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Abstract

Radio observations of actively accreting supermassive black holes outside of the galaxy
can provide insight into the history of galaxies and their evolution. With the construc-
tion of fast new radio telescopes and the undertaking of large new radio surveys in
the lead-up to the Square Kilometre Array (SKA), radio astronomy faces a ‘data del-
uge’ where traditional methods of data analysis cannot keep up with the scale of the
data. Astronomers are increasingly looking to machine learning to provide ways of
handling large-scale data like these. This thesis introduces machine learning methods
for use in wide-area radio surveys and demonstrates their application to radio astron-
omy data. To help understand the issues facing large-scale wide-area radio surveys,
and contribute toward their solutions, we consider the problems of automated radio-
infrared cross-identification and Faraday complexity classification.

We developed an automated machine learning method for cross-identifying radio
objects with their infrared counterparts, training the algorithm with data from the cit-
izen science project Radio Galaxy Zoo. The trained result performed comparably to
an algorithm trained on expert cross-identifications, demonstrating the benefit of non-
expert labelling in radio astronomy. By examining the theoretical maximum accuracy
of this algorithm we showed that existing pilot studies for future surveys were not
sufficiently large enough to train machine learning methods. We showed the utility of
our cross-identification algorithm by applying it instead to a large survey, Faint Images
of the Radio Sky at Twenty Centimeters (FIRST), producing the largest catalogue of
cross-identified extended sources available at the time of writing. From this catalogue,
we calculated a mid-infrared-divided fractional radio luminosity function as well as
an estimate of energy injected into the intergalactic medium by active galactic nuclei
jets—one of the first applications of machine learning to radio astronomy to obtain a
physics result. A key result from this work was that the limitation in our sample size
was not due to the number of radio objects cross-identified but rather by the number
of available redshift measurements. Finally, we developed interpretable features for
spectropolarimetric measurements of radio sources and used these features to design
a machine learning algorithm that can identify Faraday complexity, while the features
themselves may be used for other tasks. The methods in this thesis will be applicable
to future radio surveys such as the Evolutionary Map of the Universe (EMU) contin-
uum survey and the Polarised Sky Survey of the Universe’s Magnetism (POSSUM),
as well as surveys produced with the SKA, allowing the development of higher reso-
lution radio luminosity functions, better estimates of the impact of radio galaxies on
their environments, faster analysis of polarised surveys, and better quality rotation
measure grids.
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Chapter 1

Introduction

Many great results come from study at the intersection of two fields, and the combina-
tion of astronomy and informatics is no exception. The resulting interdisciplinary field
is called astroinformatics, and concerns the application of statistical and machine learn-
ing techniques to problems in astronomy and astrophysics. Machine learning, a col-
lection of methods for formalising and solving data-driven problems at scale, is a nat-
ural fit for radio astronomy: Radio astronomy faces a ‘data deluge’ thanks to new and
upgraded telescopes and associated wide-area surveys to be undertaken with them.
The goal in the near future is to be able to process data—and conduct science on that
data—on the fly as the volume of data grows too large to store. This is a requirement
for the Square Kilometre Array (SKA), a grand international undertaking to build a
distributed radio array across Western Australia and South Africa with an intended
collecting area of one square kilometre. There exists no comparable telescope today.
The SKAwill be able to perform new tests of general relativity, help pin down the large-
scale structure of the Universe, investigate the mysteries of the epoch of reionisation,
probe the history of galaxy evolution to new extents, and perhaps make unexpected
new discoveries (Diamond, 2017).

The SKA will have technical challenges unlike any so far in radio astronomy. Raw
data will stream from the telescope antennae at 2 petabytes per second, and up to 300
petabytes per year of science data is expected to be generated (Diamond, 2017). This
is a phenomenal amount of data, much of which won’t be stored, and the community
expectation is thatmachine learningwill provide avenues to conduct sciencewith such
a large dataset. Precursor projects to the SKAhave begun to investigate these pathways
(e.g. Bonaldi et al., 2020; Kapinska, 2020; Mostert et al., 2021).

Even without the SKA, the data deluge has already begun. Three precursor tele-
scopes have been constructed: the Australian Square Kilometre Array Pathfinder
(ASKAP) andMurchisonWidefieldArray (MWA) inWesternAustralia, andMeerKAT
in South Africa. While MeerKAT will eventually form part of the SKA itself, all three
are already online and generating science data at astonishing rates. ASKAP will soon
conduct six surveys of the entire southern radio sky: the Evolutionary Map of the Uni-
verse (EMU; Kapinska, 2020; Norris et al., 2011), theWidefield ASKAP L-Band Legacy
All-Sky Blind Survey (Koribalski et al., 2020, WALLABY), the First Large Absorption
Survey in HI (FLASH), an ASKAP Survey for Variables and Slow Transients (VAST;
Murphy et al., 2013), the Galactic ASKAP Spectral Line Survey (GASKAP), and the
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Polarisation Sky Survey of the Universe’sMagnetism (POSSUM); aswell as the deeper
but smaller Deep Investigation of Neutral Gas Origins (DINGO) and the Commensal
Real-Time ASKAP Fast-Transients survey (CRAFT; Macquart et al., 2010). Atop these
future surveys, the recent Rapid ASKAP Continuum Survey (RACS; McConnell et al.,
2020) has redefined our knowledge of the southern radio sky with shallow observa-
tions at 15 arcsecond resolution—compare to the previous largest radio survey, the
NRAO VLA Sky Survey (NVSS; Condon et al., 1998), with 45 arcsecond resolution
over the northern sky.

Machine learning methods for radio astronomy will be developed for and tested
upon surveys like RACS and EMU. The path between an astronomical problem and a
machine learning problem, however, is not a straightforward one. The goal when cast-
ing an astronomy question as something mathematical or computational is to convert
the question into onewith a knownmethod of solution, such as classification or regres-
sion. Along the way, astronomical concepts and assumptions need to be turned into
something a computer can deal with. Despite the wide availability of machine learn-
ing software and tools, there is no automatic or easy way to make this transformation.
This necessitates research in astroinformatics.

This thesis concerns applications of machine learning to radio astronomy for the
identification of extended extragalactic radio sources in wide-area surveys. We will
present new methods of cross-identifying radio objects with their corresponding in-
frared and optical observations, demonstrate the applicability of these methods to
existing wide-area radio surveys (shedding light on radio source population astron-
omy along the way), and develop a new way to identify complexity in polarised radio
sources.

1.1 Problems in extragalactic radio astronomy

Galaxies produce radio emission through a variety of methods. The main emission
mechanisms are star formation and active galactic nuclei (AGN, Section 2.3) and only
the latter show extended structure well beyond the galaxy itself. AGN are the central
focus of this thesis. They are intensely energetic objects at the centre of galaxies, which
actively accrete matter and eject huge jets of plasma that develop into extended lobes
over huge distances. Radio astronomy has many uses for AGN: Their energy scales
provide a test-bed for high energy physics, and the extremely bright lobes and jets can
be seen throughout the Universe, making AGN an accessible probe of the distant and
old Universe.

AGN are thought to be critical to galaxy evolution and perhaps the early reionisa-
tion of the Universe (Bosch-Ramon, 2018), but their exact role in their host galaxies
is an open question. The radiative and mechanical energy released by AGN impacts
the interstellar medium (ISM) and is a key component of contemporary galaxy sim-
ulations and models (Morganti, 2017). The quenching of star formation due to AGN
activity is called AGN feedback, the idea being that the energy expelled from an AGN is
returned to the ISM of the galaxy, heating the gas so it cannot condense into stars. The
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different impacts of radiative and mechanical energy, the location and scales within
the galaxy for which star formation is quenched, and whether star formation material
is ejected from the galaxy by the AGN are all open questions (Husemann & Harrison,
2018). One of our key results in Chapter 5 is an estimation of the mechanical energy
contributed to the intergalactic medium by AGN. Solving these questions requires an
understanding of AGN at both small and large scales, as well as connecting AGN to
their host galaxies at other wavelengths so that redshift, emission lines, star formation
rates, etc. can be determined. Chapter 4 describes our new method for performing
such cross-identifications.

The large scales of AGN also provide insight into the larger-scale structure of the
Universe. Giant radio galaxies for example (Section 2.3.1) are difficult to identify due
to their size and disconnected appearance (Section 2.6), but are so large that they can
be used to probe galaxy clusters (Banfield et al., 2016) and even the large-scale struc-
ture of the Universe (Reiprich et al., 2020). Other large-scale effects seem to exist, such
as the apparent alignment of radio galaxies (Contigiani et al., 2017; Panwar et al., 2020;
Taylor & Jagannathan, 2016), though investigation continues as to whether this effect
is real or due to some unknown systematic bias. New radio surveys will reveal more
radio sources than ever before, and if they can be identified, radio structures in these
surveys will allow us to investigate the structure of the Universe.

The magnetic structure of AGN and their extended lobes may be probed by ra-
dio polarimetry observations (Anderson et al., 2015; Grant, 2011). Through polarisa-
tion, though, extragalactic AGN can provide insight into our own galaxy: The Fara-
day depth and complexity (Section 2.2.2) of extragalactic radio sources can be used
to quantify local magnetic fields. With more polarised radio sources to be revealed
throughupcomingwide-area polarisation surveys, themagnetic field of theMilkyWay
and its surrounding intergalactic medium can be better resolved. Polarimetry also al-
lows us to determine some aspects of the structure of unresolved extragalactic sources,
even thoughwe cannot spatially see that structure: Spatially extended, polarised radio
sources may have different polarisation spectra to those which are spatially compact
when projected onto the sky.

Other problems in radio astronomy relate to the new level of data that we are about
to obtain from large telescopes like the SKA, which we discuss in Section 1.2.

1.2 Big data in astronomy

The scale of radio data underpins many of the methodology problems facing radio as-
tronomy. There are twomain scientific benefits that come from large-scale data: better
statistics and more unusual objects. However, methods for dealing with radio data at
scale are still very much in their infancy, and need to be developed before instruments
like ASKAP and MeerKAT can be used to their full potential.

Many results in astronomy are statistical, frommeasuring the expansion of the Uni-
verse to understanding the distribution of galaxy properties. With more observations,
we can not only narrow the uncertainty of these results, but diversify them as well.
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When the number of objects under study is large, we can subdivide the population
into subpopulations based on their physical properties and determine a statistic on
each subpopulation. This can help understand the physical basis behind the statistic,
or remove unwanted subpopulations from analysis. Even with less data it is still pos-
sible to subdivide or filter populations, but this will dramatically raise the uncertainty
in the results due to the low sample size of each bin. An example of such a statistic
is the radio luminosity function (RLF), which describes the density of radio sources
throughout the Universe. It can be divided into a fractional RLF to examine the dis-
tribution of subpopulations, or to remove the effect of star-forming galaxies. We use
large datasets to improve the uncertainty of RLFs and subdivide RLFs by the infrared
properties of the population in Chapter 5.

With large datasets, highly unusual or rare objects are more likely to be included.
Much of astronomy has been pushed forward by serendipitous discoveries, and (pro-
vided we have some way of combing through the dataset) large datasets should pro-
vide a wealth of such discoveries to be found. These may be found either through
identifying objects where statistical methods seem to fail, or perhaps through direct
searches (Norris, 2017a). By applying machine learning techniques, we find a number
of new, rare giant radio galaxies in Chapter 5.

But with the benefits of big data come new challenges. At these new scales, the abil-
ity to store all of our science data is no longer a given. Many methods that previously
had the luxury to run over a whole dataset at their own pace will now need to process
data on-the-fly. This is in contrast to how most science observations are currently per-
formed, with new discoveries coming from legacy surveys many years after they were
conducted. Many discoveries are unplanned, and losing the ability to make serendip-
itous discoveries would be a major blow to astronomy (Norris, 2017a): How can we
deal with so much data but still retain the ability to discover the unknown? Even with
storage, the scale is tremendous: FIRST, for example, contains around 900 000 sources,
of which very few were manually labelled. Over 10 000 volunteers labelled interesting
objects in FIRST over four years of the Radio Galaxy Zoo project, with 75 000 aggre-
gated labels passing quality assurance testing. While a phenomenal and, in radio, un-
paralleled labelling effort, it pales in comparison to the estimated 70 000 000 sources
that EMU will find (Banfield et al., 2015).

1.3 Machine learning in astronomy

Machine learning is the process and practice of designing algorithms that automati-
cally find and exploit useful patterns in data (Deisenroth et al., 2020). It is best suited
for scenarios where these patterns are hard to encode by hand. Typically hard-to-
describe problems might include data exploration, data visualisation, or interpolation.
We face a deluge of data, and our existing methods for data analysis and astronom-
ical discovery are hard to automate due to the often complex, imagery-based nature
of much of astronomy. This is where machine learning comes in: If we could find a
way to encode the processes underpinning astronomy as algorithms, we could apply
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them at scale. Machine learning has found much success in other fields with similar
difficult-to-describe problems like image classification and outlier identification.

From the other direction, machine learning finds interesting and unique applica-
tions in radio astronomy. Radio images are usually quite different from images in the
typical image analysis problems faced in computer science. Standard assumptions are
frequently broken: Noise is correlated across the image, objects can be different shapes
when viewed at different wavelengths, and the number of colours in an image may be
in the hundreds. Data points are spatially located and can be close together or far
apart in ways that are not solely based on how they look or behave. We often do not
have the option of obtaining more data, sometimes because it is prohibitively expen-
sive (e.g. to undertake a new survey) and sometimes because it simply does not exist
(as we only have one Universe to look at or because the event is a transient one-off).
The burgeoning field of astroinformatics promises to prove interesting.

1.4 How this thesis fits in

Current methods of identifying radio sources in wide-area radio surveys work best for
compact, isolated objects. As resolution anddepth of radio surveys increase in the lead-
up to the SKA, these limitations are becoming more apparent: Resolution increases
apparent complexity and depth increases the number of radio sources visible in any
given patch of sky.

Source identification is critical for analysis of radio sources in large-scale surveys
whether one is interested in individual sources or their bulk properties. Without solv-
ing issues like cross-identification and Faraday complexity we will not be able to make
full use of the SKAwhen it arrives. Aswewill discuss in Section 2.5, cross-identification
of radio sources with their counterparts in infrared or optical is key to understanding
these sources. Many radio galaxy properties can only be derived from non-radio ob-
servations of the galaxy, the stellar component of which can be traced by emission in
the infrared and optical. This can yield properties including distance, star formation
rate, and even mass of the central black hole powering the radio source itself. We de-
velop an automatedmachine learningmethod for cross-identification in Chapter 4 and
apply it to obtain physical results in Chapter 5.

Bulk analysis of polarised sources greatly benefits from being able to assess their
Faraday complexity. The most important application is perhaps in the development of
so-called rotation measure grids, which help characterise the magnetic field of the Milky
Way and surrounding intergalacticmedium. Without knowingwhich sources are com-
plex and which are not, we cannot estimate the grid reliably. A fast way to estimate
Faraday complexity also allows us to quickly determine which sources may need fol-
lowing up, either with more expensive algorithms or further observations. Chapter 6
details our development of an automated Faraday complexity classifier.
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1.5 Thesis outline

We begin by introducing key concepts from radio astronomy in Chapter 2, including
radio active galactic nuclei (AGN), as well as motivations for and difficulties in cross-
identifying observed radio emission from AGN. In Chapter 3 we introduce machine
learning and describe the machine learning background required for the remainder of
the thesis. These chapters together comprise the background knowledge.

Chapter 4 is my paper Radio Galaxy Zoo: Machine learning for radio source host galaxy
cross-identification (Alger et al., 2018). This chapter describes a new machine learn-
ing method for cross-identifying extended radio emission with host galaxies in the
infrared. We apply this approach to cross-identifying all extended radio sources in
the Faint Images of the Radio Sky at Twenty Centimeters radio survey (FIRST; Becker
et al., 1995) with their infrared counterparts in AllWISE (Cutri et al., 2013) and use the
resulting catalogue of cross-identifications to create a fractional radio luminosity func-
tion in Chapter 5, which itself is my paper Radio Galaxy Zoo: Radio luminosity functions
of extended sources (Alger et al., in prep.). Chapter 6 is my paper Interpretable Faraday
Complexity Classification (Alger et al., 2021), which introduces an interpretable method
for classifying radio emission as Faraday complex or simple, which could be used to
identify whether it is an extended source that is below the resolution limit. In Chap-
ter 7 we provide a discussion of the insights gained from the findings of this thesis and
suggest future directions for research building on our results.

1.6 Contributions

My main contributions to radio astroinformatics in this thesis are:

• I introduce a new method for cross-identifying radio emission which can learn
from existing catalogues, the first application of machine learning to radio cross-
identification (Chapter 4);

• I demonstrate an application of this new method to the creation of fractional ra-
dio luminosity functions, which require considerably more cross-identifications
than non-fractional radio luminosity functions, in the process creating the largest
available catalogue of extended, cross-identified radio sources (Chapter 5);

• I produce a fractional radio luminosity function with divisions based on mid-
infrared colours associated with the host galaxies of the radio emission, helping
to understand how radio galaxies evolve throughout the Universe (Chapter 5);

• I highlight the requirement of considerably more redshifts in understanding fu-
ture wide-area radio surveys (Chapter 5);

• I introduce a new method to identify Faraday complexity using an interpretable
classifier, as well as features for Faraday dispersion functions which can be used
for other machine learning tasks (Chapter 6); and
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• I apply machine learning to real radio spectropolarimetric data for the first time
(Chapter 6).
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1.7 Works produced during this PhD

During my PhD, I had the good fortune to collaborate with many talented authors
and contribute to a number of related works. The following is a list of papers which I
co-authored in this time:

• Radio Galaxy Zoo: Machine learning for radio source host galaxy cross-identification
(2018). M. J. Alger, J. K. Banfield, C. S. Ong, L. Rudnick, O. I. Wong, C. Wolf,
H. Andernach, R. P. Norris, and S. S. Shabala. Monthly Notices of the Royal Astro-
nomical Society 478, pp. 5547–5563. This is the content of Chapter 4 with minor
modifications.

• Radio Galaxy Zoo: Radio luminosity functions of extended sources (in prep.). M. J.
Alger, O. I.Wong, C. S. Ong, N.M.McClure-Griffiths, H. Andernach, L. Rudnick,
S. S. Shabala, A. F. Garon, J. K. Banfield, A. D. Kapińska, R. P. Norris, and A. J. M.
Thomson. This is the content of Chapter 5 with minor modifications.

• Interpretable Faraday Complexity Classification (2021). M. J. Alger, J. D. Livingston,
N. M. McClure-Griffiths, J. L. Nabaglo., O. I. Wong, and C. S. Ong. Publications
of the Astronomical Society of Australia 38, E022. This is the content of Chapter 6
with minor modifications.

• RadioGalaxyZooData Release 1: visual identification of 75,641 radiomorphologies from
the FIRST and ATLAS surveys (in prep.). O. I. Wong, A. F. Garon, M. J. Alger, K.
W. Willett, L. Rudnick, J. K. Banfield, J. Swan, S. S. Shabala, H. Andernach, R. P.
Norris, B. D. Simmons, A. D. Kapińska, N. Seymour, et al.

• Radio Galaxy Zoo: CLARAN - a deep learning classifier for radio morphologies (2019).
C. Wu, O. I. Wong, L. Rudnick, S. S. Shabala,M. J. Alger, J. K. Banfield, C. S. Ong,
S. V. White, A. F. Garon, R. P. Norris, H. Andernach, J. Tate, V. Lukic, H. Tang,
K. Schawinski, and F. I. Diakogiannis. Monthly Notices of the Royal Astronomical
Society 482, pp. 1211–1230.

• Heightened Faraday Complexity in the inner 1 kpc of the Galactic Centre (2021), by J.
D. Livingston, N. M. McClure-Griffiths, B. M. Gaensler, A. Seta, and M. J. Alger.
Monthly Notices of the Royal Astronomical Society 502, pp. 3814–3828.

• Radio Galaxy Zoo: Unsupervised Clustering of Convolutionally Auto-encoded Radio-
astronomical Images (2019). N. O. Ralph, R. P. Norris, G. Fang, L. A. F. Park, T. J.
Galvin, M. J. Alger, H. Andernach, C. Lintott, L. Rudnick, S. S. Shabala, and O. I.
Wong. Publications of the Astronomical Society of the Pacific 131, 108011.

• Radio Galaxy Zoo: Knowledge Transfer Using Rotationally Invariant Self-organizing
Maps (2019). T. J. Galvin, M. Huynh, R. P. Norris, X. R. Wang, E. Hopkins, O. I.
Wong, S. S. Shabala, L. Rudnick, M. J. Alger, and K. L. Polsterer. Publications of
the Astronomical Society of the Pacific 131, 108009.
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I also gave a number of conference talks:

• Machine Learning Methods for Radio Host Cross-Identification with Crowdsourced La-
bels, presented in 2017 at the seventh SKA Pathfinder Radio Continuum Survey
meeting, Perth, Australia.

• Learning to Cross-identify Wide-area Radio Surveys with Radio Galaxy Zoo: Data chal-
lenges in citizen science, presented in 2018 at the Collaborative Conference onCom-
putational and Data Intensive Science, Melbourne, Australia.

• Radio luminosity functions with Radio Galaxy Zoo and machine learning, presented
in 2019 at the ninth SKA Pathfinder Radio Continuum Survey meeting, Lisbon,
Portugal.

• Radio luminosity functions with machine learning and Radio Galaxy Zoo, presented in
2019 at the Annual Scientific Meeting of the Astronomical Society of Australia.

• Extracting Meaningful Features from Early-Science Radio Data, presented in 2019 at
the Collaborative Conference onComputational andData Intensive Science, Can-
berra, Australia.

• Extracting Meaningful Features from Early-Science Radio Data, presented in 2019 at
Artificial Intelligence in Astronomy, Garching, Germany.
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Chapter 2

Radio Sources

As its title suggests, this thesis focuses on the identification of extended radio sources.
This chapter introduces extended radio sources, describing what we see when we look
at the sky with radio eyes and radio telescopes. We will discuss the different kinds
of radio sources that we can observe, how they are distributed throughout the Uni-
verse, and key issues surrounding their identification. We will start by looking at the
extragalactic radio sky, introducing what it is that we see through radio telescopes
(Section 2.1). Then, we will describe the physics behind radio emission, including
the emission mechanisms that allow us to observe active galactic nuclei in radio, and
how radio polarisation can help us determine aspects of distant magnetic fields (Sec-
tion 2.2). From there we will turn to active galactic nuclei as they are the objects of
interest in this thesis (Section 2.3): What do they look like, how are they structured,
and what do they do? Finally, we will cover three different tasks we may face when
presented with a collection of observed AGN, including classification (Section 2.4),
cross-identification (Section 2.5), and source aggregation (Section 2.6).

2.1 The Extragalactic Radio Sky

The extragalactic sky appears quite different at different wavelengths. While an op-
tical observer may look at a distant galaxy and see spirals and halos, an infrared ob-
server will see discs and dust. What does the radio astronomer see? Figure 2.1 shows
a false-colour image of the radio sky from 72–231 MHz. The plane of the Milky Way is
clearly visible through the centre, but nearly every other object in this image is a galaxy.
These galaxies fall into two main categories: those that emit radio due to star forma-
tion (called star-forming galaxies), and those that emit radio due to active galactic nuclei
(AGN; called radio galaxies in this thesis). AGN can be observed at many frequencies:
For the remainder of this thesis, except where otherwise noted, ‘AGN’ refers to radio
AGN.

Non-AGNemission fromdistant galaxies traces the recent star-formation rate (SFR).
Besides low-power thermal emission, stellar radio emission fromgalaxiesmainly comes
from massive (⪆ 8 M⊙) stars through two emission mechanisms. The first is through
H II regions, which are ionised by such stars. The ionised electrons emit bremsstrahlung
radiation at radio wavelengths. The second emission mechanism is supernovae. Mas-
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Figure 2.1: False-colour image of the radio sky from the GLEAM survey. (Image: Natasha
Hurley-Walker, Curtin University/ICRAR; Hurley-Walker et al., 2017)

sive stars may end their lives in Type II and Type Ib supernovae, which can result in
supernova remnants. Interaction between the supernova remnant and the interstel-
lar medium (ISM) causes the emission of synchrotron radiation. Massive stars like
these are short-lived (a few 106 yr), and the corresponding emitting electrons have
similarly short lifetimes (⪅ 108 yr). The radio effects of these stars are therefore also
short-lived, which is why radio emission traces the recent SFR (Condon, 1992). Star
formation-associated emission is mainly found in the discs of spiral galaxies, as this is
where the star formation rate is highest. In particular, there is no star-forming radio
emission extending outside of the galaxy proper. The radio power emitted by these
galaxies at 1.4 GHz is on the order of 1018–1023 W Hz−1 (Condon, 1992). For a radio
survey like the NRAO VLA Sky Survey (NVSS; Condon et al., 1998), with a detection
limit of 2.3 mJy, this luminosity range corresponds to a maximum redshift range of
0.0004–0.1272 (corresponding to 6× 106–1.646× 109 yr lookback time1). Upcoming
surveys such as the EvolutionaryMap of the Universe (EMU; Norris et al., 2011), with
5σ detection thresholds of 50 µJy (Norris et al., 2011), will push this redshift range to
0.0030–0.6684 (corresponding to 4.2× 107–6.261× 109 yr lookback time).

AGN are energetic objects at the centre of galaxies, powered by accretion into su-
permassive black holes. The extended, strongly magnetised plasma they eject emits
synchrotron radiation from accelerating relativistic electrons, which is what we see
when we observe a radio galaxy. The radio luminosity of a radio galaxy can range
from 1020–1028 W Hz−1 (Pracy et al., 2016) at 1.4 GHz, making them some of the most

1Assuming cosmological parameters from Chapter 5. Calculated using “A Cosmology Calculator for
the World Wide Web” (Wright, 2006).
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luminous objects in the Universe. They are therefore visible throughout the Universe,
with the most distant AGN detected at a redshift of 7.5 (Bañados et al., 2018). De-
pending on the orientation and type of AGN, as well as its interaction with its host
galaxy, the radio emission may extend far beyond the galaxy itself—up to megaparsec
scales—and this emission may have complex structure. Perhaps the most impressive
local example is CentaurusA (CenA), the prominent double-lobed cloud in the upper-
right of Figure 2.1 extending over 8 degrees across the sky. Section 2.3 discusses AGN
in more detail.

Most AGN emission is compact and unresolved in any given radio survey due to
the distance at which it can be detected and the orientation or type of the galaxy. This
means that observed structure does not always help to distinguish AGN radio emis-
sion from star-forming radio emission. How canwe tell these apart? Synchrotron emis-
sion has a considerably steeper spectral index than bremsstrahlung, but synchrotron
emission dominates the bremsstrahlung in star-forming galaxies at 1.4 GHz (Condon,
1992). Truly star-forming galaxies can be distinguished from AGN host galaxies by
using optical spectroscopy (e.g. Groves & Kewley, 2007; Mauch & Sadler, 2007), but
radio emission is detectable at much greater distances than those at which good qual-
ity optical spectra can be obtained, making this solution impractical for many galaxies.
Separating star-forming galaxies fromAGNhost galaxies at radiowavelengths remains
a difficult problem in radio astronomy.

Polarised radio surveys can provide extra information. While radio emission due
to star formation tends to not have detectable polarisation, AGN may be very strongly
polarised. This makes polarisation an excellent indicator of whether a source is an
AGN, thoughvery incomplete: ManyAGNdonot havedetectable polarisation, and the
polarised intensity is usually less than 10 per cent of the total radio intensity, meaning
we detect far fewer polarised radio sources than we do radio sources in general.

From the size scales described above, it should be clear that a survey of extended
radio sources is dominated by AGN. Nevertheless, star-forming galaxies present a sig-
nificant part of the radio population, and the fraction of the radio sky they comprise
varies significantly with survey parameters.

2.2 Radio emission

Electromagnetic radiation in radio frequencies—about 10MHz–1THz (Condon&Ran-
som, 2016)—is called radio emission. This is a very broad range of frequencies and so
radio astronomy covers a very broad range of astrophysical phenomena, from cosmo-
logical background radiation to neutron stars. The focus of this thesis is the excit-
ing, dynamic, and so-called ‘violent universe’ of radio galaxies. These galaxies are ob-
served through their emission of synchrotron radiation and are studied through their
observed physical structure, the intensity and spectroscopic properties of their radia-
tion, and the polarisation and spectropolarimetric properties that are uniquely visible
in radio. This section introduces synchrotron radiation and radio polarisation.
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2.2.1 Synchrotron radiation

Most radio emission from radio galaxies is synchrotron radiation, produced by relativis-
tic chargedparticles accelerating in amagnetic field. Anon-relativistic chargedparticle
spirals with a fixed angular frequency when it moves in a magnetic field in a process
called gyro radiation. Synchrotron radiation is a relativistic effect: It can be thought of as
gyro radiationwhich has been Lorentz transformed to energiesmuch greater than mc2.
The spectrum of optically thin synchrotron radiation follows a power law (Condon &
Ransom, 2016):

S(ν) ∝ να. (2.1)

where ν is the frequency of radiation and α is called the spectral index2. It is related to
the energy distribution of the emitting electrons. Assuming that the electron energy
distribution follows a power law (which it generally does; Rybicki & Lightman, 2008),
where the number density of electrons at a given energy E is given by

n(E) ∝ EΓ, (2.2)

then
α =

Γ− 1
2

. (2.3)

The spectral index for synchrotron radiation tends to range from -2 to 0 (Condon &
Ransom, 2016) with spectral indices greater than 0 called ‘inverted’ spectra.

2.2.2 Polarisation

Electromagnetic radiation consists of waves of self-propagating, orthogonal electric
and magnetic fields. The orthogonality of these two waves allows us to characterise
the radiation just by the electric field. As a transverse wave, the electric field travels at
an angle in the plane perpendicular to the line-of-sight. This angle and its behaviour
is called the polarisation of the wave.

The polarisation can be characterised by decomposing the electric field into orthog-
onal components Ex and Ey, letting ẑ denote the axis of propagation:

E⃗ = (x̂Ex exp(iφx) + ŷEy exp(iφy)) exp(i(⃗k · ẑ−ωt)). (2.4)

In an astronomical context, ẑ is the line-of-sight from the source of the radiation to the
observer. k⃗ is the wave vectorwhich points in the direction of travel and has magnitude
2π/λ, and ω = 2πν is the angular frequency. φx and φy are the phase offsets of each
component. As this wave propagates along the line-of-sight toward an observer, the
electric field oscillates in an ellipse across the x–y plane. When the two components are
in phase, this ellipse is degenerate and the radiation is called linearly polarised. When
the two components are perfectly out of phase, the ellipse is a circle, and the radia-
tion is called circularly polarised. Of course, any ellipse in between these extremes is
also possible. For this reason, we decompose the polarisation into linearly polarised

2Note that the sign of α varies by convention, and both S ∝ να and S ∝ ν−α exist in the literature.
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components and a circularly polarised component called Stokes parameters (Condon &
Ransom, 2016; Stokes, 1851). These are:

I =
1

R0
Et[E2

x + E2
y], (2.5)

Q =
1

R0
Et[E2

x − E2
y], (2.6)

U =
1

R0
Et[2E2

xE2
y cos(φx − φy)], (2.7)

V =
1

R0
Et[2E2

xE2
y sin(φx − φy)]. (2.8)

Et denotes the expectation value over time. I is the total intensity of the radiation. Q
and U together describe the linear polarisation and are used to define the polarisation
angle χ:

tan(2χ) =
U
Q

. (2.9)

V is the circular polarisation and describes the eccentricity of the ellipse. For most ex-
tragalactic sources, the contribution of circular polarisation is tremendously small, es-
pecially compared to that of linear polarisation, and can be assumed to be zero (Rayner
et al., 2000; Saikia & Salter, 1988). Incoherent radiation may be composed of radiation
with many different polarisations, and these polarisations may fully or partially can-
cel out. This is called unpolarised or partially polarised radiation respectively. The total
intensity of polarised radiation is called the polarised intensity P and is given by

P2 = Q2 + U2 + V2. (2.10)

Note that P2 ≤ I2. The fractional polarisation is the ratio between these two intensities:

p =
P
I

. (2.11)

The synchrotron radiation from radio galaxies is polarised, though this polarisation
is not always detectable as the polarised signal tends to be much weaker than the total
intensity (on the order of 10 per cent; O’Sullivan et al., 2015). Additionally, the most
common non-AGN cause for radio emission is star formation, which does not gener-
ally have detectable polarisation in extragalactic surveys. Polarisation is therefore an
excellent way to confirm that a radio source is an AGN.

