowest-Z member indicated, increas-
ing by two protons each step. The S2n energies show sequences of even-
N isotopes, increasing by two neutrons each step. The magic numbers
(shell closures) are indicated. The shell-closure effect is particularly appar-
ent along the higher-mass sequences where a large, negative discrepancy be-
tween measured and predicted values suddenly appears, indicating the pair
is more strongly bound. This figure was originally published in Ref. [127].



12 Chapter 2. Literature Review

successful in determining the ground-state properties of spherical nuclei, despite its sim-
plifying assumptions. With this mathematically derived sequence of shell closures, the
nuclear shell model was established.

2.1.3 Models of Nuclear Structure

Soon after the establishment of nuclear shells and the order in which orbitals fill,
the shell model was used to predict the properties of nuclei having a single, unpaired
nucleon (odd-A nuclei). Due to the pairing force, odd-A nuclei should have ground-state
properties governed by the odd nucleon. This interpretation is known as the extreme
single-particle nuclear shell model. The pairing force results in the spin and parity of
the ground state almost always being determined by the spin (j = l ± s) and parity
(π = (−1)l) of the unpaired nucleon. While this was a good starting point, it was soon
found that the accuracy of the shell model’s predictions are greatly improved when
considering all nucleons outside a closed shell (valence nucleons), particularly for more
complex properties like the dipole and quadrupole moments. Excited states in nuclei
are also rarely explained by the unpaired nucleon alone. As such, while the extreme
single-particle shell model has some predictive power for odd-A nuclei, it says very little
about excited states in even-even nuclei, and its usefulness is limited.

Most nuclei, particularly even-even nuclei, have low-energy excited states that are
produced by a type of collective behaviour. This is why the extreme single-particle
model is unable to accurately predict excited states in many cases. For even-even nuclei
one would expect that, to make an excited state, a nucleon pair must be broken, or
excited together. Calculated orbital energies predict these states should have energies
around 2 MeV. However, a much lower-energy 2+ or 0+ state often exists which cannot
be explained by any individual nucleon configuration. This behaviour results from
correlations between multi-nucleon configurations that lead to collectivity in the form of
surface vibrations and/or rotations. Collectivity is also present in odd-A nuclei, in which
the paired nucleons of the even core exhibit a collective excitation to which the odd
nucleon couples. In other words, the many different ways in which nucleon pairs can
be broken and re-coupled to the same spin and parity results in a collective state which
is lower in energy than any individual configuration. It is only by understanding the
influence of both the single-particle and collective behaviours of nuclei that structural
properties can be accurately predicted across the nuclear chart.

Collective excitations have long been interpreted using the “liquid drop” model
originally proposed by Gamow [86] and further developed by Bohr and Wheeler
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FIGURE 2.2: The energy spacing and ordering of nucleon orbitals, obtained
first by the intermediate-form potential well, and then the addition of a spin-
orbit term, results in a shell structure with distinct gaps at certain nucleon
numbers. These are the so-called “magic numbers”. Energy increases from
bottom to top. The magic numbers (shell closures) are indicated on the right.

Image created by Bakken [15].
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FIGURE 2.3: Level scheme for 120Te, with the collective excited states and the
number of quadrupole phonons associated with that state indicated on the
left. Note the number of states resulting from the phonon coupling, and the
average energy of each cluster of states being evenly spaced. Level scheme

obtained from Ref. [124].
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to describe nuclear fission [26]. For nearly spherical nuclei, particularly nuclei hav-
ing A < 150 and being near to shell closures, the collectivity can be modelled as a
quadrupole vibration that produces a characteristic set of low-energy excited states in
even-even nuclei. The vibration occurs around an average, almost spherical shape,
although the instantaneous shape of the nucleus is actually non-spherical. Modelling
the system as such requires the wavefunction to be symmetric, restricting any excited
states to having even parity. Because the nucleus is a quantized system, any vibration
connecting two states must also be quantized. This quantum of mechanical energy
is termed a “phonon”, in analogy to the electromagnetic photon, which also carries
energy and angular momentum. A phonon carrying a single unit of angular momentum
(λ = 1) would induce a dipole vibration of the nucleus, requiring the centre-of-mass
to move, an unrealistic motion at low energy and spin. A phonon having λ = 2 (a
quadrupole phonon) will produce a vibration with a fixed centre-of-mass. As such, this
is the minimum angular momentum such a phonon can carry. A single quadrupole
phonon produces a vibration giving rise to a Iπ = 2+ state, while two phonons give a
cluster of three states having Iπ = 0+, 2+ and 4+ states. As each phonon carries similar
energy, the average energies of clusters of states arising from them are expected to be
spaced evenly apart. The measured energy levels of 120Te, shown in Fig. 2.3, are an
example of vibrational excited states. However, in recent years this model has come
under suspicion. As large amounts of data from various experimental approaches
have become available, and more stringent criteria applied to validate the spherical
vibrational model, many nuclei which were once considered to be ideal candidates
are proving to not match predicted electromagnetic decays of their states [87]. As
such, while it has good predictive capability in many respects, this model may be a
caricature of more complex phenomena occurring in the pattern of nuclear excited states.

The single-particle and collective models, as described thus far, are simplifications
that describe only exceptional nuclei, and are unable to precisely match measurements
for all nuclei. This is because many nuclei exhibit the properties of both models. In some
such cases, the single-particle and collective models can be coupled in order to explain
observed spins and parities of excited states. For nuclei that are approximately spherical,
the approach taken in atomic physics has been adopted: the shell model is used under the
assumption that doubly magic nuclei are spherical and inert, providing a stable, central
mean-field potential. Valence nucleons are then added, and nucleon-nucleon interactions
are allowed (either in a truncated or unrestricted manner), in a valence space generally
consisting of orbitals up to the next shell closure. This is the many-particle shell model,
and has become an attractive approach since the computational revolution of the 1970s,
which made the required computational processing power readily available.
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2.1.4 The Many-Particle Nuclear Shell Model

During the 1960s, computer calculations became available for predicting nuclear prop-
erties using a multiconfiguration shell model. Solutions could be obtained numerically
and parameters varied in order to fit model parameters to experimental data. Cohen
and Kurath used such an approach to empirically determine the parameters necessary
to describe nuclei in the 1p-shell space (between 4He and 16O) [51], and were able to
successfully validate their model against much of the data avilable at the time [148]. This
was an important step in building a complex multiconfiguration shell model against
which to test nucleon-nucleon interactions. Much work continued on nuclei in this space
and beyond, leading to McGrory and Wildenthal’s 1980 review [148], in which they laid
out a framework for performing these multiconfiguration shell model calculations. Their
review built this framework primarily around its application to sd-shell nuclei (from 16O
to 40Ca); a tantalising region that presents a virtual laboratory rich in experimental data
at the limit of the computational capability of the time. While the results of calculations
in this space did not always reproduce exact quantitative features, the reproduction
of qualitative spectral features across states exhibiting varying character was a great
triumph. Toward the end of the decade, Brown and Wildenthal published a review [40]
of progress made in sd-shell calculations, and presented an approach in which single-
particle energies and two-body matrix elements are obtained from a least-squares fit to
the large amount of available spectroscopic and energy data in this region. They refer
to the interaction obtained in this manner as the W interaction. Brown and Wildenthal
report that interactions derived in this manner show an impressive agreement with
experiment, as compared to previous approaches. However, due to their empirical basis
they do not give significant insight into the nature of the interactions. The W-interaction
approach also requires that large amounts of reliable data be available in any region for
which the calculations are to be performed. Finally, it should also be noted that, despite
the power of this method, there were still difficulties reproducing states that mix with
collective states, as well as with cross-shell excitations [40], owing to limitations in the
model and orbital space.

Much of the limitation to advances in realistic shell-model calculations was due to
the model spaces becoming increasingly large beyond the sd shell. This limitation is con-
tinually being overcome with advances in computational power. Another key issue of
the time was the determination of the nucleon-nucleon residual interactions in the mean
field without resorting to merely fitting experimental data. A solution was eventually
provided through advances in the understanding of the free nucleon-nucleon (NN) inter-
action. The free NN interaction has been extensively studied since the 1940s but, due to
its complex sub-nucleonic origin, a detailed description was not achieved until the late
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1980s. One of the prominent models which utilised this improved understanding of the
free NN interaction was the Bonn full model [52]. This model takes the Bonn potential
and uses effective-field theory to determine the effective NN interaction in the nucleus.
This translation of the free NN interaction, as experimentally understood, to the effec-
tive interaction present in the nucleus required one-boson-exchange parameterisations.
These detailed NN-interaction models reinvigorated the shell model approach to nuclear
structure calculation, spurring the investigation of a number of Sn isotopes [10, 65] at the
Z = 50 shell closure. Efforts continued in exotic nuclei around 100Sn, and neutron-rich
132Sn, as data from RIB facilities has become available, and computational power has
become capable [52]. Effective interactions using alternative versions of the Bonn NN
interactions have gradually expanded into the p f shell (28 < Z, N ≤ 38) [110] and full
p f pg shell (28 < Z, N ≤ 50) [111] by the efforts of Honma et al. For the latter, nuclei such
as Ge and Se isotopes [98, 198] provide a valuable testing ground.

A shell model with orbitals ordered as shown in Fig. 2.2 was very successful at pre-
dicting the properties of the stable nuclei experimentally accessible to physicists through
the mid-20th century. However, as early as the 1950s Elliot and Lane [63] pointed out that
the one-body spin-orbit term, which was so successful in explaining the magic numbers
near stability, could not explain orbital ordering across all nuclei. An additional term in
the energy Hamiltonial was required, which not only varied slowly with mass number,
but also as particular shells were filled. This was a strong indication that there existed
a yet-to-be identified interaction, eventually described as a monopole effect, that arises
from a tensor force in the NN interaction [158]. This interaction modifies the magnitude
of the spin-orbit interaction, with significant implications for orbital ordering and shell
structure. The nucleus 11Be was the first case studied in how orbital filling changes away
from stability; this nuclide has its 2s1/2 orbital lower in energy than the 1p1/2 [224],
contrary to observations in stable nuclei. As more exotic nuclei were probed throughout
the 1960s and 1970s, disagreements with expected assignments began to accumulate.
The extensive effort of many researchers finally confirmed the disappearance of the
N = 20 shell gap and coincident onset of collective behaviour in neutron-rich nuclei
around Z = 11 [193]. This region came to be known as an “island of inversion”, and is
centred around 32Mg. Nuclei in this particular region exhibit changing neutron (ν) ν f7/2,
νp3/2 and νd3/2 orbital energies as compared to stable nuclei with the same number of
neutrons [193], with the νp3/2 orbital falling below the ν f7/2. The lowered νp3/2 orbital
is referred to as an “intruder orbital”. Consequently, these changing orbital energies
remove the N = 20 shell closure observed in stable nuclei [227]. Not only have the shell
gaps observed in stable nuclei been seen to disappear but new gaps have been seen to
form, notably at N = 16, 32 and 40 [36, 200, 226]. For example, it was recently shown
that 54Ca forms a shell closure at N = 34, which is not observed in the higher-Z isotopes
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56Ti and 58Cr. In this instance, a tensor force between nucleons in the π f7/2 and ν f5/2

orbitals reduces the ν f5/2 orbital energy. As protons are removed from the π f7/2 orbital
the gap increases, pushing the ν f5/2 energy above that of νp1/2 to produce a shell gap
at N = 34 [201]. This interaction is accounted for in modern shell model approaches by
including a monopole interaction between nucleons in different orbitals [159]. The study
of these interactions allows for the development and refinement of new interaction
models, which in turn improve the nuclear shell-model calculations, enabling them to
make predictions further into these exotic regions [160, 163].

As our understanding of the NN interaction has improved, so too have the techniques
available to perform the multiconfiguration shell-model calculations. The traditional nu-
merical approach was becoming a computationally daunting challenge as nuclei in the
p f pg space and beyond were considered. A solution to this problem is the Monte Carlo
Shell Model (MCSM). This approach effectively reduces the number of single-particle in-
teractions in the many-body space by using a stochastic sampling approach designed to
favour important components of the wavefunction: application of the quantum Monte-
Carlo diagonalisation method to the nuclear many-body problem [161]. In short, it allows
the integrals (which are usually solved numerically) to be sampled to the desired preci-
sion. By varying the sampling, more valence nucleons can be simultaneously consid-
ered, and more single-particle states can be included in any given calculation, allowing
for states in larger, more complex nuclei to be calculated. The MCSM’s early application
allowed for excited nuclear states in 32Mg and surrounding nuclei in the island of inver-
sion to be calculated utilising both the sd space, and the p f space beyond, with a unified
description of the interaction. Calculations in this sdp f space were beyond reach using
previous methods. The predicted 2+1 and 4+1 energies and B(E2) values are reproduced
almost exactly [161]. With the ability to calculate excited states in drip-line and exotic
nuclei, a broader test of the theory underlying the shell model could now be undertaken.
With calculations for these exotic states now available, experimental techniques must be
advanced so that these models may be confronted.
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2.2 Nuclear Structure Measurements

When an unstable nuclear state decays, it may emit several radiations before reaching
stability. Some radiations alter the nuclear and chemical nature of the nucleus, i.e.
change Z and/or N. Common examples are α and β decays, which connect states in
different nuclei. The third type of common decay, γ decay, connects different states
within the same nucleus. A sequence of possible, characteristic decays which occur
in a radioactive nucleus is referred to as a decay scheme. For example, after β decay
the newly formed daughter nucleus may be in an excited state. This excited state will
undergo one or more γ decays to reach the ground state, which may undergo another
β decay and so on until the ground state of a stable nucleus is reached. These excited
nuclear states which γ decay can also be produced by nuclear reactions.

Gamma-ray cascades are measured via γ-ray spectroscopy to deduce nuclear level
schemes, such as that shown in Fig. 2.3. Because the γ-ray emissions (and any other
radiations) conserve energy and angular momentum, information about the states they
connect can be inferred. Angular-correlation measurements are one way to obtain such
information. By performing experiments in which a nuclear reaction excites states from
which γ-ray emissions are measured and angular-correlations are formed, structural in-
formation about the nucleus can be obtained.

2.2.1 Gamma-Ray Angular Correlations

A key measurement technique used in nuclear γ-ray spectroscopy is the measurement
of the γ-ray intensity at different angles of emission. In its simplest form, two γ-ray
detectors, with a known separation angle, measure the intensity of two different,
time-correlated γ rays originating from the same nucleus. Each detector measures the
intensity of a different γ ray. Changing the angle between the two detectors reveals
that the intensity of the second γ ray is a function of the separation angle between
the detectors. This is referred to as an angular-correlation measurement. The theory
describing angular correlations between nuclear radiations has been established since
the 1950s [83]. Angular correlations provide an experimental tool to infer structural
information, such as total angular momentum (or spin) I, and parity π, from nuclear
excited states.

Consider a state, A, γ decaying to a final state, C, via an intermediate excited state,
B. An example decay sequence is illustrated in Fig. 2.4. This scenario can be described
as the emission of two successive γ rays from a single radiating system, for which the
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FIGURE 2.4: Illustration of a two-decay sequence connecting three states
within the same nucleus. Suppose the initial state A has known spin and
parity, and the final state C is the ground state with known spin and parity.
There is an intermediate excited state B through which the decay proceeds,
with unknown spin and parity. By measuring the angular correlation be-
tween γ1 and γ2, the spin and parity of state B can be inferred using angular-
correlation theory. Note that, in general, the unknown state may be any of

the three states A, B or C.

probability amplitude is given by Hamilton’s W function [100]:

W = ∑
ma,mc,e′,e′′

|∑
mb

(Ama |H(κ′0, e′)|Bmb)
∗(Bmb |H(κ′′0 , e′′)|Cmc)

∗|2, (2.1)

where A, B and C represent the required eigenstate quantum numbers of their respective
states, ma, mb and mc represent their respective magnetic substates, and H is the Hamil-
tonian for the transition defined by the direction of propagation κ0 and polarisation e.

What Eq. (2.1) reveals is that the likelihood of observing a transition between two
particular states is related to the angle between the two radiations. The shape of the
γ-γ angular correlation, that is the intensity of γ rays across the full angular range,
depends on the spin and parity (Iπ) of states A, B and C. Therefore, if Iπ of two of
the states are known, then Iπ of the third can, in principle, be inferred. Performing
γ-ray spectroscopy measurements on excited nuclei and analysing γ-γ angular correla-
tions allows the identification of many nuclear-state spins and parities in a decay scheme.

A key consideration when performing angular-correlation measurements is a per-
turbation arising from the interactions between the nucleus and the electrons around
it, termed the hyperfine interaction. The hyperfine interaction makes the nuclear mag-
netic substates non-degenerate, causing their populations to change and thus affecting
the probability amplitudes in Eq. (2.1). Goertzel [89], following the form of Eq. (2.1), de-
termined the perturbation arising from the hyperfine splitting of the nuclear substates to
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be

W = ∑
ma,mb,mb′ ,mc,e′,e′′

(Ama |H(k′0, e′)|Bmb)
∗(Bmb |H(k′′0 , e′′)|Cmc)

∗

× (Ama |H(k′0, e′)|Bm′b
)(Bmb′ |H(k′′0 , e′′)|Cmc)/(1− iνmb,mb′/2γB), (2.2)

where mb and mb′ signify non-degenerate substates in level B, νmb,mb′ is the hyperfine
splitting between the substates of B, and γB is the oscillator strength of the transition
between B and C. The denominator can also be written 1 − iτB(Emb − Emb′ )/h̄ [1],
where τB is the lifetime of state B, Em is the eigenenergy of the non-degenerate magnetic
substate, and h̄ is the reduced Planck constant. In cases where τB(Emb − Emb′ ) << 1,
i.e. the nuclear-state lifetime is small and/or the hyperfine splitting is small, Eq. (2.2)
reduces to Eq. (2.1). There are two important instances where this is not the case: when
the lifetime is sufficiently long, or when the hyperfine splitting is sufficiently large.

Before proceeding, the concept of γ-ray multipolarity needs to be discussed. When
a transition occurs between nuclear substates, the emitted γ ray carries away angular
momentum and has character relating to the parity of the nuclear states, which is
referred to as its multipolarity. The multipolarity is specified by whether the transition is
Electric or Magnetic in nature, and the possible change in spin between the initial and
f inal states |Ii − I f | ≤ L ≤ Ii + I f . Transitions having an odd value of L and a change
in parity are electric, while those having an even value of L and a change in parity
are magnetic, and vice-versa for no change in parity [127]. For example, a transition
Iπ = 2+ → 0+ has potential magnetic-substate transitions ∆Im = L = 0, 1, 2, with no
change in parity. L = 1, 2 will emit γ rays with multipolarity M1 and E2, respectively,
while L = 0 has no γ-ray emission. The ratio between the two different multipolarities is
termed the mixing coefficient, δ, and relates to the substate populations in the 2+ state.
If there is mixing, the transition is a mixed E2/M1 transition. If only the E2 is observed,
the transition would be a pure E2 transition.

After Hamilton’s theoretical treatment was published, a number of reformulations
in the angular-momentum algebra followed, significantly by Racah [175], Lloyd [142],
Alder [3], and Fano [70], culminating in a comprehensive review by Biedenharn and
Rose [19]. For a γ-γ angular correlation having an unoriented initial state, where both
γ-rays are pure multipole, Biedenharn and Rose present the following formula:

W(θ) = ∑
k

AkPk(cos θ), (2.3)
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where k is an even integer 0 ≤ k ≤ 2L, Pk is a k-order Legendre polynomial of cos θ, and

Ak = Fk(L1 IA IB)Fk(L2 IC IB), (2.4)

where

Fk(LIn I) = (−)In−I−1
√

2I + 1(2L + 1)〈 L 1 L − 1 | k 0 〉W( I I L L ; k In ), (2.5)

in which 〈 L 1 L − 1 | k 0 〉 is a vector addition (Clebsch-Gordan) coefficient and
W( I I L L ; k In ) is a Racah coefficient, evaluated using Racah’s techniques [175].

2.2.2 Angular Correlations from Relativistic Particles

The W function for determining the angular correlation of γ radiation from a moving
particle is evaluated in the particle’s rest frame. When a particle moves faster than a few
percent the speed of light, the lab-frame angles defined by the detector positions must
undergo relativistic corrections (Lorentz transformation) to match the particle-frame for
calculating the angular correlation. A correction to the γ-ray intensity must also be made
due to the change in differential solid angle, dΩγ. Pelte and Schwalm [169] give a formu-
lation for these corrections using two sets of polar coordinates: one defining the particle’s
direction of motion and the other the γ-ray emission direction. The polar angles are de-
fined in Fig. 2.5. The transformation is performed as follows:

cos θγ = {(cos θ′γ − cos θ′p cos θ′)[1− β2]1/2 + cos θ′p(cos θ′ − β)}

/[1− β cos θ′], (2.6)

sin θγ cos ∆φ = {[sin θ′γ cos ∆φ′ − sin θ′p cos θ′][1− β2]1/2 + sin θ′p(cos θ′ − β)}

/[1− β cos θ′], (2.7)

sin θγ sin ∆φ = sin θ′γ sin ∆θ′
[1− β2]1/2

1− β cos θ′
, (2.8)

where lab-frame quantities are indicated by prime (X′) notation, ∆φ = φγ − φp, and
∆φ′ = φ′γ − φ′p. The relative angle between the two directions, θ′, is calculated by

cos θ′ = sin θ′p sin θ′γ cos ∆φ′ + cos θ′p cos θ′γ. (2.9)
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Once the angles are transformed into the particle-frame, the solid-angle correction is ap-
plied by multiplying the W function by

dΩγ/dΩ′γ =
1− β2

(1− β cos θ′)2 . (2.10)
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FIGURE 2.5: Definition of the polar angles used in Pelte and Schwalm’s for-
mulation of the relativistic correction to transform the lab-frame angles into
the particle-frame angles. These definitions are used in all references to rela-
tive γ-ray and particle directions, as defined by detector placement. Adapted

from Fig. 1.28 in Heavy Ion Collisions Vol. 3 [24].

2.2.3 Angular Correlations after Coulomb Excitation

Shortly after Biedenharn and Rose’s review, Alder et al. published a review on progress in
nuclear-structure studies using Coulomb excitation [6]. Coulomb excitation is the process
by which a nucleus is excited by the Coulomb field of a bombarding nucleus, without
the nuclei coming close enough to undergo any strong-force interaction. This is typically
achieved using a particle accelerator with its beam impinging on a target of interest. Sig-
nificantly, Alder et al. showed that the differential excitation cross-section (and thereby
the transition amplitude) for a particular scattering/deflection angle can be calculated
to determine the population of magnetic substates in the excited nuclear state. This in-
formation allows the γ-ray distribution from an excited state to be calculated using the
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formula:
W(θ) = ∑

k
aλ

k AkPk(cos θ), (2.11)

where θ is the angle of the emitted γ ray relative to the beam direction, λ is the change in
angular momentum between the two states, 0 ≤ k ≤ 2λ, and

aλ
k = bλ

k /bλ
0 , (2.12)

where bλ
k is the transition amplitude parameter, which defines the occupation of a given

substate relating to the coupling integer k. This parameter can be integrated across
all scattering angles if the exciting particle goes undetected (angular distribution), or
calculated for a particular scattering angle (γ-particle angular correlation).

Almost two decades later, Alder and Winther released a comprehensive monograph
on the topic of nuclear electromagnetic excitation [5] based largely on previously
compiled works [4]. They laid out a formalism [5] in which a spherical statistical tensor,
ρkq, connecting the initial and final state [25] is calculated from the known impact
parameters. These parameters are the relative momentum, which can be determined
from the beam energy Eb, beam-nucleus mass Ab, and target-nucleus mass At; the
deflection/recoil angle of the excited nucleus, which is defined by the particle-detector
position; and the strength of the Coulomb field, which is determined from the beam
and target nuclear charge Zb and Zt. In their formalism, a right-handed coordinate
system is used in which the beam direction defines the z (quantisation) axis, and the
orbital (particle-deflection) plane defines the x axis, in which the x component of the
particle velocity during scattering is positive. With this coordinate system defined,
spherical polar coordinates are used to express the relative polar angle between the
beam (z axis) and emitted γ-ray, θ, and relative azimuthal angle between the scattering
plane (z–x axis) and the emitted γ-ray, φ, can be used to rotate ρkq accordingly. When
performing a measurement, φ = 0 is often fixed to the x or y axis in the lab frame. In
this case, the quantity ∆φ = φγ − φp is used to rotate ρkq, where φγ is the γ-ray detection
and φp the particle detection azimuthal angle relative to the fixed plane. Figure 2.5 gives
a visual representation of the angles φγ and φp. The “D-function” rotational matrix [5,
25] can then be used to rotate the statistical tensor by the θ and φ γ-ray emission angles
to obtain the expected γ-ray intensity. At low velocities (less than 1% c) the particle and
lab frame-of-reference are approximately equivalent. However, at velocities above a few
percent the speed of light, lab angles (defined by the relative angles between the particle
and γ-ray detectors) must be transformed into the particle frame-of-reference (see §2.2.2).
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FIGURE 2.6: Example 2+ → 0+ angular correlation after Coulomb excitation
in inverse kinematics (heavy beam, light target). The decaying nucleus is
scattering at a small angle (θp < 10◦). The angular correlation is around the
φ angle for a fixed angle θ = 45◦. Note the strong anisotropy present in the

distribution.

Winther and de Boer developed a computer program that is able to compute the sta-
tistical tensor from supplied impact parameter information [4]. Using this program, the
alignment of the excited nuclear state after Coulomb excitation, in the form of the sta-
tistical tensor, ρkq, for a given experimental setup can be obtained. In this thesis, the
first-excited 2+ states in even-even nuclei have been studied using Coulomb excitation,
resulting in a 0+ → 2+ → 0+ transition sequence. The γ-ray angular correlation for such
a transition sequence is calculated by

W(θp, θγ, ∆φ) = ∑
kq

√
2k + 1ρkq Ak(L = 2; L′ = 2; I f = 0; Ii = 2)Dk∗

q,0(∆φ, θγ, 0), (2.13)

where k and q are even integers, 0 ≤ k ≤ 2L and −k ≤ q ≤ k, ρkq is the statistical tensor,
L and L′ are the two γ-ray multipolarities E2 and M1 in a mixed transition, and Dk∗

q,0 is
the complex conjugate of the rotational matrix that specifies the angular position of the
γ-ray detector. Dk∗

q,0 is equivalent to a spherical harmonic, and reduces to the Legendre-
polynomial terms in cases where there is azimuthal symmetry around the θ and φ angles.
The Ak coefficient is determined by

Ak(LL′ I2 I1) =
1

1 + δ2{Fk(LLI2 I1) + 2δFk(LL′ I2 I1) + δ2Fk(L′L′ I2 I1)}, (2.14)
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where δ is the mixing ratio between the two multipolarities, and

Fk(LL′ I2 I1) = (−)I1+I2−1
√
(2L + 1)(2L′ + 1)(2I1 + 1)(2k + 1)

×
(

L L′ k
1 −1 0

){
L L′ k
I1 I1 I2

}
, (2.15)

where the round brackets represent a Wigner 3J symbol and the curly brackets represent
a Wigner 6J symbol.

This definition of Fk is the generalised form used in Ref. [5], adopted as the γ-ray
angular correlation technique matured to maintain phase consistency between different
theories [183]. If instead of a mixed-multipole transition, a pure multipole transition is
observed (which is the case for a 0+ → 2+ → 0+ transition sequence after Coulomb
excitation [6]), Eq. (2.13) simplifies to

W(θ) = ∑
kq

√
2k + 1ρkqFk(L = 2; I f = 0; Ii = 2)Dk∗

q,0(φ, θ, 0), (2.16)

where

Fk(LI2 I1) = (−)I1+I2−1(2L + 1)
√
(2I1 + 1)(2k + 1)(

L L k
1 −1 0

){
L L k
I1 I1 I2

}
. (2.17)

An example angular correlation for this transition sequence is shown in Fig. 2.6.

When performing a measurement, one must also consider the finite size of the γ-
ray and particle detectors being used. For a particle detector an additional numerical-
integration step can be performed to average the statistical-tensor calculation across the
particle-detector’s active area, as it varies slowly with small changes in angle. For γ-ray
detectors, the solid angle of the detector results in an attenuation of the anisotropy in the
measured angular correlation. Taking this into account, the angular correlation formula
becomes

W(θ, φ) = ∑
kq

√
2k + 1ρkqQkFkDk∗

q,0(φ, θ, 0), (2.18)

where Qk = Jk/J0 is the solid-angle attenuation factor [184], dependent on the γ-ray en-
ergy, detector type and detector geometry. In its simplest form, for a cylindrical detector:

Jk =
∫ γ

0
Pk(cos β)(1− e−µx(β)) sin βdβ, (2.19)
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where γ is the half-opening-angle subtended by the detector, β is the angle of the γ-ray
relative to the detector axis, Pk is a k-order Legendre polynomial of cos β, µ is the γ-ray
absorption coefficient for the detector material, and x(β) is the distance traced through
the detector by the γ ray at angle β. The Qk coefficient was originally derived in 1953 by
Rose [184], and has become a standard correction in γ-ray spectroscopy techniques [192].
In this thesis, the Qk coefficients were evaluated using Krane’s formulation for coaxial
Ge detectors [128].

Finally, the perturbation or attenuation due to the influence of an external electromag-
netic field on the angular correlation must be included. This was originally introduced by
Goertzel [see Eq. (2.2)], but was reformulated and refined for experimental applications
by Abragam and Pound [1]. They introduce the symbol Gk into the angular correlation
to represent the external-field perturbation, giving

W(θ, φ) = ∑
kq

√
2k + 1ρkqGkQkFkDk∗

q,0(φ, θ, 0). (2.20)

The external-field perturbation, Gk, may be a time-average or time-integral quantity,
or it may be a time-dependent function, Gk(t), depending on the experiment being
performed.

In conclusion, through the combined efforts of many researches through the mid-
20th century, from Hamilton’s original derivation of the W function through to Alder
and Winther’s formalism for calculating nuclear alignment after Coulomb excitation,
nuclear physicists can reliably and accurately predict γ-ray angular correlations from
pure Coulomb-excitation reactions. The capability to calculate angular correlations has
allowed a great deal of nuclear-structure research to be performed by measuring γ-ray
cascades after radioactive decay and Coulomb excitation reactions, and is the basis for
several nuclear spectroscopic techniques in use today. Attention is now turned to such
measurement techniques.
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2.3 Nuclear Dipole Moments

As discussed in §2.1.2, the nucleus has several properties. Amongst these is the nuclear
magnetic dipole moment, µ. It is often reported as the g factor, being the ratio of the
magnetic moment to the nuclear spin, g = µ/I × h̄/µN, where µN is the nuclear magneton
and h̄ is the reduced Planck constant. In order to understand the origin of the magnetic
moment, recall that the overall nuclear spin arises from the individual or collective
motion, that is the angular momentum and intrinsic spin, of its nucleons. In classical
physics, the motion of a charge creates a magnetic field, and circular motion creates a
magnetic dipole. The angular momentum of the protons will therefore produce a mag-
netic dipole moment. In addition to proton angular momentum, the intrinsic quantum
spin of both protons and neutrons also generates a magnetic moment that contributes to
the overall magnetic moment of the nucleus. Nucleons have their own magnetic dipole
moments because they are composed of three quarks. This sub-nucleonic structure
gives rise to the intrinsic spin quantum number s = 1/2 and a resulting magnetic
dipole moment for both the charged proton, µp = 2.793µN, and uncharged neutron,
µn = −1.913µN [127]. Together, in a nucleus, the intrinsic magnetic moments of the
nucleons and the protons’ orbital motion combine to produce a net magnetic dipole
moment of the nucleus.

As suggested by the above discussion, the nuclear magnetic dipole moment can be
broken down into contributions from the orbital (L) and spin (S) angular momenta of
the protons and neutrons. The orbital component depends on the angular momentum of
individual protons (lp) and neutrons (ln) while the spin component depends on their in-
trinsic magnetic moments. The nuclear magnetic moment can be separated into a proton
and a neutron component: µ = µp + µn with µp = gl,p〈Lp〉+ gs,p〈Sp〉, where gl,p and gs,p

are the proton orbital and spin g factors, and µn = gl,n〈Ln〉+ gs,n〈Sn〉, where gl,n and gs,n

are the neutron orbital and spin g factors. The magnetic moment of a single free nucleon
with angular momentum j = l ± s is calculated by [127]

j = l +
1
2

, 〈µ〉 = [gl(j− 1
2
) +

1
2

gs]µN, (2.21)

j = l − 1
2

, 〈µ〉 = [gl
j(j + 3

2)

j + 1
1
2

1
j + 1

gs]µN, (2.22)

where gl and gs are the orbital and intrinsic-spin g factors, respectively.

Nucleon magnetic moments calculated using Eqs. 2.21 and 2.22 are referred to as
Schmidt values. Comparison with odd-A nuclei reveals that the true values for nucleons
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bound in nuclei tend to fall between l ± s, indicating that gs is reduced from the free-
nucleon value. Meson-exchange currents and the local influence of nearby nucleons are
suspected to cause this reduction from free-nucleon values [127]. Therefore, a reduced
value, geff

s , is used, set depending on the model and orbital space being considered. For
even-even nuclei modelled using the collective vibrational model (see §2.1.3), excited
nuclear states are expected to have 〈µ〉/IµN = Z/A [127]. This is due to the assumption
that nucleons are all paired (cancelling any intrinsic-spin contribution), and all couple to
the orbital angular momentum (leaving only the orbital component coupled to spin I).
The effective values for gl are typically gl,p ' 1 and gl,n ' 0, meaning

〈µ〉/µN = I

Z
∑ gl,p +

N
∑ gl,n

Z + N
= I

Z
A

. (2.23)

Measurements tend to be reduced from this theoretical value, as much as 30%, indicating
that these assumptions are not completely valid. The shell-model aims to take a middle
approach, building the nuclear state from single-particle states all coupling to give ex-
pectation values for the components of angular momentum, 〈Lp,n〉, and intrinsic spin,
〈Sp,n〉. Assuming gl,p = 1 and gl,n = 0, the formula for calculating the nuclear g factor is

〈µ〉/IµN = g = (〈Lp〉+ geff
s,p〈Sp〉+ geff

s,n〈Sn〉)/I. (2.24)

In the multiconfiguration shell model, the difference between µp and µn gives
sensitivity to the differing contribution of proton and neutron configurations in nuclear
magnetic dipole moments. The pairing force, discussed in §2.1.2, causes nucleons to
pair up with antiparallel spin, giving no net contribution to the magnetic moment from
the paired nucleons. When they are in their ground state, this results in nuclei with
even numbers of protons and neutrons (even-even) having µZ = 0 and no net angular
momentum (I = 0). When a nucleus has an odd number of protons, neutrons, or both,
the nucleus has I > 0 and µ 6= 0. Another instance where I > 0 and µ 6= 0 occurs is
when an even-even nucleus is excited from its ground state to states with I 6= 0. With
µ 6= 0, interactions with magnetic fields can now be measured.

To measure the nuclear g factor, the magnetic moment, −→µ , of the nucleus must in-
teract with an external, quantifiable field. The interaction with the field is revealed in
the resultant energy shift −→µ · −→B , or via the torque applied to the nuclear spin −→µ ×−→B ,
which causes the nucleus to precess. The strength of this interaction allows for the de-
termination of the g factor. For long-lived or stable nuclei, the external field can be weak
(sub-Tesla strength) and the resulting precession frequency small (to the order of Hertz
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or less). The γ-ray angular correlation of an oriented nuclear state will be perturbed by
such interactions, as described in §2.2.1. For nuclei with lifetimes down to the nanosec-
ond range, macroscopic magnetic fields produced in the lab (several Tesla) are sufficient
to induce a measurable precession of the aligned nuclear spin. For nuclear states with pi-
cosecond lifetimes, such as most first-excited 2+ states, near kilo-Tesla strength magnetic
fields are required to induce measurable precessions. Such fields cannot be produced
macroscopically, but arise in hyperfine interactions between the nucleus and atomic elec-
trons. Three sources of such strong fields, which have been employed for g-factor mea-
surements, are the hyperfine field experienced by a moving ion within a ferromagnetic
solid (transient field), the field between the ions and a ferromagnetic solid once they
come to rest (static field), and the hyperfine field present in highly-charged free ions.
Techniques utilising these hyperfine fields for g-factor measurements are described in
the following subsections.

2.3.1 Perturbed Angular Correlations after Ion Implantation in Po-

larised Ferromagnetic Materials

The perturbation arising from the interaction of an aligned nuclear state with an exter-
nal magnetic field provides a valuable method to probe the magnetic dipole moment of
excited nuclear states. The strength of the hyperfine interaction experienced by nuclei
implanted into a polarised ferromagnetic host is of the order of tens to hundreds of Tesla.
The strength of these static hyperfine fields, combined with the strongly anisotropic an-
gular correlations obtained via Coulomb excitation, provides the capability to induce
small but measurable precessions (∆θ . 2◦) in excited nuclear states having lifetimes of
the order of picoseconds [93]. This is referred to as the ion-implantation perturbed an-
gular correlation (IMPAC) techique. In this technique a lighter beam ion, colliding with
a heavier target nucleus, is used to recoil-implant the target into a ferromagnetic backing
foil. The beam ion Coulomb-excites the target nucleus, and is detected back-scattered in
coincidence with de-excitation γ rays from the target nucleus. The target nucleus, with
its spin aligned by the Coulomb interaction, rapidly (∼ 1 ps) stops in the ferromagnetic
foil and the spin-alignment precesses due to the interaction of its magnetic moment with
the static hyperfine field. The precession arising from the interaction is given by [114]

∆θSF = −g
µN

h̄
BSFτe−ts/τ, (2.25)

where g is the nuclear g factor of the state, µN is the nuclear magneton, h̄ is the reduced
Planck constant, τ is the lifetime of the state, BSF is the static-hyperfine-field strength,
and ts is the stopping time. Because the measurement is time-integral, the interaction
becomes appreciably attenuated in cases where the stopping time is larger than, or
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similar in magnitude to, the nuclear state’s lifetime.

Grodzins’ 1968 review [93] covering this technique examined measurements across
several nuclei using this technique, and an alternative technique in which nuclei are able
to decay in situ, i.e. without being recoil-implanted. A comparison of measurements
between the two techniques (implantation versus in situ) revealed the presence of an ad-
ditional component in IMPAC measurements, which in these cases had sign opposite to
that of the static hyperfine field. Because the hyperfine-field strength experienced by Ge
nuclei at rest in iron is quite small (∼ 7 T) [180], Ge nuclei made for a good candidate
to study this additional component. IMPAC measurements on the stable, even-even Ge
isotopes indicated that this additional component acts on sub-picosecond timescales, as
there was no lifetime dependence across the isotopic chain, covering lifetimes ranging
from 2–26 ps [179]. These two pieces of evidence indicated that this additional com-
ponent originates from a transient hyperfine field, which acts as the ions slow in the fer-
romagnet. The transient field was found to always have a positive sign (aligned with
the polarisation of the ferromagnet), whereas the static field may be positive or negative.
This means it may enhance or reduce the apparent static-field strength, depending on the
sign of the static field. Including this transient field in Eq. (2.25), the measured precession
becomes [114]

∆θ = g
µN

h̄

(
BSFτe−ts/τ −

∫ ts

0
BTF[v(t)]dt

)
, (2.26)

where BTF(v) is the velocity-dependent transient hyperfine field, and v(t) is the ion
velocity at time t. The integral represents the transient-field interaction over the stopping
time, which gives rise to a small rotation that acts like an impulse as the ion stops.

In the technique’s initial use it was assumed that the static field achieved full strength
once the ion stopped. However, there were early hints that the rare-earth elements ex-
perienced some lifetime-dependent quenching of the static hyperfine field [93]. It wasn’t
until the mid-to-late 1990s, three decades after the popularisation of IMPAC, that Stuch-
bery, Anderssen and Bezakova [9, 220] demonstrated the presence of a quenching effect
in the static hyperfine-field interaction in IMPAC measurements across multiple distinct
nuclear regions. In IMPAC, the static field does not achieve full strength until the im-
planted ion comes to rest and the surrounding environment reaches local thermal equi-
librium below the Curie temperature. Stuchbery and Bezakova argued that the energy
deposited at the implantation site causes a thermal spike, sufficient to induce localised
melting of the host. This quenches the static field for several picoseconds. If this is the
case, then IMPAC measurements should reveal a reduction of the static-field strength
proportional to the lifetime of the probe state. Analysis of IMPAC measurement data re-
vealed that there was a reduction in the static-field strength, indicating a pre-equilibrium
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quenching time te ∼ 10 ps. This pre-equilibrium quenching is taken into account by
substituting BSF, in Eq. (2.26), with [220]

BSF → Beffe−te/τ, (2.27)

where Beff is the effective static-hyperfine-field strength, which may contain radiation-
damage effects or other influences and therefore may be a reduced value compared to
that found by other methods, and te = 7.3(8) ps is the thermal-spike lifetime, as deduced
in Ref. [220].

In addition to the observed attenuation owing to the stopping time of the ion, and
that arising due to the thermal spike, the effective hyperfine-field strength may also be
reduced from its nominal value due to ions coming to rest in non-substitutional sites in
the ferromagnetic crystal lattice. While there are loose rules defining the likelihood of a
substitutional implantation (the ion comes to rest in the crystal lattice and experiences
the full hyperfine field), these generally must be assessed in a case-by-case manner.
As such, the static hyperfine-field strength used in Eq. (2.25) may actually be further
reduced from its full value, introducing more uncertainty to the analysis of IMPAC
measurements. These issues of field-strength reduction owing to the thermal-spike
lifetime are significant to states with lifetimes τ . te ∼ 10−11 s. When applied to
longer-lived states (τ & 10−9 s) the effect of the thermal-spike quenching becomes
negligible, and instead the non-substitutional fraction becomes the most significant
contributor to a reduced hyperfine-interaction strength.

The magnitude of the transient-field effect encountered in IMPAC measurements is
a quantity which, during the late 1960s and early 1970s, was challenging to quantify.
However, its study led to an entirely new technique by which the magnetic moment of
short-lived nuclear states could be probed in a more reliable manner. This technique will
now be discussed.

2.3.2 The Transient-Field Effect in Polarised Ferromagnetic Materials

The transient-field (TF) effect arises from an ion-solid interaction occurring for ions
moving swiftly through an externally polarised ferromagnetic material. It produces a
net magnetic field at the nucleus of these moving ions. It was found that for ions having
Z . 20 traversing a ferromagnetic foil with v0 < v < Zv0, where v0 = c/137 is the
Bohr velocity, v is the ion velocity and Z is the atomic number, the strength of the field
is of the order of ∼ Z × 10 T [191]. This magnitude makes it useful for probing states
that interact over picosecond time periods. When aligned nuclei interact with the TF it
induces a measurable precession in the spin alignment, causing a perturbation of the
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γ-ray angular correlation, which manifests as an angular rotation, ∆θ ' 10−2 rad, over
the picosecond interaction time. Since the late 1970s researchers have been studying
the TF effect, and utilising it for nuclear dipole-moment measurements, particularly for
states with short lifetimes (. 10−9 s) [22].

One of the first hints of the TF effect appeared in a 1966 paper by Grodzins, Borchers
and Hagemann [94], then at the Neils Bohr Institute. Using the IMPAC technique
(prior to the identification of the transient-field component) they measured the sign of
the effective field acting on 156Gd implanted into iron to be opposite to that obtained
by non-implantation methods. Later that year, Borchers, Grodzins et al., now of the
MIT-Wisconsin group, measured even-A Te ions implanted into iron [29]. They noted
inconsistencies between measured hyperfine-field strengths using implantation versus
non-implantation methods, and a correlation between nuclear-state lifetimes and
measured g factors. Their measurement of anomalously large g factors (∼ 2× the
expected collective Z/A trend) for the Te isotopes led them to propose the presence of
a transient field that acted upon the ions as they slowed. Borchers et al. subsequently
conducted a study of precession angles in nuclei spanning 42 ≤ Z ≤ 52 after implan-
tation into Fe, Ni, Co, Gd or Cu foils, and discovered a magnetic field acting upon
fast-moving ions in externally polarised ferromagnetic foils [28]. The field was found
to be proportional to the ferromagnetic medium’s polarised-electron density. They
proposed a mechanism by which the field arises due to the capture of polarised electrons
by the moving ion from the ferromagnetic host. Soon after, Lindhard and Winther
proposed an alternative mechanism to model this phenomenon, in which polarised
electrons in the host scatter off the bare charge of the moving nucleus [136]. Their model
predicted B ∝ Zv0/v. Shortly after, other groups began to observe deviations from
Lindhard and Winther’s model at higher velocities [59, 81, 82, 90, 101], where the field
strength was observed to vary linearly, rather than inversely, with velocity. This led
to the revival of the electron-capture mechanism, and consideration of other possibilities.

In the mid-1970s, Eberhart et al. observed the TF’s linear-velocity dependence for
intermediate-velocity Si ions [59], and they revived the mechanism originally suggested
by Borchers et al. [28], by which the TF effect arises due to the polarised s-orbital electron
picked up from the host. In this scenario the TF strength can be expressed, microscopi-
cally, as [54, 60]

B(v) = ∑
n

Fns
1 (v)ξns(v)Bns, (2.28)

where there is a sum over all relevant s-orbital electrons in shells n, Fns
1 (v) is the fraction

of unpaired n-shell s-orbital electrons at velocity v, ξns is the degree of polarisation of
these unpaired electrons, and Bns is the Fermi-contact magnetic field experienced by the
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nucleus from a single ns electron.

The TF effect is only useful when ions traverse ferromagnetic media with velocity
v0 < v . Zv0, as above Zv0 the ion becomes fully stripped and the TF effect decreases
significantly. However, across this entire range the degree of ionisation is constantly
changing. Consequently, the ion-solid interactions are complex. The task of understand-
ing these interactions is further obscured by a poor understanding of the charge-state
distribution of swift ions in solids, and low-velocity stopping of heavy ions. This makes
understanding which electrons are contributing to the interaction difficult to model.
However, investigations have been undertaken to help understand the varying electron
contributions. When recoiling at a few percent of the speed of light, light ions (Z . 10)
do not bind their electrons as strongly as heavier ions. As such, light ions will tend to
have the 1s (K-shell) electron polarised, while heavy ions will have an s-orbital electron
at higher n polarised, varying as a function of Z. Eberhart et al. [59] estimated that
2s electrons were largely responsible for observed precessions in Si recoiling below
3.4v0. Later, Dybdal, Eberhart and Rud [54] performed measurements of K-shell (1s)
vacancies in Si ions recoiling through nickel with 3.9v0 ≤ v ≤ 9.0v0, and found vacancy
fractions of 2− 23%. Häusser et al. [104] determined that for 207Pb ions recoiling between
2.4v0 ≤ v ≤ 10.2v0 the 4s electron was the dominant contributor to the TF. However,
there are particular cases in which the moving ion’s s-orbital energy is almost equal to
that of a particular host electron orbital, as observed for flourine in iron [54], or platinum
in iron [211]. In these cases, some fraction of the vacancies being created in the active ns
orbit of the moving ion instead go to the host, reducing the net transient-field strength
and causing an apparent discontinuity in field strength versus Z. It should be noted that
this effect has not been observed for gadolinium hosts, making gadolinium an attractive
choice in cases where these discontinuity effects may be present for other host elements.

Due to the ion-solid interactions being poorly understood, the evaluation of Eq. (2.28)
from first principles is yet to be achieved. Instead, characterisation of the TF strength for
these swift ions has led to the development of four commonly used parameterisations.
As these parameterisations were fitted using data sets with distinct velocity ranges and
atomic number, it is a natural consequence that they have concluded different relation-
ships as the number of bound electrons changes. Research performed by Eberhardt et
al. led to the characterisation of a TF strength that was linearly dependent on the ion
velocity and atomic number [58, 60]. They proposed

B(v, Z) = aZR(Z)v/v0, (2.29)

where Z is the atomic number of the ion, R(Z) = 1+ (Z/84)5/2 is a relativistic correction
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factor, v is the ion velocity, v0 = c/137 is the Bohr velocity and a = 11.2(3) T is a fitted
parameter [58], obtained from available data using fully-magnetised iron hosts. Please
note that the uncertainty in a is statistical-only.

Eberhart’s linear model argues for a TF mechanism whereby an unpaired, polarised
s-shell electron, bound to the moving ion, is responsible for the field [59, 231]. Such po-
larised electrons are present due to two interactions: atomic spin-exchange interactions
(an electron-spin interaction of the ion with polarised electrons of the host transfers
polarisation to the ionic electrons); and electron capture-loss processes particular to each
ferromagnet [54, 151].

Around this time the newly identified linear dependence of the TF strength on ion
velocity motivated the Rutgers group to develop what is known as the thin-foil TF tech-
nique, to perform precession measurements free from the static-field effect [33, 34, 102,
191]. Using this method, and systematic measurements mainly on Sm ions in iron, they
discovered that the velocity dependence was not linear over the range 2v0 . v . 7v0,
and proposed a non-linear parameterisation for the field strength

B(v, Z) = a′ZPz(v/v0)
Pv µBNp, (2.30)

where a′, Pz and Pv are free-fitted parameters, µB is the Bohr magneton and Np is
the polarised-electron density (electrons/cm3), a value particular to the ferromagnetic
element [34, 191]. Together, µBNp gives the magnetisation of the ferromagnetic foil. The
free-fitted parameters were empirically determined to be a′ = 96.7(16), Pz = 1.1(2) and
Pv = 0.45(18) [191], fitted to precession measurements using elements ranging from O
to Sm traversing iron hosts. Measurements of 82Se traversing a gadolinium host were
also considered. It was concluded from the 82Se in gadolinium data that these same
parameters apply for gadolinium hosts [22], except that the difference in strength is due
to gadolinium having a stronger magnetisation (larger Np) than iron. However, marked
deviations from this assumption have since been found [48].

The Chalk River group, exploring the TF effect using the rare-earth elements
Tm and Yb, also found an enhanced effect as compared to the Lindhard-Winther
model [228]. Further work involving several isotopes of Sm and Gd, along with the
analysis of Dy, Tm and Yb isotope data allowed the characterisation of the TF effect in
this nuclear region [11, 103]. This led to the proposal of the TF strength for heavy ions
recoiling at 1.5v0 ≤ v ≤ 6.5v0 to be

B(v, Z) = a′′Z(v/v0)e−βv/v0 , (2.31)
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where a′′ and β are free-fitted parameters [11]. In their fitting approach, β was first
loosely fitted and then set to a fixed value, as a′′ and β are correlated. The free-fitted
parameters were empirically determined to be a′′ = 19.0(5) T for β = 0.12 in iron
hosts [11], and a′′ = 28.1(17) T for β = 0.135 in gadolinium hosts [104].

In recent years Stuchbery [208] developed a TF parameterisation for low-Z ions at
high velocities (v > 1/2Zv0). This parameterisation was obtained by fitting a range of
data for ions with 6 ≤ Z ≤ 16 in both iron and gadolinium hosts. Stuchbery proposed
the parameterisation

B(v, Z) = AZP(v/Zv0)
2e−

1
2 (v/Zv0)

4
, (2.32)

where the magnitude, A, and Z-dependence, P, are fitted parameters, being
A = 1.82(5) T and P = 3 for iron hosts, and A = 26.7(11) T and P = 2 for
gadolinium hosts. This parameterisation accounts for the decrease in the TF strength
when the ion velocity exceeds Zv0, at which point few to no electrons remain bound to
the ion, making it suitable for high-velocity measurements.

As noted, the discovery that the TF strength increases with velocity led to the
development of the thin-foil TF method, pioneered by the Rutgers group [191]. These
experiments were performed in conventional kinematics (light beam, heavy target).
Beam particles are back-scattered from a target of interest, which has been evaporated
onto a ferromagnetic foil, thin enough for the recoiling ions to traverse without stopping,
and backed by copper or lead, which provides a field-free environment for recoiling ions
to stop in. The back-scattered beam is detected in coincidence with γ rays emitted from
the target nuclei, which have recoiled through the ferromagnetic layer and stopped in the
field-free backing. This method has been utilised extensively, and with great success, to
measure the g factors of picosecond-lifetime nuclear states across the nuclear chart [22].
During the late 1990s a variation on this technique, the inverse-kinematics thin-foil TF
method, came into favour due to advances in ion-source and accelerator capability,
along with the possibility of using radioactive ion beams [22]. These measurements
are performed in inverse kinematics (heavy beam, light target), in which the heavy
beam, consisting of the ions of interest, impinges upon a lighter target (e.g. carbon),
with recoiling target ions then detected after being forward-scattered. The target layer
is backed by the ferromagnetic material, and usually a stopping layer. For nuclei
having A . 100 this allows for somewhat higher ion velocities to be achieved during
transit of the ferromagnetic host, equating to a stronger TF and larger precession effect.
Additionally, due to kinematic focusing, the particle-detection solid angle is much larger
in the equivalent centre-of-mass frame. These factors allow for precise measurements
with relatively little statistical uncertainty, leaving primarily the uncertainty in the
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transient-field calibration as a significant source of error.

Efforts to understand the TF effect have revealed a dependence upon ion velocity
and atomic number that, generally, changes smoothly with Z for intermediate-velocity
ions, particularly in gadolinium hosts. This means that, even if the absolute scale of
the TF strength is unknown, it can be used to scale values relative to an already-known
state. Consequently, isotopic chains can be measured efficiently and reliably, relative
to a single absolute measurement for one isotope. However, there are some caveats to
this approach. The first is that the TF doesn’t always scale smoothly across a given Z
range, or between neighbouring elements, allowing for considerable deviations from
the parameterisation [48, 55, 209, 211, 217, 218, 219]. Therefore, if the TF behaviour of an
element is unknown, it may not be reliable to calibrate it using a different element. The
measurement is also more reliable when the velocity range of the relative measurements
is the same or very similar. This reduces uncertainties due to the velocity-dependence
of the TF. There are also uncertainties caused by localised reductions in magnetisation
that arise from temperature changes and microscopic damage to the host [22, 195].
Considering these issues, the most reliable relative measurement should be made
between nuclei of the same, or similar Z that are not near to observed or expected
discontinuities in TF strength versus Z, at the same energy, in the same target, with the
most ideal scenario being a simultaneous measurement of isobaric nuclides. This means
the effect will scale the same for the two cases, and the measured effect ratio should
depend only on the g factors and, to a lesser extent, the lifetimes of the nuclear states. As
such, selecting an appropriate parameterisation and performing a measurement relative
to a known state allows for reliable measurements, while minimising uncertainty due to
the TF parameterisation itself.

With recent advances in shell-model calculations of nuclear g factors, precise and ac-
curate experimental g factors are required to probe nucleon-nucleon interactions and test
these new predictions [159]. However, due to the aforementioned issues of uncertainty
in the TF’s absolute magnitude, many TF measurement results are better considered as
relative measurements. For nuclei in regions far away from independently determined
g-factor measurements, the issue becomes one of finding a suitable method to determine
the absolute g-factor values without relying on a parameterisation. As particular ele-
ments have already been identified as having unexpected TF behaviour, it is unsafe to
assume a parameterisation is correct without being studied relative to an independently
established reference. Therefore, absolute independent measurements for nuclei in the
aforementioned regions are desirable, so that past measurements via the TF method on
these nuclei can be scaled accurately, and future measurements can be made confidently.
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2.3.3 Hyperfine Interactions in Recoiling Ions

In Alder’s reformulation of the angular-correlation W function [3] the perturbation aris-
ing from the hyperfine interaction, introduced by Goertzel [89], was also included. Using
Alder’s formulation of the angular correlation, Abragam and Pound introduced time de-
pendence to the perturbing component and examined its different forms in particular
media: crystalline powder, solid crystals, free atoms/ions, and liquids [1]. They intro-
duced the term Gk to the angular correlation, being the change in anisotropy in the γ-ray
angular distribution due to the dipole and quadrupole interactions. In the late 1960s
Ben Zvi et al. performed experiments to observe the perturbation of the angular cor-
relation from excited 2+ nuclear states recoiling into low-density gas or vacuum [21].
The hyperfine field, H, acts on the total angular momentum vector F, resulting from
the coupling of the isolated nuclear (I) and atomic (J) spin-vectors. The vector coupling
is depicted in Fig. 2.7. Two possibilities are proposed for this interaction: the quan-
tity F rapidly fluctuates due to atomic transitions, which also causes the hyperfine-field
strength to vary around a mean value, H, or a large number of static fields up to the
limit of large F contribute to a mean hyperfine-field strength H. If the former case is true,
they argued that this fluctuation would result in a perturbation similar to that in liquid.
Using Abragam and Pound’s formulation for perturbation in a liquid (referred to as the
stochastic model), they proposed

Gk(t) = e−pkω2τct, (2.33)

and
Gk =

1
τ

∫ ∞

0
Gk(t)e−t/τdt =

1
1 + pkω2ττc

, (2.34)

where τc is the correlation time (being, in the fluctuating model, the average lifetime of an
atomic state) and τ is the nuclear lifetime. For nuclei having I = 2, which were studied,
p0 = 0, p2 = 2 and p4 = 20/3 for the hyperfine interaction with the nuclear magnetic
dipole moment and

ω = µNgH/h̄, (2.35)

where µN is the nuclear magneton, h̄ is the reduced Planck constant, g is the nuclear
g factor and H is the mean hyperfine-field strength. Abragam and Pound’s model
indicates that a hyperfine interaction with the nuclear electric quadrupole moment
should also be present, but Ben Zvi et al. reported the noteworthy result that, even in the
case of strong quadrupole deformation, the quadrupole interaction is absent during the
recoil [21]. As such, it has since been largely disregarded, and was not included here.

A comparison of the fluctuating versus static models was unable to distinguish which
produced a better fit to the Gk values determined from the measurement [21]. Another
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FIGURE 2.7: Vector coupling between the nuclear (I) and electron/atomic
(J) spins, combining such that F = I + J. The dipole interaction results in a
precession about F for any given combination of magnetic substates in I and

J with angular frequency ωFF′ [see Eq. (2.39)].

measure available to them was to plot ω2ττc, from the denominator of Eq. (2.34), against
τ to verify if the fluctuating model was correct, or ω2τ2 (as τc = τ in the static model)
against τ to verify if the static model was correct. In this comparison the fluctuating
model was clearly the better fit to all available data. By measuring the attenuation
of angular correlations after Coulomb excitation, and calibrating H and τc using the
known g factor of the 2+1 -state in 152Sm, they were able to determine the g factors of the
excited 2+1 states in 150,154Sm and 148,150Nd by fitting Gk values to the measured angular
correlations.

A decade later, Goldring et al. [92] compared the perturbation observed between
varying gas pressures, and vacuum. This paper was motivated by the fitted correlation
time (τc ≈ 4 ps) from Ref. [21] being much smaller than the expected average atomic
lifetime (τatomic ∼ 10 × τc ps). By reanalysing the data using the static model, they
obtained a much longer correlation time, τc = 150 ps, more in line with the expected
average atomic-state lifetime. This longer correlation time was used to explain the
differences observed between the quenching of the hyperfine interaction between
152Sm and 150Sm at increasing gas pressures, a phenomenon that was inexplicable in
the fluctuating model alone. The new approach was also able to explain the previous
measurements by Ben Zvi et al., provided that the distribution of static fields was broad
enough. What they concluded is that the large number of static fields that can originate
from the excited atomic states, contributing over the short timescales probed, gives
much the same result as a fluctuating field.

Goldring went on to present a formal treatment of the perturbation [91], bringing
together the experimental results of many authors. This formalism is as follows.



40 Chapter 2. Literature Review

After recoil into vacuum, the atomic system can be described by a statistical tensor,
ρkq(J). The hyperfine interaction couples the atomic and nuclear (ρkq(I)) systems, pro-
ducing a system described by the coupled statistical tensor, ρkq(FF′). The tensors are
coupled within the range |I − J| ≤ F, F′ ≤ I + J, which takes into account all possi-
ble couplings of I and J to F, using standard angular-momentum and spherical tensor
coupling formulae:

ρkq(FF′) = ∑
kikjqiqj

ρkiqi(I)ρkjqj(J)F̂F̂′k̂i k̂ j〈kik jqiqj|kq〉 ×


I J F
I J F′

ki k j k

 (2.36)

and

ρkiqi(I)ρkjqj(J) = ∑
FF′kq

ρkq(FF′)F̂F̂′k̂i k̂ j〈kik jqiqj|kq〉 ×


I J F
I J F′

ki k j k

 , (2.37)

where |I − J| ≤ F, F′ ≤ I + J, the angled brackets signify a Clebsch-Gordon coefficient,
the curly brackets signify a Wigner 9J symbol, and X̂ =

√
(2X + 1) where X is the

relevant symbol.

The time-dependent perturbation arising from the hyperfine interaction is

ρkq(FF′; t) = ρkq(FF′; 0)e−iωFF′ t, (2.38)

where
ωFF′ =

1
2

AJ

h̄
[F(F + 1)− F′(F′ + 1)], (2.39)

in which AJ is the hyperfine coupling constant for the atomic state. Note that ωFF′ varies
for each F, F′ coupling, resulting in a superposition of different frequencies when J > 1/2.
The hyperfine coupling constant is related to the hyperfine-field strength, H, and g factor
by

AJ = µNg
H
J

. (2.40)
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At any time t, the nuclear or atomic statistical tensors can be projected from the cou-
pled tensor by

ρkiqi(I; t) = ∑
FF′

ρkq(FF′; t)F̂F̂′k̂i


I J F
I J F′

ki 0 k

 (2.41)

and

ρkjqj(J; t) = ∑
FF′

ρkq(FF′; t)F̂F̂′k̂ j


I J F
I J F′

0 k j k

 . (2.42)

In a RIV experiment, ρkq(I; t = 0) is determined by the reaction mechanism (in the
present work, Coulomb excitation), and ρkq(J; t = 0) = 0 for k, q 6= 0 by the assumption
that the atomic spin is randomly oriented (isotropic).

Through the hyperfine coupling, ρkq(J) can become oriented. Due to this, when the
atomic state undergoes an unobserved optical transition, there is a deorientation,

ρkq(J f ; t + δ) = ρkq(Ji; t)Uk(Ji J f L), (2.43)

where t + δ represents the post-transition time, and Uk is the deorientation coefficient
due to the unobserved radiation connecting an initial state Ji and final state J f ,

Uk(Ji J f L) = (−1)Ji+J f +L+k
√
(2Ji + 1)(2J f + 1)

{
Ji Ji k
J f J f L

}
. (2.44)

When a cascade of optical transitions occurs, a full treatment should include the deori-
entation of ρkq(J) for each transition.

If the optical transitions are ignored, the interaction is assumed to be static, and the
atomic system is assumed to be isotropic, then the attenuation of anisotropy in the γ-ray
angular correlation arising due to the hyperfine interaction can be isolated as

Gk(t) = ∑
F,F′

CFF′
I J (k)e−iωFF′ t, (2.45)

where the angular-momentum-coupling components of Eq. (2.37) reduce to

CFF′
I J (k) =

(2F + 1)(2F′ + 1)
2J + 1

{
F F′ k
I I J

}2

, (2.46)

and wFF′ is defined in Eq. (2.39).
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Because the imaginary components in the spherical statistical tensor ρkq(I) cancel
when oriented by Coulomb excitation, Eq. (2.45) can be re-written as

Gk(t) = ∑
F,F′

CFF′
I J (k) cos(ωFF′ t), (2.47)

emphasising that the attenuation due to the hyperfine interaction manifests as a super-
position of cosine functions, with the number of frequencies being determined by the
possible couplings of I and J.

Shortly after the experimental work of Ben Zvi et al. in the late 1960s [21], Blume
presented a time-dependent formulation of the attenuation coefficient in which an
arbitrary number of static interactions may occur in sequence [23]. This was a correction
to Scherer’s work [186], in which time dependence was introduced to the attenuation
coefficient in Abragam and Pound’s stochastic model. As the formulation proposed
is valid for any correlation time, the approach has been employed to determine the
attenuation arising from a sequence of different static interactions. A summary of
Blume’s treatment now follows.

When multiple atomic states contribute to the deorientation in sequence, their effect
is multiplicative. Alignment lost through perturbation of a prior state is never regained,
fixing a new maximum alignment that is inherited by subsequent interactions. The at-
tenuation coefficient resulting from a sequence of (static) states, GA

k , is thus

GA
k (tN) =

N

∏
i

Gk,i(ti), (2.48)

where A represents a sequence of static states, Gk,i is the attenuation coefficient in state i
along that sequence [calculated by Eq. (2.45)], ti is the survival time of state i, and N is
the total number of states in the sequence up to time tN = Σti.

What Blume’s formulation allows for is the calculation of the attenuation coefficient
arising from an atomic-decay cascade. In an experimental setting there will also be a dis-
tribution of charge states, each contributing a large number of atomic-decay sequences
with their own GA

k values. The value expected to be observed experimentally, Gk(t), is
obtained by averaging, across the charge-state distribution, the respective atomic-decay
cascades for each ionic species (charge state):

Gk(t) =
NQ

∑
Q

cQ

NA

∑
A

GA
k (t)/NA, (2.49)
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where Q represents an individual charge state, NQ is the number of charge-states, cQ is
the fractional population of the charge state, A represents an individual atomic-decay
cascade for charge-state Q, and NA is the number of atomic-decay cascades for each
charge state, Q.

Using Blume’s formulation, Bosch and Spehl examined the effects of the rapidly
fluctuating hyperfine fields, expected to be present in highly stripped free ions, on the
time-dependence of the attenuation. They examined two cases: a continuously and
rapidly fluctuating field arising due to continuous optical transitions [30], and a singular
or rapid cascade of optical transitions to a ground state having a static interaction [32].
In the former case, they demonstrated that the time-dependent attenuation coefficient
should resemble an exponential function for short correlation times. In the latter case,
they demonstrated that the rapid feeding of a static interaction should result in a phase
shift and amplitude reduction in the sum of cosine functions of Eq. (2.47).

Despite the demonstrated applicability of the RIV method, it was largely neglected
until 2005, when Stone et al. used the RIV technique to measure g(2+1 ;132Te) using a
radioactive ion beam (RIB) [204]. The RIV technique allows the unreacted radioactive
beam to travel out of view of the γ-ray detectors, avoiding the accumulation of back-
ground radiation (a major problem for TF measurements with radioactive ions [204]).
Additionally, modern detector arrays allow for the coverage of a large solid angle, a
feature that the RIV technique can utilise more effectively than the TF technique. The
g factor was determined by calibrating the hyperfine interaction with the known g
factors and lifetimes of even-even stable Te isotopes. The success of this approach led to
several more RIV measurements using RIB facilities on nearby nuclides [8, 214, 215].

The RIV method, originally developed by Ben Zvi et al. and applied by Stone et
al., requires that isotopes with known g factors be available to calibrate the hyperfine
interaction. However, this need not be the case. In 2010 Stone, Stone and Jonsson
used the General Relativistic Atomic Structure Package [119] to calculate the hyperfine-
interaction constants for excited states of Te ions present in the 2005 measurement [204]
up to 1000 eV, above which energy transitions were considered to be too rapid to have
any significant effect [202]. Using Frauenfelder and Steffen’s ‘static model’, in which the
atomic lifetime is assumed to be much longer than the nuclear lifetime, they calculated
the time-integral Gk for each atomic state in each ion, and took an average of them
with a 2J + 1 weighting factor. The result showed good agreement with experiment,
demonstrating that, at least for these higher-Z nuclei, an a priori and parameter-free
approach can be taken, as opposed to the original approach in which the field strength
for any given J value was randomly generated by a distribution function. Chen et al. [49]
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went a step further and applied the Monte-Carlo method to determine the proportions
in which different atomic states should be occupied based on their lifetimes. This was
achieved by calculating the atomic properties of a large number of excited atomic states,
assuming an equal chance of any given state to be initially occupied (with a 2J + 1
weighting), and using the Monte-Carlo method to simulate atomic decays through
time using the calculated properties. They were also able to successfully reproduce
the measured Te-isotope data. These gradual steps towards a microscopic description
of the experiment have slowly moved the analysis technique away from the simple,
calibration-dependent approach, towards an ab initio approach to understanding the
hyperfine interaction in these nuclei.

The aforementioned measurements all employed time-integral (TI) RIV methods. By
instead performing a time-dependent (TD) RIV measurement, the nuclear precession
frequency resulting from the hyperfine interaction can be observed, with the possibility
to identify a single, dominant oscillation due to a strongly populated atomic state. As
with TIRIV, the g factor may then be inferred from the oscillation by calibrating the
hyperfine-field strength (HFS). When opting for calibration, the advantage of a TD over
a TI measurement is that only a single known state is necessary, as the g factor can
be scaled by the ratio of the observed oscillations. The effectiveness is this technique
was demonstrated by Naqvi et al. [153] in the measurement of g(2+1 ;138 Ce) relative to
g(2+1 ;142 Ce). However, while this technique expands the range of nuclei accessible for
RIV g-factor measurements, it is limited by the precision of existing g-factor measure-
ments. Therefore, a calibration-independent method is still desirable.

TDRIV allows for calibration-independent measurements when the HFS can be
calculated from first principles. This technique was applied in the measurement of
g(2+1 ;24 Mg) by Kusoglu et al. [129]. In Kusoglu’s measurement, the 24Mg charge-state
distribution was dominated by bare (having no hyperfine interaction) and H-like ions.
The H-like HFS was calculated to be H = 29.09 kT, with J = 1/2. By measur-
ing the hyperfine-interaction frequency of the H-like ground state a precise value of
g = 0.538(13) was obtained. This was possible due to the J = 1/2 cosine frequency
being dominant, allowing ω in Eq. (2.45) to be fitted, and thereby the g factor deduced.
This experiment also demonstrated a proof-of-concept modification that allows for RIBs
to be used with the TDRIV technique, enabling the capability to make precise excited-
state g-factor measurements on radioactive nuclei. For the 24Mg 2+1 state the hyperfine-
interaction frequency for the H-like ground state was AJ ∼ 8× 1011 Hz, near the limit
of the apparatus’ capability to resolve. As higher-Z nuclei are considered, the interac-
tion in H-like ions becomes too high in frequency to resolve its time dependence. To
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reduce the hyperfine-field strength into the regime where its frequency can again be re-
solved requires that the recoiling ions have multi-electron charge states. The challenge to
calculate the relevant hyperfine interactions then becomes more complex. Time-integral
measurements on even-even isotopes of Ge and Se, having multi-electron charge states,
produced results that are difficult to interpret [206], but imply that a few low-excitation
atomic configurations must be dominant. If this is the case, it may be appropriate to
apply a technique like that used by Chen et al. Designing experiments that observe the
ground-state perturbation owing to Na-like ions may enable accurate g-factor measure-
ments. However, this interaction will be but one component in a much more complex
ensemble of atomic states present in both Na-like and other adjacent ionic species. Due
to the time dependence, one may also expect the populations to shift over time if the
atomic-state lifetimes are of the order of the nuclear lifetime. Modelling this scenario is
not a trivial task, but would provide a powerful analysis tool for interpreting TDRIV data
for these nuclei in the Z ∼ 30 region.
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2.4 Atomic-Structure Calculations

To model the hyperfine interaction, the atomic-structure information of the relevant
charge states must be known. The disciplines of atomic physics and quantum electro-
dynamics, along with the relative simplicity of the atomic system (compared to nuclei),
have produced a number of methodoligies to calculate atomic wavefunctions with high
accuracy. The General Relativistic Atomic Structure Package (GRASP) is one particu-
lar solution for calculating bound-state atomic wavefunctions and atomic properties. Its
origin dates back to 1969, and the publication of an early computer code by Froese Fis-
cher [74]. The approach used the multiconfiguration Hartree-Fock (MCHF) method, in
which solutions are obtained using the self-consistent-field method to generate a number
of individual configuration states, which are then mixed, to compute atomic wavefunc-
tions. This initial solution laid the foundation for the approaches which have been devel-
oped in future versions. Its basis is the assumption that atomic-state wavefunctions can
be determined from a linear combination of multi-electron configurations, which in turn
are approximated from bound single-electron wavefunctions. This approach was gradu-
ally generalised, improved, and relativistic calculation capabilities were introduced [72,
73, 75, 76, 77]. In 1996 the first version of GRASP was released [167], introducing fully
relativistic calculation capabilities to Froese Fischer’s MCHF atomic structure package.
Major updates to GRASP were published in 2007 [120], 2013 [118] and 2019 [79], intro-
ducing various improvements and optimisations. GRASP is freely available under the
MIT license, and being written in FORTRAN and C++ can be compiled on Linux, OSX
and Windows operating systems. It is quite approachable in its use, and is provided
with comprehensive documentation and worked examples. Additionally, the software
package is still being actively developed. These features make it an attractive software
solution for calculating atomic properties.

2.4.1 Obtaining Atomic-State-Function Solutions

In this subsection a general overview is given of how GRASP obtains its solutions, taken
from a recent review of the technique by Froese Fischer et al. [78], and the document “A
practical guide to GRASP2018” provided with the GRASP2018 software package [84].
The properties of a given atomic state, or transition between two states, are calculated
from an atomic-state function (ASF). The ASF ideally represents a physical, spectroscopic
state of an atom or ion. In the multiconfiguration approach, the ASF is a linear combina-
tion of configuration-state functions (CSFs). Each CSF represents a unique combination
of one-electron orbitals, with each electron orbital defined by a set of four quantum num-
bers. In the relativistic case, these are the principal quantum number n, orbital quantum
number l, spin quantum number j = l± s and magnetic substate m. These single-electron
wavefunctions are determined using the Dirac-Coulomb interaction Hamiltonian for the
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energy, which takes into account a finite, spherical nuclear size. Slater determinants are
used to represent the coupled one-electron orbital products in the CSF so that the wave-
function is always anti-symmetric. From this set of CSFs, the ASF is constructed by

Ψ(ΓJπ) =
N

∑
i=1

ciΦ(γi Jπ), (2.50)

where Ψ is the ASF representing a physical atomic state Γ, having total spin and parity
Jπ, N is the number of chosen CSFs, with each CSF i having an expansion (mixing)
coefficient ci, and a Slater determinant Φ defined by the electron configuration γi, having
total spin and parity Jπ.

If the ASF is composed of a single CSF, then the Dirac-Hartree-Fock (DHF) equation
can be solved numerically using the self-consistent field method directly. The calculation
for ASFs consisting of multiple CSFs (multiconfiguration (MC) DHF) is similar to the sin-
gle CSF case, however expansion coefficients for each CSF must also be varied to obtain
the optimal solution. It should be noted that, when solving the DHF and MCDHF equa-
tions, the energy Hamiltonian is fixed, with corrections for variations introduced in stage
two. In the second stage, expansion coefficients are further optimised by solving the rela-
tivistic configuration interaction (RCI) problem, in which a variable term is added to the
energy Hamiltonian to account for electron-electron interactions, and may additionally
contain Breit-Pauli (which allows for lifetimes of forbidden transitions to be accurately
determined) and QED corrections (which are required for high-precision comparisons
with data), if so desired. More information on these topics and methods is available in
Refs. [43, 78].

2.4.2 Optimising Convergence of Atomic Properties

Accurate convergence of the ASF solution can be monitored by gradually expanding the
number of CSFs in a systematic way. CSFs are typically defined by taking the leading
(or lowest-energy) configuration of the ASF as a base, and then allowing either single- or
double-electron excitations from this state. CSFs should be considered for single electron
excitations that satisfy the following conditions: the quantum numbers l jm remain the
same, but n increases (radial correlations); the quantum numbers lm remain the same,
but the spin coupling changes (spin-polarisation); the quantum numbers nm remain the
same, but the orbital angular momentum changes and possibly spin-coupling changes
(orbital polarisation). Double-electron excitations are classified by from where the
two electrons originate: two valence electrons (valence-valence); a valence and a core
electron (core-valence); or two core electrons (core-core). Recall from Eq. (2.50) that only
those CSFs having the same Jπ as the ASF will be taken into account (spin and parity
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must be conserved).

Different atomic properties require different types of electron correlations to converge
on accurate solutions. Single-electron correlations should always be considered, but two-
electron correlations can rapidly grow the CSF space to an unweidly size, and should be
considered carefully. For example, absolute energy levels are sensitive mostly to valence-
valence correlations. The dipole oscillator strength (from which the transition rate is de-
termined) is sensitive to core-valence correlations, while the hyperfine-field strength is
sensitive to core-core correlations [78]. Generally, CSFs generated from one- and two-
electron excitations are sufficient to produce accurate solutions. Convergence can be
monitored by expanding the CSF space. This is done by including electrons with higher
nl, and/or deeper core-valence and core-core correlations. As nl is increased in the CSF
space an atomic property, such as the level energy, should converge on a single value. If
sufficient electron correlations have been accounted for, this value should be very close
to reality, and in many cases can be compared with the measured values contained in the
National Institition of Standards and Technology (NIST) atomic spectral database [178].
The self-consistency of a solution can also be monitored by observing the difference be-
tween the two oscillator strength calculation approaches (alternate forms for the dipole
operator, or gauges, that are used to determine the transition rate between two atomic
states) that GRASP takes, namely the length and velocity forms [43]. Ideally, one would
include all CSFs up to the continuum states, however there are practical limitations with
computational capacity, time, and obtaining convergence. By this process, atomic prop-
erties with accuracy enough to meet the demands of astrophysical observations (better
than 1%) can be obtained using GRASP, as has been demonstrated in the literature [78].
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2.5 The Present Work

In this thesis, measurements using the transient-field (TF) and recoil-in-vacuum (RIV)
techniques have been analysed with the intention of verifying hyperfine-interaction
strengths, validating the models underlying the techniques, and obtaining reliable g fac-
tors. These objectives are motivated by the desire to obtain accurate and precise g factors
with which to confront the nuclear shell model and advance the field of nuclear-structure
theory. In addition to these overarching goals, the nuclei studied in this work have their
own interest to nuclear-structure studies, which will now be discussed.

2.5.1 The Ge and Se Isotopes

Due to the many-body nature of the nuclear quantum system, nuclei can exhibit
particularly intriguing behaviours. One of these is referred to as shape coexistence.
Some nuclei in the region A ∼ 70 exhibit shape coexistence [14, 97, 140, 165, 171], a
phenomenon in which two or more nuclear states have distinct shapes with the same
spin and parity, close in energy (∆E . 1 MeV). Isotope chains which span this region
present a unique opportunity to study not only individual nuclei which exhibit shape
coexistence, but also the transition of nuclear shapes along the isotopic chains, and their
variable exhibition of collective and single-particle behaviour [97, 98, 165, 195]. Two
isotopic chains which present interesting and experimentally accessible cases are those
of Ge and Se.

The Ge and Se isotopes have a partially filled π f5/2 orbital, with the stable isotopes
ranging from empty neutron νp1/2g9/2 orbitals (a possible sub-shell closure, 70

32Ge38),
to two-neutrons short of filling the νp1/2g9/2 orbitals (82

34Se48) upto the shell closure at
N = 50. Speidel et al. [195] and Mertzimekis et al. [149] suggest that N = 38 may be
a sub-shell closure for f pg-shell nuclei. If this is true, there should be experimental
signatures indicating an increase in collective behaviour in the nuclei at the mid-point
of the neutron sub-shell (76Ge44 and 78Se44). Therefore, the shell-closure should reveal
itself, along the isotopic chain, as a minimum in the 2+1 -state energy and g factor trend,
and maximum in the transition probability amplitude, at the mid-point of the sub-shell.
The g-factor minimum should also have a value near the collective limit g ∼ 0.7Z/A.
Measured 2+1 energies and B(E2) systematics in the Se isotopes suggest this is the case,
evidenced in Fig. 2.8. Concerning the g factors, the g(2+1 ) systematics of the stable,
even-even Ge and Se isotopes have been measured using the thin-foil TF technique
[98, 130, 166, 195]. For the Se isotopes, there is evidence of an increase in collective
behaviour towards 78Se in measured g(2+1 ) trends [195]. This trend appears to exist
for the Ge isotopes as well, although the various measurements are not in complete
agreement [145], and g-factor measurements beyond the suspected mid-shell at 76Ge are
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FIGURE 2.8: Systematics of E(2+1 ) and B(E2) values along the Se isotopic
chain for the stable, even-even isotopes. There is clearly a minimum in
E(2+1 ) and maximum in B(E2) at 76Se, indicating increased collectivity. Val-

ues taken from Ref. [179].

yet to be made. As such, firm confirmation of the g-factor values in both the Ge and Se
isotope chains is desirable.

In regard to the N = 38 shell closure, it is worth noting that fewer excited 2+ states
can be formed by exciting neutrons pairs into the empty p1/2 orbital. This comes about
because two neutrons in p1/2 must couple to J = 0. Furthermore, exciting one of the two
p1/2 neutrons into g9/2 cannot form a 2+ state. Therefore, to form excited 2+ states at
N = 38, neutrons must excite from the deeper p3/2 and f7/2 orbitals. These restrictions
can give the appearance of a shell grap at N = 38 in the first-excited 2+-state systematics.
Once the p1/2 orbital is filled at N = 40 the lowest-energy coupling to an excited 2+ state
requires excitation of a pair of neutrons into g9/2. Thus, N = 40 can also show features
of a shell gap.

With accurate and precise g-factor measurements available, the shell model’s p f pg-
shell space capability to predict the change from collective mid-shell behaviour at
N = 44 to the single-particle behaviour at the N = 50 shell gap, for this complex nuclear
property, can be rigorously tested. Furthermore, validated methods for performing
accurate and precise g-factor measurements on radioactive nuclei approaching the
suspected N = 38 sub-shell closure, and established N = 50 shell closure, will provide
more rigorous tests of the shell model.

In addition to the shell-model motivations, there exists an experimental motivation
to investigate the Ge and Se isotopes. This arose from the intent to apply the RIV
analysis method to Coulomb-excitation data taken on the neutron-rich isotopes 78−82Ge,
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like that obtained at the Holifield Radioactive Ion Beam Facility at Oak Ridge National
Laboratory [165]. However, further experiments using the stable Ge and Se isotopes to
calibrate the relevant free-ion hyperfine fields found an unexpected difference in the RIV
behavior along the two isotope chains [134, 206]. Atomic-structure effects may explain
these differences. However, there is also the possibility that the adopted g-factor ratios
within and/or between the two isotope chains may be responsible for some, or all, of
the observed difference. The desire to verify previous measurements of the relative
g factors along and between the Ge and Se isotope chains motivated the present work,
along with the nuclear-structure interest. To this end, the relative g factors of the stable,
even isotopes of Ge and Se were measured using the thin-foil TF technique in inverse
kinematics (beam excitation), and the first case of a relative g-factor measurement using
a cocktail beam, in this case of 74Ge and 74Se, was performed [145].

Concerning TF measurements on the Ge and Se isotopes, there are few reliable g(2+1 )
data points in the region 8 ≤ Z ≤ 62 against which the TF strength can be calibrated. The
original parameterisation by Shu et al. (the Rutgers parameterisation) [191] was fitted
using precession data from the 2+1 states of 16O, 20Ne, 24Mg, 28Si, 56Fe, 82Se, 106Pd, 110Cd,
134Ba, 148Nd, 150,152Sm, and 194Pt ions, with velocities ranging from 2 . v/v0 . 8. The
g(2+1 ) values for many of these nuclei were measured using the implantation perturbed-
angular-correlation (IMPAC) technique, which in itself contains a TF component, often
accounted for using either the erroneous Lindhard & Winther model, or Eberhart’s
linear model. Using these values to calibrate a new TF model is therefore partially
circular, bringing into question its accuracy. Specific to the present work, examination of
the measured 82Se g(2+1 ) value used in the Rutgers calibration [191] reveals that it was
originally obtained from an earlier IMPAC measurement [106], performed prior to the
characterisation of the TF accepted today. This IMPAC value was reanalysed [34], and
cited in the calibration data set. All three papers report a different value for g(2+1 ;82 Se),
with the procedure used to obtain the final value used in the TF calibration rather
opaque. It is also now known that the thermal-spike quenching effect, discussed in
§2.3.1, may be present, increasing the uncertainty in the IMPAC analysis considerably.
Furthermore, the measured precession angle for the 82Se 2+1 state is in disagreement
with g-factor trends measured by the TF technique. As such, the IMPAC measurement
has also been repeated in this thesis to check the previous data and, if possible, to
investigate whether the thermal-spike quenching is present. Eliminating this datum
from the fit, there are now no calibration points in the region 26 < Z < 46 for the Rutgers
parameterisation. As discussed in §2.3.2, the TF strength can vary unexpectedly in iron
hosts, and limited calibration data exists for gadolinium hosts for Z ∼ 30. Therefore,
use of the TF parameterisation to obtain absolute g(2+1 ) values in the Ge and Se isotopes
may be considerably more uncertain than reported in the literature, at worst inflating
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them to ±20%. This uncertainty presents a considerable frustration when comparing the
absolute predictions of shell-model calculations against measured values.

Although the accuracy of absolute g factor values determined using the TF parameter-
isation is questionable, relative values can be reliably determined (see §2.3.2). To obtain
reliable, relative g-factor values for the Ge and Se isotopes concerned, a simultaneous
measurement between the isobaric nuclei 74Ge and 74Se was performed, in which vir-
tually no systematic uncertainty was present. Other isotopes of the same element were
then measured using the same target in a measurement campaign using a sequence of
different isotopic beams. This allowed the relative g factors between the two isotopic
chains, as well between isotopes of the same chain, to be confidently determined. Then,
by obtaining a single, absolute measurement for one of these isotopes, the relative mea-
surements can be scaled without relying on the TF parameterisation. Such a method for
performing this calibration measurement is the recoil-in-vacuum technique.

2.5.2 Recoil-In-Vacuum Measurements

The 2+1 state in 56Fe presents an important case for TF calibration in the nuclear p f -shell
region (Z ∼ 30). The g factor of the 56Fe 2+1 state has been measured relative to the
5/2− state in 57Fe, for which the g factor has been independently obtained [68], using
the thin-foil TF technique [56]. As discussed in §2.3.2, this ought to provide a robust
measurement, however statistical precision is lacking, and so independent validation re-
mains important. As such, another measurement was performed in 2014 by Stuchbery et
al. at the ALTO facility at the IPN, Orsay. This measurement was performed using a
recently developed plunger device, referred to as OUPS [141], which provides recoil-
distance measurement capabilities, making a TDRIV measurement of a high-frequency
hyperfine interaction possible. The experiment was optimised to maximise the Na-like
charge-state proportion, with an aim to measure the Na-like ground-state frequency
(3s1/2). However, due to a complex superposition of hyperfine-interaction frequencies,
determination of a g-factor value from this dataset had not yet been achieved. This mea-
surement makes for a good case to develop and test a Monte-Carlo analysis approach to
the TDRIV data using atomic-structure information calculated using GRASP, and see if
an independent g-factor can be extracted and compared with the aforementioned value
measured in Ref. [56]. If this can be achieved, it will provide a more precise calibration
point for the TF strength, and validate the TDRIV technique for future measurements.

A TDRIV measurement was performed on 76Ge 2+1 at ANU’s heavy-ion accelerator
facility in 2013. However, this experiment was not optimised (as the 56Fe TDRIV
experiment was) for a measurement of the Na-like 3s1/2 frequency. This is because it was
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performed to observe the time-dependence of the hyperfine interaction, in order to help
interpret time-integral RIV measurements on even-even Ge and Se isotopes performed
previously [134]. Although the Na-like state is expected to be small, if not absent, these
data provide an alternative data set to test model predictions and to potentially extract
a g(2+1 ) value. As such, they were also analysed in the present work. If the approach
is successful, an absolute g-factor value will prove valuable in scaling the g factors
obtained in the relative Ge and Se isotope TF measurements, or at least inform optimal
conditions for a future measurement.

Along with these time-differential data, time-integral RIV data taken on the 54,56Fe
2+1 states at ANU in 2014 were also analysed. Comparison of the measured time-integral
Gk values to an ab initio calculation of the time-integral Gk values, using the Monte-Carlo
simulation, will serve to either validate the model, or to investigate any gaps in mod-
elling the hyperfine interaction.

In conclusion, the transient-field technique is an effective way to obtain precise rel-
ative g-factor measurements on short-lived (< 10−9 ps) nuclear states. However, cal-
ibration of the field strength used to obtain absolute g-factor values is a challenge in
some regions. The recoil-in-vacuum technique has undergone key developments in the
past two decades which make it a promising technique for performing measurements on
short-lived states in stable and radioactive nuclei. When combined with atomic-structure
calculations, the time-dependent version of RIV has the potential to determine nuclear
g factors with improved precision. Together, these two techniques provide the opportu-
nity to perform precise and absolute g-factor measurements on nuclei spanning isotopic
chains which cover exotic nuclear regions where the established shells are expected to
change, providing valuable data with which to confront shell-model calculations.
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2.6 Summary

Despite the field of nuclear physics having existed for over a century, the study of
nuclear structure still presents exciting new challenges. A deep understanding of the
interactions in nuclear matter evades a complete and fully microscopic explanation. The
shell model of the nucleus has proven a valuable tool to improve our understanding.
However, it requires continual experimental input and verification. As we push the
limits of our theoretical knowledge, we push the limits of our experimental capability,
and must develop new techniques with which to obtain the data we need to validate
and improve nuclear-structure models. Presently, exotic nuclei in the sd- and f pg- shell
regions are of interest, as they exhibit unusual structural effects relating to their changing
collective and single-particle behaviour, and are tractable in shell-model calculations
with current computational capabilities. Novel interactions involving sub-nuclear
tensor forces, which have been incorporated into shell-model calculations, will test
our understanding of this changing behaviour. Radioactive, heavy isotopes of Ge and
Se provide interesting testing grounds, however even measurements from the stable
isotopes can be used to confront the shell model.

The g factors of first-excited 2+1 states may be used to validate finer details of the
interactions included in the shell model. The best method for measuring these g factors
is presently the transient-field (TF) technique. However, for nuclei in this region its use
as an absolute measurement technique is questionable, and no reliable measurements
exist against which to scale the field strength. The recoil-in-vacuum (RIV) technique
is a viable solution, but a better understanding of the hyperfine interactions which
occur for nuclei in this region needs to be obtained before data can be confidently
analysed. By combining the established time-differential (TD) RIV technique (with
its single-frequency analysis) with the Monte-Carlo approach used to understand the
changing superposition of frequencies resulting from multiple charge states and atomic
states, calibration nuclei can be established in the region 20 ≤ Z ≤ 40, against which
the large amount of existing TF data can be reviewed and scaled, if necessary. This
technique may also be used to make precise g-factor measurements on excited states in
radioactive nuclei, with which to test shell-model interactions.
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Chapter 3

Experimental Methodology

This chapter describes the methodology common to experiments undertaken during the
research project, in particular the use of detector, electronics and data acquisition sys-
tems. It also describes the procedure by which the data were analysed to obtain the
information of interest. Two types of experiments have been performed: those utilising
the transient and/or hyperfine fields present in polarised ferromagnets, i.e. the TF tech-
nique and IMPAC, and those utilising the hyperfine interaction present in an ion after
recoiling into vacuum. The theory underpinning these techniques has been described in
Chapter 2. Experimental methods regarding transient-field measurements are described
in Chapter 4, and recoil-in-vacuum measurements in Chapter 6.

3.1 Radiation Detection

To measure the properties of an excited state of the quantum-mechanical system that
is the atomic nucleus, the spatial distribution of its radiations must be predictably per-
turbed, measured and interpreted. As described in §2.2, angular correlations can be reli-
ably calculated in the absence of extra-nuclear electric and magnetic fields. These angular
correlations can be used to determine the spins and parities of nuclear levels. When an
electric or magnetic field acts on the nucleus, angular-correlation theory allows for the
magnitude of the electromagnetic perturbation to be measured and interpreted, thereby
inferring nuclear structure properties of a state, such as the dipole moment, as described
in §2.3. Coulomb excitation to a single excited state allows for the direct measurement of
γ-particle angular correlations. In order to perform such measurements, particles scat-
tered after Coulomb excitation, and de-excitation γ rays from the nuclear state of interest,
are measured in coincidence. The γ-ray angular correlations measured in this way can
be calculated, the perturbation determined and, if a suitable magnetic field acts on the
nucleus, the nuclear dipole moment inferred. To achieve this, radiation detectors sensi-
tive to energetic particles or γ radiation are used in conjunction with electronic systems
that allow for the energy signature and timing information of the scattered particles and
decay radiation to be recorded.
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3.1.1 Detector Types

In the experimental work presented, two different types of γ-ray detector were used:
scintillation detectors and semiconductor detectors. Of the scintillation-detector type,
sodium-iodide (NaI) crystals were used in conjunction with a photomultiplier. The
detector operation is straight-forward: when a quanta of energy (in the case of interest,
a γ ray) interacts with the NaI crystal electrons are excited from the valence band into
the conduction band, and then de-excite. This de-excitation results in the emission of
light (scintillation). The light is reflected into a photomultiplier tube located at one
end of the crystal, inducing an electron cascade and a subsequent electrical pulse. The
scintillation light, and therefore the amplitude of the electrical pulse, is proportional
to the energy deposited into the crystal. The photomultipliers used have two types of
signal output: a DC-coupled anode signal and a linear-response dynode signal. The
anode signal is most useful for timing, while the dynode signal gives a more reliable
(linear) energy measurement. NaI is a good scintillation crystal for γ-ray measurement
due to its transparency to the scintillation light, capability to be produced in large-size
single crystals, and the high-Z of iodine, all of which improve detection efficiency. For
more information, see Ref. [127]. These features of the NaI detector make it most suitable
for γ-ray spectroscopy measurements in which only one γ-ray energy is of interest, or
a few well-separated in energy, are present, as they have high detection efficiency but
modest energy resolution.

Of the semiconductor-detector type, high-purity germanium (HPGe) detectors were
used. These detectors function by producing a charge-depletion zone in the crystal
structure of the semiconductor using a kilovolt potential applied across the crystal
radius, via a central anode and outer cathode. When ionising radiation penetrates
into the crystal and deposits energy into the depletion zone, electrons are excited and
accelerated toward the cathode, and holes towards the anode, which produces an
electrical pulse having height proportional to the energy deposited. The potential takes
several microseconds to be restored, making the pulses quite long compared to other
detector types. These pulses are usually fed into a preamplifier which is part of the
detector assembly. The preamplifier converts the pulse height from the HPGe crystal
into a signal more suitable for transmission and for pulse-processing electronics. The
HPGe preamplifiers used have two identical outputs, so the signal can be used for
both energy measurement and timing. The timing characteristics of this signal are poor
compared to NaI detectors, but this is not of concern in the measurements present in
this thesis. For more information, see Ref. [127]. Operation of the HPGe detector makes
it most suitable for γ-ray spectroscopy measurements in which different γ rays must be
distinguished and correctly identified, as they have high energy resolution.
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To detect high-energy particles in coincidence with γ-rays, silicon photodi-
odes (SiPDs) have been used. When a constant voltage is applied across the SiPD,
an equilibrium current flows across the junction. If some kind of ionising radiation inter-
acts with the SiPD, the resistivity of the device changes, causing a change in the current
flow. This current change results in a characteristic electrical pulse, proportional to the
particle energy [125]. SiPDs make for useful particle detectors as they are effectively
100% efficient in detecting heavy-ion particle impacts. Their small size and low cost are
also attractive features, particularly in high-radiation environments, as they can be easily
replaced after being damaged by irradiation. Their small size also provides control
over the opening angles in Coulomb excitation experiments, allowing the anisotropy
in the angular correlation to be maximised. Arrays of these detectors can maintain this
anisotropy whilst covering a larger solid angle, are inexpensive to make, and require no
complex electronics to setup. However, they offer no pulse-shape discrimination, and
are unable to distinguish between different type of particles, making them most suitable
for γ-particle coincidence measurements in which a single particle type is expected to be
detected in coincidence with the γ rays of interest.

By using NaI and HPGe γ-ray detectors in conjunction with SiPD particle detectors
the angular correlation between recoiling or back-scattered particles, and emitted γ rays
can be measured.

3.1.2 External Polarising Field

A dual-coil electromagnet, with the windings installed above and below the target
holder, allows the generation of a magnetic field that polarises any ferromagnetic mate-
rials in the target position. This setup is used for performing IMPAC and transient-field
measurements, and the specifics of this setup are discussed in Chapter 4. The electro-
magnet is powered by a programmable power supply with a custom-built control box
capable of ramping up or down the current and reversing the field polarity. The control
box also outputs a logic signal indicating the field polarity, and a separate inhibit signal
while the current is ramping up or down during the polarity flip. These signals are used
in the data acquisition system to determine the field polarity for a given event or veto
events during the polarity change.
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3.2 Signal Processing and Data Acquisition

3.2.1 Analogue Data Acquisition System

Experimental data acquisition (DAQ) at The Australian National University (ANU) in
years prior to 2016 was performed using VME crates consisting of an AlphaVME 5/480
computer and multiple analogue-to-digital converter (ADC) and time-to-digital con-
verter (TDC) cards [172]. This system is controlled using a computer code called Data
Collection Program (DCP), which also is used to interpret the recorded data. Because
the system requires analogue signal processing before data acquisition, it is referred to
as the Analogue DAQ. The basic system has since been migrated to a contemporary
platform and remains in use. Data acquisition with the Analogue DAQ operated using
an event trigger, which controlled data recording from a number of ADCs and TDCs.
Energy signals from γ-ray detectors were obtained by passing a detector output signal
through a preamplifier (if required), a linear amplifier, then into an ADC, and finally
to the data-acquisition system. After going through the linear amplifier, energy signals
from the particle detectors were passed through a linear gate and stretcher (LGS), gated
by a single-channel analyser (SCA), which received a signal from the dipolar output of
the linear amplifier. This helped to reduce noise, as well as delay the particle-detector
pulse to better match that of the γ-ray detector arriving at the ADC.

Timing signals were generated by first passing a detector output through a preampli-
fier (if required), a timing filter amplifier (TFA) and then a constant fraction discriminator
(CFD). These devices generate a timing output pulse whenever a signal above a set
threshold is generated by the detector. A flowchart of the electronics setup for the three
sets of detectors to produce the master trigger is shown in Fig. 3.1.

In order for the Analogue DAQ to record only meaningful signals, a logic circuit was
used to generate a master trigger. This master trigger informed the Analogue DAQ to
record incoming digital signals following the trigger. Detector timing signals were used
for the logic circuit. The γ-ray detector signals were all put into a single-coincidence
logic unit (single output for any input), i.e. an ‘OR’ gate, and the same was done for the
particle detectors. The logic outputs from the ‘OR’ gates were stretched and delayed
as required to have the γ and particle signals overlap. They were then put into a
double-coincidence logic unit (single output for at least two inputs). The resulting logic
circuit generates a signal whenever any γ-ray and any particle-detector timing signal
occur within 400 ns of each other. A third logic signal was generated from the particle
single-coincidence logic unit using a down-scaler (1/1000) and was put into the double-
coincidence logic unit and also into a TDC. This downscaler signal labels down-scaled
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HPGe

FIGURE 3.1: Electronics setup used to acquire analogue signal from detectors
using the Analogue DAQ. Acronyms are described in-text.

FIGURE 3.2: Logic setup used to produce a master trigger for Analogue DAQ
signal acquisition. The 2/3 gate means the logic unit outputs a signal when
≥ 2 signals are received. This allows the downscaler signal (intended to
be a particle-rate tagger) to occasionally be in coincidence with a γ-particle

coincidence event.
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particle singles events, which can be used to evaluate differences in particle-detector
efficiency. In practice, this information was used to scale the particle-detector count
rates in the evaluation of angular correlations. A flowchart of the logic setup is shown in
Fig. 3.2. The master trigger, a square logic signal, was then stretched to 10 µs before being
passed on to the Analogue DAQ so there was a long acquisition window overlapping
the particle and γ-ray signals arriving at the ADCs.

The γ-ray detector time spectra were generated by inputting the γ-ray detector’s
time signal, and the particle-detector ‘OR’ logic signal (see Fig. 3.1), into a TDC. This
produces a time-difference spectrum between γ-ray and particle events. So that particle
detectors could be distinguished in the γ-ray detector time spectrum, as well as the
energy spectra, their individual time signals were input into a TDC channel with the
master trigger to give time-difference spectra. This was also done for the signal coming
from the downscaler (see Fig. 3.1). These spectra give sharp, well-defined peaks that
simply serve to identify coincidences with each particular particle detector. TDC outputs
were recorded by the Analogue DAQ.

Signals output by the current source regarding the status and polarity of the external
polarising field (§3.1.2) were digitised and recorded by the Analogue DAQ. An event
counter, connected to the particle singles rate, was used to send the polarity-reversal
signal to the current source every ∼ 15 min. The signal produced by the current source
while the field polarity was changing was used to veto the master trigger, preventing any
events from being recorded by the Analogue DAQ during this time.

3.2.2 Digital Data Acquisition System

The Pixie-16 digital pulse processor is produced by the company XIA LLC for nuclear
spectroscopy measurements [230]. The fundamental difference between this system and
the analogue system is that the Pixie-16 digital pulse processor accepts signals directly
from the detector (or detector preamplifier) without any analogue pulse processing.
Instead, the pulse is digitised and processed in the system. Digitised pulses are also
tagged with a time signal, removing the need for a TDC unit. This makes the setup
of this system, once operational, simple and straight-forward. Two Pixie-16 boards,
one capable of operating at 100 MHz with 14-bit resolution, and the other operating at
500 MHz with 12-bit resolution, were installed into a PXI crate and interfaced with a Dell
PowerEdge R530 running Ubuntu 16.04, which recorded the binary signal stream. This
setup is referred to as the Digital DAQ. The system has 16 analogue inputs per board,
and is capable of nanosecond timing capabilities using a combination of a 100 MHz clock
that gives 10 ns resolution, and a self-generated CFD signal which allows reliable signal
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timing down to 1 ns. In the event of a bad CFD signal, the error is recorded and the
sub-10-ns timing can be ignored, or the event discarded. Software written by Dr. T. Gray
and Dr. M. Gerathy, then PhD students of the Department of Nuclear Physics at ANU,
along with the aid of Dr. J. M. Allmond of the Oak Ridge National Laboratory, USA,
allows for the setup and control of the Digital DAQ, as well as recording the raw binary
datastream. The Digital DAQ acquires data in a triggerless manner, but the acquisition
software developed at ANU also allows for coincidence requirements to be specified so
only selected, valid coincidence data are recorded.

To have the electromagnet’s power supply control box produce signals appropri-
ate for the Digital DAQ, a custom-made electronic signal device was produced by
Mr. D. Tempra of the technical team at ANU’s Department of Nuclear Physics. This de-
vice accepts the signal outputs from the control box and generates a pulse having height
particular to the current-source signal. Three different voltage pulses are produced, indi-
cating the polarity status (field up or field down) or if the field is changing. Rather than
use the field change signal to veto events, the Digital DAQ instead tags any signals that
arrive with the polarity status, which can then be sorted during the analysis procedure.
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3.3 Data Analysis

To extract useful information from the data stream, correlations need to be constructed
between particular event energies and their relative timing. To process and visualise
these data, three different software solutions were used. The first two were used in
combination, being TSort and Fitek4, both developed by A. Prof. T. Kibédi at ANU’s
Department of Nuclear Physics. TSort was used to sort events from the Analogue DAQ
output datastream based on specified gating requirements. The sorted events were
recorded in the DCP data format. Fitek4 takes the DCP data from TSort and allows
visualisation of spectra, fitting of peaks and background, and output of integral peak
counts, as well as multiple other functions that were not used in the course of this
research project.

The second software package used for data analysis was the ROOT data analysis
framework, developed at CERN [41]. In some instances, event data from the Ana-
logue DAQ was converted to the ROOT tree format using software developed at ANU’s
Department of Nuclear Physics. The Digital DAQ output datastream was always
converted into the ROOT tree format using software developed by Dr. T. Gray. Events
were created from records which occurred within 1 µs of each other with a multiplicity
requirement of two. This ROOT tree could then be analysed to extract γ-particle
coincidence events having the appropriate energy and relative timing characteristics,
as well as applying any other coincidence requirements (such as the polarising-field
direction). Gamma-ray spectra consisting of these events could then be analysed, and
photopeak counts obtained for the γ ray of interest.

To extract γ-ray spectra containing valid γ-particle coincidences, three pieces of
information must be selected in the data stream (i.e. “gates” defined): the energy of the
particles of interest, timing information of the γ-ray detector, and timing information
of the particle detector. To obtain these, first the ‘raw’ (ungated) particle spectrum was
projected from the data, which showed the energy region of interest, and was used to
set a particle-energy gate. Spectra showing time-differences between individual γ-ray
and particle detector pairings, gated by the particle energy, were then projected. This
spectrum showed a clear peak that was used as a ‘prompt’ γ-ray time gate, as well as a
flat background of random coincidences. An example spectrum is shown in Fig. 3.3. To
obtain γ-particle time spectra from data obtained using the Analogue DAQ, first each
particle TDC spectrum was sorted out. These particle TDC spectra show a narrow signal
that was used to identify the particle detector that ‘fired’ in the event. The γ-ray detector
TDC spectrum is then projected, applying the particle energy and time gates, producing
the γ-particle time spectrum. For data obtained using the Digital DAQ the events each
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FIGURE 3.3: Spectrum of time-differences between γ-ray events for a sin-
gle γ-ray detector, and particle events from any particle detector. There is a
clear time-correlation peak, or ‘prompt’ peak, which is used to gate out co-
incidence events. Regions on either side contain random events, and gates
on these regions can be used to deduct the random background from the
prompt spectrum. Note that the example data used here were taken from

Fig. 4.8.
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have a time stamp, and so time-difference spectra are produced by computing the time
difference between the signals in the event with the particle-energy gate restriction.
Now, the γ-ray energy spectrum containing prompt events can be projected using
the prompt time gate and particle energy gates, which produces a γ-ray spectrum
containing γ-particle coincidence events and some random-coincidence events. To
deduct random coincidences from this spectrum, a γ-ray time gate encompassing the
random coincidence regions (flat regions with counts outside of the prompt γ time
peak, indicated in Fig. 3.3), along with the usual particle gates, is used to project a
random-coincidence spectrum. This spectrum consists of random-chance coincidence
events. The spectrum counts are then scaled such that s = gpr/grnd, with gpr being the
width of the prompt γ time gate, and grnd the random-coincidence gate. This scaled
random-coincidence spectrum is then deducted from the prompt spectrum, which gives
the ‘true’ spectrum. The statistical uncertainty for the true spectrum is obtained from
the random-chance spectrum multiplied by s2, summed with the prompt spectrum. This
gives a statistical uncertainty in the true spectrum of σ2

true = σ2
pr + s2σ2

rnd, with σtrue equal
to the square-root of the counts in the photopeak.

For TF measurements a gate is included to select for the field polarity, which is either
‘up’, ’down’ or vetoed, as described in §3.2.

This careful selection of timing, energy and, in the case of TF experiments, polarity
gates, allows for true coincidence events between recoiling particles and γ rays of interest
to be sorted out of the data stream. With these events obtained, γ-ray spectra and relevant
photopeak counts can be obtained for analysis, in order to determine quantities such as
the nuclear g factor.
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Chapter 4

Transient-Field Measurements

The transient-field (TF) effect, reviewed in §2.3.2 and outlined below, was utilised to
perform nuclear g-factor measurements using Hyperion, ANU’s hyperfine spectrometer
[213]. Hyperion incorporates two key design features for performing TF measurements:
a Sumitomo model RDK 408D cryocooler, used to cool the target to∼5 K via a coldfinger,
and shaping of the electromagnet pole pieces, that allows a field strength of 0.09 T to
be applied across the target, while keeping stray field to a minimum (negligible) level.
These two features eliminate three sources of systematic error: localised heating of the
ferromagnetic host near to or above the Curie temperature, magnetic under-saturation
of the ferromagnetic host, and stray field causing bending of the beam. Any of these may
appreciably affect the measured precession angle, and are difficult factors to quantify.
The polarity of the magnetic field is reversed every∼ 15 min as to minimise uncertainties
arising from small physical asymmetries, detector placement and efficiency, and other
systematic sources. Previous measurements by this method using Hyperion have been
described in detail [48, 56, 57, 147].

For perturbation of the nuclear spin-alignment to be meaningfully measured, the
coordinate frame must be defined. The coordinate frame defining the particle- and γ-
detector angles has its origin at the beam spot on the target. The beam direction defines
the z or polar axis (θ = 0) and the magnetic field is applied along the (vertical) y axis,
which is along (θ, φ) = (90◦, 90◦) in spherical polar coordinates. This is as depicted in
Fig. 2.5. The γ-ray detectors are located in the (horizontal) xz or φ = 0 plane, and the
particle detectors were positioned parallel to the xy plane. A typical experimental setup
is depicted in Fig. 4.1. When the detected particle is not the nucleus of interest, as in most
cases described here, (relativistic) particle scattering solutions [144] were used to obtain
the scattering angle of the nucleus of interest. For either case, the scattering solutions
were used to obtain the energy of each scattered particle after Coulomb excitation. With
the angles and reaction kinematics defined, the spin-precession angle can be determined
from the measured perturbation in the angular correlation.
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FIGURE 4.1: Setup of a typical thin-foil TF experiment in inverse kinemat-
ics. The beam (incoming from the left), consisting of the nuclei of interest,
impinges upon a target consisting of three layers, being a target layer, a ferro-
magnetic host, and a copper backing. After Coulomb excitation of the beam,
the target ions are forward-scattered and detected at equivalent scattering
angles above or below the beam (φ = ±90◦) by particle detectors P1 and
P2 while the nucleus of interest recoils through the ferromagnetic layer and
stops in the copper backing. If the experiment is conducted in conventional
kinematics, with the target layer now containing the nuclei of interest, then
the lighter beam ions will be back-scattered after the collision, and so the
particle detectors will be on the left side of the target (see Fig. 4.18). Target
nuclei (being the nuclei of interest) will excite and recoil into the ferromag-
netic layer and/or copper backing. If the beam remains the nucleus of in-
terest, in conventional kinematics, then the beam nuclei will excite upon the
target and be detected forward-scattered. The γ-ray detectors are positioned
at equivalent angles in the x − z plane, with forward detectors at ±θ and
backward detectors at ±(180◦ − θ). Note that, when expressed in spherical
coordinates, the detectors are always positioned at positive values of θ, and
the phi angle will be φ = 0◦ for positive angles and φ = 180◦ for negative

angles, while 0◦ ≤ |θ| ≤ 180◦.

4.1 Analysis of Transient-Field Data

Several reviews exist describing the determination of nuclear g factors by measuring
angular correlations perturbed by the transient field. The most recent comprehensive
review was published by Benczer-Koller and Kumbartzki in 2007 [22]. As such, only the
essential details of the procedure to determine the g factor will now be presented. The
nucleus of interest is Coulomb excited and then recoils into a polarised ferromagnetic
layer. In this layer the TF induces a precession of the nuclear spin for ions traversing
the ferromagnetic medium. This spin-precession results in a rotation, ∆θ, in the angular
correlation of the de-excitation γ rays, W(θ) → W(θ + ∆θ), in the plane perpendicular
to the magnetic field, i.e. the plane in which the γ-ray detectors are located (see Fig. 4.1).
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The γ-ray detectors then measure the angular correlation W(θ± ∆θ), with the sign of ∆θ

determined by the direction of the magnetic field, and the sign of the g factor. To obtain
the precession angle from a measured coincidence rate, a double ratio of observed counts
is formed:

ρij =

√
N(θi) ↑
N(θi) ↓

N(θj) ↓
N(θj) ↑

, (4.1)

where N(θi) and N(θj) represent γ-particle coincidence counts in the photopeak mea-
sured in γ-ray detectors i and j at angles +θγ and−θγ, respectively, and ↑ and ↓ represent
the field direction.

The spin-rotation (precession) angle ∆θ is determined from

W(θ ± ∆θ) 'W(θ)± ∆θ
dW
dθ

, (4.2)

with ∆θ being a small angle (< 10◦), determined by

∆θ =
ε

S
, (4.3)

where
ε =

1− ρ

1 + ρ
, (4.4)

and S is the logarithmic derivative of the angular correlation at +θγ

S = S(θγ) =
1

W
dW
dθ

∣∣∣∣
θγ

. (4.5)

Along with the double ratios used to determine the TF precession effect, it is useful
to form ‘cross ratios’, which should show no net effect, as a check on the validity of
the data. Cross ratios are given by Eq. (4.1) with θi = θγ and θj = 180◦ + θγ. Such
symmetrically placed particle and γ-ray detectors should have ρ values distributed
around unity or ε values distributed around zero; departures from the null effect can
indicate systematic errors.

As discussed in §2.2.3, the Winther-de Boer code [4] can be used to compute the statis-
tical tensors required to calculate angular correlations after Coulomb excitation [22, 207,
216]. However, angular correlations were also measured in the present work to verify
the experimental setup and analysis procedures. The measured angular correlations can
determine if there is any significant offset of the γ-ray detector or particle detector from
their nominal positions. Such offsets have little impact on deduced relative precession
angles, but can strongly affect absolute values, since S is a strong function of θγ at the
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detection angles used for the precession measurements.

For short-lived states the precession angle is weakly dependent on the level lifetime,
which may be taken into account by expressing

∆θ = g Φ(τ), (4.6)

where g is the nuclear g factor and Φ(τ) is given by:

Φ(τ) = −µN

h̄

∫ T

0
BTF[v(t)]e−t/τdt, (4.7)

in which µN is the nuclear magneton, h̄ is the reduced Planck constant, BTF[v(t)] is the
TF strength at the time-dependent ion velocity v(t), τ is the mean life of the state of
interest, T is the transit time of the nucleus through the ferromagnetic layer, and t is time.

Stuchbery et al. [213] define a figure of merit to guide detector placement for minimis-
ing uncertainty in ∆θ. Expressing this uncertainty as σ∆θ, it is determined by:

σ∆θ ≈
1
2

1
S
√

N
, (4.8)

where N(θi) ↑ ≈ N(θi) ↓ ≈ N(θj) ↑ ≈ N(θj) ↓ ≈ N is the count rate in one detector
for one field direction. Equation (4.8) shows that σ2

∆θ ∝ 1/S2N. This makes S2N a useful
figure of merit to maximise in order to reduce the measurement uncertainty. As the
counting rate N is proportional to W,

S2N ∝ S2 J0W, (4.9)

where Qk = Jk/J0 is the solid-angle correction factor included in W, which depends
strongly on the distance of the γ-ray detector’s face to the target, dγ, and J0 is propor-
tional to the detector efficiency.

Taking the components of Eq. (4.9) into account, θ and dγ can be optimised for a given
experiment by

σ2
∆θ ∝ [S2N]−1 ∝ [S(θ, φ, dγ)

2W(θ, φ, dγ)J0(dγ)]
−1. (4.10)

Stuchbery et al. show that the particle-detector geometry can also be optimised,
with increased particle-detector size (meaning increased N) generally winning out over
anisotropy loss (meaning reduced S) in the angular correlation [213], though this must
be evaluated case-by-case, in consideration of the reaction kinematics. Because the
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FIGURE 4.2: Plot of the sensitivity (1/S2 J0W) versus θ angle for several de-
tector distances dγ in the top panel, and the angular correlation in the bottom
panel. The angular correlation was calculated for a small recoil angle of the
nucleus of interest, and Qk = Jk/J0 was calculated for a cylindrical HPGe
detector 7 cm wide by 7 cm long. This figure was adapted from Fig. 4 of

Ref. [213].

positioning and sizes of particle detectors were restricted by the available space in the
target chamber used for measurements in this project, only γ-ray detector optimisation
was considered.