Polarisation can also be used to describe the magnetic structure of both the radio
galaxy jets and lobes as well as the intervening medium. As polarised light from dis-
tant galaxies makes its way to us, magnetised plasma along the way can cause the po-
larisation angle to rotate due to the Faraday effect. The amount of rotation is called the
Faraday depth ϕ, and is related to the electron density ne and the line-of-sight magnetic
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Figure 2.2: The Faraday effect for a single Faraday screen with magnetic field B⃗ inducing a
Faraday rotation of ϕ. Adapted from a figure by Bob Mellish.

field strength B⃗ · ẑ of the intervening medium:

ϕ(x, y) =
e3

8π2ϵ0m2
e c3

∫ here

there
ne(x, y, z)B⃗(x, y, z) ·dẑ rad m−2. (2.12)

Here d⃗r is the infinitesimal path length in pc (Brentjens & de Bruyn, 2005). Within
the synthesised beam of a radio telescope there may be multiple lines-of-sight that
go through different media and hence have different Faraday depths. An example of
this is a radio galaxy that is sufficiently far away that its structure is unresolved by the
telescope, and yet has different polarisation properties across its breadth. The leading
constant of Equation 2.12 is around 2.62× 10−13 T−1, more commonly written as 0.812
pcµG−1 cm−1 in CGSunitswith B inµGand z in pc. The amount of polarised radiation
at each Faraday depth can be characterised by the Faraday dispersion function (FDF) or
Faraday spectrum of the source, usually denoted F(ϕ) ∈ C. F is defined implicitly by its
relationship with the polarised radiation P observed at wavelength λ:

P(λ2) =
∫ ∞

−∞
F(ϕ)e2iλ2ϕ dϕ. (2.13)

One useful way of thinking about this equation is that F is the decomposition of P(λ2)
into complex sinusoids of the form e2iλ2ϕ.

If observed radiation has precisely one Faraday depth ϕ, then the polarised struc-
ture is called a Faraday screen and the source is called Faraday simple. In this degenerate
case, the relationship between the polarisation angle χ and the squared wavelength λ2
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is linear:
χ = χ0 + ϕλ2, (2.14)

and the FDF is a delta distribution:

F(φ) = δ(φ− ϕ). (2.15)

ϕ is then called the rotation measure (RM). If the source is not Faraday simple, then it
is called Faraday complex, and the question of whether a source is Faraday simple or
Faraday complex is called Faraday complexity. A diagram of a Faraday screen is shown
in Figure 2.2. Until very recently, the frequency resolution of polarised surveys was
insufficient to meaningfully separate most complex arrangements of Faraday depths,
and so most sources were assumed to be simple and characterised entirely in terms of
their rotation measure (e.g. Taylor et al., 2009). Advancing telescope technology and
emphasis on polarisation science has opened new frontiers in spectropolarimetry and
upcoming and ongoing surveys (e.g. RACS and POSSUM) will likely report Faraday
complexity and produce Faraday depth catalogues instead of rotation measures.

If the polarised spectrum of a Faraday complex source is observed at multiple fre-
quencies, then the multiple Faraday depths comprising it can be disentangled even
though they spatially overlap in the radio image. This can provide insight into the
polarised structure of the source as well as the intervening medium. This disentangle-
ment is accomplished by inverting Equation 2.13, a process called RM synthesis (Bren-
tjens & de Bruyn, 2005):

F(ϕ) =
∫ ∞

−∞
P(λ2)e−2iλ2ϕ dλ2. (2.16)

In reality we do not observe P(λ2) at all wavelengths nor with infinite resolution. In
RM synthesis this is accounted for by the introduction of a weighting function (or win-
dowing function, e.g. Heald, 2008) W(λ2). W(λ2) is nonzero if and only if an obser-
vation was taken with wavelength λ. Substituting P(λ2) → P(λ2)W(λ2) into Equa-
tion 2.16 results in a sum which can be numerically evaluated:

F(ϕ) ≈
∫ ∞

−∞
P(λ2)W(λ2)e−2iλ2ϕ dλ2 =

J

∑
j=1

P(λ2
j )W(λ2

j )e
−2iλ2

j ϕ. (2.17)

P(λ2
j ) is the observed polarisation at the jth value of wavelength, W(λ2

j ) is the corre-
sponding jthweight, and J is the total number ofwavelengths forwhichmeasurements
were taken. The weighting function W is analogous to the weighting function in radio
synthesis imaging. The most common choices of W are 1) uniform weighting3 with
W(λ2

j ) = 1 for all nonzero values, and 2) weighting by the inverse variance at each
wavelength.

Of course, no physical source has a precise Faraday depth, as there is always in-

3The analogous weighting scheme in radio synthesis imaging would be natural weighting rather than
uniform—an unfortunate overlap in terminology.
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trinsic scatter. Along the line-of-sight, if we assume that ne is observed with random
Gaussian noise i.e. ne(z) ∼ N (ne, σ2

ne
), and that B is constant for simplicity, then we

find:
ϕ ∼ N

(
e3

8π2ϵ0m2
e c3 Bne,

e3

8π2ϵ0m2
e c3 Bσ2

ne

)
, (2.18)

that is, the depth has an uncertainty proportional to themagnetic field strength and the
noise in ne. A similar result follows for noise in B only. There is no analytic solution for
noise in both B and ne, but ifwe approximate the integrand as aGaussian by calculating
the mean and variance, we find:

ϕ ∼ N
(

e3

8π2ϵ0m2
e c3

neσ
2
B + Bσ2

ne

σ2
B + σ2

ne

,
e3

8π2ϵ0m2
e c3

σ2
ne

σ2
B

σ2
ne
+ σ2

B

)
. (2.19)

We observe multiple lines-of-sight that are coalesced into one within the beam. Due
to this noise, even with constant ne and B across a source, we can see multiple Faraday
depths as each line-of-sight is a sample from the above distribution.

2.3 Radio galaxies and active galactic nuclei

AGN are some of the most energetic objects in the Universe. They both provide a labo-
ratory for extreme physics and are a key part of the life cycle of a galaxy (Heckman &
Best, 2014). Powered by a supermassive black hole, they convert gravitational poten-
tial energy into intense electromagnetic radiation at a broad range of frequencies. AGN
that produce strong radio emission are called radio AGN, and methods of observing
the complex structures that these radio AGN form as radio galaxies are the focus of
this thesis.

2.3.1 What we see when we look at AGN

Observations are the crux of astronomy. While there are many models of how AGN
evolve and how they interact with their surroundings—and indeed, the actual struc-
ture of an AGN is very much an open question in astronomy—the evidence presented
by observations is reliable and a good place to start discussing the structure, behaviour,
and importance of AGN throughout the Universe.

As powerful sources of radio emission, radio AGN and their associated extended
structure can be seen throughout the Universe. Sufficiently close or large radio galax-
ies can be resolved by telescopes and their structure examined, while more distant or
smaller radio galaxies may be unresolved and point-like. A well-resolved radio galaxy
can be a striking thing: From the central AGN extend two opposing, tightly collimated
jets, which widen into huge lobes of radio-bright plasma. These lobes may have fur-
ther structure, particularly bright regions called hot-spots, and the jets and lobes may
be bent and distorted as they travel away from their host galaxy. For any given radio
galaxy, some of these features may or may not be present. In particular, radio galaxies
are often divided into two classes based on the kinds of extended structure that are vis-
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(a) M84/3C 272.1 (b) 3C 223

Figure 2.3: Examples of (a) a FRI (Laing & Bridle, 1987) and (b) a FRII radio galaxy (Leahy &
Perley, 1991). Both are shown with an arcsinh stretch and were observed with the VLA.

ible, called Fanaroff-Riley type I (FRI) and Fanaroff-Riley type II (FRII) radio galaxies.
FRI have wavy, diffuse lobes, appearing brighter toward the host galaxy and dimming
further out (e.g. Figure 2.3a). FRII, on the other hand, have long, tightly collimated jets
and sharp-edged lobes with bright hot-spots (Urry & Padovani, 1995) at the very end
of the lobes, and are brighter further away from the host galaxy (e.g. Figure 2.3b). FRII
are also generally higher-luminosity (Fanaroff & Riley, 1974) than FRI, and therefore
make up the majority of observed extended radio sources throughout the Universe.
However, this is by no means the clear-cut divide it was once thought to be (Mingo
et al., 2019) with the difference now being attributed largely to environmental effects
rather than jet power. The current understanding is that FRII jets remain at relativistic
energies up until the edge of the lobe, where they terminate in a shock that appears
as a hot-spot, while FRI jets decelerate within the galaxy itself (Hardcastle & Croston,
2020). This sharp difference in extended structure begins with environmental interac-
tions at the very centre of the galaxy.

A radio galaxy can be tremendously extended, with increasinglymany radio galax-
ies being found with a length of over one megaparsec. Such large galaxies are called
giant radio galaxies, but even non-giants are still quite big, regularly extending well out-
side the stellar component of the host galaxy. Wewill discuss the extended structure in
Section 2.3.2. Appendix 5.J lists some giants discovered during the work of this thesis.

An AGN interacts with its host galaxy, and so the host galaxy of an AGN can also
provide interesting insights into the structure and behaviour of the AGN. Early re-
search indicated that the split between FRI and FRII radio galaxies was dependent
on the mid-infrared and optical brightness (and therefore density) of the host galaxy
(Bicknell, 1995; Ledlow & Owen, 1996) though more recent work suggests this may
not be a strong effect if it exists at all (Hardcastle & Croston, 2020). Chapter 5 investi-
gates the distribution of radio luminosities conditioned on the mid-infrared colour of
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(a) 3C 83.1B (b) 3C 315 (c) 3C 433

Figure 2.4: Radio galaxies, displayed with an arcsinh colour scale. All images were taken with
the VLA. (a) is a narrow-angled tail radio galaxy (Leahy et al., n.d.), (b) is an X-shaped radio
galaxy (Leahy et al., 1986), and (c) is a very unusually shaped radio galaxy (Black et al., 1992).

the host galaxy.

2.3.2 Extended structure

The jets and lobes of AGN can be very extended, with the largest known radio galax-
ies measuring over 4 Mpc end-to-end (Machalski et al., 2011). This is a much larger
size than the radii of the host galaxies, and so the jets and lobes of AGN are uniquely
posed to interact with the local environment. Environmental interactions both within
and outside the host galaxy warp and distort the jets and lobes. Within the galaxy, the
jets drive a bubble of energy in the ISM (Mukherjee et al., 2016), transferring energy
into the ISMwith different effects depending on the jet power (Mukherjee et al., 2018);
the ISMon the other hand suppresses the jets and distorts them to varying amounts de-
pending on the degree of interaction (Mukherjee et al., 2018). Outside the galaxy, the
jets and lobes are bent by the intra-cluster medium and neighbouring galaxies (ICM;
Garon et al., 2019; Rodman et al., 2019) and this structure may even be used as a probe
for cluster environments (Banfield et al., 2016; Sakelliou et al., 2008).

The strong interaction of AGN with their environments leads to a great variety of
exotic-shaped radio galaxies. Some morphological classes of this ‘radio galaxy zoo’ in-
clude X-shaped galaxies, which have two sets of lobes roughly perpendicular to each
other; wide- and narrow-angled tail galaxies, which are bent about the core with large
and small angles respectively; head-tail galaxies, which are so bent that the two lobes
seem to be the same or nearly the same; double-doubles, which have two sets of lobes
on each side; and many, many more. Some examples of radio galaxies with interest-
ing structure are shown in Figure 2.4. Large-scale automated identification of these
galaxies can be tricky owing to their variety, extent, and often disconnected structure.

AGN cores tend to have flat or inverted spectral indices around -0.5–1 (Condon
& Ransom, 2016; Randall et al., 2012). Moving out from the host galaxy, the spectral
index steepens as the electrons are older and less energetic, with the spectral index
of the lobes usually at about -0.7 (Condon & Ransom, 2016). The hot-spots of FRII
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Central black holeAccretion disc

Broad-line region

Narrow-line region

Jet

Dusty torus

Figure 2.5: The unified model of AGN.

galaxies have spectral indices between -0.5 – -0.7, becoming shallower as the electrons
reaccelerate. These are only general trends: The spectral structure within lobes can
be very complex (Treichel et al., 2001). The jets do not strongly emit and are only
detectable for particularly deep observations or nearby radio galaxies.

2.3.3 The unified model

At their core, AGN are an accreting supermassive black hole: a body so dense that even
light cannot escape its gravitational pull, with mass on the order of 107–109 M⊙ (Mar-
coni & Hunt, 2003). Such black holes seem to exist at the centres of galaxies and these
galaxies are called host galaxies. The current understanding of the structure of an AGN
is as follows (Urry & Padovani, 1995). The black hole is surrounded by an accretion
disc emitting in ultraviolet and X-ray. Beyond this is the broad-line region, named for
the Doppler-broadened emission lines emitted by the energetic clouds of material sur-
rounding the accretion disc. The broad-line region and accretion disc are themselves
surrounded by a dusty torus (or some other disc-like structure) which prevents light
from the centre of the AGN being observed from the sides. Further still from the accre-
tion disc is the narrow-line region, where lower-energy gas produces narrow emission
lines. From either side of the disc, an AGN produces two collimated outflows of rel-
ativistic plasma called jets, and these jets may interact with gas in the host galaxy to
produce bright radio emission. The jets are not always visible. As the jets disperse fur-
ther out from the centre of the AGN they widen into plumes of plasma known as lobes.
This model of AGN unifies different observed classes of AGN by their orientation and
luminosity, and is hence known as the unified model (Antonucci, 1993). Recent work
suggests that the unified model of AGN is not the full story (e.g. Zhuang & Ho, 2020).

There are many different ways to divide the set of radio AGN into classes. By mor-



22 Radio Sources

phology, radio AGN are often divided by the structure of the jets and lobes, with FRI
and FRII the most striking examples. AGN can also be divided into radiative-mode and
jet-mode by how they expel their energy (Heckman & Best, 2014). Radiative-mode
AGN produce radiative energy in amounts higher than 1 per cent of their Eddington
limit, while jet-mode AGN mainly output energy through their jets. The Eddington
limit describes the maximum luminosity that a compact object can emit, and is given
in Equation 2.20 (Rybicki & Lightman, 2008):

LEddington(M) =
4πGMmpc

σT
(2.20)

where M is the mass of the compact object.
Optical emission observed near the centre of the AGN can be used to divide radio

AGN into broad-line and narrow-line galaxies. The former have broad spectral lines
while the latter have narrow spectral lines, with broader spectral lines indicative of
higher thermal energies. The most common interpretation, under the unified model,
is that broad-line AGN are those seen end-on and narrow-line are those seen edge-on
with the dusty torus obscuring the broad-line region. These narrow-line galaxies are
usually the only ones for which we see significant extended structure.

2.3.4 Polarised structure

The magnetic field of AGN is thought to be critical to their structure (Sikora & Begel-
man, 2013). A strongmagnetic field is required to eject and collimate the jets (Lovelace,
1976) and the magnetic environment influences the structure of the jets (O’Sullivan et
al., 2015). Polarisation provides a probe for measuring this magnetic field. Radiative-
and jet-mode AGN have different fractional polarisations, with jet-mode AGN hav-
ing a much wider range of fractional polarisations (p ∼ [0, 30] per cent) compared to
radiative-mode AGN (limited to p ⪅ 15 per cent), with this difference attributable to
the magnetic environment (O’Sullivan et al., 2015). Steep-spectrum (α > 0.5) and flat-
spectrum (α < 0.5) AGN have differing fractional polarisations, with steep-spectrum
sources having much higher fractional polarisation for frequencies > 5 GHz and flat-
spectrum sources having higher fractional polarisation for frequencies < 1 GHz due
to frequency-dependent depolarisation of the steep-spectrum sources (Saikia & Salter,
1988). Hot-spots of FRII radio galaxies have low polarisation (< 10 per cent) while
the more diffuse sections may have much greater polarisation (> 20 per cent) (Saikia
& Salter, 1988). The direction of the magnetic field is correlated with the direction of
patterns in the total intensity of the source (Saikia & Salter, 1988).

2.3.5 AGN luminosity

The distribution of AGN luminosities throughout the Universe can be characterised
by the radio luminosity function (RLF). This describes the density of AGN within lumi-
nosity bins at a given frequency. The RLF at 1.4 GHz from Mauch and Sadler (2007)
is shown in Figure 2.6. 1.4 GHz is arguably the most common large-scale survey fre-
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944 T. Mauch and E. M. Sadler

Table 5. Local RLFs at 1.4 GHz for the radio-loud AGNs, SF galaxies and for all radio sources.

All galaxies SF galaxies Radio-loud AGNs
log 10 P1.4 N log ! N log ! N log !

(W Hz−1) (mag−1 Mpc−3) (mag−1 Mpc−3) (mag−1 Mpc−3)

20.0 3 −2.90+0.20
−0.39 3 −2.90+0.20

−0.39

20.4 46 −2.52+0.08
−0.10 43 −2.56+0.09

−0.11 3 −3.63+0.23
−0.54

20.8 116 −2.84+0.04
−0.05 103 −2.89+0.04

−0.05 13 −3.77+0.11
−0.15

21.2 319 −2.82+0.02
−0.03 296 −2.85+0.03

−0.03 23 −4.01+0.09
−0.11

21.6 654 −3.00+0.02
−0.02 589 −3.05+0.02

−0.02 65 −4.04+0.05
−0.06

22.0 1266 −3.25+0.01
−0.01 1106 −3.31+0.01

−0.01 160 −4.18+0.04
−0.04

22.4 1496 −3.68+0.01
−0.02 1119 −3.79+0.02

−0.02 377 −4.35+0.03
−0.03

22.8 1138 −4.23+0.02
−0.02 588 −4.45+0.02

−0.02 550 −4.62+0.02
−0.03

23.2 658 −4.78+0.02
−0.02 133 −5.36+0.04

−0.05 525 −4.91+0.03
−0.03

23.6 378 −5.06+0.03
−0.03 26 −6.12+0.11

−0.14 352 −5.09+0.03
−0.03

24.0 259 −5.36+0.03
−0.03 259 −5.36+0.03

−0.03

24.4 183 −5.57+0.04
−0.04 183 −5.57+0.04

−0.04

24.8 81 −6.03+0.06
−0.07 81 −6.03+0.06

−0.07

25.2 49 −6.33+0.08
−0.09 49 −6.33+0.08

−0.09

25.6 16 −6.74+0.16
−0.27 16 −6.74+0.16

−0.27

26.0 3 −7.30+0.25
−0.68 3 −7.30+0.25

−0.68

26.4 2 −8.12+0.27
−0.85 2 −8.12+0.27

−0.85

Total 6667 4006 2661

⟨V /Vmax⟩ 0.518 ± 0.004 0.509 ± 0.005 0.532 ± 0.006

combined sample have ⟨V /Vmax⟩ = 0.518 ± 0.004. The ⟨V /Vmax⟩
value for radio-loud AGNs is more than 3σ from the value of 0.5
expected if there were no significant clustering or evolution in the
sample. Some evolution of the radio-loud AGN population is prob-
able over the 1–2 Gyr look-back time of the 6dFGS–NVSS sample.
The local RLF of all 6dFGS–NVSS galaxies is shown in Fig. 11;
its statistical errors are of order 1 per cent or less over five decades
of radio luminosity. Separate local RLFs for both SF galaxies and

Figure 11. The local luminosity function at 1.4 GHz measured from all the
radio sources in the 6dFGS–NVSS sample. The curve is the sum of the
contributions to the luminosity function from fits of equations (5) and (6) to
the SF and AGN data, respectively.

Figure 12. The local luminosity function at 1.4 GHz derived separately for
the radio-loud AGNs (circles) and SF galaxies (crosses) in the 6dFGS–NVSS
sample. The two curves are the fits of equations (5) and (6) to the SF and
AGN data, respectively.

radio-loud AGNs are shown in Fig. 12. These cross over at P1.4 =
1023 W Hz−1, SF galaxies dominate the population of radio sources
below this power and radio-loud AGNs dominate the population
above it.

Galaxy luminosity functions are commonly fitted by the
Schechter function (Schechter 1976). This function turns over more
steeply towards high luminosities than RLFs of SF galaxies. Instead
the RLF is commonly fitted by the parametric form given by

C⃝ 2007 The Authors. Journal compilation C⃝ 2007 RAS, MNRAS 375, 931–950
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Figure 2.6: RLF for star-forming galaxies and AGN, from Mauch and Sadler (2007).

quency as it detects the easily observed 21 cm hydrogen line, but this RLF can be scaled
to different frequencies by assuming a constant spectral index (α = −0.7 for a typical
AGN). In Chapter 5, we will use a machine learning-derived radio source catalogue to
estimate a RLF for extended radio objects.

2.3.6 The role of AGN

AGN are an important part of galaxy evolution, though the exact mechanisms of this
are not currently known. Understanding galaxy evolution requires understanding the
links between it and AGN, and thus requires the study of AGN.

There are established relationships between AGN parameters and galaxy parame-
ters: The mass of the central black hole is correlated with the stellar mass and velocity
dispersion near the core in elliptical galaxies (Cattaneo et al., 2009) as well as the lumi-
nosity of the bulge (Kormendy & Richstone, 1995). Massive galaxies seem to be more
likely to contain an AGN rather than an inactive galactic nucleus (Hardcastle & Cros-
ton, 2020). The large-scale behaviour of AGN (e.g. the Fanaroff-Riley divide) may be
caused by interactions within the host galaxy (Hardcastle & Croston, 2020) and this
interaction would be a significant energy contribution to the ISM.

Perhaps the biggest topic in this field is that ofAGN feedback, the role of AGN in the
enhancement or quenching of star formation within their host galaxies. Star formation
requires cold gas; AGN can push gas out of the galaxy (Zubovas & King, 2012) or heat
it so that it can no longer form stars. But the rapid expansion of AGN jets can produce
shocks in the local environment, compressing gas, triggering collapse of gas clouds,
and potentially increasing the star formation rate (Zubovas et al., 2014).
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For a review of the role of AGN within galaxy evolution, see Kormendy and Ho
(2013). For a detailed review of the current understanding of AGN, see Hardcastle
and Croston (2020).

2.4 Classifying AGN

As discussed in Section 2.3.3, radio galaxies fall into many classes. Understanding the
mechanisms underlying these class distinctions is critical to understanding AGN. As
we have no way to directly see the core of an AGN (it’s far too small to resolve at the
distances AGN occur and may also be occluded), our only method to investigate AGN
is to look at their large-scale behaviour. Some classes may relate to the fundamental
AGN core, some may be environmental, and some may be due to observation effects.
Much of our knowledge about AGN (such as the unified model) come from analysing
these classes and their differences. To investigate classes of AGN a large sample of
each class is required, and source classification approaches can divide a large dataset
from a radio survey into useful subsets. Knowing what class a source is may also help
analyse its properties as we can estimate its expected behaviour, perhaps with the aid
of models and simulations. Some classes may have interesting structure or properties
that can only be observed with additional detailed observations, so identifying which
sources require follow-up is a tightly related problem in radio astronomy. An excellent,
though now somewhat dated, summary of radio source classification is the review
paper by Urry and Padovani (1995), which we recommend for further reading.

Deciding which class a given radio galaxy falls into may be challenging, and doing
this automatically evenmore so. This section discusses approaches to classifying radio
galaxies.

2.4.1 Statistical and manual classification of AGN

Manual and statistical approaches to classifying AGN have dominated the radio as-
tronomy literature until very recently, due to the comparative lack of computational
power as well as a lack of good automated methods. Manual methods amount to
examining the structure of a resolved source and determining its class. This is how
we usually identify bent radio galaxies, head-tail radio galaxies, X-shaped radio galax-
ies, and those radio galaxies with more unusual morphologies. Statistical approaches
identify properties of the source that can be combined and thresholded to separate
the sources into categories en masse. Modern machine learning techniques for classi-
fication of radio sources can be thought of as an extension of these statistical methods,
where the properties and their combinations are identified automatically, but we will
discuss these separately in Section 2.4.2.

Arguably the most well-known radio classification scheme, FRI and FRII, was orig-
inally defined on well-resolved radio galaxies by computing the ratio of the distance
between the regions of highest brightness on opposite lobes and the total extent of the
radio emission (Fanaroff & Riley, 1974). Sources with a ratio under 0.5 were called FRI
and thosewith a ratio greater than 0.5were called FRII. This classification has over time
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evolved into a less precise divide, with classification generally nowmorphological and
based on the structure (diffuse, wavy plumes versus hot-spots and lobes for FRI and
FRII respectively). The FRI and FRII divide has been further complicated by other re-
lated categorisations such as the so-called “Fanaroff-Riley type 0” sources which seem
to be the lower end of a continuum of radio sources with diffuse plumes (Capetti et al.,
2020; Garofalo & Singh, 2019) as well as hybrid morphology radio sources (HyMoRS)
which appear to be FRI on one side and FRII on the other (Gopal-Krishna&Wiita, 2000;
Kapińska et al., 2017). Many classes are defined by explicitly statistical means; for ex-
ample, steep- and flat-spectrum sources are divided by spectral index at α = 0.5 (Urry
& Padovani, 1995). For convenient analysis, radio sources are often also grouped into
“observational” classes that don’t have a physical analogue based on their apparent
structure, e.g. the GLEAM survey classifies radio sources into the number of apparent
components, which is highly dependent on the observational parameters (White et al.,
2020).

More unusual or more loosely defined classes, such as X-shaped radio galaxies
and giants, have often been identified by manual searches through large datasets, e.g.
Cheung (2007), Dabhade et al. (2020), and notably the recent ROGUE I catalogue of
32 616morphologically classified radio galaxies (Żywucka et al., 2020). These searches
are often aided by computer algorithms (e.g. Dabhade et al., 2020; Proctor, 2011).

Radio sources are also more generally classified, such as into AGN or non-AGN
emission (Kozieł-Wierzbowska et al., 2020), often using optical emission lines or opti-
cal/infrared magnitude.

2.4.2 Machine learning classification of AGN

Machine learning based approaches for radio source classification are rapidly evolv-
ing as the amount of radio data available through big surveys increases. Advances
in tooling, such as the wide availability of hardware-accelerated automatic differentia-
tion software, have also contributed to an explosion in machine learning applications
in astronomy by making machine learning techniques more available to astronomy
researchers.

Morphological classification of galaxies with machine learning began in optical as-
tronomy, probably due to the large sample sizes of well-resolved galaxies previously
available. The earliest such paper is likely the application of neural networks to the
task by Storrie-Lombardi et al. in 1992. From here, the field applied other classifica-
tion algorithms such as decision trees (e.g. Owens et al., 1996). The Sloan Digital Sky
Survey (SDSS) brought an explosion of new data in 2003, and new experiments in clas-
sification soon followed (e.g. Ball et al., 2006; Ball et al., 2004). The Galaxy Zoo project
leveraged hundreds of thousands of volunteers to produce an astonishingly large set
of labelled optical galaxies from SDSS and subsequent papers used this as a training
set for machine learning methods (Banerji et al., 2010; Dieleman et al., 2015; Zhu et al.,
2019).

While machine learning has been used in radio astronomy for some time (e.g. the
NVSS used neural networks to detect sidelobes; Condon et al., 1998) its first appli-
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cation to radio source classification was most likely to identifying quasar candidates
(Carballo et al., 2004) in Faint Images of the Radio Sky at Twenty Centimeters (FIRST;
Becker et al., 1995). Proctor (2006) applied decision tree ensembles to identify bent
doublemorphologies in FIRST,manually selecting features to characterise radio sources,
while Bastien et al. (2017) used shapelet analysis to obtain features to feed into their
decision tree ensembles. 2011–12 marked a revolution in computer vision with the
discovery that deep convolutional neural networks (known as early as 1989, see Le-
Cun et al., 1989), boosted dramatically by widely available training data generated by
the internet and a huge increase in computational power from GPUs, could achieve
greater-than-human performance on image classification tasks. Deep neural networks
have since found use for morphological classification of radio sources, such as FRI vs.
FRII (Aniyan & Thorat, 2017; Bowles et al., 2020; Lukic et al., 2019; Ma et al., 2019b;
Samudre et al., 2020; Tang et al., 2019; see also Ma et al., 2018), compact vs. extended
sources (Alhassan et al., 2018; Lukic et al., 2018; Lukic et al., 2019), and observational
classes (Galvin et al., 2019; Ralph et al., 2019).

There are also many works on classification of radio sources besides morphology.
Machine learning has been applied to AGN classification tasks including blazar classi-
fication (Arsioli & Dedin, 2020) and radio loudness (Beaklini et al., 2020). Deep learn-
ing is also prevalent on this topic, with deep learning finding applications in Faraday
complexity classification (Brown et al., 2018) and notably in transient detection (Agar-
wal et al., 2020; Balakrishnan et al., 2020; Connor & van Leeuwen, 2018; Guo et al.,
2019; Lin et al., 2020; Wang et al., 2019; Zhang et al., 2020).

It is worth contrasting thesemachine learning approaches with non-machine learn-
ing automated approaches, as the two are often conflated in the literature. Mingo et
al. (2019), for example, use an automated version of detecting the brightness gradi-
ent of extended radio sources to determine whether they are FRI or FRII en masse
and apply this approach to the LoTSS survey. Segal et al. (2019) apply an information
theoretic approach to estimating morphological complexity of a source. The key dif-
ference between a machine learning automated approach and a non-machine learning
automated approach is that the former has the capacity to change its behaviour based
on available data, while the latter does not—though note that this is not necessarily a
bad thing.

2.5 Cross-identification

Cross-identification is the problem of matching an observed astronomical object at one
wavelength with its counterpart in a survey at some other wavelength. Sometimes
the counterpart in question can be obvious, such as when the object being matched is
compact and well-aligned in both wavelengths. This is not the case for radio, though:
Radio galaxies can be very extended and, due to environmental interactions, this ex-
tended structure may be complicated and have no obvious relationship to the galaxy
at other wavelengths. The galaxy itself in radio cross-identification is called the host
galaxy as it hosts the central AGN.
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2.5.1 Why do we need to cross-identify?

Radio spectra do not generally containmuch information besides the spectral index: as
Jim Condon purportedly said, ”There’s nothing as useless as a radio source”. Most in-
formation about extragalactic sources is gleaned from other wavelengths, with optical
and infrared showing physically meaningful differences due to emission and absorp-
tion at these wavelengths. For this reason radio sources are typically cross-identified
with their counterparts at other wavelengths to get information. Key features of a host
galaxy that may be obtained from optical or infrared observations include its redshift,
mass, star formation rate, and composition. From these we may also determine prop-
erties of the radio plasma, most notably its physical extent and radio luminosity, both
of which require knowing the redshift.

2.5.2 Methods for cross-identification

Most small radio surveys are cross-identified by astronomers, visually comparing the
radio image to the optical or infrared image (e.g. Middelberg et al., 2008; Norris et
al., 2006). The largest such catalogue is the ROGUE I catalogue with over 32 000
cross-identifications (Żywucka et al., 2020). The Radio Galaxy Zoo project (Banfield
et al., 2015) extended manual cross-identification to larger scales by crowdsourcing,
asking volunteers online to cross-identify FIRST and ATLAS resulting in 75 000 cross-
identified extended sources. This is the largest manually cross-identified source cat-
alogue ever, by citizen scientists rather than professional astronomers—though this
distinction does not seem to matter as the accuracy of cross-identifications in Radio
Galaxy Zoo is still quite high, and there is an upper limit to howwell even astronomers
can cross-identify large surveys (Banfield et al., 2015; Wong et al., in prep.).

2.5.2.1 Positional matching

The simplest automatedmethod for cross-identification is simply to look for the closest
optical or infrared galaxy to some radio emission, a strategy called positionalmatching or
nearest neighbours4. The distance to the nearest potential host galaxy is usually limited
to some small value, so that distant spurious relations are excluded. This distance
is usually about 5′′ for infrared and 1′′ for optical but may be much further. Some
authors modify this approach by selecting the nearest bright galaxy or adding some
other constraints (e.g. Kimball & Ivezić, 2008). This approach generally works quite
well for compact objects but extended radio structures may overlap with unrelated
galaxies on the sky, leading to spurious cross-identifications.

The rate of spurious identification with this approach can be estimated by a sim-
ple model, assuming that the true host galaxy is not visible (either too faint or not
nearby). Assume that a small circular region of the sky with radius a contains K po-
tential host galaxies. The probability that a randomly selected potential host galaxy is
within r rad of a given point is r2/a2, with r < a. The probability of no potential host

4Not to be confused with the machine learning algorithm also called ‘nearest neighbours’, which does
not make an appearance in this thesis.
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galaxy fallingwithin r rad of a given point is therefore (1− r2/a2)K and the probability
of coincidental cross-identification is 1− (1− r2/a2)K. The AllWISE survey contains
747 634 026 infrared sources, over 4π sr, so it has an average source density of approxi-
mately 6× 107 sr−1. With r = 5′′, and a = 1◦ (corresponding to an area of 9.57× 10−4 sr
and thus 57 420 sources), we have a coincidental cross-identification rate of 10.5 per
cent when the host galaxy is not visible.

2.5.2.2 Other automated methods

With very fewnon-trivial cross-identificationmethods in existence, the field is still very
much in its infancy. Other automated methods for cross-identification can be grouped
into machine learning and non-machine learning approaches. The two non-machine
learning approaches are a Bayesian geometric model fitting approach (Fan et al., 2020;
Fan et al., 2015) and a likelihood ratio approach (Weston et al., 2018; Weston, 2020).
In Chapter 4 we introduce the very first machine learning approach for radio-infrared
cross-identification (Alger et al., 2018). Galvin et al. (2020) later developed a hybrid
machine learning and manual labelling approach to cross-identification.

2.6 Aggregating Radio Components

Unlike emission from galaxies observed at other wavelengths, the extended emission
from radio galaxies can be disconnected when observed: A single radio galaxy may
appear in observations as multiple discrete components. This is partly due to inhomo-
geneous emission over the radio galaxy structure—e.g. FRII hot-spots can be much
brighter than the rest of the galaxy, so they may be visible while the rest of the galaxy
is too faint to see—and partly due to the technique through which many radio obser-
vations are made, interferometry, which may screen out diffuse emission.