With a fixed particle-detector geometry, plots such as that shown in Fig. 4.2 can be
made, which show the interplay between θγ and dγ. Plots like these give a good indica-
tion of the angle and distance that will produce the smallest uncertainty for a set amount
of beam time. One should also consider how much effect a deviation from the nominal
detector angle has on the slope. In order to maximise the sensitivity, whilst also avoiding
shadowing of the γ-ray detector due to the target frame, the TF measurements performed
during this candidature opted for γ-ray detector angles around θ = 65◦.
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4.2 Relative g(2+1 ; 26Mg):g(2+1 ; 24Mg) Measurement

Using the TF technique, a measurement of the 26Mg 2+1 g factor relative to the 24Mg
2+1 state was performed. This measurement was motivated by a recent successful mea-
surement of g(2+1 ; 24Mg) by the time-differential recoil-in-vacuum (TDRIV) technique,
and the accepted literature value for g(2+1 ; 26Mg) being considerably smaller than pre-
dicted by recent, large-basis shell-model calculations. The independent TDRIV measure-
ment provided the opportunity to scale a precise measurement of g(2+1 ; 26Mg) relative
to g(2+1 ; 24Mg), using the TF technique, without relying on a TF-strength parameter-
isation. It would also help validate the approach of using the TDRIV and TF tech-
niques together to determine the nuclear g factors of challenging, short-lived states
in a calibration-independent manner. A single gadolinium target was used to mea-
sure 2+1 -state TF-precession angles in both nuclides. From these, the g-factor ratio
was obtained and then scaled using the 24Mg 2+1 TDRIV measurement result to give
g(2+1 ;26 Mg) = +0.86(10). This value is in strong disagreement with the accepted liter-
ature value g(2+1 ;26 Mg) = +0.50(13) [196], but in good agreement with modern shell-
model calculations. The success of this measurement shows the potential for TF and
TDRIV techniques to be used together for measuring the g factors of short-lived nuclear
states.

4.2.1 Methods

A relative measurement of the 2+1 -state g factors between 24Mg and 26Mg was performed
using the thin-foil TF technique by the author, present supervisors, research staff and
students in 2014, outside of this candidature. The measurement was performed at
ANU’s Heavy Ion Accelerator Facility using Hyperion [213]. Beams of 24Mg and 26Mg
at an energy of 120 MeV impinged upon, and were Coulomb excited by, a cryocooled,
single-layer 9.9 mg/cm2-thick gadolinium foil. The foil served both as the ferromagnetic
layer for the TF precession effect, as well as the reaction target for Coulomb excitation.

Four NaI detectors recorded γ rays, and forward-scattered beam particles were
detected by two 6 mm × 6 mm SiPDs at an average angle of ±37◦, centred at 18.5 mm
above and below the horizontal plane. The beam intensity was kept below 2 enA,
being limited by the count rate in the particle detectors. The experimental geometry
followed that shown in Fig. 4.1, except the target was single-layered and the beam
particles were detected forward-scattered. Calculated reaction kinematics and reduced
precession angles (Φ = |∆θ/g|) are listed in Table 4.1. Two of the γ-ray detectors
(γ1 and γ4) were positioned at θγ = ±60◦ or θγ = ±65◦ while the other two (γ2 and
γ3) were positioned at θγ = ±120◦. The detectors were originally intended to be set
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TABLE 4.1: Average reaction kinematics for the 2+1 states of 24Mg and
26Mg traversing the gadolinium foil based on calculated Coulomb-excitation
cross-sections and Ziegler’s stopping powers [115]. E(2+) is the energy of
the first-excited state, τ(2+) is the mean life of the first-excited state, Ei is
average energy at Coulomb excitation, Ee is the average energy of exit from
the foil, vi(ve) is the average velocity of the ion at excitation in (exit from) the
foil, 〈v〉 is the average velocity of the ion in the foil, T is the effective transit
time, and Φ(τ) is evaluated from Eqs. (4.7) and (2.32). v0 = c/137 is the Bohr

velocity. The level energies and mean lifetimes are from Refs. [71, 17].

Nuclide E(2+) τ(2+) Ei Ee vi/v0 ve/v0 〈v/v0〉 T Φ(τ)
(keV) (ps) (MeV) (MeV) (ps) (mrad)

24Mg 1369 1.92(9) 97.0 61.7 12.8 10.2 11.5 0.356 38.7
26Mg 1809 0.69(3) 97.8 57.8 12.3 9.47 11.1 0.327 35.0

at ±65◦, but the initial run revealed that the vacuum deorientation of the recoiling
ions caused this angle to be less than optimal for the measurement. The angular
correlation was measured for 24Mg by varying the detectors denoted γ1 and γ4 through
angles θγ = 0◦,±15◦,±30◦,±45◦,±55◦,±60◦,±65◦, and ±70◦. For 26Mg the angular
correlation was measured at γ-ray detector angles of θγ = ±15◦,±45◦,±60◦,±65◦ and
±70◦. Data were recorded using the Analogue DAQ system. Angular correlation data
sets were normalised to each other using the downscaled particle count. The data were
analysed as per §3.3, using the TSort and Fitek4 software programs to sort out events
from the Analogue DAQ data stream, visualise energy and time spectra, and obtain
background-subtracted integral photopeak counts.

4.2.2 Results

To obtain the g factor of 26Mg(2+1 ), photopeak counts gated by the field direction were ob-
tained following the analysis procedure described in §3.3. Examples of true-coincidence
γ-ray spectra from a NaI γ-ray detector for both 24Mg and 26Mg are shown in Fig. 4.3. The
procedure described in §4.1 was followed to obtain ε values. Because the Mg ions were
allowed to recoil into vacuum, the lab-frame angular-correlation data shown in Fig. 4.4
were fitted to determine the attenuation coefficients G2 and G4 (see §2.3.3 for more in-
formation), and hence the correct the S values. As the G2 and G4 parameters are highly
correlated for the available data, they were related through a single J = 1/2 electron-
spin (H-like) fraction parameter, as described in a previous study of high-velocity 24Mg
ions [129] which used a methodology similar to that of the present measurement. Fits
returned a J = 1/2 fraction of ∼50%, in good agreement with the charge-state distribu-
tion calculated using the Schiwietz-Grande formula [187] when summing the H-like and
Li-like contributions, which both have J = 1/2 ground states. The S values obtained
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agree well with those obtained allowing G2 and G4 to vary freely, but avoided the com-
plications of handling the errors on correlated parameters. While the S values for the
forward-placed detectors at θγ = ±60◦ and ±65◦ could be determined from the fit to
measured angular correlations, those for the backward detectors at θγ = ±120◦ were in-
ferred from the fit to the measured angular correlations at forward angles, the difference
between ±60◦ and ±120◦ originating only from the effect of the Lorentz boost. The mea-
sured effect sizes (ε), calculated slopes (S) and deduced precession angles (∆θ) are listed
in Table 4.2. The relative g factor was determined from a ratio of Eq. (4.6) for 24Mg and
26Mg, then solving for g, as

g(2+1 ;26 Mg)
g(2+1 ;24 Mg)

=
ε(26Mg)
ε(24Mg)

S(24Mg)
S(26Mg)

Φ(24Mg)
Φ(26Mg)

=
26.9(21)
18.6(16)

× 38.7
35.0

= 1.60(19).

Taking g(2+1 ;24 Mg) = +0.538(13) gives g(2+1 ;26 Mg) = +0.86(10).

The reported uncertainty in g(2+1 ;26 Mg) is dominated by the statistical precision,
but also includes small contributions from the uncertainty in S, and a 2.4% uncertainty
assigned to the ratio Φ(24Mg)/Φ(26Mg) = 38.7/35.0 to account for uncertainty in the
velocity-dependence of the transient field. This uncertainty was estimated by comparing
this adopted ratio, evaluated using Eq. (2.32), to an evaluation of Φ(24Mg)/Φ(26Mg) un-
der the assumption that BTF ∝ v, as per Eq. (2.29). Regardless, the g-factor measurement
is effectively independent of the assumed velocity dependence of the transient field be-
cause both level lifetimes are longer than the transit time through the gadolinium foil (see
Table 4.1). Furthermore, the experimental value of Φexp(24Mg) = ∆θ/g = 35(3) mrad
is in agreement with the parameterisation of Eq. (2.32) (see Table 4.1), considering that
uncertainties in the gadolinium target thickness (∼ 5%) have been ignored, and that a
reduced magnetisation is often found for such relatively thick gadolinium foils [216].
This gives further confidence in the accuracy of the calculated Φ(τ) values. Precession

TABLE 4.2: Experimental results for the 24,26Mg TF measurement

Nuclide ±θγ ε×103 S [rad−1] ∆θ (mrad)
24Mg 60 +23.3(35) −1.299(26) −18.0(27)

65 +22.8(69) −1.294(26) −17.6(54)
120 −23.5(25) +1.229(25) −19.2(21)

−18.6(16)a

26Mg 60 +35.5(126) −1.573(31) −22.6(80)
65 +46.9(53) −1.618(32) −29.0(33)

120 −37.7(39) +1.455(30) −25.9(28)
−26.9(21)a

aWeighted average.
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angles an order of magnitude larger than the earlier works [61, 196] were observed in
the present measurement. Moreover, the same target was used with beam excitation
to measure the ratio of 2+1 -state g factors in 24Mg and 26Mg. As such, the g-factor ratio
is determined essentially by the ratio of ε values, with relatively small corrections due
to differences in S (arising from differences in the particle-frame θ angle and vacuum
deorientation), and effective TF strengths which largely cancel when the ratio is taken.
These features of the experiment helped to ensure a robust and reliable result.

In conclusion, by virtue of the experimental design, the measurement uncertainty is
limited by the counting statistics, with systematic uncertainties having relatively little
contribution.
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FIGURE 4.3: Photopeak region of the random-subtracted particle-γ coinci-
dence spectra observed in γ2 (120◦) for a) 24Mg and b) 26Mg. The spectra
show the field-up, field-down, and both particle detector P1 and P2 data

summed across all runs.

4.2.3 Discussion

In this project, the g factor of the first-excited 2+ state in 26Mg was determined relative to
the equivalent excited state in 24Mg using the high-velocity thin-foil TF technique. This
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measurement was motivated by a highly precise measurement of g(2+1 ;24 Mg) made us-
ing the TDRIV technique [129]. A previous measurement of g(2+1 ) had been performed
using IMPAC [61] in both 24Mg and 26Mg. The uncertainties in their values were large,
but it is curious to note that they obtained g(2+1 ;24 Mg) = 0.42(9), smaller than the
now accepted g(2+1 ;24 Mg) = 0.538(13). This difference will be discussed in Chapter 7.
A few years later, the two were remeasured by Speidel et al. [196], who suspected the
static hyperfine-field strength was underestimated. A dramatically different value
was obtained for g(2+1 ;26 Mg), in strong disagreement with the previous measurement
and also with multi-configuration shell-model calculations. The precise g(2+1 ;24 Mg)
value obtained using the TDRIV technique presented the opportunity to reassess these
measurements in a manner that virtually eliminated the systematic uncertainty present
in the previous measurements by repeating the relative TF measurement using modern
methods.

The 2+1 state in 26Mg is a challenging state for g-factor measurements. This is due
largely to its short lifetime (τ = 0.69 ps), however its small natural abundance of 11%
(which affects the beam intensity achievable using a non-enriched sample), combined
with the large excitation energy of the state (1.8 MeV), also make the acquisition of
the high statistics required for a precise measurement difficult to achieve. To counter
this, the high-velocity thin-foil TF technique was chosen, using a gadolinium host
as the ferromagnet. This technique and material provide the large magnetic field
required (BTF & 103 T) to measurably precess the 26Mg 2+1 state over its short lifetime.
By also measuring the 24Mg 2+1 state under similar conditions (i.e. during the same
experimental run, at the same beam energy), the g-factor ratio between the two states
was determined in a manner that has reduced systematic error. This reduction was
achieved by implementing several experimental design factors. By using the same
target, uncertainties relating to its thickness and magnetisation affected both states
equally and are factored-out in the ratio. This is particularly important for gadolinium
foils, for which it can be hard to achieve consistent magnetisation. The only potential
sources of uncertainty that remained were lattice damage, and potential beam-induced
demagnetisation effects due to heavy-ion interactions that might cause differences
between the runs with the two different beams. These were minimised by using low-
intensity beams (∼ 1 pnA) and by cryocooling the target. The short lifetimes of these
two states, being τ . 2 ps, also have a considerable effect on the measured precession
angle. To account for this, a TF-strength parameterisation, developed especially for
elements in this region at this high velocity, was used with a lifetime dependence to
obtain the reduced precession angle Φ(τ), as per Eq. (4.7). When two states, having
the same Z and recoiling at similar, narrow velocity ranges are measured relative to
each other, uncertain quantities in the TF-strength parameterisation largely cancel,
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minimising uncertainty in the parameterisation. By using the same thin ferromagnetic
host and having nuclei recoil at similar velocities, the uncertainty in the measurement is
reduced almost entirely to the statistical uncertainty of the measurement. Even so, the
variation arising from different parameterisations was examined and used as a source
of systematic uncertainty in the final reported value, though it was still dominated by
the statistical uncertainty. By robustly determining the relative g factor, g(2+1 ;26 Mg) was
confidently determined using the known g(2+1 ;24 Mg) value.

This measurement demonstrated that the g factors of short-lived, excited states can be
reliably and precisely determined using the TF technique in a manner free from system-
atic error and parameterisation issues, supposing a suitable and independent g-factor
measurement is available in another isotope of the same element. By using the TDRIV
technique as a complementary method, these independent measurements may be ob-
tained, which simultaneously allow the g-factor’s sign to be ascertained by the TF tech-
nique, and the magnitude of the TF strength to be set using the RIV technique.
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4.3 Relative g-factor Measurements in the Ge and Se Iso-

topes

The first instance of a simultaneous, relative g factor measurement on first-excited
2+1 states in the isobaric nuclei 74Ge and 74Se, delivered as a cocktail beam, was per-
formed using the thin-foil TF technique in inverse-kinematics. In addition to this, the
stable, even-A isotopes of each element were also measured using the same target and
under the same conditions. The aim of this experiment was to obtain relative g(2+1 ) ratios
between the isotopes of each element, and between the two isotopic chains, having lit-
tle to no systematic uncertainty. This experiment was motivated by experimental results
obtained from a time-integral RIV experiment on these same isotopic chains, performed
previously at ANU [134]. Unexpected differences in behaviour between the two isotopic
chains, measured using the RIV technique, proved difficult to interpret using literature
g-factor values [98, 195]. This discrepancy may be due to differences in the hyperfine in-
teraction between the two elements. However, it is important to rule out any uncertainty
in the relative g factors. Therefore, confirmation of their relative g-factor values, having
minimal systematic uncertainty, was sought. It was found that the trend present in the
accepted literature g factors for the Ge isotopes differed from the present measurement.
However, when comparing instead relative g-factor values in the literature that were
obtained using the same target, this discrepancy disappeared. As such, these literature
values, and those obtained in the present measurement, were averaged to give precise
relative g-factor values across the Ge and Se isotope chains.

4.3.1 Methods

Relative measurements of g(2+1 ) in the stable, even-A isotopes of Ge and Se were
performed using the thin-foil TF technique. Data were collected over five separate runs,
the details of which are listed in Table 4.3. Of these, runs 1 and 2 were performed during
this research candidature, and will now be described. Two cathodes, consisting of a
Ge-Se mixture, and Ge alone, were used in ANU’s heavy-ion accelerator facility ion
source to generate the desired ions. Two separate runs had to be performed as when the
76Ge beam was delivered during run 1, using the Ge cathode, there was isobaric 76Se still
present in the beam. This was likely leftover in the ion source from the previous cathode.
As the γ-ray energy of the 2+1 -state decay for these two nuclei could not be resolved,
a second run had to be performed after the ion source had been cleaned. In this run,
only 74Ge and 76Ge were measured, using a different target of similar constitution to
the first. Because the excitation energy of the 2+1 state in the 74,76Ge isotopes is amongst
the lowest across the two isotope chains, the beam energy for this run was lowered
to further reduce excitation of the 4+1 state. During run 1, repeated measurements of
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TABLE 4.4: Reaction kinematics for the 2+1 states of Ge and Se isotopes as
the ions traversed the ferromagnetic layer of the target. Ei(Ee) is the average
energy at entry into (exit from) the foil, vi(ve) is the average velocity at entry
into (exit from) the foil, 〈v〉 is the average velocity through the foil, T is the
effective transit time, and v0 = c/137 is the Bohr velocity. τ is the mean life
of the 2+1 state, taken from Ref. [179]. Figure 4.5 shows the definition of 〈θp〉

for runs 1 and 2.

Nuclide Ei (MeV) Ee (MeV) vi/v0 ve/v0 〈v/v0〉 T(fs)
Run 1 〈θp〉 = 22◦
70Ge 91.2 10.9 7.25 2.50 4.61 407
72Ge 92.6 11.9 7.20 2.58 4.59 444
74Ge 93.9 12.9 7.15 2.65 4.59 462
74Ge 93.9 12.9 7.15 2.65 4.59 462
74Se 92.8 10.1 7.11 2.35 4.37 480
76Se 94.1 11.1 7.07 2.43 4.41 481
78Se 95.5 12.1 7.03 2.50 4.45 474
80Se 96.9 13.1 6.99 2.57 4.49 467
82Se 98.1 14.1 6.94 2.63 4.51 468
Run 1 〈θp〉 = 0◦
70Ge 80.2 7.16 6.79 2.03 4.06 452
72Ge 81.8 8.04 6.77 2.12 4.06 495
74Ge 83.4 8.95 6.74 2.21 4.09 513
74Ge 83.4 8.95 6.74 2.21 4.09 513
74Se 82.3 6.78 6.69 1.92 3.86 537
76Se 83.9 7.61 6.67 2.01 3.92 536
78Se 85.4 8.49 6.64 2.09 3.99 523
80Se 87.0 9.39 6.62 2.17 4.04 514
82Se 88.4 10.3 6.59 2.25 4.08 513
Run 2 〈θp〉 = 22◦
74Ge 91.0 11.5 7.04 2.51 4.44 478
76Ge 92.3 12.5 7.00 2.58 4.48 477
Run 2 〈θp〉 = 0◦
74Ge 82.0 8.39 6.68 2.14 4.01 525
76Ge 83.6 9.29 6.66 2.22 4.07 520
Run 3
74Ge 111 13.0 7.76 2.66 4.87 505
74Se 110 10.1 7.74 2.34 4.63 525
Run 4
80Se 114 13.0 7.57 2.56 4.72 516
82Se 115 13.9 7.51 2.62 4.74 517
Run 5
78Se 103 18.8 7.30 3.12 4.96 680
82Se 106 21.1 7.20 3.22 4.98 681
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beam axis
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9.3/

9.8/

1.75/

‹θp› =
 22°

‹θp› = 0°

(magnetic
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FIGURE 4.5: Experimental geometry for the Ge and Se TF measurement
run 1 and run 2 showing the beam axis and the particle detector dimen-
sions (run 1 / run 2). The average scattering angles for the 12C target ions

are indicated by 〈θp〉.

74Ge and 74Se at different time-points allowed for the effect size, and thereby the target
condition, to be monitored as the run progressed. Data for runs 1 and 2 were recorded
using the Digital DAQ. Run 3 was performed by ANU’s Department of Nuclear Physics
spectroscopy group in 2015, and runs 4 and 5 in 2012. These data were not previously
published, and have been included in this analysis. Data for runs 3–5 were recorded
using the Analogue DAQ.

All ion beams were delivered by ANU’s 14UD Pelletron accelerator. The beams were
incident upon a multi-layer target consisting of a front natC layer, an iron or gadolinium
foil, and a copper backing. The target details are presented in Table 4.3. For runs 1 and 2,
the iron layer was prepared by cutting a ∼2 cm×1 cm piece from a large 4.5 mg/cm2

iron foil and rolling it to the desired thickness of <4 mg/cm2. The foil, now & 2× 1 cm,
was then annealed at ∼750◦C for 30 min under vacuum and its areal density was
re-measured. The foil was then cut into two ∼1 cm×1 cm pieces. A piece of copper foil
of the same size was annealed under the same conditions but only for 10 mins. A very
thin layer (∼0.2 mg/cm2) of indium was then evaporated onto the copper layer, and the
iron and copper layers were pressed together under ∼1 ton of pressure, with the indium
between serving to “glue” the foils together. Finally, the carbon layer was painted onto
the iron side of the iron-copper foil. The front natC layer served to Coulomb-excite
the beam, the central iron or gadolinium foil served as the ferromagnetic host for the
TF precession effect, and the copper backing served as a “field-free” environment to
stop the recoiling beam particles and provide a good thermal contact. Relevant details
of the reaction kinematics are summarised in Table 4.4. Hyperion’s cryocooler and
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Targetγ-ray
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FIGURE 4.6: a) Experimental geometry for the Ge and Se TF measurement
runs 3–5 showing the beam axis, a γ-ray detector and the particle detectors.
b) A schematic of the particle detector array used in these runs, indicating

dimensions and detectors with joined outputs.

γi(+θγ)

ϕp 180º-ϕp90º

Target

Particle Detectors

Beam

γj(-θγ)

FIGURE 4.7: Illustration of the particle-γ coincidence geometry, drawn from
a top-down view. Symmetry is maintained when particle-γ coincidence
pairs are formed with γi at +θ paired with the particle detector at φp and
γj at −θ paired with the particle detector at 180◦ − φp, shown by the equiv-
alent dotted versus dashed angles. In short, γi(φp) must be paired with

γj(180◦ − φp). Figure 4.6 shows the definition of the angle φp.
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electromagnet were operated as described in the chapter introduction (Ch. 4).

Forward-scattered C ions were detected by SiPDs, arranged as shown in Figure 4.5
for runs 1 and 2, and Figure 4.6 for runs 3–5. The central detector for runs 1 and 2 was
covered with a 1.7-mg/cm2-thick mylar sheet to prevent transmitted beam, knock-on
target ions, or low-energy electrons (δ rays) from reaching the detector. Four HPGe
detectors detected γ rays emitted from the Coulomb-excited beam particles. The setup
was as shown in Fig. 4.1. Average particle-detector azimuthal angles (φp) and γ-ray
detector angles (θγ) for each run are summarised in Table 4.3. In the following discussion
of runs 3− 5, the particle detectors are identified by their absolute φp angle as indicated
in Figure 4.6. The γ-ray detector angles employed for the TF precession measurements
were selected to maximise the measured precession effect for the available particle-
detector angles [213], see Eq. (4.8). Angular correlations were measured by moving
two or three γ-ray detectors through a sequence of different angles with respect to the
beam, while the remaining detector(s) remained fixed. The angular-correlation data
sets were normalised between runs using particle-γ coincidence counts in the fixed
γ-ray detector(s), while particle detectors were normalised to each other using the
downscaled count rates within each run.

For runs 1 and 2 the detectors had the usual particle-γ coincidence symmetry with
the particle detectors at φp = ±90◦ or θp = 0◦, so double ratios can be formed in the
conventional way [22] for each of the three particle detectors. To calculate ρij for runs 3–5
using the detector type shown in Figure 4.6, a modified procedure is required when
using counts from the photodiodes with φp 6= ±90◦. This is because the θ-dependent
angular correlation, when φ 6= ±90◦, is not symmetric around θ = 0◦. As a result, detec-
tors at ±θ are not equivalent, and so detector pairs cannot be formed in the conventional
way. Instead, consideration of the equivalent γ-ray-detector θ and particle-detector φ

angles becomes necessary. In spherical polar coordinates, a typical TF experimental
setup (as illustrated in Fig. 4.1) has φ = 0◦ for γ-ray detectors having 0◦ ≤ θ ≤ 180◦,
and φ = 180◦ for detectors having θ < 0◦ (which, in spherical polar coordinates, will
be transformed to their 0◦ ≤ θ ≤ 180◦ equivalent). This means the ∆φ values used for
calculating the angular correlation become mirrored for γ-ray detectors at negative θ

angles. The symmetries required to form the particle-γ coincidences in Eq. (4.1) can be
inferred from Figure 4.7, which represents a top-down view of the particle and γ-ray
detectors projected onto the horizontal plane. For clarity, Figure 4.7 shows only one pair
of particle detectors at angles φp and 180◦ − φp, along with the typical φp = 90◦ detector.
By inspection of Figure 4.7 it can be seen that the relative angle between the γ-ray
detector at +θγ and the particle detector at φp is equivalent to that between the γ-ray
detector at −θγ and the particle detector at 180◦ − φp, as indicated by the dotted arcs.
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There is another pair of particle-γ combinations with the relative angle indicated by the
dashed arcs in Figure 4.7; the angle between detectors at +θγ and 180◦− φp is equivalent
to that between the detectors at −θγ and φp. These equivalences visually represent
the mirroring of the ∆φ angles in pairing the γ-ray and particle detectors. Taking into
account the correct spherical polar coordinates, Eq. (4.1) should be constructed such that
if N(θi) represents N(θi, φp), then N(θj) must represent N(θj, 180◦ − φp), and if N(θi)

represents N(θi, 180◦ − φp), then N(θj) must represent N(θj, φp).

The primary objective was to measure g-factor ratios for the Ge and Se isotopes. These
were obtained by combining Eq. (4.3) and Eq. (4.6) to give

gx

gy
=

εx

εy

Sy

Sx

Φy

Φx
=

∆θx

∆θy

Φy

Φx
, (4.11)

where x and y signify the two states being measured. The ratio Φy/Φx must be evaluated
based on a parameterisation of the TF strength. For this purpose we have adopted the
Rutgers parameterisation [see §2.3.2 and Eq. (2.30)]. Nevertheless, the ratio Φy/Φx is
almost independent of any reasonable choice of parameters. In the evaluation of Φ, the
TF strength can be expressed as:

BTF[v(t)] = aTFZPZ(v/v0)
Pv , (4.12)

as per Eq. 2.30.

The scale parameter aTF cancels in the Φ ratio, as does the atomic number depen-
dence for ratios within an isotope chain. For nearby atomic numbers, such as for the
ratio Φ(74Se)/Φ(74Ge), the difference between using the linear Eberhardt (PZ = 1) ver-
sus the non-linear Rutgers parameterisation (PZ = 1.1) is 0.6% in this case, a negligible
value. Φy(τy)/Φx(τx) is therefore sensitive only to the parameter Pv, and then only if one
of the lifetimes is short compared to the transit time of the ion through the ferromagnetic
foil. In the cases encountered here, the difference in Φy/Φx that comes about between
the linear versus non-linear parameterisations of the TF strength is altogether negligible.
Furthermore, Φy/Φx is near unity for most of the cases reported here. Therefore, system-
atic uncertainty owing to the TF parameterisation is negligible in this measurement.

4.3.2 Results

To evaluate the g-factor ratios amongst and between the Ge and Se isotopes, photopeak
counts were obtained from background-subtracted integrals of the photopeak region of
the 2+1 → 0+1 transition, after random-coincidence subtraction in particle-γ coincidence
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spectra. This procedure was described in §4.1. An example γ-particle time-difference
spectrum is shown in Fig. 4.8. An example true γ-ray spectrum for 74Ge from run 1
is shown in Fig. 4.9. Measured angular correlations are shown in Figs. 4.10–4.13.
Figures 4.10 and 4.11 compare the angular correlations for the central and outer particle
detectors in runs 1 and 2 (see Fig. 4.5). There is a less pronounced dip at θγ = 0◦ for the
outer detectors, but the slope at θγ = ±65◦ is very similar for both the central and outer
detectors. These figures also show that the calculated angular correlations agree very
well with experiment and that the angular correlations are almost identical between the
isotopes measured. Thus, the ratio Sy/Sx in Eq. (4.11) is very near unity in all cases
considered here. Figures 4.12 and 4.13 show angular correlations for the five particle
detectors at φp = 0◦, 45◦, 90◦, 135◦, and 180◦ in run 3 (see Fig. 4.6). The similarity of the
angular correlations for φp = 90◦ to the almost-equivalent outer detectors in Fig. 4.10 and
Fig. 4.11 is evident. Also evident in Fig. 4.12 and Fig. 4.13 is that for φp = 0◦, 45◦, 135◦,
and 180◦, the angular correlation has a pronounced slope at θγ = ±45◦ and θγ = ±90◦,
in some cases of similar magnitude to that at θγ = ±65◦ for the conventionally used
φp = 90◦. These differences change the sensitivity function, Eq. (4.8), and consequently
the placement of γ-ray detectors indicated for runs 3–5 in Table 4.3.

Precession angles were evaluated as per Eq. (4.3), with S(θγ) calculated from angular
correlation theory [207, 210, 216], (see §2.2). The measured effect size (ε), calculated
slopes (S) and resulting precession angles (∆θ) are listed in Table 4.5. In order to check
that systematic errors were minimal, cross-ratios [22] were calculated for all particle-γ
pairs. The cross-ratios, shown in Fig. 4.14, are consistent with a normal distribution
around unity, indicating no significant systematic error.

Indirect population of the 2+1 state by feeding from the 4+1 states was determined
from the 74,76Ge and 74Se spectra as these nuclides have the lowest 4+1 -state excitation
energies. Population of the 4+1 state was measured to be no greater than ∼ 2% of the
2+1 state population in the strongest case, and therefore the effect of feeding on the
measurement of the 2+1 -state precession angle was deemed negligible for all isotopes.

The g-factor ratios determined from the measured precession angles and Φ(τ)

values in Table 4.5 are listed in Table 4.6. The Ge isotopes are referenced to 74Ge, the
Se isotopes are referenced to 74Se, and the Ge and Se isotopes are related through the
ratio g(74Se)/g(74Ge). The value of this ratio from the cocktail beam data in runs 1
and 3 alone is g(74Se)/g(74Ge) = 1.325(77). With the additional data collected for 74Ge
alone from run 1 the ratio becomes g(74Se)/g(74Ge) = 1.338(71), which is the value
given in Table 4.6. Runs 4 and 5 did not include either of the reference isotopes, 74Ge
and 74Se, but they give independent measures of g(80Se)/g(82Se) and g(78Se)/g(82Se),
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respectively. These data were included in the evaluation of the g-factor ratios for the Se
isotopes relative to 74Se by performing a chi-squared fit to the complete data set using
the MINUIT code [117]. Such a procedure gives the correct average values with the
correct uncertainties in a straight-forward way. By these means, relative g(2+1 ) values
for the even-A Ge and Se isotopes were obtained from the present measurements.

The Rutgers parameterisation was used to set the absolute scale of the relative
g-factor measurements. Rather than normalise to a particular reference g factor, a global
fit was performed that included the present precession data in Table 4.5 and previous
g-factor ratios from Table 4.6. A 10% uncertainty was assigned to the TF strengths for
the iron and gadolinium hosts. The reduced chi-squared value from this fit, χ2

ν = 1.06,
shows the internal consistency of the present measurements and their consistency
with the previous g-factor ratios. In the process of fitting these data and testing the
sensitivity of the relative g factors to alternative parameterisations of the TF strength,
it was observed that assuming a linear velocity dependence [see Eq. (2.29)] for the TF
strength gives almost identical g-factor ratios, but has an increased chi-squared value,
χ2

ν = 2.0. Thus, it is clear that the present g-factor ratios are not sensitive to the velocity
dependence of the transient field. The resultant ‘absolute’ g factors averaged across all
measurements are shown in Table 4.7 and in Fig. 4.17.
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TABLE 4.5: Calculated TF interaction strength (Φ) and measured effect (ε),
slope (S) and precession angle (∆θ) values for each run. τ is the mean life
of the 2+1 state. Φ(τ) is evaluated from Eq. (4.7) with the velocity-dependent
TF strength given by Eq. (2.30). Figure 4.5 shows the definition of 〈θp〉 for

runs 1 and 2.

Nuclide T τa −Φ(τ) ε(γ1,4) S(γ1,4) ε(γ2,3) S(γ2,3) −∆θ
(fs) (ps) (mrad) ×103 ×103 (mrad)

Run 1 〈θp〉 = 22◦
70Ge 407 1.91 29.3 23.5(48) −2.67 −23.2(53) 2.90 8.4(13)
72Ge 444 4.75 31.8 17.0(44) −2.67 −24.4(50) 2.90 7.3(12)
74Ge 462 18.1 33.2 22.7(28) −2.67 −29.2(31) 2.90 9.2(8)
74Ge 462 18.1 33.2 21.7(45) −2.67 −31.1(44) 2.90 9.5(12)b

74Se 480 10.2 35.9 34.8(29) −2.67 −39.2(29) 2.90 13.3(9)b

76Se 481 17.8 36.2 30.2(24) −2.67 −39.6(27) 2.90 12.4(8)
78Se 474 14.0 35.9 30.0(23) −2.67 −26.2(25) 2.90 10.1(7)
80Se 467 12.3 35.6 31.5(31) −2.67 −43.6(34) 2.90 13.3(9)
82Se 468 18.6 35.8 40.7(30) −2.67 −43.6(34) 2.90 15.2(10)
Run 1 〈θp〉 = 0◦
70Ge 452 1.91 30.7 28.0(57) −2.90 −31.9(62) 2.81 11.1(16)
72Ge 495 4.75 33.5 22.8(50) −2.90 −28.0(63) 2.81 9.4(16)
74Ge 513 18.1 35.0 19.4(47) −2.90 −21.3(52) 2.81 7.6(13)
74Ge 513 18.1 35.0 20.9(63) −2.90 −24.4(61) 2.81 8.4(17)b

74Se 537 10.2 38.0 33.7(40) −2.90 −39.8(40) 2.81 13.7(12)b

76Se 536 17.8 38.2 35.0(32) −2.90 −41.7(36) 2.81 14.2(10)
78Se 523 14.0 37.7 30.0(29) −2.90 −40.1(32) 2.81 12.9(9)
80Se 514 12.3 37.3 29.9(32) −2.90 −44.1(47) 2.81 13.6(13)
82Se 513 18.6 37.4 39.0(42) −2.90 −49.3(47) 2.81 16.3(13)
Run 2 〈θp〉 = 22◦
74Ge 478 18.1 33.8 25.1(19) −2.89 −29.0(22) 2.83 9.2(5)
76Ge 477 26.9 33.9 23.9(19) −2.89 −21.5(21) 2.83 7.9(5)
Run 2 〈θp〉 = 0◦
74Ge 525 18.1 35.4 25.8(26) −2.90 −36.2(29) 2.84 10.7(7)
76Ge 520 26.9 35.4 27.4(25) −2.90 −27.6(26) 2.84 9.7(6)
Run 3c

74Ge 505 18.1 37.2 9.5(5)b

74Se 525 10.2 40.3 13.5(6)b

Run 4c

80Se 516 12.3 40.1 13.8(10)
82Se 517 18.6 40.3 17.3(15)
Run 5c

78Se 680 14.0 54.3 17.6(8)
82Se 681 18.6 54.5 25.9(13)
aFrom Ref. [179]. Uncertainties in τ can be neglected in the evaluation of Φ(τ).
bSimultaneous measurement of 74Ge and 74Se with cocktail beam.
cRun data analysed outside of this candidature. Only ∆θ values were provided.
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FIGURE 4.8: Example spectrum of time differences from the Ge and Se TF
measurement, in this case between γ1 and P1 events. Each channel repre-
sents the difference between the time stamps on each detector event. There
is a clear time correlation between the two detector events indicated by the
peak at 40 ns, which was used to sort out the prompt γ-ray spectrum. The
level of random coincidences is indicated by the constant background. Al-
though they make only a small contribution, random coincidences under the
prompt peak were subtracted in the analysis procedure, as described in §3.3.
Note that these data were used as an example time-difference spectrum in

Fig. 3.3.
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FIGURE 4.9: Spectrum of γ rays at 65◦ to the beam, in true coincidence with
12C recoils measured during run 1 of the TF experiment 74Ge/74Se cocktail
beam. Random coincidences have been subtracted. The resulting spectrum
has almost no background. This spectrum represents∼25% of the data taken
for the simultaneous measurement of 74Ge and 74Se during run 1. Excitation
of the 74Ge 2+2 state is very small (< 2%) and therefore has little-to-no effect

on the g-factor measurement.
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FIGURE 4.10: Angular correlations for the 74Ge and 74Se 2+1 → 0+1 transitions
from the TF experiment run 1 for the two unique particle-detector angles.
a) 74Ge, top and bottom particle detectors. b) 74Ge, center particle detector.
c) 74Se, top and bottom particle detectors. d) 74Se, center particle detector.
Statistical errors are smaller than or similar in size to the data points. Dark
red (light blue) points correspond to the γ-ray detector that moves to posi-
tive (negative) angles. The measured data are normalised to the theoretical
angular correlations shown as continuous lines. Although there is a distinct
difference between the correlations for the top/bottom and center particle
detectors near 0◦, they are similar near ±65◦, meaning the two sets of parti-
cle detectors have similar sensitivity for the g-factor measurement. An offset
of +3◦ was required on the negative angle data (all taken with the same γ-ray

detector) to optimise the fit.
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FIGURE 4.11: Angular correlations for the 76Ge 2+1 → 0+1 transition from the
TF experiment run 2 for the two unique particle-detector angles. a) Top and
bottom particle detectors. b) Center particle detector. See also the caption of

Figure 4.10.
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FIGURE 4.12: Angular correlations for the 74Ge 2+1 → 0+1 transition from the
TF experiment run 3, with measurements taken at varying γ-ray detector
angles for the five particle detector angles. a) Particle detector at φp = 0◦.
b) Particle detectors at φp = ±45◦. c) Particle detectors at φp = ±90◦. d) Par-
ticle detectors at φp = ±135◦. e) Particle detector at φp = 180◦. The mea-
sured data are normalised to the theoretical angular correlations. Dark red
(light blue) points correspond to the γ-ray detector that moves to positive
(negative) angles. Note the reflection symmetry between the correlations for

φp = 0 and φp = 180◦, φp = 45◦ and φp = 135◦.
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FIGURE 4.13: As for Figure 4.12, for the 74Se 2+1 → 0+1 transition in run 3.
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FIGURE 4.14: Cross-ratios for the Ge and Se TF measurement, with the av-
erage and 2σ-level indicated. The average deviates very slightly from unity.
However, the cross-ratio is still within 2σ of unity, and the small magnitude

of the deviation indicates that there is no significant asymmetry.
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ing the TF technique, from present and previous work: 1998Sp03 [195]. The
line connecting the average values serves to guide the eye and emphasise

the isotopic trend.
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TABLE 4.6: g(2+1 ) ratios measured by the TF technique, from the present and
previous work [98, 130, 166, 195].

Ratio Present [166] [130] [98, 195] Average
70Ge/74Ge 1.16(15) 1.08(8) 1.06(26) 1.27(12) 1.138(59)
72Ge/74Ge 0.92(13) 0.92(7) 1.05(14) 1.15(9) 0.999(48)
76Ge/74Ge 0.88(5) 0.97(7) 0.95(13) 0.92(6) 0.918(34)
74Se/74Ge 1.34(7) 1.22(8) 1.288(53)
76Se/74Se 0.96(7) 0.942(20) 0.944(19)
78Se/74Se 0.82(5) 0.898(22) 0.877(19)
80Se/74Se 0.99(7) 1.017(16) 1.015(16)
82Se/74Se 1.19(6) 1.159(16) 1.166(15)

4.3.3 Discussion

The isotopic chains of nearby elements allow for the effect of proton-dependent tensor
forces on neutron-orbital filling to be examined along isotopic chains. Ge and Se
present one such example, and have been the subject of several studies exploring shape
changes and orbital ordering in this region [97, 98, 109, 121, 157, 168, 195, 198, 221]. In
such studies, the stable isotopes establish a baseline against which isotopes with more
extreme proton-to-neutron ratios are compared.

Three separate measurements of the g factors in stable, even-A Ge isotopes have been
performed using the TF technique, and are not all in complete agreement (see Table 4.7).
The experiments, though all utilising the TF effect, had varying recoil velocities and
setups. The g-factor results obtained in the present measurement could not clarify these
discrepancies in absolute terms. However, in this project, the primary objective was to
determine the relative g factors between and within the isotopic chains of Ge and Se.
As such, the challenge of obtaining a reliable, absolute scale of the TF-strength param-
eterisation was circumvented. The two isotopic chains also present the opportunity to
perform a highly robust relative g-factor measurement between isobaric isotopes. The
nuclei 74Ge and 74Se were delivered simultaneously by a heavy-ion accelerator, and
have sufficiently different excited-state energies that they can be easily distinguished in
the γ-ray spectrum. This simultaneous measurement presents the ideal scenario for a
relative g-factor measurement, as not only does it have all the advantages described in
§4.2.3, but it has the additional advantage that any changes in the target, over time, affect
both measurements equally. The isotope chains of each respective element were then
measured sequentially, using the same target. In this case, an iron foil was selected as the
ferromagnetic host, as it was felt that iron is a more reliable host than gadolinium in this
case, due to its higher Curie temperature and thermal properties, and the lower-strength
field of the iron host was tolerable. By this method, the g-factor ratios between the Ge
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FIGURE 4.17: Comparison of the adopted Ge and Se g-factor values (Ta-
ble 4.7). There is a shift in magnitude between the two isotope chains but the
trend with neutron number appears to be similar. The independently mea-
sured integral perturbed angular correlation result for 76Se [152] is shown

for reference (slightly displaced from N = 42 for clarity).

TABLE 4.7: Measured g factors in Ge and Se using the TF technique. Mea-
surements are ordered chronologically from left to right. Although not ex-

plicitly listed, the signs of all g factors in this table are positive.

Nuclide Present [166] [130] [195, 98] Averagea

70Ge 0.330(43) 0.468(26) 0.370(89) 0.44(4) 0.322(29)
72Ge 0.259(36) 0.399(33) 0.367(44) 0.44(2) 0.281(25)
74Ge 0.279(23) 0.433(20) 0.350(22) 0.35(1) 0.282(22)
76Ge 0.261(23) 0.419(23) 0.334(39) 0.32(1) 0.263(21)
74Se 0.360(30) 0.428(27) 0.368(27)

76Seb 0.369(33) 0.403(23) 0.350(27)
78Se 0.315(25) 0.384(25) 0.325(24)
80Se 0.374(33) 0.435(27) 0.374(28)
82Se 0.451(35) 0.496(29) 0.430(32)

a These results are from a global fit to the present data in Table 4.4 together with
previous g-factor ratios from Table 4.6. The uncertainties include ±10% uncertainty on
the TF parameterisations for the iron and gadolinium hosts.
b The only independently determined g factor, by an integral perturbed angular
correlation measurement [152], gives g = +0.35(5) for 76Se (see text).
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and Se isotopes were obtained in a robust manner with minimal systematic error.

The ratios presently obtained were then compared with the ratios obtained in the
other methods, shown in Fig. 4.15 and Fig. 4.16 for Ge and Se, respectively. When com-
paring the ratios, much of the discrepancy between the different measurements goes
away, and the four relative measurements for the Ge isotopes have a reasonable statis-
tical scatter from which an average was taken. The relative Se measurements from the
present work and the literature were in good agreement, although the absolute g-factor
values vary significantly in magnitude. With these precise ratios now well-established,
a single precise and independent g-factor measurement on any of these isotopes can be
used to scale the TF strength and confidently obtain absolute g(2+1 ) values for all nine
nuclides.
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4.4 Ge and Se Implantation Measurements

An ion-implantation perturbed-angular-correlation (IMPAC) measurement was per-
formed on the stable, even-A nuclei of the elements Ge and Se. The purpose of this
measurement was to: (i) resolve an inconsistency observed in previously published IM-
PAC data [106], in which the measured 82Se 2+1 precession, relative to the other isotopes,
was inconsistent with the g factor values obtained in §4.3.2 and Ref. [195], and (ii) de-
termine if there is a reduction in the hyperfine field strength due to a pre-equilibration
effect associated with the violent implantation process (see §2.3.1). Confirmation of the
82Se measurement was motivated due to its use in the Rutgers parameterisation of the TF
strength [191]. If this data point is unreliable, it justifies the need to provide new calibra-
tion points for the TF in the region 30 ≤ Z ≤ 40. As will be shown, it was found that there
was good agreement between the literature and present IMPAC measurements, with the
exception of 82Se, for which a strong discrepancy was observed. This demonstrated the
validity of the measurement at large, and the unreliability of the 82Se data in particular.
The Se isotope data also suggested pre-equilibrium quenching of the static-field strength
was present, however due to a lack of precision in the measurement a thermal-spike life-
time could not be confirmed with confidence. These two results bring into question the
82Se IMPAC data’s use in the Rutgers TF-strength parameterisation.

4.4.1 Methods

The IMPAC technique, described in §2.3.1, was used to perform a measurement of the
combined static- and transient-field precession effect in the stable Ge and Se isotopes.
The experiment was performed by the author, present supervisors, Mr. Wanli Xing, staff,
and students of ANU’s Department of Nuclear Physics. At ANU’s heavy-ion accelerator
facility an aluminium oxide cathode was used in the SSNICS to produce O− ions. These
were injected into the 14 UD Pelletron accelerator to produce a beam of 16O at 35 MeV.
The 16O ions impinged upon a triple-layer target having either 0.5 mg/cm2 natGe evap-
orated onto a 4.6 mg/cm2 iron foil, or 0.6 mg/cm2 natSe evaporated onto a 4.2 mg/cm2

iron foil, which served as the ferromagnetic host. Both targets were backed by a thick
copper foil (∼ 11 mg/cm2) for thermal contact and to stop the beam, with ∼ 1 mg/cm2

of indium between them, which served to ‘glue’ the foils together. The 70,72,74,76Ge or
74,76,78,80,82Se nuclei were excited by the 16O beam ions and recoil-implanted into the fer-
romagnetic host at a depth of ∼ 3 µm. Back-scattered 16O ions were detected by two
SiPDs at an average scattering angle 〈θp〉 = 151◦ and recorded in coincidence with the
de-excitation γ rays. The particle detectors were positioned 16.2 mm up-beam of the tar-
get with geometry as shown in Fig. 4.18. As per the TF technique description at in the
chapter introduction (Ch. 4), the cryocooler and polarising magnet were used to cool the
target and polarise the ferromagnetic host, with the magnet polarity reversed every ∼15
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min. Four HPGe detectors were used to detect γ rays, positioned at ±65◦ (γ1, γ4) and
±115◦ (γ2, γ3), arranged as per Fig. 4.1. For the run using the Ge target, angular corre-
lations were measured at ±(0◦, 25◦, 35◦, 45◦, 55◦, 65◦ and 70◦) by moving γ1 (positive
angles) and γ4 (negative angles), while leaving γ2 and γ3 fixed.

beam axis

10
 m

m

16.2 mm

contact strip

‹θp› = 151°

target

9 mm

3.8 mm

FIGURE 4.18: Back-scattered particle detector layout for the Ge and Se IM-
PAC measurement.

4.4.2 Results

The data were analysed in the same manner as the TF data, described in §4.1. The trig-
gerless Digital DAQ data were converted into 1 µs-correlated events in the ROOT tree
format, and γ-ray spectra containing either field-up or field-down γ-particle coincidence
events were sorted out. An example γ-particle time-difference spectrum is shown in
Fig. 4.19. A gate was placed around the peak at −150 ns to project the prompt spectra,
and around the surrounding regions for random coincidence spectra. Figure 4.20 shows
a ‘true’ γ-ray spectrum from γ1 for the Se target, and Fig. 4.21 shows the same for the Ge
target. Background counts under the photopeak were obtained by fitting a Gaussian with
a Doppler tail plus a linear background function to the photopeak, and then subtracting
the linear (background) component from the raw photopeak counts. Figure 4.21 shows
that the 73Ge excited-state γ-ray is very close to the 72Ge 2+1 γ ray. These peaks had to be
fitted together, with the smaller 73Ge peak subtracted from the integral photopeak counts
along with the background.

To determine the presence of pre-equilibrium quenching of the static field, the TF
component must be subtracted from the measured precession angles. The hyperfine
field experienced by Ge implanted in iron is BSF(GeFe) = 6.0(2) T [176], an order of mag-
nitude smaller than that for Se in iron, being BSF(SeFe) = 67.9(10) T [205]. Due to the
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FIGURE 4.19: Spectrum of time differences from the Ge IMPAC measure-
ment, between γ1 P1. There is a clear time correlation between the two de-
tector events indicated by the large peak at −150 ns, which was used to sort

out the prompt γ-ray spectrum.
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FIGURE 4.20: ‘True’ γ-ray spectrum from the Se IMPAC measurement target
from γ1, summed across both particle detectors without field-up or field-
down gating. Note only γ-rays from the excited states of Se isotopes and

Compton scattering are present.
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FIGURE 4.21: ‘True’ γ-ray spectrum from the Ge IMPAC measurement target
from γ1, summed across both particle detectors without field-up or field-
down gating. Note only γ-rays from the excited states of Ge isotopes and

Compton scattering are present.

TABLE 4.8: Measured effect values, calculated S, and resulting precession
angles obtained from the IMPAC measurement of the stable, even-A Ge and
Se isotopes. Uncertainty in S has been omitted due to its small value relative
to the measurement uncertainties. The present mesaured precessions are

listed alongside those reported in Ref. [106] in the last two columns.

Nuclide ε(γ1,4) S(γ1,4) ε(γ2,3) S(γ2,3) −∆θexp −∆θlit
×1000 ×1000 (mrad) (mrad)

70Ge 47.0(126) −2.98 −37.2(148) 2.98 14.2(31) 11.2(15)
72Ge 55.7(80) −2.98 −42.9(95) 2.98 14.1(22) 9.9(17)
74Ge 31.7(37) −2.98 −28.7(43) 2.98 11.1(12) 11.3(13)
76Ge 25.4(78) −2.98 −45.3(91) 2.98 12.9(22) 9.9(15)
74Se 11.9(27) −2.98 −103(31) 2.98 17.2(70)
76Se 69.2(71) −2.98 −90.8(83) 2.98 26.9(26) 27.1(15)
78Se 58.9(53) −2.98 −81.6(62) 2.98 23.2(21) 24.0(16)
80Se 65.2(45) −2.98 −72.1(53) 2.98 23.1(20) 23.9(11)
82Se 130(12) −2.98 −129(14) 2.98 44.0(43) 29.5(8)
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TABLE 4.9: Transient-field precession angles obtained from Ge isotope IM-
PAC measurement. The experimentally measured precession angle (exp) is
composed of a TF and a static field (SF) component: ∆θexp = ∆θTF + ∆θSF.
For the Ge isotopes ∆θTF >> ∆θSF, and therefore ∆θexp ' ∆θTF. Because
there is a lifetime dependence in Φ(τ) these values were calculated using
the Rutgers TF parameterisation, Eq. (4.7) and Eq. (2.30), with τ(2+1 ) values
taken from Ref. [179], and used to scale ∆θTF. The average g(2+1 ) values from

Table 4.7 were adopted.

Nuclide τa −∆θexp Φ(τ) −∆θ/gΦ(τ)
(ps) (mrad) (mrad)

70Ge 1.91 11.8(13) 33.5 1.09(16)
72Ge 4.75 11.4(14) 38.9 1.05(16)
74Ge 18.1 11.2(9) 42.3 0.94(10)
76Ge 26.9 10.9(12) 43.2 0.96(13)
Average 〈0.99(7)〉

TABLE 4.10: Effective-field-strength values, Beff, in the IMPAC measure-
ment. The experimentally measured precession angle is composed of a TF
and a static-field (SF) component: ∆θexp = ∆θTF + ∆θSF. Here, ∆θSF was ob-
tained by multiplying the weighted-average value from Table 4.9 by Φ(τ)
to scale the TF component in a manner less dependent on the absolute
scale of the parameterisation, then subtracting it from ∆θ/g and dividing
by the attenuation factor e−ts/τ due to the stopping time. The stopping time,
ts = 1.3 ps, was determined from reaction kinematics and Ziegler’s stopping
powers [232]. Because there is a lifetime dependence in Φ(τ), these values
were calculated using Eq. (4.7) and Eq. (2.30). The average g(2+1 ) values from

Table 4.7 were adopted, and τ(2+1 ) values were taken from Ref. [179].

Nuclide τ −∆θ Φ(τ) −∆θSF/g Beff
(ps) (mrad) (mrad) (mrad) (T)

74Se 10.22(22) 17.2(70) 38.8 9(20) 17(40)
76Se 17.76(42) 26.0(25) 39.8 35(10) 41(11)
78Se 13.98(38) 23.7(13) 40.1 33(7) 50(11)
80Se 12.29(30) 23.7(9) 40.1 24(6) 40(10)
82Se 18.6(5) 44.0(43) 41.2 62(13) 69(15)
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large difference in the strength of BSF between these two elements in iron (which makes
the static-field contribution for the Ge isotopes effectively negligible) and the known
g-factor ratios determined in §4.3, the TF component of the Se IMPAC measurement can
be approximated by scaling the precession angle of the Ge isotopes. This approximation
was then used to subtract the TF contribution from the Se isotope precession angles to
obtain their static-field component. Table 4.9 shows the determination of BTF from the Ge
isotope data, and Table 4.10 shows the deduced BSF values for the Se isotopes. It should
be noted that the average value from Table 4.9 〈∆θ/gΦ〉 ' 1 indicates the consistency of
the TF parameterisation at the two distinct velocity ranges sampled in the IMPAC versus
TF measurements. The resulting effective field values (Beff) are shown plotted against
τ−1 in Fig. 4.22, along with an exponential fit matching the form Beff = BSFe−te/τ(2+1 ).
The fit gives te = 11(10) ps and BSF = 98(68) T. The uncertainties on these values
are large, but the values are consistent with the literature value for the hyperfine-field
strength BSF = 67.9(10) T [205] and the thermal-spike lifetime te = 7.3(8) ps as
determined in Ref. [220]. When BSF = 67.9 T is fixed in the fit, te = 5.5(18) ps is
obtained, still consistent with the thermal-spike lifetime in Ref. [220]. While this is not
a definitive result, it does suggest that there is a pre-equilibrium quenching of the field
strength, and this effect will have an influence on the result of any IMPAC measurements.

An alternative way to probe the value of te, as well as other factors which may reduce
BSF, is to compare the g factors as obtained from IMPAC theory to those obtained from
the TF measurement in §4.3. As discussed in §2.3.1, the precession angle measured
using IMPAC consists of a TF component acting on the moving ion, and a static-field
component acting on the ion once it comes to rest. The theoretical reduced precession
angle, Φ (i.e. the precession angle evaluated for g = 1), may be computed using a
parameterisation of BTF, a known BSF, and ion stopping powers. As discussed in
§2.3.1, the average BSF experienced by the ion may be attenuated if it does not alloy
well with the host material. This can cause the ion to come to rest in interstitial (or
‘bad’) sites, where the hyperfine interaction is reduced or absent. A measurement of
the hyperfine-field strength experienced by 75Se ions implanted into iron [44] used
the ion-channeling technique to observe what proportion of Se ions were coming to
rest at substitutional versus interstitial sites. It appeared that all ions were located in
substitutional sites. Therefore, if there is any reduction of BSF for the Se ions associated
with the final site of the Se ion in the iron host, it should be small.

In §4.3.2, g(2+1 ) values for the stable Ge and Se isotopes were determined by using
the TF technique with the field strength scaled using the Rutgers parameterisation. The
TF precession component in the IMPAC measurement was determined using the Rut-
gers parameterisation, under the assumption that it is valid at both the high velocity in
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FIGURE 4.22: Effective field strength, Beff = ∆θSF/gτµN/h̄, versus 1/τ for the
Se IMPAC measurement. The solid red line is a fit to Beff = BSFe−te/τ(2+1 ),
giving te = 11(10) ps and BSF = 98(68) T. Fit lines with te = 5 ps and

te = 20 ps are shown as the dotted and dashed lines for comparison.

the TF measurement, and the low velocity in the IMPAC measurement. The static-field
component was computed using Eqs. (2.26) and (2.27), with a stopping time ts = 1.3 ps
determined using Ziegler’s stopping powers [232]. The g factors were then determined
by g = ∆θ/Φ. To determine the thermal-spike lifetime te, it was varied until the difference
between the IMPAC- and TF-measurement g factors was minimised, giving χ2

ν = 0.83.
The resulting plot is shown in Fig. 4.23, along with a straight line to guide the eye, which
has minimised to a thermal-spike lifetime te = 4.5(17) ps. The uncertainty on this value
does not take into account uncertainties inherent to the ion-stopping process and TF
parameterisation, and hence is underestimated. As such, it seems consistent with the
value determined by Stuchbery and Bezakova [220], being te = 7.3(8) ps, and the value
obtained in Fig. 4.22. When determining this value, the static field was set to its full
strength. The reductions in the static-field strength owing to the thermal-spike lifetime
and non-substitutional implantation sites are correlated. However, the value obtained
by this fitting procedure is smaller than either the value obtained from the exponential
fit, or that suggested in Ref. [220]. Therefore, it seems the ion-channeling measurement
in Ref. [44] correctly deduced the strongly substitutional implantation of Se ions into an
iron lattice.

4.4.3 Discussion

The IMPAC technique was widely used for g-factor measurements through the late 1960s
and early 1970s, as was discussed in §2.3.1. Many of these measurements used the now
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FIGURE 4.23: Plots of g(2+1 ) values for the Ge and Se isotopes obtained from
the IMPAC precession angles against the average values obtained from the
TF measurement (see Table 4.7). The thermal-spike lifetime, te = 4.5(17),

was obtained by varying its value until the fitted line gave y = x.

outdated Lindhard-Winther model of the TF strength to determine the spin-precession
component belonging to the TF [93]. The now dated Lindhard-Scharff-Schiott (LSS)
stopping powers were often used to evaluate the energy loss and stopping of ions
in the ferromagnetic host. The invalidity of the Lindhard-Winther parameterisation
and imprecision of the LSS stopping powers at low energy mean that these older
measurements may be quite inaccurate. Furthermore, in the late 1990s Stuchbery
and Bezakova [220] demonstrated that the static hyperfine field experienced by the
implanted ions after they have come to rest is also quenched for a duration, owing
to a localised thermal spike arising from the implantation process. That this effect
is not accounted for in these older measurements only adds further uncertainty to
the effective static field, particularly for states having short lifetimes (τ . 10−11 s).
This potential inaccuracy is important, as several of the calibration points used in
the Rutgers parameterisation [191] were obtained from IMPAC measurements, of
particular relevance being the 82Se 2+1 measurement by Heestand et al. [106]. The
Rutgers parameterisation obtains the g(2+1 ;82 Se) valued used in its calibration from
Ref. [106], the only calibration point between 26 < Z < 46. With this value brought
into question, the precise behaviour of the transient field through this region is uncertain.