This potential of a radio galaxy to be split into multiple discrete blobs of emission
also leads to a linguistic ambiguity not present at otherwavelengths. A radio sourcemay
be either a single physical object that emits radio, or a single blob of disconnected radio
emission. The same is true for radio object. There is no agreed-upon terminology. We
will therefore adopt the following terminology from this point on, adapted from our
paper (Alger et al., 2018) based on the Radio Galaxy Zoo terminology: A radio source
or radio galaxy refers to all radio emission observed that comes from a single physical
object, and a radio component refers to a single, contiguous region of radio emission
above the noise level of an observation. Note that in the literature a radio componentmay
be either a Gaussian fit to an observation or it may be a region of connected emission;
in works where the former is the case (particularly in source-finding literature) the
latter is often called a radio island.

Since radio galaxies can appear disconnected, aggregating observed radio com-
ponents into physical sources is integral to understanding radio galaxies. Aggregat-
ing disparate components into a single source is important for two reasons. Firstly,
without all components, the total luminosity of a source is dramatically underesti-
mated. Secondly, we need all components to accurately examine the morphology of



§2.6 Aggregating Radio Components 29

(a) The 64m telescope (Murriyang) at
Parkes Observatory

(b) ATCA near Narrabri

Figure 2.7: (a) A single-dish telescope and (b) an array. Images: CSIRO.

the source.

2.6.1 Missing emission in radio observations

Radio observations are made with either single-dish telescopes, like the famous Parkes
Radio Telescope (Murriyang), or radio arrays, like the Australia Telescope Compact
Array (ATCA), both shown in Figure 2.7. Both have their advantages. Single-dish tele-
scopes are able to measure absolute brightnesses (while arrays can only measure rel-
ative brightnesses, and must therefore be calibrated to a source of known brightness).
Interferometric arrays can achieve incredibly high resolution, as the resolution is in-
versely proportional to the distance between the most distant array elements (while
the resolution of single dish telescopes is inversely proportional to the diameter of the
dish).

Radio telescopes can be thought of as sampling the u-v plane, the Fourier transform
of the sky. The u-v plane is perpendicular to the line-of-sight. Each pair of antennae in
an array samples two points on this plane, each corresponding to the vector between
the antennae projected onto the u-v plane, called a baseline. Longer baselines there-
fore correspond to higher (spatial) frequencies, which is why long baselines provide
high resolution. Diffuse emission is characterised mainly by low (spatial) frequency
components, while compact emission is characterised by a broad range of frequency
components. This means that large angular scale, diffuse emission both a) takes up
less space on the u-v plane than compact sources and b) occupies spaces much closer
to the origin on the u-v plane. Some intuition on this can be obtained by examining
the Fourier transform of a 2D Gaussian:

Fx,y

[
1

2πσ2 e−(x2+y2)/2σ2
]
= e−2σ2π2(u2+v2). (2.21)

From this equation we can see that the Fourier transform of a fairly compact Gaussian
(small σ) would be quite broad, taking up many frequencies in the u-v plane, while
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(a) FIRST (b) NVSS

Figure 2.8: A fairly diffuse FRII, J0016+0420, observed with the VLA in the (a) FIRST (Becker
et al., 1995) and (b) NVSS (Condon et al., 1998) surveys. (GRG1 from Dabhade et al., 2017)

a very diffuse Gaussian (large σ) would have a very narrow Fourier transform. The
upshot of this is that long baselines sacrifice sensitivity to diffuse emission for high
resolution. Single-dish radio telescopes are unable to make the same tradeoff, as they
are only able to sample a disc centred on the origin5. This loss of larger scale diffuse
emission is often called resolving out. An example of this is shown in Figure 2.8, where
(a) and (b) are the same radio galaxy observedwith the same telescope, theVery Large
Array, with the only difference being that the VLA was in the B configuration for (a)
and the D configuration for (b). The B configuration moves the antennae of the VLA
far apart, while the D configuration keeps them close together.

2.6.2 Methods of aggregation

Most large radio catalogues are of components rather than sources, most likely because
manual methods remain the best way to aggregate components into sources. Many
component catalogues have source catalogues of some interesting subset later derived
from them by manual inspection (e.g. Dabhade et al., 2017). Such manual searches
are often assisted by automated methods (e.g. Proctor, 2011). The Radio Galaxy Zoo
citizen science project has also, with the help of over 10 000 volunteers, aggregated
over 75 000 sources from FIRST (Wong et al. in prep.) and ATLAS (Banfield et al.,
2015), which is one of the largest (if not the largest) extant catalogues of manually
aggregated sources.

Automatedmethods have beendeveloping steadily as data volumes grow. ABayesian

5This is, incidentally, why single-dish telescopes can measure the absolute brightness while arrays
cannot: There is no way to measure the origin in the u-v plane as there is no way for two array anten-
nae to be infinitely close together (forming a zero-length baseline), and the origin contains the absolute
brightness information, much like how the centre of a Fourier transform contains the mean.
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approach, fitting models of sources to component locations, was introduced by Fan et
al. (2015) and later expanded upon (Fan et al., 2020). Machine learning methods have
also become increasingly popular. Proctor (2016) aggregated radio components using
a decision tree classifier and used the results to search for giant radio galaxies (see also
Proctor, 2006, 2011). Wu et al. (2019) applied a deep learning model to identify radio
sources from an image of radio components, training this model on the Radio Galaxy
Zoo FIRST dataset. Most recently Galvin et al. (2020) used a nested self-organising
map, a kind of neural network, to cluster similar sources and then aggregated them
into sources using manual labelling of the clusters and some heuristics.

Any method for cross-identification of components can also be used to aggregate
components. Cross-identify all components with their host galaxies, then components
that share a host are almost always part of the same radio source. It is this approach
that we will later take to aggregating sources in Chapter 5. There is no obvious in-
verse algorithm (to go from aggregate sources to cross-identifications) although some
algorithms attempt to solve both problems simultaneously (Fan et al., 2020; Fan et al.,
2015).

2.7 Summary: radio sources

The radio sky is vibrant and exciting, and current and newwide-area radio surveys are
opening up new avenues of exploring this space. In this chapter we introduced radio
sources that youmight see in the radio sky, including the often-extendedAGN.We dis-
cussed their radio emission and emission mechanisms, and described some aspects of
their morphology and structure. We also looked at ways that radio sources can be clas-
sified, aggregated, and cross-identified with their counterparts at other wavelengths.
In the next chapter, we will introduce machine learning concepts that we will use to
develop methods for exploiting the vast amount of data that radio telescopes provide
on radio sources.
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Chapter 3

Machine Learning for
Astroinformatics

Machine learningwas once described tome by an anonymous supervisor as “the statis-
tics kept at the back of the textbook”. But even accepting its grounding in statistics, is
this really an accurate description of the field? I think of machine learning as a com-
bination of three pieces: a data-driven way of formalising predictive problems, a way
of converting between different kinds of statistical problems, and a set of methods
and practices for handling data and uncertainty. The eventual goal is to design some
method or algorithm that automatically discovers useful patterns in (potentially very
large) datasets. There are three core components of machine learning: the data, the
model, and learning (Deisenroth et al., 2020). Before discussing these, we will look at
the kinds of problems that machine learning solves.

3.1 Prediction

Machine learning aims to solve prediction tasks: problems where we have some data
and we seek some kind of output based on that data. Central to prediction tasks are
predictors, the objects we train based on data.

3.1.1 Predictors

A predictor is an object that makes predictions based on an input. A predictor can be a
function or a probabilistic model, depending on the machine learning approach being
undertaken.

As a function, a predictor maps from some input domain X into some output do-
main Y , and is usually written as

f : X → Y . (3.1)

X and Y are commonly (but certainly not always) a real vector space Rn. Because the
goal of machine learning involves finding a suitable function f for the task at hand, the
set of functions is usually constrained. For example, if X = Rn, we might require that
f is a linear function Rn → R, easily parametrised by n+ 1 constants. This constraint is

33
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called amodel. Models are often (but not always) parametrised and training themodel
refers to finding a good set of parameters. The parameters are sometimes calledweights.
To avoid ambiguity, parameters of the model that are not changed during training are
called hyperparameters and may include regularisation terms, constraints, or variations
of the model.

Somepredictors can be described as a probabilisticmodel. In this case a predictor is
a joint probability distribution between observations and hidden parameters (Deisen-
roth et al., 2020). Using a probabilistic predictor allows us to formally describe and
work with uncertainty both in the input space and output space. Such a predictor is
usually parametrised by a finite set of parameters, which already includes most com-
mon probability distributions.

We generally assume that our data are generated from some unobserved, true func-
tion called the groundtruth. Thismight be a physical process, or a complicated sampling
function from some unknown vector space. The assumptions we make on this gener-
ative function can greatly change the way we approach machine learning problems.

In some sense, the goal of machine learning is to identify a good predictor from
within the space of all possible predictors. Of course, this begs the question: What is a
‘good’ predictor? We will return to this when we discuss learning, but for now, a good
predictor is one that approximates the groundtruth well.

3.1.2 Classification

Classification is the machine learning task of predicting discrete, unstructured values
(Deisenroth et al., 2020). These values are called classes. Classification is arguably the
most important prediction task, as many other problems can be formalised as classi-
fication. Astronomy has its fair share of classification tasks, from classical astronomy
tasks like galaxy morphology classification (appearing in machine learning literature
as e.g. Dieleman et al., 2015) to transient detection (e.g. Scalzo et al., 2017); see Sec-
tion 2.4 for more examples.

A classification problem seeks a predictor where Y represents a finite, discrete set
of classes. Classification tasks are usually delineated by the number of classes: There
are either two classes or more than two classes. The former are called binary classifica-
tion tasks and the latter aremulticlass classification tasks. The reason for this split is that
binary classes are dramatically easier to reason about and analyse, and many special
cases exist for binary where they do not for multiclass.
Y for a binary task is usually represented as Y = {0, 1}. 1 is called the positive class;

0 is called the negative class.
An easyway to seewhymany tasks can be formalised as classification can be found

by taking any prediction problem X → Y and reinterpreting it as the binary classifica-
tion problem X ×Y → {0, 1}, i.e. instead of taking an input and predicting an output,
take an input and a potential output and determine if they should be related. Of course
this is not always the most efficient way to solve a prediction problem but the many
known properties of classification make it an appealing framework to cast problems
into. In Chapter 4, we will cast the radio astronomy problem of cross-matching galax-
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ies seen in different wavelengths into a binary classification problem, and in Chapter 6
we will classify radio observations as Faraday complex or Faraday simple.

There are three different formalisms for the output of a binary classifier. The out-
put may be a score, a class probability estimate, or a predicted class. A predicted class is
what first comes to mind as a representation of binary classes: The classifier outputs
either 0 or 1, with no way of representing ambiguity. A class probability estimate is a
number from 0 to 1 which represents the probability that an example is in the positive
class, i.e. if f is a classifier then f (x) = p(y = 1 | x). Class probability estimates may
be output by probabilistic classifiers, ormay be estimated fromnon-probabilistic classi-
fiers. Finally, a score is a value that tends to be larger for elements of the positive class,
with less ambiguous examples being given a higher score. Scores are often converted
into class probability estimates by applying a sigmoid (see Section 3.4.1). There are
multiple ways to generalise these concepts to multiclass classification. Having a score
or a class probability estimate can be more useful than only having a predicted class.
For example, you could sort your examples by how likely they are to be a member
of the positive class. This underpins our approach to casting cross-identification as
binary classification in Chapter 4.

3.1.3 Regression

The other main kind of supervised prediction task is regression, which is the machine
learning task of predicting ordered (and usually continuous) values. In a regression
problem, we seek a predictor where Y is a set of ordered values, usually a subset of Rk

for some positive natural k. Regression is ubiquitous in astronomy, from simple linear
relationships like the famous Tully-Fisher relation (Tully & Fisher, 1977) to estimation
of redshifts fromphotometric observations (called photometric redshifts; first introduced
by Baum, 1962). This thesis does not directly address any regression problems, but
does make use of their results.

3.2 Data and representation

Machine learning is centred on data and the extraction of useful information from that
data. Data can include anything from numeric information, documents, or images,
to spectra or galaxies. A collection of data is called a dataset and an element of this
dataset is (interchangably) called an example or instance. Generally, data are not easy to
workwith in their original form andmust be converted into a numerical representation
before use. We usually convert our data into real vectors in Rn as it is relatively easy
to work with both numerically and analytically. Each axis of this vector space is called
a feature and the space as a whole is called the feature space. Features are non-trivial
to choose, and finding good features often requires the expertise of a human who is
well-versed in the original dataset (a domain expert). The process of finding features is
called feature selection, feature design, or feature engineering.

Whatmakes a feature good? Intuitively, wewant to transform our data into a space
where it is easy toworkwith: a spacewhere properties we care about are obvious, easy
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to extract, behave nicely, and work well with our model. For this reason, features will
vary tremendously depending on the problem being faced, and the same data may
be represented in many different ways. Much of early machine learning literature fo-
cused on finding good methods to automatically develop features (generally called
feature extraction), and much early applied machine learning focused on identifying
these features manually so that good predictors could be easily found. An astronomi-
cal example is Proctor (2006), who developed features for representing radio galaxies
for the purpose of sorting them. State-of-the-art models like deep neural networks
(e.g. Dieleman et al., 2015) can be viewed as developing their own task-specific fea-
tures as part of their training (see Section 3.4.3). These deep learning features can be
useful (e.g. when it is hard or slow to define good features manually), but are usually
hard to interpret. A good feature space has a structure that reflects the components of
the intrinsic structure of the input data which are useful for the prediction task at hand.
Good features may also be useful in other related tasks, such as dataset exploration,
dataset visualisation, or other prediction tasks. Chapter 6 largely focuses on finding
good features for identifying Faraday complexity in polarised sources.

Labels comprise another very important piece of themachine learningpuzzle. Train-
ing a predictor with supervised learning requires some known pairs of inputs and
outputs, and the known outputs are called labels. Like features, labels also need to be
encoded in some way, and this depends on the specific task. Much like features, we
want to embed the labels into a space which is easy to work with and has a meaningful
structure. For problems where we know the outputs we wish to obtain, this can be
a lot simpler than feature selection. For example, a binary classification problem has
only two possible outputs. Common representations for these are {0, 1} as described
in Section 3.1.2, but we could also represent the labels as {[1, 0]T, [0, 1]T}, called a one-
hot encoding. The advantage of the former is its simplicity and ease of integration into
binary classification equations, but the advantage of the latter is that it is easily ex-
tended into multiclass classification without imposing order on the classes. Despite
being simpler to encode, labels can carry a lot more difficulty than features due to
their comparative rarity: In essence, features are cheap and labels are expensive. We
will discuss labels in more detail in Section 3.5.

3.3 Loss functions

Training a model is the process of using data to find a good predictor that fits the
model’s constraints. This is generally achieved by minimising a loss (also called error
or cost) function over the model.

Put simply, a loss function is a function of a predictor and a dataset which is chosen
to be a proxy for how good the predictor is at predicting that dataset. We try to choose
loss functions that are high-valued for a predictor that poorly describes the dataset,
and are low-valued for a predictor that well-describes the dataset. Sometimes (and
in both cases listed in this section) the loss is minimised at zero, when the predictor
perfectly captures the dataset (though whether this is possible, or whether this is even
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a desired result, is another question).
What should the loss function be for a given problem? The answer is not always

obvious. Take for example a binary classification problem. The “obvious” loss would
be the complement of the accuracy: the rate at which the predictor incorrectly guesses
the label. This is easy to compute and we would like our predictor to have a high
accuracy. But this is not a good choice: It is tremendously hard to work with as it takes
on discrete values, because the accuracy is the number of correct predictions divided
by the total number of examples. It is hard to motivate with probabilistic arguments.
Finally, it is unclear how the accuracy should work in the case of a probabilistic model.

Instead, the loss function is usually derived by making assumptions on the struc-
ture of the data and task. Themain assumptionwe usuallymake is that data are drawn
independently and identically distributed (IID), that is, each example is drawn from the
same distribution and is not dependent on any other examples. We also assume a
structure of the noise in the observed labels: Training data are almost never completely
accurate, so there is usually intrinsic noise in the distribution of labels about their un-
observed “true” value. To demonstrate these assumptions, we will now derive loss
functions for regression and binary classification. The loss functionwe derive depends
on the model we assume for the noise; for example, assuming Gaussian noise gives us
the common least-squares loss.

3.3.1 Loss function for regression

To derive a loss function for regression, let us assume that our labels are a random
variable y modelled by a predictor y = f (x). Further, let us assume that a predicted y
is normally distributed about its true value, i.e.

y ∼ N (µ, σ2) (3.2)

for the true mean µ and standard deviation σ where N is the normal distribution:

N (a | µ, σ2) =
1√

2πσ2
e−

(a−µ)2

2σ2 . (3.3)

Under this assumption the probability that y is equal to a target t given an example x
is

p(y = t | x) = N (t | f (x), σ2). (3.4)

What would the probability be of observing a set of targets T = {t1, . . . , tn} given
corresponding examples X = {x1, . . . , xn}? Letting Y = {y1, . . . , yn} be random vari-
ables like y, the joint probability distribution p(Y = T | X) is

p(Y = T | X) =
n

∏
i=1

p(yi = ti | xi) (3.5)

by using our independence assumption. We can then substitute the normal distribu-
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tion:
p(Y = T | X) =

n

∏
i=1
N (ti | f (xi), σ2). (3.6)

p(Y | X) is called the likelihood. We would like to maximise this likelihood over f ,
which is called amaximum likelihood approach to finding a predictor. It is, however, not
very easy to work with in this current form. Maximising the likelihood is equivalent
to minimising its negative logarithm, so we write:

L( f ; T, X) = −
n

∑
i=1

logN (ti | f (xi), σ2) (3.7)

where L is the negative log-likelihood, a loss function. We can simplify this dramatically
by cancelling the logarithm and the exponential within the normal distribution:

L( f ; T, X) =
n

∑
i=1

(ti − f (xi))
2

2σ2 (3.8)

and by noting that arbitrary scaling of L does not change the minimising f we can
scale L by σ2 and arrive at the sum-of-squares error, also known as the least-squares error,
the most common loss function for regression:

L( f ; T, X) =
1
2

n

∑
i=1

(ti − f (xi))
2. (3.9)

The factor of half helps keep the derivative tidy:

dL
dθ

( f ; T, X) =
n

∑
i=1

(ti − f (xi))
d f
dθ

(xi). (3.10)

3.3.2 Loss function for binary classification

Now we will calculate a loss function for binary classification. As for regression, we
first assume a form for the noise. Assume that our labels are a random variable y ∈
{0, 1} and that the prediction y is drawn from a Bernoulli distribution based on a pre-
dictor f (x):

p(y = t | x) = B(t; f (x)). (3.11)

The Bernoulli distribution is parametrised by one parameter, usually called p ∈
(0, 1), and in this case set to f (x). It is:

B(a; p) = pa(1− p)1−a. (3.12)

It can be thought of as a biased coin toss with a probability p of tossing heads. To
gain some intuition into how this expression works, imagine setting a to 0 and then
to 1. Continuing to derive the loss function, we once again determine the likelihood
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making the IID assumption:

p(Y = T | X) =
n

∏
i=1

p(yi = ti | xi) =
n

∏
i=1

f (xi)
ti(1− f (xi))

1−ti . (3.13)

Then we find the negative log-likelihood and hence what is known as the binary cross-
entropy loss for binary classification:

L( f ; T, X) = −
n

∑
i=1

log
(

f (xi)
ti(1− f (xi))

1−ti
)

(3.14)

= −
n

∑
i=1

ti log f (xi) + (1− ti) log(1− f (xi)). (3.15)

This is the standard loss used for logistic regression (Section 3.4.1).

3.3.3 Gradient descent

Given a loss function and a parametrised model, how can we find parameters for the
model that minimise the loss function? There are many optimisation strategies but if
both the loss function andmodel are differentiable with respect to the parameters then
we can employ a particularly efficient approach: gradient descent. Assume we have a
model f (x; w⃗) parametrised by some vector w⃗ and a loss function L(w⃗; T, X). Then the
value of w⃗ after the k + 1th update of gradient descent is

w⃗(k+1) = w⃗(k) − λ∇w⃗L(w⃗(t); T, X) (3.16)

where λ > 0 is a small scalar called the learning rate. With an appropriately small choice
of λ w⃗ will converge to a local minimum of L. Many variations on this concept exist
which attempt to avoid local minima, such as introducing a ‘momentum’ term that
accumulates as multiple iterations move w⃗ in the same direction. If the loss function
is convex, then any minimum is the global minimum (there are no local minima).

3.4 Models

This section describes some common models for classification. There are a plethora of
different classification models and variations on these models, but I will present here
only those relevant to this thesis: logistic regression, decision tree ensembles, and neu-
ral networks. These are, not coincidentally, also themost commonmodels in astroinfor-
matics. Logistic regression provides reliable and interpretable results. Decision tree
ensembles are a fantastic off-the-shelf choice which work on a large variety of datasets.
Neural networks have proven extremely effective for a wide variety of tasks, especially
in computer vision.
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3.4.1 Logistic regression

Logistic regression is a linear, binary, probabilistic classifier. Linear classifiers can only
separate classes using a hyperplane in the feature space, with objects on one side of the
plane being assigned to one class and objects on the other side being assigned to the
other. A binary classifier works on binary classification tasks. Probabilistic classifiers,
as discussed in Section 3.1.2, have outputs interpretable as class probabilities.

Logistic regression in a d-dimensional feature space is parametrised by a weights
vector w ∈ Rd. Given a set of features x ∈ Rd, logistic regression is:

f (x; w) = σ(wTx) (3.17)

where σ is the logistic function or sigmoid, which is a monotonic and bijective function:

σ(a) =
1

1 + e−a . (3.18)

The output of logistic regression applied to an example x is the probability that x is
in the positive class. σ, and thus logistic regression, has a domain of (−∞, ∞) and a
range of (0, 1). This enforces the output to be like a probability. wTx = 0 defines a
d-dimensional hyperplane, called the separating hyperplane or decision surface. Logistic
regression is differentiable, which allows us to optimise its parameters w using gra-
dient descent. Interpreting the classifier is possible through examining the weights
vector, with a larger absolute value of a weight corresponding to a ‘more important’
feature. The weights from logistic regression can be used to produce scores or class
probability estimates (Section 3.1.2): wTx is a score, σ(xTx) is a class probability esti-
mate, and thresholding either the score or the class probability estimate at 0 gives a
discrete class.

A limitation of logistic regression is its sensitivity to scale. Features need to be of
approximately the same order of magnitude and should have a standard deviation of
approximately 1. An implicit assumption is that each feature has a mean of 0 across
the dataset. This can be enforced by normalising and scaling: subtract the mean of the
dataset and divide by the new standard deviation.

We apply logistic regression to binary classification problems in Chapter 4 and
Chapter 6.

3.4.2 Decision tree ensembles

A decision tree is a non-linear classifier. It repeatedly splits a dataset based on binary
comparisons until every subset contains only one class (or mostly one class, with the
amount of purity left as a hyperparameter). Each split only uses one feature for the
comparison, making decision trees relatively easy to visualise and interpret. However,
because of this, each split is axis-parallel, which can be a limitation for some datasets.
They are not sensitive to scale and do not require a zero mean, making them easy to
apply without preprocessing a dataset.

Key limitations of a decision tree are:
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• They can only output a prediction, not a confidence of this prediction or a score
of how likely an instance is to be found within each class.

• Small changes to the dataset or training method can result in large changes to
the tree.

• They tend toward overfitting the training set.

• Withmany low-information features, decision trees have quite poor performance
(Breiman, 2001).

A decision tree ensemble aims to reduce some of these limitations by trainingmultiple,
slightly different, independently trained decision trees. Depending on the implemen-
tation each constituent decision tree may only have access to some of the features or
some of the data. To predict, each tree produces a prediction and ‘votes’ for this pre-
diction; the votes are combined to produce the overall prediction (e.g. with majority
voting). A simple example of such an ensemble is decision tree bagging (Breiman,
1996), which trains each tree with a random subset of the training data and takes a
plurality vote. Decision tree ensembles decrease variance, increase the usability of
low-information features, and increase stability of the trained model (Breiman, 2001).
Averaging over the classifications produced by each tree gives a number that can be
interpreted as a class probability estimate.

The most well-known description of decision tree ensembles is the random forest
(Breiman, 2001), which has found common use in astronomy partly to its readily avail-
able Python implementation in scikit-learn (Pedregosa et al., 2011). Splits are de-
cided from a subset of features and training samples are randomly drawnwith replace-
ment from the total training set. One downside of random forests is the large number
of hyperparameters that need to be set, and these vary a lot depending on the problem
being addressed.

We apply decision tree ensembles to binary classification problems in Chapter 4
and Chapter 6.

3.4.3 Convolutional neural networks

A neural network is a directed graph of transformations, each node representing a trans-
formation that linearly combines its inputs and applies a non-linear function called the
activation function to the result. The inputs to the graph are the features. A particularly
prominent kind of neural network is the fully-connected neural network, where nodes
are arranged into layers, with each node in a layer taking as input every output from
the previous layer. Each layer can then be represented by a matrix multiplication of
the outputs of the previous layer by a weight matrix, composed with the activation
function. Fully-connected K-layer neural networks have the form:

f (x; WK, . . . , W1) = hK(x; WK, . . . , W1) (3.19)
hi(x; Wi, . . . , W1) = a(Wihi−1(x; Wi−1, . . . , W1)) (3.20)

h1(x; W1) = a(W1x) (3.21)
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where a is the activation function. hi are called hidden layers. In fact, neural networks
are usually described by their layer structure rather than graph structure, with the
addition of ‘concatenation layers’ to combine outputs from previous layers. Neural
networksmay be used for regression or for classification; these are structured the same
but for classification the last activation function is replaced by sigmoid (for binary
classification) or its multiclass counterpart softmax.

Convolutional neural networks (CNN; LeCun et al., 1998) are variants of neural net-
works that are particularly well-suited to inputs that have local structure, such as im-
ages or spectra. Layers in the network may be dense layers of the same form as Equa-
tion 3.20, or convolutional layers, where the weights are convolved with the input rather
than multiplied. These convolutional weights are called filters and they are small com-
pared to the dimensionality of the input. CNNs are translation-invariant (Waibel et al.,
1989) and derive features from local relationships thanks to the trainable filters.

We apply CNNs to binary classification problems in Chapter 4 and Chapter 5, and
compare our results to a state-of-the-art CNN in Chapter 6.

3.5 Labels

As described in Section 3.2, labels are the known outputs of supervised prediction
tasks. They are used for two main, distinct purposes: training and validation. Labels
for training are used to evaluate loss and determine how to update the model. Labels
for validation are used to evaluate and characterise the model’s behaviour.

3.5.1 Where do labels come from?

We previously said that labels were ‘expensive’. This is to be interpreted as expensive
in either or both time and money: Labelling can be a slow, manual, and costly pro-
cess. It is usually completed by hand, manually examining instances and determining
which class they belong to (for classification) orwhat target they ought to be associated
with (for regression). In astronomy this usually amounts to expert astronomers exam-
ining imagery at multiple wavelengths and making an educated guess as to what the
true label is, but labelling may also involve follow-up observations (perhaps at higher
resolution, greater sensitivity, or at a different wavelength).

An increasingly popular option for labelling large amounts of data is citizen science:
asking volunteers who are interested in contributing to science to label our data. Citi-
zen science projects can be a fantastic opportunity for both science and outreach. For
example, the ABC’s ‘Stargazing Live’ television programme engaged viewers andwith
their help found four exoplanets in just 48 hours (Miller, 2017) and labelled 120 000
SkyMapper images1 in just three days (Tucker, 2017). The downside of citizen science
is that non-expert labellers may be less accurate than experts, and indeed some may
even be malicious and provide intentionally incorrect labels (Zhang et al., 2016).

1Citizen scientists actually produced around 5 million labels—these were aggregated to 120 000 to
reduce noise.
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Astronomers often face a large collection of unlabelled data andmust choosewhich
to label. Choosing what to label is a broad topic of research separately in machine
learning (often called active learning e.g. Gilyazev & Turdakov, 2018), in astronomy
(‘follow-up observations’), and in citizen science project design (e.g. citizen science
project Snapshot Serengeti found that showing volunteers uninteresting images helped
retain engagement; Sieland, 2015).

3.5.2 Label noise

Label noise is the presence of incorrect labels in the training or validation data set. In
classical machine learning there is no such thing: Labels are assumed to come from
some always-correct ‘oracle’. In reality, though, labels can be wrong. There is intrinsic
noise in data, and even expert astronomers may disagree on labels due to ambiguities
(e.g. around 10 per cent of Radio Galaxy Zoo is extremely divisive amongst expert
labellers; Banfield et al., 2015). All is not lost for machine learning: Many optimisation
targets are robust to label noise (Menon et al., 2015). One way to think about this is
that the loss function for machine learning ‘smooths over’ or ‘averages out’ the noise.

It is important to note that label noise affects training and validation differently.
While it is perfectly possible to train a good model with noisy labels, performance
measures are not as robust to label noise. Noise in the validation set can change the re-
ported performance in unpredictable ways and wherever possible should be avoided.

3.6 Summary: machine learning

Machine learning is a field of study concerned with ways of automatically finding use-
ful patterns in large datasets, formalising predictive problems, converting between dif-
ferent statistical problems, and handling data and uncertainty. With the large volumes
of data radio astronomy faces in the lead-up to the SKA, machine learning provides
an avenue for enabling scientific discovery at scale. In this chapter we introduced key
concepts of machine learning, including predictors, features, labels, and loss functions.
We also highlighted classification tasks as a key kind of prediction problem thatwewill
use to frame astronomical questions throughout this thesis and introduced three clas-
sification models: logistic regression, decision tree ensembles, and CNNs. In the next
chapter, we will frame the astronomical problem of cross-identification as binary clas-
sification, allowing us to train a cross-identification algorithm using an existing cata-
logue of cross-identifications and hopefully allowing us to cross-identify radio sources
en masse.
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Chapter 4

Radio Cross-identification

This chapter is based on my paper Radio Galaxy Zoo: Machine learning for radio source
host galaxy cross-identification, by M. J. Alger, J. K. Banfield, C. S. Ong, L. Rudnick, O. I.
Wong, C. Wolf, H. Andernach, R. P. Norris, and S. S. Shabala; published in theMonthly
Notices of the Royal Astronomical Society in 2018. Some minor changes have been made
to match the rest of this thesis.

In this chapter, we consider the problem of determining the host galaxies of radio
sources by cross-identification. This has traditionally been done manually, which will
be intractable for upcoming andongoingwide-area radio surveys like the Evolutionary
Map of the Universe (EMU). Automated cross-identification will be critical for these
future surveys, and machine learning may provide the tools to develop such methods.

We applied a standard approach from computer vision to cross-identification, in-
troducing one possible way of automating this problem, and explored the pros and
cons of this approach. We applied our method to the 1.4 GHz Australian Telescope
Large Area Survey (ATLAS) observations of the Chandra Deep Field South (CDFS)
and the ESO Large Area ISO Survey South 1 (ELAIS-S1) fields by cross-identifying
them with the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. We trained
our method with two sets of data: expert cross-identifications of CDFS from the ini-
tial ATLAS data release and crowdsourced cross-identifications of CDFS from Radio
Galaxy Zoo. We found that a simple strategy of cross-identifying a radio component
with the nearest galaxy performs comparably to our more complex methods, though
our estimated best-case performance is near 100 per cent. ATLAS contains 87 complex
radio sources that have been cross-identified by experts, so there are not enough com-
plex examples to learn how to cross-identify them accurately. Much larger datasets are
therefore required for training methods like ours. We also showed that training our
method on Radio Galaxy Zoo cross-identifications gives comparable results to train-
ing on expert cross-identifications, demonstrating the value of crowdsourced training
data.

45
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(a) Two compact
components, each a
compact source.

(b) One resolved
component and resolved
source.

(c) Three resolved
components comprising
one resolved source.

Figure 4.1: Examples showing key definitions of radio emission regions used throughout this
chapter. Compact and resolved components are defined by Equation 4.1.

4.1 Introduction to cross-identification

Next generation radio telescopes such as theAustralian SKAPathfinder (ASKAP; John-
ston et al., 2007) and Apertif (Verheijen et al., 2008) will conduct increasingly wide,
deep, and high-resolution radio surveys, producing large amounts of data. The Evo-
lutionary Map of the Universe (EMU; Norris et al., 2011) survey using ASKAP is ex-
pected to detect over 70million radio sources, compared to the 2.5million radio sources
currently known (Banfield et al., 2015). An important part of processing these data
is cross-identifying observed radio emission regions with observations of their host
galaxies in surveys at other wavelengths.

In the presence of extended radio emission, cross-identification of the host can be
a difficult task. Radio emission may extend far from the host galaxy and emission
regions from a single physical object may appear disconnected. As a result, the ob-
served structure of a radio source may have a complex relationship with the corre-
sponding host galaxy, and cross-identification in radio is much more difficult than
cross-identification at shorter wavelengths. Small surveys containing a few thousand
sources such as the Australia Telescope Large Area Survey (ATLAS; Middelberg et al.,
2008; Norris et al., 2006) can be cross-identified manually, but this is impractical for
larger surveys.

One approach to cross-identification of large numbers of sources is crowdsourc-
ing, where volunteers cross-identify radio sources with their host galaxies. This is the
premise of Radio Galaxy Zoo1 (Banfield et al., 2015), a citizen science project hosted
on the Zooniverse platform (Lintott et al., 2008). Volunteers are shown radio and in-
frared images and are asked to cross-identify radio sources with the corresponding
infrared host galaxies. An explanation of the project can be found in Banfield et al.
(2015). The first data release for Radio Galaxy Zoo will provide a large dataset of over
75 000 radio-host cross-identifications and radio source morphologies (Wong et al., in

1https://radio.galaxyzoo.org

https://radio.galaxyzoo.org
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prep.). While this is a much larger number of visual cross-identifications than have
been made by experts (e.g., Gendre & Wall, 2008; Grant et al., 2010; Middelberg et al.,
2008; Norris et al., 2006; Taylor et al., 2007) it is still far short of the millions of radio
sources expected to be detected in upcoming radio surveys (Norris, 2017b).

Automated algorithmshave beendeveloped for cross-identification. Fan et al. (2015)
applied Bayesian hypothesis testing to this problem, fitting a three-component model
to extended radio sources. This was achieved under the assumption that extended
radio sources are composed of a core radio component and two lobe components.
The core radio component is coincident with the host galaxy, so cross-identification
amounts to finding the galaxy coincident with the core radio component in the most
likely model fit. This method could easily be extended to use other, more complex
models, but it is purely geometric. It does not incorporate other information such
as the physical properties of the potential host galaxy. Additionally, there may be
new classes of radio source detected in future surveys like EMU which do not fit the
model. Weston et al. (2018) developed amodification of the likelihood ratiomethod of
cross-identification (Richter, 1975) for application to ATLAS and EMU. This method
does well on non-extended radio sources with approximately 70 per cent accuracy in
the ATLAS fields, but does not currently handle more complex (extended or multi-
component) radio sources (Norris, 2017a).

One possibility is that machine learning techniques can be developed to automati-
cally cross-identify catalogues drawn from new surveys. Machine learning describes a
class of methods that learn approximations to functions. If cross-identification can be
cast as a function approximation problem, then machine learning will allow datasets
such as Radio Galaxy Zoo to be generalised towork on newdata. Datasets from citizen
scientists have already been used to train machine learning methods. Some astronom-
ical examples can be found in Marshall et al. (2015).

In this chapter we cast cross-identification as a function approximation problem
by applying an approach from computer vision literature. This approach casts cross-
identification as the standardmachine learning problem of binary classification by ask-
ing whether a given infrared source is the host galaxy or not. We train our methods
on expert cross-identifications and volunteer cross-identifications from Radio Galaxy
Zoo. In Section 4.2 we describe the data we use to train our methods. In Section 4.3
we discuss how we cast the radio host galaxy cross-identification problem as a ma-
chine learning problem. In Section 4.4 we present results of applying our method
to ATLAS observations of the Chandra Deep Field South (CDFS) and the ESO Large
Area ISO Survey South 1 (ELAIS-S1) field. Our data, code and results are available at
https://radiogalaxyzoo.github.io/atlas-xid.

Throughout this chapter, a ‘radio source’ refers to all radio emission observed asso-
ciated with a single host galaxy, and a ‘radio component’ refers to a single, contiguous
region of radio emission. Multiple components may arise from a single source. A
‘compact’ source is composed of a single unresolved component. Equation 4.1 shows
the definition of a resolved component. We assume that all unresolved components
are compact sources, i.e. we assume that each unresolved component has its own host

https://radiogalaxyzoo.github.io/atlas-xid
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Table 4.1: Catalogues of ATLAS/SWIRE cross-identifications for the CDFS and ELAIS-S1
fields. The method used to generate each catalogue is shown, along with the number of ra-
dio components cross-identified in each field.

Catalogue Method CDFS ELAIS-S1
Norris et al. (2006) Manual 784 0
Middelberg et al. (2008) Manual 0 1366
Fan et al. (2015) Bayesian models 784 0
Weston et al. (2018) Likelihood ratio 3078 2113
Wong et al. (in prep.) Crowdsourcing 2460 0

galaxy2. An ‘extended’ source is a non-compact source, i.e. resolved single-component
sources or a multi-component source. Figure 4.1 illustrates these definitions.

4.2 Data

We use radio data from the Australia Telescope Large Area Survey (ATLAS; Franzen
et al., 2015; Norris et al., 2006), infrared data from the Spitzer Wide-area Infrared
Extragalactic survey (SWIRE; Lonsdale et al., 2003; Surace et al., 2005), and cross-
identifications of these surveys from the citizen science project Radio Galaxy Zoo (Ban-
field et al., 2015). Radio Galaxy Zoo also includes cross-identifications of sources in
Faint Images of the Radio Sky at Twenty Centimeters (FIRST; White et al., 1997) and
the AllWISE survey (Cutri et al., 2013), though we focus only on Radio Galaxy Zoo
data from ATLAS and SWIRE.

4.2.1 ATLAS

ATLAS is a pilot survey for the EMU (Norris et al., 2011) survey, which will cover
the entire sky south of +30 deg and is expected to detect approximately 70 million
new radio sources. 95 per cent of these sources will be single-component sources, but
the remaining 5 per cent pose a considerable challenge to current automated cross-
identification methods (Norris et al., 2011). EMUwill be conducted at the same depth
and resolution as ATLAS, so methods developed for processing ATLAS data are ex-
pected to work for EMU. ATLAS is a wide-area radio survey of the CDFS and ELAIS-
S1 fields at 1.4 GHz with a sensitivity of 14 and 17 µJy beam−1 on CDFS and ELAIS-S1
respectively. CDFS covers 3.6 deg2 and contains 3034 radio components above a signal-
to-noise ratio of 5. ELAIS-S1 covers 2.7 deg2 and contains 2084 radio components above
a signal-to-noise ratio of 5 (Franzen et al., 2015). The images of CDFS and ELAIS-S1
have angular resolutions of 16 by 7 and 12 by 8 arcsec respectively, with pixel sizes
of 1.5 arcsec px−1. Table 4.1 summarises catalogues that contain cross-identifications
of radio components in ATLAS with host galaxies in SWIRE. In the present work, we

2This will be incorrect if the unresolved components are actually compact lobes or hot-spots, but de-
termining which components correspond to unique radio sources is outside the scope of this thesis.
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train methods on CDFS3 and test these methods on both CDFS and ELAIS-S1. This
helps confirm that our methods are transferable to different areas of the sky observed
by the same telescope, as will be the case for EMU.

4.2.2 SWIRE

SWIRE is a wide-area infrared survey at the four IRAC wavelengths 3.6, 4.5, 5.8, and
8.0 µm (Lonsdale et al., 2003; Surace et al., 2005). It covers eight fields, including CDFS
and ELAIS-S1. SWIRE is the source of infrared observations for cross-identification
with ATLAS. SWIRE has catalogued 221,535 infrared objects in CDFS and 186,059 in-
frared objects in ELAIS-S1 above a signal-to-noise ratio of 5.

4.2.3 Radio Galaxy Zoo

Radio Galaxy Zoo asks volunteers to cross-identify radio components with their in-
frared host galaxies. There are a total of 2460 radio components in Radio Galaxy Zoo
sourced fromATLAS observations of CDFS. These components are cross-identified by
Radio Galaxy Zoo participants with host galaxies detected in SWIRE. A more detailed
description can be found in Banfield et al. (2015) and a full description of how the Ra-
dio Galaxy Zoo catalogue used in this work4 is generated can be found in Wong et al.
(in prep.).

The ATLAS CDFS radio components that appear in Radio Galaxy Zoo are drawn
from a prerelease version of the third data release of ATLAS by Franzen et al. (2015).
In this release, each radio component was fit with a two-dimensional Gaussian. De-
pending on the residual of the fit, more than one Gaussian may be fit to one region of
radio emission. Each of these Gaussian fits is listed as a radio component in the ATLAS
component catalogue. The brightest radio component from the multiple-Gaussian fit
is called the ‘primary component’. If there is only one Gaussian fit then this Gaussian
is the primary component. Each primary component found in the ATLAS component
catalogue appears in Radio Galaxy Zoo. Non-primary componentsmay appearwithin
the image of a primary component, but do not have their own entry in Radio Galaxy
Zoo. We will henceforth only discuss the primary components.

4.3 Method

The aim of this chapter is to express cross-identification in a form that will allow us
to apply standard machine learning tools and methods. We use an approach from
computer vision to cast cross-identification as binary classification.

3Radio Galaxy Zoo only contains CDFS sources and so we cannot train methods on ELAIS-S1.
4The Radio Galaxy Zoo Data Release 1 catalogue will only include cross-identifications for which

over 65 per cent of volunteers agree. However, we use a preliminary catalogue containing volunteer
cross-identifications for all components.
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Figure 4.2: An example of finding the host galaxy of a radio source using our sliding-window
method. The background image is a 3.6 µm image from SWIRE. The contours show ATLAS
radio data and start at 4σ, increasing geometrically by a factor of 2. Boxes represent ‘windows’
centred on candidate host galaxies, which are circled. The pixels in each window are used to
represent the candidate that the window is centred on. The scores of each candidate would be
calculated by a binary classifier using the window as input, and these scores are shown below
eachwindow. The scores shown are for illustration only. In this example, the galaxy coincident
with the centre window would be chosen as the host galaxy, as this window has the highest
score. The dashed circle shows the 1′ radius from which candidate host galaxies are selected.
For clarity, not all candidate host galaxies are shown.
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Figure 4.3: Our cross-identification method once a binary classifier has been trained. As input
we accept a radio component. If the component is compact, we assume it is a compact source
and select the nearest infrared object as the host galaxy. If the component is resolved, we use
the binary classifier to score all nearby infrared objects and select the highest-scored object as
the host galaxy. Compact and resolved components are defined in Equation 4.1.

4.3.1 Cross-identification as binary classification

We propose a two-step method for host galaxy cross-identification which we will de-
scribe now. Given a radio component, we want to find the corresponding host galaxy.
The input is a 2′ × 2′ radio image of the sky centred on a radio component and po-
tentially other information about objects in the image (such as the redshift or infrared
colour). Images at other wavelengths (notably infrared) might be useful, but we defer
this for now as it complicates the task. We choose a 2′ × 2′ image to match the size
of the images used by Radio Galaxy Zoo. To avoid solving the separate task of iden-
tifying which radio components are associated with the same source, we assume that
each radio image represents a single extended source5. Radio cross-identification can
then be formalised as follows: Given a radio image centred on a radio component, lo-
cate the host galaxy of the source containing this radio component. This is a standard
computer vision problem called ‘object detection’, and we apply a common technique
called a ‘sliding-window’ (Rowley et al., 1996).

In sliding-window object detection, we want to find an object in an image. We
develop a function to score each location in the image such that the highest-scored
location coincides with the desired object. Square image cutouts called ‘windows’ are
taken centred on each location and these windows are used to represent that location
in our scoring function. To find the infrared host galaxy, we choose the location with
the highest score. To improve the efficiency of this process when applied to cross-
identification, we only consider windows coincident with infrared sources detected in
SWIRE. We call these infrared sources ‘candidate host galaxies’. For this chapter, there
is no use in scoring locations without infrared sources as that would not lead to a host

5Limitations of this assumption are discussed in Section 4.3.2.
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identification anyway. Using candidate host galaxies instead of pixels also allows us to
include ancillary information about the candidate host galaxies, such as their infrared
colours and redshifts. We refer to the maximum distance a candidate host galaxy can
be separated from a radio component as the ‘search radius’ and take this radius to be 1
arcmin. To score each candidate host galaxy we use a ‘binary classifier’, which we will
define now.

Algorithm 1: Cross-identifying a radio component given a radio image of the
component, a catalogue of infrared candidate host galaxies, and a binary clas-
sifier. σ is a parameter of the method.
Data:

A 2× 2 arcmin radio image of a radio component
A set of infrared candidate host galaxies G
A binary classifier f : Rk → R

Result: A galaxy g ∈ G
max ← −∞;
host← ∅;
for g ∈ G do

x ← a k-dimensional vector representation of g (Section 4.3.3);
d← distance between g and the radio component;
score← f (x)× 1√

2πσ2 exp
(
− d2

2σ2

)
;

if score > max then
max ← score;
host← g;

end
end
return host

Binary classification is a commonmethod in machine learning where objects are to
be assigned to one of two classes, called the ‘positive’ and ‘negative’ classes. This as-
signment is represented by the probability that an object is in the positive class. A
‘binary classifier’ is a function mapping from an object to such a probability. Our
formulation of cross-identification is equivalent to binary classification of candidate
host galaxies: the positive class represents host galaxies, the negative class represents
non-host galaxies, and to cross-identify a radio component we find the candidate host
galaxy maximising the positive class probability. In other words, the binary classifier
is exactly the sliding-window scoring function. We therefore split cross-identification
into two separate tasks: the ‘candidate classification task’ where, given a candidate
host galaxy, we wish to determine whether it is a host galaxy of any radio component;
and the ‘cross-identification task’ where, given a specific radio component, we wish to
find its host galaxy. The candidate classification task is a traditional machine learning
problem which results in a binary classifier. To avoid ambiguity and recognise that
the values output by a binary classifier are not true probabilities, we will refer to the
outputs of the binary classifier as ‘scores’ in line with the sliding-window approach
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described above. The cross-identification task maximises over scores output by this
classifier. Our approach is illustrated in Figure 4.2 and described in Algorithm 1. We
refer to the binary classifier scoring a candidate host galaxy as f . To implement f as a
function that accepts candidate host galaxies as input, we need to represent candidate
host galaxies by vectors. We describe this in Section 4.3.3. There are many options
for modelling f . In this chapter we apply three different models: logistic regression,
random forests, and convolutional neural networks.

We cross-identify each radio component in turn. The classifier f provides a score
for each candidate host galaxy. This score indicates how much the candidate looks
like a host galaxy, independent of which radio component we are currently cross-
identifying. If there are other nearby host galaxies, then multiple candidate hosts may
have high scores (e.g. Figure 4.4). This difficulty is necessary—a classifier with de-
pendence on the radio object would be impossible to train. We need multiple positive
examples (i.e. host galaxies) to train a binary classifier, but for any specific radio com-
ponent there is only one host galaxy. As a result, the candidate classification task aims
to answer the general question of whether a given galaxy is the host galaxy of any ra-
dio component, while the cross-identification task attempts to cross-identify a specific
radio component. To distinguish between candidate host galaxies with high scores, we
weight the scores by a Gaussian function of angular separation between the candidates
and the radio component. The width of the Gaussian, σ, controls the influence of the
Gaussian on the final cross-identification. When σ is small, our approach is equiva-
lent to a nearest neighbours approach where we select the nearest infrared object to
the radio component as the host galaxy. In the limit where σ → ∞, we maximise the
score output by the classifier as above. We take σ = 30′′, the best value found by a
grid search maximising cross-identification accuracy. Note that the optimum width
depends on the density of radio sources on the sky, the angular separation of the host
galaxy and its radio components and the angular resolution of the survey.

We can improve upon this method by cross-identifying compact radio sources sep-
arately from extended sources, as compact sources are much easier to cross-identify.
For a compact source, the nearest SWIRE object may be identified as the host galaxy (a
nearest neighbours approach), or a more complex method such as likelihood ratios may
be applied (see Weston et al., 2018). We cross-identify compact sources separately in
our pipeline and this process is shown in Figure 4.3.

4.3.2 Limitations of our approach

We make a number of assumptions to relate the cross-identification task to the candi-
date classification task:

1. For any radio component, the 2′ × 2′ image centred on the component contains
components of only one radio source.

2. For any radio component, the 2′ × 2′ image centred on the component contains
all components of this source.
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Figure 4.4: A 2′-wide radio image centred onATLAS3_J033402.87-282405.8C. This radio source
breaks the assumption that there are no other radio sources within 1 arcmin of the source.
Another radio source is visible to the upper-left. Host galaxies found by Radio Galaxy Zoo
volunteers are shown by crosses. The background image is a 3.6 µm image from SWIRE. The
contours show ATLAS radio data and start at 4σ, increasing geometrically by a factor of 2.
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Figure 4.5: An example of a radio source where the window centred on the host galaxy, shown
as a rectangle, does not contain enough radio information to correctly identify the galaxy as
the host. The background image is a 3.6 µm image from SWIRE. The contours show ATLAS
radio data and start at 4σ, increasing geometrically by a factor of 2.
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Figure 4.6: A 8′-wide radio image from FIRST, centred on FIRST J151227.2+454026. The 3′-
wide red box indicates the boundaries of the image of this radio component shown to vol-
unteers in Radio Galaxy Zoo. This radio source breaks our assumption that the whole radio
source is visible in the chosen radius. As one of the components of the radio source is outside
of the image, a volunteer (or automated algorithm) looking at the 3′-wide image may be un-
able to determine that this is a radio double or locate the host galaxy. The background image is
a 3.4 µm image from WISE. The contours show FIRST radio data, starting at 4σ and increasing
geometrically by a factor of 2.
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3. The host galaxy of a radio component iswithin the 1 arcmin search radius around
the component, measured from the centre of the Gaussian fit.

4. The host galaxy of a radio component is closer on the sky to the radio component
than the host galaxy of any other radio component.

5. The host galaxy appears in the SWIRE catalogue.

These assumptions limit the effectiveness of our approach, regardless of how accurate
our binary classifier may be. Examples of radio sources that break these respective
assumptions are:

1. A radio source less than 1′ away from another radio source.

2. A radio source with an angular size greater than 2′.

3. A radio source with a component greater than 1′ away from the host galaxy.

4. A two-component radio source with another host galaxy between a component
and the true host galaxy.

5. An infrared-faint radio source (as in Collier et al., 2014).

The main limitations are problems of scale in choosing the candidate search radius
and the size of the windows representing candidates. If the search radius is too small,
wemay not consider the host galaxy as a candidate. If the search radius is too large, we
may consider multiple host galaxies (though this is mostly mitigated by the Gaussian
weighting). If thewindow is too small, radio emissionmay extend past the edges of the
window and wemay miss critical information required to identify the galaxy as a host
galaxy. If the window is too large, then irrelevant information will be included and it
may be difficult or computationally expensive to score. We choose a window size of
32× 32 pixels, corresponding to approximately 48′′ × 48′′ in ATLAS. This is shown as
squares in Figure 4.2 and Figure 4.5. These kinds of size problems are difficult even for
non-automated methods as radio sources can be extremely wide—for example, Radio
Galaxy Zoo found a radio giant that spanned over three different images presented to
volunteers and the full source was only cross-identified by the efforts of citizen scien-
tists (Banfield et al., 2015). An example of a radio imagewhere part of the radio source
is outside the search radius is shown in Figure 4.6.

In weighting the scores by a Gaussian function of angular separation, we implicitly
assume that the host galaxy of a radio component is closer to that radio component
than any other host galaxy. If this assumption is not true then the incorrect host galaxy
may be identified, though this is rare.

We only need to require that the host galaxy appears in SWIRE to incorporate
galaxy-specific features (Section 4.3.3) and to improve efficiency. Our method is ap-
plicable even when host galaxies are not detected in the infrared by considering every
pixel of the radio image as a candidate location as would be done in the original com-
puter vision approach. If the host galaxy location does not correspond to an infrared
source, the radio source can be classified as infrared-faint.
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Our assumptions impose an upper bound on how well we can cross-identify radio
sources. We estimate this upper bound in Section 4.4.1.

4.3.3 Feature vector representation of infrared sources

Inputs to binary classifiersmust be represented by an array of real values called feature
vectors. We therefore need to choose a feature vector representation of our candidate
host galaxies. Candidate hosts are sourced from the SWIRE catalogue (Section 4.2.2).
We represent each candidate host with 1034 real-valued features, combining the win-
dows centred on each candidate (Section 4.3.1) with ancillary infrared data from the
SWIRE catalogue. For a given candidate host, these features are:

• the 6 base-10 logarithms of the ratios of fluxes of the candidate host at the four
IRAC wavelengths (the ‘colours’ of the candidate);

• the flux of the host at 3.6 µm;

• the stellarity index of the host at both 3.6 and 4.5 µm;

• the radial distance between the candidate host and the nearest radio component
in the ATLAS catalogue; and

• a 32 × 32 pixel image from ATLAS (approximately 48′′ × 48′′), centred on the
candidate host (the window).

The infrared colours provide insight into the properties of the candidate host galaxy
(Grant, 2011). The 3.6 and 4.5 µm fluxes trace both galaxies with faint polycyclic aro-
matic hydrocarbon (PAH) emission (i.e. late-type, usually star-forming galaxies) and
elliptical galaxies dominated by old stellar populations. The 5.8 µm flux selects galax-
ies where the infrared emission is dominated by non-equilibrium emission of dust
grains due to active galactic nuclei, while the 8.0 µm flux traces strong PAH emission
at low redshift (Sajina et al., 2005). The stellarity index is a value in the SWIRE cata-
logue that represents how likely the object is to be a star rather than a galaxy (Surace
et al., 2005). It was estimated by a neural network in SExtractor (Bertin & Arnouts,
1996).

We use the 32 × 32 pixels of each radio window as independent features for all
binary classification models, with the convolutional neural network automatically ex-
tracting features that are relevant. Other features of the radio components may be
used instead of just relying on the pixel values, but there has been limited research on
extracting such features: Proctor (2006) describes hand-selected features for radio dou-
bles in FIRST, and Aniyan and Thorat (2017) and Lukic et al. (2018) make use of deep
convolutional neural networks which automatically extract features as part of classifi-
cation. A more comprehensive investigation of features is a good avenue for potential
improvement in our pipeline but this is beyond the scope of this initial study.



58 Radio Cross-identification

101 102 103 104

SNR

100

101

102

103
N

Norris

RGZ

Figure 4.7: Cumulative number of radio components (N) in the expert (Norris) and Radio
Galaxy Zoo (RGZ) training sets with different signal-to-noise ratios (SNR).

4.3.4 Binary classifiers

We use three different binary classification models: logistic regression, convolutional
neural networks, and random forests. These models cover three different approaches
to machine learning. Logistic regression is a probabilistic binary classification model.
It is linear in the feature space and outputs the probability that the input has a positive
label (Bishop, 2006, Chap. 4). Convolutional neural networks (CNN) are biologically
inspired prediction models with image inputs. They have recently produced good re-
sults on large image-based datasets in astronomy (Dieleman et al., 2015; Lukic et al.,
2018, e.g.). Random forests are an ensemble of decision trees (Breiman, 2001). They
consider multiple subsamples of the training set, where each bootstrap subsample is
sampled with replacement from the training set. To classify a new data point, the ran-
dom forest takes the weighted average of all classifications produced by each decision
tree. For a more detailed description of these models, see Appendix 4.A.

4.3.5 Labels

The Radio Galaxy Zoo and Norris et al. (2006) cross-identification catalogues must be
converted to binary labels for infrared objects so that they can be used to train binary
classifiers. There are two challenges with this conversion:

• We can only say that an object is a host galaxy, not which radio object it is associ-
ated with, and

• We cannot disambiguate betweennon-host infrared objects andhost galaxies that
are not in the cross-identification catalogue.
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Figure 4.8: CDFS field training and testing quadrants labelled 0 – 3. The central dot is located
at α = 03h31m12s, δ = −28◦06′00′′. The quadrants are chosen such that there are similar
numbers of radio sources in each quadrant.

Table 4.2: Number of compact and resolved radio objects in each CDFS quadrant. Radio
Galaxy Zoo (RGZ) hasmore cross-identifications than the expert catalogue (Norris et al., 2006)
provides as it uses a deeper data release of ATLAS, and so has more objects in each quadrant
for training.

Quadrant Compact Resolved Compact Resolved
(RGZ) (RGZ)

0 126 24 410 43
1 99 21 659 54
2 61 24 555 57
3 95 18 631 51
Total 381 87 2255 205
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We use the Gaussian weighting described in Section 4.3.1 to address the first issue.
The second issue is known as a ‘positive-unlabelled’ classification problem, which is a
binary classification problem where we only observe labels for the positive class. We
treat unlabelled objects as negative examples following Menon et al. (2015). That is,
we make the naïve assumption that any infrared object in the SWIRE catalogue not
identified as a host galaxy in a cross-identification catalogue is not a host galaxy at all.

We first generate positive labels from a cross-identification catalogue. We decide
that if an infrared object is listed in the catalogue, then it is assigned a positive label
as a host galaxy. We then assign every other galaxy a negative label. This has some
problems—an example is that if the cross-identification catalogue does not include a ra-
dio object (e.g. it is below the signal-to-noise ratio) then the host galaxy of that radio ob-
ject receives a negative label. This occurs with Norris et al. (2006) cross-identifications,
as these are associated with the first data release of ATLAS. The first data release went
to a 5σ flux density level of S1.4 ≥ 200 µJy beam−1 (Norris et al., 2006), compared to
S1.4 ≥ 85 µJy beam−1 for the third data release used by Radio Galaxy Zoo (Franzen et
al., 2015). The labels fromNorris et al. (2006) may therefore disagree with labels from
Radio Galaxy Zoo even if they are both plausible. The difference in training set size at
different flux cutoffs is shown in Figure 4.7. We train and test our binary classifiers on
infrared objects within a 1 arcmin radius of an ATLAS radio component.

4.3.6 Experimental setup

We trained binary classifiers on infrared objects in the CDFS field using two sets of
labels. One label set was derived from Radio Galaxy Zoo cross-identifications and
the other was derived from the Norris et al. (2006) cross-identification catalogue. We
refer to these as the ‘Radio Galaxy Zoo labels’ and the ‘expert labels’ respectively. We
divided the CDFS field into four quadrants for training and testing. The quadrants
were divided with a common corner at α = 03h31m12s, δ = −28◦06′00′′ as shown in
Figure 4.8. For each trial, one quadrant was used to extract test examples and the other
three quadrants were used for training examples.

We further divided the radio components into compact and resolved. Compact
components are cross-identified by fitting a 2D Gaussian (as in Norris et al., 2006) and
we would expect any machine learning approach for host cross-identification to attain
high accuracy on this set. A radio component was considered resolved if

ln
(

Sint
Speak

)
> 2

√(
σSint

Sint

)2

+

(
σSpeak

Speak

)2

, (4.1)

where Sint is the integrated flux density, Speak is the peak flux density, σSint is the un-
certainty in integrated flux density and σSpeak is the uncertainty in peak flux density
(following Franzen et al., 2015).

Candidate hosts were selected from the SWIRE catalogue. For a given subset of
radio components, all SWIRE objects within 1 arcmin of all radio components in the
subset were added to the associated SWIRE subset. In results for the candidate classi-
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fication task, we refer to SWIRE objects within 1 arcmin of a compact radio component
as part of the ‘compact set’, and SWIRE objects within 1 arcmin of a resolved radio
component as part of the ‘resolved set’.

To reduce bias in the testing data due to the expert labels being generated from a
shallower data release of ATLAS, a SWIRE object was only included in the test set if
it was within 1 arcmin of a radio object with a SWIRE cross-identification in both the
Norris et al. (2006) catalogue and the Radio Galaxy Zoo catalogue.

Each binary classifier was trained on the training examples and used to score the
test examples. These scores were thresholded to generate labels which could be di-
rectly compared to the expert labels. We then computed the ‘balanced accuracy’ of
these predicted labels. Balanced accuracy is the average of the accuracy on the positive
class and the accuracy on the negative class, and is not sensitive to class imbalance. The
candidate classification task has highly imbalanced classes—in our total set of SWIRE
objects within 1 arcmin of an ATLAS object, only 4 per cent have positive labels. Our
threshold was chosen to maximise the balanced accuracy on predicted labels of the
training set. Only examples within 1 arcmin of ATLAS objects in the first ATLAS data
release (Norris et al., 2006) were used to compute balanced accuracy, as these were
the only ATLAS objects with expert labels.

We then used the scores to predict the host galaxy for each radio component cross-
identified by both Norris et al. (2006) and Radio Galaxy Zoo. We followed Algo-
rithm 1: The score of each SWIRE object within 1 arcmin of a given radio component
was weighted by a Gaussian function of angular separation from the radio component
and the object with the highest weighted score was chosen as the host galaxy. The
cross-identification accuracy was then estimated as the fraction of the predicted host
galaxies that matched the Norris et al. (2006) cross-identifications.

4.4 Results

In this section we present accuracies of our method trained on CDFS and applied to
CDFS and ELAIS-S1, as well as results motivating our accuracy measures and esti-
mates of upper and lower bounds for cross-identification accuracy using our method.

4.4.1 Application to ATLAS-CDFS

We can assess trained binary classifiers either by their performance on the candidate
classification task or by their performance on the cross-identification task when used
in ourmethod. Both performances are useful: Performance on the candidate classifica-
tion task provides a robust and simple way to compare binary classifiers without the
limitations of our specific formulation, and performance on the cross-identification
task can be compared with other cross-identification methods. We therefore report
two sets of accuracies: balanced accuracy for the galaxy classification task and accu-
racy for the cross-identification task. These accuracy measures are correlated and we
show this correlation in Figure 4.9. Fitting a line of best fit with scipy gives R2 = 0.92
for logistic regression and R2 = 0.87 for random forests. While performance on the
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Figure 4.9: Balanced accuracy on the candidate classification task plotted against accuracy
on the cross-identification task. ‘RF’ indicates results from random forests, and ‘LR’ indicates
results from logistic regression. Binary classifiers were trained on random, small subsets of the
training data to artificially restrict their accuracies. Colour shows the density of points on the
plot estimated by a Gaussian kernel density estimate. The solid lines indicate the best linear fit;
these fits have R2 = 0.92 for logistic regression and R2 = 0.87 for random forests. The dashed
line shows the line where cross-identification accuracy and candidate classification accuracy
are equal. We did not include convolutional neural networks in this test, as training them is
very computationally expensive. There are 640 trials shown per classification model. These
results exclude binary classifiers with balanced accuracies less than 51 per cent, as these are
essentially random.
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Figure 4.10: Predicted host galaxies in the candidate classification task for ATLAS3 J032929.61-
281938.9. The background image is an ATLAS radio image. Radio Galaxy Zoo host galaxies
are marked by crosses. SWIRE candidate host galaxies are circles coloured by the score output
by a logistic regression binary classifier. The scores are thresholded to obtain labels, as when
we compute balanced accuracy. Orange circles have been assigned a ‘positive’ label by a logis-
tic regression binary classifier and white otherwise. Note that there are more predicted host
galaxies than there are radio components, so not all of the predicted host galaxies would be
assigned as host galaxies in the cross-identification task.

candidate classification task is correlated with performance on the cross-identification
task, balanced accuracy does not completely capture the effectiveness of a binary classi-
fier applied to the cross-identification task. This is because while our binary classifiers
output real-valued scores, these scores are thresholded to compute the balanced accu-
racy. In the candidate classification task, the binary classifier only needs to ensure that
host galaxies are scored higher than non-host galaxies. This means that after thresh-
olding there can be many ‘false positives’ that do not affect cross-identification. An
example of this is shown in Figure 4.10, where the classifier has identified eight ‘host
galaxies’. However, there are only three true host galaxies in this image—one per radio
component—and so in the cross-identification task, only three of these galaxies will be
identified as hosts.

In Figure 4.11 we plot the balanced accuracies of our classification models on the
candidate classification task and the cross-identification accuracies of our method us-
ing each of these models. Results are shown for both the resolved and compact sets.
For comparison, we also plot the cross-identification accuracy of RadioGalaxyZoo and
a nearest neighbours approach, as well as estimates for upper and lower limits on the
cross-identification accuracy. We estimate the upper limit on performance by assign-
ing all true host galaxies a score of 1 and assigning all other candidate host galaxies a
score of 0. This is equivalent to ‘perfectly’ solving the candidate classification task and
so represents the best possible cross-identification performance achievable with our
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Figure 4.11: Performance of our method with logistic regression (‘LR’), convolutional neural
networks (‘CNN’) and random forest (‘RF’) binary classifiers. ‘Norris’ indicates the perfor-
mance of binary classifiers trained on the expert labels and ‘RGZ’ indicates the performance
of binary classifiers trained on the Radio Galaxy Zoo labels. One point is shown per binary
classifier per testing quadrant. The training and testing sets have been split into compact (left)
and resolved (right) objects. Shown for comparison is the accuracy of the Radio Galaxy Zoo
consensus cross-identifications on the cross-identification task, shown as ‘Labels’. The cross-
identification accuracy attained by a perfect binary classifier is shown by a solid green line, and
the cross-identification accuracy of a nearest neighbours approach is shown by a dashed grey
line. The standard deviation of these accuracies across the four CDFS quadrants is shown by
the shaded area. Note that the pipeline shown in Figure 4.3 is not used for these results.
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Figure 4.12: Performance of our approach using different binary classifiers on the cross-
identification task. Markers and lines are as in Figure 4.11. The blue solid line indicates the
performance of a random binary classifier and represents the minimum accuracy we expect to
obtain. The standard deviation of this accuracy across 25 trials and 4 quadrants is shaded. The
accuracy of Radio Galaxy Zoo on the cross-identification task is below the axis and is instead
marked by an arrow with the mean accuracy. Note that the pipeline shown in Figure 4.3 is
used here, so compact objects are cross-identified in the same way regardless of binary classi-
fier model.

method. We estimate the lower limit on performance by assigning random scores to
each candidate host galaxy. We expect any useful binary classifier to produce better re-
sults than this, so this represents the lowest expected cross-identification performance.
The upper estimates, lower estimates, and nearest neighbour accuracy are shown as
horizontal lines in Figure 4.11.