The present IMPAC measurement aimed to repeat the measurement reported in
Ref. [106], intending to check the measured precession angle of the 82Se 2+1 state, and
also to determine if the pre-equilibrium quenching effect may be present, and to what
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extent. To achieve this, the precession angles of both Ge and Se isotopes were measured.
The two measurements obtained similar precession angles across the two isotopic ranges,
with the exception of 82Se. In this case, the present measurement found the precession
angles to be∼ 1.5× larger than in Ref. [106], well outside of measurement uncertainty. As
the 82Se 2+1 state has the longest lifetime among the even-A stable Se isotopes, the static-
field reduction should also be the smallest. Still, despite having the longest lifetime, the
static field will be reduced by 34%, assuming a thermal-spike lifetime te = 7.3 ps as de-
termined by Stuchbery and Bezakova [220]. According to the reduced precession angles
reported in Table 4.10, and the calculated static-field precession effect, the TF and static-
field should contribute almost equally to the measured precession. Taking into account
the thermal-spike quenching, the g factor could be up to ∼ 20% larger. This quenching
effect, as well as the large discrepancy between the present measurement and Ref. [106],
limit the usefulness of the 82Se 2+1 g factor in the calibration of the TF strength. Exclu-
sion of this value from the calibration leaves no data points in the range 26 < Z < 46.
Therefore, the magnitude of the TF-strength parameterisation, as applied to TF measure-
ments of the Ge and Se isotopes in the literature, may be considerably more uncertain
than reported.
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4.5 Calibration of the Transient-Field Strength

In this section, previous measurements using the TF effect in iron and gadolinium foils
will be scrutinised. First, measurements will be compared with calculations using the
newly obtained 56Fe g(2+1 ) value, to be presented in Chapter 6, with the aim of checking
existing TF calibrations and differences between iron and gadolinium hosts. It will be
shown that iron-host data closely matches the parameterisation, and that gadolinium-
host measurements are strongly dependent upon foil magnetisation. Then, the TF mea-
surements in the Ge and Se isotopes from §4.3.2 will be compared with literature values
to examine consistency and attempt to identify the source of discrepancies in the pub-
lished g(2+1 ) values. It will be shown that a reanalysis of the iron-host data brings the
present and literature measurements into agreement, while the gadolinium-host mea-
surements appear to inflate the g factors due to the Rutgers parameterisation possibly
underestimating the TF strength in this host.

4.5.1 56Fe Measurements

With a value for g(2+1 ) in 56Fe firmly assigned (see Chapter 6), the various TF measure-
ments of the 56Fe 2+1 state may be compared to parameterisations. Table 4.11 shows
measured TF precession angles of 56Fe in an iron host from the literature [101], along
with calculated ∆θ values using the Rutgers parameterisation. Measured precession
angles in gadolinium are also shown [56, 66] along with the Rutgers parameterisation,
and the linear parameterisation. There is good agreement between the calculated and
measured values in the iron host. However, the uncertainty in these measurements is
also quite large. Gadolinium is a different case to iron, because the magnetisation of
the foil usually doesn’t reach maximum saturation, and therefore must be measured to
be accurately known. In neither experiment was the magnetisation of the gadolinium
foil measured. Between the two measurements, there is also a key difference in the foil
preparation: one used an evaporated gadolinium foil, and used a rolled and annealed
gadolinium foil. The variation between these two measurements will now be explored.

A key parameter when using gadolinium hosts is the foil magnetisation. Using
the Rutgers parameterisation, the magnetisation of the gadolinium foil would have
to be M = 0.225 T to match the precession angles observed by Ernst et al. [66]. This
M value represents a fully saturated gadolinium foil, however the authors predict
a demagnetisation effect. The measurements of East et al. [56] are both larger than
the Rutgers parameterisation, having M = 0.225 T. Although these deviations are not
statistically significant (. 2σ), potential explanations will be explored.
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TABLE 4.11: Measured 2+1 precession angles in 56Fe traversing an iron or
gadolinium foil. For iron hosts, this is compared with the Rutgers TF param-
eterisation [191] with M = 0.175 T. For gadolinium hosts, this is compared
with the Rutgers TF parameterisation, having M = 0.225 T, as well as a
linear parameterisation [194]. These calculations use the newly determined
g = 0.546 (see §6.2.7) in the hyperfine interaction, and Ziegler’s SRIM 2013
stopping powers [232] to determine energy loss through the target. Foil de-
tails and calculated kinematic details (entry energy Ein, exit energy Eout, and
resulting transit time T) are listed. The precession angle ∆θ was calculated

as per Eq. (4.6).

Foil Ein Eout T ∆θmeasured ∆θRutgers ∆θlinear
(mg/cm2) MeV MeV ps mrad mrad mrad

Ref. [191] Fe 2.3 65.0 19.0 0.258 8.9(17) 8.7
Ref. [191] Fe 1.3 56.0 29.2 0.139 4.9(11) 4.8
Ref. [191] Fe 2.3 56.0 13.3 0.292 8.2(16) 9.3
Ref. [101] Fe 1.75 56.0 21.3 0.201 6.4(18) 6.7
Ref. [66] Gd 3.6 42.0 8.9 0.548 19.7(6) 20.3 19.6a

Ref. [66] Gd 3.6 48.4 11.9 0.491 19.5(5) 19.1 19.6a

Ref. [56] Gd 3.4 36.9 7.8 0.554 22.0(12) 19.8 21.8b

Ref. [56] Gd 3.4 30.7 5.6 0.635 21.1(13) 20.9 21.5b

a Linear TF parameterisation with a = 17× 0.83.
b Linear TF parameterisation with a = 17× 0.97.

One explanation for the observed precession-angle deviations is that the Rutgers
parameterisation is overestimating the TF strength, and the foil magnetisation in Ernst’s
measurement is smaller than East’s. Alternatively, the TF strength may not follow the
non-linear trend of the Rutgers parameterisation. To explore the latter possibility, a
linear parameterisation, taking a = 17.0 T [194], was used. The linear parameterisation
best matches the measurements of Ernst et al. if the magnetisation is 83% of its maximum
strength, and 97% to match the measurements of East et al.. Curiously, Ernst et al. suggest
a demagnetisation coefficient Gbeam = 0.83, owing to a hypothesised demagnetisation of
the foil due to a heavy-beam-ion energy-deposition effect [116]. To explore this effect, the
beam enegy-loss in the two measurements was investigated. The average energy-loss in
gadolinium for the 56Fe beam ions in the measurements of Ernst et al. versus East et al.
was 〈dE/dx〉 = 7.9 (130 MeV) and 8.7 (145 MeV) MeV/mg cm−1, and 〈dE/dx〉 = 7.5
(inner) and 8.7 (outer) MeV/mg cm−1, respectively. According to the precession effects
presented in Ref. [116], Fig. 3, the heavy-ion-induced demagnetisation effect should be
almost the same in the two measurements. Therefore, this effect is either negligible,
absent, or small compared to the differing magnetisation of the two foils.

The method of foil preparation was notably different between the two gadolinium-
host measurements, with Ernst et al. using an evaporated gadolinium foil, while East et
al. used a rolled and annealed gadolinium foil. It is possible that the evaporated foil may
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have an appreciably weaker magnetisation than the rolled and annealed foil. It seems
that the difference between the two measurements is better explained by differing inher-
ent magnetisation between the two foils due to their methods of preparation, rather than
heavy-ion-beam attenuation. However, the possibility remains that the Rutgers parame-
terisation with M = 0.225 T is correct and the deviation observed for East’s measurement
is statistical, or owing to some other unknown factor.

4.5.2 Ge and Se Measurements

TF measurements on Ge isotopes present a good case to examine the consistency of the
TF-strength between different experiments and ferromagnetic hosts. This is because
measurements in the literature, as shown in Table 4.7, fall into two categories: the
measurements by Lampard et al. [130] and Pakou et al. [166], which used an iron
ferromagnetic host in regular kinematics; and the measurements by Gürdal et al. [98],
which used a gadolinium host in inverse kinematics. The reported average magnitude
of g(2+1 ) for the Ge isotopes is fairly similar in the measurements of Lampard et al.
and Gürdal et al., and are also in good agreement with the re-evaluated IMPAC data
measured by Fahlander et al. [69]. The values reported by Pakou et al., however,
have a larger average magnitude, significantly different from the values reported by
Lampard et al. To investigate the source of this discrepancy, the precession angle
measured for 74Ge 2+1 using an 85 MeV 32S beam in Ref. [166] was compared to that in
Ref. [130], which used a 75 MeV 34S beam. The calculation of Φ(τ) as per Eq. (4.7) was
performed using Ziegler’s SRIM 2013 stopping powers [232]. The Rutgers TF-strength
parameterisation was used, as by Pakou et al., and gave g(2+1 ;74 Ge) = +0.367(9)
and g(2+1 ;74 Ge) = +0.359(22) for the precession measurements of Pakou et al. and
Lampard et al., respectively. Note that, though these uncertainties are statistical only,
the resultant g factors are in good agreement. The former measurement also sampled
the TF over a considerably wider range owing to its thicker target, though the ranges
do completely overlap. This agreement spurred the reanalysis of the precession angles
measured by Pakou et al. and Lampard et al. using the Rutgers parameterisation. The
results from this reanalysis, along with those reported by Fahlander et al. and Gürdal et
al., are shown in Fig. 4.24. The reanalysis reveals that there is no major discrepancy
between any of the measurements. This highlights the trouble when using a TF-strength
parameterisation: the calculation of Φ(τ) depends on the stopping powers, numerical
integration methods and TF parameterisation used, and so results may vary if these
dependencies are not controlled.

The agreement between the g factors from the reanalysed precession measurements
of Pakou et al. [166] and Lampard et al. [130] is an interesting case, as it allows for possible
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FIGURE 4.24: Reported (1977FA07 [69], 2013GU23 [98]) or reanalysed
(1984PA20 [166], 1987LA20 [130]) g(2+1 ) values in the stable, even-A iso-
topes of Ge. The values from 1984PA20, which were in strong disagreement,
have decreased significantly in magnitude in the re-evaluation of Φ(τ), as
described in-text. This brings the four measurements into good agreement.

identification of the beam demagnetisation effect proposed by Jakob et al. [116]. Figure 2
in Ref. [116] indicates that, for a TF effect caused by the 3s electron in iron, the demagneti-
sation effect should begin once beam energy loss reaches dE/dx & 13 MeV/mg cm−2.
In the measurement of Pakou et al., most beam ions have energy loss through the target
well under the demagnetisation threshold value, whereas the measurements of Lam-
pard et al. are almost at this threshold. The agreement between the two indicates that
this threshold has not been reached in the latter measurements. This is not surprising,
as the effect should only just be becoming apparent, and is anticipated to be small.
However, it is curious to note that, with the exception of 72Ge, the measurements of
Pakou et al. give systematically larger g factors. These larger g factors may indicate that
the demagnetisation effect is beginning to reduce the precession angles measured by
Lampard et al., and thereby the reported g factors. However, at the level of precision in
these two measurements, the demagnetisation effect cannot be confirmed. Furthermore,
as discussed in the previous paragraph, a small variation in inherent magnetisation is
the more likely cause of any observed differences between measurements.

In the measurements by Gürdal et al. [98], 74,76Ge were measured in both iron and
gadolinium hosts under similar conditions to the present 74,76Ge TF measurements,
providing the opportunity for a critical comparison. The first thing to note is that the
iron-host g(2+1 ) values reported by Gürdal et al. and in §4.3.2 are smaller than the
gadolinium-host values. Because the Rutgers parameterisation (used by Gürdal et
al.) was developed using iron-host data, it is plausible that the parameterisation for



4.5. Calibration of the Transient-Field Strength 111

0.10

0.15

0.20

0.25

0.30

0.35

0.40

g
Present work 2013Gu23

Reanalysis

FIGURE 4.25: Measurements of g(2+1 ;74 Ge) from the present work and the
iron-foil (target III) results from Ref. [98]. The g factors have been evaluated
from the measured precession angles as per Eq. (4.6), using the Rutgers pa-
rameterisation (see §2.3.2) and Ziegler’s SRIM 2013 stopping powers [232].

The measurements are all in good agreement.

gadolinium hosts is underestimating the TF strength, resulting in inflated g factors.
However, g(2+1 ) reported by Gürdal et al. from iron hosts is still larger than obtained
in this project. Focusing now on 74Ge, reanalysis of Φ(τ) for the iron host reduces the
g factor to g(2+1 ;74 Ge) = +0.290(13). Figure 4.25 shows this value plotted alongside the
values obtained from the varying measurements reported in §4.3.2, and are all in good
agreement. This discrepancy between Φ(τ) calculated by Gürdal et al. and that obtained
in this work appears to arise from the stopping powers used. In the calculation of
Gürdal et al., the ions make a faster transit through the host, reducing Φ(τ) and thereby
giving a larger g factor. Using Ziegler’s SRIM 2013 stopping powers, the ion loses more
energy through the target, making a slower transit and thereby giving a smaller g factor.
This shows that the TF strength in iron is consistent between the two measurements,
and that the Rutgers parameterisation appears to overestimate the gadolinium-host field
strength, if the Rutgers parameterisation is assumed to be valid for iron hosts.

In §4.3.2 the relative g-factor values were scaled using the Rutgers TF parameterisa-
tion to give averaged absolute g factors, listed in Table 4.7. Comparison of these with
the literature values indicates that, in the measurements presented in this thesis, both
the Ge and Se values are smaller than the average literature values by ∼ 12% in Se and
∼ 20% in Ge. In the case of the Se isotopes, the magnitude of the TF has been scaled
using g(2+1 ;82 Se) = +0.496(29) [195] (as discussed in §4.3.3), a value obtained from
both iron- and gadolinium-host precession data [34, 195]. Meanwhile, the Ge isotope
values have been determined solely from TF parameterisations, and are dominated
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by the statistical precision of the gadolinium-host measurements of Gürdal et al. [98].
The measurements performed in this project differ from any in the literature due to the
sole use of an iron host in inverse-kinematics. The g-factor results obtained in §4.3.2
being smaller in magnitude than the literature, for both Ge and Se, indicates that the
Rutgers parameterisation for gadolinium hosts underestimates the field strength as
compared to iron, resulting in relatively larger g factors. This is further confirmed by
the agreement of the 74Ge iron-host precession data measured by Gürdal et al. with
measurements performed in this project (see Fig. 4.25). The larger discrepancy between
Ge measurements performed in this project and the literature, as compared to the Se
measurements, also confirms this, as the Ge data in the literature were largely made
using gadolinium hosts, whereas the Se data in the literature uses both gadolinium and
iron hosts equally. Furthermore, the unambiguous agreement observed for 56Fe in iron,
presented in the previous subsection, suggests that the g(2+1 ) values obtained from the
present measurement are more accurate than the values reported from or calibrated
using gadolinium-host measurements, though this cannot be firmly concluded.

In conclusion, while arguments can be made about the relative over or underestima-
tion of the TF strength between iron and gadolinium hosts observed in the Ge and Se
isotopes, a determination of the TF strength’s accuracy for these measurements cannot
be confidently made until a precise, independent g-factor measurement is obtained.
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4.6 Summary

The TF method, and the calibrations used to obtain absolute g factor values from it,
have positive and negative aspects. They provide a means to perform precise g-factor
measurements on what may be otherwise inaccessible states, but also provide a false
assurance of the measured g factor’s magnitude, particularly in isolated measurements
without any reference state for calibration. Much of the g-factor data in the literature has
been obtained using the TF effect, with alternative measurements being dated and im-
precise, and based on different TF parameterisations. Re-evaluation of some data with a
consistent set of stopping powers has resolved some discrepancies in reported g factors,
however absolute g-factor values obtained by the TF method remain a challenge in
many cases: certain elements or regions appear to exhibit deviations from the proposed
calibrations. This makes an accurate calibration of the TF strength across the entire
nuclear chart a challenge that has not yet been achieved. A complementary technique
against which to calibrate the TF strength in any given measurement is urgently required.

Relative measurements along isotopic chains, using the thin-foil TF technique, elimi-
nate much of the uncertainty in the TF calibration by sampling it over short and largely
overlapping velocity ranges, whilst also utilising the same target to eliminate uncertain-
ties in thickness and magnetisation. The results presented and discussed in §4.2 demon-
strate the effectiveness of such an approach. The Ge and Se isotopes, with their accurately
and precisely obtained ratios, could have their magnitudes firmly set by a single absolute
measurement. The RIV technique is a good candidate to complement the TF technique,
but has been restricted in its use due to challenges in developing an ab initio understand-
ing of the hyperfine interactions involved. With the advances in modelling the hyperfine
interaction in TDRIV measurements presented in the previous chapter, these two tech-
niques provide the opportunity to measure both the sign and magnitude of g(2+1 ) values
in previously inaccessible nuclear states.





115

Chapter 5

RIV Simulate: A Recoil-In-Vacuum
Data-Analysis Toolkit

This chapter describes RIV Simulate, a collection of computer programs written during
this doctoral candidature for POSIX-compliant operating systems. RIV Simulate is a
toolkit to aid in both the setup and feasibility testing of nuclear g-factor measurements
using the recoil-in-vacuum (RIV) technique, as well as the analysis of RIV angular-
correlation data and determination of the g factor from measurements on ions having
multi-electron charge-state distributions. A reading of this chapter is necessary as a
precursor to Chapter 6, however the experimental descriptions in Chapter 6 also serve
to help understand the application of this program. As such, certain details presented
here may be more easily understood in a subsequent reading after Chapter 6, and may
be best understood when read in parallel.

The hyperfine interactions arising within the multi-electron ionic species of a
charge-state distribution present a unique challenge when interpreting the g factor from
measured angular correlations. The physics underlying these hyperfine interactions
was reviewed in §2.3.3, along with cases in which successful g-factor measurements
have been performed using the RIV technique. These successful published cases
differ from the cases considered here as, in the former, isotopes with known g factors
existed against which a calibration of the hyperfine interaction could be made and, in
the latter, the analysis only needed to consider the hyperfine interaction of a single,
simple atomic state. In the present work, an ab initio approach has been taken to
interrogate the complex problem of interpreting an ensemble of charge states (ionic
species), amongst which multiple atomic states contribute, potentially with changing
populations through time. The challenge of modelling this system was handled by
taking a Monte-Carlo approach, as suggested by Stone, Stone and Jonsson [202] and
as implemented by Chen et al. [49] for interpreting time-integral RIV measurements.
The atomic-structure package GRASP2018 was used to calculate the required atomic
properties, as described in §2.4. A toolset was developed consisting of a Monte-Carlo
simulation, Gk and angular-correlation plotting routines, an energy loss, kinematics and
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charge-state-distribution calculator, and χ2 minimisation (fitting) routines.

It shall be clarified now that in this chapter, and the next, the convention has been
adopted to refer to ionic species (charge states) by their atomic analogue, i.e. the equiv-
alent element having the same number of bound electrons, ne. For example, if an iron
atom, having nuclear charge Z = 26, is ionised to a charge-state having Q = +15, then it
will be referred to as a Na-like ionic state, as Z−Q = ne = 11.

5.1 Monte-Carlo Approach

To calculate the time-dependent attenuation of the angular correlation by an ab initio ap-
proach, the hyperfine interaction of each contributing ionic species, and their associated
ground- and excited-atomic-state configurations, should be considered. The initial pop-
ulation of excited atomic states, which determines the atomic decay chains, also needs
to be defined. Finding an exact mathematical solution to the time-dependent attenua-
tion arising from all these variables is not practical. Instead, the numerical Monte-Carlo
method has been used to obtain a solution by conducting a “virtual experiment”, using
properties obtained from atomic-structure calculations.

5.1.1 Atomic-Decay Cascades

The first piece of information required is the charge-state distribution of the ions of
interest as they emerge from the target into vacuum. This can be obtained from a
measurement for the particular beam/target combination chosen, or calculated using an
empirical parameterisation such as those published by Nikolaev and Dmitriev [155] or
Schiwietz and Grande [187]. After defining the charge-state distribution, and thereby
the ionic species present, the initial atomic-state populations must be set. The initial
atomic-state populations, however, are ill-defined for ions emerging into vacuum. In the
approach taken by Chen et al. [49] it was assumed that there is an equal probability of
any atomic state to be populated, a uniform distribution across all states produced by the
allowed electron excitations in the GRASP calculation. In addition to this basic distribu-
tion, Boltzmann, Maxwell-Boltzmann and Gaussian energy-distribution functions have
been included as options in the present approach, as well as the capability to populate
only a specific level. The functions are parameterised using a ‘temperature’ parameter T,
and for the Gaussian distribution also a width parameter σ. The temperature parameter
represents the average energy in a given ionic system relating to the atomic-excited-state
energies. The function’s form defines how this energy is distributed across each simu-
lated ionic species. The effect of different distributions and average energies can then be
examined and compared to experimental results. With the charge-state distribution and
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atomic-state populations defined, the atomic-structure calculations can then be used to
generate single-ion events consisting of atomic-transition cascades, numbering in the
tens of thousands (a typical experimental measurement). The procedure to generate an
event is as follows:

For a given ionic species an initial atomic state is randomly selected following the
chosen population distribution. This is achieved by summing the energy function of the
chosen distribution for all atomic states (and optionally including a 2J + 1 weighting
as per the procedures of Stone et al. [202] and Chen et al. [49]) and using a uniformly
distributed random number to choose a state. Specifically,

Psum =
N

∑
a=1

d(Ea)× (2Ja + 1), (5.1)

Pa = R× Psum, (5.2)

where Psum is the sum of probabilities for all atomic states calculated for the chosen ionic
species, N is the number of atomic states, d is a function representing the chosen energy
distribution and includes the parameter T (and σ for the Gaussian distribution), Ea is the
atomic-state energy, the 2Ja + 1 term is the optional weighting, Ja is the spin of the atomic
state, and R is a random number evenly distributed between (0, 1]. Pa is used to select an
atomic state at random, which is done by selecting state a having the value Pa in its sum
range, such that

a−1

∑
i=1

d(Ei)× (2Ji + 1) < Pa ≤
a

∑
i=1

d(Ei)× (2Ji + 1), (5.3)

or, if a = 1,
0 < Pa ≤ d(E1)× (2J1 + 1). (5.4)

Once an initial atomic state has been selected a nuclear survival time for the event is
then generated by

tN(τN) = − loge(R)× τN, (5.5)

where τN is the nuclear-state lifetime, and R is a random number evenly distributed
between (0, 1].

The following procedure is then iterated (after initialising the cumulative atomic sur-
vival time tc to zero):

1. An atomic survival time ta is randomly generated for each available transition us-
ing Eq. (5.5), with τ = 1/Aa instead of τN, Aa being the partial transition rate. The
transition with the shortest survival time is selected.
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FIGURE 5.1: Comparison of the two decay approaches described in-text, be-
ing the single atomic-lifetime and branching-ratio method versus the Monte-
Carlo simulation partial-transition-rate method. The dots represent the val-
ues calculated using Eq. (5.6) with a single atomic lifetime and a branching
ratio I = λa/λ, and the lines represent the values obtained using the Monte-
Carlo approach described in §5.1.1 with partial transition rates. The mother
state is allowed to decay into one of four daughter states, with their respec-
tive lifetimes indicated. The agreement between the dotted and solid lines
shows that the mathematical and Monte-Carlo approaches are equivalent.

2. If the nuclear survival time tN is less than ta + tc, or there are no available transi-
tions, set ta = tN − tc and end the event. Otherwise, add ta to tc.

3. Set the atomic state to that chosen as a result of the first step, for the next iteration.

Atomic levels and ta values are recorded for each iteration. This procedure produces
an event consisting of a number of atomic-level references and survival times, with a
cumulative atomic survival time equal to the nuclear survival time.

It should be clarified that the selection of a new atomic state occurs based on the
calculated individual oscillator strengths (i.e. partial transition rates), rather than a single
atomic lifetime and branching ratios. This approach is valid because

Nλ = N0λe−tλ, (5.6)

loge(N/N0) = −tλ, (5.7)

− loge(N/N0)
1
λ
= t, (5.8)
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can also be represented as a sum over separate decays in which

λ =
n

∑
l=1

λl, (5.9)

−
loge(N/N0)

∑n
l=1 λl

= t, (5.10)

−
n

∑
l=1

λl
loge(N/N0)

=
1
t

, (5.11)

where N is the population of states at time t, N0 is the initial number of states (t = 0),
n is the total number of available transitions, λ is the transition rate of the atomic state,
and λl is the partial transition rate of transition l.

For any given population fraction N/N0 of a mother state, the proportions
between each daughter state are the ratio λl/λ. From Eq. (5.11) it follows that
1/tpart = −λa/ loge(N/N0), and therefore the partial decay rate is proportional to λl. As
such, a value of t generated by substituting N/N0 with a uniformly distributed random
number, as per Eq. (5.5), will give the correct branching ratios when the same value of
N/N0 (the random number) is used. Hence, when sampled across the range [0, 1], a
faster partial transition will give, on average, a smaller value of t, and vice-versa.

Through the Monte-Carlo approach, the survival time generated using Eq. (5.5) from
each partial transition rate represents the sum over λa/ loge(N/N0) in Eq. (5.11) across
a uniformly sampled range of N/N0. This is how the branching ratios are maintained
in the random sampling procedure. The outcome of using this approach versus the
purely mathematical approach of Eq. (5.6) is shown in Fig. 5.1, and reveals almost no
difference between the two, particularly in the mother state’s decay rate. Note that
it is assumed any non-E1 (i.e. forbidden) transition strength is weak enough to disregard.

With a number of atomic-decay-cascade events now generated across the charge-state
distribution, Eq. (2.49) can be used to calculate the Gk(t) values. These data can also
be used to examine the population of atomic states through time, as well as the effect
of different distributions and temperature parameters on observable frequencies in the
Gk(t) plots.

5.1.2 Rapid versus Slow Transitions

Atomic-structure calculations reveal that the high-energy atomic states of relevance
to the present work are all very short-lived, decaying away on sub-picosecond to
few-picosecond timescales. When transition cascades occur on such short timescales
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and have several steps in the decay chain, the resulting attenuation appears as a
quasi-exponential function [31, 30]. When a large number of atomic states are populated
and their population remains relatively static over the measurement time, this also
results in the perturbation appearing as a quasi-exponential function [92]. Both of
these characteristics appear for ionic species with multiple valence electrons, and both
mechanisms contribute to the resulting quasi-exponential behaviour: there are many
populated excited atomic states that are close in energy, resulting in rapid, multi-step
transition cascades leading to a large number of longer-lived, low energy states becom-
ing populated.

For ionic species with a single electron outside a closed shell, such as Na-like ions,
low-lying excited states can have lifetimes much greater than the nuclear 2+1 -state life-
times, to the order of hundreds of picoseconds. Short-lived (τ ≤ 1 ps), high-energy
states will rapidly feed these long-lived states, which then slowly feed the ground state,
and/or other low-energy excited states with long lifetimes. Bosch and Spehl mathemati-
cally derived the effect on the time-dependent attenuation resulting from an atomic state
being fed by a large number of short-lived, higher-energy states [32]. They determined
that there is a phase shift and amplitude reduction of the Gk(t) cosine function propor-
tional to the average lifetime of the feeding states. By performing a Monte-Carlo simu-
lation using a test set of atomic transitions this effect was qualitatively reproduced for
single transitions, as shown in Fig. 5.2. The phase shift and amplitude reduction do not
match the formulas presented in Ref. [32] exactly, but this is not surprising considering
that they describe a somewhat different decay scenario. The simulation result does con-
verge on the solution in Ref. [32] for feeding states with very long lifetimes (& 100 ps),
counter to their formulation in which the feeding states are expected to be very short
lived (. 0.1 ps). An exact mathematical description of the interactions arising from these
decay cascades would be difficult to achieve, however the Monte-Carlo simulation al-
lows these effects to be explored.

5.1.3 Gk(t) Calculations for Single Atomic States

It can be useful to calculate the Gk(t) plots arising from a small number of individual
atomic states, rather from a Monte-Carlo simulation. This is particularly true in cases
where the charge-state distribution or atomic-state distribution is not well-known or un-
derstood, as these often distinct individual states can provide insight into the population
of particular ionic species. The user can choose the number of atomic states to input
and provide their spin, J, hyperfine-field strength, B, and occupation. A superposition
of particular frequencies can then be assembled and their occupations varied to develop
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FIGURE 5.2: G2 versus time plot of a J = 1/2 ground-state frequency with
a 10 ps period, either fully populated from t = 0, or initially unpopulated
and being fed by one of three excited states, each having a lifetime of either
τ = 10, 1 or 0.1 ps. There is a clear amplitude reduction and phase shift,

which is proportional to the lifetime of the feeding state [32].

an intuitive understanding, for example, of the measurement data and identify particu-
lar features in the time-dependent Gk(t) values, without interference from states having
weak hyperfine interactions that will reduce the amplitude of frequencies important over
the ion flight-time covered by the measurement. Additionally, by tweaking each atomic
state’s occupation, this method may be used to interrogate the influence of low-lying
atomic states from different ionic species on the measured time-dependent attenuations.
These occupations ought to allow insight into the population of particular ionic species,
and whether the chosen atomic states are strongly occupied over the time-span interro-
gated by the measurement.

5.1.4 Frequency Superposition

Considering the overall character of the ionic species discussed in §5.1.2, there are three
categories into which they can be classified: those with a dominant ground state and/or
long-lived low-energy states with distinguishable cosine-like frequencies in Gk(t) (e.g.
Na-like), those exhibiting quasi-exponential character in Gk(t) (e.g. Al-like), and those
with dominant J = 0 states that have little or no attenuation effect (e.g. Ne-like). Their
combined interaction ought to present itself in the Gk(t) trend as a superposition of the
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measurable frequencies from the first category, with their amplitude reduced by con-
tributions from the second and third categories. Such a trend is illustrated in Fig. 5.3.
Therefore, by identifying the major contributing frequencies in time-dependent attenuation coef-
ficients, Gk(t), it should be possible to determine a g factor without the need to accurately model
all the contributing ionic species and excited atomic states.
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FIGURE 5.3: G2 versus time plot of a Monte-Carlo simulation having an ini-
tial atomic-state distribution following a Boltzmann function with average
energy T = 30 eV for Na-like, Ne-like, and Al-like ionic species, and a super-
position of all three in equal parts. The Na-like case shows a clear (cosine)
oscillation from the dominant J = 1/2 ground state, with its amplitude re-
duced by the slower frequencies of the long-lived, low-energy excited states.
The Ne-like case is assumed to be dominated by the J = 0 ground-state,
causing no attenuation. The Al-like case has a large number of low-energy
excited states (many of which are short-lived), that rapidly decay into a large
number of relatively static states. This behaviour gives the quasi-exponential
shape of G2. In the combined case the amplitude of the Na-like ground-state
G2 oscillation is reduced owing to the smooth Ne-like and Al-like contribu-
tions. This attenuation of the Na-like component highlights the importance

of an optimised charge-state distribution.
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5.2 Atomic-Structure Calculations

To calculate the required atomic-structure properties for the Z ∼ 30 nuclei concerned
in this project, GRASP2018 [79] was used. While the theoretical basis underpinning the
calculations is common to any atomic configuration to be calculated, the information
about obtaining convergence relates specifically to calculations performed for atomic
configurations having 9–13 electrons. The GRASP2018 software package was described
in §2.4. To reiterate the key points: atomic properties are obtained for atomic-state
functions (ASFs) and transitions between them, and atomic-state functions are calcu-
lated from a linear combination of configuration-state functions (CSFs), which are Slater
determinants built from user-specified single-electron configurations. Equation (2.50)
shows that any CSF having the same parity π and angular momentum J can contribute
to a given ASF. To obtain the most accurate solution, one would include CSFs up to the
continuum states. However, this is impractical as convergence becomes more difficult
and computation time becomes longer as the number of CSFs increases. As such, one
should choose CSFs that have the most significant mixing coefficients. While these
mixing coefficients aren’t known before obtaining the solution, most with significant
magnitudes can be included by following the procedure in §2.4.

In the present context, the goal was to simulate spectral cascades for atomic
configurations having 9–13 electrons. Spectral cascades, that is sequences of atomic
transitions, which involve reconfiguration of only valence-shell electrons, are solely
being considered due to the time-scales over which the hyperfine interaction is expected
to be observed, that is the picosecond timescale. The high-energy atomic configurations
that may result in Auger and X-ray emissions occur of the order of sub-picosecond
timescales, too small to significantly affect the hyperfine frequencies observed in
time-differential RIV experiments. The approach taken to calculate the properties of
atomic states involved in spectral cascades has been to calculate ASFs having leading
terms that are valence configurations, up to atomic level energies nearing the ionisation
energy. Because high-energy excited states produced by valence configurations are
typically short-lived and have BHF ∼ 0, their effect on the time-dependent frequencies
to be observed in Gk(t) is almost null. As such, for the atomic configurations concerned
(9–13 electrons) it was deemed unnecessary to calculate all the way out to the ionisation
energy, and so spectral configurations were restricted to those with principal quantum
number n ≤ 6. By applying these restrictions, atomic-state configurations relevant to the
picosecond measurement timescale and ionic species expected were selected for, while
keeping the configuration space computationally tractable.

The most important property to calculate accurately is the hyperfine-field
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strength (HFS), followed by the transition rates. As such, CSFs were generated having a
single-electron excitation from the deep core (n = 1) electrons to improve the calculated
HFS. Transition rates were improved by allowing single and double excitations from
the outer-core electrons, having principal quantum number n = 2 (Z − Q > 10) or
n = 1 (Z− Q ≤ 10). The CSF space was increased by intervals of n up to a value where
the number of CSFs exceeded ∼ 108, at which point computation time was already
quite long on the available computing resources (&4 weeks). For ionic species with
Z − Q > 10 the ASFs were resticted to level energies below 1000 eV where necessary,
as per the suggestion in Ref. [202, 203]. This restriction had to be relaxed for ions at or
just below the neon shell closure due to the large energy gap, and instead were taken to
only two shells beyond the shell closure, as these states were expected to rapidly and
directly decay to the ground state. Once solutions were obtained, the calculated energy
levels were compared to those in the US National Institute of Standards and Technology
database for atomic spectra [178], and found to agree to the level of 1% in all cases,
and 0.1% in most. These comparisons were helpful in determining whether the radial
wavefunctions had converged on an accurate solution. Another way convergence was
assessed was to compare the results of the two oscillator-strength (partial transition rate)
calculation approaches (alternate forms for the dipole operator, or gauges) GRASP takes,
namely the length and velocity forms [43]. Disagreement indicates the solution is not
self-consistent. Most partial transition rates were found to agree better than 1%, with
poor agreement only observed for slow transitions from high-energy states, which were
deemed unimportant in the present context due to the unlikeliness of their population or
observation. Tables showing these comparisons for the important ionic species (F-like,
Ne-like, Na-like) can be found in Appendix D. With the atomic-structure properties
calculated, and having confidence the wavefunctions have converged on good solutions,
the Monte-Carlo simulation can be performed.

The scripts used to perform GRASP calculations and obtain the atomic-structure
properties used in this project can be made available upon request to the thesis author.
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5.3 Calculation of Gk Values

The calculation of the attenuation in the angular correlation owing to the hyperfine
interaction in free ions, Gk, is described in detail in section §2.3.3. The Monte-Carlo
simulation events allow for a Gk value or the perturbation of the nuclear tensor at any
given time to be calculated. The user may also specify if they wish to calculate the γ-ray
angular correlation for the unshifted (stopped), Doppler-shifted (in-flight), or stopped
plus in-flight (summed) components. These events can be separated in the Monte-Carlo
simulation by comparing how long the nuclear state survives for, tN, to the specified
flight time, t f . Experimentally, t f is the time the ion takes from leaving the target foil and
impacting into the stopping foil. Ion events with nuclear states that decay prior to t f , i.e.
tN < t f , are classified as in-flight decays. Those having tN ≥ t f are classified as stopped.
Depending on the user’s selection, the event is vetoed from or allowed in the calculation.
Gk(t) values for allowed events are then calculated by either perturbing the tensor as
per Eqs. (2.36–2.43) or calculating Gk for the event as per Eq. (2.48). Stopped events are
evaluated at t f , and in-flight events are evaluated at the nuclear decay time tN. The
Gk(t) value is then averaged across all events and all atomic states as per Eq. (2.49)
to give the Gk value expected to be measured. When the calculation is performed for
the stop component using individually specified atomic states, instead of using the
Monte-Carlo simulation, then the perturbation or Gk(t) values are calculated directly
using Eq. (2.38) or Eq. (2.45), respectively, and are evaluated at t f . The values are then
linearly combined, weighted by their fractional population. If the user has specified that
the in-flight or summed components are to be calculated, then nuclear decays must now
be accounted for. This is handled by performing the Monte-Carlo simulation for each
individual atomic state, allowing nuclear decays but no atomic decays. The resulting
simulation is then used to calculate Gk(t) as described for the Monte-Carlo procedure.

Two approaches to calculating the attenuation in the angular correlation have been
described: the full treatment involving the perturbation of a coupled atomic and nuclear
statistical tensor; and the isotropic approximation in which Gk is computed as a coeffi-
cient of the nuclear tensor. These will now be discussed, and the difference between the
two approaches examined.

5.3.1 Coupled-Tensor Approach

The coupled-tensor approach, while more computationally involved, is the full treat-
ment of the coupled nuclear and atomic tensor’s evolution in time due to an atomic
hyperfine interaction. As described in §2.3.3, the coupled tensor, ρ(FF′), is obtained us-
ing Eq. (2.36). The nuclear tensor is obtained using the Winther-de Boer code, and the
initial atomic tensor is assumed to be that of an isotropic electronic configuration. The
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coupled tensor is formed from these two, and perturbed as per Eq. (2.38), introducing
alignment into the atomic tensor. Each time an atomic transition occurs the nuclear and
atomic tensors are projected out, and then the deorientation arising from the unobserved
atomic transition is applied to the atomic component, as per Eq. (2.43). The two tensors
are then recoupled and further perturbed until another transition occurs, repeating the
procedure just described, or either the flight time t f or the nuclear survival time tN is
reached. In this sequence, alignment is gained by the atomic tensor through its interac-
tion with the nuclear tensor, and then some alignment is lost from the system with each
atomic transition.

5.3.2 Isotropic Approach

Goldring’s formulation for calculating Gk(t), shown in Eq. (2.45), was obtained by as-
suming that the statistical atomic-state orientation is not only initially isotropic, but that
it does not evolve in time with the nuclear tensor. This formulation was derived for
the recoil-in-gas technique, where the atomic state is changed by collisions with gas
molecules, that frequently ‘reset’ the atomic alignment. This assumption considerably
reduces the number of calculations as the assumption of a static isotropic atomic tensor
greatly reduces the angular-momentum coupling algebra present in the coupled-tensor
approach down to that presented in Goldring’s formulation, which is now simplified into
the CFF′

I J (k) component and a cosine function [see Eq. (2.46)].

5.3.3 Comparison of Approaches

In order to determine if there is any significant difference between the full treatment and
the isotropic assumption in the Monte-Carlo simulation, the two methods were used to
calculate Gk(t) plots for two different ionic species. The results of these two calculations
are shown in Fig. 5.4. They were performed using a uniform excited-state distribution so
that a large number of transitions would be observed. Calculations were performed for a
Na-like ionic species, having some thirty excited states, and an Al-like ionic species, hav-
ing hundreds of excited states. In both cases, there is no observable difference between
using the isotropic and coupled-tensor approaches. This may be due to either an insignif-
icant amount of perturbation transferring from the atomic tensor to the nuclear tensor, or
may be due to the large amount of sampling in the propagation of the atomic population
preventing any overall orientation from forming in the atomic tensors. As such, while the
option to perform the calculation using the coupled-tensor approach has been retained,
the isotropic approach is the preferred method due to its simplicity. Hence it has been
used in all further calculations discussed here and in Chapter 6, unless otherwise noted.
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FIGURE 5.4: Comparison of the isotropic calculation approach (solid lines)
and the coupled tensor approach (dotted lines) described in §5.3.1. The cal-
culations are based on 56Fe Al-like and Na-like ionic species with a large
number of atomic states initially populated. This was done to maximise the
number of transitions in order for the effect of deorientation due to unob-
served atomic transitions to be most evident. As shown in the plot, there is

no observable difference between the two calculations.
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5.4 Experimental Setup

So that theoretical angular correlations can be calculated, the user must input the details
of the experiment. The user must specify the beam nuclide, beam energy, target details
(number of layers, elements/isotopes and thicknesses), ground-state spin, excited-
state spin, excited-state energy, transition probability amplitude (B(E2) in units e2b2),
particle-detector details (either square detectors at a certain radius from the beam axis
with user-specified φ angles, or a segmented ring detector with inner and outer radius
and angular coverage of each segment) and γ-ray detector details (length and radius
of the cylindrical crystal, distance from target, radius of ‘dead core’ if present, θ and φ

angles). This information allows the calculation of kinematics details, energy loss in the
target, statistical tensors after Coulomb excitation (Coulex), average recoil velocity, and
solid-angle attenuation factors for the γ-ray detectors.

Kinematics calculations [144] are used to determine the energy of detected particles
after Coulex (being either beam or target particles), whilst also taking into account en-
ergy loss [232] through the target layer before excitation, at scattering angles across a
detector segment (rectangular or annular), and compute an average statistical tensor and
recoil velocity. The average tensor is calculated by making ten horizontal and vertical
divisions across the detector face, and ten divisions through the target depth, calculating
the tensor in each division using the Winther-de Boer code [4], and then computing the
composite Simpson’s rule integral (weighted by the scattering angle and excitation cross-
sections, and the particle-detector-segment solid angle) divided by the step width. The
γ-ray-detector information is used to calculate the solid-angle attenuation factor Qk in the
angular correlation using Krane’s [128] method. Gamma-ray and particle detector θ and
φ angles, along with the recoil velocity, are used to determine relativistic abberation and
Lorentz boost corrections using Pelte and Schwalm’s solution [169] for Doppler-shifted
photopeak counts and angular shifts from the particle-frame to the lab-frame (See §2.2.2).
Only with this experimental information can accurate theoretical angular correlations be
computed for comparison with data.
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5.5 Input of Measurement Data

To fit parameters to measured angular-correlation data, the user must be able to input
the photopeak count data. RIV Simulate can read an ASCII file containing a γ-particle
detector coincidence ID (γ-p ID), ion flight time, photopeak count, photopeak count un-
certainty and time uncertainty, separated by either spaces or a tab character. The γ-p ID
is an array-style identifier obtained by iγp = iγnp + ip, where iγp is the γ-p ID, iγ is the
zero-indexed (i.e. counting from zero, not one) γ-ray-detector number, np is the num-
ber of particle detectors, and ip is the zero-indexed particle-detector number, as input
into the experimental setup (see §5.4). Once iγ and ip are obtained from the γ-p ID the
θ and φ angles are obtained from the experimental setup inputs. By using a γ-p ID the
fitting routine will automatically compute the correct theoretical angular correlation and
select the γ-ray detector Qk coefficient. Following the γ-p ID should be a flight time t of
the ion, the photopeak counts N, uncertainty in N, and optionally uncertainty in t. The
photopeak counts do not need to be normalised to the theoretical angular correlation in
the data file; they can be provided as direct photopeak counts. These will be normalised
around the φ-dependent angular correlation for each γ-ray detector. If definitive γ-ray
and particle detector identification is not possible, the user may also setup the experi-
mental details with a single particle detector specified, and a dummy γ-ray detector for
which a Qk value is computed. This will indicate to the program that the ASCII data file
will instead specify a θ and relative φ angle (φγ− φp) instead of a γ-p ID, and at the user’s
specification use the Qk of the dummy detector. In this style of data file, the angular-
correlation data points must be normalised to the theoretical angular correlation before
being input, as automatic normalisation between unknown γ-particle pairings would be
unreliable. For Doppler-shifted photopeak counts the θ and φ values for each data point
are adjusted to the nucleus frame-of-motion using either a user-specified recoil velocity
or a value calculated by the kinematics and energy-loss routines to apply the relativistic
abberation and Lorentz boost corrections described in §5.4. An example of each type of
data input file can be found in Appendix C.
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5.6 Data-Analysis Tools

A number of tools have been developed to aid both in feasibility testing of experimen-
tal setups (i.e. planning experiments), as well as the interpretation and analysis of data.
Many tools generate gnuplot [222] scripts so that output data can be quickly visualised.
Others report χ2 minimisation information from fits to the charge-state distribution,
atomic-state population, and g factor. The details of each program are described in this
section.

5.6.1 Energy Loss in Targets

In order to interrogate an experimental setup, the user is able to calculate energy loss
through a single or layered target, and the average recoil velocity of beam and recoil
particles detected by a square or annular particle detector. The charge-state distribu-
tion of the ion of interest may also be calculated using the parameterisations developed
by Nikolaev and Dmitriev [155] or Schiwietz and Grande [187], with customisable fit
parameters for the former. A user-supplied routine for calculating the charge-state dis-
tribution may also be used in the program by providing a pre-compiled object file and
using the correct switch at compilation. Instructions to do this are included with the
software documentation. The user specifies a beam nuclide, beam energy, a number of
layers in a target foil, their elemental/isotopic composition and thickness, (optionally)
the details of a plunger foil following the target, the layer in which the nuclei of interest
excite, whether the beam or target is excited in the reaction, nuclear-excited-state tran-
sition information, and particle-detector shape and geometry. Average entry and exit
energies are calculated for each specified layer, taking into account reaction kinematics
and weighting by Coulomb-excitation cross-sections and solid-angles across the detector
face. If any reaction kinematics are unsafe in the head-on collision, the user will be no-
tified. This information can be used to determine if recoil or beam particles will stop or
pass through a specified foil, in particular the stopping/plunger foil. Charge-state dis-
tribution calculations allow the user to optimise beam energy, target thicknesses and/or
recoil angles to produce the optimal charge-state populations. Using this tool, a user can
optimise their experimental design to perform a robust measurement of ideal frequencies
for a g-factor measurement.

5.6.2 Atomic-State-Population Heatmaps

The Monte-Carlo simulation approach, described in §5.1.1, allows for the tracking of
atomic-state populations through time. At 1 ps intervals the population data are ob-
tained from the Monte-Carlo event array and written to a comma-separated value (csv)
file format for easy viewing in spreadsheet software. A gnuplot script is also generated
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FIGURE 5.5: Example heatmaps produced by RIV Simulate from a 56Fe Na-
like ionic species, one having a Boltzmann distribution of excited atomic
states with T = 100 eV and the other a uniform distribution. The y axis
shows the energy-ordered level index. The temperature scale is set relative
to the most intense population on the plot. Higher-excited states, which feed

the lower states, are included in these calculations but not shown.

that instructs gnuplot to produce a heatmap of the populations through time, with the
colour scale set relative to the most populated state. Example heatmaps comparing ini-
tial state populations having either a Boltzmann or uniform distribution are shown in
Fig. 5.5. These heatmaps allow for a fast, intuitive assessment of the timescales over
which certain atomic states are important, and how long-lived states change over time
via feeding and decay. Should the user want to perform further analysis of the atomic-
state populations they can access the time-dependent population data directly in the csv
file.

5.6.3 Gk(t) and Angular-Correlation Plotting

After a Monte-Carlo simulation has been performed or single states have been input, a
plot of Gk vs t can be produced, as well as θ- or φ-dependent theoretical angular cor-
relations at chosen time points. Using the Gk(t) plots, the dominant frequencies for a
given charge-state or atomic-state distribution can be visualised, and the effect of chang-
ing either distribution explored. In many cases a realistic possibility for a g-factor mea-
surement requires several periods of a dominant, simple (i.e. J = 1/2) frequency. By
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using a g-factor estimate, the length of time and number of steps required to perform a
robust measurement can be interrogated. After deciding on an ideal charge-state distri-
bution and measurement time, θ- or φ-dependent angular correlations can be printed. By
examining the angular correlations expected at certain detector positions, those having
maximal anisotropy and count rates, which provide the best statistics and measure of
Gk(t), can be selected.

5.6.4 Free-Fitting Gk Values to Measured Angular Correlations

The Gk coefficients can be free-fitted to experimental φ-dependent angular correlation
data using a χ2 minimisation procedure. This is performed in a straight-forward manner
by varying G2 and G4 values across the range −1 ≤ Gk ≤ 1 and calculating the resulting
angular correlation. A χ2 value is then obtained from comparison with the experimental
data. Initially the Gk values are stepped through their ranges by sstep = 0.1 and a χ2

curve is obtained. The step size is then reduced by 1/10th and the procedure repeated in
a narrower range around the Gk χ2 minimum: Gmin

k ± (sstep× 10). This range narrowing
is repeated until a user-defined precision is reached, where the precision level p results
in a minimum step size sstep = 10−p. As discussed in §2.2.1 the angular-momentum
coupling for the E2 transitions results in sums over k = 0, 2, and 4. For the angular cor-
relations observed here, G2 and G4 are correlated variables. This means, when fitting an
angular correlation, that a decrease in one variable can be countered by an increase in the
other. As a result, it is possible for the χ2 value to minimise to unrealistic ratios between
the two values. For simple atomic states, such as a pure J = 1/2 state, the ratio between
G2 and G4 can be fixed, simplifying their fitting. The ratio between G2 and G4 can also
be fixed based on the Monte-Carlo simulations, or calculations using a linear combina-
tion of individual atomic states. In the present procedure the uncertainty is handled by
treating G2 and G4 as co-variate. When the uncertainty in G2 is being determined, G4 is
simultaneously minimised, and vice-versa. This approach gives realistic, although pos-
sibly over-estimated uncertainties. Also, because a strict relationship between the two
cannot be defined, the relative magnitude between G2 and G4 at their χ2 minima may
not be correct. However, the unrestrained relationship makes this approach able to dis-
tinguish, to some extent, the spin of the contributing states as G2 and G4 will exhibit
differing frequencies for J > 1/2. This fitting process is also sensitive to the detector
placement and reaction kinematics, as unperturbed angular correlations must be calcu-
lated quite precisely. Deviations from the expected kinematics and geometry can cause
the theoretical angular correlation to poorly fit the measurement data, which should be
considered. Overall, a free fit to G2 and G4 is useful in revealing frequency trends present
in the measured data, and as will be shown in Chapter 6, it is a powerful tool for initially
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interpreting experimental data, but should not be uncritically taken as giving true, abso-
lute values.

5.6.5 Calculating and Fitting R(t) Values

The anisotropy in the angular correlation depends on G2 and G4. Due to the compli-
cations which may arise when fitting these as free parameters, as described in §5.6.4,
another measure of the change in anisotropy of the angular correlation through time is
desirable. One such method is by directly determining the degree of anisotropy present
at any given time point. In the φ-dependent angular correlation, the count rate at any
given ∆φ angle will either increase, W↑, or decrease, W↓, as anisotropy is lost from the
unperturbed angular correlation at t = 0. For each γ-ray detector the coincident particle
detectors can be categorised as W↑ or W↓. This categorisation depends on their ∆φ value
in the φ-dependent angular correlation.

Figure 5.6 shows the difference between several angular correlations with G2, G4 <

1 and the unperturbed angular correlation when G2 = G4 = 1. The error bars show
the standard deviation across the varying values of G2 and G4. Figure 5.6 shows that
while there are clearly defined cross-over points at which the deviation minimises, it
does not fall to zero. This means that the ∆φ range defining W↑ and W↓ is not the same
for every value of G2 and G4. However, the small deviation at these cross-over points
means that an average across the entire dataset will give the correct assignment in most
cases. When designing an experiment, these cross-over points may be determined, and
detector placement at these positions avoided to eliminate this issue. The plot in Fig. 5.6
gives the ∆φ ranges defining W↑ and W↓ assignment, with regions having ∆W > 0 being
W↑ and ∆W < 0 being W↓. RIV Simulate automatically generates this plot by free-
fitting the Gk values and then taking the average difference between the fitted angular
correlation at each time point and the unperturbed angular correlation to assign each
γ-particle detector pair to the group W↑ or W↓.

With each γ-particle detector pair categorised, a geometric average of the ratio be-
tween each available pairing can be formed [129] by

R(t) =

(
n

∏
i=1

W↑i (t)

W↓i (t)

)1/n

(5.12)

where R(t) is the geometric average ratio, n is the number of ratios, and W(t) is the count
rate for a given γ-particle combination at time t.

To maximise the sensitivity to the change in anisotropy, specific W↑/W↓ pairs should
be formed. When |dW/dt| is at its largest for a W↑ and W↓ ratio the sensitivity to the
changing anisotropy will also be at its largest. |dW/dt| is proportional to the anisotropy
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FIGURE 5.6: This plot shows the average difference, ∆W, between the theo-
retical unattenuated angular correlation G2 = G4 = 1 and fitted angular cor-
relations having G2, G4 < 1 at several different time points, using the data
from §6.1. The γ-particle detector pairs having ∆φ values where ∆W < 0
will be categorised as W↑, and ∆W > 0 will be categorised as W↓. The mag-
nitude of ∆W is proportional to the change in anisotropy. The error bars
show the standard deviation across the average. It is worth noting that the
deviation minimises at the ‘cross-over’ points ∆W = 0, meaning that these

cross-over points are consistent across the data-set.
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in the unperturbed angular correlation. Therefore, γ-particle detector pairs can be
ordered by increasing |∆W| (see Fig. 5.6). The pairings are then made from the W↑ and
W↓ lists. If the angular correlation is isotropic (i.e. G2 = G4 = 0), then R(t) = 1 for
any possible pairing of data points in the angular correlation. Conversely, when the
anisotropy is maximal (i.e. G2 = G4 = 1 at t = 0), then R(t) can form the smallest
possible value, being the ratio between the W↑ and W↓ data points having the largest
|∆W| values. Therefore, the first-listed pairings will have the most sensitivity to changes
in anisotropy, and sensitivity will decrease down the list. To control the sensitivity, an
allowed ratio range can be set. The range is normalised so that the sensitivity range,
as set by the user, is between 0 and 1. The maximum sensitivity is defined by the first
detector pair in the list, having the smallest ratio value. By increasing the lower limit on
the sensitivity range the detector pairings with no sensitivity to the change in anisotropy
will be removed from the R(t) average, while reducing the upper limit on the sensitivity
range will remove those detectors most sensitive. Higher sensitivity ranges should be
examined to accentuate the desired oscillations in a given measurement, while lower
sensitivity ranges may be used to verify that there is a ‘null’ effect.

One key advantage of this approach over fitting the φ-dependent angular correlation
at each time point is that it is not as sensitive to the experimental geometry, reaction
kinematics, or to normalisation between γ-ray detectors. However, it is also less able to
distinguish contributions from atomic states with J > 1/2 spin, which present as com-
plex frequency patterns in the R(t) function that obfuscate the simple frequencies sought.
The issue of attenuation owing to unknown factors, which can significantly confound di-
rect angular-correlation and Gk fits, is also easily handled by introducing an offset into
the R(t) function when fitting to measurements. The offset allows attenuation owing to
unknown, omitted, or uncontrolled sources to be compensated for, meaning that fewer
atomic states can be included in a given fit. The important oscillations that will be used
to determine the g factor can then be fitted more directly, with fewer parameters and less
interference. By this method, frequencies can be elucidated and their time-dependence
observed in a straight-forward manner which, in the right experimental conditions, can
provide a robust fitting approach to determine the g factor.

5.6.6 Parameter Fitting Using the Monte-Carlo Simulation

After a Monte-Carlo simulation has been performed Gk values, angular correlations
and R(t) values can be calculated. In the Monte-Carlo-simulation fitting procedure
there are four components that may be varied: the charge-state distribution (having a
population parameter for each charge state), the atomic-state distribution (having the
temperature parameter T and/or σ depending on which distribution function is chosen),
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the plunger zero-time offset, and the nuclear g factor. The charge-state distribution
is, ideally, an independently parameterised or measured quantity. The atomic-state
distribution is presently a poorly known quantity, both in its distribution and its average
energy. In Ref. [134] the experimental data were able to be fitted using a Boltzmann
distribution having an average energy T = 200 eV, although this fit may not be unique
in its ability to describe the data. The fit indicates that this shape has good potential to
match the distribution of excited atomic states. Using a robust measurement on a state
with a known g factor, this quantity could be more firmly understood; however for the
purposes of this work it is considered a free parameter to be explored.

When fitting to angular-correlation data, any and all of the parameters discussed may
be allowed to vary in the minimisation. In this multivariate space many local minima
may exist. To find the deepest/true minimum a segmented ‘landscape’ fit is performed
followed by a local minimisation. As in §5.6.4, the user specifies a precision level, p, such
that there is a minimum step size sstep = 10−p. Before this minimum step size is used,
a landscape fit is performed which calculates χ2 across the range 0 ≤ T, σ ≤ 1000 eV,
and a user-specified g-factor range, if these parameters are chosen to be varied. The
step size across the range is sT,σ = 10 eV, and is allowed to fall to sT,σ = 1 eV for
p > 2. Across the g factor range the step size is sg = 10× sstep. If the user specifies that
the charge-state distribution should be varied, this is performed in a separate routine
which dynamically fits the occupation of each charge state at each landscape step. In
this approach, all charge states begin as having equal population, and are co-varied,
step by step, until a χ2 minimum is found. The minimisation is iterated over, reducing
the step size until s ≤ 0.001 (0.1%). In testing, dynamically fitting the charge-state
distribution in this manner fits the charge-state occupation parameters to the same
values for a wide range of different starting values, showing it is a robust approach. This
is fortunate, as handling a landscape fit with nth dimensional parameters (n being the
number of charge states), in addition to the existing landscape procedure, is incredibly
computationally intensive. If the user specifies that the zero-time offset should be
varied, this is also dynamically minimised as there is little risk of falling into a false
minimum, and to reduce computational load. Across the landscape, χ2 is calculated for
each combination of stepped parameters chosen to be varied. After this procedure the
set of values at the χ2 minimum is selected. From these values a dynamic minimisation
is performed at the smallest step size, sstep. If the g factor is varied, its uncertainty
is obtained using the resulting χ2 minimisation curve, allowing re-minimisation
of any other variable parameters. This landscape to dynamic fit approach is intended
as a compromise between falling into a false minimum and reducing computational load.

Ideally, the charge-state and atomic-state distributions can be firmly set, leaving the
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g factor alone to be freely varied. However, due to the poorly understood physics gov-
erning the atomic-state distribution, it is recommended that the user, when fitting the
g factor, also allows it to vary. This means the uncertainty obtained through the χ2 min-
imisation curve will account for re-minimisation of the atomic-state distribution’s tem-
perature parameter. Alternatively, this parameter can be fixed at different values in order
to observe its effect on the g factor. When allowing too many parameters to vary simul-
taneously there can be issues with over-fitting and unrealistic results. This is particularly
true when allowing the charge-state distribution in a Monte-Carlo simulation to vary
along with the atomic-state distribution. Recalling the discussion in §5.1.4 regarding the
characteristic Gk(t) behaviour of different ionic species, as the average energy of a distri-
bution is increased the attenuation takes on a quasi-exponential character regardless of
the ionic species, which can lead to false minima with unusual charge-state populations
and average energies. The user is advised to carefully consider the results of fits and ex-
plore the parameters thoroughly using the χ2 sweep calculations (to be described) before
accepting a fit value.

5.6.7 Parameter Fitting Using Individual Atomic States

The procedure followed here is very similar to that described in §5.6.6, the differences
being that there is no longer a temperature parameter, and the charge-state distribution
is conceptually replaced with a list of atomic-state occupations. These individual-state
occupations may vary in an unrestricted manner, or be grouped by their ionic species
and share a specified population value. If individual states are grouped, the occupa-
tion of individual states belonging to each specified ionic species always sums to the
population of the ionic species. This makes individual atomic-state occupations, the
plunger zero-time offset, and the g factor, the available parameters in the fit. Because
the occupation of single atomic states can be difficult to ascertain, it is recommended
that this parameter be allowed to vary, and the Monte-Carlo simulation heatmap used to
interrogate if these occupations are realistic. To simplify the fit, the relative populations
are fixed through time. The variation of atomic-states through time is only handled in
the Monte-Carlo simulation.

In comparison with the Monte-Carlo simulation, the individual-state approach has
the disadvantage of not handling changing populations and frequency-amplitude at-
tenuation through time, or phase shifts, arising from atomic decays (see §5.1.2). The
advantages are that it provides much more control over, and sensitivity to which atomic-
state frequencies are important in the fit, particularly over a constrained time interval.
However, the effect of changing populations and phase shifts can be explored using the
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routine described in the next section. Again, the user is advised to thoroughly interrogate
fit results and ensure they are well-understood before accepting them.

5.6.8 χ2 Sweep Calculations

In order to aid the user in understanding the results and consistency of certain fits, as
well as the correlation between g and varied parameters, a routine exists that allows the
user to sweep the g factor across a range of values at a specified precision level, while
allowing the charge-state population or individual-atomic-state occupation, temperature
parameter (if applicable), and the plunger zero-time offset to vary with g. If the user has
specified individual atomic states, there is also the option to allow phase shifts for each
individual atomic state.

This function compliments the automated parameter fits as it allows the user to in-
terrogate how fit parameters are varying with g, how different parameters affect the χ2

curve, and also check that no deeper minima exist in the fit region. It can also reveal
whether strong correlations or unusual fluctuations exist between the g factor and other
parameters. Finally, the χ2 curves it generates are useful in verifying that correct uncer-
tainties in fitted values and true minima have been obtained, particularly for fits using
Monte-Carlo simulations, in which the random-sampling process introduces fluctuations
in the fit results.
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5.7 Summary

In this chapter the details of the software package RIV Simulate have been described.
RIV Simulate provides a means to design RIV experiments using a number of tools,
such as atomic-state heatmaps resulting from chosen atomic-state distributions, Gk(t)
plots for specified charge-state distributions, φ-dependent angular correlations for speci-
fied γ-ray-detector and particle-detector geometries, and plotting of individual-state fre-
quencies alone or in superposition to inform the choice of appropriate plunger distances
in a measurement. RIV Simulate is also capable of fitting parameters to data sets, specifi-
cally the charge-state distribution in a measurement, the atomic excited-state distribution
of the ionic species, and most importantly, the nuclear g factor. For the nuclear g factor,
statistical uncertainties can also be obtained using the χ2 minimisation curve. Parame-
ters can be freely varied, and sweeps across g-factor ranges can be performed to inves-
tigate correlations between parameters. With the specifics of how RIV Simulate works
now described, its application to experimental data analysis will be presented in the next
chapter.
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Chapter 6

Recoil-In-Vacuum Measurements

In this section, the experimental details of time-differential (TD) and time-integral (TI)
recoil-in-vacuum (RIV) measurements are reported, along with the analysis of data
obtained from these experiments using the RIV Simulate computer code described in
Chapter 5. A description of the RIV technique can be found in §2.3.3. The coordinate
frame defining the particle- and γ-ray-detector angles in these measurements has its
origin at the beam spot on the target. The beam direction defines the z or polar axis
(θ = 0). These experiments aim to measure φ-dependent angular correlations, where
φ = 0 is defined as the γ-ray and particle detector having the same azimuthal angle.
Each γ-ray detector measures a φ angular correlation in coincidence with a radially
symmetric particle-detector array positioned parallel to the xy plane and down-beam
of the target, which provides the φ-dependence. Please refer to Fig. 2.5 for a visual
representation of these polar angles. In the time-dependent variation, a plunger device
is used to adjust the position of a stopping foil, which serves to quench the hyperfine
interaction at the moment of impact. The analysis of the TDRIV data allowed for several
dominant hyperfine interactions to be identified in an ab initio fashion, while the TIRIV
data reveals that there are components of the hyperfine interaction that require further
research to understand.

All of these experiments were performed prior to the commencement of this project.
The 56Fe 2+1 -state TDRIV data were collected at IPN, Orsay, with the provided angular
correlation data and nuclear lifetime already extracted from the spectroscopic data. For
the other measurements, the collected spectroscopic data was analysed and interpreted
by the author.
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6.1 56Fe Time-Dependent Recoil-In-Vacuum Measurement

The aim of this experiment was to measure the time-dependent vacuum deorientation
of the 56Fe 2+1 state using the recoil-in-vacuum technique and determine the g factor
from the Gk(t) trend (see §2.3.3). By optimising the charge-state distribution (CSD) to
predominantly produce Na-like ions, the data were intended to allow the determination
of the nuclear g factor of the 56Fe 2+1 state using the hyperfine interaction with the Na-like
atomic J = 1/2 ground state. The experiment was therefore designed to maximise the
fraction of Na-like ions in the CSD, whilst also Coulomb-exciting the 56Fe nucleus to the
2+1 state. CSD measurements were also performed, and an empirical parameterisation of
the CSD of iron ions recoiling out of nickel was determined. The 56Fe 2+1 -state lifetime
was also extracted from the TDRIV data and provided. In the present work, this value
was averaged with measurements available in the literature to provide a high-precision
value. The TDRIV data provide the opportunity to test an ab initio model that seeks to
calculate the hyperfine-interaction strength in free ions, based on atomic-structure theory.
Analysis of the TDRIV data using this model will be presented in the next section, §6.1.
Validation of the model will serve to improve precision for future g-factor measurements
using this technique.

6.1.1 Methods

The experiment was conducted at the Accelerateur Linéaire et Tandem á Orsay facility at
the Institut de Physique Nucléaire, Orsay, in 2014 by Prof. Andrew Stuchbery (The Aus-
tralian National University, Australia), Dr. Alain Goasduff and Prof. Georgi Georgiev
(Centre de Sciences Nucléaire et de Sciences de la Matiére (CSNSM), Orsay, France), and
Dr. Asli Kusoglu (CSNSM, Orsay, France and Instanbul University, Turkey), assisted by
staff and students J. Ljungvall, I. Matea, T. Konstatinopoulos, K. Gladnishki, A. Gottardo
and D. Yordanov. A 130 MeV 56Fe beam was incident upon a target having 0.30 mg/cm2

of carbon painted onto a 0.67 mg/cm2 nickel foil. Beam particles were excited on the
carbon layer and recoiled out of the nickel. Down-beam of the target was an eight-fold
segmented plastic annular particle detector. This detected recoiling carbon ions at
forward angles. The inner-radius of the detector segments was 39 mm, outer-radius
was 47 mm, and each segment subtended a φ angle of 30◦. The particle detector was
located 70 mm down-beam of the target. Recoiling beam particles were stopped in a
5.8 mg/cm2 nickel foil (the stopping foil). The Orsay Universal Plunger System (OUPS)
plunger device [141] was used to measure the time dependence of the hyperfine
interactions. OUPS uses an electronically controlled stage capable of maintaining a
consistent distance between the target and stopping foils. OUPS is capable of adjusting
the stopping-foil position along the beam axis in order to perform a time-dependent
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measurement. Consistent inter-foil distances were maintained using a feedback mech-
anism that continuously read the capacitance beween foils to determine the inter-foil
distance and adjusted the stage position accordingly. Coincident γ rays were detected at
forward angles by the ORGAM [85] γ-ray-detector array, and at backward angles by the
MINIBALL [229] γ-ray-detector array.

The CSDs of 56Fe ions traversing nickel foils at various energies were measured at
ANU’s heavy-ion accelerator facility by Prof. Andrew Stuchbery and Dr. Matthew Reed.
Beams of 56Fe at energies of 40, 50, 55, 60, 70, 80 and 100 MeV were delivered by the
14 UD Pelletron accelerator onto a ∼0.1 mg/cm2 nickel target. Energy loss through the
target was calculated to be ∼ 2 MeV for all beam energies using Zeigler’s stopping pow-
ers [232]. The accelerator switching magnet (normally used to select a beam line), was
used to bend individual charge states into a suppressed Faraday cup and measure the
beam current for each charge state, hence determining the CSD. Similar measurements
were also performed using a self-supporting 0.5 mg/cm2 carbon target.

6.1.2 Results

The raw data obtained in this experiment were analysed, and angular correlation
data provided, by Dr. Asli Kusoglu (CSNSM, CNRS/IN2P3, Université Paris-Sud, and
Department of Physics, Faculty of Science, Istanbul University) and Dr. Alain Goasduff
(CSNSM, CNRS/IN2P3, Université Paris-Sud). Due to the fragmented statistics from,
and poorly defined geometry of, the MINIBALL array, those data were excluded from
the analysis. Angular correlations measured by the ORGAM array can be found in
Appendix B.1. Figure 6.1 shows a sum γ-ray spectrum of γ-particle coincidences,
showing that the measurement is clean of interfering γ rays and that the Doppler shift is
sufficiently large for separation of the in-flight and stop peaks.

The charge-state distribution (CSD) data were provided by Prof. Andrew Stuch-
bery. The CSDs at each beam energy were fitted using a skew-normal distribution [46],
which was found to be an ideal shape in Ref. [134]. It is also the expected form, as the
well-known CSD parameterisations of Nikolaev and Dmitriev [155], and Schiweitz and
Grande [187] both use normal distributions to fit the data, and skew is expected to be
introduced for CSDs near to atomic shell closures (Ne-like ions in the present case). The
skew-normal distribution is calculated by [46]:

P(x) ∝ φ(x)Φ(αx), (6.1)
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FIGURE 6.1: TDRIV 56Fe γ-ray spectrum from a single ORGAM detector in
coincidence with events from a single particle detector at three distinct flight
times. These spectra show the peaks are well-separated, and that there is

neither background nor Doppler tail under the 56Fe 2+1 stop peak.
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FIGURE 6.2: Measured CSDs of 56Fe ions emerging from a nickel foil at vari-
ous energies, fitted using skew-normal distributions. Note that E = 58 MeV

has been duplicated for comparison.
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FIGURE 6.3: The empirical average Z− Q values, m, of the measured CSDs
versus the energy of the ions as they exit the foil. There is a strong linear
relationship between m and the exit energy. The E = 38 MeV point was
excluded from the fit because it is an outlier and outside of the range of

interest (see text).

where
φ(x) =

1√
2π

e−x2/2, (6.2)

and
Φ(x) =

∫ x

−∞
φ(t)dt =

1
2
[1 + erf(x/

√
2π)], (6.3)

where erf(x) is the Gaussian error function of Eq. (6.2). Note that, because erf(x)
cannot be evaluated analytically, numerical approaches supplied by the GNU Scientific
Library [143] and CERN’s ROOT [41] have been used.

Because CSD data are not normally distributed around zero, the variable x is substi-
tuted by x → (x− ξ)/ω, changing Eq. (6.1) to

P(x) =
2
ω

φ(
x− ξ

ω
)Φ(α

x− ξ

ω
). (6.4)

Note that the variables ξ and ω are analogous, but not directly equivalent, to µ (the
mean) and σ (the variance) in the normal-distribution function.

The skew-normal distribution was fitted to the CSDs using ROOT’s fitting func-
tion [41], varying ξ, ω, α, and a scaling parameter, a. The resulting fits are shown in
Fig. 6.2, and the parameters obtained from these fits (excluding a) are listed in Table 6.1.
The empirical mean Z − Q values, m, were calculated for each foil exit energy from the
measured CSDs, and are also listed in Table 6.1. These were plotted against the foil
exit energy, shown in Fig. 6.3, and were consistent with a linear trend across this energy
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FIGURE 6.5: The fit parameter ω versus m(E). The relationship appears
to be linear across the range, with an inverted Gaussian allowing for the
narrowing of the distribution, and the consequent dip in the ω vs m trend,

when centred over Ne-like ions (m = 10).
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FIGURE 6.6: The fit parameter α versus m(E). The fit shows an asymmetric
relationship around m = 10. Hence, a 3rd-degree polynomial function was
used to fit the trend. The large uncertainty in the Z−Q ' 10 data point may
be due to the distribution becoming very close to a normal distribution at

this energy.

TABLE 6.1: Values obtained from fitting the skew-normal-distribution pa-
rameters (ξ, ω and α) to the charge-state measurements shown in Fig. 6.2, as
well as the empirical mean at each energy (m). The large uncertainties in the
fitted values of ξ and α for E = 68 MeV is likely due to the distribution at this
energy nearing Z−Q = 10 and becoming closer to a normal distribution, al-
lowing the two correlated parameters to fit a wider range, and consequently

inflating their uncertainty.

Exit Energy ξ ω α m
(MeV)

38 9.19(8) 2.17(14) 4.32(162) 10.76(13)
48 9.63(8) 2.10(10) 1.96(29) 11.31(13)
53 9.23(6) 2.01(9) 2.70(44) 11.08(13)
58 9.12(13) 1.82(22) 2.58(112) 10.49(13)
68 9.66(554) 1.13(8) -0.01(615) 10.05(13)
78 10.21(22) 1.53(18) -1.23(51) 9.42(13)
98 9.53(16) 1.65(13) -1.21(32) 8.57(13)
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range, with the exception of the E = 38 MeV point. Recoiling 56Fe ions are expected to
have energy in the range 49 . E . 55 MeV. Due to the E = 38 MeV point being an
outlier, and outside of this range, it was excluded. The fit gives the formula:

m(E) = 13.869− 0.0553E. (6.5)

Using Eq. (6.5), the mean Z−Q as a function of energy, m(E), was then calculated for
each foil exit energy, and used to identify trends with the skew-normal-distribution pa-
rameters. An uncertainty determined from the average deviation of the empirical Z−Q
values from the calculated values, being ±0.13, was assigned. Fitted values of ξ, ω and α

were then plotted against m(E), shown in Fig. 6.4, Fig. 6.5, and Fig. 6.6, respectively. The
plot of ξ versus m(E) shows no apparent correlation, and that these values are consistent
across the energy range. As such, a weighted-average value ξ = 9.347 was adopted.
The plot of ω versus m(E) in Fig. 6.5 was best fit using an inverted Gaussian added to
a linear function. Across the range, ω appears to increase with m(E), but drops around
m(E) = 10. This seems sensible, because ω represents the width of the skew-normal
distribution. This result indicates that the width narrows as more electrons are stripped,
and electrons become more tightly bound, but also that there is additional binding at
Z−Q = 10, the neon shell-closure. This fit gives the formula:

ω(m) = 0.160m + 0.296− 0.796e−(m− 10.086/0.504)2
. (6.6)

The plot of α versus m(E) in Fig. 6.6 was fit to a 3rd-degree polynomial. This function
was chosen to capture the changing skew across the present range as m(E) passes from
the regions away from the shell-closure (where the CSD is expected to follow a normal
distribution, i.e. α = 0), through the shell-closure, where α ∼ 0 is also expected. This fit
gives the formula:

α(m) = −0.248m3 + 8.062m2 − 84.810m + 289.447. (6.7)

Kinematics calculations [144] indicate that the energy of excited 56Fe ions resulting
from recoiling carbon ions impacting across the angle subtended by the particle detector
is 49.6–55.6 MeV. By using Eq. (6.5), Eq. (6.6), Eq. (6.7), and the average value ξ = 9.347
to calculate the skew-normal CSD across the detector face, weighting appropriately for
excitation-probability, solid-angle and scattering intensity, the CSD listed in Table 6.2 and
shown in Fig. 6.7 is obtained. The single-energy CSDs listed in Table 6.2 show that there
is little variation in the CSD expected across the detector face due to the narrow energy
range. With the CSD empirically determined, the analysis of the angular-correlation
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TABLE 6.2: Expected CSD for 56Fe ions in the Orsay TDRIV experiment, in-
tegrated over the annular-style detector’s angular opening, recoiling with
average velocity β = 0.04463 and covering the range 49.6 ≤ E ≤ 54.6 MeV,
using Eqs. (6.4–6.7) and ξ = 9.347. The expected CSD was calculated us-
ing RIV Simulate’s target energy-loss routine. For reference, the CSD at the
lower energy limit E ∼ 49 MeV and the upper energy limit E ∼ 55 MeV are

also shown.

Z−Q Ionic Species P(49.6 ≤ E ≤ 54.6 MeV) P(E = 49 MeV) P(E = 55 MeV)
8 O-like 2.8% 2.0% 4.7%
9 F-like 14.1% 13.2% 15.9%

10 Ne-like 27.7% 28.2% 27.0%
11 Na-like 26.8% 27.2% 25.8%
12 Mg-like 16.7% 16.9% 15.8%
13 Al-like 7.8% 8.1% 6.9%
14 Si-like 2.9% 3.1% 2.3%
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FIGURE 6.7: Expected CSD for 56Fe ions in the Orsay TDRIV experiment,
integrated over the annular-style detector’s angular opening and recoiling

with average velocity β = 0.04463, using Eqs. (6.4–6.7) and ξ = 9.347.

data may proceed with more confidence.

The 56Fe 2+1 state’s lifetime was measured from the observed Doppler shift be-
tween the stop and flight peaks across the γ-ray detector array. This analysis was
performed by the original experimenters, and not in this project. They reported
τ(2+1 ;56 Fe) = 8.43(50) ps. Using this value, and all the available values in the liter-
ature, a re-evaluation was performed to determine a new, precise value. The average
was obtained using AveTools [123], a code developed to determine averages with un-
certainties using the “Limitation of Relative Statistical Weight”, “Normalised Residual
Method” and “Rajeval Technique” statistical approaches [177]. Lifetimes from Refs. [2,
7, 12, 18, 20, 27, 45, 53, 62, 67, 99, 107, 122, 126, 132, 135, 138, 150, 156, 170, 173, 197, 225]
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were used with AveTools. The data points from Refs. [12, 20, 138] (1960An07, 1962Be18,
1972Li28) were identified in the averaging procedure as severe outliers, and as such were
excluded. With these removed, the remaining data points showed good consistency, ob-
taining τ(2+1 ;56 Fe) = 9.27(13) ps with χ2

ν = 1.07 in all three averaging methods. Fig-
ure 6.8 shows a visual representation of the fit result. This value was used for the 56Fe 2+1
lifetime in calculations performed in the following section.
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FIGURE 6.8: Lifetime measurements of the 56Fe 2+1 state available in the
literature, along with that obtained in the 56Fe TDRIV measurement. Ave-
Tools [123] was used to obtain the average with uncertainty. Nuclear Science
References codes have been used here, and bibliographic references can be

found in-text.



6.2. 56Fe Time-Differential Recoil-In-Vacuum Analysis 153

6.2 56Fe Time-Differential Recoil-In-Vacuum Analysis

The 56Fe 2+1 -state TDRIV data provided from the experiment at the ALTO facility at the
IPN, Orsay, were analysed using RIV Simulate, both with the intention of determining a
g(2+1 ) value, as well as a demonstration of the capabilities of the RIV Simulate computer
program. A conference proceeding describing a preliminary analysis has been published
by the author and collaborators [146]. A more thorough analysis is presented here,
specifically of the data collected using the ORGAM γ-ray-detector array. These data
were chosen due to the array having all detectors at equivalent angles θ = 46.5◦ with
well-defined geometry, which allows for φ-dependent angular correlations to be easily
visualised and robustly fitted. Additionally, these detector crystals were large enough to
record sufficient statistics at each time-point. In contrast, the MINIBALL detector-array
crystals had poorly defined geometry and variable θ angles, with low count rates in each
crystal segment. As such, they were excluded. Through the analysis of the ORGAM
data, using the RIV Simulate toolkit, the hyperfine interaction was interrogated, and a
g(2+1 ) value for 56Fe was determined. It should be noted that in the following section the
data from the stopped component of the measured γ-ray peaks was the primary focus
of the analysis, as it is most sensitive to the oscillations used to determine the g factor.
Hence, where Gk values are referred to in the following section, they should be assumed
to be the Gstop

k component, unless otherwise specified.

It will be shown that the ground and first-excited atomic states in the F-like and
Na-like species were able to almost completely explain the observed oscillations in the
Gk(t) trend (§6.2.4 below). By fitting the R(t) function of the angular-correlation data,
consistent g-factor values were obtained using both individual-state and Monte-Carlo-
simulation fits (§6.2.7 below). Modelling of the in-flight component of the data re-
vealed the presence of a strong hyperfine-interaction component resembling the F-like
ground state (§6.2.9 below). Modelling of the hyperfine interaction present in the stop-
component of the TDRIV data, using individual atomic states and the Monte-Carlo sim-
ulation, was able to determine g = +0.546(19).

6.2.1 Target Energy Loss and Kinematics

In the experiment, 56Fe nuclei were accelerated to 130 MeV and impinged upon a reac-
tion foil comprised of a 0.30 mg/cm2 carbon layer as the target, backed by 0.67 mg/cm2

of nickel. For this target composition, the target energy-loss routine (described in §5.6.1)
indicates that the average recoil velocity of ions detected by the plastic ring-style detec-
tor agrees with the value of β = 0.04463(12) obtained from the Doppler shift of the flight
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energy peak. The target energy-loss routine was used to calculate the charge-state distri-
bution (CSD) shown in Table 6.2 using the empirical parameterisation proposed in §6.1.2.
The target and particle-detector details were used in the experimental setup routine to
calculate the statistical tensors defining the spin-alignment of recoiling 56Fe 2+1 -state ions
coincident with the detected forward-scattered carbon ions. With these target and geom-
etry details confirmed, angular correlations can be reliably calculated so as to identify
perturbations owing to the hyperfine interaction.

6.2.2 Free-Fitted Gk(t) Values

The first step taken in the data analysis was to free-fit Gk values to the data set using
RIV Simulate’s Gk free-fitting routine (see §5.6.4 for more details). The resulting free-
fitted Gk(t) values are shown in Fig. 6.9. It should be noted that with free minimisation
of the Gk values, χ2

ν = 1.296 was obtained across the entire dataset, which is notably
larger than unity. Figure 6.10 shows a comparison of angular-correlation fits at two
time points from the free-fitted Gk values, one having χ2

ν = 0.918 (lower end of the
χ2 range) and the other having χ2

ν = 1.902 (upper end of the χ2 range). There is
a significant amount of scatter present in the poorer fit. The source of this issue is
unknown, but may be due to some systematic error (e.g. the beam being off-centre or
bad normalisation between detectors), that there were issues with the γ-ray or particle
detectors during the particular run (e.g. unstable voltage supply), or that there were
issues extracting clean photopeak counts in the analysis (e.g. bad peak-to-background
ratios in the γ-particle coincidence pair), which can cause irregular behaviour in some of
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FIGURE 6.9: Time-differential 56Fe Gk values obtained by free-fitting G2 and
G4 to the measured angular correlations (see Appendix B.1) as described in
§5.6.4. For this fit χ2

ν = 1.296. The interaction appears rather complex, how-
ever there is clear structure with which the dominant hyperfine interactions

can be identified, as described in §6.2.2.
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the angular-correlation data points. Regardless, these issues, while worsening the Gk(t)
fits, should have little effect on the overall analysis due to the larger number of γ-ray
and particle detector pairings contributing to each angular-correlation measurement.

Inspection of the free-fitted Gk(t) data points in Fig. 6.9 shows that the early time-
points (< 10 ps) appear to have some structure, but are dominated by a rapid decline.
This most likely indicates one of two things: that many rapid atomic transitions are oc-
curring, giving the quasi-exponential shape as described in §5.1.2, or that a single, dom-
inant hyperfine field is responsible. In the former case, a reduced maximum anisotropy
will be fixed here, but, in the latter case, anisotropy may be restored at a future time.
Beyond t ∼ 5 ps the G2 and G4 values follow differing frequencies, converging with
G2 ' G4 << 1 near 10 and 12 ps, behaviour necessitating a J > 1/2 atomic state. From
12–19 ps there appears to be a single period of a strong oscillation in both G2 and G4,
more indicative of a J = 1/2 state. A significant degree of anisotropy is then restored at
around 23 ps, suggesting that the rapid decline near t = 0 is largely due to a dominantly
populated atomic state. These are clear structural markers that can be used to identify
which hyperfine interactions are contributing most strongly. They therefore determine
which atomic states should be used to describe the Gk(t) trend, and hence determine the
g factor.

6.2.3 Monte-Carlo Simulations

To fit the g factor, it is important to understand which atomic states contribute most
strongly to the overall hyperfine interaction, and give rise to features that can be iden-
tified. To interrogate which states will most likely contribute, Monte-Carlo simulations
were performed with the ionic species corresponding to the charge states indicated in
Table 6.2 to explore how the population of atomic states for each ionic species varies
through time. These were performed without the 2J + 1 weighting suggested by Stone et
al. [202], as preliminary fitting attempts revealed that it dramatically worsened the fit.
The 2J + 1 weighting worsened the fit by causing the high-spin states to effectively
increase in occupation, causing a relative reduction in the occupation of the low-spin,
low-energy states that contribute most strongly to the hyperfine interaction. The
Monte-Carlo simulations helped to understand which atomic states will be dominantly
occupied, and therefore which frequencies should be observed in the measurement.
The simulations were performed having the initial excited atomic states for each ionic
species follow a Boltzmann distribution with average energy T = 200 eV. This value was
chosen as it should give a wide occupation of low-energy atomic states expected in the
system after recoil. However, its value does not critically affect the following discussion.
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is also interesting to note the ∼ 840 eV state to which the higher states feed
without any strong decays out. However, the Ne-like shell gap prevents any

significant occupation of these states.
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Figure 6.11 shows the resulting time-dependent occupation of atomic states in
each ionic species through time, in the form of a heatmap. Atomic-state occupation is
represented by colour, rising linearly from black (none), through blue, red, yellow, and
then white. White is set to the most intensely occupied state at any point in the time
range, with all other occupations referenced to this. The heatmap is intended to give
an intuitive feel for the intensity of atomic-state occupation through time. Significant
atomic states (those belonging to strongly populated ionic species, and having significant
occupation through time) have been labelled. Figure 6.12 shows the Gk(t) plots resulting
from the simulated atomic-state occupation for each ionic species. An interpretation of
the information in these two figures will now be presented.

O-like ions have similar initial occupation of the ground and first three excited states,
which are then fed and/or decay at different rates. The resulting Gk(t) trend appears
as a superposition of single frequencies contributed by the J > 0 excited states, with
their amplitude reduced by the J = 0 ground state. The combination of the oscillations
cancelling due to interference, and the J = 0 ground state reducing the oscillation ampli-
tudes, causes the overall Gk(t) trend to appear rather flat, with only a little structure.

F-like ions only have notable occupation of the first three states. This is because
fluorine, being one electron removed from neon, must excite electrons across the neon
atomic shell gap to occupy the higher-excited states. These three occupied states are
the 2p3/2 (ground state), 2p1/2 (first-excited or spin-flip) and 2s1/2 (second-excited)
electron-hole states. The 2s1/2 mostly feeds the 2p3/2 via an E1 transition, while the
M1 transition between 2p1/2 and 2p3/2 is hindered, and therefore is not expected to
be observed over the experimental timescale. Transitions between the atomic energy
levels are illustrated in Fig. 6.13, and show that many of the higher-energy states
have strong transitions to the lowest two energy states. The Gk(t) plot shows strong,
single-frequency behaviour with high-amplitude oscillations, owing to the dominant
occupation of the two 2p atomic states, with a small contribution from the 2s state at
early times.

Ne-like ions have dominant occupation of the ground state from t = 0 due to the
atomic shell gap. The small number of excited states have large spin, and so their
transition back to the ground state is hindered, but should only weakly contribute to
the hyperfine interaction. The Gk(t) plot shows no frequency character, with G2 and
G4 initially weakly declining, owing to the small occupation of excited states, before
becoming fixed. Overall, the dominant ground-state occupation means the Ne-like
ions will contribute little to the attenuation in the angular correlation. Instead, the
Ne-like ions will cause a reduction in the overall amplitude of the hyperfine interaction
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frequencies from other ionic species, once averaged.

Na-like ions initially have many excited states, which quickly decay into the ground
(3s1/2), and first four excited states (3p1/2, 3p3/2, 3d3/2 and 3d5/2). These low-energy
excited states are long-lived (having τ & 100 ps), meaning that they will slowly feed
into the ground state, causing an amplitude reduction in the ground state’s oscillations
over time. The Gk(t) plot shows some single-frequency character, which will become
dominant as T → 0. The rapid transitions of the higher-energy states to the lower-
energy states are illustrated in Fig. 6.14, which reinforce this single-state character. At
this energy (T = 200 eV) the single-frequency amplitudes are reduced by occupation of
the long-lived, low-energy states that have weak hyperfine interactions (BHF ' 0), as
well as due to feeding. This results in a somewhat quasi-exponential shape.

Mg-like and Al-like ions have a multitude of populated states that are continually
changing occupation, which will give their Gk(t) trend a quasi-exponential character.
The Gk(t) plots show that this is indeed the case, particularly for the Al-like ions.

In conclusion, these simulations reveal that the low-energy atomic states in the
strongly populated F-like and Na-like ionic species are the best candidates to associate
with the high-frequency structural features discussed in §6.2.2.

6.2.4 Individual Atomic-State Contributions

A better understanding of the hyperfine interaction present in this measurement can
be obtained by considering a handful of individual atomic states, instead of the full
Monte-Carlo simulation. If this approach is valid, the contribution of strongly occupied
atomic states should be evident in the Gk(t) trend. In consideration of the free-fit
Gk(t) plot in Fig. 6.9 and the simulation Gk(t) plots in Fig. 6.12, it appears that the
quasi-exponential attenuation resulting from the Mg- and Al-like ions makes only a
small contribution. The free-fit Gk(t) trend must therefore be dominated by frequencies
from only a few low-energy states.

As discussed in §6.2.3, the F-like and Na-like ionic species are the only ones that
will contribute observable frequencies, and so their low-energy and ground states were
examined. For Na-like, five low-lying atomic states, being 3s1/2, 3p1/2, 3p3/2, 3d3/2

and 3d5/2, were rapidly populated. Of these five, only the 3s1/2 and 3p1/2 states have
hyperfine interactions with observable periods over the measurement time-span. The
3p3/2, 3d3/2 and 3d5/2 states serve only to reduce the amplitude of the 3s1/2 and 3p1/2

frequencies and lower the overall Gk values through time. For the F-like charge state
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its improved consistency, the sensitivity range 0− 1.0 was chosen for fitting.

the ground and first-excited states (2p3/2 and 2p1/2 holes) are dominantly populated
from t = 0, and both have observable frequencies over the measurement time-span. The
Gk(t) plots arising from the hyperfine interaction with each individual state, adopting
g = +0.51 [56], are shown in Figure 6.15. Individual examination of these trends, and
comparison with the Gk(t) trends in Fig. 6.9, should reveal which states are strongly
contributing.

Already, the restoration of anisotropy after 20 ps, owing to the combined effect of
3p1/2 and 2p3/2, is evident. The interference between 3s1/2 and 2p1/2 creates a construc-
tive peak at t ' 16 ps, but they interfere less constructively at other times. The 2p3/2 also
exhibits a strong, rapid decline from t = 0 followed by G2 falling below G4, owing to the
J = 3/2 spin, around 10 ps. If there is any contribution from the 3p3/2 and 3d3/2 states,
it is quite weak. This is expected if the average-energy of the atomic-state distribution
is actually much smaller than 200 eV. It appears to be a robust conclusion that these fre-
quencies explain several structural details observed in the free-fitted Gk(t) plot, making
them good candidates with which to fit the g factor.

6.2.5 R(t) Plots

While the information gained from inspecting the free-fitted Gk plots has allowed
insight into the atomic states contributing to the hyperfine interaction, it is also useful
to calculate and plot R(t) values from the data (see §5.6.5 for information on calculating
R(t) values) and compare them to the free-fitted Gk(t) plot to confirm consistency
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between the observed frequencies. This is helpful because the R(t) function avoids
the complications introduced through fitting the correlated G2 and G4 variables. As
discussed in §5.6.5, when computing the R(t) function, the number of γ-particle pairs
used can be varied, which affects the resulting plot. To recap: each pairing used to
calculate R(t) has a sensitivity determined by the ratio of the W(θ, φ, t = 0) values,
with values closer to zero having more sensitivity, and values closer to unity having
less sensitivity, to changes in Gk. By increasing the acceptance, or sensitivity range,
more detector pairings are included (reducing uncertainty), but sensitivity to changes
in Gk, and therefore the hyperfine interaction frequencies, is lost. Figure 6.16 shows
how the R(t) plot changes as the sensitivity range is increased. As more data points are
included, the amplitude of the oscillations decreases. However, the consistency across
the overall trend improves and the oscillations in the R(t) trend become more defined.
The improved consistency in the R(t) trend, and only small loss in oscillation amplitude,
led to the sensitivity range 0− 1 being chosen for all future calculations.

Comparison of the free-fitted Gk(t) values in Fig. 6.9 to the R(t) values in Fig. 6.16
(noting that the R(t) trend appears as opposite phase to the Gk(t) trend) confirms the
more general features identified in the free-fitted Gk(t) plot, but avoids the complica-
tions introduced through fitting the correlated G2 and G4 parameters. The R(t) function
also gives only a single value for each time point against which to fit the angular correla-
tion, which allows for a scalar offset to be applied without introducing the complicated
correlations that would arise from applying such an offset to the Gk values. Such an off-
set is able to compensate for unknown but consistent deorientation effects that may be
caused, for example, by an off-centre beam spot on the target, or the reaction geometry
differing from expectation. However, the free-fitted Gk trend remains useful for its abil-
ity to tease out the relationship between G2 and G4, which is sensitive to the spin of the
contributing atomic states. With these factors considered, the R(t) plots were chosen to
proceed with the g factor fitting attempts, with atomic-state contributions informed by
the free-fitted Gk trend.

6.2.6 Parameter Fitting

Two approaches may be taken in fitting the R(t) trend. The hyperfine interaction and
resulting Gk values used to calculate the R(t) trend can be obtained using a Monte-Carlo
simulation, or from individual atomic states. As discussed in §6.2.4, there is reason to
believe that fitting individual states will be effective for these data. Fitting individual
atomic states also allows more control over the fitting procedure, and its interrogation.
However, before proceeding with a set of differing atomic states, a simpler option was
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explored to establish an initial g factor estimate. The R(t) plots in Fig. 6.16 reveal dis-
cernible oscillations over the time-span 4–22 ps. Figure 6.15 shows that only the Na-like
3s1/2 and F-like 2p1/2 hyperfine-interaction frequencies are fast enough to have full peri-
ods across this time span. As they are both J = 1/2 states, the interaction will be in the
form of a cosine function. Therefore, the data were fitted using a two-cosine function:

1− R(t)fit = as cos(ω[t− δs]) + ap cos(1.423ω[t− δp]) + c, (6.8)

giving as = 0.035(12), the amplitude of the 3s1/2 frequency, and ap = 0.059(11), the
2p1/2 amplitude; ω = 0.792(29) rad/ps, the angular frequency of the 3s1/2 hyperfine
interaction; δs = −0.64(75) ps, the phase shift in the 3s1/2 frequency; δp = −0.95(58) ps,
the 2p1/2 phase shift; and c = 0.176(8), the amplitude offset for both cosine terms. The
‘inverse’ function 1 − R(t) was fitted so as to have the cosines in the correct phase.
The value 1.423 is the ratio between the 2p1/2 and 3s1/2 angular frequencies, fixed
using the calculated hyperfine interaction constants obtained from GRASP. For this fit,
χ2

ν = 0.923. The ratio of 0.6:1 between the 3s1/2 and 2p1/2 cosine magnitudes seemed
somewhat unrealistic. As the values had quite large uncertainties, the ratio was slowly
adjusted until the fit gave χ2

ν = 1.00. This resulted in as = 0.044 and ap = 0.052,
which were fixed. The remaining parameters then minimised to ω = 0.796(27) rad/ps,
δs = −0.54(70) ps, δp = −0.84(53) ps and c = 0.177(8), all with approximately the same
uncertainty as obtained at the true χ2 minimum. The result of this fit is shown in Fig. 6.17.

From this fit the g factor is determined as the ratio of the fitted angular frequency to
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the calculated angular frequency for g = 1, such that ω = gωg=1. The angular frequency
of the hyperfine interaction for 3s1/2 having g = 1 is ωg=1 = 1.502(15) rad/ps. The
fitted angular frequency therefore gives g = ω/ωg=1 = 0.527(19) when as and ap

were allowed to vary, and g = ω/ωg=1 = 0.530(18) when as and ap were fixed to give
χ2

ν = 1.00. Because the two results are statistically indistinguishable, the fit with fixed
as/ap will be discussed further. In this fit, time offsets of δs = −0.54(70) ps for 3s1/2

and δp = −0.84(53) ps for 2p1/2 were obtained. Because there is expected to be little to
no feeding of the 2p1/2 state, the offset of −0.84 ps may be considered as a zero-time
offset in the plunger, t0 = −0.84 ps. This would make the smaller offset of 3s1/2 actually
a positive phase shift δ = +0.30 ps. This small degree of phase shift is expected due
to feeding from excited atomic states in the Na-like ion. However, the discussion of
these phase shifts should be considered with caution, as the uncertainty in these values
is large, and overlapping. For χ2

ν = 1.00 the 2p1/2 amplitude is 1.2 times the strength
of 3s1/2, though the initial fit shows that there are large uncertainties in these values.
There is expected to be some loss in amplitude of the 3s1/2 state due to feeding, as
well as lost intensity to other excited states. Therefore, this ratio of 2p1/2 to 3s1/2 is not
unreasonable, especially considering the large uncertainty. Ideally, these values would
be constrained by theory or measurement, which is possible using the RIV Simulate
fitting routines. Regardless, this analysis gives a promising g-factor value, being more
precise than any previously reported value, and within uncertainty of the previously
reported g = +0.51(5) [56]. With this reference-point set, more comprehensive fitting
procedures may proceed with greater confidence.

Six atomic states were identified in §6.2.4 for fitting. A seventh state, having BHF ' 0,
was also included. This state primarily represented the strong Ne-like J = 0 ground
state, but may also represent contributions from any states having weak hyperfine
interactions, e.g. the Na-like 3d5/2. In the first instance, the g factor was fitted to
the R(t) function across the experimental data covering the time-span 4–22 ps (as in
the double-cosine fit) using these seven states, and to the longer 0–27 ps range. For
these fits, individual-state occupations were allowed to vary in two ways: unrestricted
minimisation, in which each individual-state occupation can take any value; or restricted
minimisation, in which individual atomic states were grouped by ionic species, and the
sum of individual-state occupation’s for each ionic species was fixed as per the CSD in
Table 6.2. The attenuation as modelled by the Monte-Carlo simulation was also fitted
to the 0–27 ps range. The resulting fits to the R(t) function are shown in Fig. 6.18. The
best-fit values are listed in Table 6.3.

The g factors obtained in the individual-state and Monte-Carlo fits are consistently
larger than that obtained in the double-cosine fit. They also have smaller t0 offsets,
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and reduced uncertainty in the g factor. This shows the importance of including all
relevant atomic states in the fit: observing only a subset of the interacting states (e.g.
only those having J = 1/2) can give a less accurate and less precise result. The R(t)
offset values are a scalar offset added to the R(t) function across the entire time-span.
These offsets either emulate a decrease in average anisotropy (positive value) or an
increase (negative value). They indicate how close the hyperfine interaction arising from
the included states are to the absolute reduction in anisotropy (i.e. the magnitude of
the Gk values) observed in the measurement, with larger-magnitude offsets indicating a
larger discrepancy. Offsets obtained across the 4–22 ps time-span are ∼ 50% larger than
the 0–27 ps time-span, which is reasonable as fitting the entire time-span should cause
the fit to better match the overall interaction. In all of the individual-state fits, positive
phase shifts are seen for 3s1/2 and 2p3/2. The fitted phase shifts are larger in the 4-22 ps
datasets, and smaller in the 0–27 ps datasets, but consistent between the unrestricted
and restricted fits. Since the 3s1/2 and 2p3/2 states should be strongly fed (as they are
ground states), this result is expected. The somewhat long-lived 2s1/2 state (τ . 8 ps),
which strongly feeds the 2p3/2 state, may be the reason for the 2p3/2 phase-shift being
larger than that of the 3s1/2. That the phase shift is smaller in the 0–27 ps dataset may be
due to the precise early time points, in which the feeding is still underway, consequently
reducing the apparent magnitude.

According to the CSD in Table 6.2, the ionic species should have relative populations
21% F-like, 40% Ne like and 39% Na-like. These relative populations, and the heatmaps
in Fig. 6.11, indicate that states contributing to the BHF ' 0 fraction should be dominant.
Across the 4-22 ps range, the B ' 0 (Ne-like) contribution is indeed observed to be
dominant when occupation is unrestricted, however the relative populations of the
F-like and Na-like ionic species are fitted to be 32% and 20%, respectively. This may
indicate that the CSD present in the experiment is actually weighted more towards the
F-like ions than the Na-like. A less realistic distribution is observed in the unrestricted
fit to the 0–27 ps range, which gives 37% F-like, 32% Na-like and 32% Ne-like. In this fit,
the occupation of the 3d3/2 state, with δ = 16 ps, is actually behaving as a B ' 0 state.
This is because the already weak hyperfine interaction is prevented from perturbing the
spin-alignment until t = 16 ps, and causes almost no attenuation over the remaining
9 ps. As such, it may be ‘stealing’ intensity from the Ne-like B ' 0. If this is the case,
the distribution should instead be 26% Na-like, 38% Ne-like and 37% F-like, which is
more realistic. These two unrestricted fits suggest that the CSD has larger F-like, and
smaller Na-like, proportions than the empirical nickel-target parameterisation obtained
in §6.1.2.

In the restricted fits, the populations of ionic species shown in Table 6.2 are enforced.
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With this restriction in place, the population of the Na-like 3s1/2 and 3p1/2 states remains
the same for the 4–22 ps time span, with the required increased intensity going into the
3p3/2 and 3d5/2 states. These two states both have large phase shifts that, as previously
mentioned, serve only to make them behave as B ' 0 states, and may instead be
representing contributions not only from these two states, but also from the Mg-like and
Al-like ions. Nonetheless, the 3s1/2 and 3p1/2 occupations are consistent across this time
range. Continuing to examine the 4–22 ps fit, the forced reduction in the overall F-like
intensity reduced the 2p3/2 occupation, leaving 2p1/2 occupation much the same as in
the unrestricted fit. This shows the importance of 2p1/2 in fitting this region.

Comparing now the unrestricted to restricted fits across the 0–27 ps range, there
is a notable increase in the Na-like 3p1/2. This increase likely compensates for the
restoration in anisotropy, near 25 ps, no longer provided by the F-like 2p3/2 state,
which concurrently halves in occupation. The higher-frequency 3s1/2 and 2p1/2 states
retain almost the same occupation (decreasing only slightly), indicating consistency
in these values, as was seen in the 4–22 ps fits. The Na-like 3d3/2, with δ = 24 ps, is
again indistinguishable from a B ' 0 contribution, and increases in occupation over
the longer time-span, likely due to the importance of the Mg-like and Al-like species
across the longer time scale. Overall, the occupation of Na-like 3s1/2 is insensitive to the
range or restrictions in the fit, averaging around 13% of the total hyperfine interaction.
The contribution of the 2p1/2 state is clearly sensitive to the fitting region. Figure 6.18
shows that, when fitting the 4–22 ps range, the fit passes through the time points at
t ' 6, 7 ps, whereas in the 0–27 ps range it does not. This is due to the presence or
absence of a strong oscillation owing to 2p1/2 in this region. Inclusion of the t < 4 ps
time points forces a reduction in the 2p1/2 occupation, and concurrent increase in 2p3/2

to reproduce these early time points. When the occupation of 2p1/2 is considered
relative to 2p3/2, the values obtained from fits across 0–27 ps match better with the
occupation expected from the heat map, suggesting that these are more realistic fits. That
fitting to the larger dataset gives a more realistic result is good confirmation of its validity.

The Monte-Carlo fit takes into account the hypothetical contribution of all excited
states as initially occupied following a Boltzmann distribution of the ground and excited
states. The CSD was fixed to the values indicated in Table 6.2. Apart from the g factor, the
fit had only two other free parameters, being the average energy of the Boltzmann distri-
bution, T, and the zero-time offset, t0. These minimised to T = 30 eV and t0 = +0.55 ps.
The small value of T (relative to the atomic excited-state energies) indicates that, for this
modelling, dominant occupation of the ground and first few excited states from t = 0
gives the best fit. This result matches the findings of Stuchbery in the analysis of Ge
and Se RIV data [206]. That t0 is a small but non-zero value is also reassuring, as some



172 Chapter 6. Recoil-In-Vacuum Measurements

small degree of time-zero offset is expected, due to the uncertainty in experimentally
determining the true value of t = 0 for the time-dependent hyperfine interaction. The
simulation of these excited states through time models the effect of feeding on phase-
shifts and amplitude attenuation, and maintains realistic proportions between the ionic
species and excited states, granted that the initial excited-atomic-state distribution re-
sembles reality. Figure 6.18 shows that through the time points up to t ≤ 22 ps the fit
captures the R(t) trend well, particularly in the range 9 ≤ t ≤ 22 ps. However, the points
at t ' 6, 7 ps, and t > 22 ps were poorly fitted. Excluding these poorly fitted points
reduces the χ2 to χ2

ν = 1.152. There may be issues with the angular-correlation mea-
surements for these particular time points, but this seems unlikely to have occurred at
both early and late times. Instead, these deviations may indicate that there is additional
behaviour that the Monte-Carlo simulation is unable to capture. Another possibility is
that the CSD is changing through time, perhaps due to the deposition of carbonised oil
or from damage to the target over time. Regardless, there is clearly agreement with the
overall trend, providing good validation to this approach.

6.2.7 Interpreting the Fit Results

There appears to be a (small) correlation between the fitted g factor and the F-like
population versus Na-like population. The relative populations also appear sensitive
to whether the early and late time points are included in the fit. On average, in the
restricted versus unrestricted fits, the g factors were larger when restricted, and smaller
when unrestricted. The same trend was seen between the 4–22 ps and 0–27 ps ranges,
with the average g factors being larger in the former, and smaller in the latter. Looking
more carefully at the occupations of individual states obtained in each fit, the increased
g factors across the 4–22 ps range correlate with a reduced 2p3/2 occupation. Across the
0–27 ps range the g factor is also seen to increase with reduced 2p3/2 occupation (and
the concurrent increase in 3p1/2 occupation). However, despite the appreciable change
in 2p3/2 occupation, the fitted g factors do not vary dramatically. The largest fitted
g factor was obtained in the Monte-Carlo fit, which had the population of ionic species
fixed to the values in Table 6.2. Figure 6.19 shows all the fitted g-factor values plotted
together. There is no significant variation between them, and they are consistent with
the previously [33] and currently [56] accepted literature values, also shown. Taking
a weighted average of the presently fitted values (excluding the double-cosine fit),
g = +0.546 is obtained, with the sign determined by the transient-field technique [56].
Adopting g = +0.546, the uncertainty in the double-cosine fit was chosen as a conserva-
tive estimate (being the largest). A further 1% uncertainty in the hyperfine-interaction
frequency of those states to which the g-factor determination is sensitive (i.e. those hav-
ing observable oscillations: 3s1/2, 3p1/2, 2p3/2 and 2p1/2) was also added in quadrature.
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FIGURE 6.19: 56Fe TDRIV data 2+1 -state g factors obtained from the vari-
ous fitting approaches, shown alongside the adopted value from Brennan et
al. [33] (1977Br23), and the value measured by East et al. [56] (2009Ea01).
They are all in excellent agreement. A weighted-average of the R(t) fit val-
ues (excluding the double-cosine) was adopted, taking the uncertainty to be
that from the double-cosine fit (being the largest) and adding, in quadra-
ture, 1% uncertainty for each important atomic-state hyperfine-interaction
strength. This gives g = +0.546(19), which is consistent with the previously
and presently adopted literature values, but has greatly improved precision.

This gives g(2+1 ;56 Fe) = +0.546(19), a value that encompasses all the R(t) fit values
(excluding the double-cosine fit) and almost their entire uncertainty range. It also has
good consistency with previous measurements, while also having greatly improved
precision.

6.2.8 Investigating the Large F-like Fraction

In the unrestricted individual-state fits to the R(t) function, a stronger F-like than
Na-like fraction was obtained for both the 4–22 ps and 0–27 ps timespans. This result
contradicts the empirically determined CSD expected for the 56Fe ions recoiling out of
nickel. However, it was noted after the experiment was completed that carbon residue
had built up on the back-side of the target, i.e. the surface out of which the ions recoil.
In addition to the nickel-target charge-state-distribution measurements, carbon-target
measurements had also been performed. Figure 6.20 shows that at almost equal recoil
velocities (being approximately the average recoil velocity in this measurement), the
CSD of 56Fe ions recoiling out of carbon, instead of nickel, has an inversion of the F-like
and Na-like fractions as compared to the Ne-like. If the observed carbon build-up
were thick enough to affect the CSD, then this can easily explain the larger F-like
fraction suggested by the unrestricted fits. The time points in the measurement were
taken in chronological sequence, and so the precise, early time points ought to have
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FIGURE 6.20: Measured CSDs of 56Fe ions recoiling out of a carbon (blue)
or nickel (red) target with Erecoil ' 53 MeV, approximately the average recoil
energy in the 56Fe TDRIV measurement. Note the near inversion of the F-like

(Z−Q = 9) and Na-like (Z−Q = 11) fractions between the two targets.

very little carbon build up (the target had already been in the chamber for a half-day
when the first time-point measurement began). That the 0–27 ps range, containing the
precise, early time points, fitted a smaller F-like fraction than the 4–22 ps time-span fits
further suggests that carbon build-up was altering the CSD. If the carbon build-up was
significant by the latter time-points in the run, the Mg- and Al-like fractions may have
fallen to nearly zero, as suggested in Fig. 6.20. This would help to explain the strong
restoration of anisotropy at later times, which is difficult to reproduce with the Mg- and
Al-like contributions required by the nickel-target CSD. This is a potential pitfall in this
measurement technique, as not only could the CSD differ from expectation (resulting in
the measurement not being optimal), but it may be changing through time. However, the
sensitivity of this technique to the atomic-state contributions appears to have correctly
identified a strong F-like fraction owing to carbon build-up on the target.

Another effect that carbon build-up on the stopping foil may have is the generation
of events with no vacuum attenuation (“time-zero” events). This is due to primary 56Fe
beam particles passing through the target foil and exciting on the built-up carbon on
the stopping foil. The recoiling carbon ions will then be detected forward-scattered
in effectively the same geometry as the target foil. The energies would be almost the
same, making these events indistinguishable. This would further help to explain the de-
gree of restoration of anisotropy observed at later times that the model cannot reproduce.

If the CSD of 56Fe ions is closer to that measured out of carbon than nickel (see
Fig. 6.20), then it would be valuable to observe how a CSD with a larger F-like fraction
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TABLE 6.4: CSD of 56Fe ions approximating the relative F-like, Ne-like and
Na-like proportions suggested by the unrestricted R(t) fits shown in Ta-

ble 6.3.

Z−Q Ionic Species Population
8 O-like 11.5%
9 F-like 24.2%

10 Ne-like 28.9%
11 Na-like 20.3%
12 Mg-like 8.7%

and smaller Na-like affects the Monte-Carlo fit. A new CSD was approximated by
varying the average foil exit energy until a distribution having relative populations
33% F-like, 40% Ne-like and 27% Na-like was obtained, which matches the proportions
suggested by the unrestricted fits. This new CSD is shown in Table 6.4, and was used
to fix the population of ionic species in a Monte-Carlo simulation R(t) fit. The objective
of performing this fit was to understand how much an increased F-like proportion
(and consequent introduction of O-like ions) would affect the g factor obtained from
the Monte-Carlo fit. From this fit, g = 0.569(11) was obtained, and the resulting plot
is shown in Fig. 6.21 as the solid red line, alongside the fit using the nickel-target
CSD, shown as the dashed blue line. Curiously, the carbon-target CSD g factor being
larger than the nickel-target is contrary to the single-state fit results, which found a
decrease in the g factor with the increased F-like fraction. This behaviour may indicate
that the O-like ions are significantly influencing the fitted g factor. The nickel-target
fit better-captures the early time-point data and dominant oscillations. In contrast,
the carbon-target fit oscillates too rapidly, falling on the early side of the trend, and
missing the early time-point data. As such, it appears as though the carbon-target
CSD is over-estimating the measured g factor, and that the true value is unlikely to be
significantly larger than the adopted value g = +0.546(19).

6.2.9 Analysis of In-Flight Angular Correlations

The previous sections have been concerned with modelling the hyperfine interaction
observed in the angular correlations originating from the stop peak of the measured
de-excitation γ rays. In addition to the stop-peak angular correlations, which are most
sensitive to atomic-state oscillations in the Gk(t) trend (and therefore are most suitable
for determining the g factor), the angular correlations originating from the in-flight
(i.e. Doppler-shifted) component are revealing of the average strength of the hyperfine
interaction. These angular correlations originate from the states that have decayed before
reaching the plunger foil, which introduces an exponential attenuation component e−t/τ,
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FIGURE 6.21: Comparison of two Monte-Carlo simulation fits to the 56Fe
TDRIV R(t) values having different CSDs. The red solid line is the Monte-
Carlo simulation fit with the larger F-like proportion, having the CSD shown
in Table 6.4. The blue dashed line is the fit with the larger Na-like proportion,

having the empirically determined CSD shown in Table 6.2.

dependent upon the nuclear-state’s lifetime. Therefore, the in-flight Gk(t) trend should
resemble an exponential-decay curve.

Figures 6.22 and 6.23 show the Gk(t) values obtained from the in-flight angular
correlations using the Gk free-fitting routine, along with various fits. The exponential-
decay component in the data is clear, and as the time becomes large compared to the
nuclear lifetime the Gflight

k (t) values approach the Gk(t = ∞) values that are obtained
in a time-integral measurement. The Gk(t) trend indicates that there is a strongly
deorienting hyperfine interaction acting from the earliest times. The relative magnitude
between G2 and G4 also indicates that this interaction is dominated by atomic states
having J > 1/2, and/or rapidly fluctuating atomic states. Fits to the in-flight Gk(t) trend
are more sensitive to the absolute magnitude of the Gk(t) values as compared to the
stopped component, in which the oscillations are more important. However, the major
contributing atomic states should be the same for both the in-flight and stop data.

It was shown in §6.2.8 that, due to carbon build-up on the target, the centroid of
the CSD is closer to F-like ions than Na-like. If this is true, it should be reflected in the
in-flight data. To investigate this, two Monte-Carlo-simulation fits were performed to the
angular-correlation data using the nickel- and carbon-target CSDs. Angular-correlation
data were fitted (rather than the R(t) function) because sensitivity to the magnitude
of the attenuation is most important for the in-flight data. Individual-state fits were
also performed, with the occupation of individual atomic states either restricted to the
nickel- or carbon-target CSD, or allowed to minimise in an unrestricted manner. In the
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FIGURE 6.22: Fits to the in-flight component of the 56Fe 2+1 -state TDRIV mea-
surement using the Monte-Carlo simulation, constrained either to the CSD
expected from the nickel target, or the carbon target. The fit details are listed
in Table 6.5. It is clear that neither CSD is able to reproduce the magnitude

of the free-fitted Gk values.

individual-state fits the atomic states in O-like ions arising from the ground configu-
ration (1s22s22p4), and the first-excited state in the Ne-like ions were included. This is
because these states will have a significant impact on the Gk(t) magnitude, which was
less important to capture in the individual-state fits. These fits were all performed using
the adopted value of g = +0.546. Due to the sensitivity of these fits to the zero-time
offset (owing to the exponential-decay component) the zero-time offset was fixed to
t0 = 0 ps to simplify the fits. This decision was justified because the fitted offsets in
Table 6.3 were all quite small (|t0| < 1 ps) and averaged around t0 ' 0 ps. The fit results
for the Monte-Carlo simulations are shown in Fig. 6.22, and for the individual-state fits
in Fig. 6.23. Fitted parameters are listed in Table 6.5.