In Figure 4.12 we plot the performance of our method using different binary classi-
fication models, as well as the performance of Radio Galaxy Zoo, nearest neighbours,
and the perfect and random binary classifiers on the full set of ATLAS DR1 radio com-
ponents using the pipeline in Figure 4.3. The accuracy associated with each classi-
fication model and training label set averaged across all four quadrants is shown in
Appendix 4.B.

Differences between accuracies across training labels are well within one standard
deviation computed across the four quadrants, with convolutional neural networks on
compact objects as the only exception. The spread of accuracies is similar for both sets
of training labels, with the exception of random forests. The balanced accuracies of
random forests trained on expert labels have a considerably higher spread than those
trained on Radio Galaxy Zoo labels, likely because of the small size of the expert train-
ing set—there are less than half the number of objects in the expert-labelled training set
than the number of objects in the Radio Galaxy Zoo-labelled training set (Table 4.2).

Radio Galaxy Zoo-trained methods significantly outperform Radio Galaxy Zoo
cross-identifications. Additionally, despite poor performance of Radio Galaxy Zoo on
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the cross-identification task, methods trained on these cross-identifications still per-
form comparably to those trained on expert labels. This is because incorrect Radio
Galaxy Zoo cross-identifications can be thought of as a source of noise in the labels
which is ‘averaged out’ in training. This shows the usefulness of crowdsourced train-
ing data, even when the data is noisy.

Our method performs comparably to a nearest neighbours approach. For compact
objects, this is to be expected—indeed, nearest neighbours attains nearly 100 per cent
accuracy on the compact test set. Our results do not improve on nearest neighbours
for resolved objects. However, our method does allow for improvement on nearest
neighbours with a sufficiently good binary classifier: A ‘perfect’ binary classifier at-
tains nearly 100 per cent accuracy on resolved sources. This shows that our method
may be useful provided that a good binary classifier can be trained. The most obvious
place for improvement is in feature selection: We use pixels of radio images directly
and these are likely not conducive to good performance on the candidate classification
task. Convolutional neural networks, which are able to extract features from images,
should work better, but these require far more training data than the other methods
that we applied and the small size of ATLAS thus limits their performance.

We noted in Section 4.3.5 that the test set of expert labels, derived from the initial
ATLAS data release, was less deep than the third data release used by Radio Galaxy
Zoo and this chapter, introducing a source of label noise in the testing labels. Specif-
ically, true host galaxies may be misidentified as non-host galaxies if the associated
radio source is below the 5 signal-to-noise limit in ATLAS DR1 but not in ATLAS DR3.
This has the effect of reducing the accuracy for Radio Galaxy Zoo-trained classifiers.

We report the scores predicted by each classifier for each SWIRE object in Ap-
pendix 4.C and the predicted cross-identification for eachATLASobject inAppendix 4.D.
Scores we report for a given object were predicted by binary classifiers tested on the
quadrant containing that object. The reported scores are not weighted.

In Figure 4.17 we show five resolved sources where the most classifiers disagreed
on the correct cross-identification.

4.4.2 Application to ATLAS-ELAIS-S1

We applied the method trained on CDFS to perform cross-identification on the ELAIS-
S1 field. Both CDFS and ELAIS-S1 were imaged by the same radio telescope to similar
sensitivities and angular resolution for the ATLAS survey. We can use the SWIRE
cross-identifications made by Middelberg et al. (2008) to derive another set of expert
labels, and hence determine how accurate our method is. If our method generalises
well across different parts of the sky, then we expect CDFS-trained classifiers to have
comparable performance between ELAIS-S1 and CDFS. In Figure 4.13 we plot the per-
formance of CDFS-trained classification models on the candidate classification task
and the performance of our method on the cross-identification task using these mod-
els. We also plot the cross-identification accuracy of a nearest neighbours approach6.

6We cannot directly compare our method applied to ELAIS-S1 with Radio Galaxy Zoo, as Radio
Galaxy Zoo does not include ELAIS-S1.
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Figure 4.13: Performance of different classification models trained on CDFS and tested on re-
solved and compact sources in ELAIS-S1. Points represent classification models trained on
different quadrants of CDFS, with markers, lines, and axes as in Figure 4.11. The balanced
acccuracy of expert-trained random forest binary classifiers falls below the axis and the cor-
responding mean accuracy is shown by an arrow. The estimated best attainable accuracy is
almost 100 per cent.
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Figure 4.14: Performance of different classifiers trained on CDFS and tested on ELAIS-S1.
Markers are as in Figure 4.12 and horizontal lines are as in Figure 4.13. Note that the pipeline
shown in Figure 4.3 is used here, so compact objects are cross-identified in the same way re-
gardless of binary classifier model.
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Figure 4.15: (a) Balanced accuracies of classifiers trained and tested on CDFS with different
signal-to-noise ratio (SNR) cutoffs for the test set. A SWIRE object is included in the test set
if it is within 1′ of a radio component with greater SNR than the cutoff. Lines of different
colour indicate different classifier/training labels combinations, where LR is logistic regression,
RF is random forests, CNN is convolutional neural networks, and Norris and RGZ are the
expert and Radio Galaxy Zoo label sets respectively. Filled areas represent standard deviations
across CDFS quadrants. (b) Balanced accuracies of classifiers trained on CDFS and tested on
ELAIS-S1. (c) A cumulative distribution plot of SWIRE objects associated with a radio object
with greater SNR than the cutoff. The grey dashed line shows the SNR level at which the
number of SWIRE objects above the cutoff is equal for CDFS and ELAIS-S1. This cutoff level is
approximately at a SNR of 34.
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In Figure 4.14 we plot the performance of our method on the full set of ELAIS-S1 AT-
LAS DR1 radio components using the pipeline in Figure 4.3. We list the corresponding
accuracies in Appendix 4.B.

Cross-identification results from ELAIS-S1 are similar to those for CDFS, showing
that our method trained on CDFS performs comparably well on ELAIS-S1. However,
nearest neighbours outperforms most methods on ELAIS-S1. This is likely because
there is a much higher percentage of compact objects in ELAIS-S1 than in CDFS. The
maximum achievable accuracy we have estimated for ELAIS-S1 is very close to 100
per cent, so (as for CDFS) a very accurate binary classifier would outperform nearest
neighbours.

One interesting difference between the ATLAS fields is that random forests trained
on expert labels performwell on CDFS but poorly on ELAIS-S1. This is not the case for
logistic regression or convolutional neural networks trained on expert labels, nor is it
the case for random forests trained on Radio Galaxy Zoo. We hypothesise that this is
because the ELAIS-S1 cross-identification catalogue (Middelberg et al., 2008) labelled
fainter radio components than the CDFS cross-identification catalogue (Norris et al.,
2006) due to noise from the very bright source ATCDFS_J032836.53-284156.0 in CDFS.
Classifiers trained on CDFS expert labels may thus be biased toward brighter radio
components compared to ELAIS-S1. Radio Galaxy Zoo uses a preliminary version of
the third data release of ATLAS (Franzen et al., 2015) and so classifiers trained on the
RadioGalaxy Zoo labelsmay be less biased toward brighter sources compared to those
trained on the expert labels. To test this hypothesis we tested each classification model
against test sets with a signal-to-noise ratio (SNR) cutoff. A SWIRE object was only
included in the test set for a given cutoff if it was locatedwithin 1′ of a radio component
with a SNR above the cutoff. The balanced accuracies for each classifier at each cutoff
are shown in Figure 4.15(a) and (b) and the distribution of test set size for each cutoff
is shown in Figure 4.15(c). Figure 4.15(c) shows that ELAIS-S1 indeed has more faint
objects in its test set than the CDFS test set, with the SNR for which the two fields reach
the same test set size (approximately 34) indicated by the dashed vertical line on each
plot. ForCDFS, all classifiers perform reasonablywell across cutoffs, with performance
dropping as the size of the test set becomes small. For ELAIS-S1, logistic regression and
convolutional neural networks perform comparably across all SNR cutoffs, but random
forests do not. While random forests trained on Radio Galaxy Zoo labels perform
comparably to other classifiers across all SNR cutoffs, random forests trained on expert
labels show a considerable drop in performance below the dashed line.

4.5 Discussion

Based on the ATLAS sample, our main result is that it is possible to cast radio host
galaxy cross-identification as a machine learning task for which standardmethods can
be applied. These methods can then be trained with a variety of label sets derived
from cross-identification catalogues. While our methods have not outperformed near-
est neighbours, we have demonstrated that for a very accurate binary classifier, good
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cross-identification results can be obtained using ourmethod. Future work could com-
bine multiple catalogues or physical priors to boost performance.

Nearest neighbours approaches outperform most methods we investigated, no-
tably including Radio Galaxy Zoo. This is due to the large number of compact or
partially resolved objects in ATLAS. This result shows that for compact and partially
resolved objects, methods that do not use machine learning such as a nearest neigh-
bours approach or likelihood ratio (Weston et al., 2018) should be preferred tomachine
learning methods. It also shows that ATLAS is not an ideal dataset for developing ma-
chine learning methods like ours. Our use of ATLAS is motivated by its status as a
pilot survey for EMU, so methods developed for ATLAS should also work for EMU.
New methods developed should work well with extended radio sources, but this goal
is almost unsupported by ATLAS as it has very few examples of such sources. This
makes both training and testing difficult—there are too few extended sources to train
on and performance on such a small test set may be unreliable. Larger datasets with
many extended sources like FIRST exist, but these are considerably less deep than and
at a different resolution to EMU, so there is no reason to expect methods trained on
such datasets to be applicable to EMU.

The accuracies of our trained cross-identification methods generally fall far below
the estimated best possible accuracy attainable using our approach, indicated by the
green-shaded areas in Figures 4.12 and 4.14. The balanced accuracies attained by our
binary classifiers indicate that there is significant room for improvement in classifica-
tion. The classification accuracy could be improved by bettermodel selection andmore
training data, particularly for convolutional neural networks. There is a huge variety
of ways to build a convolutional neural network, and we have only investigated one ar-
chitecture. For an exploration of different convolutional neural network architectures
applied to radio astronomy, see Lukic et al. (2018). Convolutional neural networks
generally require more training data than other machine learning models and we have
only trained our networks on a few hundred sources. We would expect performance
on the classification task to greatly increase with larger training sets.

Another problem is that of thewindow size used to select radio features. Increasing
window size would increase computational expense, but provide more information to
themodels. Results are also highly sensitive to how large thewindow size is compared
to the size of the radio source we are trying to cross-identify, with large angular sizes
requiring large window sizes to ensure that the features contain all the information
needed to localise the host galaxy. An ideal implementation of our method would
most likely represent a galaxy using radio images taken at multiple window sizes, but
this is considerably more expensive.

Larger training sets, better model selection, and larger window sizes would im-
prove performance, but only so far: We would still be bounded above by the estimated
‘perfect’ classifier accuracy. From this point, the performance can only be improved by
addressing our broken assumptions. We detailed these assumptions in Section 4.3.2,
and we will discuss here how our method could be adapted to avoid these assump-
tions. Our assumption that the host galaxy is contained within the search radius could
be improved by dynamically choosing the search radius, perhaps based on the angu-
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lar extent of the radio emission, or the redshift of candidate hosts. Radio morphology
information may allow us to select relevant radio data and hence relax the assump-
tion that a 1′-wide radio image represents just one, whole radio source. Finally, our
assumption that the host galaxy is detefcted in infrared is technically not needed, as
the sliding-window approach we have employed will still work even if there are no de-
tected host galaxies—instead of classifying candidate hosts, simply classify each pixel
in the radio image. The downside of removing candidate hosts is that we are no longer
able to reliably incorporate host galaxy information such as colour and redshift, though
this could be resolved by treating pixels as potentially undetected candidate hosts with
noisy features.

We observe that Radio Galaxy Zoo-trained methods perform comparably to meth-
ods trained on expert labels. This shows that the crowdsourced labels from Radio
Galaxy Zoo will provide a valuable source of training data for future machine learn-
ing methods in radio astronomy.

Compared to nearest neighbours, cross-identification accuracy onELAIS-S1 is lower
than on CDFS. Particularly notable is that our performance on compact objects is very
low for ELAIS-S1, while it was near-optimal for CDFS. These differences may be for
a number of reasons. ELAIS-S1 has beam size and noise profile different from CDFS
(even though both were imaged with the same telescope), so it is possible that our
methods over-adapted to the beam and noise of CDFS. Additionally, CDFS contains a
very bright source which may have caused artefacts throughout the field that are not
present in ELAIS-S1. Further work is required to understand the differences between
the fields and their effect on performance.

Figure 4.15 reveals interesting behaviour of different classifier models at different
flux cutoffs. Logistic regression and convolutional neural networks seem relatively
independent of flux, with these models performing well on the fainter ELAIS-S1 com-
ponents even when they were trained on the generally brighter components in CDFS.
Conversely, random forests were sensitive to the changes in flux distribution between
datasets. This shows that not all models behave similarly on radio data, and it is
therefore important to investigate multiple models when developing machine learn-
ing methods for radio astronomy.

Appendix 4.E (see Figure 4.17) shows examples of incorrectly cross-identified com-
ponents in CDFS. On no such component do all classifiers agree. This raises the possi-
bility of using the level of disagreement of an ensemble of binary classifiers as a mea-
sure of the difficulty of cross-identifying a radio component, analogous to the consen-
sus level for Radio Galaxy Zoo volunteers.

Our methods can be easily incorporated into other cross-identification methods or
used as an extra data source for source detection. For example, the scores output by
our binary classifiers could be used to disambiguate between candidate host galaxies
selected by model-based algorithms, or used to weight candidate host galaxies while
a source detector attempts to associate radio components. Our method can also be ex-
tended using other data sources: For example, information from source identification
algorithms could be incorporated into the feature set of candidate host galaxies.
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4.6 Summary

We presented a machine learning approach for cross-identification of radio compo-
nents with their corresponding infrared host galaxies. Using the CDFS field of ATLAS
as a training setwe trained ourmethods on expert and crowdsourced cross-identification
catalogues. Applying these methods on both fields of ATLAS, we found that:

• Our method trained on ATLAS observations of CDFS generalised to ATLAS ob-
servations of ELAIS-S1, demonstrating that training on a single patch of sky is
a feasible option for training machine learning methods for wide-area radio sur-
veys;

• Performance was comparable to nearest neighbours even on resolved sources,
showing that nearest neighbours is useful for datasets consisting mostly of unre-
solved sources such as ATLAS and EMU;

• Radio Galaxy Zoo-trainedmodels performed comparably to expert-trainedmod-
els and outperformed Radio Galaxy Zoo, showing that crowdsourced labels are
useful for training machine learning methods for cross-identification even when
these labels are noisy;

• ATLAS does not contain sufficient data to train or test machine learning cross-
identification methods for extended radio sources. This suggests that if machine
learning methods are to be used on EMU, a larger area of sky will be required
for training and testing these methods. However, existing surveys like FIRST are
likely too different from EMU to expect good generalisation.

While our cross-identification performance is not as high as desired, we make no
assumptions on the binary classification model used in our methods and so we expect
the performance to be improved by further experimentation andmodel selection. Our
method provides a useful framework for generalising cross-identification catalogues
to other areas of the sky from the same radio survey and can be incorporated into
existing methods. We have shown that citizen science can provide a useful dataset for
training machine learning methods in the radio domain. Chapter 5 will extend this
approach and confirm that dataset size is a key limitation by successfully applying it
to a considerably larger dataset: FIRST.
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4.A Classification models

This appendix describes the three different models we used for binary classification in
this chapter: logistic regression, convolutional neural networks, and random forests.

4.A.1 Logistic regression

Logistic regression is linear in the feature space and outputs the probability that the
input has a positive label. The model is (Bishop, 2006):

f (x⃗) = σ(w⃗T x⃗ + b) , (4.2)

where w⃗ ∈ RD is a vector of parameters, b ∈ R is a bias term, x⃗ ∈ RD is the feature vec-
tor representation of a candidate host, and σ : R→ R is the logistic sigmoid function:

σ(a) = (1 + exp(−a))−1 . (4.3)

The logistic regressionmodel is fully differentiable, and the parameters w⃗ can therefore
be learned using gradient-based optimisation methods. We used the scikit-learn
(Pedregosa et al., 2011) implementation of logistic regression with balanced classes.

4.A.2 Convolutional neural networks

Convolutional neural networks (CNN) are a biologically inspired predictionmodel for
prediction with image inputs. The input image is convolvedwith a number of filters to
produce output images called featuremaps. These featuremaps can then be convolved
again with other filters on subsequent layers, producing a network of convolutions.
The whole network is differentiable with respect to the values of the filters and the
filters can be learned using gradient-based optimisationmethods. The final layer of the
network is logistic regression, with the convolved outputs as input features. For more



74 Radio Cross-identification

detail, see subsection II.A, LeCun et al. (1998). We used KERAS (Chollet et al., 2015) to
implement our CNN, accounting for class imbalance by reweighting the classes.

CNNshave recently produced good results on large image-baseddatasets in astron-
omy (Dieleman et al., 2015; Lukic et al., 2018, e.g.). We employed only a simple CNN
model in Chapter 4 as a proof of concept that CNNs may be used for class probability
prediction on radio images. The model architecture we used is shown in Figure 4.16.

4.A.3 Random forests

Random forests are an ensemble of decision trees (Breiman, 2001). They consider mul-
tiple subsamples of the training set, where each subsample is sampled with replace-
ment from the training set. For each subsample a decision tree classifier is constructed
by repeatedly making axis-parallel splits based on individual features. In a random
forest the split decision is taken based on a random subset of features. To classify a
new data point, the random forest takes the weighted average of all classifications pro-
duced by each decision tree. In Chapter 4 we used the scikit-learn (Pedregosa et al.,
2011) implementation of random forests with 10 trees, the information entropy split
criterion, a minimum leaf size of 45, and balanced classes.

4.B Accuracy tables

This section contains tables of accuracy for our cross-identification method applied
to CDFS and ELAIS-S1. In Table 4.3 and Table 4.4 we list the balanced accuracies of
our Chapter 4 classifiers on the cross-identification task for CDFS and ELAIS-S1 re-
spectively, averaged over each set of training quadrants. In Table 4.5 and Table 4.6 we
list the balanced accuracies of classifiers on the cross-identification task for CDFS and
ELAIS-S1 respectively, averaged over each set of training quadrants.

4.C SWIRE object scores

This appendix contains scores predicted by our Chapter 4 binary classifiers for each
SWIREobjectwithin 1′ of a radio component inCDFS andELAIS-S1. Scores for SWIRECDFS
objects are shown in Table 4.7 and scores for SWIRE ELAIS-S1 are shown in Table 4.8.
For CDFS, the score for an object in a quadrant is predicted by binary classifiers trained
on all other quadrants. For ELAIS-S1, we show the scores predicted by binary classi-
fiers trained on each CDFS quadrant. Note that these scores have not been weighted
by Gaussians. These are partial tables, and the full tables are available online at the
Monthly Notices of the Royal Astronomical Society website7.

The columns of the score tables are defined as follows:

• SWIRE: SWIRE designation for candidate host galaxy.

• RA: Right ascension (J2000).
7https://doi.org/10.1093/mnras/sty1308

https://doi.org/10.1093/mnras/sty1308
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Figure 4.16: Architecture of our CNN. Parenthesised numbers indicate the size of output layers
as a tuple (width, height, depth). The concatenate layer flattens the output of the previous layer
and adds the 10 features derived from the candidate host in SWIRE, i.e. the flux ratios, stellarity
indices, and distances. The dropout layer randomly sets 25 per cent of its inputs to zero during
training to prevent overfitting. Diagram based on https://github.com/dnouri/nolearn.

 https://github.com/dnouri/nolearn
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Table 4.3: Balanced accuracies for different binary classification models trained and tested on
SWIRE objects in CDFS. The ‘Labeller’ column states which set of training labels were used
to train the classifier, and the ‘Classifier’ column states which classification model was used.
‘CNN’ is a convolutional neural network, ‘LR’ is logistic regression, and ‘RF’ is random forests.
Accuracies are evaluated against the expert label set derived from Norris et al. (2006). The
standard deviation of balanced accuracies evaluated across the four quadrants of CDFS (Fig-
ure 4.8) is also shown. The ‘compact’ set refers to SWIRE objects within 1′ of a compact radio
component, the ‘resolved’ set refers to SWIRE objects within 1′ of a resolved radio component,
and ‘all’ is the union of these sets.

Labeller Classifier Mean ‘Compact’ Mean ‘Resolved’ Mean ‘All’
accuracy accuracy accuracy
(per cent) (per cent) (per cent)

Norris LR 91.5± 1.0 93.2± 1.0 93.0± 1.2
CNN 92.6± 0.7 91.2± 0.5 92.0± 0.6
RF 96.7± 1.5 91.0± 4.5 96.0± 2.5

RGZ LR 89.5± 0.8 90.5± 1.7 90.2± 0.8
CNN 89.4± 0.6 89.6± 1.3 89.4± 0.5
RF 94.5± 0.2 95.8± 0.4 94.7± 0.3

Table 4.4: Balanced accuracies for different binary classification models trained on SWIRE
objects in CDFS and tested on SWIRE objects in ELAIS-S1. Columns and abbreviations are as
in Table 4.3. Accuracies are evaluated against the expert label set derived from Middelberg
et al. (2008). The standard deviations of balanced accuracies of models trained on the four
subsets of CDFS (Figure 4.8) are also shown.

Labeller Classifier Mean ‘Compact’ Mean ‘Resolved’ Mean ‘All’
accuracy accuracy accuracy
(per cent) (per cent) (per cent)

Norris LR 94.6± 0.4 93.3± 2.0 95.3± 0.1
CNN 94.8± 0.2 92.8± 0.5 94.4± 0.2
RF 85.9± 3.8 70.0± 2.8 86.6± 3.2

RGZ LR 91.8± 0.3 91.9± 0.5 92.0± 0.2
CNN 90.1± 0.3 91.1± 0.9 90.2± 0.3
RF 95.1± 0.1 95.2± 0.0 95.2± 0.3
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Table 4.5: Cross-identification accuracies for different classification models on CDFS. The ‘La-
beller’ column states which set of training labels were used to train the method, and the ‘Clas-
sifier’ column states which classification model was used. ‘CNN’ is a convolutional neural
network, ‘LR’ is logistic regression, ‘RF’ is random forests, and ‘Labels’ is the accuracy of the
label set itself. ‘Perfect’ indicates that the true labels of the test set were used and hence rep-
resents an upper bound on cross-identification accuracy with our method. ‘NN’ is a nearest
neighbours approach. Accuracies are evaluated against the expert label set, so ‘Norris’ labels
are 100 per cent accurate by definition. The standard deviation of accuracies evaluated across
the four quadrants of CDFS (Figure 4.8) is also shown.

Labeller Classifier Mean ‘Compact’ Mean ‘Resolved’ Mean ‘All’
accuracy accuracy accuracy
(per cent) (per cent) (per cent)

— NN 97.2± 1.7 75.7± 7.9 93.4± 0.8
— Random 97.9± 2.2 22.3± 9.2 83.2± 4.7

Norris Labels 100.0± 0.0 100.0± 0.0 100.0± 0.0
Perfect 97.9± 2.2 99.0± 1.8 98.1± 1.7
LR 97.3± 0.5 76.0± 3.2 93.7± 1.8

CNN 96.6± 0.9 74.3± 12.3 93.5± 0.5
RF 96.1± 1.4 75.8± 6.7 93.8± 2.0

RGZ Labels 53.1± 8.5 56.7± 5.9 54.4± 5.9
LR 97.3± 1.9 74.5± 5.1 93.6± 1.7

CNN 85.4± 2.6 68.1± 9.2 92.4± 1.1
RF 97.5± 0.9 74.3± 7.9 93.7± 1.5

Table 4.6: Cross-identification accuracies for different classification models on ELAIS-S1.
Columns and abbreviations are as in Table 4.5. Accuracies are evaluated against the expert
label set derived from Middelberg et al. (2008) cross-identifications. The standard deviation
of accuracies evaluated across models trained on the four quadrants of CDFS (Figure 4.8) is
also shown.

Labeller Classifier Mean ‘Compact’ Mean ‘Resolved’ Mean ‘All’
accuracy accuracy accuracy
(per cent) (per cent) (per cent)

— NN 95.5± 0.0 92.8± 0.0 95.5± 0.0
— Random 61.9± 1.1 26.6± 2.1 61.9± 1.1

Middelberg Perfect 99.6± 0.0 99.8± 0.0 99.6± 0.0
Norris LR 89.0± 1.1 89.7± 1.8 94.4± 0.9

CNN 89.7± 0.3 89.4± 1.4 94.3± 0.7
RF 83.8± 5.6 82.3± 4.1 90.6± 2.1

RGZ LR 90.5± 1.0 92.7± 0.2 95.9± 0.1
CNN 84.6± 0.6 84.6± 0.6 91.8± 0.3
RF 91.3± 1.0 90.3± 2.4 94.7± 1.2
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• Dec: Declination (J2000).

• Expert host: Whether the candidate host galaxy is a host galaxy according to Nor-
ris et al. (2006) or Middelberg et al. (2008) cross-identifications of CDFS and
ELAIS-S1 respectively.

• RGZ host: Whether the candidate host galaxy is a host galaxy according to Radio
Galaxy Zoo cross-identifications (Wong et al., in prep.). This is always ‘no’ for
ELAIS-S1 objects.

• C/L/D: Score assigned by binary classifier C trained on label set L of D candidate
host galaxies. C may be ‘CNN’, ‘LR’, or ‘RF’ for CNN, logistic regression, or
random forests respectively. L may be ‘Norris’ or ‘RGZ’ for expert and Radio
Galaxy Zoo labels respectively. D may be ‘All’, ‘Compact’, or ‘Resolved’ for each
respective subset defined in Section 4.3.6.

4.D ATLAS component cross-identifications

This section contains cross-identifications predicted by our cross-identificationmethod
for each ATLAS radio component in CDFS and ELAIS-S1. Cross-identifications for
ATLAS CDFS components are shown in Table 4.9 and cross-identifications for AT-
LAS ELAIS-S1 are shown in Table 4.10. For CDFS, the cross-identification for a com-
ponent in a quadrant is predicted using our method with binary classifiers trained on
all other quadrants. For ELAIS-S1, we show the cross-identifications predicted by our
method using binary classifiers trained on each CDFS quadrant. For CDFS, we also
show the Radio Galaxy Zoo consensus, which is a proxy for the difficulty of cross-
identifying a component (Wong et al., in prep.). These are partial tables, and the full
tables are available online at the Monthly Notices of the Royal Astronomical Society web-
site8.

The columns of the cross-identification tables are defined as follows:

• ATLAS: ATLAS designation for radio component.

• RA: Right ascension of radio component (J2000).

• Dec: Declination of radio component (J2000).

• CID: Radio Galaxy Zoo component ID.

• Zooniverse ID: Radio Galaxy Zoo Zooniverse ID.

• Norris/Middelberg: Designation of SWIRE cross-identification from Norris et al.
(2006) or Middelberg et al. (2008) for CDFS and ELAIS-S1 respectively.

• Norris/Middelberg RA: Right ascension of SWIRE cross-identification fromNorris
et al. (2006) or Middelberg et al. (2008) for CDFS and ELAIS-S1 respectively.

8https://doi.org/10.1093/mnras/sty1308

https://doi.org/10.1093/mnras/sty1308
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• Norris/Middelberg Dec: Right ascension of SWIRE cross-identification from Nor-
ris et al. (2006) or Middelberg et al. (2008) for CDFS and ELAIS-S1 respectively.

• RGZ: Designation of SWIRE cross-identification from Radio Galaxy Zoo (Wong
et al., in prep.).

• RGZ RA: Right ascension of SWIRE cross-identification from Radio Galaxy Zoo
(Wong et al., in prep.).

• RGZ Dec: Right ascension of SWIRE cross-identification from Radio Galaxy Zoo
(Wong et al., in prep.).

• RGZ radio consensus: Percentage agreement of Radio Galaxy Zoo volunteers on
the radio component configuration.

• RGZ IR consensus: Percentage agreement of Radio Galaxy Zoo volunteers on the
host galaxy of this radio component.

• C / L / D: Designation of SWIRE cross-identification made by our method using
classification model C trained on label set L of D candidate host galaxies. C may
be ‘CNN’, ‘LR’, or ‘RF’ for CNN, logistic regression or random forests respectively.
L may be ‘Norris’ or ‘RGZ’ for expert and Radio Galaxy Zoo labels respectively.
D may be ‘All’, ‘Compact’, or ‘Resolved’ for each respective subset defined in
Section 4.3.6.

• C/ L / D RA: Right ascension (J2000) of SWIRE cross-identification made by our
method using classification model C trained on label set L of D candidate host
galaxies. C, L, and D are defined as for designation.

• C/ L / D Dec: Declination (J2000) of SWIRE cross-identification made by our
method using classification model C trained on label set L of D candidate host
galaxies. C, L, and D are defined as for designation.

4.E Cross-identification figures

Figure 4.17 shows figures of our cross-identifications of each ATLAS radio component
in CDFS and ELAIS-S1. There are just five examples shown here, but all 469 examples
are available online at the Monthly Notices of the Royal Astronomical Society website9.

9https://doi.org/10.1093/mnras/sty1308

https://doi.org/10.1093/mnras/sty1308
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Figure 4.17: Examples of resolved sources with high disagreement between cross-identifiers.
The contours show ATLAS radio data and start at 4σ, increasing geometrically by a factor of
2. The background image is the 3.6 µm SWIRE image. Binary classifier model/training set
combinations are denoted C(S) where C is the binary classifier model and S is the training
set. ‘LR’ is logistic regression, ‘CNN’ is convolutional neural networks, and ‘RF’ is random
forests. ‘Norris’ refers to the expert labels and ‘RGZ’ refers to the Radio Galaxy Zoo labels.
The cross-identification made by nearest neighbours is shown by ‘NN’.



Chapter 5

Radio Luminosity Functions

This chapter is based on my paper Radio Galaxy Zoo: Radio Luminosity Functions of Ex-
tended Sources, by M. J. Alger, O. I. Wong, C. S. Ong, N. M. McClure-Griffiths, H. An-
dernach, L. Rudnick, S. S. Shabala, A. F. Garon, J. K. Banfield, A. D. Kapińska, R. P.
Norris, and A. J. M. Thomson; to be submitted. Some minor changes have been made
to match the rest of this thesis.

InChapter 4, we concluded that ourmachine learning cross-identification approach
was sound in principle, but the small size and lack of morphological complexity in AT-
LAS prevented training a good classifier. To demonstrate this, we turned our attention
to the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) survey, which con-
tained many more sources and many more morphologically complex sources due to
its higher resolution and sample size. If cross-identification of this dataset was success-
ful, we could use the resulting cross-identification catalogue to investigate statistical
properties of radio galaxies at larger scales than previously possible. The object of in-
terest would be the radio luminosity function (RLF), a statistical description of how
common radio galaxies of various luminosities are throughout the Universe. The RLF
would be specific to only extended radio galaxies, and it is this class of galaxies that we
would expect to maximally impact its local environment through direct, mechanical
energy input.

In this chapter, we use a machine learning model trained on the Radio Galaxy Zoo
citizen science project to cross-identify 244 846 radio components of extended radio
sources from FIRST with 158 337 host galaxies observed in the mid-infrared from the
AllWISE source catalogue. 34 305 hosts have a spectroscopic redshift in the Sloan Digi-
tal Sky Survey (SDSS). This is the largest available sample of cross-identified extended
radio sources to date at the time of writing. The large sample size allows us to estimate
the RLF of extended radio galaxies and to further characterise the sample with frac-
tional radio luminosity functions. The extended source RLF can be used to estimate
the mechanical energy injected into the local environments of active galactic nuclei
(AGN). We estimate from the observed radio emission that inferred extended radio
jets from AGN contribute between 1.3× 1030 and 1.2× 1032 W Mpc−3 of mechanical
energy to their environment throughout the low-redshift (z < 0.6) Universe. By fur-
ther visual verification we also find 40 radio galaxies with projected size larger than

85
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1 Mpc. Our results directly demonstrate the impact that automated machine learning
methods could have on future wide-area radio surveys.

5.1 Introduction

Radio active galactic nuclei (AGN) are some of the most violent and energetic objects
in the Universe. Supermassive black holes at the centres of galaxies can produce large,
luminous radio jets that may feed lobes extending up to megaparsec scales. As a vital
part of galaxy evolution, we want to understand how radio AGN interact with their
host galaxies, in what kinds of galaxies these AGN are found, and how these popula-
tions change over cosmic time.

Mechanical energy from AGN is needed to explain the star-formation history of
galaxies throughout the Universe (e.g. Hardcastle & Croston, 2020; Raouf et al., 2017).
The radio luminosity function (RLF) of extended radio sources characterises the en-
ergy output of galaxies capable of significant energy impact into their local environ-
ments. The local RLF of primarily compact sources is estimated and described in de-
tail by Mauch and Sadler (2007), Pracy et al. (2016), and Condon et al. (2019), each
with complete volume-limited samples. However, the RLF of extended radio sources
has not been characterised as a separate sample, because estimating this RLF would
need a large number of extended sources with known redshifts. Such redshifts are
usually obtained by cross-matching the radio sources with their host galaxies in the
optical or infrared. While this cross-matching is relatively straightforward for com-
pact/unresolved sources, and can therefore be automated (e.g. Kimball & Ivezić, 2008),
extended radio emission may be complex and may not be co-located with the host
galaxy. Cross-identification of complex, extended sources is therefore usually done
manually, limiting the sample size.