The Monte-Carlo fit results (Fig. 6.22) show that neither CSD was able to reproduce
the strong deorientation observed. The individual-state fits (Fig. 6.23) were able to
capture the strong deorientation due to occupation of the Ne-like J = 2 excited state,
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FIGURE 6.23: Fits to the in-flight component of the 56Fe 2+1 -state TDRIV
measurement using individual atomic states expected to contribute strongly
to the interaction (see in-text). Individual-state occupations were either re-
stricted to the nickel-target CSD, carbon-target CSD, or unrestricted. The fit
details are listed in Table 6.5. It is curious to note that while the carbon-target
and unrestricted fits better match the observed magnitude of G2 and G4, the
nickel-target fit possibly better captures the early oscillation most visible in

G4 (t . 15 ps).
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with the unrestricted fit giving only a small improvement over the restricted fit using the
carbon-target CSD. It is immediately clear from these fits that the centroid of the CSD is
closer to F-like ions than to Na-like. What is also clear is that the Monte-Carlo-simulation
fits were unable to capture the observed deorientation, regardless of the CSD used.
The unrestricted individual-state fit indicates that the Ne-like fraction is largest, with
equal parts F-like and O-like. Comparing the unrestricted individual-state fit to the fit
restricted to the carbon-target CSD, the ratio of the Ne-like ground state to the excited
state remains the same. With the forced reduction in the O-like occupation, the ground-
state falls to 0% while the J = 2 state remains at 14%. Most dramatically, the similar
proportion of F-like 2p3/2 and 2p1/2 in the unrestricted fit goes almost completely to the
2p3/2 state in the restricted fit, though the overall F-like fraction is almost the same. The
similar χ2

ν and steady occupation of F-like and Ne-like ions between the unrestricted and
restricted fits, indicates that contributions from these states can be modelled. The large
proportion of Ne-like J = 2 and selective occupation of O-like J = 2, which contradict
the occupations suggested by the heatmap, may be compensating for unaccounted
deorientation arising from core-hole excited states and rapid transitions in the first few
picoseconds, and warrants further investigation.

A key component when modelling the absolute Gk(t) values observed in the in-flight
component is their sensitivity to the contributions from core-hole excited atomic states
(e.g. [He]2s12p63s2 in Na-like ions), which have lifetimes τ . 5 ps. The atomic-structure
calculations performed for the Monte-Carlo simulation only include valence configu-
rations. This is almost certainly the reason why the Monte-Carlo-simulation fits are
unable to model the in-flight component. The individual-state fits are unable to account
for the decay of these states, and additional effects due to rapidly fluctuating states.
The individual-state fits do, however, give some insight into the long-term atomic-state
contributions. Unfortunately, the relative occupations will likely be skewed by deori-
entation arising from the strong, fluctuating core-hole atomic states. It is possible that
the unexpectedly large occupations of the Ne-like and O-like J = 2 states approximate
the average interaction of these unaccounted-for states. However, such investigations
are outside the scope of this project. Measuring the Gk(t) trend over the early timescales
which these states are expected to significant contribute (t < 2 ps) will allow for more
detailed modelling, and hence a better understanding of the hyperfine interaction to
be developed. Already, the Monte-Carlo simulation is capable of modelling decays
from these core-hole states, but their atomic-structure properties must be calculated.
With the calculated properties available, early time-point data ought to allow for the
initial occupation of these states to be modelled and the full behaviour of the in-flight
component to be predicted. Such understanding will be important when the model is
applied to the interpretation of the 54,56Fe time-integral RIV data in §6.3.
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6.2.10 Conclusion

In order to determine the 2+1 -state g factor from the 56Fe TDRIV dataset, several different
approaches were taken to fitting the R(t) trend. To guide the fitting attempts, the
Monte-Carlo simulation was first used to understand which atomic states within the
ionic species present should contribute significantly to the hyperfine interaction. Once
these states were identified, their individual hyperfine interaction frequencies were used
in fitting attempts. First, a preliminary fit was performed, whereby a double-cosine
function, representing two states having J = 1/2 spin and large hyperfine interaction
frequencies, was fit. Following this, the identified atomic states were fitted to the
R(t) function, with Gk(t) values appropriately calculated from theory (see §2.3.3). These
individual states were allowed to vary in occupation, either in an unrestricted manner,
or limited by the population of the ionic species to which they belonged. Finally, a
Monte-Carlo simulation was used to compare these results with the comprehensive
atomic-decay simulation. Similar g factor values were obtained from all fits, agreeing
within uncertainties.

While there was strong agreement between the fitting approaches described in
§6.2.6, there are still uncertainties relating to the precise occupation of individual atomic
states through time. Considerable uncertainty also remains surrounding the overall
behaviour of the hyperfine interaction, evidenced by the in-flight angular-correlation
fits. The presence of core-hole (deep vacancy) states followed by a cascade of Auger and
photon emissions may explain this additional deorientation. Measurements extending
to earlier, possibly sub-picosecond time points would improve this understanding. A
plunger device and particle-detector setup has been developed at ANU’s Research
School of Physics, with the capability not only to probe these early time points, but to
simultaneously probe differing CSDs, for future measurements.

In conclusion, the task of fitting the complex hyperfine interaction arising from this
charge-state ensemble has many variables, but a methodical and stepwise approach has
allowed the extraction of a precise g factor from the unique oscillations present in the
stop-component of the Gk(t) measurement. Further measurements are warranted, to a)
develop a better understanding of the hyperfine interaction arising within these ions,
particularly over sub-picosecond timescales, and b) allow for a more confidently (and
precisely) determined g factor.
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6.3 54,56Fe Time-Integral Recoil-In-Vacuum Measurement

A time-integral RIV measurement was performed on the 2+1 states in 54,56Fe to comple-
ment the TDRIV measurement described in §6.1. The difference between the lifetime of
the 2+1 states in 54,56Fe presents an opportunity to compare the behaviour of the hyperfine
interaction over brief (τ ∼ 1 ps) and intermediate (τ ∼ 10 ps) timescales, and further test
the ab initio model implemented in RIV Simulate. Analysis of the 54,56Fe 2+1 -state TIRIV
data, using RIV Simulate, found that Monte-Carlo simulations using only valence-state
atomic configurations were unable to model the observed magnitude of the deorienta-
tion. As was proposed in the analysis of the in-flight TDRIV data in §6.2.9, these results
suggested that additional components of the hyperfine interaction are present that va-
lence atomic states alone are unable to account for, specifically the presence of core-hole
excited atomic states that live for τ . 5 ps. Using atomic-structure calculations that take
these core-hole excited states into account, it may be possible to describe time-integral
vacuum deorientation if the initial distribution of states is accurately modelled. The hy-
perfine interactions over these early timescales (t . 1 ps) warrant additional measure-
ments to probe them, as to validate and improve the ab initio description of the hyperfine
interactions for Z ∼ 30 nuclei with CSDs near to the neon atomic shell closure. De-
veloping such an understanding is important for accurately interpreting the results of
radioactive-ion-beam measurements using the TIRIV technique for Z ∼ 30 nuclei.

6.3.1 Methods

A measurement of the time-integral vacuum attenuation in the 2+1 -state angular correla-
tion of 54Fe and 56Fe was performed in inverse kinematics using the RIV technique by
Prof. Andrew Stuchbery, A. Prof. Tibor Kibédi, and Mr. Asif Ahmed in April 2013. The
measurement was performed using ANU’s Hyperfine Spectrometer [213]. The ANU’s
14 UD Pelletron accelerator was used to produce beams of 54Fe and 56Fe at 110 MeV. The
110 MeV beam nuclei were Coulomb excited on a single-layer 0.5 mg/cm2 carbon tar-
get. The 54Fe or 56Fe ions recoiled into vacuum at small scattering angles, while carbon
ions were detected forward-scattered using an annular-style detector (see Fig. 4.6 for ref-
erence) located 27 mm down-beam of the target. Eight particle detectors were radially
spaced 12.5 mm from the beam to the detector edge, with detectors at equivalent φ angle
having their outputs coupled to give five particle-detector channels (P1–P5), with aver-
age angles φ = 0◦, 45◦, 90◦, 135◦, 180◦, respectively. The active area of the SiPD chips used
was 8.8× 9.8 mm, with an average scattering angle 〈θ〉 = 30◦. Coincident γ rays were
detected using two NaI detectors (γ1 and γ4) positioned alternately at ±90◦ or ±45◦ for
each isotope and energy, and two HPGe detectors fixed at ±135◦ (γ2 and γ3). Data were
acquired using the Analogue DAQ. Coincident γ-ray spectra were obtained by gating
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using appropriate time signals from the γ-ray and particle detectors, as well as energy
signals from the particle detectors. Variation in efficiency between particle detectors was
accounted for by normalising yields using the downscaled particle singles rate.

6.3.2 Results

The data were collected over three runs for each Fe isotope. The details of each run can
be found in Table 6.6. For both isotopes, runs 2 and 3 were analysed together as they had
the same detector angles.

TABLE 6.6: Run details for the 54,56Fe TIRIV experiment.

Isotope γ1 angle γ4 angle
(deg) (deg)

Run 1 54Fe 90◦ −90◦

Runs 2 & 3 54Fe 45◦ −45◦

Run 1 56Fe 45◦ −45◦

Runs 2 & 3 56Fe 90◦ −90◦

The data were analysed, by the author, as described in §3.3. Data were converted into
the ROOT tree format and γ-ray spectra containing γ-particle coincidence events were
obtained by gating on the γ-ray- and particle-detector time spectra. Example HPGe and
NaI γ-ray-detector time spectra are shown in Fig. 6.24 and Fig. 6.25, respectively. Note
there is a long tail on the higher side of the prompt time peak in the HPGe spectrum in
Fig. 6.24 due to low-energy γ-ray events, that are mostly Compton background. Data
were analysed with no random-coincidence gate in the high region, and with a random
coincidence gate set from channels 4200–4350. There was no difference in the photopeak
counts, and so gates on both the low and high region were included. Example ‘true’
γ-ray spectra for 54Fe and 56Fe for both the HPGe and NaI γ-ray detectors are shown in
Figures 6.26–6.29. Tables of photopeak counts (scaled using the singles rate in particle de-
tector pair 3) and plots of angular correlations for each run can be found in Appendix B.2.
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FIGURE 6.24: Spectrum of time differences between a HPGe γ-ray detector,
in this case γ2, and any particle-detector signal. There is a clear time correla-
tion indicated by the large peak, which was used to obtain the prompt γ-ray
spectrum. Gates to determine random coincidences were set on the low and
high sides of the prompt peak. The long tail of the prompt peak is mainly

due to Compton events that are of no consequence to the measurement.
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FIGURE 6.25: Spectrum of time differences between a NaI γ-ray detector, in
this case γ1, and any particle-detector signal. There is a clear time correla-
tion indicated by the large, which was used to obtain the prompt γ-ray spec-
trum. Note that the tail is absent in comparison to the HPGe time spectrum
in Fig. 6.24. Gates on both sides of the peak were used to obtain random-

coincidence spectra.
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FIGURE 6.26: ‘True’ 54Fe γ-ray spectrum in coincidence with each particle-
detector, from γ2 (HPGe), run 1. Observed γ-rays come only from the ex-
cited, Doppler-shifted 54Fe 2+1 state and Compton scattering. A minuscule
unshifted 56Fe 2+1 peak is visible in the φ = 135◦, 180◦ panels due to uneven

subtraction (negative counts in the subtracted peak are not shown).
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FIGURE 6.27: ‘True’ 54Fe γ-ray spectrum with all particle-detector coinci-
dences summed, from γ1 (NaI). Observed γ-rays come only from the excited
54Fe 2+1 state and Compton scattering. The zero-count line has been extended

across the horizontal length for clarity.
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FIGURE 6.28: ‘True’ 56Fe γ-ray spectrum in coincidence with each particle-
detector, from γ2 (HPGe), run 1. Observed γ-rays come only from the ex-

cited, Doppler-shifted 56Fe 2+1 state and Compton scattering.
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FIGURE 6.29: ‘True’ 56Fe γ-ray spectrum with all particle-detector coinci-
dences summed, from γ1 (NaI). Observed γ-rays come only from the excited
56Fe 2+1 state and Compton scattering. The zero-count line has been extended

across the horizontal length for clarity.
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TABLE 6.7: Approximate CSD for Fe ions recoiling at Erec ' 50 MeV out of a
carbon target.

Z−Q Ionic species Population
7 N-like 3%
8 O-like 13%
9 F-like 27%
10 Ne-like 34%
11 Na-like 15%
12 Mg-like 6%

The first step taken in the analysis was to obtain free-fitted Gk(∞) values using
RIV Simulate, as per §5.6.4. The fitted Gk(∞) values are listed in Table 6.8. The fitted
angular correlations are shown in Fig. 6.30. The uncertainties on the data points were
inflated until the fits gave χ2

ν = 1.000 so that the uncertainties in the fitted Gk(∞)

values were appropriate. Immediately, it is obvious that the 54Fe ions experience less
deorientation than the 56Fe ions; this is expected due to the lifetime of the 56Fe 2+1 state
being almost 10 times longer than that of the 54Fe 2+1 state, and Gk(∞) ∝ gτ as per
Ref. [206].

The next step in the analysis was to determine the expected CSD for the Fe ions
recoiling out of the carbon target. Charge-state-distribution measurements of 56Fe re-
coiling out of a carbon target (see Fig. 6.20) were used to approximate the CSD expected
(see Table 6.7) in this measurement.

The CSD shown in Table 6.7 is very similar to that expected in the TDRIV 56Fe
measurement from a carbon target. Comparison of the 56Fe 2+1 Gk(∞) values presently
measured to those obtained from fitting the in-flight component of the TDRIV mea-
surement on 56Fe (see §6.2.9) reveals good agreement between the two, indicating that
the hyperfine interactions present in both measurements were similar. The lifetime of
the 54Fe 2+1 state is almost an order of magnitude smaller than that of the 56Fe 2+1 state.
Because the two isotopes will experience almost identical hyperfine interactions (due
to recoiling at almost the same velocity and therefore having almost the same CSD),
the difference between the two isotopes’ Gk(∞) values should depend only on the state
lifetime and g factor. This provides an opportunity to probe potential differences in
the hyperfine interaction between short timescales (τ ∼ 1 ps) with g ∼ 1, and longer
timescales (τ ∼ 10 ps) with g ∼ 0.5, and whether the Monte-Carlo simulation can
describe both cases using the same initial atomic-excited-state distribution.

In fitting, the values g(2+1 ;56 Fe) = +0.546 (obtained in §6.1) and g(2+1 ;54 Fe) = +1.02
were used, the latter obtained by scaling the relative measurement performed by East et
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TABLE 6.8: 54,56Fe 2+1 -state Gk(∞) values obtained by free-fitting G2 and G4
to the measured angular correlations, and using the Monte-Carlo simulation

with the CSD listed in Table 6.7.

Free-fitted Monte-Carlo simulation
Isotope G2(∞) G4(∞) χ2

ν G2(∞) G4(∞) T χ2
ν

54Fe 0.847(24) 0.725(18) 1.000a 0.936 0.832 180 eV 2.15
56Fe 0.569(14) 0.410(10) 1.000a 0.721 0.550 940 eV 10.20

a Uncertainties in angular-correlation data-points were inflated until χ2
ν = 1.000.

al. [57] using g(2+1 ;56 Fe) = +0.546. Uncertainties were omitted as they do not affect
the following discussion. The data were fitted using RIV Simulate’s Monte-Carlo
simulation, with the initial excited-atomic-state distribution described by a Boltzmann
function, as used in §6.1. The fit results are shown in Table 6.8. Comparison of the Gk(∞)

values obtained from the Monte-Carlo simulations to the free-fit values shows that the
loss of anisotropy modelled by the decays is not strong enough to match the data, with
the deviation worsening over the longer 56Fe 2+1 lifetime. This result further confirms the
findings in §6.2.9, this being that the Monte-Carlo simulation, using only valence config-
urations, is unable to model the observed vacuum attenuation. The deviation worsening
over the longer lifetime indicates that the missing hyperfine-interaction strength arises
from states acting over the 56Fe 2+1 lifetime. However, the possibility remains that the
assumption about the form of the initial distribution of excited atomic states may not
allow for the correct proportion of states necessary to explain the observed deorientation.

To interrogate the potential contribution of individual atomic states from the ionic
species expected to be present, individual-state fits were performed. The individual
states comprised the low-lying atomic states in O-like, F-like and Na-like ions, as well as
the ground and first-excited state in Ne-like ions; these are expected to be the dominant
contributors over the 56Fe 2+1 lifetime. Fits were performed using g(2+1 ;54 Fe) = +1.02
and g(2+1 ;56 Fe) = +0.546, with the atomic states belonging to each ionic species having
their occupation restricted by the CSD in Table 6.7. The resulting (fitted) occupations are
shown in Table 6.9. When fitting individual atomic states, the Gk(∞) values obtained
are in good agreement with the free-fitted Gk(∞) values (χ2

ν ' 1) for both the 54Fe and
56Fe 2+1 states. For the O-like and Ne-like ions the occupation goes almost entirely into
the J = 2 state. For the short-lived 54Fe 2+1 state (τ ∼ 1 ps), atomic states having weak
hyperfine interactions (e.g. the Ne-like ground state) are completely absent. For the
longer-lived 56Fe 2+1 state (τ ∼ 10 ps), the same O-like J = 2 occupation is observed, and
the Ne-like is still dominated by the J = 2 excited state. Comparing the F-like occupa-
tions, it is worth noting that the excited 2s1/2 occupation, having τ . 8 ps, disappears for
the 56Fe fit, and instead occupation goes entirely to the 2p3/2 ground state. This suggests
that the short-lived F-like 2s1/2 is influential over the 1 ps range, but does not have a
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significant impact over the 10 ps range, as should be expected. The Na-like occupations
present a strange case, with the 3s1/2 ground state fully occupied for the 54Fe fit, and
unoccupied for 56Fe. Instead, the 56Fe fit puts the intensity into the weakly interacting
3p3/2 and 3d3/2 states. This is an unrealistic outcome, as ground-state occupation should
dominate over the longer time-span, and the two isotopes should have the same initial
distribution of atomic states. The Na-like 3p3/2 and 3d3/2 may instead be mimicking the
Mg-like contribution, or other higher-excited atomic states, which have been left out in
the individual-state fits. The overall conclusion to be drawn is that J > 1/2 atomic-state
interactions, and/or atomic-decay sequences, must contribute strongly to the measured
hyperfine interaction.

6.3.3 Discussion

Modelling the time-integral hyperfine interaction for Z ∼ 30 nuclei, with short-lived
nuclear states (τ . 10 ps), is a complex task. Many atomic states across the ion ensemble
are anticipated to contribute significantly to the interaction, with some having B ∼ 15 kT
hyperfine fields but living for only femtoseconds, others having B ∼ 5 kT hyperfine
fields and acting over picoseconds, and others having B . 1 kT fields but living much
longer than the nuclear-state lifetime. That the occupation of states is in flux over these
timescales further complicates the model. The Monte-Carlo simulation (using only
valence atomic states) was used to model the observed vacuum deorientation. The
results (see §6.3.2) showed that the valence states alone are not sufficient to explain
the measured vacuum deorientation, and/or that assumptions regarding the initial
distribution of excited atomic states were incorrect. To help probe the latter possibility,
individual-state fits were performed to determine the static-state occupations best able
to explain the observed deorientation.

Over the brief 54Fe 2+1 lifetime (τ = 1.2 ps), contributions from core-hole excited
states are expected to be significant. This is because atomic-structure calculations predict
these states to survive for several picoseconds. Over the short 54Fe 2+1 lifetime there will
also be many atomic transitions occurring. Such a scenario is not well-approximated by
a static superposition of atomic states. Regardless, the atomic-state occupations obtained
in Table 6.9 should reveal the character of the contributing states. Indeed, the absence
of any occupation of weakly interacting atomic states strongly suggests that core-hole
states with strong hyperfine fields are significantly contributing. The absence of any
Ne-like ground-state (J = 0) occupation also suggests that these ions may be highly
excited.
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Over the 56Fe 2+1 state lifetime (τ ∼ 10 ps), the core-hole excited states are expected
to have less influence, and ground-state configurations should become more important.
The fit results in Table 6.9 for 56Fe are almost the same as for 54Fe, with two notable
differences: the F-like ions completely occupy the ground state, and the Na-like ions
have no ground-state occupation. The former makes sense, as the F-like atomic states
should preferentially and rapidly decay to the ground state. The latter, however, seems
unrealistic, as we expect Na-like ground-state occupation to increase significantly with
time. Therefore, this change may reflect the contribution from Mg-like ions and other
weakly interacting, long-lived states, as was concluded in §6.3.2.

Comparing to the in-flight TDRIV fits in §6.2.9, it can be seen that the strong O-like
J = 2 contribution is matched in all fits. This state has the largest hyperfine-field
strength at B ' 17 kT. Barring preferential occupation of this state, the O-like J = 2
occupation may be compensating for core-hole excited states and rapid decays not
included in the fit. That it fits the same proportion in all cases, for both time-integral and
time-differential data, and unrestricted or restricted atomic-state occupation, warrants
further investigation. Such investigations should consist of a Monte-Carlo simulation
that includes core-hole excited states, as these states and their fast transitions are
important factors to consider when modelling absolute Gk values.

It should be noted, fits that have χ2
ν ' 1 can be obtained for both the 54Fe and 56Fe

data by simply using the F-like 2p3/2 and Ne-like J = 0 ground-state at approximately
∼ 70% and ∼ 30% occupation, respectively. This shows the challenge in interpreting
time-integral data: fitting such a range of atomic states (i.e. a large parameter space)
without strong constraints makes finding true and realistic minima difficult. The task is
further complicated by the effect that fluctuating atomic states (rapid sequences of transi-
tions) have on the magnitude of G2 and G4. This is why ab initio modelling of the atomic
behaviour is important for time-integral measurements. If the effect that atomic-decay
cascades have on magnitude of G2 and G4 is ignored, then the simple F-like 2p3/2 and Ne-
like J = 0 may be interpreted as approximating the dominant spin and average strength
of the hyperfine interaction taking place. This is because the ratio between G2 and G4

is sensitive to the atomic spin. For example, Fig. 6.31 shows the in-flight component of
Gk(t) for several J = 1/2 atomic states, and Fig. 6.32 shows the same for two J = 3/2
states. In the J = 1/2 case, the value of G2 is similar, no matter how large the field
strength is. In the J = 3/2 case, G2 and G4 can be much closer in magnitude. Therefore,
if J = 1/2 or J = 0 interactions are dominant, or the hyperfine interactions are weak,
then G2 will be close to unity, and the ratio of G2 to G4 will not be near unity. If G2 . 0.75
is measured, and the ratio of G2 to G4 isn’t significantly greater than unity, then strongly
interacting atomic states with J > 1/2 must be contributing. However, to reiterate, this
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FIGURE 6.31: Plots of the in-flight component of Gk(t) for the J = 1/2 F-like
2s, 2p and Na-like 3s, 3p states using the 56Fe 2+1 lifetime τ = 9.3 ps. Despite
the large range of hyperfine-field strengths covered by these states (2 ≤ B ≤
30 kT), the resulting Gk(∞) values are all quite similar, and G2 > 0.75 in all

cases.

is assuming that atomic-decay cascades, i.e. from core-hole excited states, may be ig-
nored, which is not likely to be the case. However, that a F-like 2p3/2 and Ne-like J = 0
state together can fit the data so well, suggests that the F-like ground-state is a domi-
nant component of the hyperfine interaction across the nuclear state’s lifetime. However,
beyond this rudimentary analysis, time-differential measurements must be performed to
thoroughly tease out the individual states that are contributing within an ionic ensemble.
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FIGURE 6.32: Plots of the in-flight component of Gk(t) for the J = 3/2 F-
like 2p and Na-like 3p states using the 56Fe 2+1 lifetime τ = 9.3 ps. The two
states have somewhat similar hyperfine-field strengths as compared to the
range of J = 1/2 states, however the resulting Gk(∞) values differ greatly.
The relative magnitude of G2 and G4 is also dramatically different from the
J = 1/2 case in Fig. 6.31, while the result for 2p3/2 better matches the relative
magnitude of the free-fitted values. It should be noted that atomic-decay
cascades having the appropriate lifetime and hyperfine-field strength can

also reduce the magnitude of G2 and G4 in a similar fashion.
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6.4 76Ge Time-Dependent Recoil-In-Vacuum Measure-

ment

The aim of this experiment was to observe the time-dependent attenuation in the angu-
lar correlation of the 76Ge 2+1 state. This experiment was motivated by the discrepancy
observed in measured time-integral vacuum-attenuation coefficients, Gk(∞), between 2+1
states in Ge and Se isotopes [134, 206]. The experiment aimed to reproduce the charge-
state distribution (CSD) present in the time-integral measurement using 76Ge, with a
recoil velocity β ∼ 0.045, therefore having a charge-state distribution centred on Si-like
ions, as per the parameterisation presented in Ref. [134]. It is expected that some Na-like
fraction was present in the measurement, so the data were analysed to see if a g factor
could be extracted from the hyperfine interaction with the Na-like atomic ground state.
It was found that the quasi-exponential contribution of the majority of the ionic states
to the Gk(t) trend allowed for the weak Na-like J = 1/2 ground-state oscillation to be
isolated. A simple cosine function was fit to this oscillation, after deducting the quasi-
exponential component, and allowed g(2+1 ) to be determined. However, due to large
uncertainties in the data points, and in allowing a time offset in the fit, g(2+1 ) could not
be precisely deduced. Instead, a range 0.27 ≤ g ≤ 0.32 was proposed.

6.4.1 Methods

A measurement of the time-dependent vacuum attenuation in the 2+1 -state angular corre-
lation of 76Ge was performed in inverse kinematics using the RIV technique by Prof. An-
drew Stuchbery, A. Prof. Tibor Kibédi, and Mr. Asif Ahmed in April 2013. The ANU’s
14 UD Pelletron accelerator was used to produce a beam of 76Ge13+ at an energy of
180 MeV. The beams were Coulomb excited on a dual-layer target having ∼ 0.3 mg/cm2

of carbon on 0.83 mg/cm2 of nickel, backed by 0.50 mg/cm2 of iridium. The iridium
served to reduce the average charge of the recoiling Ge ions, in turn giving the measured
Gk(t) trend a more quasi-exponential character. The 76Ge ions recoiled out of the irid-
ium into vacuum at small scattering angles, while carbon ions were detected forward-
scattered using a ring of 8 SiPD detectors with layout and dimensions as shown in
Fig. 6.33. Particle detector outputs were paired by equivalent φ angle (vertically), as indi-
cated by the dashed lines. The particle-detector array was located 26.7 mm down-stream
of the target. Coincident γ rays were detected using four HPGe detectors positioned in
the z-x (horizontal) plane at θ = 45◦, φ = 0◦, 180◦ (γ1, γ4) and θ = 135◦, φ = 0◦, 180◦ (γ2

and γ3). The overall detector setup was the same as in Fig. 4.1. HPGe detectors were cho-
sen for use due to their superior energy resolution, capable of resolving Doppler-shifted
γ rays emitted from nuclei in flight from unshifted γ rays emitted at rest. Data were ac-
quired using the Analogue DAQ. Variation in efficiency between particle detectors was
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accounted for by using the downscaled particle singles rate. Time-dependent measure-
ments were enabled using ANU’s recoil-distance plunger. The plunger device operated
mechanically, using a worm drive adjusted with a dial having 1/1000-inch graduations
to move a stopping foil along the beam axis. The simple, robust design is reliable, but
unable to compensate for small changes in distance due foil deformation resulting from
beam heating and pressure (as OUPS [141] can). The small recoil angle of the 76Ge ions,
owing to the reaction kinematics and particle-detector positions, means that the distance
between the target foil and the stopping foil can be used to determine the ion’s flight
time, and thereby the hyperfine interaction time. The position of the stopping foil was
adjusted using a micrometer dial. This dial turned a wormscrew rated to make positional
adjustments to the foil of the order of 10−5 m. At ion velocities of ∼ 5% c, this equates to
10−12 s time steps. A thick nickel foil was used to stop the recoiling 76Ge ions, but it was
thin enough to allow forward-scattered carbon ions to reach the particle detector.
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FIGURE 6.33: Layout of SiPD particle detectors in the annular-style detector
for the 76Ge TDRIV experiment, shown on the left. The dashed lines indicate
detector output pairing. The SiPD chips were not perfectly placed, so there
is some variation in their radial distances and alignment (details at right),

making the φ angles slightly smaller than intended in some cases.

6.4.2 Results

The data were acquired over seventeen runs for a sequence of plunger separations.
Particle detector 3 failed, so that particle detector pair 3 (P3) was actually particle detec-
tor 7 only. The details of the analysed runs, specifically the plunger distance and time,
can be found in Table 6.10. The data were converted into the ROOT tree format, and
analysed by the author using the established procedure in §3.3. An example γ-particle
time-difference spectrum is shown in Fig. 6.34, while ‘true’ γ-ray spectra at forward and
backwards angles are shown in Fig. 6.35 and Fig. 6.36, respectively. Tables of photopeak
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FIGURE 6.34: Example time-difference spectrum between γ-ray detector γ1
and any particle in the 76Ge TDRIV measurement. There is a clear time cor-
relation indicated by the large peaks at channels 3990 and 4100, which were
used to sort out the prompt γ-ray spectrum. Two peaks are visible due to P4
(lower peak) having different timing characteristics from the other particle
detectors (higher peak). Gates were set on the lower and higher side of the

two peaks to obtain random-coincidence spectra.

counts and angular-correlations plots for each run can be found in Appendix B.3.

To determine the velocity of the recoiling ions the Doppler shift in the γ-ray energy
was used. The energy of a measured γ ray emitted from a relativistic ion is given by [169]:

E = E0
1− β2

1− β cos θγ
, (6.9)

where E is the measured γ-ray energy, E0 is the γ-ray energy in the rest frame, β is the
ion velocity, and θγ is the relative angle between the ion’s direction of motion and the
γ ray, i.e. the lab-frame detector angle.

The mean ion velocity was determined by varying β until the minimum deviation
across all measured E/E0 ratios was obtained. It was found to be β = 0.0451(5). This
is in good agreement with kinematics [144] and energy-loss [232] calculations, which
give β = 0.0456. This value was then used to convert each run’s micrometer reading,
relative to the run having the smallest foil gap (run 17), to an expected relative flight
time, taking into account the ion’s recoil angle. To determine the zero time and verify the
flight times, a logarithmic decay curve was plotted. The unshifted peak counts represent
the undecayed fraction N, and the sum of the shifted and unshifted counts represents
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FIGURE 6.35: ‘True’ γ-ray spectra from the 76Ge TDRIV measurement, run 7,
showing separate particle coincidences with γ1 = 45◦ (forward angle). Note
that there is almost no background. Decays originating from stopped nuclei
form the narrow, lower-energy peak, while those in flight form the broader,

higher-energy peak; they are clearly separated in the spectra.
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FIGURE 6.36: ‘True’ γ-ray spectra from the 76Ge TDRIV measurement, run 7,
showing separate particle coincidences with γ2 = 135◦ (backward angle).
Note there is almost no background. Decays originating from stopped nuclei
form the narrow, higher-energy peak, while those in flight form the broader,

lower-energy peak; they are clearly separated in the spectra.
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FIGURE 6.37: 76Ge TDRIV measurement logarithmic decay curve, show-
ing the natural logarithm of the undecayed fraction versus the ion flight
time. The fit was minimsed using ROOT’s fitting routine [41], obtaining
χ2

ν = 0.9582. Uncertainties in both relative time and loge(N/N0) are ap-
proximately the size of the data points. The fitted lifetime of the 76Ge 2+1
state is τ = 26.04(17) ps, in good agreement with the literature value of
26.3(3) ps [133], and the ion flight time to the run 17 plunger position (left-

most point at relative time zero) is 6.48(15) ps.

the total fraction N0. By taking the peak counts and then correcting for changes in the
angular correlation due to the vacuum deorientation (Gk values, obtained from free-
fitting the data), and the relative detector efficiency between the shifted and unshifted
peak energies, values of N and N0 were obtained for each run. The logarithmic decay
curve in Fig. 6.37 plots loge(N/N0) against the relative times. The data show a linear
dependence, and strong agreement was found between the fitted lifetime of the 76Ge 2+1
state, being τ = 26.04(17) ps, and the accepted literature value of 26.3(3) ps [133]. These
two features validate the use of the calibration to set the time-zero offset and obtain time
points for each run, which are listed in Table 6.10.

The CSD of 76Ge ions was estimated using the parameterisation determined by
Leslie [134]. Leslie used an aluminium, rather than an iridium target, but found that
the Nikolaev-Dmitriev charge-state parametrisation [155] more closely matched the mea-
surements than the Schiwietz-Grande parametrisation [187]. As the Nikolaev-Dmitriev
parametrisation does not account for the Z of the target, the Schiwietz-Grande parame-
terisation was used to scale the distribution from the distribution centroid expected out
of an aluminium target to an iridium target. The resulting CSD is shown in Table 6.11.
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TABLE 6.10: Plunger micrometer setting and flight time for each run in
the 76Ge TDRIV experiment. The average recoil velocity and angle of the
76Ge ions were β = 0.0451(5) and θp = 8.6◦. Times were obtained by
t = − loge(N/N0)× 26.04 as determined from Fig. 6.37. Micrometer read-

ings are considered accurate to 2.5 µm.

Relative Distance Time (fit)
(µm) (ps)

Run 17 0.0(25) 6.46(16)
Run 1 24.0(25) 8.12(16)
Run 2 45.0(25) 9.55(16)
Run 3 73.0(25) 11.72(17)
Run 4 96.0(25) 13.67(18)
Run 5 121.0(25) 15.32(18)
Run 6 147.0(25) 17.74(19)
Run 7 173.0(25) 19.49(20)

Run 16 224.0(25) 23.46(22)
Run 13 301.0(25) 29.01(25)
Run 14 353.0(25) 32.49(27)
Run 15 406.0(25) 36.27(29)

6.4.3 Analysis

The TDRIV data were analysed to determine a value of g(2+1 ;76 Ge). Unlike the 56Fe
TDRIV experiment, this CSD was not optimised on Na-like ions, but was instead centred
on Si-like ions. As such, it may be challenging to extract a g factor from these data. As
for the 56Fe case (§6.1), the first step taken in the analysis was to free-fit the Gk values.
The result of this fit is shown in Fig. 6.38. There is a quasi-exponential trend, with a
weak oscillation visible from 10–20 ps. The oscillation appears to be present at the later
time points, but the points are spaced too sparsely to be sure. This overall trend in
Gk(t) is expected from the CSD in Table 6.11, as it is dominated by ionic species with
multiple valence electrons, which are expected to strongly exhibit this quasi-exponential
character. The only atomic state expected to contribute toward the observed weak
oscillation over this time period, at this frequency, is the Na-like 3s1/2 ground state.
In this case, the best approach to fitting would be to isolate and fit the Na-like 3s1/2

frequency in the data directly, as per the preliminary approach taken in §6.2.6.

To isolate this oscillation, the R(t) function was calculated, shown in Fig. 6.39. Across
the entire time-span there is little structure. However, the range 10 ≤ t ≤ 25 ps appears
to have two periods of some oscillation. Expecting this to be caused by the Na-like 3s1/2

interaction, a cosine fit was performed as in §6.2.6, this time with only a single cosine
frequency. But, before this was performed, an exponential function was fitted to the data
from 10 − 25 ps, and deducted from the data points to remove the quasi-exponential
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TABLE 6.11: Expected CSD of 76Ge ions recoiling out of iridium, correspond-
ing to the detection of C target nuclei measured across a particle-detector
face. This distribution is based on the parametrisation proposed in Ref. [134],
which was developed for the same velocity regime as this experiment. The
Schiwietz-Grande parameterisation was used to scale the distribution cen-

troid expected from an Al target to an Ir target.

Z−Q Ionic Species Population
11 Na-like 3.3%
12 Mg-like 9.2%
13 Al-like 18.1%
14 Si-like 25.0%
15 P-like 24.4%
16 S-like 15.8%
17 Cl-like 8.2%
18 Ar-like 2.6%

component and isolate the oscillation. The residual data were then fitted to:

1− R(t)fit = a cos(ω[t− δ]) + c, (6.10)

where the fitted values of the parameters are the cosine amplitude a = 0.0186(42), the
angular frequency ω = 1.065(80) rad/ps, the phase shift δ = 2.3(9) ps, and the co-
sine offset c = −0.0021(3). The χ2

ν = 0.161. The fit result is shown in Fig. 6.40, and
gives g = +0.318(24) accounting for 1% uncertainty in the GRASP 3s1/2 calculation,
added in quadrature. The sign is known from the transient-field measurement in §4.3.2.
This value is in excellent agreement with that obtained by Gürdal et al. using the TF
technique [98]. The large phase shift has a considerable uncertainty, and may indicate
over-fitting of the data. When the phase shift is fixed to δ = 0, the fitted value falls to
ω = 0.899(15) rad/ps, giving g = +0.269(5). This value is in excellent agreement with
the value measured in §4.3, also using the TF method, but disagrees with the value fit-
ted when δ is allowed to vary. The uncertainty, however, is dramatically underestimated
due to fixing the δ parameter. Adopting the same percent uncertainty as obtained for
g = +0.318(24) gives g = +0.269(20), and the uncertainties now almost overlap at 1σ.
With conditions so poorly optimised for making this measurement, it is difficult to de-
termine where between these two values the g factor truly lies. The small χ2 also means
that a large range of g-factor values can give χ2

ν ≤ 1, and so the possibility remains that
the true value may be outside of this range. Nevertheless, the strongly attenuated Na-
like ground-state oscillation has, remarkably, suggested a value of +0.27 . g . +0.32.
The result suggests that a future experiment, with optimised conditions, will be able to
determine g(2+1 ;76 Ge) with high precision.
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FIGURE 6.38: Time-differential 76Ge-data Gk values obtained by free-fitting
G2 and G4 to the measured angular correlations (see Appendix B.3) as de-
scribed in §5.6.4. Quasi-exponential states clearly dominate the interaction

with a strongly attenuated oscillation visible from 10–20 ps.
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6.5 Free-Ion Hyperfine Interactions in Z ∼ 30 Nuclei

In this section the results of the RIV measurements presented in this chapter will be
scrutinised. In particular, the challenge of understanding both the time-integral (TI) and
time-differential (TD) RIV data that is available for 54,56Fe will be examined, along with
ways to improve or optimise measurements for Z ∼ 30 nuclei. The strengths and weak-
nesses of the two TDRIV measurements on 56Fe and 76Ge will be examined, and propos-
als made for performing measurements to further interrogate the hyperfine interaction,
as well as optimisations to improve the reliability of g-factor values obtained via this
technique. It will be argued that a charge-state distribution (CSD) centred between Na-
like and Mg-like ions will provide the best measurement for determining the g factor for
Z ∼ 30 nuclei. Finally, these optimisations will be examined with a view to apply them to
radioactive-ion-beam (RIB) measurements. It will be shown that these optimisations are
important for maximising precision when performing g(2+1 ) measurements using RIBs.

6.5.1 Previous Measurements and the Challenge of Z ∼ 30 Nuclei

The RIV technique has been utilised for nuclear g-factor measurements in short-lived
excited states since the 1960s, and is still undergoing advances in its application and
methodology today. However, it was also around this time that the transient-field (TF)
effect was identified, and methods utilising the TF would instead come to dominate
the literature. As early as 1975, the TDRIV technique was used to measure g(2+1 ) for
24Mg and 20Ne [113]. The simple hyperfine interactions present in highly stripped,
low-Z ions, provide the opportunity to measure g(2+1 ) in an absolute manner. For these
low-Z ions, H-like 1s and Li-like 2s electrons almost solely contribute to oscillations in
the measured anisotropy at moderate recoil velocities (∼ 5% c), making for a simple,
direct measurement of their frequency and thereby the g factor. While this approach is
effective for nuclei having Z . 14, the H-like 1s hyperfine-interaction frequency, which
scales with Z3, becomes unresolvable as higher-Z nuclei are considered. To reduce the
hyperfine-interaction frequency back into a measurable range, higher-n (shell) electrons
must be utilised. In the case of Z ∼ 30 nuclei, the Na-like ground state (3s) is a more
experimentally accessible atomic state for using to measure g(2+1 ). For even heavier
nuclei, with longer-lived 2+1 nuclear states (τ ∼ 10−9 s), time-integral measurements
may instead be performed without the need for optimising on ionic species with a
J = 1/2 ground state. However, in such measurements, the hyperfine interaction
must be calibrated to determine the g factor of unknown states. Such are the varied
applications of this technique across the nuclear chart, and also the challenges as Z is
increased.
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The success of the TIRIV measurement of g(2+1 ) in radioactive 132Te [204], generated
interest in utilising these techniques to analyse TIRIV data available for radioactive
78,80,82Ge. Measurements of g(2+1 ) in the stable, even-A Ge isotopes had been published
repeatedly in the literature, along with those for the stable, even-A Se isotopes. It
was supposed that these could be used to calibrate the hyperfine interaction and
thereby determine g(2+1 ) in the 78,80,82Ge radionuclides. Unfortunately, calibration of
the hyperfine interaction, as performed by Leslie [134], proved to be problematic [206].
The TDRIV g(2+1 ) measurement on 56Fe, described in §6.1, also proved challenging
to interpret, initially. The hyperfine interaction presented unexpected features that
resulted from a number of strongly populated atomic states from F-like and Na-like
ions contributing together, a more complicated scenario than originally modelled, and
much more complex than the simple H-like contribution observed for 24Mg. It was this
stumbling block that had slowed progress in applying this technique to Z ∼ 30 nuclei,
until now.

Z ∼ 30 nuclei present a middle ground between Z . 14 nuclei, for which simple
H-like ions may be used, and Z & 50 nuclei, for which measurements utilising an empir-
ical calibration suitable for ions having considerably more bound electrons (& 14 elec-
trons) and longer-lived nuclear states (τ ∼ 10−9 s) may be used. For the Z ∼ 30 nuclei,
which have 2+1 lifetimes of the order of picoseconds, the strong hyperfine interactions
present in highly stripped ions are necessary to obtain accurate g(2+1 ) values from TIRIV
measurements. Unfortunately, these ion ensembles can contain significant contributions
from Na-like and F-like states, which have been demonstrated to have strong, single-
frequency contributions. Such ion ensembles are not well-approximated by the empiri-
cal static model used in the analysis of the 132Te TIRIV g(2+1 ) measurement, as presented
by Stuchbery and Stone [212]. Hyperfine interactions with H-like ions for Z ∼ 30 nu-
clei are too high in frequency to resolve with current apparatus. Going to less-stripped
Li-like ions is still challenging, although more feasible. However, the co-generation of
Be-like ions will contribute atomic states that will create complex hyperfine interactions
to disentangle; hence, the CSD will need to be tightly controlled and centred over Li-like,
with smaller contributions from He-like and Be-like. As such, Na-like ions seem to be the
most viable option, particularly for Coulomb excitation, so long as the F-like contribution
is kept minimal. These factors in TIRIV and TDRIV measurements will be discussed in
the remainder of this section.

6.5.2 Atomic-State Contributions to the Hyperfine Interaction

Strong contributions from single atomic states may present unexpected hyperfine
interactions when not properly accounted for. When the 56Fe 2+1 TDRIV measurement
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(§6.3) was originally proposed, preliminary modelling suggested that the Na-like
ground-state (3s) and first-excited-state (3p1/2) oscillations would be visible against a
smooth, declining quasi-exponential slope. Such a quasi-exponential slope was apparent
in the 76Ge TDRIV measurement (§6.4.2), however the Na-like ground-state oscillation
was too weak. The 56Fe TDRIV measurement instead revealed an unexpected, strong
deorientation at early times, with multiple interfering frequencies and restoration of
anisotropy at later time points (§6.2.2). Analysis of these frequencies found a strong
F-like ground-state (2p3/2) oscillation was required to explain the measured trend
(§6.2.6). An empirical determination of the CSD found that a F-like contribution, while
considerably stronger than expected, was still not strong enough to fully explain this
trend. Regardless, the measured oscillations were well-explained using the F-like and
Na-like ground and first-excited states, along with a Ne-like B ' 0 contribution, when
allowing for an offset in the R(t) function to which the data were fitted. This analysis
demonstrated that consideration of each observable ground and low-energy atomic state
from the ion ensemble allows for the identification of the components contributing to
the hyperfine interaction.

Fits to both the 56Fe time-dependent stop (§6.2.7) and in-flight data (§6.2.9), as well
as the time-integral data (§6.3.2), always found a dominant F-like 2p3/2 component
when state occupations were allowed to vary in an unrestricted manner. This result
could not be explained using the CSD expected for a nickel target. The time-dependent
in-flight 56Fe and time-integral 54,56Fe measurements also showed that this deorientation
is not rapid (τ . 1 ps), but occurs over the lifetime of the 56Fe 2+1 state (§6.3.3). The
restoration of anisotropy at later time points, observed in the time-dependent measure-
ment (see Fig. 6.9), is evidence that the initial deorientation must be owing, in part,
to the persistent occupation of a single state from early timepoints. It was observed
after the 56Fe TDRIV measurement that carbon residue had built up on the target, and
was suspected of altering the CSD. It was found that the measured CSD of 56Fe out of
carbon matched much more closely to the unrestricted fits to the TDRIV data. That the
observed deorientation of the in-flight component in the TDRIV measurement (§6.2.9)
matched well with the TIRIV measurement (§6.3.2) supports the hypothesis that carbon
build-up was increasing the F-like relative to the Na-like fraction. Thus, the conclusion
that the F-like fraction was greater than expected is firm, although it cannot explain all
the observed features of the observed Gk trend.

The contribution of short-lived (sub-picosecond) core-hole excited states may sig-
nificantly affect the magnitude of Gk values in both time-integral and time-differential
measurements, although formation of R(t) ratios in TDRIV measurements can reduce
any sensitivity to such effects when determining the g factor (§6.2.7). A more thorough
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measurement is suggested to probe this interaction, in which different CSDs may be
compared to observe the effect on the absolute magnitude of the Gk(t) trend, and time
points that will allow the t < 2 ps region to be probed. An apparatus has been devel-
oped at ANU that will allow such a measurement, consisting of a plunger device that is
anticipated to be capable of measuring time points beginning at t < 1 ps, and a two-ring
particle-detector array that, due to the angular separation between the rings (and
consequent differing recoil velocities), will allow for two different CSDs to be measured
simultaneously. This means the hyperfine interaction can be probed in two ways: by
measuring angular correlations at very early timepoints, that will allow for the behaviour
of the hyperfine interaction over the short timescales to be identified; and observation
of how the hyperfine interaction differs between two separate CSDs, that will allow
critical comparisons to be made with the hyperfine-interaction model and observed
vacuum deorientation. The objective of such a measurement is a consistent description
of the features in the Gk(t) data that are similar and dissimilar for two overlapping CSDs.

Analysis of the 56Fe (§6.1) and 76Ge (§6.4) TDRIV data has demonstrated that the
hyperfine frequencies present at later times (t & 5 ps) can be modelled using hyper-
fine interactions associated with the ground and lowest-excited atomic states of the ionic
species present to determine the nuclear g factor. This capability is a triumph for this
technique, and will allow for future measurements to be carried out with the confidence
that ab initio modelling of the hyperfine interaction can allow the g factor to be extracted
from TDRIV data for nuclei around Z ∼ 30. The lessons learned about optimising the
experimental parameters for such measurements will now be discussed.

6.5.3 Optimal g-factor Measurements By Time-Differential Recoil-In-

Vacuum

The ideal TDRIV measurement would present a simple, J = 1/2 cosine oscillation from
a maximally occupied atomic state for the determination of the g factor. The TDRIV
measurements analysed in the present work, while containing this oscillation, represent
two examples of non-optimal CSDs: the 56Fe measurement presented a complex super-
position of oscillations owing to the CSD including a significant F-like fraction that was
not expected, while the 76Ge measurement had almost no oscillations owing to the small
Na-like fraction and the dominance of ionic species exhibiting quasi-exponential Gk(t)
trends. By examining the optimal features in each of these two measurements, an ideal
CSD can be determined.

States having J > 1/2 contribute a complex set of frequencies to the observed Gk(t)
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trend. These states, therefore, obfuscate what would ideally be a straight-forward analy-
sis of a simple cosine frequency from a J = 1/2 state. Such a complex superposition was
seen in the 56Fe measurement, owing to the 2p-electron hole in the F-like ions. The F-like
ions’ ground state has J = 3/2, causing G2 and G4 to oscillate at different frequencies.
In its first-excited (spin-flip) J = 1/2 state, the frequency is very similar to the Na-like
3s state, creating a complex interference pattern that further obfuscates the observation
of a simple cosine oscillation (see Fig. 6.17). The measurement has revealed that any
significant contribution from the F-like ions is undesirable for the direct observation
of the Na-like 3s state’s oscillation. When originally designed, the 56Fe measurement
was expected to have a CSD centred on Na-like ions, with a small F-like fraction. The
build-up of carbon on the back side of the target seems a likely explanation for the F-like
fraction being stronger than expected.

The sensitivity of the measurement to the F-like fraction highlights the importance of
using an empirically determined CSD, rather than the approximate solutions provided
by Nikolaev and Dmitriev, or Schiweitz and Grande. This is particularly relevant to the
CSDs desired for Z ∼ 30 nuclei, which are near to the neon atomic shell closure and
therefore exhibit non-Gaussian distributions. It is also strongly suggested that the ion
recoil velocity is measured from the Doppler shift before the beam-energy is finally set,
owing to uncertainties that may be present in the target thickness. Both of these steps
were taken for the 56Fe TDRIV measurement: the CSD out of the target material was
empirically determined, and the beam energy was adjusted to give the optimal velocity.
What was not expected was that carbon build-up over the run lifetime could also present
an issue, as a thin layer of carbon deposited on the back of the target can appreciably
shift the CSD to higher charge states. Therefore, steps should also be taken to prevent
the build-up of carbon on the target foil (e.g. clean vacuum, cold shield). As a further
precaution, the C/Ni layers of the target could be reversed to guarantee the ions recoil
out of carbon, as to select an appropriate recoil energy to obtain the desired CSD.

In contrast to the 56Fe measurement, the 76Ge measurement had almost all of the ionic
species that were present contribute a quasi-exponential character to the measured Gk(t)
trend. This was evident in Fig. 6.38, although there appeared to also be a small-amplitude
oscillation. The lack of any expected competing frequencies made the isolation of the
weak Na-like atomic-ground-state contribution straight-forward. Comparison of the Gk

trends from the 76Ge measurement and the 56Fe measurement indicate that an optimised
CSD should be focused on Na-like and Mg-like states, having lesser populations of Ne-
like and Al-like, with little-to-no F-like. That the charge states follow a skew-normal
distribution near the neon shell closure (see §6.1.2) should allow for fine-tuning of the
Na-like fraction, while keeping the F-like fraction minimal. The simulated R(t) plot from
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FIGURE 6.41: Simulated R(t) plot for a TDRIV 56Fe 2+1 measurement, with
data at 2 ps intervals and having 2% uncertainty. The CSD used in this sim-
ulation was 4% F-like, 23% Ne-like, 29% Na-like, 25% Mg-like and 15% Al-
like. The Na-like 3s ground-state oscillation is readily identifiable with no
interfering frequencies. Such a CSD would be ideal for a TDRIV measure-

ment on any Z ∼ 30 nuclide.

such an optimal CSD is shown in Fig. 6.41. By identifying and subtracting the quasi-
exponential component, the Na-like ground-state oscillation can be isolated and precisely
fitted to determine g(2+1 ) in Z ∼ 30 nuclei. With an optimal CSD identified, attention will
now be directed to the application of the TDRIV technique to RIBs.

6.5.4 Recoil-In-Vacuum Measurements Using Radioactive-Ion Beams

As previously discussed, and indicated in the literature [129, 204, 206, 212], the RIV
technique provides a viable means to probe excited-state g factors in radioactive nuclei
produced as beams by RIB facilities. Such experiments may be designed so that not only
can the g factor of a given state be determined, but by performing Coulomb excitation
as well, the energy level, B(E2) and lifetime of an excited state can be determined
in a single experimental run, providing valuable data with which to test shell-model
predictions for excited states in exotic nuclei.

Time-integral (TI) RIV measurements are ideal for RIB measurements due to the ra-
dionuclides being able to pass out of view of the detectors. This prevents the accumula-
tion of radionuclides, and consequent saturation of the detectors with unwanted decay
radiation, that would occur in a typical TDRIV measurement. For TIRIV, careful cali-
bration and detailed ab initio modelling of the hyperfine interaction will be important.
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A TDRIV measurement, in conjunction with relative measurements using the transient-
field technique, will allow for the g factors of several nuclear states amongst isotopes
of the same element to be determined in an absolute manner. TIRIV measurements on
these states will then allow for the precise calibration of the hyperfine interaction. With
the proper calibration, TIRIV data measured using RIBs can be confidently interpreted to
determine g(2+1 ). By optimising the CSD, the acquisition time necessary to achieve the
desired precision may be reduced, allowing the possibility to perform alternative mea-
surements, such as multi-step Coulomb-excitation, during the same beam time. From a
single beam time, level energies, excitation amplitudes, and g factors may be obtained for
several states, providing valuable data with which to confront the nuclear shell model.
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6.6 Summary

In this chapter, the experimental procedures and results for several time-differential and
time-integral recoil-in-vacuum measurements were presented, with a particular focus on
understanding the hyperfine interaction present in 56Fe ions with a charge-state distri-
bution centred around Ne- and Na-like ionic species. For the 56Fe 2+1 -state measurement,
a g factor was obtained, albeit with minor reservations about its accuracy in light of the
complications surrounding the charge-state distribution (CSD). A simplified analysis
procedure also allowed g(2+1 ;76 Ge) to be loosely determined, despite the measurement
being poorly optimised for this purpose.

The hyperfine interaction causing time-integral vacuum attenuation in Fe ions, and
its behaviour between lifetimes of τ . 1 ps and τ ' 10 ps was modelled. Components
of the hyperfine interaction relating to valence atomic configurations, which become
dominant over tens of picoseconds, have been modelled and seem able to explain the
oscillatory features observed time-differential data. This understanding will inform the
optimisation of future experiments, allowing for g-factor measurements with improved
precision. However, the influence of core-hole excited states on the overall magnitude
of the hyperfine interaction is poorly understood, and will require carefully designed
experiments to probe, as well as additional modelling. A future measurement, capable
of exploring early time points (t . 2 ps), will improve our understanding and ability to
model the hyperfine interaction. Such a measurement will be possible using a newly
developed plunger device at ANU, that was designed to be coupled to a two-ring
particle-detector array capable of measuring two distinct CSDs simultaneously.

In conclusion, RIV Simulate and the TDRIV technique have proven able to model
the hyperfine interaction with the goal of determining nuclear g factors for nuclei in this
region, particularly with well-informed experimental design, whilst also presenting the
opportunity to understand the sub-picosecond hyperfine interaction for better analysis
of time-integral measurement data.
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Chapter 7

Nuclear Shell-Model Interpretations of
g(2+1 ) Values

As discussed in Chapter 2, the goal of many experimental endeavours is to measure nu-
clear properties with which to confront the nuclear shell model. In this work several
g(2+1 ) values were obtained, either directly from data or by reanalysis. In this chapter
the g-factor results obtained in Chapter 4 and Chapter 6 will be compared to and inter-
preted in the context of modern shell-model theory and multi-configuration shell-model
calculations, along with previous interpretations. It will be shown that nuclear g-factor
systematics provide a valuable probe for interrogating the changing orbital occupation of
protons and neutrons in the wavefunction for isotope chains near to islands of inversion,
and in nuclear regions which exhibit changing collective and single-particle behaviour.

7.1 24,26Mg

Excited states in 24Mg present an interesting case of a self-conjugate nucleus that devel-
ops collective features. Being self-conjugate, it has equal valence protons and neutrons
in the sd-shell space, and has been calculable within the multi-configuration shell model
since the 1970s [61, 148]. The naïve interpretation from its nucleon configuration, with
equal numbers of valence protons and neutrons in the same shell, is that the g factor
of the first-excited state will be g(2+1 ) = +0.5. Deviations from this limit indicate
differences in coupling of proton and neutron configurations. Calculations indicate that
the g factor should be slightly larger than g = +0.5. Today, g(2+1 ;24 Mg) = +0.538(13)
has been firmly assigned, in excellent agreement with the value g = +0.543 obtained
by multi-configuration sd-shell calculations using the USDB interaction Hamiltonian.
For the nucleus 26Mg, the accepted literature value, measured by Speidel et al., of
g(2+1 ;26 Mg) = +0.50(15) [196] deviates greatly from the USD shell-model-calculation
value of g = +0.959, but was in good agreement with a multishell Hartree-Fock
calculation at the time of publication [96]. This value was in stark contrast to the
previously measurement by Eberhardt et al., being g(2+1 ;26 Mg) = +0.97(18) [61, 231].
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These measurement discrepancies will now be examined.

The earlier measurement by Eberhardt et al. was obtained using IMPAC [61],
whereas the value of Speidel et al. was used the thin-foil TF technique [196]. Speidel’s
measurement was motivated by a perceived issue with the doubling of g(2+1 ) between
24Mg and 26Mg, and a now dated hypothesis regarding the electromagnetic properties
of A = 4n + 2 nuclei being consistent across this region. Between the publication of
Eberhardt et al. and Speidel et al., the static hyperfine field strength for Mg in iron was
measured, and found to be an order of magnitude stronger than the extrapolated value
used by Eberhardt et al. Speidel et al. suggested that this underestimation caused the
measured precession in 24Mg to be much smaller (as the static field has sign opposite
to the transient), and hence the 26Mg g factor appeared larger. However, at the time
it was not known that the pre-equilibrium quenching of the static field, owing to the
thermal-spike lifetime, would cause the static-field component to be almost null for
these short-lived isotopes. Therefore, while the assertion that the static-field component
was underestimated is correct, the magnitude of the reduction was much smaller than
expected. In the measurement by Speidel et al., g(2+1 ;24Mg) was measured relative to
g(2+1 ;26Mg) by exciting nuclei in a Mg target in regular kinematics using an α-particle
beam. A weakly polarising field of 0.02 T was applied to the foils, containing an
iron ferromagnetic host. Discrepancies in foil preparation, the weak polarising field,
uncertainties in the TF calibration, and the small lifetime of the 26Mg 2+1 state, may have
all contributed to the erroneous result.

The value obtained in the present work, g(2+1 ;26 Mg) = +0.86(10), followed the
ideal of the measurement by Speidel et al. [196], whereby g(2+1 ;26Mg) was measured
relative to g(2+1 ;24Mg). However, as discussed in §4.2.3, systematic uncertainties in the
measurement were almost completely eliminated, and a much stronger polarising field
was used without inducing appreciable beam-bending by virtue of the apparatus design
(see introduction in Chapter 4). The value obtained was in good agreement with Zalm’s
reanalysis of Eberhardt’s measured g(2+1 ;26Mg) value [231], while being slightly smaller
as alluded to in Ref. [196]. It is also in agreement with modern shell-model calculations.

With g(2+1 ;26Mg) confidently evaluated, shell-model calculations, and the influence of
different active spaces and interactions in their predictions of nuclear behaviour around
the 32Mg island of inversion can be interrogated. Figure 7.1 shows measured E(2+),
B(E2) and g(2+) values for even-A isotopes of Mg compared with shell-model calcula-
tions performed using NuShellX [39] with the USDB interaction Hamiltonian [182] in
the sd-shell space. Calculations have also been performed for g(2+1 ) in 30,32Mg using the
Monte-Carlo shell model in the sdp f space [162]. The large difference between g(2+1 )
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FIGURE 7.1: Comparison between shell model calculations using the USDB
interaction Hamiltonian, and experiment, for the magnesium isotopes from
22 ≤ A ≤ 32 a) E(2+1 ) energies, b) B(E2) rates, and c) g-factor values [179,
188, 71, 17, 189, 190, 164]. The theoretical g factors for 30Mg and 32Mg in a
more realistic (for the island of inversion) sdp f model space are also shown

by the stars [162].
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TABLE 7.1: Spin composition of 2+1 states in 24,26Mg as determined by shell-
model calculations using the USDB interaction Hamiltonian.

Jn Jp Weight (%)
24Mg 26Mg

2 0 25.64 17.05
0 2 25.64 52.04
2 2 19.66 9.59
2 4 8.60 7.17
4 2 8.60 3.85

in 24Mg and 26Mg is indicative a shell effect owing to the two additional neutrons. The
spike in E(2+) and dip in B(E2) at 26Mg suggest the presence of a subshell closure.
Indeed, 26Mg (having N = 14) fills the νd5/2 orbital, which appears to be behaving
as a sub-shell closure. Table 7.1 shows a breakdown of the proton and neutron spin
contributions to the 24,26Mg 2+1 states, and indicates that when the νd5/2 orbital is filled,
J = 2 two-proton excited states (ν(0+) ⊗ π(2+)) become dominant over two-neutron
states (ν(2+)⊗ π(0+)), whereas they are equal in 24Mg. This causes a near doubling of
g(2+1 ) in 26Mg, an increased E(2+) and a reduced B(E2).

The USDB interaction is able to reproduce the trends and magnitudes in the mea-
sured observables up to N = 30. At N = 32, however, changing nuclear forces have
deformed the nucleus to the extent that the N = 20 shell closure is no longer firm, and
significant occupation of the p f orbitals beyond N = 20 must be considered. The sd-
shell space is unable to account for this behaviour, instead predicting an increased E(2+1 )
and g(2+1 ), and a reduced B(E2) as the shell-closure is approached. By extending to the
the sdp f space, calculations are able to account for this behaviour. The agreement be-
tween E(2+) and B(E2) values up to N = 30 indicates that these observables are not as
sensitive to the weakening shell-gap as g(2+) may be, which already gives a noticeable
disagreement between the two calculations at 30Mg. This indicates that g(2+1 ) values
may actually have sensitivity to the changing single-particle energy levels along isotopic
chains approaching an island of version, and deviations in g(2+1 ) may be visible at 28Mg
if precise measurements are made. Such precise g(2+1 ) measurements on radioactive
nuclei, however, are challenging. The TDRIV technique, utilising the electron-reset foil
as applied by Kusoglu et al. [129], is the ideal technique for such measurements, and
already data on g(2+1 ;28Mg) has been collected by this method (pending analysis with
another institution). Further measurements on 30,32Mg could provide important valida-
tion for shell-model calculations and modern configuration-interaction models in this
interesting region.
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7.2 54,56,58Fe

Precise g factors for nuclei in the p f shell space provide an interesting opportunity to
study the softening and even disappearance of the Z, N = 28 shell closure in neutron-
rich nuclei [112], as well as changing single-particle energies for the ν1 f5/2, ν2p1/2 and
ν1g9/2 orbitals. An island of inversion similar to that around 32Mg has been suggested to
appear in neutron-rich Fe nuclei [139]. This was interpreted from the modelling required
to explain the large increase in B(E2) between 62Fe and 64Fe, with the latter having
neutron excitations into an intruder orbital. Another study compared the predictive
power of p f -space shell-model calculations versus a truncated f pg-space calculation,
and found that while the ordering of 61Fe excited states was handled by the p f space, it
was unable to reproduce the 63Fe ordering [199]. The authors suggest that a monopole
correction is responsible for this discrepancy, further supporting the idea of this island
of inversion. If there is some change to the ordering of the neutron orbitals for Fe nuclei,
it might have a measurable effect in the 56Fe 2+1 -state g factor, which may be used to
confront the shell model.

Up until 2009 only two g-factor measurements had been performed on the 56Fe 2+1
state that did not utilise a TF-strength calibration. These were radioactivity measure-
ments; a resonance scattering measurement and observed perturbation of the angular
correlation in a 0+ → 2+ → 0+ sequence by Metzger [150], and a measurement of
the perturbation in the γ-γ angular correlation in a 4+ → 2+ → 0+ cascade by Appel
and Mayer [13]. These two measurements used τ(2+1 ) = 10.6 ps in the evaluation
of the g factor. A new value, τ(2+1 ) = 9.27(13) ps, was evaluated in this project (See
§6.1.2). The older radioactivity measurements [13, 150] were reanalysed using this new
lifetime, choosing BHF = 33(1) T from Ref. [180]. A weighted avereage of the two gives
g = +0.61(11). In 2009 a new g-factor value was measured for this state by East et al. [56],
using the TF technique. In this instance, however, the state was measured relative to the
first-excited 5/2− state in 57Fe, having a well-established g factor. This measurement
determined g = +0.49(6). In §6.1 a new value for the g factor has been determined,
g = +0.546(19), in good agreement with these three previous measurements. It is
also worth noting that the 56Fe 2+1 -state precession data measured by Ernst et al. [66],
evaluated using the Rutgers parameterisation, gives g = +0.55(3), also in agreement
with the present value. East et al. also published a measurement of g(2+1 ) values for
54,58Fe relative to g(2+1 ;56 Fe) [57], again using the TF technique. Rescaled g(2+1 ) values,
obtained using g(2+1 ;56 Fe) = +0.546(19) with these relative measurements, are listed in
Table 7.2, along with the p f -space shell-model calculations reported in Ref. [112]. With
the improved precision of these values, critical comparisons with these shell-model
predictions can be made with confidence.
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TABLE 7.2: Newly evaluated g(2+1 ) values for 54,56,58Fe along with p f -space
shell-model calculations. The signs of the g factors are all positive.

g(2+1 )
Isotope Measured Shell model [112]

54Fe 1.020(50) 1.094
56Fe 0.546(19) 0.592
58Fe 0.499(33) 0.605
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FIGURE 7.2: Values from Table 7.2 plotted for visual comparison. The p f -
space shell-model calculations [112] have a slightly larger magnitude than

the measured values, with the discrepancy growing larger as N increases.

Figure 7.2 shows the newly determined 54,56,58Fe g(2+1 ) values alongside the p f -space
shell-model calculations reported by Honma et al. [112]. East et al. [57] suggested that the
smaller values of the Fe isotope g factors were indicative of some occupation of the νg9/2

orbital, which calculations using only the p f space cannot account for. The comparison
in Fig. 7.2 indicates that while the effect is not as large as East et al. suggest, the improved
precision shows that there is an increasing deviation between the measurements and the
shell-model calculations as N increases. This reduction of the measured g factors relative
to the p f -model calculations could possibly be attributed to some occupation of the
νg9/2 orbital. Therefore, f pg-space shell-model calculations may be necessary to achieve
agreement at this level of precision. Furthermore, isotopes beyond 56Fe, approaching the
potential island of inversion at 64Fe, may require a full f pg-basis space to be accurately
predicted, as has already been observed for nearby isotopes of Co [181]. However,
without g(2+1 ) systematics that extend into the neutron-rich isotopes, this cannot be
confirmed. Instead, this deviation may relate more to effective nucleon g factors used in
the calculation, rather than the proton orbital occupation.
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In conclusion, by scaling a relative measurement of the less abundant 54,58Fe nuclei
against 56Fe with a TDRIV measurement, precise g(2+1 ) values have been obtained for the
three nuclei and allowed for a critical comparison with the theory, again demonstrating
the complementary use of these techniques.
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7.3 Stable Even-A Ge and Se Isotopes

The stable, even-A isotopes of Ge and Se cover the range 38 ≤ N ≤ 48, notionally from
an empty ν2p1/2 orbital through to the ν1g9/2 orbital being two neutrons away from the
N = 50 shell closure. For these two elements, with Z = 32, 34, nominally the π2p3/2

orbital is filled and the π1 f5/2 is either empty or has two protons. The difference in
neutron behaviour between these two isotopic chains is not expected to be significantly
affected by the π1 f5/2 orbital’s occupation or lack thereof, although it will influence
the magnitude of the g factors. In stable nuclei the filled ν2p1/2 orbital (N = 40)
should be a sub-shell closure in spherical nuclei, with implications for trends in the Ge-
and Se-isotope systematics. This sub-shell closure has been probed using notionally
doubly-magic 80

40Zr40 [137] and 68
28Ni40 [37]. The former showed strong deformation and

therefore no shell closure, whereas the latter showed indicators of a subshell closure.
It is tempting to explain this as the gap between the 1 f5/22p1/2 orbitals and the 1g9/2

orbital changing as Z increases, however neither Fe nor Zn show evidence of a N = 40
sub-shell closure in their E(2+) and B(E2) systematics, and mass studies on nuclei in
this region further confirm this [95]. One study suggests the behaviour of 68Ni can
instead be explained as a neutron excitation [131]. Together, this evidence indicates that
N = 40 is not a sub-shell closure in p f pg-shell nuclei.

The results from the even-A Ge and Se isotopes presented in §4.3.2 are shown in
Fig. 7.3, along with the adopted literature values, and shell-model calculations span-
ning 38 ≤ N ≤ 50 using a 56Ni core and the JUN45 [111] and jj44b [38] interactions,
performed using NuShellX [39]. Table 7.3 shows the results of these shell-model cal-
culations. Listed are the g(2+1 ) values along with a breakdown of the orbital and spin
contributions from the proton and neutron configurations, as used in Eq. (2.24). Recall-
ing the TDRIV g(2+1 ;76 Ge) result from §6.4, the TF-measurement results from this project
can be considered as a lower bound, and the literature values as an upper bound. Viewed
as such, it appears that the shell-model calculations are able to predict the magnitude of
the g factors within the experimental uncertainty. Considering now the experimental
data points, the g(2+1 ) trend could indicate that as N → 44 there is a gradual increase in
collectivity, after which g(2+1 ) returns to single-particle behaviour as N → 50. This sug-
gests that the 2p1/21g9/2 orbitals may together form a sub-shell spanning 38 ≤ N ≤ 50,
however a neutron closure at N = 38 has also been excluded based on systematics along
the Ge isotope chain [98]. What has been confirmed, is that the relative behaviour of
nuclei through this region has proven difficult to model. Gürdal et al. [98] report, for the
Ge isotopes, that as the νg9/2 orbital is filled (i.e. as N increases), neutron excitations
from the f p orbitals decrease and, consequently, proton excitations become increasingly
dominant, resulting in increased g(2+1 ). The g(2+1 ) values are calculated using Eq. (2.24)
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and the effective nucleon g factors, giving

g(2+) = (〈Lp〉+ 3.91〈Sp〉 − 2.68〈Sn〉)/2. (7.1)

Considering now the values of 〈Sp〉 and 〈Sn〉 from Table 7.3, 3.91〈Sp〉 ≈ 0 and
2.68〈Sn〉 ≈ 0.2. From these two approximations, the g(2+1 ) values along the isotopic
chains may be described by,

g(2+) ≈ (〈Lp〉 − 0.2)/2. (7.2)

Similar behaviour can be anticipated for the jj44b interaction. Thus, the shell-model-
calculation trends shown in Fig. 7.3 reflect, primarily, the proton orbital contribution
to the angular momentum, and hence small variations in 〈Lp〉 directly impact on the
calculated g factor. If this interpretation is reflective of the reality, then the measured
g-factor trends represent the changing proton orbital contribution with changing N. The
shell-model calculations presented by Gürdal et al. [98] indicate that the changing proton
contribution is driven by the reduced number of neutron holes in the f p orbitals as N in-
creases. The experimental data from the Se isotopes shows that this changing behaviour
is smooth, with a turning point at N = 44 after which proton contributions begin to
increase. For the Ge isotopes, the trend is not so smooth, with g(2+1 ;72 Ge) ' g(2+1 ;74Ge).
The lack of protons in the π1 f5/2 orbital may be responsible for this deviation from the
smooth behaviour seen in the Se isotopes. The spin-isospin tensor force predicts that
introducing two 1g9/2 neutrons (at 74Ge) should cause a change in the π1 f spin-orbit
splitting, moving the π1 f7/2 orbital closer to the fermi surface. If this occurs, then the
Z = 28 shell closure will be weakened, and therefore the 56Ni core used in the present
calculations becomes less valid. Instead, a 48

20Ca28 core becomes more suitable. The
importance of proton excitations across the Z = 28 shell gap for nuclei in this region
was demonstrated by Srivastava and Ermamatov [198], who showed that shell-model
calculations using a 48

20Ca28 core with an effective f pg interaction produced B(E2) and
quadrupole-moment values in better agreement with measurements than those using a
56
28Ni28 core. Using this same method, Srivastava performed calculations for g(2+1 ) in the
even-A Ge isotopes [174]. Figure 7.4 shows these values alongside the measured values,
and the p f pg-space calculations using the JUN45 and jj44b interactions. For the most
part, there is good agreement between the 48Ca-core f pg-interaction and 56Ni-core jj44b-
interaction calculations, with the exception of g(2+1 ;74 Ge). Their agreement indicates
that inclusion of the π1 f7/2 orbital into the proton active space does not improve g(2+1 )
predictions in these nuclei, and that p f g orbitals are more important for predicting g(2+1 )
in these states.

For the exotic Ni and Cu nuclei having N > 40, monopole migration of the π1 f5/2
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orbital is predicted by shell-model calculations employing the VMU interaction [159] as
neutrons fill the ν1g9/2 orbital along the isotopic chains. This is depicted in Fig. 7.5. The
monopole migration leads to an inversion of the π1 f5/2 orbital with the π2p3/2 between
N = 44, 46. Intrusion of the 1 f5/2 orbital below the π2p3/2 has been experimentally
observed along the 71,73,75Cu isotope sequence [80]. If the 1 f5/2 orbital intrusion is occur-
ring along the Ge and Se isotope chains, increased collectivity should also be observed
as the π1 f5/2 and π2p3/2 orbital energies converge, becoming almost equal in energy
at N = 44. From N = 44 to N = 50, the lowest-energy excited proton configurations
would arise from unpaired protons in the π1 f5/2 orbital, rather than the π2p3/2. Accord-
ing to the Schmidt values for these two orbitals, the π2p3/2 g factor is more than three
times stronger than the π1 f5/2 using geff = 0.7gfree, and even greater using free values.
The reordering of these two orbitals may be why the g factor continues to decrease past
N = 42, despite the diminishing number of neutron p f holes. If the tensor force in the
present shell-model calculations is not correctly accounting for these monopole migra-
tions, then they will be unable to predict the experimentally observed behaviour of the
N = 42, 44 isotopes, despite obtaining what appears to be correct magnitudes. Correct
magnitudes are likely obtained because the central term of the interaction Hamiltonian,
to which the magnitude is sensitive, is the dominant and most robustly fitted compo-
nent, whereas the subtler two-body interactions are not fitted so well for these mid-shell
nuclei. Only through an improved understanding of these two- and three-body interac-
tions can the shell model’s capability to predict the behaviour across the breadth of the
nuclear chart be strengthened.
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FIGURE 7.3: Measured 2+1 -level g factors for a) Ge and b) Se isotopes from the
present work (red squares) and the literature (blue circles). Previous work
is designated by the Nuclear Science Reference code, namely 2013Gu23 [98]
and 1998Sp03 [195]. Shell-model calculations using the JUN45 and jj44b in-
teractions are shown as solid lines and dashed lines, respectively. Experi-
mental g factors from Ref. [98] shown in panel a) are their reported weighted-
averages that include the previous measurements [166, 130] along with their

own data. (See also Table 4.7.)
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FIGURE 7.4: Comparison between shell-model calculations for g(2+1 ) in the
stable, even-A isotopes of Ge, alongside the values presented in §4.3.2. The
JUN45 and jj44b interactions use a 56

28Ni28 core, while the f pg interaction uses
a 48

20Ca28 core. Inclusion of the π1 f7/2 orbital in the active space appears
to lower the average g factor, and causes the value for 74Ge to be greatly
reduced. Apart from 74Ge, the 48Ca-core f pg calculation agrees well with
the jj44b interaction using the 56Ni core, indicating that proton excitations

from the π1 f7/2 orbital are not important for g(2+1 ) in these nuclei.
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FIGURE 7.5: Calculated proton single-particle energies versus neutron num-
ber in exotic Ni isotopes, showing the effect of the π + ρ tensor force as the
ν1g9/2 orbital fills. This figure was originally published in Ref. [158], Fig. 4.
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7.4 Summary

In this chapter g factors measured in this project, and attained through rescaling
based on the present work, have been compared with shell-model predictions. Small
discrepancies between measurement, and the empirically derived jj44b-, JUN45- and
p f g-interaction Hamiltonians were found. These discrepancies were interpreted through
the lens of monopole migration. These investigations suggest behaviour in the mid-shell
configuration mixing that present shell-model calculations are unable to fully capture.

The complementary use of transient-field and recoil-in-vacuum techniques has al-
lowed for g(2+1 ) in 26Mg and 54,56,58Fe to be determined with improved precision, enough
to reveal discrepancies with shell-model calculations. This opens up the possibility for
future measurements in the Z ∼ 30 and the 32Mg island-of-inversion regions on both sta-
ble and radioactive nuclei to be made with confidence. With such measurements avail-
able, even more stringent tests of shell-model calculations may be undertaken.
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Chapter 8

Conclusion

In this thesis, the feasibility of performing precise and accurate g-factor measurements
on short-lived collective states in Z ∼ 30 nuclei was investigated. Two techniques
were explored for such measurements: the thin-foil transient-field technique in inverse-
kinematics, and the time-differential recoil-in-vacuum technique. The TF technique is
effective for measurements using stable-isotope beams, however calibration of the field
strength remains a challenge. Despite the calibration issue, the transient-field technique
is an effective means for performing relative measurements, particularly when ion
velocity, and foil magnetisation and thickness are controlled, as the absolute scale of the
field strength factors out. Isobaric nuclei may also be measured simultaneously, allowing
for measurements almost completely free from systematic uncertainty. However, this
must be performed with caution, as the TF strength may vary sharply between certain
elements in iron hosts.

The RIV technique has shown promise for obtaining precise and accurate g-factor
measurements. It has special advantages for measurements using radioactive beams
(see §2.3.3). However, application of this technique to Z ∼ 30 nuclei is challenging
due to the complex hyperfine interactions present. A Monte-Carlo simulation of the
atomic states contributing to the interaction, developed during this project, allowed for
a step-wise approach to the analysis. Confounding effects resulting from atomic transi-
tions were modelled, the varying effects owing to different ionic states categorised, and
the dominant atomic states contributing strong oscillations to the hyperfine interaction
were identified, and then fitted to obtain the g factor. Further details of the hyperfine
interaction remain to be investigated, such as the influence of core-hole excited states,
however these processes were shown to be less important for modelling the TDRIV data
beyond ∼ 5 ps. Through this procedure parameters for experimental optimisation were
realised, and tools were developed to help probe them for future experiments.

Together, these techniques provide the opportunity to obtain the aforementioned
g factors in an accurate and precise manner for nuclei spanning isotopic chains and
neighbouring elements.
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8.1 Relative g-factor Measurements Using the Transient-

Field Technique

Two distinct sets of thin-foil transient-field measurements were performed in this thesis:
a relative measurement between the 24Mg and 26Mg 2+1 states at high velocity, and a
relative measurement between the 2+1 states of the stable, even-A isotopes of Ge and Se
in inverse kinematics. The first case of a simultaneous measurement of isobaric nuclides
in a cocktail beam, in this instance being 74Ge and 74Se, was also performed.

In the 24,26Mg measurement a gadolinium foil was chosen as the ferromagnetic host,
due to the stronger transient field experienced by ions. The stronger field was necessary
to maximise the precession effect, which is small due to the low-Z and short lifetimes of
the 24,26Mg 2+1 states. In addition to cryocooling to 5 K, beam currents were kept low to
prevent any localised heating that may affect the foil’s magnetisation. The relative g(2+1 )
value in 26Mg was scaled using the published 24Mg value, obtained independently using
the TDRIV technique. This new value was in strong disagreement with the accepted
literature value, but in good agreement with current shell-model calculations (performed
by B. A. Brown, see §7.1) and also with the only other value available in the literature.

For the Ge- and Se-isotope measurements an iron foil was chosen to be the ferromag-
netic host due to the higher Curie temperature of iron and because extensive experience
collected at the ANU HIAF has shown that iron foils consistently achieve near to the
saturation magnetisation when polarised by an external field of the order of 0.1 T. Ve-
locity ranges almost completely overlapped across all isotopes, removing virtually all
uncertainty in the velocity dependence of the transient-field strength. The simultaneous
measurement of 74Ge and 74Se delivered as a cocktail beam ensured that the only uncer-
tainty in determining the g(2+1 ) ratio between the two isobars was in the Z-dependence
of the transient field, which is expected to vary smoothly across this region. The resulting
ratios were compared with previously published measurements, from which the g-factor
ratios were obtained using precession measurements from a single target, and used for
comparison. While absolute comparisons of g-factor values showed disagreement, the
single-target g-factor ratios from the literature were in agreement. These were combined
in weighted averages to obtain precise g-factor ratios, which now require only a single,
independent measurement of g(2+1 ) in one of the isotopes to scale the rest, as was done
in the Mg measurement.
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8.2 Precise g-factor Measurements Using the Recoil-In-

Vacuum Technique

The time-differential recoil-in-vacuum technique offers a unique opportunity to de-
termine nuclear-excited-state g factors to high precision with comparatively small
systematic uncertainty. This is made possible by the work of Goldring et al. [91], and
atomic-structure calculations performed by GRASP [84], that allow the calculation of
the hyperfine interaction in free ions to very high accuracy. This approach has been
successfully applied to light nuclei in which only a single bound electron is responsible
for the hyperfine interaction.

A measurement of the 2+1 -state in 56Fe using the TDRIV technique was performed
on multi-electron ion ensembles that exhibited a complex hyperfine interaction due to
the multiple ionic states and excited-atomic-state configurations present. A Monte-Carlo
simulation was used to model how the occupation of excited atomic states may change
through time, and how the resulting hyperfine interaction would affect the measured
angular correlations. From these simulations, several atomic states from F-like and
Na-like ions were identified as strongly contributing to the hyperfine interaction.
Potential effects arising from atomic transitions were also examined, and accounted for
by allowing variable average occupation and phase offsets in the hyperfine-interaction
frequencies. Together, these were then used to fit the data and determine the g factor.

Another TDRIV measurement, performed on 76Ge, was analysed with the intention
of both observing the behaviour of the hyperfine interaction through time, and iden-
tifying the possible presence of a frequency with which to determine g(2+1 ). Because
the measurement was not optimised for a g-factor measurement, a firm value for g(2+1 )
could not be determined from the weak Na-like frequency present. However, a range
for the g-factor value was still obtained, despite the weak contribution.

Aspects of both the 56Fe and 76Ge measurements informed the design of future exper-
iments, indicating the importance of having a strong J = 1/2 atomic-state contribution
with which to determine g(2+1 ), while also minimising the presence of other atomic
states which will contribute high-frequency oscillations to the hyperfine interaction.
Ions having multiple valence electrons give a superposition of many atomic states that
produce a smooth, quasi-exponential time dependence that is relatively innocuous in
the measurements described here.

For nuclei in the region Z ∼ 30, measurements should be performed with charge-
state distributions centred between Na-like and Mg-like ions. This is desirable because
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a strong Na-like contribution is required with little interference. The 76Ge measure-
ment showed that the lower-charged ions (> 11 bound electrons) contribute the quasi-
exponential attenuation-coefficient behaviour, noted above, to the hyperfine interaction,
which is easy to model and does not interfere with the Na-like 3s1/2 frequency. This is in
stark contrast to the 56Fe measurement, in which the F-like fraction was very strong and
confounded a straight-forward interpretation of the results. By centring the charge-state
distribution closer to Mg-like, a strong Na-like contribution may still be obtained, while
the Ne-like and Al-like charge states will not contribute any interfering oscillations in
the overall time-dependent attenuation coefficients. The conclusion of the present work
is that g(2+1 ) measurements may be performed on nuclei in this region for stable ion
beams with confidence, and precision.
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8.3 Obtaining g-factors Spanning Isotope Chains and

Neighbouring Elements

During this project g(2+1 ) of 26Mg and 56Fe have been determined, free from uncertain-
ties in transient-field-strength calibration, and with good precision. The relative g(2+1 )
values between the stable, even-A isotopes of Ge and Se have also been determined with
good precision. A range for the absolute g factor is suggested from the 76Ge TDRIV data.

The 26Mg value is in good agreement with the sd-space shell-model calculations,
but deviations are expected as N increases towards the island of inversion. The newly
determined value for 56Fe, presented in this thesis (see §6.2) has been used to scale exist-
ing relative measurements of g(2+1 ) for 54,58Fe [57], and deviations from predictions of
large-basis shell-model calculations begin to emerge. It is possible that these deviations
are related to increasing proximity to the potential island of inversion at 64Fe. The g(2+1 )
values may have increased sensitivity to the occupation of the ν1g9/2 orbital compared
to the E(2+) and B(E2) systematics. There are also notable discrepancies between the
relative values of g(2+1 ) along the Ge and Se isotopes (i.e. N dependence). A future
measurement of 74Ge or 76Ge using the TDRIV technique would allow the g factors to be
accurately scaled.

With firmly assigned g factors for the Fe, Ge and Se isotopes, the next step in this
experimental regime should be to expanded into the even-Z isotope chains between iron
and germanium by performing simultaneous transient-field measurements of isobaric
58Fe and 58Ni, and 70Ge and 70Zn. Relative isotopic measurements within each element
have largely been made using the transient-field technique, which can then be reliably
scaled using the relative isobaric measurements. The present work suggests that se-
quences of such measurements made using the same target give reliable relative g factors.
Such measurements, though potentially challenging due to the short 2+1 -state lifetimes
of the isobaric nuclei and relative isotopic abundances, can be achieved using stable-
beam facilities. With reliable 2+1 -state g-factors and lifetimes available, time-integral
recoil-in-vacuum measurements can be made on the stable isotopes, interpreted using
the Monte-Carlo simulation model developed in this project, and then used to calibrate
the hyperfine-interaction strength. With the hyperfine-interaction strength accurately
calibrated, g(2+1 ) can then be determined in radioactive nuclei from time-integral recoil-
in-vacuum measurements using radioactive ion-beam facilities. With measurements on
radioactive nuclei available, g(2+1 ) values across the region spanning 26 ≤ Z ≤ 34, and
the neutron shell-closures from 28 ≤ N ≤ 50, will enable a thorough test of shell-model
calculations in the f pg space to be undertaken.
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Appendix B

Angular-Correlation Plots

B.1 56Fe TDRIV ACs

This appendix section contains angular-correlation (AC) plots obtained from the γ-ray
detectors in ORGAM in the time-differential recoil-in-vacuum (TDRIV) measurement on
the 2+1 state in 56Fe, described in §6.1. The data are separated by plunger distance.
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FIGURE B.1: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 2.24 ps. See §6.1 for experimental details.
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FIGURE B.2: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 2.62 ps. See §6.1 for experimental details.
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FIGURE B.3: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 3.51 ps. See §6.1 for experimental details.
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FIGURE B.4: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 4.56 ps. See §6.1 for experimental details.
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FIGURE B.5: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 5.68 ps. See §6.1 for experimental details.
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FIGURE B.6: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 6.80 ps. See §6.1 for experimental details.
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FIGURE B.7: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 7.92 ps. See §6.1 for experimental details.
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FIGURE B.8: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 9.04 ps. See §6.1 for experimental details.
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FIGURE B.9: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 10.2 ps. See §6.1 for experimental details.
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FIGURE B.10: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 11.3 ps. See §6.1 for experimental details.
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FIGURE B.11: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 12.4 ps. See §6.1 for experimental details.
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FIGURE B.12: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 13.5 ps. See §6.1 for experimental details.
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FIGURE B.13: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 14.6 ps. See §6.1 for experimental details.
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FIGURE B.14: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 15.8 ps. See §6.1 for experimental details.
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FIGURE B.15: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 16.9 ps. See §6.1 for experimental details.
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FIGURE B.16: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 18.0 ps. See §6.1 for experimental details.
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FIGURE B.17: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 19.1 ps. See §6.1 for experimental details.
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FIGURE B.18: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 20.3 ps. See §6.1 for experimental details.
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FIGURE B.19: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 21.7 ps. See §6.1 for experimental details.
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FIGURE B.20: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 23.2 ps. See §6.1 for experimental details.
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FIGURE B.21: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 24.7 ps. See §6.1 for experimental details.
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FIGURE B.22: 56Fe TDRIV φ-dependent AC. γ-ray detectors θ = 46.5◦,
time = 26.2 ps. See §6.1 for experimental details.
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B.2 54,56Fe TIRIV ACs

This appendix section contains tabulated photopeak counts and angular-correlation (AC)
plots from the time-integral recoil-in-vacuum (TIRIV) measurements on the 2+1 states in
54,56Fe, described in §6.3. The data are separated by run and γ-ray detector.
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FIGURE B.23: 54Fe TIRIV φ-dependent
AC. γ-ray detector θ = 90◦. See §6.3 for

experimental details.
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FIGURE B.24: 54Fe TIRIV φ-dependent
AC. γ-ray detector θ = 135◦. See §6.3 for

experimental details.
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FIGURE B.25: 54Fe TIRIV φ-dependent
AC. γ-ray detector θ = 225◦. See §6.3 for

experimental details.

TABLE B.4:
Unscaled
photopeak
counts in

Fig. B.26

φ N σN
0 5914 124

45 4423 77
90 1269 54
135 3792 72
180 5177 116

0 20 40 60 80 100 120 140 160 180
0

1000

2000

3000

4000

5000

6000

7000

8000

Fe-54 @ 110 MeV
Gamma 4, Run001

Angle (deg)

C
ou

nt
s

FIGURE B.26: 54Fe TIRIV φ-dependent
AC. γ-ray detector θ = 270◦. See §6.3 for

experimental details.
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FIGURE B.27: 54Fe TIRIV φ-dependent
AC. γ-ray detector θ = 45◦. See §6.3 for

experimental details.
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TABLE B.6:
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FIGURE B.28: 54Fe TIRIV φ-dependent
AC. γ-ray detector θ = 135◦. See §6.3 for

experimental details.
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FIGURE B.29: 54Fe TIRIV φ-dependent
AC. γ-ray detector θ = 225◦. See §6.3 for

experimental details.
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FIGURE B.30: 54Fe TIRIV φ-dependent
AC. γ-ray detector θ = 315◦. See §6.3 for

experimental details.
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TABLE B.9:
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FIGURE B.31: 56Fe TIRIV φ-dependent
AC. γ-ray detector θ = 45◦. See §6.3 for

experimental details.
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FIGURE B.32: 56Fe TIRIV φ-dependent
AC. γ-ray detector θ = 135◦. See §6.3 for

experimental details.
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FIGURE B.33: 56Fe TIRIV φ-dependent
AC. γ-ray detector θ = 225◦. See §6.3 for

experimental details.
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TABLE B.12:
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FIGURE B.34: TIRIV φ AC. γ-ray detector
θ = 315◦. See §6.3 for experimental de-

tails.
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FIGURE B.35: 56Fe TIRIV φ-dependent
AC. γ-ray detector θ = 90◦. See §6.3 for

experimental details.
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FIGURE B.36: 56Fe TIRIV φ-dependent
AC. γ-ray detector θ = 135◦. See §6.3 for

experimental details.
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TABLE B.15:
Unscaled
photopeak
counts in

Fig. B.37

φ N σN
0 8028 128

45 9661 98
90 9524 98
135 6719 82
180 6143 111
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FIGURE B.37: 56Fe TIRIV φ-dependent
AC. γ-ray detector θ = 225◦. See §6.3 for

experimental details.

TABLE B.16:
Unscaled
photopeak
counts in

Fig. B.38

φ N σN
0 18167 194
45 15164 124
90 9270 99

135 13523 117
180 16841 184
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FIGURE B.38: 56Fe TIRIV φ-dependent
AC. γ-ray detector θ = 270◦. See §6.3 for

experimental details.
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B.3 76Ge TDRIV ACs

This appendix section contains tabulated photopeak counts and angular-correlation plots
from the time-dependent recoil-in-vacuum measurement on the 2+1 state in 76Ge, de-
scribed in §6.4. The data are separated by γ-ray detector and plunger distance.

TABLE B.17:
Unscaled
‘stop’ photo-
peak counts
for Fig. B.39

φ N σN
0 9477 151
45 11576 121
90 11743 168

135 8800 108
180 7038 134
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FIGURE B.39: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 45◦, time = 6.77 ps.

See §6.4 for experimental details.

TABLE B.18:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.40

φ N σN
0 9321 159
45 11125 124
90 14683 197

135 13602 141
180 11365 179
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FIGURE B.40: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 135◦,
time = 6.77 ps. See §6.4 for experimental

details.



256 Appendix B. Angular-Correlation Plots

TABLE B.19:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.41

φ N σN
0 11398 168
45 13393 133
90 12947 178

135 8927 110
180 7057 137
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FIGURE B.41: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 225◦,
time = 6.77 ps. See §6.4 for experimental

details.

TABLE B.20:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.42

φ N σN
0 7499 135
45 8659 104
90 11875 169

135 10879 120
180 8480 146
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FIGURE B.42: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 315◦,
time = 6.77 ps. See §6.4 for experimental

details.
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TABLE B.21:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.43

φ N σN
0 5392 112

45 6168 87
90 6198 120
135 4332 76
180 3897 97
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FIGURE B.43: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 45◦, time = 8.75 ps.

See §6.4 for experimental details.

TABLE B.22:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.44

φ N σN
0 4870 112

45 5864 88
90 7428 136
135 7118 101
180 5859 124
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FIGURE B.44: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 135◦,
time = 8.75 ps. See §6.4 for experimental

details.
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TABLE B.23:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.45

φ N σN
0 5776 118

45 6832 93
90 6882 127
135 4528 78
180 4141 101
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FIGURE B.45: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 225◦,
time = 8.75 ps. See §6.4 for experimental

details.

TABLE B.24:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.46

φ N σN
0 3937 96

45 4712 75
90 6151 119
135 5712 88
180 4670 106
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FIGURE B.46: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 315◦,
time = 8.75 ps. See §6.4 for experimental

details.
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TABLE B.25:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.47

φ N σN
0 9907 154
45 11248 118
90 11296 161

135 8346 104
180 7178 131
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FIGURE B.47: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 45◦, time = 10.3 ps.

See §6.4 for experimental details.

TABLE B.26:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.48

φ N σN
0 9329 157
45 10562 119
90 13933 188

135 12290 132
180 10685 169

0 20 40 60 80 100 120 140 160 180
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Ge-76 Stop AC
Gamma 2, RUN002

Angle (deg)

C
ou

nt
s

FIGURE B.48: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 135◦,
time = 10.3 ps. See §6.4 for experimental

details.
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TABLE B.27:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.49

φ N σN
0 11143 164
45 12522 126
90 11942 167

135 8564 106
180 8037 140
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FIGURE B.49: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 225◦,
time = 10.3 ps. See §6.4 for experimental

details.

TABLE B.28:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.50

φ N σN
0 7411 134
45 8627 103
90 10881 158

135 10161 115
180 8578 144
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FIGURE B.50: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 315◦,
time = 10.3 ps. See §6.4 for experimental

details.
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TABLE B.29:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.51

φ N σN
0 10306 158
45 10914 116
90 11009 159

135 8237 103
180 7794 139
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FIGURE B.51: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 45◦, time = 12.6 ps.

See §6.4 for experimental details.

TABLE B.30:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.52

φ N σN
0 9139 157
45 10225 117
90 13095 180

135 12237 132
180 11183 174
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FIGURE B.52: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 135◦,
time = 12.6 ps. See §6.4 for experimental

details.
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TABLE B.31:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.53

φ N σN
0 11220 166
45 12280 124
90 11543 163

135 8311 104
180 8106 143
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FIGURE B.53: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 225◦,
time = 12.6 ps. See §6.4 for experimental

details.

TABLE B.32:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.54

φ N σN
0 7090 132

45 8397 101
90 9947 151
135 9912 113
180 8852 148
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FIGURE B.54: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 315◦,
time = 12.6 ps. See §6.4 for experimental

details.
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TABLE B.33:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.55

φ N σN
0 7766 136

45 8568 102
90 8370 137
135 6720 92
180 5814 117
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FIGURE B.55: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 45◦, time = 14.5 ps.

See §6.4 for experimental details.

TABLE B.34:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.56

φ N σN
0 7075 136
45 7946 102
90 10235 158

135 9571 115
180 8361 146
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FIGURE B.56: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 135◦,
time = 14.5 ps. See §6.4 for experimental

details.
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TABLE B.35:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.57

φ N σN
0 8888 146

45 9268 107
90 9123 145
135 6456 91
180 6088 121
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FIGURE B.57: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 225◦,
time = 14.5 ps. See §6.4 for experimental

details.

TABLE B.36:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.58

φ N σN
0 5817 118

45 6421 88
90 7770 132
135 7878 100
180 6881 126
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FIGURE B.58: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 315◦,
time = 14.5 ps. See §6.4 for experimental

details.
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TABLE B.37:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.59

φ N σN
0 6896 127

45 7504 95
90 7273 129
135 5535 84
180 5275 114
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FIGURE B.59: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 45◦, time = 16.5 ps.

See §6.4 for experimental details.

TABLE B.38:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.60

φ N σN
0 6860 134

45 7495 99
90 9197 152
135 8317 107
180 7284 140
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FIGURE B.60: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 135◦,
time = 16.5 ps. See §6.4 for experimental

details.
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TABLE B.39:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.61

φ N σN
0 7847 138

45 8243 101
90 7874 136
135 6040 89
180 5946 122
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FIGURE B.61: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 225◦,
time = 16.5 ps. See §6.4 for experimental

details.

TABLE B.40:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.62

φ N σN
0 5153 111

45 5771 83
90 7634 133
135 6951 94
180 6269 124
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FIGURE B.62: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 315◦,
time = 16.5 ps. See §6.4 for experimental

details.
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TABLE B.41:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.63

φ N σN
0 7868 137

45 8551 102
90 8168 138
135 6712 93
180 6290 125
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FIGURE B.63: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 45◦, time = 19.1 ps.

See §6.4 for experimental details.

TABLE B.42:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.64

φ N σN
0 7895 145
45 8129 104
90 10193 160

135 9810 118
180 8664 153
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FIGURE B.64: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 135◦,
time = 19.1 ps. See §6.4 for experimental

details.
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TABLE B.43:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.65

φ N σN
0 9303 149

45 9671 109
90 8873 144
135 6805 95
180 6648 129
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FIGURE B.65: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 225◦,
time = 19.1 ps. See §6.4 for experimental

details.

TABLE B.44:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.66

φ N σN
0 6803 128

45 6492 89
90 8492 140
135 7876 101
180 7422 135
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FIGURE B.66: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 315◦,
time = 19.1 ps. See §6.4 for experimental

details.
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TABLE B.45:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.67

φ N σN
0 8065 138

45 8205 99
90 8129 135
135 6073 88
180 5808 119
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FIGURE B.67: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 45◦, time = 20.8 ps.

See §6.4 for experimental details.

TABLE B.46:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.68

φ N σN
0 7590 143

45 8169 104
90 9720 155
135 9201 114
180 8498 150
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FIGURE B.68: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 135◦,
time = 20.8 ps. See §6.4 for experimental

details.
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TABLE B.47:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.69

φ N σN
0 8597 144

45 9140 106
90 9014 144
135 6799 95
180 6366 127
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FIGURE B.69: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 225◦,
time = 20.8 ps. See §6.4 for experimental

details.

TABLE B.48:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.70

φ N σN
0 6263 122

45 6775 90
90 8008 135
135 7526 98
180 6877 129
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FIGURE B.70: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 315◦,
time = 20.8 ps. See §6.4 for experimental

details.
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TABLE B.49:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.71

φ N σN
0 7135 128

45 7667 96
90 7417 129
135 6160 89
180 5380 114
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FIGURE B.71: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 45◦, time = 24.8 ps.

See §6.4 for experimental details.

TABLE B.50:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.72

φ N σN
0 7042 137

45 7732 101
90 8649 146
135 8689 111
180 7853 145
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FIGURE B.72: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 135◦,
time = 24.8 ps. See §6.4 for experimental

details.
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TABLE B.51:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.73

φ N σN
0 8100 139

45 8413 102
90 8050 136
135 6541 93
180 6067 123
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FIGURE B.73: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 225◦,
time = 24.8 ps. See §6.4 for experimental

details.

TABLE B.52:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.74

φ N σN
0 5643 116

45 6187 87
90 7454 129
135 7205 96
180 6322 124
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FIGURE B.74: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 315◦,
time = 24.8 ps. See §6.4 for experimental

details.
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TABLE B.53:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.75

φ N σN
0 7590 133

45 7480 95
90 7644 133
135 6400 91
180 6048 124
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FIGURE B.75: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 45◦, time = 30.9 ps.

See §6.4 for experimental details.

TABLE B.54:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.76

φ N σN
0 7007 140

45 7714 102
90 9285 154
135 8963 114
180 8282 154
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FIGURE B.76: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 135◦,
time = 30.9 ps. See §6.4 for experimental

details.
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TABLE B.55:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.77

φ N σN
0 7865 138

45 8401 101
90 8362 140
135 6725 95
180 6821 132
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FIGURE B.77: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 225◦,
time = 30.9 ps. See §6.4 for experimental

details.

TABLE B.56:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.78

φ N σN
0 5899 119

45 6545 89
90 7426 131
135 7209 97
180 6536 129
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FIGURE B.78: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 315◦,
time = 30.9 ps. See §6.4 for experimental

details.
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TABLE B.57:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.79

φ N σN
0 8473 142

45 9033 104
90 8669 141
135 7260 97
180 6874 131
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FIGURE B.79: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 45◦, time = 34.5 ps.

See §6.4 for experimental details.

TABLE B.58:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.80

φ N σN
0 9529 163
45 9660 116
90 10930 168

135 10174 122
180 9559 164
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FIGURE B.80: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 135◦,
time = 34.5 ps. See §6.4 for experimental

details.
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TABLE B.59:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.81

φ N σN
0 9748 155
45 10357 113
90 10189 155

135 8153 105
180 7647 141
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FIGURE B.81: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 225◦,
time = 34.5 ps. See §6.4 for experimental

details.

TABLE B.60:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.82

φ N σN
0 7100 133

45 7993 98
90 9999 145
135 8225 103
180 7734 139
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FIGURE B.82: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 315◦,
time = 34.5 ps. See §6.4 for experimental

details.
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TABLE B.61:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.83

φ N σN
0 6820 128

45 6988 92
90 7112 128
135 6041 89
180 5561 118
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FIGURE B.83: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 45◦, time = 38.4 ps.

See §6.4 for experimental details.

TABLE B.62:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.84

φ N σN
0 7071 141

45 7500 101
90 8634 150
135 7739 108
180 7723 148
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FIGURE B.84: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 135◦,
time = 38.4 ps. See §6.4 for experimental

details.
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TABLE B.63:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.85

φ N σN
0 7593 137

45 7930 99
90 7815 137
135 6434 94
180 6122 128
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FIGURE B.85: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 225◦,
time = 38.4 ps. See §6.4 for experimental

details.

TABLE B.64:
Unscaled
‘stop’ photo-
peak counts
in Fig. B.86

φ N σN
0 5759 119

45 6356 88
90 6872 127
135 6915 95
180 6507 128
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FIGURE B.86: 76Ge TDRIV φ-dependent
AC. γ-ray detector θ = 315◦,
time = 38.4 ps. See §6.4 for experimental

details.
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Appendix C

RIV Simulate Example Data Input

This appendix contains two example RIV Simulate data input files, the first using
the γ-particle index corresponding to the experimental setup, and the second using
specified θγ and ∆φ angles.

TABLE C.1: Example data file using the γ-particle index format, for use with
RIV Simulate. Values may be space or tab separated, but the index iγp and
time t must be sequential. Counts N and uncertainty in counts σN are re-
quired, but uncertainty in time σt is optional. Note that the table heading is

not to be included in the data file.

iγp t N σN σt

0 9.6 9907 154
1 9.6 11248 118
2 9.6 11296 161
3 9.6 8346 104
4 9.6 7178 131
5 9.6 9329 157
6 9.6 10562 119
7 9.6 13933 188
8 9.6 12290 132
9 9.6 10685 169

10 9.6 11143 164
11 9.6 12522 126
12 9.6 11942 167
13 9.6 8564 106
14 9.6 8037 140
15 9.6 7411 134
16 9.6 8627 103
17 9.6 10881 158
18 9.6 10161 115
19 9.6 8578 144
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0 11.7 10306 158
1 11.7 10914 116
2 11.7 11009 159
3 11.7 8237 103
4 11.7 7794 139
5 11.7 9139 157
6 11.7 10225 117
7 11.7 13095 180
8 11.7 12237 132
9 11.7 11183 174

10 11.7 11220 166
11 11.7 12280 124
12 11.7 11543 163
13 11.7 8311 104
14 11.7 8106 143
15 11.7 7090 132
16 11.7 8397 101
17 11.7 9947 151
18 11.7 9912 113
19 11.7 8852 148
0 13.7 7766 136
1 13.7 8568 102
2 13.7 8370 137
3 13.7 6720 92
4 13.7 5814 117
5 13.7 7075 136
6 13.7 7946 102
7 13.7 10235 158
8 13.7 9571 115
9 13.7 8361 146

10 13.7 8888 146
11 13.7 9268 107
12 13.7 9123 145
13 13.7 6456 91
14 13.7 6088 121
15 13.7 5817 118
16 13.7 6421 88
17 13.7 7770 132
18 13.7 7878 100
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19 13.7 6881 126

TABLE C.3: Example data file with ∆φ and θγ values specified for each pho-
topeak count, for use with RIV Simulate. Values may be space or tab sep-
arated, but the gamma-ray detector angle θγ and time t must be sequential.
Counts N and uncertainty in counts σN are required, but uncertainty in time
σt is optional. Note that the table heading is not to be included in the data

file.

∆φ θγ t N σN σt

0 45 9.6 0.973 0.015
45 45 9.6 1.105 0.012
90 45 9.6 1.110 0.016

135 45 9.6 0.820 0.010
180 45 9.6 0.705 0.013
0 135 9.6 0.774 0.013
45 135 9.6 0.876 0.010
90 135 9.6 1.156 0.016

135 135 9.6 1.020 0.011
180 135 9.6 0.887 0.014
180 135 9.6 1.006 0.015
135 135 9.6 1.130 0.011
90 135 9.6 1.078 0.015
45 135 9.6 0.773 0.010
0 135 9.6 0.725 0.013

180 45 9.6 0.765 0.014
135 45 9.6 0.890 0.011
90 45 9.6 1.123 0.016
45 45 9.6 1.049 0.012
0 45 9.6 0.885 0.015
0 45 11.7 1.006 0.015
45 45 11.7 1.066 0.011
90 45 11.7 1.075 0.015

135 45 11.7 0.804 0.010
180 45 11.7 0.761 0.014
0 135 11.7 0.771 0.013
45 135 11.7 0.862 0.010
90 135 11.7 1.104 0.015

135 135 11.7 1.032 0.011
180 135 11.7 0.943 0.015
180 135 11.7 1.027 0.015
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135 135 11.7 1.125 0.011
90 135 11.7 1.057 0.015
45 135 11.7 0.761 0.010
0 135 11.7 0.742 0.013

180 45 11.7 0.756 0.014
135 45 11.7 0.895 0.011
90 45 11.7 1.061 0.016
45 45 11.7 1.057 0.012
0 45 11.7 0.944 0.016
0 45 13.7 0.983 0.017
45 45 13.7 1.084 0.013
90 45 13.7 1.059 0.017

135 45 13.7 0.850 0.012
180 45 13.7 0.736 0.015
0 135 13.7 0.772 0.015
45 135 13.7 0.867 0.011
90 135 13.7 1.117 0.017

135 135 13.7 1.044 0.013
180 135 13.7 0.912 0.016
180 135 13.7 1.052 0.017
135 135 13.7 1.097 0.013
90 135 13.7 1.080 0.017
45 135 13.7 0.764 0.011
0 135 13.7 0.720 0.014

180 45 13.7 0.788 0.016
135 45 13.7 0.870 0.012
90 45 13.7 1.053 0.018
45 45 13.7 1.068 0.014
0 45 13.7 0.933 0.017
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Appendix D

GRASP2018 Calculation Results

This appendix contains atomic-structure properties calculated using GRASP2018 [79]
and compared with the values in the NIST atomic spectra database [178]. Along with the
atomic-structure information, the variance between the NIST and calculated values is
shown. The variance between the two transition-rate calculation methods is also shown
(See §2.4), which is an indicator of the calculated atomic wavefunction’s self-consistency.

TABLE D.1: GRASP2018 calculation results for 56Fe F-like valence-state
ion energy levels, hyperfine-coupling frequency (AJ) and transition rates.
GRASP energy levels are compared with NIST [178] values and the vari-
ance (var) is shown, as well as the variance (var) between the two different

transition-rate calculations.