Wide-area radio surveys like theVeryLargeArray Faint Images of the Sky at Twenty
Centimeters survey (FIRST; White et al., 1997) have led to catalogues of hundreds of
thousands of radio objects, most of which are associated with radio AGN (Sadler et
al., 2002). While individual galaxy properties vary significantly between galaxies, the
large sample size of such surveys allows us to examine reliable bulk statistics that may
tightly constrain models and theories of radio galaxy evolution and formation (Con-
don, 1992). With a sufficiently large sample (of size N such that N ≫

√
N; Condon,

1991) we can also divide the RLF into fractions based on the physical properties of
each galaxy. These fractional RLFs show how different physical processes comprise the
luminosity distribution, and can be used to investigate how these processes relate to
the properties of the AGN.

In this chapter we calculate the RLF for extended radio sources in FIRST. Through-
out this chapter we define an extended radio source as a collection of extended radio
components with the same host galaxy, and following Banfield et al. (2015) we define
an extended radio component as a radio component which fulfils Equation 5.1:

Speak

Sint
< 1− 0.1

log10(Speak/1 mJy)
, (5.1)
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where Speak is the peak radio flux density and Sint is the integrated radio flux den-
sity. We define radio components as Gaussians fit to radio emission, radio islands as
connected patches of radio emission above a local 4σ value, and radio sources as sets of
radio islands or components associated with the same galaxy. The radio flux density
of a source is the sum of the flux densities of the components according to the FIRST
catalogue. The (infrared) host galaxy of a radio source or component is defined as the
infrared galaxy associatedwith the radio emitter. A cross-identification is an association
of a host galaxy with one or more radio components or islands. We define candidate
host galaxies (or simply candidates) as infrared objects that are near a radio component
on the sky and thus may potentially be the host galaxy of that component.

Upcoming radio surveys such as the EvolutionaryMap of the Universe (EMU;Nor-
ris et al., 2011) are expected to increase the number of complex radio sources to around
7 million (Banfield et al., 2015). Manual, expert cross-identification for such surveys
will be impractical. One way forward could be to ask non-expert volunteers for help
with manual cross-identification, which was the approach taken by Radio Galaxy Zoo
(RGZ; Banfield et al., 2015). This is called citizen science andhas been employed success-
fully in many fields with large datasets (Marshall et al., 2015). Even this approach is
not sufficient for 7 million sources, though, with RGZ cross-identifying around 75 000
sources in four years. Machine learning provides a potential pathway to obtaining
useful physics from such large samples.

In this chapter, we train a machine learning model based on Alger et al. (2018),
using RGZ as training data, and use this model to automatically cross-identify 244 846
radio components catalogued by FIRST. This results in 34 305 sources with spectro-
scopic redshifts. This is the largest available catalogue of extended radio source cross-
identifications. We call our catalogue RGZ-extrapolated or RGZ-Ex. Due to our large
sample size we are able to further divide the source population by properties of the
host galaxies. We refer to the trainedmachine learningmodel and the associated cross-
identification algorithm jointly as binary cross-identification, or BXID. Note that there
are two stages to our automated approach: First, we train BXID using an existing cat-
alogue of cross-identified sources; second, we generate new cross-identifications for
radio components not in the training catalogue. We refer to these stages as training
and prediction respectively. Our data sources are described in Section 5.2. Our ap-
proach is discussed in Section 5.3. Radio luminosity functions of extended sources are
presented in Section 5.4 and we discuss these functions in Section 5.5.

Throughout this chapter we assume a flat Λ-CDM cosmology of
H0 = 69.3 km s−1 Mpc−1, Ωm = 0.287. These are the cosmological parameters from the
Nine-year Wilkinson Microwave Anisotropy Probe (WMAP9; Hinshaw et al., 2013).

5.2 Data

In this section we describe how we obtain our training and prediction data. To enable
the estimation of the extended RLF, we apply a number of selection criteria to the data
which are shown in Figure 5.6.
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5.2.1 RGZ

RGZ is a citizen science project that aims to cross-identify complex radio sources with
mid-infrared host galaxies with the help of volunteers. The first RGZ data release con-
tains around 75 000 cross-identifications of a random subset of extended sources in
FIRST with their host galaxies in AllWISE. For more details on RGZ see Banfield et al.
(2015). This catalogue has also been used in other machine learning contexts, includ-
ing supervised learning for source aggregation (Wu et al., 2019) and unsupervised
learning methods (Galvin et al., 2019; Ralph et al., 2019). We discard the RGZ sources
without a host galaxy detected in AllWISE and use the remaining 41 446 sources for
training.

The RGZ catalogue only contains sources with at least 0.65 weighted volunteer
agreement, equivalent to approximately 80 per cent reliability. This implicitly selects
for less complex sources, since the volunteer agreement is a proxy for the difficulty of
cross-identifying a source (Wong et al. in prep.).

5.2.2 FIRST

We use radio imagery and select radio components from the FIRST survey and associ-
ated catalogue respectively (Helfand et al., 2015; White et al., 1997). FIRST is a 1.4 GHz
radio survey covering 10 575 deg2 of the sky north of Dec = −10◦ with an angular res-
olution of 5.4′′. At a detection limit of 1 mJy, the catalogue contains 946 432 radio
components.

For both training and prediction, we make use of image cutouts from FIRST cen-
tred onmid-infrared candidate hosts. Wepredict host galaxies for the 244 846 extended
FIRST components detected at> 10σ (about 1.5 mJy beam−1, per Banfield et al., 2015)
that have complete radio imagery for all candidate hosts. The numbers of objects re-
moved by our quality filters are shown in Appendix 5.F.

5.2.3 AllWISE

We use the sky coordinates and magnitudes from the AllWISE (Cutri et al., 2013) cata-
logue during training and prediction. AllWISE is an all-sky catalogue of mid-infrared
objects detected by the Wide-field Infrared Survey Explorer (WISE Wright et al., 2010) at
3.4, 4.6, 12, and 22 µm wavelengths (called W1–W4, respectively). AllWISE contains
over 747 million objects detected above 5σ at 3.4 and 4.6 µm. WISE has an angular
resolution of 6.1′′ and 6.4′′ at these wavelengths, respectively.

We store AllWISE objects in a MongoDB1 database with a geospatial index on the
right ascension and declination. This allows us to perform fast spatial lookups. The
geospatial index in MongoDB assumes a perfectly spherical Earth with a fixed radius,
allowing us to use it for sky coordinate searches. We use the right ascension and decli-
nation ofAllWISE sources to generate candidate hosts by searching for infrared sources
near FIRST components.

1https://www.mongodb.com/

https://www.mongodb.com/
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Table 5.1: Medians and standard deviations used to normalise input features for our classifiers.

Feature Median Standard deviation
Radio image 13.2 µJy 3.01 mJy

W1−W2 0.289 mag 0.378 mag
W1−W3 4.350 mag 1.067 mag
W1−W4 7.853 mag 1.144 mag
W2−W3 4.016 mag 0.958 mag
W2−W4 7.541 mag 1.046 mag
W3−W4 3.518 mag 0.409 mag

W1 16.659 mag 1.154 mag

5.2.4 SDSS

While we do not use data from the Sloan Digital Sky Survey Data Release 15 (SDSS;
Aguado et al., 2019) for training or prediction, we do use SDSS for spectroscopic red-
shifts of our host galaxies. These redshifts are required to calculate the radio luminosi-
ties of our sources. We use CDS X-Match2 to match each infrared host galaxy to the
closest source imaged by SDSS to within 5′′. This results in 34 305 spectroscopic red-
shifts for our 158 337 total host galaxies. To estimate the rate of false association with
SDSS sources, we add a 1′ offset to all host positions and redo the matching process.
With this method we estimate a 0.4 per cent rate of false association.

5.3 Method

We apply the binary classification cross-identificationmethod (BXID) following Alger
et al. (2018). This method casts cross-identification as a classification problem where
infrared ‘candidate host galaxies’ are classified as either being host galaxies or not. A
classifier is trained on examples of host galaxies and non-host galaxies drawn from
a cross-identification catalogue, for which we use RGZ. Other related algorithms de-
veloped to automatically cross-identify radio objects include Bayesian methods (Fan
et al., 2015), likelihood ratio (Weston et al., 2018), positional matching (e.g. Kimball &
Ivezić, 2008; Middelberg et al., 2008; Norris et al., 2006), and positional/image hybrid
approaches (van Velzen et al., 2012), but these methods do not make use of existing
cross-identification catalogues andmost assume compact radio sources or that the pro-
jected radio emission overlaps the host galaxy.

We represent candidate host galaxies by a 2′ × 2′ radio image from FIRST centred
on that galaxy, the 3.4 µm magnitude, and the six colours (magnitude differences) de-
rived from the four WISE wavelengths. Unknown values of infrared flux were set to
their upper limits in AllWISE. We note that many W3−W4 colours aremissing, so this
feature may be less useful than the others. We normalise the colours and magnitudes
by subtracting the median and dividing by the standard deviation. We normalise each

2http://cdsxmatch.u-strasbg.fr/

http://cdsxmatch.u-strasbg.fr/
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pixel in each radio image by subtracting the median, dividing by the standard devia-
tion, and applying a logistic function (σ; Equation 5.2) to account for the high dynamic
range of radio images.

σ(a) =
1

1 + exp(−a)
(5.2)

The medians and standard deviations are reported in Table 5.1. These values are com-
puted across the training set.

For each FIRST componentwegenerate a set of candidate host galaxies. AnAllWISE
object is considered a candidate host for a radio component if it is within

√
2× 1.5′ of

the centre of the two-dimensional Gaussian fit for that component. This search radius
is themaximum angular distance that a host galaxy can be located in RGZdue to the 3′-
wide square images shown to volunteers. Candidate hosts are assigned binary labels:
All candidates identified as host galaxies in RGZ are assigned a positive label and all
others are assigned a negative label. Following Alger et al. (2018) we train a convolu-
tional neural network (CNN) on the labelled candidate hosts. We base our model on
ResNet18 (He et al., 2016) pretrained on the ImageNet classification task, with the final
layer removed and replaced by a logistic regression model. Non-image features (i.e.
colours and the 3.6 µm magnitude) are concatenated with the features that are output
by the final ResNet18 layer. Using Adam (Kingma & Ba, 2015) to optimise our weights,
we train this model on our task until binary cross-entropy loss starts to increase on a
randomly selected 20 per cent validation set. We use PyTorch (Paszke et al., 2017) to
implement this model. The scores of each FIRST component are weighted by a one-
dimensional Gaussian function of angular separation, and the candidate maximising
this weighted score is selected as the host galaxy. We set the standard deviation of the
Gaussian to 120′′ as this provides good empirical results.

92 per cent of the host galaxies in RGZ were also detected as host galaxies in RGZ-
Ex. The mean volunteer agreement on all RGZ sources with detected hosts was 95+5

−13
per cent, compared to 88+12

−17 per cent for sources with hosts not in RGZ-Ex. Incorrect
cross-identifications can be considered a source of noise in the statistics. In futurework
wewill design away for BXID to output an ‘uncertainty’ so that sourceswith uncertain
cross-identifications can be removed from calculations. We quantify the reliability of
RGZ-Ex in Section 5.3.1.

We note that BXID necessarily identifies a host galaxy for all radio emission, even
when it does not make sense to do so. In our current work we treat this as a source of
noise. Future extensions to BXID will allow it to output ‘no detected host’.

5.3.1 Visual verification

To quantify the reliability of RGZ-Ex, we (M.A., O.W., A.K., N.M., and A.T.) visually
verified a randomly selected set of 200 radio components/host galaxy pairs in RGZ-Ex.
For each pair we decided whether the radio component matched its identified host or
not. This allowed us to estimate the accuracy of radio component-infrared host pairs
identified by BXID. Verification of component-host pairs is noisy and sometimes even
subjective, so each author looked at all 200 components. If an author was unsure about
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Figure 5.1: RGZ-Ex radio luminosity function compared with the RLFs of Mauch and Sadler
(2007).

a pair, they were allowed to ignore it and the verification was treated as missing label
data. We then aggregated these verifications following the aggregation approach in-
troduced by Dawid and Skene (1979). This approach jointly estimates the accuracy
of each author along with the aggregated verification by maximising the joint likeli-
hood. Note that this approach is able to handle missing label data. We propagated
the uncertainty in the accuracy with a Monte Carlo approach, sampling aggregated
verifications from the probabilities resulting from the Dawid and Skene model. The
estimated accuracy of BXID was (89.5± 0.8) per cent. It is interesting to note from our
results that even astronomers disagree significantly on the radio cross-identification
task, with agreement between authors ranging from 50 to 100 per cent across the veri-
fication components. We report the full verification set in Appendix 5.G.

5.4 Radio luminosity functions

In this sectionwepresent our radio luminosity functions (RLFs) derived from theRGZ-
Ex catalogue. Wefirst eliminated sources and componentswith high sidelobe probabil-
ity according to the FIRST catalogue and low BXID scores (see Appendix 5.F for a dia-
gram of this filtering process). To calculate each RLF we followed the 1/Vmax method
(Schmidt, 1968). This method accounts for the effects of Malmquist bias, which is
a systematic bias against sources at greater distances. We describe this approach in
Appendix 5.H. We limited our sample to radio sources with 1.4 GHz integrated flux
density of at least 2 mJy associated with host galaxies brighter than magnitude 17 at
3.4 µm, a spectroscopic redshift 0.02 ≤ z ≤ 0.6, and an i-band magnitude < 20. We
chose these limits based on the distribution of redshifts and infrared magnitudes as
well as the sensitivity of FIRST. We then removed sources with unusually high or low
W1 magnitude for their redshift (more than three standard deviations from the mean)
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because many such sources had incorrect spectroscopic redshifts, e.g. blazars. There
were 24 743 sources matching all criteria. We assumed a spectral index of α = −0.7 (as
is common in literature, e.g. Condon et al., 2002) with flux density f ∝ να where ν is
the frequency. We calculated the k-corrected radio luminosity (Kochanek et al., 2001)
as follows:

L =
4π f d2

1 + z
(1 + z)−α (5.3)

where z is redshift and d is luminosity distance (a function of z). The average k-
correction was 0.92. Uncertainties in comoving density were estimated as described
in Appendix 5.H. Completeness estimates are shown in Appendix 5.I. We discuss bi-
ases in our methods and results in Section 5.5.1.

We compared our RLFs with Mauch and Sadler (2007), who estimated RLFs from
7824 manually cross-identified radio sources in the NRAO VLA Sky Survey (NVSS;
Condon et al., 1998). Their RLFs were split into AGN and star-forming radio sources.
While we did not make this split explicitly in our catalogue, we expected both RGZ-Ex
and RGZ to be dominated by AGN due to the selection criterion of being extended
in the selected redshift volume. We note that the redshift range used in our work,
0.02 < z < 0.6, differs from the 0.003 < z < 0.3 range used by Mauch and Sadler
(2007).

In Figure 5.1 we show the RLF derived from RGZ-Ex along with the RLFs from
Mauch and Sadler (2007). There is good agreement between all three luminosity func-
tions for luminosities greater than 1023 W Hz−1 and below this luminosity the RGZ-
Ex RLF is bounded above by the Mauch and Sadler (2007) RLF. RGZ-Ex generally
finds less comoving density than Mauch and Sadler (2007), which we attribute to our
requirement for extent. We suggest that the peak in RGZ-Ex RLF at approximately
1022 W Hz−1 is due to our sample containing a small fraction of star-forming galaxies.
Our criterion, however, cuts out most star-forming regions as these are often compact,
which is whywe report lower densities than the star-forming RLF ofMauch and Sadler
(2007).

The WISE colour-colour plot, shown for RGZ-Ex in Figure 5.2, is often used to cat-
egorise galaxies at different evolutionary stages into four mid-infrared colour regions
that are typically populated by 1) spheroidals or elliptical galaxies; 2) quasi-stellar ob-
jects (QSOs), Seyferts or powerful AGN; 3) starbursting or luminous infrared galaxies
(LIRGs); and 4) the intermediate region where the other three regions overlap. The
horizontal axis, W2−W3, separates early- and late-type galaxies, with the star-forming
late-type galaxies appearing redder (further to the right) (Wright et al., 2010). The
vertical axis, W1−W2, separates inactive galaxies from AGN with strongly radiating
accretion discs (Sadler et al., 2014). In Figure 5.3 we show the radio luminosity func-
tion split by host galaxy location in the mid-infrared colour-colour plot as defined by
Jarrett et al. (2017).

Many sources have W3 detections with low signal-to-noise, limiting our ability to
subdivide our sample. We plot both the RLFs for the sample with only W3 ≥ 3σ as
well as the RLFs for the full sample in Figure 5.3. For the full sample we use the lower
magnitude limit from AllWISE as the W3 magnitude (which is an upper flux limit).
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Figure 5.2: WISE colour-colour distributions. The dashed grey lines show simple host galaxy
class divisions from Jarrett et al. (2017). These classes are labelled in the plot. The blue dot-
dashed line shows the empirical optical/infrared AGN criteria from Jarrett et al. (2011). The
arrow shows the direction that galaxies would shift with fainter W3 magnitudes. The right
plot limits the sample to only sources with W3 ≥ 3σ.

Using the upper flux limit as the real W3 flux has the effect of increasing W2−W3
compared to a real detection, so objects appear further to the right of the colour-colour
diagram (Figure 5.2) than they ought to. This means that due to W3 limits, objects
that should be in the spheroid set instead appear in the intermediate and star-forming
sets, and objects from the intermediate set instead appear in the star-forming set.

At low luminosities, our extended source RLF is dominated by galaxies with in-
frared colours consistent with star formation. The fraction of the RLF composed of the
star-forming set drops off rapidly for L1.4 GHz > 1022 W Hz−1, as expected for galaxies
with radio emission dominated by star formation (e.g. Mauch & Sadler, 2007). How-
ever, the RLF slope flattens out again beyond 1024 WHz−1, suggesting a second source
population. This population hasmanymissing W3 measurements, and these are likely
intermediates or spheroids incorrectly included in the star-forming set. We therefore
suggest that the low-luminosity RGZ-Ex sample mostly contains nearby galaxies with
radio emission due to star formation, which appear extended in FIRST as they are
close enough for FIRST to resolve their disc (greater than 20 kpc at z = 0.2). The re-
maining fraction of star-forming sources found by Mauch and Sadler (2007), shown
in Figure 5.1, would not be resolved in FIRST, as they are small or distant.

Spheroids, which are hosts in the mid-infrared region corresponding to ellipticals
and stars (Wright et al., 2010), comprise the majority of radio galaxies at 1023 W Hz−1,
and have a peak density at 1022 W Hz−1. The common host galaxies for radio-loud
AGN tend to be passively evolving spheroids. It is not surprising that they are more
common than star-forming galaxies at luminosities greater than 1022 W Hz−1. Above
1025 W Hz−1 they are less common than intermediate galaxies and their contribution
to the luminosity function drops rapidly. This is likely due to the loss of W3 detections
moving spheroids into the intermediate set, and we hypothesise that with deeper W3
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Figure 5.3: RLFs split by host galaxy location in theWISE colour-colour plot (Figure 5.2), using
our automated cross-identifications. The grey line is the total RLF for all sources. Solid lines
have good W3 detections and dashed lines include W3 with low signal-to-noise.
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Figure 5.4: Bivariate radio luminosity function showing radio luminosity against projected
physical extent. Contours are on a log scale, starting at the median and increasing by 10 per
cent per contour.

observations spheroids may dominate above 1025 W Hz−1.
Sources with hosts in the mid-infrared AGN region of the colour-colour diagram

(Figure 5.2) make up the smallest contribution to the radio luminosity function. They
have a steadily decreasing density from their lowest observed L1.4 GHz of 1022 W Hz−1

to their highest of 1027 W Hz−1, but are present in all luminosity bins except for the
very lowest. This is a set with a very low fraction of spectroscopic SDSS matches for
the WISE host galaxies. 26 per cent of hosts outside the WISE AGN region have an
SDSS match, compared to just 12 per cent of hosts inside the WISE AGN region. This
is likely due to the incomplete sampling of QSOs in the SDSS spectroscopic survey or
redshift evolution effects (Strauss et al., 2002). The fraction of the RLF contributed
by galaxies classed as mid-infrared AGN increases above 1025 W Hz−1, meaning that
high-luminosity radioAGNare alsomore likely to be infraredAGN than at lower radio
luminosities. Note that the AGN set is unaffected by missing W3 detections, as the
AGN set is based only on W1−W2.

Galaxies residing in the intermediate mid-infrared colour region can be populated
by both early- and late-type galaxies, which have a mix of processes occurring within
them. These ‘intermediate sources’ dominate in most luminosity ranges, and above
1024 W Hz−1 they comprise the vast majority of our sample. As intermediate-type
galaxies fall between star-forming galaxies and passive ellipticals on the mid-infrared
colour-colour plane, they do not have a clear morphological class and are composed
of overlapping subsets of sources. The most luminous radio AGN are almost entirely
found in this set of galaxies. In fact, as radio luminosity increases, the density fraction
shifts from spheroids toward intermediate galaxies, likely due to missing W3 moving
objects from the spheroid set into the intermediate set.

In Figure 5.4we show the radio luminosity function for different ranges of projected
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physical extent of their radio emission. We estimate the angular extent as the angular
distance between the most separated components in a multi-component source. This
result is complementary to other Radio Galaxy Zoo studies on the effect of the envi-
ronment on the size and asymmetry of the observed extended radio emission (Garon
et al., 2019; Rodman et al., 2019).

5.5 Discussion

5.5.1 Biases and uncertainties

Biases enter our work due to our chosen samples and methods. Our training set, RGZ,
is biased toward sources smaller than 1.5′ and limited above by

√
2 × 3′ due to the

3′ × 3′ cutout size of the RGZ user interface. RGZ volunteers preferentially select host
galaxies that are brighter in W1, so we expect RGZ to overrepresent the number of
sources with W1-bright host galaxies.

These biases may affect our trained algorithm: For example, the overabundance
of W1-bright host galaxies in RGZ may cause our algorithm to be less accurate when
unassociated bright galaxies are in the field of view. Without knowing the true distri-
bution of host galaxies, however, it is difficult to quantify the effect of such biases on
our trained method.

FIRST itself is also biased. Helfand et al. (2015) describe several reasonswhy FIRST
flux may be systematically underestimated. Most of these effects are insignificant for
extended objects in our sample or are corrected in the FIRST catalogue from which
we draw our flux information. The exception is the ‘resolving out’ of diffuse and low
surface brightness radio emission by the Very Large Array in its B configuration. This
means that we lose flux on most nearby radio galaxies (especially those with very dif-
fuse components) and may miss diffuse or dim radio galaxies entirely. More diffuse
radio galaxies such as Fanaroff-Riley type I (FRI; Fanaroff & Riley, 1974) galaxies tend
to be toward the low end of the radio-loud luminosity distribution, about 1023 WHz−1

(Best, 2009), so we expect that losing diffuse sources would lower our estimates of
density around this luminosity. Large, extended lobes such as those associated with
Fanaroff-Riley type II (FRII; Fanaroff & Riley, 1974) galaxies may also be resolved out,
so by the samemechanismwe expect to lose an increasing amount of fluxwith increas-
ing source angular size. This effect is compounded by flux loss at 1.4 GHz associated
with synchrotron losses and adiabatic expansion losses (Blundell et al., 1999).

Our host galaxy redshifts may be biased. Incorrectly identifying the host galaxy
may introduce sources with incorrect redshifts into the RLF, an effect which will be
dominated by misidentifying galaxies as hosts where the true host is not detected.
Since we are matching to optical spectra in SDSS to find redshifts, we are biased to-
ward brighter host galaxies which are more likely to have such spectra. Without an op-
tically complete sample—currently impossible on such scales—this effect is unavoid-
able. Brighter optical sources appear at lower redshifts, so we likely undersample
higher-redshift (and hence higher-luminosity) galaxies.

Our requirement for radio emission to be extendedmisses radio galaxies thatwould
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be resolved and extended if they were not aligned with the line-of-sight. We therefore
must be underestimating the population of extended sources (though assuming a ran-
dom distribution of orientations, the majority of galaxies are not aligned close to the
line-of-sight). The requirement for extended radio emission also imposes a lower limit
on linear size, which varies with redshift: At z = 0.6 the effect is strongest and we can-
not see sources with linear size under 33.5 kpc. This causes us to underestimate the
population of radio galaxies with linear sizes between 10–30 kpc. On the other hand,
we likely avoid significant overestimation of radio luminosity due to relativistic beam-
ing, since we filter out sources aligned along the line-of-sight.

We estimate uncertainties in our RLF from Poisson noise in the histogram bins. We
likely underestimate these uncertainties as it is difficult to estimate uncertainty in our
algorithm, though in future we anticipate that we will be able to employ an ensemble
of classifiers to estimate this (e.g. Lakshminarayanan et al., 2017).

5.5.2 Extended radio galaxies in the low-z Universe

Our total RLFs are consistent with the idea that large, extended radio sources are
typically hosted by massive ellipticals (Best et al., 2005). These RLFs match exist-
ing RLFs such as that of Mauch and Sadler (2007), except at radio luminosities be-
low 1022 W Hz−1. This is unsurprising since we employ a requirement for extended
emission, and, besides very nearby star-forming galaxies, FRII comprise most of the
population of extended radio objects. The fractional RLF split by mid-infrared colour,
Figure 5.3, shows that spheroids reach peak density at a radio luminosity associated
with a drop in density of intermediates, and intermediates begin to dominate the RLF
as the spheroid density drops. Together, these mid-infrared classes of galaxy form the
bulk of the extended radio galaxy RLF.

We see a significant star-forming population in our extended sample, whichmeans
that we are likely resolving some discs in radio. While the 1/Vmax method ensures that
our RLFs account for similar galaxies throughout the Universe, even though we only
resolve very nearby discs, some of the star-forming population is not included. The
difference between our RLF and existing RLFs must be due to the latter containing
low-luminosity sources that are compact even when very nearby.

Can we use our RLFs to estimate the kinetic energy contribution of AGN to the
galaxy halo and beyond? The extended population of AGN is the population that con-
tributes the most mechanical energy: The major part of the energy in the jet expands
the radio lobes, drives shocks, or is stored in the jet magnetic field, rather than being
emitted as radiation (Godfrey & Shabala, 2016; Hardcastle & Krause, 2014). Extended
radio sources should therefore represent the bulk of AGN feedback: Radio galaxies
with extended jets inject mechanical energy out to larger distances from the core of
the host galaxies than those with smaller jets. This is supported by e.g. Turner and
Shabala (2015), who found that extended sources comprise the bulk of the mechan-
ical energy contribution. By assuming a relationship between radio luminosity and
radio jet mechanical energy, we can use our extended source RLFs to estimate the
contribution of extended AGN to energy in the intergalactic/circumgalactic medium
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(IGM/CGM). But assuming such a relationship is not without problems: The radio
lobe luminosity experiences significant evolution (e.g. Bicknell et al., 1997), the sur-
rounding IGM/CGM may interact with the radio lobe expansion in non-trivial ways
(e.g. Hardcastle & Krause, 2013), and the relationship between the mechanical en-
ergy and radio luminosity has high scatter on individual radio sources (Hardcastle
& Krause, 2013). With our sample size, these effects should be diminished, and with
these caveats in mind we will estimate the energy contribution of extended sources to
the IGM.We assume a scaling relation of ln Q = β ln Lν + Q0, where Q is the jet power
and Lν is the monochromatic radio luminosity at frequency ν. The values for β and Q0

vary significantly across the literature, based on different physical assumptions and
samples. Willott et al. (1999) presented a widely used relationship:

ln Q = ln( f 3/23× 1038) +
6
7

ln
[

L151 MHz

1028 W Hz−1

]
, (5.4)

with a scaling constant 1 ≤ f ≤ 20 and Q in watts. Other models exist with different
slopes, e.g. Bîrzan et al. (2008) suggest that β ≈ 0.5− 0.7 and Cavagnolo et al. (2010)
find β ≈ 0.7. Shabala and Godfrey (2013) show that the scalings presented by Willott
et al. (1999) are consistent with independent theoretical modelling for high-power ra-
dio galaxies. Godfrey and Shabala (2016) on the other hand provide a summary of the
literature in this field and suggest that these correlations are from mutual distance de-
pendence rather than intrinsic relationships. They find that there is no strong empirical
evidence for such a correlation in either FRI or FRII. However, their theoretical models
suggest β ≈ 0.5, 0.8 for FRI and FRII respectively, which is consistent with Willott et al.
(1999). The relationship between luminosity and kinetic energy is not yet settled, but
we can still use this popular scaling method both to explore the consequences of our
RLFs and for comparison with previous work.

Scaling the frequency to 1.4 GHz, and assuming a spectral index of α = −0.7, β =
6/7, and Q0 = ln( f 3/2) + 89.9, we can write the Willott et al. (1999) relation as

ln(Q) = ln( f 3/2) + 89.9 +
6
7

ln
[

L1400 MHz

1028 W Hz−1

]
. (5.5)

Assuming f ∈ [1, 20] gives Q0 ∈ [89.9, 94.4]. Integrating over our RLF we find Q ∈
[1.3 × 1030, 1.2 × 1032] W Mpc−3. This is likely a lower limit as we are missing ex-
tended radio sources oriented along our line-of-sight and nearby diffuse extended
radio sources (e.g. FRI), and Shabala (2018) argues that many ‘compact’ AGN may
in fact be extended but below the sensitivity of surveys such as FIRST. Our results are
consistent with other literature (e.g. Hardcastle et al., 2019, who estimated the energy
contribution as 7× 1031 W Mpc−3).

5.5.3 Future work

With such a large sample size, further partitioning of the RLF into subsamples is pos-
sible. Any combination of the features investigated here, plus further host galaxy and
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radio properties, could be used to generate fractional RLFs. Automated classifiers such
as ClaRAN (Wu et al., 2019) or feature extractors such as PINK (Galvin et al., 2019; Pol-
sterer et al., 2015; Ralph et al., 2019) could provide a way to divide the RLF by radio
morphology. These methods provide a way of dividing galaxy classes based directly
on the radio image, rather than the host galaxy like we have done here, and so should
not be affected by extinction or redshift in the same way as our sample. Such sub-
samples would lend insight into how radio power is connected to radio morphology
and generation mechanisms. Cross-matching with other surveys such as NVSS or the
150 MHz TIFR GMRT Sky Survey would provide properties such as the spectral index
and observations of diffuse emission missed by FIRST (as used by Kimball & Ivezić,
2008). Such properties could also be used to create interesting and insightful fractional
RLFs.

While we have not investigated the link between extended sources and their local
environments, this will be the focus of future work. Environment will heavily factor
into the source sizes, morphologies, and so on, following work such as Rodman et al.
(2019) and Garon et al. (2019).

Ongoing radio surveys such as EMU, VLASS (Lacy et al., 2020), and LoTSS
(Shimwell et al., 2019) will greatly increase the number of extended sources. However,
our sample size limitations in this chapter are not from FIRST, but from SDSS: Until
next-generation spectroscopic surveys are available, redshifts will be the limiting fac-
tor. To significantly increase our sample size would require much greater numbers of
redshifts.

5.6 Summary

Extended radio sources provide an opportunity to study the interaction between AGN
and their large-scale environments. We trained the binary cross-identification method
on the Radio Galaxy Zoo to generate the largest sample of reliably cross-identified,
extended radio sources, and this large sample allowed us to investigate their bulk dis-
tributions in new, detailed ways. We estimated radio luminosity functions split by
mid-infrared colour, physical extent, and redshift. Despite our extendedness criterion,
we found a significant star-forming population. We estimated that extended AGN
contribute between 1.3× 1030 and 1.2× 1032 W Mpc−3 of mechanical energy to their
environments. Ongoing and future surveys such as EMU will provide even greater
numbers of extended radio sources, and our combination of machine learning and as-
tronomymethodology will allow these samples to be cross-identified and investigated
efficiently and reliably.
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5.F Sankey diagrams

This section presents Sankeydiagrams showing the filtering of components and sources
from the full FIRST sample in this chapter. A Sankey diagram shows the order and
number of objects removed from a sample. Figure 5.5 shows the filtering of compo-
nents and Figure 5.6 shows the filtering of sources. The component filters are ‘Bad
FIRST’ for components on the edge of FIRST with incomplete images, ‘Sidelobe’ for
components with high sidelobe probability, ‘Low score’ for components with only
low-scoring candidate hosts, ‘Faint’ for components with less than 10 signal-to-noise
according to the FIRST catalogue, and ‘Compact’ for components that do not have ex-
tended radio emission according to Equation 5.1. Sources were removed after each
component filter if they no longer contained any components.
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5.G Visual verification results

In Section 5.3.1 we described our visual verification of the BXID method. We list the
radio components in the verification set in Table 5.2. Each row of the table contains
the FIRST component, its AllWISE host galaxy according to BXID, and whether the
association is correct according to our visual verification. If a verifier was particularly
unsure about an object, they were able to skip this object, and so are not accounted for
in the verification for that object. Verification was weighted by the Dawid and Skene
(1979) maximum likelihood model.

5.H Radio luminosity function

We computed the radio luminosity function following the 1/Vmax method (Schmidt,
1968). We performed the following steps:

1. Remove all radio sources that do not fit the selection criteria. This applies for
both radio and infrared properties, so we choose a minimum radio flux density
fmin and a maximum infrared magnitude mmax,ir, as well as redshift limits zlower
and zupper.