Energy (eV) Lower State Transition rate (Hz)
NIST GRASP Var 2Jπ AJ (Hz) Energy 2Jπ Length Velocity Var

0.00 0 3− 2.52E+10
12.72 12.73 0.0% 1− 1.36E+11
132.0 132.0 0.0% 1+ 4.59E+11 0.00 3− 7.27E+10 7.78E+10 3.4%

12.73 1− 2.65E+10 2.82E+10 3.1%
771.4 774.7 0.2% 5+ 4.27E+10 0.00 3− 8.19E+10 8.27E+10 0.5%
774.7 778.0 0.2% 3+ 7.06E+09 0.00 3− 1.63E+12 1.64E+12 0.4%

12.73 1− 4.33E+10 4.36E+10 0.4%
782.4 784.6 0.1% 1+ 6.38E+10 0.00 3− 1.55E+11 1.57E+11 0.5%

12.73 1− 5.01E+09 5.12E+09 1.0%
783.3 786.6 0.2% 3+ 3.54E+10 0.00 3− 8.05E+11 8.10E+11 0.3%

12.73 1− 6.84E+10 6.90E+10 0.4%
786.4 789.8 0.2% 1+ 6.64E+09 0.00 3− 1.20E+12 1.20E+12 0.3%

12.73 1− 1.37E+12 1.38E+12 0.4%
793.5 797.0 0.2% 5+ 6.61E+10 0.00 3− 9.85E+11 9.91E+11 0.3%
794.0 797.5 0.2% 3+ 4.61E+10 0.00 3− 1.74E+10 1.74E+10 0.1%

12.73 1− 1.20E+12 1.21E+12 0.4%
804.9 3− 2.23E+10 774.7 5+ 2.75E+09 2.69E+09 1.2%
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778.0 3+ 3.56E+08 3.46E+08 1.5%
784.6 1+ 8.72E+08 9.17E+08 2.5%
784.6 1+ 3.76E+07 3.62E+07 1.9%
786.6 3+ 1.94E+06 1.76E+06 4.9%
789.8 1+ 3.10E+05 2.87E+05 3.8%
797.0 5+ 3.51E+05 3.07E+05 6.6%
797.5 3+ 1.81E+05 1.61E+05 5.8%

805.4 5− 2.27E+10 774.7 5+ 3.46E+09 3.38E+09 1.1%
778.0 3+ 4.76E+07 4.57E+07 2.1%
786.6 3+ 9.99E+06 9.72E+06 1.4%
797.0 5+ 1.22E+05 1.06E+05 6.9%
797.5 3+ 7.06E+03 5.82E+03 9.6%

808.8 1− 3.01E+10 778.0 3+ 3.13E+09 3.06E+09 1.1%
784.6 1+ 1.24E+09 1.33E+09 3.5%
784.6 1+ 1.03E+08 9.95E+07 1.5%
786.6 3+ 1.87E+07 1.77E+07 2.6%
789.8 1+ 1.82E+07 1.79E+07 0.9%
797.5 3+ 4.25E+06 3.90E+06 4.4%

809.4 7− 1.69E+10 774.7 5+ 5.44E+09 5.35E+09 0.8%
797.0 5+ 1.76E+05 1.59E+05 5.0%

809.5 5− 2.09E+10 774.7 5+ 7.12E+07 7.07E+07 0.4%
5− 2.09E+10 778.0 3+ 3.94E+09 3.86E+09 1.0%

786.6 3+ 5.40E+06 5.15E+06 2.4%
797.0 5+ 1.15E+04 2.23E+04 31.8%
797.5 3+ 8.43E+01 1.37E+02 23.7%

815.9 1− 1.22E+10 778.0 3+ 2.14E+07 2.07E+07 1.7%
784.6 1+ 6.22E+06 1.38E+07 37.9%
784.6 1+ 7.02E+08 6.86E+08 1.1%
786.6 3+ 2.37E+09 2.30E+09 1.3%
789.8 1+ 4.51E+07 4.49E+07 0.2%
797.5 3+ 2.92E+07 2.78E+07 2.5%

816.0 3− 1.92E+10 774.7 5+ 6.53E+08 6.54E+08 0.0%
778.0 3+ 4.26E+09 4.24E+09 0.3%
784.6 1+ 1.04E+08 1.03E+08 0.5%
784.6 1+ 5.29E+08 5.17E+08 1.1%
786.6 3+ 1.68E+08 1.61E+08 2.0%
789.8 1+ 2.99E+08 2.88E+08 1.9%
797.0 5+ 2.63E+07 2.43E+07 3.9%
797.5 3+ 1.37E+06 1.24E+06 5.0%
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816.3 1− 2.73E+10 778.0 3+ 6.77E+08 6.68E+08 0.7%
784.6 1+ 3.58E+09 3.50E+09 1.2%
784.6 1+ 2.87E+09 2.81E+09 1.1%
786.6 3+ 5.95E+08 5.80E+08 1.3%
789.8 1+ 5.00E+07 4.80E+07 2.0%
797.5 3+ 2.18E+05 1.69E+05 12.7%

815.2 817.2 0.1% 1+ 1.11E+11 0.00 3− 2.37E+11 2.39E+11 0.5%
12.73 1− 8.51E+11 8.56E+11 0.3%
804.9 3− 1.91E+05 1.75E+05 4.5%
808.8 1− 1.29E+05 1.32E+05 1.2%
815.9 1− 7.77E+02 6.50E+02 8.9%
816.0 3− 1.78E-01 3.11E+02 99.9%
816.3 1− 1.56E+02 4.05E+01 58.7%

818.2 3− 2.76E+10 774.7 5+ 8.62E+08 8.60E+08 0.1%
778.0 3+ 6.56E+08 6.60E+08 0.3%
784.6 1+ 1.16E+08 8.70E+07 14.4%
784.6 1+ 1.85E+09 1.82E+09 0.8%
786.6 3+ 1.22E+09 1.20E+09 1.0%
789.8 1+ 8.32E+05 8.28E+05 0.2%
797.0 5+ 1.70E+08 1.62E+08 2.4%
797.5 3+ 1.35E+07 1.31E+07 1.4%
817.2 1+ 3.07E+02 4.23E+02 15.8%

820.1 5− 4.05E+09 774.7 5+ 2.09E+08 2.07E+08 0.5%
778.0 3+ 3.23E+07 3.19E+07 0.5%
786.6 3+ 4.71E+09 4.63E+09 0.8%
797.0 5+ 3.32E+06 3.16E+06 2.5%
797.5 3+ 1.75E+05 1.76E+05 0.2%

820.6 3− 1.48E+10 774.7 5+ 4.66E+08 4.66E+08 0.0%
778.0 3+ 9.59E+07 9.49E+07 0.5%
784.6 1+ 6.51E+09 6.52E+09 0.1%
784.6 1+ 2.58E+09 2.55E+09 0.5%
786.6 3+ 1.46E+09 1.44E+09 0.7%
789.8 1+ 2.12E+08 2.08E+08 1.0%
797.0 5+ 2.59E+08 2.47E+08 2.4%
797.5 3+ 5.93E+06 5.77E+06 1.4%
817.2 1+ 2.50E+04 1.95E+04 12.4%

822.5 1− -2.57E+10 778.0 3+ 3.32E+08 3.29E+08 0.5%
784.6 1+ 2.83E+08 3.19E+08 6.1%
784.6 1+ 4.73E+08 4.66E+08 0.7%
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786.6 3+ 1.24E+08 1.20E+08 1.5%
789.8 1+ 3.15E+09 3.10E+09 0.8%
797.5 3+ 3.24E+08 3.13E+08 1.8%
817.2 1+ 1.02E+05 9.24E+04 4.9%

823.2 3− 1.01E+10 774.7 5+ 4.86E+08 4.90E+08 0.4%
778.0 3+ 3.91E+08 3.93E+08 0.2%
784.6 1+ 1.11E+09 1.12E+09 0.1%
784.6 1+ 1.31E+07 1.31E+07 0.2%
786.6 3+ 1.11E+09 1.09E+09 0.6%
789.8 1+ 3.41E+09 3.36E+09 0.8%
797.0 5+ 1.29E+08 1.23E+08 2.1%
797.5 3+ 1.34E+07 1.24E+07 3.6%
817.2 1+ 9.32E+04 7.02E+04 14.1%

827.5 5− 5.09E+10 774.7 5+ 3.65E+06 3.66E+06 0.2%
778.0 3+ 2.21E+05 2.27E+05 1.2%
786.6 3+ 1.36E+07 1.34E+07 0.8%
797.0 5+ 1.02E+09 9.95E+08 1.3%
797.5 3+ 2.52E+09 2.45E+09 1.3%

830.1 7− 3.41E+10 774.7 5+ 1.42E+07 1.42E+07 0.3%
797.0 5+ 4.73E+09 4.64E+09 1.0%

832.0 3− 4.52E+10 774.7 5+ 3.11E+07 3.11E+07 0.0%
778.0 3+ 5.44E+08 5.50E+08 0.6%
784.6 1+ 3.76E+09 3.85E+09 1.2%
784.6 1+ 5.90E+05 5.06E+05 7.7%
786.6 3+ 5.33E+08 5.34E+08 0.1%
789.8 1+ 8.73E+03 1.79E+04 34.5%
797.0 5+ 1.38E+07 1.44E+07 1.9%
797.5 3+ 4.96E+09 4.89E+09 0.7%
817.2 1+ 9.94E+05 1.05E+06 2.5%

833.5 5− 3.83E+10 774.7 5+ 8.33E+07 8.43E+07 0.6%
778.0 3+ 3.01E+05 3.90E+05 12.9%
786.6 3+ 4.40E+07 4.41E+07 0.2%
797.0 5+ 4.60E+09 4.54E+09 0.6%
797.5 3+ 1.75E+09 1.73E+09 0.6%

839.2 3− 3.27E+10 774.7 5+ 1.91E+08 1.98E+08 1.7%
778.0 3+ 5.15E+09 5.27E+09 1.1%
784.6 1+ 2.91E+10 2.95E+10 0.7%
784.6 1+ 2.17E+08 2.23E+08 1.4%
786.6 3+ 3.22E+09 3.27E+09 0.7%
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789.8 1+ 2.09E+09 2.12E+09 0.7%
797.0 5+ 5.74E+09 5.77E+09 0.3%
797.5 3+ 3.69E+08 3.66E+08 0.4%
817.2 1+ 3.30E+05 5.02E+05 20.7%

842.2 1− 1.17E+11 778.0 3+ 3.26E+08 3.34E+08 1.2%
784.6 1+ 5.93E+10 5.92E+10 0.1%
784.6 1+ 5.40E+06 5.53E+06 1.2%
786.6 3+ 2.77E+08 2.83E+08 1.1%
789.8 1+ 3.62E+09 3.68E+09 0.7%
797.5 3+ 7.80E+09 7.85E+09 0.3%
817.2 1+ 3.50E+08 3.33E+08 2.5%

847.0 5+ 1.49E+10 0.00 3− 2.02E+08 2.52E+08 11.2%
804.9 3− 2.85E+09 2.88E+09 0.6%
805.4 5− 4.37E+09 4.41E+09 0.5%
809.4 7− 4.45E+08 4.51E+08 0.7%
809.5 5− 2.81E+05 3.31E+05 8.2%
816.0 3− 4.58E+07 4.63E+07 0.6%
818.2 3− 6.15E+05 5.58E+05 4.9%
820.1 5− 1.68E+07 1.69E+07 0.3%
820.6 3− 8.32E+06 8.36E+06 0.2%
823.2 3− 3.70E+05 3.87E+05 2.2%
827.5 5− 1.65E+03 2.69E+01 96.8%
830.1 7− 4.21E+05 4.78E+05 6.3%
832.0 3− 3.33E+04 3.53E+04 3.0%
833.5 5− 4.36E+05 4.60E+05 2.7%
839.2 3− 1.85E+04 2.33E+04 11.6%

847.1 7+ 1.01E+10 805.4 5− 4.51E+09 4.57E+09 0.7%
809.4 7− 1.87E+09 1.90E+09 0.6%
809.5 5− 6.72E+08 6.85E+08 0.9%
820.1 5− 3.01E+06 3.02E+06 0.1%
827.5 5− 1.40E+05 1.44E+05 1.5%
830.1 7− 4.44E+05 4.37E+05 0.8%
833.5 5− 1.74E+03 2.29E+03 13.8%

847.7 3+ 2.22E+10 0.00 3− 3.64E+09 3.67E+09 0.3%
12.73 1− 4.31E+10 4.32E+10 0.1%
804.9 3− 5.45E+09 5.51E+09 0.5%
805.4 5− 1.94E+09 1.96E+09 0.6%
808.8 1− 6.61E+08 6.66E+08 0.4%
809.5 5− 9.56E+06 9.85E+06 1.5%
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815.9 1− 1.86E+06 2.00E+06 3.5%
816.0 3− 2.61E+06 2.44E+06 3.3%
816.3 1− 3.03E+07 2.99E+07 0.7%
818.2 3− 2.04E+07 2.00E+07 0.9%
820.1 5− 2.15E+07 2.21E+07 1.5%
820.6 3− 5.06E+05 5.55E+05 4.6%
822.5 1− 1.07E+07 1.09E+07 1.2%
823.2 3− 5.78E+05 5.84E+05 0.5%
827.5 5− 3.66E+04 7.25E+04 32.9%
832.0 3− 1.02E+06 1.10E+06 3.7%
833.5 5− 6.01E+05 6.10E+05 0.8%
839.2 3− 2.27E+02 1.33E+02 26.2%
842.2 1− 2.21E+04 2.05E+04 3.9%

848.9 1+ 3.83E+10 0.00 3− 8.67E+08 8.16E+08 3.0%
12.73 1− 4.72E+10 4.75E+10 0.3%
804.9 3− 5.05E+09 5.11E+09 0.6%
808.8 1− 2.85E+09 2.89E+09 0.7%
815.9 1− 6.64E+07 6.47E+07 1.3%
816.0 3− 2.34E+07 2.44E+07 2.1%
816.3 1− 5.19E+07 5.17E+07 0.2%
818.2 3− 4.62E+07 4.71E+07 1.0%
820.6 3− 1.83E+07 1.86E+07 0.7%
822.5 1− 1.29E+07 1.34E+07 1.7%
823.2 3− 3.43E+06 3.61E+06 2.5%
832.0 3− 1.83E+06 1.73E+06 2.7%
839.2 3− 6.89E+04 6.16E+04 5.6%
842.2 1− 6.31E+03 4.02E+03 22.1%

850.0 9+ 1.17E+10 809.4 7− 7.80E+09 7.92E+09 0.7%
830.1 7− 1.47E+05 1.52E+05 1.7%

851.3 7+ 1.44E+10 805.4 5− 1.16E+09 1.18E+09 0.6%
809.4 7− 1.88E+08 1.89E+08 0.3%
809.5 5− 7.49E+09 7.60E+09 0.7%
820.1 5− 6.00E+04 5.07E+04 8.4%
827.5 5− 3.63E+05 3.49E+05 2.0%
830.1 7− 2.65E+05 2.48E+05 3.2%
833.5 5− 6.63E+04 6.28E+04 2.7%

851.7 3− 7.05E+09 786.6 3+ 4.49E+07 4.50E+07 0.2%
789.8 1+ 7.24E+07 7.41E+07 1.1%
797.0 5+ 2.44E+08 2.39E+08 1.0%
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797.5 3+ 7.43E+07 7.29E+07 0.9%
817.2 1+ 5.19E+09 5.15E+09 0.4%
847.0 5+ 2.69E+07 2.83E+07 2.6%
847.0 5+ 7.26E+01 7.08E+02 81.4%
847.7 3+ 9.96E+07 1.02E+08 1.4%
847.7 3+ 1.94E+02 6.30E+01 50.9%
848.9 1+ 1.76E+10 1.69E+10 2.0%
848.9 1+ 1.32E+07 1.43E+07 4.0%
848.9 1+ 2.14E+01 1.15E+02 68.5%

853.4 1− 5.22E+10 786.6 3+ 4.95E+08 5.04E+08 1.0%
789.8 1+ 3.19E+09 3.26E+09 1.0%
797.5 3+ 2.75E+09 2.84E+09 1.5%
817.2 1+ 5.10E+09 5.07E+09 0.2%
847.7 3+ 4.00E+08 4.08E+08 0.9%
847.7 3+ 4.23E+03 1.08E+03 59.3%
848.9 1+ 6.09E+07 1.09E+08 28.4%
848.9 1+ 1.65E+06 2.17E+06 13.7%
848.9 1+ 1.53E+02 3.06E+02 33.2%

850.3 853.4 0.2% 1+ -1.12E+10 0.00 3− 2.64E+12 2.66E+12 0.4%
12.73 1− 1.24E+09 1.25E+09 0.5%
804.9 3− 3.72E+09 3.78E+09 0.8%
808.8 1− 3.50E+09 3.56E+09 0.9%
815.9 1− 1.98E+07 2.05E+07 1.8%
816.0 3− 1.01E+09 1.02E+09 0.3%
816.3 1− 2.42E+08 2.51E+08 1.8%
818.2 3− 5.64E+08 5.75E+08 1.0%
820.6 3− 9.28E+07 9.65E+07 1.9%
822.5 1− 1.19E+07 1.19E+07 0.2%
823.2 3− 8.60E+07 8.52E+07 0.5%
832.0 3− 3.12E+06 3.06E+06 0.9%
839.2 3− 1.29E+06 1.18E+06 4.3%
842.2 1− 3.54E+05 3.65E+05 1.6%
851.7 3− 9.42E+02 4.33E+00 99.1%
853.4 1− 1.80E-05 6.00E-05 53.8%

852.1 855.3 0.2% 3+ 4.10E+08 0.00 3− 3.48E+12 3.51E+12 0.4%
12.73 1− 4.58E+11 4.61E+11 0.3%
804.9 3− 1.54E+08 1.57E+08 0.8%
805.4 5− 8.75E+08 8.93E+08 1.0%
808.8 1− 3.91E+09 3.98E+09 0.8%
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809.5 5− 4.78E+08 4.83E+08 0.5%
815.9 1− 4.50E+07 4.61E+07 1.3%
816.0 3− 2.31E+09 2.35E+09 0.8%
816.3 1− 3.36E+07 3.33E+07 0.4%
818.2 3− 5.82E+08 5.86E+08 0.3%
820.1 5− 6.40E+06 7.03E+06 4.7%
820.6 3− 1.84E+08 1.87E+08 0.7%
822.5 1− 1.23E+07 1.18E+07 1.7%
823.2 3− 1.27E+08 1.29E+08 0.6%
827.5 5− 5.86E+06 5.38E+06 4.2%
832.0 3− 2.73E+07 2.74E+07 0.1%
833.5 5− 4.75E+06 4.76E+06 0.1%
839.2 3− 2.14E+06 1.94E+06 5.0%
842.2 1− 1.54E+06 1.50E+06 1.4%
851.7 3− 7.46E+00 5.51E+00 15.0%
853.4 1− 1.06E+01 1.64E+02 87.9%

853.1 856.3 0.2% 5+ 1.01E+10 0.00 3− 4.54E+12 4.57E+12 0.4%
804.9 3− 7.93E+08 8.07E+08 0.8%
805.4 5− 6.07E+07 6.19E+07 0.9%
809.4 7− 4.27E+07 4.45E+07 2.0%
809.5 5− 3.15E+09 3.21E+09 0.9%
816.0 3− 4.39E+09 4.45E+09 0.7%
818.2 3− 2.80E+08 2.86E+08 1.1%
820.1 5− 5.92E+07 5.92E+07 0.0%
820.6 3− 1.25E+08 1.27E+08 0.7%
823.2 3− 3.36E+05 3.32E+05 0.5%
827.5 5− 9.04E+04 9.09E+04 0.2%
830.1 7− 7.10E+06 7.10E+06 0.0%
832.0 3− 4.26E+05 3.97E+05 3.5%
833.5 5− 1.06E+07 1.04E+07 0.7%
839.2 3− 7.92E+06 7.34E+06 3.8%
851.7 3− 2.40E+02 8.54E+02 56.1%

855.9 858.6 0.2% 1+ 2.62E+10 0.00 3− 1.77E+11 1.79E+11 0.4%
12.73 1− 1.20E+11 1.20E+11 0.0%
804.9 3− 1.66E+08 1.70E+08 1.2%
808.8 1− 2.45E+04 8.38E+04 54.7%
815.9 1− 5.41E+09 5.48E+09 0.6%
816.0 3− 7.10E+06 6.69E+06 3.0%
816.3 1− 1.42E+09 1.44E+09 0.5%
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818.2 3− 4.95E+08 4.97E+08 0.3%
820.6 3− 5.28E+08 5.31E+08 0.2%
822.5 1− 2.73E+07 2.81E+07 1.4%
823.2 3− 1.09E+08 1.12E+08 1.4%
832.0 3− 3.74E+07 3.69E+07 0.7%
839.2 3− 1.11E+05 1.07E+05 2.0%
842.2 1− 7.91E+05 7.66E+05 1.6%
851.7 3− 2.12E+04 1.60E+04 13.9%
853.4 1− 1.55E+04 8.50E+03 29.1%

859.3 3+ 1.22E+10 0.00 3− 6.14E+11 6.18E+11 0.4%
12.73 1− 7.32E+10 7.43E+10 0.8%
804.9 3− 5.87E+07 5.99E+07 1.1%
805.4 5− 1.70E+07 1.75E+07 1.4%
808.8 1− 6.77E+06 6.52E+06 1.9%
809.5 5− 1.02E+08 1.06E+08 1.8%
815.9 1− 1.92E+09 1.94E+09 0.5%
816.0 3− 1.02E+09 1.04E+09 0.6%
816.3 1− 5.13E+09 5.19E+09 0.6%
818.2 3− 3.34E+08 3.36E+08 0.4%
820.1 5− 7.07E+06 6.96E+06 0.8%
820.6 3− 3.33E+08 3.37E+08 0.5%
822.5 1− 9.32E+07 9.41E+07 0.5%
823.2 3− 5.27E+07 5.28E+07 0.1%
827.5 5− 9.07E+05 1.00E+06 5.0%
832.0 3− 5.17E+06 5.31E+06 1.3%
833.5 5− 4.39E+06 4.27E+06 1.5%
839.2 3− 1.61E+06 1.48E+06 4.4%
842.2 1− 1.76E+05 1.62E+05 4.1%
851.7 3− 1.41E+04 8.84E+03 22.8%
853.4 1− 3.79E+03 8.12E+02 64.7%

859.5 5+ 1.47E+09 0.00 3− 7.78E+08 7.24E+08 3.6%
804.9 3− 8.45E+07 8.55E+07 0.6%
805.4 5− 4.21E+08 4.28E+08 0.7%
809.4 7− 1.19E+08 1.22E+08 1.5%
809.5 5− 1.76E+07 1.83E+07 2.0%
816.0 3− 1.18E+09 1.19E+09 0.6%
818.2 3− 4.70E+09 4.76E+09 0.7%
820.1 5− 2.15E+08 2.16E+08 0.3%
820.6 3− 1.54E+09 1.56E+09 0.8%
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823.2 3− 1.89E+06 1.95E+06 1.6%
827.5 5− 1.48E+03 1.14E+03 13.2%
830.1 7− 5.37E+05 4.88E+05 4.9%
832.0 3− 2.52E+05 2.53E+05 0.3%
833.5 5− 7.67E+06 7.76E+06 0.5%
839.2 3− 6.54E+04 8.50E+04 13.1%
851.7 3− 9.23E+03 4.25E+03 36.9%

860.5 7+ 1.21E+09 805.4 5− 2.10E+05 2.17E+05 1.7%
809.4 7− 1.63E+08 1.65E+08 0.8%
809.5 5− 1.28E+07 1.34E+07 2.0%
820.1 5− 7.45E+09 7.57E+09 0.8%
827.5 5− 4.13E+05 4.05E+05 1.0%
830.1 7− 3.70E+06 3.79E+06 1.2%
833.5 5− 1.95E+04 1.93E+04 0.7%

857.8 861.1 0.2% 3+ 1.71E+10 0.00 3− 8.86E+11 8.92E+11 0.3%
12.73 1− 7.13E+11 7.20E+11 0.5%
804.9 3− 9.75E+07 9.96E+07 1.1%
805.4 5− 1.59E+08 1.63E+08 1.2%
808.8 1− 6.09E+06 6.01E+06 0.7%
809.5 5− 2.31E+07 2.45E+07 2.8%
815.9 1− 2.75E+09 2.78E+09 0.6%
816.0 3− 6.09E+07 6.27E+07 1.5%
816.3 1− 1.06E+09 1.08E+09 0.9%
818.2 3− 1.68E+09 1.70E+09 0.7%
820.1 5− 2.41E+08 2.42E+08 0.3%
820.6 3− 1.85E+09 1.87E+09 0.6%
822.5 1− 1.44E+07 1.46E+07 0.5%
823.2 3− 3.95E+08 4.01E+08 0.7%
827.5 5− 3.47E+07 3.31E+07 2.4%
832.0 3− 8.89E+07 9.02E+07 0.7%
833.5 5− 5.59E+07 5.60E+07 0.1%
839.2 3− 1.96E+06 1.89E+06 1.7%
842.2 1− 8.47E+06 8.35E+06 0.7%
851.7 3− 7.24E+02 1.41E+02 67.4%
853.4 1− 1.04E+04 1.35E+04 12.9%

855.9 863.0 0.4% 5+ 5.81E+09 0.00 3− 3.90E+11 3.92E+11 0.3%
804.9 3− 5.56E+07 5.61E+07 0.4%
805.4 5− 2.76E+08 2.80E+08 0.7%
809.4 7− 6.15E+07 6.39E+07 1.9%
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809.5 5− 2.75E+06 2.84E+06 1.5%
816.0 3− 8.31E+07 8.49E+07 1.1%
818.2 3− 5.57E+08 5.65E+08 0.7%
820.1 5− 1.73E+09 1.76E+09 0.8%
820.6 3− 1.85E+09 1.88E+09 0.8%
823.2 3− 3.65E+09 3.71E+09 0.9%
827.5 5− 2.31E+05 2.69E+05 7.6%
830.1 7− 1.08E+06 9.66E+05 5.5%
832.0 3− 1.64E+06 1.64E+06 0.3%
833.5 5− 5.45E+07 5.50E+07 0.5%
839.2 3− 9.15E+06 9.12E+06 0.2%
851.7 3− 1.62E+04 1.62E+04 0.2%

861.4 864.6 0.2% 3+ -1.67E+10 0.00 3− 2.44E+11 2.45E+11 0.2%
12.73 1− 1.14E+12 1.15E+12 0.3%
804.9 3− 9.31E+06 9.68E+06 2.0%
805.4 5− 9.16E+07 9.29E+07 0.7%
808.8 1− 4.82E+07 4.83E+07 0.1%
809.5 5− 9.68E+07 1.01E+08 2.3%
815.9 1− 7.88E+07 8.03E+07 0.9%
816.0 3− 2.70E+05 3.02E+05 5.6%
816.3 1− 7.92E+06 8.18E+06 1.6%
818.2 3− 7.26E+08 7.38E+08 0.8%
820.1 5− 1.89E+07 1.98E+07 2.1%
820.6 3− 2.47E+08 2.49E+08 0.4%
822.5 1− 5.37E+09 5.46E+09 0.9%
823.2 3− 8.84E+08 8.98E+08 0.8%
827.5 5− 1.44E+03 1.81E+03 11.5%
832.0 3− 4.13E+08 4.18E+08 0.7%
833.5 5− 1.39E+08 1.40E+08 0.1%
839.2 3− 2.75E+04 1.37E+04 33.6%
842.2 1− 3.56E+06 3.43E+06 1.8%
851.7 3− 1.43E+06 1.24E+06 6.9%
853.4 1− 2.63E+05 2.45E+05 3.5%

862.6 865.9 0.2% 5+ 1.09E+10 0.00 3− 6.98E+12 7.03E+12 0.4%
804.9 3− 6.98E+07 7.15E+07 1.2%
805.4 5− 9.23E+04 9.00E+04 1.3%
809.4 7− 5.94E+04 6.46E+04 4.1%
809.5 5− 2.24E+08 2.29E+08 1.1%
816.0 3− 1.70E+08 1.74E+08 1.0%
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818.2 3− 6.29E+08 6.37E+08 0.6%
820.1 5− 2.70E+08 2.74E+08 0.7%
820.6 3− 3.28E+09 3.33E+09 0.8%
823.2 3− 3.41E+09 3.47E+09 0.8%
827.5 5− 2.27E+08 2.30E+08 0.6%
830.1 7− 9.05E+07 9.01E+07 0.3%
832.0 3− 6.79E+06 6.45E+06 2.6%
833.5 5− 3.59E+08 3.62E+08 0.4%
839.2 3− 1.37E+08 1.35E+08 0.7%
851.7 3− 3.04E+05 3.53E+05 7.5%

869.7 7+ 3.29E+10 805.4 5− 4.31E+06 4.38E+06 0.9%
809.4 7− 3.12E+05 3.33E+05 3.2%
809.5 5− 8.06E+06 8.38E+06 1.9%
820.1 5− 3.10E+04 3.90E+04 11.5%
827.5 5− 7.77E+09 7.86E+09 0.6%
830.1 7− 5.16E+08 5.21E+08 0.5%
833.5 5− 1.54E+08 1.56E+08 0.7%

870.0 9+ 2.52E+10 809.4 7− 8.47E+06 8.60E+06 0.7%
830.1 7− 7.26E+09 7.37E+09 0.7%

873.1 5+ 2.11E+10 0.00 3− 1.34E+12 1.35E+12 0.4%
804.9 3− 3.63E+06 3.48E+06 2.1%
805.4 5− 3.08E+07 3.13E+07 0.9%
809.4 7− 5.87E+06 6.15E+06 2.4%
809.5 5− 2.85E+08 2.92E+08 1.4%
816.0 3− 1.14E+06 1.20E+06 2.4%
818.2 3− 4.36E+06 4.55E+06 2.2%
820.1 5− 2.31E+08 2.36E+08 1.1%
820.6 3− 8.73E+06 8.95E+06 1.2%
823.2 3− 2.04E+06 1.97E+06 1.8%
827.5 5− 1.49E+09 1.51E+09 0.7%
830.1 7− 1.63E+06 1.59E+06 1.3%
832.0 3− 5.56E+09 5.65E+09 0.8%
833.5 5− 1.17E+09 1.19E+09 1.0%
839.2 3− 9.92E+06 9.05E+06 4.6%
851.7 3− 1.54E+06 1.33E+06 7.2%

869.7 873.3 0.2% 1+ 4.14E+10 0.00 3− 1.44E+13 1.45E+13 0.4%
12.73 1− 2.57E+12 2.60E+12 0.5%
804.9 3− 6.04E+07 6.13E+07 0.7%
808.8 1− 2.19E+08 2.23E+08 1.0%
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815.9 1− 3.96E+08 4.03E+08 0.9%
816.0 3− 5.03E+08 5.14E+08 1.0%
816.3 1− 1.36E+08 1.42E+08 2.4%
818.2 3− 1.95E+09 1.98E+09 0.9%
820.6 3− 2.23E+09 2.29E+09 1.2%
822.5 1− 1.30E+08 1.31E+08 0.5%
823.2 3− 8.22E+08 8.42E+08 1.2%
832.0 3− 3.55E+08 3.62E+08 0.9%
839.2 3− 1.93E+09 1.93E+09 0.0%
842.2 1− 2.97E+08 3.07E+08 1.7%
851.7 3− 4.17E+07 4.65E+07 5.5%
853.4 1− 1.52E+06 8.38E+05 28.9%

874.4 7+ 2.49E+10 805.4 5− 2.25E+06 2.38E+06 2.7%
809.4 7− 8.28E+07 8.49E+07 1.3%
809.5 5− 2.88E+06 2.96E+06 1.4%
820.1 5− 1.91E+07 1.93E+07 0.7%
827.5 5− 9.08E+03 1.66E+03 69.1%
830.1 7− 2.98E+09 3.04E+09 0.9%
833.5 5− 5.78E+09 5.88E+09 0.8%

872.7 876.3 0.2% 3+ 1.23E+10 0.00 3− 1.85E+13 1.86E+13 0.4%
12.73 1− 2.63E+12 2.65E+12 0.4%
804.9 3− 7.18E+07 7.35E+07 1.2%
805.4 5− 5.90E+07 6.11E+07 1.7%
808.8 1− 4.49E+08 4.65E+08 1.8%
809.5 5− 4.34E+08 4.55E+08 2.3%
815.9 1− 4.46E+08 4.60E+08 1.5%
816.0 3− 3.01E+08 3.13E+08 1.9%
816.3 1− 1.27E+09 1.30E+09 1.1%
818.2 3− 3.42E+08 3.52E+08 1.4%
820.1 5− 2.61E+08 2.67E+08 1.3%
820.6 3− 3.79E+08 3.85E+08 0.9%
822.5 1− 1.80E+09 1.83E+09 1.0%
823.2 3− 3.27E+07 3.33E+07 1.0%
827.5 5− 3.79E+08 3.83E+08 0.6%
832.0 3− 8.92E+08 9.02E+08 0.6%
833.5 5− 1.13E+09 1.15E+09 0.8%
839.2 3− 2.41E+09 2.41E+09 0.1%
842.2 1− 4.06E+08 4.06E+08 0.0%
851.7 3− 7.09E+04 6.76E+04 2.4%
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853.4 1− 1.39E+06 1.52E+06 4.8%
872.9 876.6 0.2% 5+ 2.04E+10 0.00 3− 1.82E+13 1.83E+13 0.4%

804.9 3− 2.46E+06 2.81E+06 6.6%
805.4 5− 1.15E+06 1.33E+06 7.6%
809.4 7− 5.65E+05 4.69E+05 9.3%
809.5 5− 4.73E+08 4.87E+08 1.4%
816.0 3− 9.05E+07 9.42E+07 2.0%
818.2 3− 4.21E+06 3.90E+06 3.8%
820.1 5− 6.38E+08 6.54E+08 1.2%
820.6 3− 2.97E+07 3.07E+07 1.6%
823.2 3− 1.05E+08 1.07E+08 1.0%
827.5 5− 3.30E+09 3.38E+09 1.1%
830.1 7− 3.95E+08 3.98E+08 0.4%
832.0 3− 1.39E+08 1.42E+08 1.1%
833.5 5− 2.40E+09 2.45E+09 1.0%
839.2 3− 2.47E+09 2.46E+09 0.2%
851.7 3− 4.51E+06 3.70E+06 9.9%

876.1 879.6 0.2% 3+ 3.72E+10 0.00 3− 3.33E+12 3.35E+12 0.3%
12.73 1− 1.37E+13 1.38E+13 0.4%
804.9 3− 1.59E+04 1.49E+04 3.3%
805.4 5− 4.10E+05 4.34E+05 2.7%
808.8 1− 2.10E+07 2.26E+07 3.7%
809.5 5− 8.39E+07 8.70E+07 1.8%
815.9 1− 2.96E+07 3.15E+07 3.1%
816.0 3− 3.89E+07 3.93E+07 0.5%
816.3 1− 1.04E+06 1.18E+06 6.6%
818.2 3− 1.20E+07 1.27E+07 3.0%
820.1 5− 6.14E+07 6.25E+07 0.9%
820.6 3− 2.04E+08 2.08E+08 1.0%
822.5 1− 2.24E+07 2.32E+07 1.9%
823.2 3− 1.53E+09 1.57E+09 1.3%
827.5 5− 8.94E+08 9.06E+08 0.7%
832.0 3− 4.03E+09 4.13E+09 1.2%
833.5 5− 1.62E+08 1.66E+08 1.1%
839.2 3− 1.14E+09 1.15E+09 0.3%
842.2 1− 2.22E+09 2.24E+09 0.3%
851.7 3− 7.58E+06 7.76E+06 1.1%
853.4 1− 6.08E+07 5.70E+07 3.3%

877.1 880.7 0.2% 1+ -3.53E+10 0.00 3− 4.19E+12 4.22E+12 0.3%



Appendix D. GRASP2018 Calculation Results 297

12.73 1− 2.05E+13 2.07E+13 0.4%
804.9 3− 5.61E+04 8.24E+04 19.0%
808.8 1− 1.06E+06 1.10E+06 1.9%
815.9 1− 7.28E+05 7.09E+05 1.3%
816.0 3− 4.10E+07 4.34E+07 2.8%
816.3 1− 6.29E+08 6.45E+08 1.2%
818.2 3− 1.11E+06 1.15E+06 1.9%
820.6 3− 1.90E+08 1.93E+08 0.8%
822.5 1− 4.38E+09 4.49E+09 1.3%
823.2 3− 7.86E+08 8.11E+08 1.6%
832.0 3− 1.05E+09 1.07E+09 1.1%
839.2 3− 1.09E+09 1.09E+09 0.2%
842.2 1− 3.08E+09 3.10E+09 0.4%
851.7 3− 6.48E+06 7.01E+06 3.9%
853.4 1− 1.76E+08 1.71E+08 1.2%

890.9 892.1 0.1% 5− 1.29E+11 847.0 5+ 4.10E+10 4.15E+10 0.6%
847.0 5+ 3.55E+05 2.83E+05 11.2%
847.1 7+ 2.56E+06 2.29E+06 5.6%
847.7 3+ 5.71E+09 5.76E+09 0.4%
847.7 3+ 1.77E+04 1.07E+04 24.9%
851.3 7+ 1.06E+05 9.89E+04 3.4%
855.3 3+ 8.39E+03 6.41E+03 13.4%
856.3 5+ 9.50E+04 8.73E+04 4.2%
859.3 3+ 9.80E+09 9.79E+09 0.1%
859.3 3+ 6.24E+02 6.25E+02 0.1%
859.5 5+ 3.00E+03 3.19E+03 3.1%
860.5 7+ 3.06E+05 2.51E+05 9.8%
861.1 3+ 3.51E+02 7.94E+02 38.7%
863.0 5+ 1.35E+04 8.46E+03 23.0%
864.6 3+ 1.74E+03 1.53E+03 6.4%
865.9 5+ 5.43E+03 6.85E+03 11.6%
869.7 7+ 1.03E+02 2.47E+02 41.3%
873.1 5+ 2.14E+09 2.11E+09 0.6%
873.1 5+ 6.70E+03 4.52E+03 19.4%
874.4 7+ 9.98E+03 6.18E+03 23.5%
876.3 3+ 9.64E+07 9.52E+07 0.6%
876.3 3+ 9.13E+02 9.89E+01 80.4%
876.6 5+ 3.53E+03 4.11E+02 79.1%
879.6 3+ 9.50E+00 4.69E+01 66.4%
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888.5 892.4 0.2% 5+ 1.68E+09 0.00 3− 1.18E+12 1.19E+12 0.5%
804.9 3− 3.54E+06 3.78E+06 3.2%
805.4 5− 1.71E+06 1.73E+06 0.5%
809.4 7− 1.86E+06 1.79E+06 1.9%
809.5 5− 2.31E+07 2.37E+07 1.4%
816.0 3− 2.06E+06 2.23E+06 4.0%
818.2 3− 6.83E+06 6.58E+06 1.9%
820.1 5− 5.19E+06 5.21E+06 0.2%
820.6 3− 5.22E+06 5.12E+06 1.0%
823.2 3− 2.02E+04 1.14E+04 27.7%
827.5 5− 4.40E+06 4.22E+06 2.1%
830.1 7− 1.43E+08 1.49E+08 2.3%
832.0 3− 7.90E+06 8.48E+06 3.5%
833.5 5− 3.00E+08 3.06E+08 1.0%
839.2 3− 7.30E+05 3.28E+05 38.0%
851.7 3− 7.84E+09 7.94E+09 0.6%
892.1 5− 8.31E-02 2.86E-03 93.3%

890.7 894.7 0.2% 3+ 4.40E+09 0.00 3− 7.35E+10 7.42E+10 0.5%
12.73 1− 1.27E+13 1.28E+13 0.4%
804.9 3− 6.14E+06 6.46E+06 2.6%
805.4 5− 2.22E+06 2.19E+06 0.6%
808.8 1− 1.44E+06 1.23E+06 8.1%
809.5 5− 9.82E+03 1.89E+04 31.5%
815.9 1− 5.45E+06 5.03E+06 4.0%
816.0 3− 6.74E+07 6.97E+07 1.7%
816.3 1− 1.17E+07 1.29E+07 4.9%
818.2 3− 6.40E+07 6.65E+07 1.9%
820.1 5− 1.59E+06 1.62E+06 1.0%
820.6 3− 7.19E+06 7.22E+06 0.2%
822.5 1− 6.51E+07 6.88E+07 2.7%
823.2 3− 2.31E+08 2.39E+08 1.7%
827.5 5− 8.71E+07 9.44E+07 4.0%
832.0 3− 9.42E+07 9.90E+07 2.5%
833.5 5− 1.24E+07 1.20E+07 1.8%
839.2 3− 6.73E+06 7.49E+06 5.3%
842.2 1− 1.44E+09 1.47E+09 1.3%
851.7 3− 1.53E+09 1.54E+09 0.4%
853.4 1− 6.10E+09 6.12E+09 0.1%
892.1 5− 4.09E-01 2.32E-01 27.7%
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892.4 896.6 0.2% 3− 1.64E+11 817.2 1+ 6.38E+07 6.36E+07 0.2%
847.0 5+ 2.41E+10 2.44E+10 0.8%
847.0 5+ 7.31E+05 5.86E+05 11.0%
847.7 3+ 1.37E+10 1.39E+10 0.5%
847.7 3+ 3.96E+05 3.01E+05 13.7%
848.9 1+ 4.91E+11 4.99E+11 0.8%
848.9 1+ 1.45E+10 1.45E+10 0.3%
848.9 1+ 1.52E+05 1.25E+05 9.8%
853.4 1+ 1.63E+06 1.68E+06 1.5%
855.3 3+ 2.95E+06 2.75E+06 3.4%
856.3 5+ 4.72E+06 4.64E+06 0.9%
858.6 1+ 3.26E+09 3.25E+09 0.1%
858.6 1+ 7.86E+04 8.03E+04 1.1%
859.3 3+ 7.33E+07 7.68E+07 2.3%
859.3 3+ 5.29E+05 4.84E+05 4.4%
859.5 5+ 3.55E+05 2.88E+05 10.4%
861.1 3+ 7.85E+05 7.58E+05 1.7%
863.0 5+ 1.06E+06 1.00E+06 2.9%
864.6 3+ 1.92E+03 3.16E+03 24.3%
865.9 5+ 5.03E+06 5.00E+06 0.2%
873.1 5+ 4.79E+07 4.59E+07 2.1%
873.1 5+ 6.24E+05 5.35E+05 7.7%
873.3 1+ 2.07E+06 2.31E+06 5.5%
876.3 3+ 2.05E+09 2.01E+09 0.7%
876.3 3+ 3.30E+06 2.78E+06 8.6%
876.6 5+ 4.62E+06 4.36E+06 2.9%
879.6 3+ 3.29E+05 3.13E+05 2.5%
880.7 1+ 1.79E+05 1.17E+05 20.8%
892.4 5+ 4.04E+03 4.17E+03 1.5%
894.7 3+ 5.64E-01 4.61E+01 97.6%

895.7 902.3 0.4% 1− 2.00E+11 817.2 1+ 2.75E+08 2.75E+08 0.1%
847.7 3+ 3.56E+10 3.62E+10 0.8%
847.7 3+ 1.75E+05 1.26E+05 16.4%
848.9 1+ 3.20E+11 3.26E+11 0.8%
848.9 1+ 1.04E+10 1.05E+10 0.4%
848.9 1+ 6.82E+05 5.71E+05 8.8%
853.4 1+ 5.40E+05 6.01E+05 5.3%
855.3 3+ 2.56E+03 3.20E+02 77.8%
858.6 1+ 2.06E+09 2.05E+09 0.2%
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858.6 1+ 2.61E+05 1.99E+05 13.5%
859.3 3+ 1.84E+10 1.86E+10 0.6%
859.3 3+ 2.99E+05 2.65E+05 6.0%
861.1 3+ 1.56E+06 1.43E+06 4.0%
864.6 3+ 6.51E+05 6.77E+05 1.9%
873.3 1+ 5.45E+05 7.54E+05 16.1%
876.3 3+ 6.02E+08 5.81E+08 1.8%
876.3 3+ 5.62E+05 5.06E+05 5.2%
879.6 3+ 2.53E+06 2.30E+06 4.9%
880.7 1+ 1.76E+06 1.50E+06 8.0%
894.7 3+ 1.39E+05 1.33E+05 2.1%

899.0 903.1 0.2% 3− 8.42E+10 817.2 1+ 1.22E+09 1.22E+09 0.0%
847.0 5+ 1.05E+10 1.07E+10 0.9%
847.0 5+ 7.44E+05 7.48E+05 0.3%
847.7 3+ 9.60E+09 9.72E+09 0.6%
847.7 3+ 2.04E+05 2.05E+05 0.3%
848.9 1+ 7.39E+11 7.50E+11 0.8%
848.9 1+ 7.97E+09 8.04E+09 0.4%
848.9 1+ 2.61E+03 3.29E+03 11.5%
853.4 1+ 4.45E+06 4.67E+06 2.3%
855.3 3+ 1.16E+07 1.10E+07 2.6%
856.3 5+ 2.30E+07 2.24E+07 1.3%
858.6 1+ 1.99E+09 1.97E+09 0.3%
858.6 1+ 1.45E+05 1.64E+05 6.3%
859.3 3+ 1.53E+10 1.54E+10 0.4%
859.3 3+ 1.52E+06 1.48E+06 1.4%
859.5 5+ 1.78E+05 1.84E+05 1.5%
861.1 3+ 1.72E+06 1.78E+06 1.8%
863.0 5+ 7.18E+05 7.62E+05 3.0%
864.6 3+ 2.94E+05 3.26E+05 5.3%
865.9 5+ 2.09E+07 2.06E+07 0.6%
873.1 5+ 2.96E+08 3.24E+08 4.5%
873.1 5+ 2.93E+06 2.63E+06 5.3%
873.3 1+ 9.36E+06 9.98E+06 3.2%
876.3 3+ 1.43E+09 1.43E+09 0.2%
876.3 3+ 1.91E+07 1.71E+07 5.5%
876.6 5+ 2.79E+07 2.64E+07 2.8%
879.6 3+ 2.42E+06 2.26E+06 3.3%
880.7 1+ 1.41E+06 1.12E+06 11.5%
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892.4 5+ 3.01E+05 2.36E+05 12.1%
894.7 3+ 9.50E+03 7.56E+03 11.3%

TABLE D.3: GRASP2018 calculation results for 56Fe Ne-like valence-state
ion energy levels, hyperfine-coupling frequency (AJ) and transition rates.
GRASP energy levels are compared with NIST [178] values and the vari-
ance (var) is shown, as well as the variance (var) between the two different

transition-rate calculations.

Energy (eV) Lower State Transition rate (Hz)
NIST GRASP Var 2Jπ AJ (Hz) Energy 2Jπ Length Velocity Var

0.00 0.00 0+ 0.00E+00
725.24 728.99 0.3% 4− 1.01E+10
727.14 730.89 0.3% 2− 4.48E+10 0.00 0+ 9.41E+11 9.68E+11 1.4%
737.86 741.61 0.3% 0− 0.00E+00
739.05 742.81 0.3% 2− 1.86E+09 0.00 0+ 8.10E+11 8.32E+11 1.3%
755.49 759.04 0.2% 2+ 2.71E+10 728.99 4− 3.37E+09 3.26E+09 1.7%

741.61 0− 1.03E+07 9.61E+06 3.5%
742.81 2− 1.22E+08 1.18E+08 1.7%
742.81 2− 1.15E+07 1.06E+07 4.3%

758.99 762.51 0.2% 4+ 9.74E+09 728.99 4− 2.48E+09 2.42E+09 1.3%
742.81 2− 2.45E+09 2.38E+09 1.5%
742.81 2− 1.58E+05 1.18E+05 14.6%

760.61 764.12 0.2% 6+ 0.00E+00 728.99 4− 6.17E+09 6.04E+09 1.0%
761.74 765.24 0.2% 2+ 1.56E+10 728.99 4− 3.27E+08 3.19E+08 1.2%

741.61 0− 5.17E+06 4.94E+06 2.2%
742.81 2− 5.46E+09 5.33E+09 1.2%
742.81 2− 2.02E+05 2.37E+05 8.0%

763.55 767.05 0.2% 4+ 5.48E+09 728.99 4− 4.30E+09 4.22E+09 0.9%
742.81 2− 3.12E+09 3.05E+09 1.1%
742.81 2− 2.32E+07 2.20E+07 2.8%

768.98 772.58 0.2% 0+ 0.00E+00 742.81 2− 7.43E+09 7.46E+09 0.2%
742.81 2− 1.15E+09 1.07E+09 3.4%

771.06 774.58 0.2% 2+ 3.72E+10 728.99 4− 1.27E+07 1.27E+07 0.1%
741.61 0− 1.98E+09 1.93E+09 1.3%
742.81 2− 3.14E+07 3.04E+07 1.6%
742.81 2− 2.76E+09 2.67E+09 1.6%

774.31 777.82 0.2% 2+ 4.73E+10 728.99 4− 7.98E+08 7.94E+08 0.3%
741.61 0− 3.99E+09 3.91E+09 1.0%
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742.81 2− 2.53E+06 2.43E+06 2.2%
742.81 2− 2.20E+09 2.15E+09 1.1%

774.69 778.20 0.2% 4+ 1.68E+10 728.99 4− 1.06E+08 1.05E+08 0.4%
742.81 2− 7.91E+07 7.95E+07 0.2%
742.81 2− 6.31E+09 6.17E+09 1.1%

787.72 792.17 0.3% 0+ 0.00E+00 742.81 2− 1.11E+10 1.19E+10 3.4%
742.81 2− 1.28E+10 1.34E+10 2.2%

801.43 805.26 0.2% 0− 0.00E+00 759.04 2+ 1.12E+10 1.13E+10 0.2%
765.24 2+ 3.32E+08 2.92E+08 6.4%
774.58 2+ 2.93E+05 1.23E+06 61.5%
777.82 2+ 1.25E+08 1.34E+08 3.7%

802.40 806.21 0.2% 2− 1.36E+10 0.00 0+ 8.80E+10 8.95E+10 0.9%
759.04 2+ 9.39E+09 9.51E+09 0.6%
762.51 4+ 8.89E+08 8.15E+08 4.3%
765.24 2+ 2.84E+07 3.56E+07 11.2%
767.05 4+ 1.09E+09 1.09E+09 0.2%
772.58 0+ 1.68E+08 1.67E+08 0.4%
774.58 2+ 2.87E+06 4.37E+05 73.5%
777.82 2+ 4.42E+07 4.13E+07 3.4%
778.20 4+ 1.71E+07 2.61E+07 20.7%
792.17 0+ 9.36E+03 3.50E+03 45.6%

804.21 808.03 0.2% 4− 9.89E+09 759.04 2+ 5.30E+09 5.37E+09 0.7%
762.51 4+ 7.88E+08 8.44E+08 3.4%
764.12 6+ 4.14E+08 3.52E+08 8.1%
765.24 2+ 1.05E+09 1.07E+09 1.2%
767.05 4+ 3.66E+09 3.71E+09 0.7%
774.58 2+ 1.42E+07 1.26E+07 5.8%
777.82 2+ 1.53E+07 1.35E+07 6.2%
778.20 4+ 4.92E+07 4.00E+07 10.3%

804.26 808.20 0.2% 8− 0.00E+00 764.12 6+ 1.11E+10 1.13E+10 0.6%
806.73 808.94 0.1% 6− 6.48E+09 762.51 4+ 1.10E+10 1.11E+10 0.5%

764.12 6+ 1.71E+09 1.75E+09 1.0%
767.05 4+ 1.10E+08 1.11E+08 0.6%
778.20 4+ 3.44E+06 2.86E+06 9.2%

806.73 810.62 0.2% 4− 9.79E+09 759.04 2+ 3.73E+08 3.78E+08 0.6%
762.51 4+ 4.88E+09 5.01E+09 1.3%
764.12 6+ 2.27E+08 2.39E+08 2.4%
765.24 2+ 7.74E+09 7.85E+09 0.7%
767.05 4+ 7.45E+05 1.04E+06 16.3%



Appendix D. GRASP2018 Calculation Results 303

774.58 2+ 5.05E+06 3.94E+06 12.4%
777.82 2+ 4.49E+06 4.26E+06 2.6%
778.20 4+ 6.35E+04 6.11E+04 1.9%

807.80 811.69 0.2% 6− 0.00E+00 762.51 4+ 8.09E+07 8.65E+07 3.4%
764.12 6+ 2.60E+09 2.72E+09 2.3%
767.05 4+ 9.51E+09 9.69E+09 1.0%
778.20 4+ 9.25E+06 8.36E+06 5.0%

812.37 816.41 0.2% 2− 3.39E+10 0.00 0+ 5.82E+12 5.87E+12 0.4%
759.04 2+ 5.65E+07 5.80E+07 1.4%
762.51 4+ 6.80E+08 7.08E+08 2.0%
765.24 2+ 7.03E+09 7.30E+09 1.8%
767.05 4+ 1.95E+06 3.75E+06 31.5%
772.58 0+ 5.49E+09 5.58E+09 0.8%
774.58 2+ 1.60E+08 1.61E+08 0.3%
777.82 2+ 1.92E+08 1.85E+08 1.9%
778.20 4+ 4.94E+07 6.42E+07 13.1%
792.17 0+ 4.79E+07 4.78E+07 0.1%

817.60 821.51 0.2% 4− -7.08E+07 759.04 2+ 2.67E+07 2.71E+07 0.8%
762.51 4+ 6.32E+07 7.21E+07 6.6%
764.12 6+ 2.31E+06 2.10E+06 4.8%
765.24 2+ 1.80E+06 2.21E+06 10.3%
767.05 4+ 2.03E+07 2.19E+07 3.7%
774.58 2+ 1.14E+10 1.15E+10 0.7%
777.82 2+ 1.58E+08 1.60E+08 0.6%
778.20 4+ 1.49E+09 1.50E+09 0.4%

818.41 822.27 0.2% 4− 4.67E+09 759.04 2+ 7.38E+07 7.32E+07 0.4%
762.51 4+ 2.29E+08 2.34E+08 1.1%
764.12 6+ 1.34E+08 1.77E+08 13.9%
765.24 2+ 2.33E+07 2.52E+07 3.9%
767.05 4+ 5.91E+08 6.15E+08 2.1%
774.58 2+ 3.95E+05 5.01E+05 11.8%
777.82 2+ 9.87E+09 1.00E+10 0.9%
778.20 4+ 1.07E+09 1.09E+09 1.1%

818.93 822.85 0.2% 6− 0.00E+00 762.51 4+ 3.38E+06 3.54E+06 2.2%
764.12 6+ 1.28E+08 1.45E+08 6.2%
767.05 4+ 1.33E+07 1.38E+07 1.8%
778.20 4+ 1.16E+10 1.18E+10 0.9%

825.70 830.12 0.3% 2− -1.80E+10 0.00 0+ 2.30E+13 2.32E+13 0.4%
759.04 2+ 7.92E+06 9.68E+06 10.0%
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762.51 4+ 1.44E+07 2.89E+07 33.5%
765.24 2+ 1.79E+09 1.93E+09 3.6%
767.05 4+ 5.97E+07 4.73E+07 11.6%
772.58 0+ 7.00E+08 7.11E+08 0.8%
774.58 2+ 5.52E+09 5.77E+09 2.2%
777.82 2+ 2.86E+09 2.98E+09 1.9%
778.20 4+ 2.19E+08 2.04E+08 3.5%
792.17 0+ 3.58E+09 3.61E+09 0.4%

TABLE D.5: GRASP2018 calculation results for 56Fe Na-like valence-state
ion energy levels, hyperfine-coupling frequency (AJ) and transition rates.
GRASP energy levels are compared with NIST [178] values and the vari-
ance (var) is shown, as well as the variance (var) between the two different

transition-rate calculations.

Energy (eV) Lower State Transition rate (Hz)
NIST GRASP Var 2Jπ AJ (Hz) Energy 2Jπ Length Velocity Var

0.00 0.00 1+ 9.56E+10
34.37 34.36 0.0% 1− 2.82E+10 0.00 1+ 6.17E+09 6.12E+09 0.4%
36.97 36.96 0.0% 3− 4.84E+09 0.00 1+ 7.70E+09 7.67E+09 0.2%
83.75 83.82 0.0% 3+ 2.14E+09 34.36 1− 1.49E+10 1.50E+10 0.4%

36.96 3− 2.54E+09 2.55E+09 0.3%
84.11 84.18 0.0% 5+ 6.02E+08 36.96 3− 1.56E+10 1.57E+10 0.5%

231.57 231.72 0.0% 1+ 3.64E+10 34.36 1− 1.10E+11 1.10E+11 0.1%
3.64E+10 36.96 3− 2.26E+11 2.27E+11 0.1%

245.20 245.35 0.0% 1− 1.09E+10 0.00 1+ 2.07E+11 2.07E+11 0.0%
83.82 3+ 7.96E+10 8.02E+10 0.4%

231.72 1+ 1.45E+09 1.44E+09 0.3%
246.19 246.36 0.0% 3− 1.88E+09 0.00 1+ 1.96E+11 1.96E+11 0.0%

83.82 3+ 7.66E+09 7.71E+09 0.3%
84.18 5+ 6.92E+10 6.98E+10 0.4%

231.72 1+ 1.80E+09 1.80E+09 0.2%
263.43 263.59 0.0% 3+ 8.84E+08 34.36 1− 3.48E+11 3.47E+11 0.1%

245.35 1− 3.33E+09 3.34E+09 0.2%
246.36 3− 7.11E+10 7.09E+10 0.1%
246.36 3− 5.63E+08 5.64E+08 0.1%

263.59 263.75 0.0% 5+ 3.03E+08 246.36 3− 4.24E+11 4.23E+11 0.1%
246.36 3− 3.47E+09 3.49E+09 0.2%

270.90 271.12 0.0% 5− 2.10E+08 83.82 3+ 9.16E+11 9.14E+11 0.1%
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84.18 5+ 6.53E+10 6.52E+10 0.1%
263.59 3+ 1.86E+08 1.86E+08 0.1%
263.75 5+ 1.24E+07 1.24E+07 0.2%

270.96 271.18 0.0% 7− 1.02E+08 84.18 5+ 9.79E+11 9.78E+11 0.1%
263.75 5+ 1.91E+08 1.91E+08 0.1%

330.00 330.40 0.1% 1+ 1.76E+10 34.36 1− 5.04E+10 5.05E+10 0.1%
245.35 1− 3.38E+10 3.38E+10 0.0%
246.36 3− 1.03E+11 1.04E+11 0.1%
246.36 3− 6.95E+10 6.95E+10 0.0%

336.89 337.12 0.0% 1− 5.37E+09 0.00 1+ 1.20E+11 1.20E+11 0.0%
83.82 3+ 3.23E+10 3.27E+10 0.5%

231.72 1+ 3.95E+10 3.94E+10 0.1%
263.59 3+ 3.63E+10 3.63E+10 0.1%
330.40 1+ 4.60E+08 4.58E+08 0.3%

337.38 337.62 0.0% 3− 9.26E+08 0.00 1+ 1.15E+11 1.15E+11 0.0%
83.82 3+ 3.12E+09 3.15E+09 0.5%
84.18 5+ 2.81E+10 2.84E+10 0.6%

231.72 1+ 3.71E+10 3.70E+10 0.1%
263.59 3+ 3.50E+09 3.50E+09 0.0%
263.75 5+ 3.17E+10 3.17E+10 0.1%
330.40 1+ 5.71E+08 5.69E+08 0.2%

345.67 345.94 0.0% 3+ 4.47E+08 34.36 1− 2.04E+11 2.03E+11 0.2%
245.35 1− 5.69E+10 5.68E+10 0.1%
246.36 3− 4.12E+10 4.10E+10 0.2%
246.36 3− 1.18E+10 1.18E+10 0.1%
271.12 5− 6.61E+09 6.58E+09 0.3%
337.12 1− 1.04E+09 1.04E+09 0.1%
337.62 3− 1.75E+08 1.75E+08 0.0%

345.74 346.02 0.0% 5+ 1.62E+08 246.36 3− 2.46E+11 2.45E+11 0.2%
246.36 3− 7.02E+10 7.00E+10 0.1%
271.12 5− 3.11E+08 3.09E+08 0.3%
271.18 7− 6.25E+09 6.21E+09 0.3%
337.62 3− 1.08E+09 1.09E+09 0.1%

349.46 349.72 0.0% 5− 1.09E+08 84.18 5+ 2.38E+10 2.37E+10 0.2%
263.59 3+ 1.54E+11 1.54E+11 0.0%
263.75 5+ 1.10E+10 1.10E+10 0.0%
345.94 3+ 3.34E+11 3.33E+11 0.1%
345.94 3+ 8.40E+07 8.34E+07 0.4%
346.02 5+ 5.60E+06 5.55E+06 0.4%
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349.50 349.76 0.0% 7− 5.13E+07 84.18 5+ 3.56E+11 3.55E+11 0.1%
263.75 5+ 1.65E+11 1.65E+11 0.0%
346.02 5+ 8.61E+07 8.55E+07 0.3%

349.97 350.14 0.0% 7+ 4.44E+07 271.12 5− 2.70E+11 2.70E+11 0.0%
271.18 7− 9.99E+09 9.97E+09 0.1%
349.72 5− 6.58E+04 6.56E+04 0.1%
349.76 7− 1.93E+03 1.93E+03 0.2%

349.98 350.16 0.0% 9+ 2.79E+07 271.18 7− 2.80E+11 2.79E+11 0.0%
349.76 7− 6.33E+04 6.23E+04 0.8%

381.38 381.57 0.0% 1+ 9.81E+09 34.36 1− 2.74E+10 2.74E+10 0.0%
245.35 1− 1.73E+10 1.72E+10 0.2%
246.36 3− 5.61E+10 5.61E+10 0.0%
246.36 3− 3.54E+10 3.53E+10 0.2%
337.12 1− 1.30E+10 1.30E+10 0.1%
337.62 3− 2.67E+10 2.67E+10 0.1%

385.14 385.36 0.0% 1− 3.02E+09 0.00 1+ 7.14E+10 7.12E+10 0.1%
231.72 1+ 2.64E+10 2.63E+10 0.3%
263.59 3+ 1.70E+10 1.69E+10 0.1%
330.40 1+ 1.14E+10 1.14E+10 0.3%
345.94 3+ 1.67E+10 1.68E+10 0.4%
345.94 3+ 1.67E+10 1.66E+10 0.1%
381.57 1+ 1.79E+08 1.79E+08 0.1%

385.45 385.64 0.0% 3− 5.21E+08 0.00 1+ 6.87E+10 6.85E+10 0.1%
84.18 5+ 1.45E+10 1.46E+10 0.4%

231.72 1+ 2.51E+10 2.50E+10 0.3%
263.59 3+ 1.64E+09 1.63E+09 0.2%
263.75 5+ 1.48E+10 1.48E+10 0.1%
330.40 1+ 1.07E+10 1.06E+10 0.3%
345.94 3+ 1.61E+09 1.62E+09 0.3%
345.94 3+ 1.61E+09 1.61E+09 0.1%
346.02 5+ 1.46E+10 1.45E+10 0.1%
381.57 1+ 2.22E+08 2.22E+08 0.0%

390.06 390.30 0.0% 3+ 2.55E+08 34.36 1− 1.21E+11 1.20E+11 0.3%
245.35 1− 4.05E+10 4.02E+10 0.3%
246.36 3− 2.43E+10 2.41E+10 0.3%
246.36 3− 8.28E+09 8.23E+09 0.3%
271.12 5− 2.82E+09 2.75E+09 1.3%
337.12 1− 1.47E+10 1.46E+10 0.3%
337.62 3− 3.08E+09 3.07E+09 0.3%
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349.72 5− 4.74E+09 4.68E+09 0.6%
385.36 1− 4.04E+08 4.06E+08 0.2%
385.64 3− 6.80E+07 6.82E+07 0.2%

390.14 390.35 0.0% 5+ 9.54E+07 246.36 3− 1.45E+11 1.44E+11 0.3%
246.36 3− 4.94E+10 4.91E+10 0.3%
271.12 5− 1.33E+08 1.29E+08 1.3%
271.18 7− 2.66E+09 2.59E+09 1.3%
337.62 3− 1.83E+10 1.82E+10 0.3%
349.72 5− 2.23E+08 2.20E+08 0.6%
349.76 7− 4.48E+09 4.42E+09 0.6%
385.64 3− 4.22E+08 4.23E+08 0.2%

392.178 392.46 0.0% 5− 6.33E+07 263.59 3+ 8.50E+10 8.48E+10 0.1%
263.75 5+ 6.07E+09 6.05E+09 0.1%
345.94 3+ 1.63E+11 1.62E+11 0.2%
345.94 3+ 4.00E+10 3.99E+10 0.0%
346.02 5+ 2.86E+09 2.86E+09 0.1%
350.14 7+ 8.30E+08 8.22E+08 0.4%
390.30 3+ 3.82E+07 3.78E+07 0.6%
390.35 5+ 1.16E+10 1.15E+10 0.3%
390.35 5+ 2.54E+06 2.51E+06 0.6%

392.186 392.48 0.0% 7− 2.94E+07 263.75 5+ 9.09E+10 9.07E+10 0.1%
346.02 5+ 4.29E+10 4.28E+10 0.0%
350.14 7+ 2.29E+07 2.27E+07 0.4%
350.16 9+ 8.05E+08 7.97E+08 0.5%
390.35 5+ 1.74E+11 1.73E+11 0.2%
390.35 5+ 3.91E+07 3.86E+07 0.6%
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