2. For each source, compute the maximum redshift that the source could have been
observed within the selection criteria. We find this redshift by first numerically
solving Equation 5.3 for z with L as the luminosity of each radio source and
f = fmin to obtain the maximum redshift zradio at which the source could be
observed in radio. We similarly find the maximum redshift that the infrared
host galaxy could be observed at within the selection criteria, zir, by numerically
solving Equation 5.6. d(zir) is the luminosity distance at a redshift zir, d is the
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Table 5.2: Validation objects. ‘Agree’ is whether or not the verifiers agreed with BXID associ-
ating the given FIRST object with the given AllWISE object.

FIRST AllWISE Agree
J000234.9-001421 J000242.35-001320.5 n
J002841.1+141654 J002840.37+141652.7 y
J003731.4+000156 J003731.26+000146.7 y
J005407.5-011158 J005407.61-011158.9 y
J011210.3+002203 J011210.41+002201.9 y
J012342.4+015849 J012342.24+015850.4 y
J013015.1+110653 J013015.16+110653.4 y
J013107.7+070343 J013102.02+070332.0 y
J014247.9-000039 J014247.81-000040.3 y
J014250.0-000032 J014247.81-000040.3 n
J020222.3+030138 J020223.20+030150.4 y
J020333.8+000853 J020336.94+000759.3 y
J021840.1-032311 J021840.13-032306.0 y
J023022.0+010834 J023022.11+010840.0 y
J024245.3-022535 J024245.35-022534.6 y
J025901.0+005350 J025901.50+005346.1 y
J033204.1-004757 J033204.15-004757.1 y
J073033.2+390413 J073033.21+390412.9 y
J073954.1+481810 J073954.87+481759.5 y
J074504.9+331247 J074504.81+331256.2 y
J074640.4+421709 J074640.45+421709.1 y
J074707.9+171719 J074708.35+171726.5 y
J075043.6+274838 J075043.35+274844.8 n
J075050.3+331937 J075051.25+331905.0 y
J075422.2+311253 J075422.35+311252.5 y
J075637.0+212006 J075636.65+212001.4 y
J082326.1+141438 J082326.34+141435.9 y
J082422.5+351121 J082422.65+351114.6 y
J082925.9+462618 J082926.02+462618.5 y
J083512.4+175441 J083512.45+175441.1 y
J084133.5+402035 J084133.40+402042.8 y
J084238.4+405305 J084238.38+405306.6 n
J084417.3+315845 J084417.92+315845.9 y
J084728.5+360700 J084728.24+360714.6 y
J084905.5+111448 J084905.51+111447.8 y
J085236.8+262006 J085236.11+262013.4 y
J085415.6+524930 J085415.62+524936.7 y
J090623.2+300746 J090622.87+300743.9 y
J091745.1+275049 J091745.89+275103.8 y
J091752.0+431614 J091752.14+431612.7 y
J092014.4+302907 J092013.95+302859.3 y
J092140.5+540118 J092140.24+540121.1 y
J092213.0+542157 J092213.03+542157.2 y
J092406.9+562703 J092406.47+562656.2 y
J092713.1+105841 J092713.14+105839.8 y
J093108.6+613447 J093108.63+613447.2 y
J093239.6+052308 J093237.71+052240.7 n
J093627.8+103610 J093627.87+103609.7 y
J093645.2+561435 J093645.89+561434.2 y
J094006.8+482651 J094006.92+482649.2 y

FIRST AllWISE Agree
J094009.5+600403 J094011.55+600357.6 n
J094023.7+135123 J094023.73+135125.2 y
J094324.5+435341 J094324.61+435342.0 y
J094650.8+382015 J094650.44+382010.9 y
J095011.8+455319 J095011.82+455320.0 y
J095113.5+180211 J095113.82+180204.2 n
J095242.4+222638 J095242.45+222638.0 y
J095538.7+013546 J095539.20+013546.1 y
J095609.9+363441 J095609.30+363445.4 y
J095811.8+225056 J095811.90+225055.5 y
J100019.2+263516 J100018.84+263527.5 y
J101315.9+064520 J101316.51+064519.0 y
J101455.2-004716 J101455.30-004718.3 y
J102153.5+260429 J102153.52+260429.6 y
J102354.7+390653 J102354.88+390654.0 y
J102620.4+303600 J102620.46+303550.4 y
J102710.4+460254 J102714.81+460256.4 n
J102955.9+424906 J102955.96+424906.7 y
J103503.9+102404 J103503.92+102403.6 y
J103839.9+331200 J103839.94+331201.1 y
J104030.5+211624 J104031.09+211620.6 n
J104533.8+430025 J104535.22+430020.8 y
J104907.5+322903 J104907.91+322906.6 y
J105146.9+552257 J105147.40+552308.4 y
J105257.5+105418 J105257.53+105421.5 y
J105521.6+372641 J105521.24+372652.4 y
J105758.8+321605 J105758.84+321605.3 y
J110104.9+151618 J110104.90+151618.2 y
J110353.2+352320 J110353.37+352319.9 y
J110414.4+481345 J110423.08+481311.0 n
J111057.7+220756 J111057.18+220758.3 y
J111208.5+275207 J111201.79+275053.8 n
J111225.2+233159 J111225.30+233157.9 y
J111726.3+375336 J111726.35+375337.0 y
J111746.1+261151 J111746.18+261150.9 y
J111854.3+424708 J111854.45+424652.8 y
J112124.4+640417 J112125.02+640408.6 y
J112135.3+352330 J112135.44+352324.9 y
J112550.9+200631 J112558.75+200554.3 y
J112859.7+260923 J112859.86+260911.3 y
J113201.1+442639 J113201.23+442639.4 y
J113302.5+355408 J113301.80+355415.3 y
J113712.7+263301 J113711.86+263335.1 y
J113756.3+471314 J113756.31+471314.1 y
J113906.6+230602 J113906.68+230602.1 y
J114325.0+600721 J114323.90+600737.1 y
J114759.7+370305 J114759.22+370311.2 y
J114916.7+083022 J114916.33+083040.5 n
J115010.9+063340 J115010.93+063340.5 y
J115308.6+374851 J115316.96+374850.0 y
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FIRST AllWISE Agree
J115448.7+472222 J115448.67+472223.7 y
J115603.7+584704 J115603.48+584706.1 y
J115605.9+343230 J115605.64+343229.4 y
J115653.0+572338 J115645.38+572151.7 y
J120138.0+230922 J120137.97+230922.2 y
J120752.8+533808 J120752.85+533807.3 y
J120943.3-021934 J120942.89-021943.0 y
J121045.6+190225 J121045.68+190227.0 y
J121207.6+115412 J121207.72+115413.8 y
J121211.3+485951 J121211.86+485952.0 y
J121406.7+002634 J121406.73+002635.0 y
J122518.0+350258 J122517.85+350301.9 y
J122525.1+451530 J122524.71+451508.5 y
J122640.9+430508 J122640.82+430509.2 y
J123429.8+260107 J123434.79+260134.3 n
J123633.1+100928 J123633.12+100928.7 y
J124839.3+411522 J124839.42+411522.3 n
J125129.2+551012 J125128.76+551009.3 y
J130005.8+524801 J130006.14+524803.0 y
J130132.1+511351 J130132.32+511352.5 y
J131104.4+464936 J131104.45+464934.0 y
J131452.2+252811 J131446.81+252820.8 n
J132033.8+332639 J132033.59+332639.0 n
J132257.5+191134 J132257.53+191133.9 y
J132529.3+230734 J132529.35+230733.8 y
J132546.8+052453 J132546.86+052454.1 y
J132637.7+112110 J132637.92+112108.8 y
J132831.8+104339 J132831.88+104338.8 y
J132932.3+131839 J132932.32+131839.6 y
J133022.8+311904 J133022.83+311902.8 y
J133453.3+405653 J133454.13+405650.6 y
J133741.1+124302 J133741.13+124303.1 y
J133823.6+103337 J133823.67+103341.9 y
J134651.2+415154 J134651.06+415156.1 y
J134704.3+110622 J134704.35+110622.7 y
J134752.7+555046 J134752.71+555048.6 y
J134831.7+164325 J134831.57+164328.2 y
J134949.8+385539 J134949.93+385542.8 y
J135106.5+074534 J135106.50+074534.2 y
J135107.7+615502 J135107.75+615502.1 y
J135658.5+134028 J135659.15+134017.0 y
J135833.9+180021 J135834.03+180020.4 y
J140630.7+554017 J140629.32+554009.9 y
J140804.2+503019 J140804.10+503021.1 y
J141226.7+454125 J141226.54+454125.5 y
J141245.0+495213 J141243.84+495206.4 y
J141317.4+325306 J141317.50+325306.8 y
J141723.8+543639 J141724.33+543629.5 y
J141938.8+312146 J141940.16+312138.8 y
J142515.3+175526 J142513.89+175525.7 y

FIRST AllWISE Agree
J142829.5+070836 J142829.60+070836.3 y
J143411.0+170036 J143411.18+170035.7 y
J143624.0-001057 J143623.89-001100.8 y
J143742.6+104412 J143742.69+104412.8 y
J143840.8+475355 J143841.08+475356.1 y
J143909.1+430847 J143909.08+430847.8 y
J144135.8+102246 J144135.91+102245.1 y
J144333.6+275229 J144333.02+275250.2 y
J145012.3+471739 J145012.33+471738.7 y
J145103.7+452459 J145102.66+452520.5 n
J145401.6+141009 J145401.70+141009.6 y
J150158.7+191413 J150158.87+191405.3 y
J150743.9+352720 J150743.62+352724.1 y
J151141.6-003209 J151142.01-003213.0 y
J151315.5+403107 J151315.56+403107.7 y
J151518.7+230256 J151518.67+230257.3 y
J151703.6+105947 J151703.68+105947.6 y
J151736.8+610856 J151736.83+610857.7 y
J152121.6+281635 J152120.68+281626.2 y
J152714.8+310425 J152714.88+310424.7 y
J153428.9+272134 J153429.68+272120.8 y
J154245.3+100919 J154245.71+100917.8 y
J154901.6+103159 J154901.40+103152.6 y
J154925.2+395316 J154926.17+395303.7 y
J155206.3-005348 J155206.58-005339.3 y
J155457.3+344637 J155458.45+344644.7 y
J155743.5+272752 J155743.52+272752.8 y
J160130.0+083848 J160130.07+083850.7 y
J160534.8+441220 J160535.55+441221.5 y
J160859.2+400135 J160901.32+400230.7 n
J161545.4+231617 J161545.14+231617.2 y
J161930.4+085533 J161930.51+085532.6 y
J162228.0+264743 J162228.70+264736.7 y
J162750.4+473624 J162750.55+473623.5 y
J162904.2+470852 J162904.34+470853.0 y
J163038.7+214740 J163037.43+214748.9 n
J163323.6+424051 J163323.61+424051.9 y
J163327.5+242426 J163327.87+242427.4 y
J163533.8+454557 J163534.00+454554.3 y
J164211.2+512029 J164211.27+512029.3 y
J165549.1+375923 J165549.01+375923.6 y
J165620.0+363402 J165619.89+363403.9 y
J165700.5+474820 J165659.58+474809.0 y
J171406.2+292712 J171404.16+292704.0 n
J172126.4+374446 J172126.46+374446.6 y
J222627.7-005010 J222627.77-005010.8 y
J223636.4-013827 J223636.48-013827.2 y
J225619.0+143257 J225621.96+143351.4 y
J232410.1+001315 J232410.15+001314.5 y
J234727.9-000919 J234727.65-000912.9 y
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Figure 5.7: Estimated completeness as a function of mid-infrared colour and magnitude.

luminosity distance of the host galaxy, and m is the apparent magnitude of the
host galaxy, all in the infrared.

5 log10

(
d(zir)

d

)
+ m = mmax,ir (5.6)

The maximum redshift that the source could have been observed within the se-
lection criteria is then zmax = min(zir, zradio, zupper).

3. For each source, compute the comoving volume Vmax at redshift zmax.

4. The count for each luminosity bin is the sum over 1/Vmax for each source in the
bin. We divide these counts by the estimated completeness (Appendix 5.I) to
account for redshift incompleteness. We account for the fact that FIRST does not
cover the whole sky by multiplying by the total area of the sky divided by the
area of our selection.

After computing the luminosity function, we estimate the uncertainty in each bin
using Poisson statistics,

√
N for a bin count N.

5.I Redshift completeness estimate

Figure 5.7 shows the estimated completeness of our RLF sample in Chapter 5 as a func-
tion of W1 and W1−W2. We followed the same method as Pracy et al. (2016) for this
estimation, averaging completeness over circles centred on each source. Each source
is associated with a circle of radius equal to the distance to its 50th nearest neighbour
in the W1 and W1−W2 plane. This appendix was originally part of Alger et al. (in
prep.).



§5.J Giant radio galaxies 105

5.J Giant radio galaxies

This appendix describes our search for giant radio galaxies in RGZ-Ex, and the results
of this search. To identify radio sources we assumed that if any two components had
the same host galaxy then they were part of the same source. This would be a reason-
able assumption if all host galaxies were correctly identified, which was not the case.
This assumption therefore introduced spurious sources due to galaxies that were incor-
rectly identified as host galaxies: Not all sources used in this chapter are real sources,
and in particular sources of large angular size are likely to be incorrect. Nevertheless
RGZ-Ex provides a useful catalogue of candidate radio sources, and visual follow-up
can confirm whether sources of interest are real.

H.A. and M.J.A. examined all 296 candidate sources in the RGZ-Ex catalogue with
an estimated physical extent larger than 1 Mpc. Of these, 40 were real giant radio
galaxies, which we show in Table 5.3. We defined ‘giant radio galaxy’ as a radio galaxy
with emission extended to physical sizes≥ 1.0 Mpc. Other thresholds, such as 0.7 Mpc,
also exist in literature. The physical extents of the remaining 256 candidate sources
were overestimatedmostly due to sidelobes/artefacts (103), incorrect source grouping
(82), or incorrect SDSS matches (21). The citizen scientists who identified giants were
WizardHowl, DolorousEdd, antikodon, csunjoto, sisifolibre, JeanTate, JKD, PADV, and
firejuggler. H.A., together with his summer students, had previously identified 29 of
these giants.

Note that this is a particularly challenging set: Sources that were misidentified of-
ten had unusually large estimated extents due to the inclusion of spurious components.
The error rate in this set therefore does not reflect the rest of the catalogue.
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Table 5.3: Giant radio galaxies found in RGZ-Ex. ‘LLS’ is the projected linear size of the source
as measured by the maximum angular distance between radio components. The RA/Dec are
the coordinates of the host galaxy. s/p indicates spectroscopic/photometric redshift. LExisting
in literature. RAlso found by RGZ citizen scientists. †Misidentified SDSS host, manually cor-
rected to obtain redshift.

AllWISE host (WISEA) RA (J2000) Dec (J2000) z LLS (Mpc)
J004210.18-080011.3 10.54 -8.00 0.65± 0.14 1.6 p

J021008.48+011839.6L 32.54 1.31 0.86524± 0.0001 1.2 s
J075858.29+355643.6R 119.74 35.95 0.74748± 0.00013 1.0 s
J080831.68+473523.9R 122.13 47.59 0.58854± 0.00016 1.1 s
J083034.78+231124.6 127.64 23.19 0.94± 0.13 1.1 p
J090604.03+011114.2 136.52 1.19 0.7975± 0.0004 1.6 s
J093256.81+074212.2 143.24 7.70 1.0032± 0.0003 1.1 s
J093526.80+051729.8R 143.86 5.29 0.84± 0.04 1.2 p
J094238.72+114337.9 145.66 11.73 0.49± 0.05 1.2 p
J094835.60+535946.4R 147.15 54.00 0.64± 0.10 1.2 p
J095706.12+292439.2 149.28 29.41 0.71± 0.12 1.5 p
J102335.25+433208.0 155.90 43.54 0.75± 0.09 1.5 p
J102933.99+210345.8R 157.39 21.06 0.82407± 0.00008 1.1 s
J103043.98+355451.2R 157.68 35.91 0.64074± 0.00008 1.2 s
J104449.92+234525.6† 161.20 23.76 0.57712± 0.00009 1.6 s
J110655.98+624759.8R 166.73 62.80 0.84379± 0.00004 1.1 s
J112900.68+635543.2 172.25 63.93 0.71± 0.06 1.1 p
J112948.20+243922.6 172.45 24.66 0.79± 0.07 1.1 p
J114553.67-003304.7 176.47 -0.55 2.0522± 0.0006 1.3 s
J121111.26+534840.4 182.80 53.81 0.74± 0.14 1.1 p
J121152.04+304232.4R 182.97 30.71 0.47102± 0.00012 1.3 s
J121944.73+174121.3 184.94 17.69 1.5129± 0.0009 1.0 s
J123735.89+544814.4R 189.40 54.80 1.0271± 0.0006 1.2 s
J123819.16+113444.8 189.58 11.58 0.80± 0.08 1.2 p
J123846.84-032857.5† 189.70 -3.48 0.67± 0.07 1.5 p
J131625.00+272042.8 199.10 27.35 0.69092± 0.00004 1.0 s
J133307.00+045048.6R 203.28 4.85 1.40534± 0.00016 1.1 s
J141933.36+104706.4R 214.89 10.79 0.33973± 0.00003 1.0 s
J142008.45+185422.7R 215.04 18.91 0.63± 0.04 1.4 p
J145057.28+530007.7L 222.74 53.00 0.91662± 0.00009 1.3 s
J150012.18+604941.3 225.05 60.83 1.6626± 0.0007 1.2 s
J153547.13+432245.0R 233.95 43.38 0.63891± 0.00007 1.3 s
J154631.18+194819.9 236.63 19.81 0.5917± 0.0002 1.4 s
J160852.10+561110.2R 242.22 56.19 1.3196± 0.0003 1.3 s
J162200.48+364044.0 245.50 36.68 1.9994± 0.0002 1.1 s
J163004.35+103321.9R 247.52 10.56 0.85± 0.09 1.2 p
J163125.75+200224.1R 247.86 20.04 0.62662± 0.00013 1.0 s
J165055.46+394446.6 252.73 39.75 0.58829± 0.00013 1.1 s
J232410.33+045309.6 351.04 4.89 0.76± 0.06 1.4 p
J234440.02-003231.6 356.17 -0.54 0.5014± 0.0001 1.0 s



Chapter 6

Faraday Complexity

This chapter is based on my paper Interpretable Faraday Complexity Classification, by M.
J. Alger, J. D. Livingston, N. M. McClure-Griffiths, J. L. Nabaglo, O. I. Wong, and C.
S. Ong; accepted and to be published by the Publications of the Astronomical Society of
Australia.

In the last two chapters we developed and applied a way of automatically cross-
identifying radio sources, which will allow us to quickly extract useful information
from wide-area radio continuum surveys like EMU. These are not the only radio sur-
veys that will be conducted in the lead-up to the SKA, however. Polarisation sky sur-
veys like POSSUM can provide very different information about the radio sky. One
piece of information that can be determined frompolarised observations is the Faraday
complexity of a radio source. A complex sourcemay be separated from us as observers
by some magnetised structure, or it may have extended structure across the sky, even
if we cannot resolve the source spatially. This tells us something about the intervening
Universe or the physical structure of the source, respectively. This chapter develops a
new machine learning method of classifying sources as Faraday complex or simple.

Faraday complexity describes whether a spectropolarimetric observation has sim-
ple or complex magnetic structure. Quickly determining the Faraday complexity of a
spectropolarimetric observation is important for processing large, polarised radio sur-
veys. Finding simple sources lets us build rotationmeasure grids, and finding complex
sources lets us follow these sources up with slower analysis techniques or further ob-
servations. We introduce five features that can be used to train simple, interpretable
machine learning classifiers for estimating Faraday complexity. We train logistic re-
gression and extreme gradient boosted tree classifiers on simulated polarised spectra
using our features, analyse their behaviour, and demonstrate that our features are ef-
fective for both simulated and real data. This is the first application of machine learn-
ing methods to real spectropolarimetry data. With 95 per cent accuracy on simulated
ASKAP data and 90 per cent accuracy on simulated ATCA data, our method performs
comparably to state-of-the-art convolutional neural networks while being simpler and
easier to interpret. Logistic regression trained with our features behaves sensibly on
real data and its outputs are useful for sorting polarised sources by apparent Faraday
complexity.
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6.1 Introduction

As polarised radiation from distant galaxies makes its way to us, magnetised plasma
along the way can cause the polarisation angle to change due to the Faraday effect.
The amount of rotation depends on the squared wavelength of the radiation, and the
rotation per squared wavelength is called the Faraday depth. Multiple Faraday depths
may exist along one line-of-sight, and if a polarised source is observed at multiple
wavelengths then these multiple depths can be disentangled. This can provide insight
into the polarised structure of the source or the intervening medium.

Faraday rotationmeasure synthesis (RM synthesis) is a technique for decomposing
a spectropolarimetric observation into flux at its Faraday depths ϕ, the resulting distri-
bution of depths being called a Faraday dispersion function (FDF) or a Faraday spectrum.
It was introduced by Brentjens and de Bruyn (2005) as a way to rapidly and reliably
analyse the polarisation structure of complex and high-Faraday depth polarised obser-
vations.

A Faraday simple observation is one for which there is only one Faraday depth, and
in this simple case the Faraday depth is also known as a rotation measure (RM). All Fara-
day simple observations can be modelled as a polarised source with a thermal plasma
of constant electron density and magnetic field (a ‘Faraday screen’; Anderson et al.,
2015; Brentjens & de Bruyn, 2005) between the observer and the source. A Faraday
complex observation is one which is not Faraday simple, and may differ from a Faraday
simple source due to plasma emission or composition of multiple screens (Brentjens
& de Bruyn, 2005). The complexity of a source tells us important details about the
polarised structure of the source and along the line-of-sight, such as whether the in-
tervening medium emits polarised radiation, or whether there are turbulent magnetic
fields or different electron densities in the neighbourhood. The complexity of nearby
sources taken together can tell us about themagneto-ionic structure of the galactic and
intergalactic medium between the sources and us as observers. O’Sullivan et al. (2017)
show examples of simple and complex sources, and Figure 6.1 and Figure 6.2 show an
example of a simulated simple and complex FDF respectively.

Identifying when an observation is Faraday complex is an important problem in
polarised surveys (Sun et al., 2015), and with current surveys such as the Polarised
Sky Survey of the Universe’s Magnetism (POSSUM) larger than ever before, meth-
ods that can quickly characterise Faraday complexity en masse are increasingly useful.
Being able to identify which sources are simple lets us produce a reliable rotation mea-
sure grid from background sources, and being able to identify which sources might be
complex allows us to find sources to follow-up with slower polarisation analysis meth-
ods that may require manual oversight, such as QU fitting (as seen in e.g. Miyashita
et al., 2019; O’Sullivan et al., 2017). In this chapter, we introduce five simple, inter-
pretable features representing polarised spectra, use these features to train machine
learning classifiers to identify Faraday complexity, and demonstrate their effective-
ness on real and simulated data. We construct our features by comparing observed
polarised sources to idealised polarised sources. The features are intuitive and can be
estimated from real FDFs.
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Section 6.2 provides a background to our work, including a summary of prior work
and our assumptions on FDFs. Section 6.3 describes our approach to the Faraday com-
plexity problem. Section 6.4 explains how we trained and evaluated our method. Fi-
nally, Section 6.5 discusses these results.

6.2 Faraday complexity

Faraday complexity is an observational property of a source: Ifmultiple Faradaydepths
are observedwithin the same apparent source (e.g. due tomultiple lines-of-sight being
combined within a beam), then the source is complex. A source composed of multiple
Faraday screens may produce observations consistent with many models (Sun et al.,
2015), including simple sources, so there is some overlap between simple and complex
sources. Faraday thickness is also a source of Faraday complexity: When the interven-
ingmediumbetween a polarised source and the observer also emits polarised light, the
FDF cannot be characterised by a simple Faraday screen. As discussed in Section 6.2.2
we defer Faraday thick sources to future work. In this section we summarise existing
methods of Faraday complexity estimation and explain our assumptions andmodel of
simple and complex polarised FDFs.

6.2.1 Prior work

There are multiple ways to estimate Faraday complexity, including detecting non-
linearity in χ(λ2) (Goldstein & Reed, 1984), change in fractional polarisation as a func-
tion of frequency (Farnes et al., 2014), non-sinusoidal variation in fractional polari-
sation in Stokes Q and U (O’Sullivan et al., 2012), counting components in the FDF
(Law et al., 2011), minimising the Bayesian information criterion (BIC) over a range of
simple and complex models (called QU fitting; O’Sullivan et al., 2017), the method of
Faradaymoments (Anderson et al., 2015; Brown, 2011), and deep convolutional neural
network classifiers (CNNs; Brown et al., 2018). See Sun et al. (2015) for a comparison
of these methods.

The most common approaches to estimating complexity are QU fitting
(e.g. O’Sullivan et al., 2017) and Faraday moments (e.g. Anderson et al., 2015). To our
knowledge there is currently no literature examining the accuracy of QU fitting when
applied to complexity classification specifically, thoughMiyashita et al. (2019) analyse
its effectiveness on identifying the structure of two-component sources. Brown (2011)
suggests Faraday moments as a method to identify complexity, a method later used
by Farnes et al. (2014) and Anderson et al. (2015), but again no literature examines
the accuracy. CNNs are the current state-of-the-art with an accuracy of 94.9 per cent
(Brown et al., 2018) on simulated ASKAP Band 1 and 3 data, and we will compare our
results to this method.
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Figure 6.1: A simple FDF and its corresponding polarised spectra: (a) groundtruth FDF F, (b)
noise-free polarised spectrum P, (c) noisy observed FDF F̂, (d) noisy polarised spectrum P̂.
Blue and orange mark real and imaginary components respectively.
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Figure 6.2: A complex FDF and its corresponding polarised spectra: (a) groundtruth FDF F,
(b) noise-free polarised spectrum P, (c) noisy observed FDF F̂, (d) noisy polarised spectrum
P̂. Blue and orange mark real and imaginary components respectively.
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6.2.2 Assumptions on Faraday dispersion functions

Before we can classify FDFs as Faraday complex or Faraday simple, we need to define
FDFs and any assumptions we make about them. An FDF is a function that maps
Faraday depth ϕ to complex polarisation. It is the distribution of Faraday depths in
an observed polarisation spectrum. For a given observation, we assume that there is
a true, noise-free FDF F composed of at most two Faraday screens. This accounts for
most actual sources (Anderson et al., 2015) and extension to three screenswould cover
most of the remainder—O’Sullivan et al. (2017) found that 89 per cent of their sources
were best explained by two or fewer screens, while the remainder were best explained
by three screens. We model the screens by Dirac delta distributions:

F(ϕ) = A0δ(ϕ− ϕ0) + A1δ(ϕ− ϕ1). (6.1)

A0 and A1 are the polarised flux of each Faraday screen, and ϕ0 and ϕ1 are the Faraday
depths of the respective screens. With thismodel, a Faraday simple source is onewhich
has A0 = 0, A1 = 0, or ϕ0 = ϕ1. By using delta distributions to model each screen, we
are assuming that there is no internal Faraday dispersion (which is typically associated
with diffuse emission rather than the mostly compact sources we expect to find in
wide-area polarised surveys). F generates a polarised spectrum of the form shown
in Equation 6.2:

P(λ2) = A0e2iϕ0λ2
+ A1e2iϕ1λ2

. (6.2)

Such a spectrumwould be observed as noisy samples from a number of squared wave-
lengths λ2

j , j ∈ [1, . . . , D]. We model this noise as a complex Gaussian with standard
deviation σ and call the noisy observed spectrum P̂:

P̂(λ2
j ) ∼ N (P(λ2

j ), σ2). (6.3)

The constant variance of the noise is a simplifying assumption which may not hold for
real data, and exploring this is a topic for future work. By performing RM synthesis
(Brentjens & de Bruyn, 2005) on P̂ with uniform weighting we arrive at an observed
FDF:

F̂(ϕ) =
1
D

D

∑
j=1

P̂(λ2
j )e
−2iϕλ2

j . (6.4)

Examples of F, F̂, P, and P̂ for simple and complex observations are shown in Figure 6.1
and Figure 6.2 respectively. Note that there are two reasons that the observed FDF F̂
does not match the groundtruth FDF F. The first is the noise in P̂. The second arises
from the incomplete sampling of P̂.

We do not consider external or internal Faraday dispersion in this work. External
Faraday dispersion would broaden the delta functions of Equation 6.1 into peaks, and
internal Faraday dispersion would broaden them into top-hat functions. All sources
have at least a small amount of dispersion as the Faraday depth is a bulk property
of the intervening medium and is subject to noise, but the assumption we make is
that this dispersion is sufficiently small that the groundtruth FDFs are well-modelled
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with delta functions. Faraday thick sources would also invalidate our assumptions,
and we assume that there are none in our data as Faraday thickness can be consistent
with a two-component model depending on the wavelength sampling (e.g. Brentjens
& de Bruyn, 2005; Ma et al., 2019a). Nevertheless some external Faraday dispersion is
covered by our model, as depending on observing parameters Faraday thick sources
may appear as two screens (Van Eck et al., 2017).

To simulate observed FDFs we follow the method of Brown et al. (2018), which we
describe in Appendix 6.K.

6.3 Classification approach

The Faraday complexity classification problem is as follows: Given an FDF F̂, is it Fara-
day complex or Faraday simple? In this section we describe the features that we have
developed to address this problem, which can be used in any standard machine learn-
ing classifier. We trained two classifiers on these features, which we describe here also.

6.3.1 Features

Our features are based on a simple idea: All simple FDFs look essentially the same,
up to scaling and translation, while complex FDFs may deviate. A noise-free peak-
normalised simple FDF F̂simple has the form:

F̂simple(ϕ; ϕs) = R(ϕ− ϕs). (6.5)

where R is the rotation measure spread function (RMSF), the Fourier transform of the
wavelength sampling function which is 1 at all observed wavelengths and 0 otherwise.
ϕs traces out a curve in the space of all possible FDFs. In other words, F̂simple is a
manifold parametrised by ϕs. Our features are derived from relating an observed FDF
to themanifold of simple FDFs (the ‘simplemanifold’). Wemeasure the distance of an
observed FDF to the simple manifold using distance measure D f , that takes all values
of the FDF into account:

ς f (F̂) = min
ϕs∈R

D f (F̂(ϕ) ∥ F̂simple(ϕ; ϕs)). (6.6)

We propose two distances that have nice properties:

• invariant over changes in complex phase,

• translationally invariant in Faraday depth,

• zero for Faraday simple sources (i.e. when A0 = 0, A1 = 0, or ϕ0 = ϕ1) when
there is no noise,

• symmetric in components (i.e. swapping A0 ↔ A1 and ϕ0 ↔ ϕ1 should not
change the distance),
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• increasing as A0 and A1 become closer to each other, and

• increasing as screen separation |ϕ0 − ϕ1| increases over a large range.

Our features are constructed from this distance and its minimiser. In other words we
look for the simple FDF F̂simple that is ‘closest’ to the observed FDF F̂. The minimiser
ϕs is the Faraday depth of the simple FDF.

While we could choose any distance that operates on functions, we used the 2-
Wasserstein (W2) distance (Equation 6.7) and the Euclidean distance (Equation 6.9).
The W2 distance operates on probability distributions and can be thought of as themin-
imum cost to ‘move’ one probability distribution to the other, where the cost of moving
one unit of probability mass is the squared distance it is moved. Under W2 distance,
the minimiser ϕw in Equation 6.6 can be interpreted as the Faraday depth that the FDF
F̂ would be observed to have if its complexity was unresolved (i.e. the weighted mean
of its components). The Euclidean distance is the square root of the least-squares loss
which is often used for fitting F̂simple to the FDF F̂. Under Euclidean distance, the
minimiser ϕs is equivalent to the depth of the best-fitting single component under as-
sumption of Gaussian noise in F̂. We calculated theW2 distance using Python Optimal
Transport (Flamary & Courty, 2017), and we calculated the Euclidean distance using
scipy.spatial.distance.euclidean (Virtanen et al., 2020). Further intuition about
the two distances is provided in Section 6.3.2.

We denote by ϕw and ϕe, the Faraday depth of the simple FDF that minimises the
respective distances (2-Wasserstein and Euclidean).

ϕw = argmin
ϕw

DW2(F̂(ϕ) ∥ F̂simple(ϕ; ϕw)),

ϕe = argmin
ϕe

DE(F̂(ϕ) ∥ F̂simple(ϕ; ϕe)).

These features are depicted on an example FDF in Figure 6.3. For simple observed
FDFs, the fitted Faraday depths ϕw and ϕe both tend to be close to the peak of the
observed FDF. However for complex observed FDFs, ϕw tends to be at the average
depth between the two major peaks of the observed FDF, being closer to the higher
peak. For notation convenience, we denote the Faraday depth of the observed FDF
that has largest magnitude as ϕa, i.e.

ϕa = argmax
ϕa

|F̂(ϕa)|.

Note that in practice ϕa ≈ ϕe. For complex observed FDFs, the values of Faraday
depths ϕw and ϕa tend to differ (essentially by a proportion of the location of the sec-
ond screen). The difference between ϕw and ϕa therefore provides useful information
to identify complex FDFs. When the observed FDF is simple, the 2-Wasserstein fit
overlaps significantly, hence the observed magnitudes F̂(ϕw) and F̂(ϕa) will be simi-
lar. However, for complex FDFs, ϕw and ϕa are at different depths, leading to different
values of F̂(ϕw) and F̂(ϕa). Therefore the magnitudes of the observed FDFs at the
depths ϕw and ϕa indicate how different the observed FDF is from a simple FDF.
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φw φa ≈ φe

F̂
(φ

w
)

F̂
(φ

a )

|φw − φa|

F̂ observed

F̂simple minimising W2

Figure 6.3: An example of how an observed FDF F̂ relates to our features. ϕw is the W2-
minimising Faraday depth, and ϕa is the F̂-maximising Faraday depth (approximately equal
to the Euclidean-minimising Faraday depth). The remaining two features are the W2 and Eu-
clidean distances between the depicted FDFs.

In summary, we provide the following features to the classifier:

• log |ϕw − ϕa|,

• log F̂(ϕw),

• log F̂(ϕa),

• log DW2(F̂(ϕ) ∥ F̂simple(ϕ; ϕw)),

• log DE(F̂(ϕ) ∥ F̂simple(ϕ; ϕe)),

where DE is the Euclidean distance, DW2 is the W2 distance, ϕa is the Faraday depth of
the FDFpeak, ϕw is theminimiser forW2 distance, and ϕe is theminimiser for Euclidean
distance.

6.3.2 Interpreting distances

Interestingly, in the case where there is no RMSF, Equation 6.6 with W2 distance re-
duces to the Faraday moment already in common use:

DW2(F) = min
ϕw∈R

DW2(F(ϕ) ∥ Fsimple(ϕ; ϕw)) (6.7)

=

(
A0A1

(A0 + A1)2 (ϕ0 − ϕ1)
2
)1/2

. (6.8)

See Appendix 6.L for the corresponding calculation. In this sense, the W2 distance can
be thought of as a generalised Faraday moment, and conversely an interpretation of
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Faraday moments as a distance from the simple manifold in the case where there is
no RMSF. Euclidean distance behaves quite differently in this case, and the resulting
distance measure is totally independent of Faraday depth:

DE(F) = min
ϕe∈R

DE(F(ϕ) ∥ Fsimple(ϕ; ϕe)) (6.9)

=
√

2
min(A0, A1)

A0 + A1
. (6.10)

See Appendix 6.M for the corresponding calculation.

6.3.3 Classifiers

We trained two classifiers on simulated observations using these features: logistic re-
gression (LR) and extreme gradient boosted trees (XGB). These classifiers are useful
together for understanding Faraday complexity classification. LR is a linear classi-
fier that is readily interpretable by examining the weights it applies to each feature,
and is one of the simplest possible classifiers. XGB is a powerful off-the-shelf non-
linear ensemble classifier, and is an example of a decision tree ensemble which are
widely used in astronomy (e.g. Hložek et al., 2020; Machado Poletti Valle et al., 2020).
We used the scikit-learn implementation of LR and we used the XGBoost library
for XGB. We optimised hyperparameters for XGB using a fork of xgboost-tuner1

as utilised by Zhu et al. (2020). We used 1000 iterations of randomised parameter
tuning and the hyperparameters we found are tabulated in Table 6.2. We optimised
hyperparameters for LR using a 5-fold cross-validation grid search implemented in
sklearn.model_selection.GridSearchCV. The resulting hyperparameters are tabu-
lated in Table 6.3 in Appendix 6.N.

6.4 Experimental method and results

We applied our classifiers to classify simulated (Section 6.4.2 and 6.4.3) and real (Sec-
tion 6.4.4) FDFs. We replicated the experimental setup of Brown et al. (2018) for
comparison with the state-of-the-art CNN classification method, and we also applied
our method to 142 real FDFs observed with the Australia Telescope Compact Array
(ATCA) from Livingston et al. (2021) and O’Sullivan et al. (2017).

6.4.1 Data

6.4.1.1 Simulated training and validation data

Our classifierswere trained and validated on simulated FDFs. Weproduced two sets of
simulated FDFs, one for comparison with the state-of-the-art method in the literature
and one for application to our observed FDFs (described in Section 6.4.1.2). We refer
to the former as the ‘ASKAP’ dataset as it uses frequencies from the Australian Square

1https://github.com/chengsoonong/xgboost-tuner

https://github.com/chengsoonong/xgboost-tuner
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Kilometre Array Pathfinder 12-antenna early science configuration. These frequencies
include 900 channels from 700–1300 and 1500–1800 MHz and were used to generate
simulated training and validation data by Brown et al. (2018). We refer to the latter
as the ‘ATCA’ dataset as it uses frequencies from the 1–3 GHz configuration of the
ATCA. These frequencies include 394 channels from 1.29–3.02 GHz andmatch our real
data. We simulated Faraday depths from −50 to 50 rad m−2 for the ‘ASKAP’ dataset
(matching Brown) and −500 to 500 rad m−2 for the ‘ATCA’ dataset.

For each dataset, we simulated 100 000 FDFs, approximately half simple and half
complex. We randomly allocated half of these FDFs to a training set and reserved
the remaining half for validation. Each FDF had complex Gaussian noise added to
the corresponding polarisation spectrum. For the ‘ASKAP’ dataset, we sampled the
standard deviation of the noise uniformly between 0 and σmax = 0.333, matching the
dataset of Brown et al. (2018). For the ‘ATCA’ dataset, we fit a log-normal distribution
to the standard deviations of O’Sullivan’s data (O’Sullivan et al., 2017) fromwhich we
sampled our values of σ:

σ ∼ 1
0.63
√

2πσ
exp

(
− log (50σ− 0.5)2

2× 0.632

)
(6.11)

6.4.1.2 Observational data

We used two real datasets containing a total of 142 sources: 42 polarised spectra from
Livingston et al. (2020, submitted) and 100 polarised spectra from O’Sullivan et al.
(2017). These datasets were observed in similar frequency ranges on the same tele-
scope (with different binning), but are in different parts of the sky. The Livingston
data were taken near the Galactic Centre, and the O’Sullivan data were taken away
from the plane of the Galaxy. There are more Faraday complex sources near the Galac-
tic Centre compared tomore Faraday simple sources away from the plane of theGalaxy
(Livingston et al.). The similar frequency channels used in the two datasets result in
almost identical RMSFs over the Faraday depth range we considered (-500 to 500 rad
m−2), so we expected that the classifiers would work equally well on both datasets
with no need to re-train. We discarded the 26 Livingston sources with modelled Fara-
day depths outside of this Faraday depth range, which we do not expect to affect the
applicability of our methods to wide-area surveys because these fairly high depths are
not common.

Livingston et al. (2021) used RM-CLEAN (Heald, 2008) to identify significant com-
ponents in their FDFs. Some of these components had very high Faraday depths up
to 2000 rad m−2, but we chose to ignore these components in this chapter as they are
much larger than might be expected in a wide-area survey like POSSUM. They used
the second Faraday moment (Brown, 2011) to estimate Faraday complexity, with Fara-
day depths determined using scipy.signal.find_peaks on the cleaned FDFs, with
a cutoff of seven times the noise of the polarised spectrum. Using this method, they
estimated that 89 per cent of their sources were Faraday complex i.e. had a Faraday
moment greater than zero.
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O’Sullivan et al. (2017) used theQU-fitting andmodel selection techniquedescribed
inO’Sullivan et al. (2012). TheQU-fittingmodels contained up to three Faraday screen
components as well as a term for internal and external Faraday dispersion. We ignore
the Faraday thickness and dispersion for the purposes of this chapter, as most sources
were not found to have Faraday thickness and dispersion is beyond the scope of our
current work. 37 sources had just one component, 52 had two, and the remaining 11
had three.

6.4.2 Results on ‘ASKAP’ dataset

Table 6.1: Confusionmatrix entries for LR andXGBon ‘ASKAP’ and ‘ATCA’ simulateddatasets,
and the CNN confusion matrix entries adapted from Brown et al. (2018).

‘ASKAP’ ‘ATCA’
LR XGB CNN LR XGB

True negative rate 0.99 0.99 0.97 0.92 0.91
False positive rate 0.01 0.01 0.03 0.08 0.09
False negative rate 0.10 0.09 0.07 0.16 0.10
True positive rate 0.90 0.91 0.93 0.84 0.90

The accuracies of the LR and XGB classifiers on the ‘ASKAP’ testing set were 94.4
and 95.1 per cent respectively. The rates of true and false identifications are sum-
marised in Table 6.1. These results are very close to the CNN presented by Brown
et al. (2018), with a slightly higher true negative rate and a slightly lower true positive
rate (recalling that positive sources are complex, and negative sources are simple).
The accuracy of the CNN was 94.9 per cent, slightly lower than our XGB classifier and
slightly higher than our LR classifier. Both of our classifiers therefore produced similar
classification performance to the CNN, with faster training time and easier interpreta-
tion.

6.4.3 Results on ‘ATCA’ dataset

The accuracies of the LR and XGB classifiers on the ‘ATCA’ dataset were 89.2 and 90.5
per cent respectively. The major differences between the ‘ATCA’ and the ‘ASKAP’ ex-
periments are the range of the simulated Faraday depths and the distribution of noise
levels. The ‘ASKAP’ dataset, to match past CNN work, only included depths from
−50 to 50 rad m−2, while the ‘ATCA’ dataset includes depths from −500 to 500 rad
m−2. The rates of true and false identifications are again shown in Table 6.1.

As we know the true Faraday depths of the components in our simulation, we can
investigate the behaviour of these classifiers as a function of physical properties. Fig-
ure 6.4 shows the mean classifier prediction as a function of component depth separa-
tion and minimum component amplitude. This is tightly related to the mean accuracy,
as the entire plot domain contains complex spectra besides the left and bottom edge:
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Figure 6.4: Mean prediction as a function of component depth separation and minimum com-
ponent amplitude for (a) XGB and (b) LR.



§6.4 Experimental method and results 119

−2.5 0.0 2.5 5.0 7.5
PCA 1

−2

0

2

4

6
P

C
A

2

0.2

0.4

0.6

0.8

L
R

p
ro

b
ab

il
it

y

−2.5 0.0 2.5 5.0 7.5
PCA 1

−2

0

2

4

6

P
C

A
2

0.3

0.4

0.5

0.6

0.7

0.8

X
G

B
p

ro
b

ab
il

it
y

Figure 6.5: Principal component analysis for simulated data (coloured dots) with observa-
tions overlaid (black-edged circles). Observations are coloured by their XGB or LR estimated
probability of being complex, with blue indicating ‘most simple’ and pink indicating ‘most
complex’.

by thresholding the classifier prediction to a certain value, the accuracy will be one
hundred per cent on the non-edge for all sources with higher prediction values.

6.4.4 Results on observed FDFs

We used the LR and XGB classifiers which were trained on the ‘ATCA’ dataset to esti-
mate the probability that our 142 observed FDFs (Section 6.4.1.2) were Faraday com-
plex. As these classifiers were trained on simulated data, they face the issue of the
‘domain gap’: The distribution of samples from a simulation differs from the distri-
bution of real sources, and this affects performance on real data. Solving this issue is
called ‘domain adaptation’ and how to do this is an open research question inmachine
learning (Pan & Yang, 2010; Zhang, 2020). Nevertheless, the features of our observa-
tionsmostly fall in the same region of feature space as the simulations (Figure 6.5) and
so we expect reasonably good domain transfer.

Two apparently complex sources in the Livingston sample are classified as simple
with high probability by XGB. These outliers are on the very edge of the training sam-
ple (Figure 6.5) and the underdensity of training data here is likely the cause of this
issue. LR does not suffer the same issue, producing plausible predictions for the entire
dataset, and these sources are instead classified as complex with high probability.

With a threshold of 0.5, LR predicted that 96 and 83 per cent of the Livingston and
O’Sullivan sources were complex respectively. This is in linewith expectations that the
Livingston data should have more Faraday complex sources than the O’Sullivan data
due to their location near the Galactic Centre. XGB predicted that 93 and 100 per cent
of the Livingston and O’Sullivan sources were complex respectively. Livingston et al.
(2021) found that 90 per cent of their sourceswere complex, andO’Sullivan et al. (2017)
found that 64 per cent of their sources were complex. This suggests that our classifiers
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Figure 6.6: Estimated rates of Faraday complexity for the Livingston andO’Sullivan datasets as
functions of threshold. The horizontal lines indicate the rates of Faraday complexity estimated
by Livingston and O’Sullivan respectively.
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are overestimating complexity, though it could also be the case that the methods used
by Livingston and O’Sullivan underestimate complexity. Modifying the prediction
threshold from 0.5 changes the estimated rate of Faraday complexity, and we show
the estimated rates against threshold for both classifiers in Figure 6.6. We suggest that
this result is indicative of our probabilities being uncalibrated, and a higher threshold
should be chosen in practice. We chose to keep the threshold at 0.5 as this had the
highest accuracy on the simulated validation data. The very high complexity rates of
XGB and two outlying classifications indicate that the XGB classifiermay be overfitting
to the simulation and that it is unable to generalise across the domain gap.

Figure 6.7 and Figure 6.8 in Appendix 6.O show every observed FDF ordered by es-
timated Faraday complexity, alongside themodels predicted byLivingston andO’Sullivan
et al. (2017) for LR and XGB respectively. There is a clear visual trend of increasingly
complex sources with increasing predicted probability of being complex.

6.5 Discussion

On simulated data (Section 6.4.3) we achieve state-of-the-art accuracy. Our results
on observed FDFs show that our classifiers produce plausible results, with Figure 6.7
and Figure 6.8 showing a clear trend of apparent complexity. Some issues remain: We
discuss the intrinsic overlap between simple and complex FDFs in Section 6.5.1 and
the limitations of our method in Section 6.5.2.

6.5.1 Complexity and seeming ‘not simple’

Through this work we found our methods limited by the significant overlap between
complex and simple FDFs. Complex FDFs can be consistent with simple FDFs due to
close Faraday components or very small amplitudes on the secondary component, and
vice versa due to noise.

The main failure mode of our classifiers is misclassifying a complex source as sim-
ple (Table 6.1). Whether sources with close components or small amplitudes should
be considered complex is not clear, since for practical purposes they can be treated as
simple: Assuming the source is simple yields a very similar RM to the RM of the pri-
mary component, and thus would not negatively impact further data products such as
anRMgrid. The scenarioswherewewouldwant a Faraday complexity classifier rather
than a polarisation structure model – large-scale analysis and wide-area surveys – do
not seem to be disadvantaged by considering such sources simple. Additional sources
similar to these are likely hidden in presumably ‘simple’ FDFs by the frequency range
and spacing of the observations, just as how these complex sources would be hidden
in lower-resolution observations. Note also that misidentification of complex sources
as simple is intrinsically a problem with complexity estimation even for models not
well-represented by a simple FDF, as complex sources may conspire to appear as a
wide range of viable models including simple (Sun et al., 2015).

Conversely, high-noise simple FDFs may be consistent with complex FDFs. One
key question is how Faraday complexity estimators should behave as the noise in-
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creases: Should high noise result in a complex prediction or a simple prediction, given
that both complex and simple FDFs would be consistent with a noisy FDF? Occam’s
razor suggests that we should choose the simplest suitable model, and so increasing
noise should lead to predictions of less complexity. This is not how our classifiers op-
erate, however: High-noise FDFs are different to the model simple FDFs and so are
predicted to be ‘not simple’. In some sense our classifiers are not looking for complex
sources, but are rather looking for ‘not simple’ sources.

6.5.2 Limitations

Ourmain limitations are our simplifying assumptions on FDFs and the domain gap be-
tween simulated and real observations. However, our proposed features (Section Sec-
tion 6.3.1) can be applied to future improved simulations.

It is unclear what the effect of our simplifying assumptions are on the effective-
ness of our simulation. The three main simplifications that may negatively affect our
simulations are 1) limiting to two components, 2) assuming no external Faraday dis-
persion, and 3) assuming no internal Faraday dispersion (Faraday thickness). Future
work will explore removing these simplifying assumptions, but will need to account
for the increased difficulty in characterising the simulationwithmore components and
no longer having Faraday screens as components. Additionally, more work will be re-
quired to make sure that the rates of internal and external Faraday dispersion match
what might be expected from real sources, or risk making a simulation that has too
large a range of consistent models for a given source: For example, a two-component
source could also be explained as a sufficiently wide or resolved-out Faraday thick
source or a three-component source with a small third component. This greatly com-
plicates the classification task.

Previous machine learning work (e.g. Brown et al., 2018) has not been run before
on real FDF data, so this chapter is the first example of the domain gap arising in Fara-
day complexity classification. This is a problem that requires further research to solve.
We have no good way to ensure that our simulation matches reality, so some amount
of domain adaptation will always be necessary to train classifiers on simulated data
and then to apply these classifiers to real data. But with the low source counts in po-
larisation science (high-resolution spectropolarimetric data currently numbers in the
few hundreds) any machine learning method will need to be trained on simulations.
This is not just a problem in Faraday complexity estimation, and domain adaptation
is also an issue faced in the wider astroinformatics community: Large quantities of
labelled data are hard to come by, and some sources are very rare (e.g. gravitational
wave detections or fast radio bursts; Agarwal et al., 2020; Gebhard et al., 2019; Zevin
et al., 2017). LR seems to handle the domain adaptation better than XGB, with only a
slightly lower accuracy on simulated data. Our results are plausible and the distribu-
tion of our simulation well overlaps the distribution of our real data (Figure 6.5).
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6.6 Conclusion

Wedeveloped a simple, interpretablemachine learningmethod for estimating Faraday
complexity. Our interpretable features were derived by comparing observed FDFs to
idealised simple FDFs, which we could determine for both simulated and real obser-
vations. We demonstrated the effectiveness of our method on both simulated and real
data. Using simulated data, we found that our classifiers were 95 per cent accurate,
with near perfect recall (specificity) of Faraday simple sources. On simulated data
that matched existing observations, our classifiers obtained an accuracy of 90 per cent.
Evaluating our classifiers on real data gave the plausible results shown in Figure 6.7,
and marks the first application of machine learning to observed FDFs. Future work
will need to narrow the domain gap to improve transfer of classifiers trained on simu-
lations to real, observed data.
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6.K Simulating observed FDFs

This appendix describes how we simulated FDFs in Chapter 6. We simulate FDFs by
approximating them by arrays of complex numbers. An FDF F is approximated on the
domain [−ϕmax, ϕmax] by a vector F⃗ ∈ Rd:

F⃗j =
1

∑
k=0

Akδ(−ϕmax + jδϕ− ϕk) (6.12)

where δϕ = (ϕmax− ϕmin)/d and d is the number of Faraday depth samples in the FDF.
F⃗ is sampled by uniformly sampling its parameters:

ϕk ∈ [ϕmin, ϕmin + δϕ, . . . , ϕmax] (6.13)
Ak ∼ U (0, 1). (6.14)
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We then generate a vector polarisation spectrum P⃗ ∈ Rm from F⃗ using a Equation 6.15:

P⃗ℓ =
j

∑
j=0

Fje2i(ϕmin+jδϕ)λ2
ℓ dϕ. (6.15)

λ2
ℓ is the discretised value of λ2 at the ℓth index of P⃗. This requires a set of λ2 values,

which depends on the dataset being simulated. These values can be treated as the
channel wavelengths at which the polarisation spectrum was observed. We then add
Gaussian noise with variance σ2 to each element of P⃗ to obtain a discretised noisy ob-
servation ˆ⃗P. Finally, we perform RM synthesis using the Canadian Initiative for Radio
Astronomy Data Analysis RM package2, which is a Python module that implements a
discrete version of RM synthesis:

ˆ⃗Fj = m−1
m

∑
ℓ=1

⃗̂Pℓe−2i(ϕmin+jδϕ)λ2
ℓ . (6.16)

6.L 2-Wasserstein begets Faraday moments

Minimising the 2-Wasserstein distance between a model FDF and the simple manifold
gives the second Faraday moment of that FDF. This appendix demonstrates that fact.
Let F̃ be the sum-normalisedmodel FDF and let S̃ be the sum-normalised simplemodel
FDF:

F̃(ϕ) =
A0δ(ϕ− ϕ0) + A1δ(ϕ− ϕ1)

A0 + A1
(6.17)

S̃(ϕ; ϕw) = δ(ϕ− ϕw). (6.18)

The W2 distance, usually defined on probability distributions, can be extended to one-
dimensional complex functions A and B by normalising them:

DW2(A ∥ B)2 = inf
γ∈Γ(A,B)

∫∫ ϕmax

ϕmin

|x− y|2 dγ(x, y), (6.19)

Ã(ϕ) =
|A(ϕ)|∫ ϕmax

ϕmin
|A(θ)| dθ

, (6.20)

B̃(ϕ) =
|B(ϕ)|∫ ϕmax

ϕmin
|B(θ)| dθ

, (6.21)

where Γ(A, B) is the set of couplings of A and B, i.e. the set of joint probability distri-
butions that marginalise to A and B; and infγ∈Γ(A,B) is the infimum over Γ(A, B). This
can be interpreted as the minimum cost to ‘move’ one probability distribution to the
other, where the cost of moving one unit of probability mass is the squared distance it
is moved.

2https://github.com/CIRADA-Tools/RM

https://github.com/CIRADA-Tools/RM
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The set of couplings Γ(F̃, S̃) is the set of all joint probability distributions γ such
that: ∫ ϕmax

ϕmin

γ(ϕ, φ) dϕ = S̃(φ; ϕw), (6.22)∫ ϕmax

ϕmin

γ(ϕ, φ) dφ = F̃(ϕ). (6.23)

The coupling that minimises the integral in Equation 6.19 is the optimal transport plan
between F̃ and S̃. Since F̃ and S̃ are defined in terms of delta functions, the optimal
transport problem reduces to a discrete optimal transport problem and the optimal
transport plan is:

γ(ϕ, φ) =
A0δ(ϕ− ϕ0) + A1δ(ϕ− ϕ1)

A0 + A1
δ(φ− ϕw). (6.24)

In other words, to move the probability mass of S̃ to F̃, a fraction A0/(A0 + A1) is
moved from ϕw to ϕ0 and the complementary fraction A1/(A0 + A1) is moved from
ϕw to ϕ1. Then:

DW2(F̃ ∥ S̃)2 =
∫∫ ϕmax

ϕmin

|ϕ− φ|2 dγ(ϕ, φ) (6.25)

=
A0(ϕ0 − ϕw)2 + A1(ϕ1 − ϕw)2

A0 + A1
. (6.26)

To obtain the W2 distance to the simple manifold, we need to minimise this over ϕw.
Differentiate with respect to ϕw and set equal to zero to find:

ϕw =
A0ϕ0 + A1ϕ1

A0 + A1
. (6.27)

Substituting this back in, we find:

ςW2(F)2 =
A0A1

A0 + A1
(ϕ0 − ϕ1)

2 (6.28)

which is the Faraday moment.

6.M Euclidean distance in the no-RMSF case

In this appendix we calculate the minimised Euclidean distance evaluated on a model
FDF (Equation 6.1). Let F̃ be the sum-normalised model FDF and let S̃ be the nor-
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malised simple model FDF:

F̃(ϕ) =
A0δ(ϕ− ϕ0) + A1δ(ϕ− ϕ1)

A0 + A1
(6.29)

S̃(ϕ; ϕe) = δ(ϕ− ϕe). (6.30)

The Euclidean distance between F̃ and S̃ is then:

DE(F̃(ϕ) ∥ S̃(ϕ; ϕe))
2 (6.31)

=
∫ ϕmax

ϕmin

∣∣F̃(ϕ)− δ(ϕ− ϕe)
∣∣2 dϕ. (6.32)

Assume ϕ0 ̸= ϕ1 (otherwise, DE will always be either 0 or 2). If ϕe = ϕ0, then:

DE(F̃(ϕ) ∥ S̃(ϕ; ϕe))
2 (6.33)

=
1

(A0 + A1)2

∫ ϕmax

ϕmin

A2
1 |δ(ϕ− ϕ1)− δ(ϕ− ϕ0)|2 dϕ (6.34)

=
2A2

1
(A0 + A1)2 (6.35)

and similarly for ϕe = ϕ1. If ϕe ̸= ϕ0 and ϕe ̸= ϕ1, then:

DE(F̃(ϕ) ∥ S̃(ϕ; ϕe))
2 =

A2
0 + A2

1 + 1
(A0 + A1)2 . (6.36)

The minimised Euclidean distance when ϕ0 ̸= ϕ1 is therefore:

DE(F) = min
ϕe∈R

DE(F(ϕ) ∥ Fsimple(ϕ; ϕe)) (6.37)

=
√

2
min(A0, A1)

A0 + A1
. (6.38)

If ϕ0 = ϕ1, then the minimised Euclidean distance is 0.

6.N Hyperparameters for LR and XGB

This section contains tables of the hyperparameters that we used for our classifiers in
Chapter 6. Table 6.2 and Table 6.3 tabulate the hyperparameters for XGB and LR re-
spectively for the ‘ATCA’ dataset. Table 6.4 and Table 6.5 tabulate the hyperparameters
for XGB and LR respectively for the ‘ASKAP’ dataset.

6.O Predictions on real data

This appendix contains Figure 6.7 and Figure 6.8. These show the predicted probability
of being Faraday complex for all real data used in Chapter 6, drawn from Livingston
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Table 6.2: XGB hyperparameters for the ‘ATCA’ dataset.
Parameter Value
colsample_bytree 0.912
gamma 0.532
learning_rate 0.1
max_depth 7
min_child_weight 2
scale_pos_weight 1
subsample 0.557
n_estimators 135
reg_alpha 0.968
reg_lambda 1.420

Table 6.3: LR hyperparameters for the ‘ATCA’ dataset.
Parameter Value
penalty L1
C 1.668

Table 6.4: XGB hyperparameters for the ‘ASKAP’ dataset.
Parameter Value
colsample_bytree 0.865
gamma 0.256
learning_rate 0.1
max_depth 6
min_child_weight 1
scale_pos_weight 1
subsample 0.819
n_estimators 108
reg_alpha 0.049
reg_lambda 0.454

Table 6.5: LR hyperparameters for the ‘ASKAP’ dataset.
Parameter Value
penalty L2
C 0.464
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Figure 6.7: The 142 observed FDFs ordered by LR-estimated probability of being Faraday com-
plex. Livingston-identified components are shown in orange while O’Sullivan-identified com-
ponents are shown inmagenta. Simpler FDFs (as deemed by the classifier) are shown in purple
while more complex FDFs are shown in green, and the numbers overlaid indicate the LR esti-
mate. A lower number indicates a lower probability that the corresponding source is complex,
i.e. lower numbers correspond to simpler spectra.

et al. (2021) and O’Sullivan et al. (2017).
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Figure 6.8: The 142 observed FDFs ordered by XGB-estimated probability of being Faraday
complex. Livingston-identified components are shown in orange while O’Sullivan-identified
components are shown in magenta. Simpler FDFs (as deemed by the classifier) are shown in
purple while more complex FDFs are shown in green, and the numbers overlaid indicate the
XGB estimate. A lower number indicates a lower probability that the corresponding source is
complex, i.e. lower numbers correspond to simpler spectra.
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Chapter 7

Conclusion

The future of radio astronomy is immensely exciting, with upcoming radio surveys
like EMU and POSSUM sure to revolutionise our understanding of the violent Uni-
verse occupied by radio active galactic nuclei. Without innovative new methods for
processing astronomical data at scale, however, we will be limited in what interesting
physics we can learn about with these surveys. In this thesis we have explored meth-
ods for identifying extragalactic radio sources in these future wide-area radio surveys.
We developed a new automated cross-identification approach and a new way of clas-
sifying radio sources as Faraday complex or Faraday simple. We applied our methods
to real data, and used our cross-identification method to directly probe the mechan-
ical energy contribution of active galactic nuclei (AGN) to the intergalactic medium
(IGM). Our contributions here are all aimed at extracting more information from the
very large radio surveys that we have begun to face.

Chapter 4 developed a new approach to cross-identifying radio components with
their infrared host galaxies and applied this method to the CDFS and ELAIS-S1 AT-
LAS survey, a pilot survey for the upcoming ASKAP key survey EMU. This was the
first application of machine learning to radio cross-identification. In the process, we
demonstrated that ourmethodsworked on ELAIS-S1with similar performance to how
they worked on CDFS, despite these being different parts of the sky. We also eval-
uated simple positional matching cross-identification on the ATLAS fields, showing
better performance than either machine learning or Radio Galaxy Zoo volunteers on
this dataset, which we suggest is due to the compact nature of most objects in AT-
LAS. Our machine learning methods performed similarly whether they were trained
on expert-provided or citizen science-provided labelled datasets, clearly demonstrat-
ing the benefit of citizen science labels to radio astroinformatics even if they may be
less accurate than labels provided by experts. We showed that the algorithm we de-
veloped could in principle perform much better than positional matching if only its
binary accuracy could be raised, perhaps with a more complex or better-trained classi-
fier. Finally, we concluded that ATLAS was an insufficiently complex dataset to train
machine learning algorithms for future radio surveys. ATLAS contains many compact
sources, and while there will be many such sources in EMU and other future surveys,
therewill also be a zoo of partially resolved, extended, strange, and unusualmorpholo-
gies. Methods designed or trained on a dataset like ATLAS, which lacks diversity of
non-compact sources, will not work on the wide range of extended radio sources that
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will appear. More complex and larger training sets, perhaps real or perhaps simulated,
will be necessary for producing algorithms intended for use in future surveys.

To further investigate our classification-based cross-identification algorithm we
needed a more complex dataset, and in Chapter 5 we turned to FIRST, a legacy sur-
vey containing around 900 000 radio components. Of these, 250 000 or so were not
compact, compared to the vast majority of ATLAS.We increased the complexity of our
machine learning model and trained it on this dataset along with 75 000 Radio Galaxy
Zoo labels, far more than we had available for ATLAS. The resulting classifier could
then be used to cross-identify every extended object in FIRST. Using the fact that any
two radio components in the same radio source should also have the same host galaxy,
we identified not only the host galaxies of our radio components but also their associa-
tions with other radio components. This allowed us to produce the RGZ-Ex catalogue,
containing over 150 000 extended radio sources—the largest existing catalogue of ex-
tended radio sources at the time of writing. In this catalogue we identified 40 giant
radio galaxies, most of which were new to literature.

Such a large catalogue enabled us to estimate a radio luminosity function (RLF)
for extended radio sources, the first time a RLF has been produced for just extended
sources. We could also subdivide this RLF into a fractional RLF, and we were able
to produce RLFs divided by the mid-infrared colour of the host galaxy, physical ex-
tent, and redshift. Extended radio sources ought to be the sources which contribute
the most mechanical energy to their surrounding IGM, and with an RLF dedicated
solely to extended sources, we were able to estimate this energy contribution as 1.3×
1030 and 1.2× 1032 W Mpc−3. Perhaps most importantly, we showed that our cross-
identification approachworks andused it to obtain a physicallymeaningful result. Our
methods can easily be extended to new surveys, as long as sufficient host galaxy/radio
component pairs are known so that the algorithm can be trained.

Ourwork on cross-identification allowedus to extractmore information fromwide-
area continuum radio surveys. Additionally, to help gain more use out of large polar-
isation surveys, we developed an interpretable Faraday complexity classifier for Fara-
day dispersion functions (FDFs) in Chapter 6. We constructed features that were easy
to understand by measuring the distance of observations from a simple model of Fara-
day simple sources. Our resulting features could be calculated from both simulated
and real observations. We demonstrated the effectiveness of our method on both sim-
ulated and real data and showed that on simulated data our simple methods matched
the state-of-the-art convolutional neural network (CNN) classifier despite having far
less parameters. Thiswas the first application ofmachine learning to real spectropolari-
metric data. We highlighted the domain gap between simulated and observed FDFs
and suggested reframing the Faraday complexity classification task as finding simple
and non-simple sources. This method will be applicable to future surveys like POS-
SUM.
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7.1 Future work

There are manyways that the research in this thesis can be extended in future. Wewill
summarise some of these here.

Our methods can be extended in a number of ways, which fall into two categories:
further applications and extensions to the algorithms. An obvious target for future
work is to apply our binary cross-identification algorithm (BXID; Section 4.3.1 and Sec-
tion 5.3) to new and upcoming surveys like LoTSS and EMU. These promise a tremen-
dous amount of data with new discoveries certain to be lying in wait within, and cross-
identifying the radio emission with its corresponding infrared or optical host galaxy
will be vital for uncovering those secrets. Similarly, wewould like to apply our Faraday
complexity classifier to future spectropolarimetric surveys like POSSUM.

Our methodology can also be improved. Better models almost certainly exist than
the CNN we applied to BXID. As we demonstrated in Chapter 6, a well thought-out
model and features may best a complex model like the CNN. How well would our
cross-identification approach work if, say, we applied it to hand-selected features such
as those chosen by Proctor (2006)? Would a search over more CNN architectures, like
that described by Lukic et al. (2019), result in better classifiers and hence better cross-
identifications? Perhaps we could even improve performance by pre-training on some
unlabelled but larger dataset? A less obvious improvement to our BXID approach
would be to change how the classification scores are aggregated. Currently this is
a weighted maximisation over candidate host galaxies, but other methods are possi-
ble. The weights could be something other than a Gaussian function of distance, from
other functions of distance to an entire separate classification model. Maybe we could
aggregate the scores in bulk, using some kind of algorithm that assigns radio-host re-
lationships based on not just the radio source itself, but also on the other radio sources
around it and how they have been paired to their own host galaxies.

The way that our labels were generated for BXID could be improved. Our algo-
rithms in Chapter 4 and Chapter 5 were trained on labels generated by Radio Galaxy
Zoo. These labels were aggregated from multiple different labellers (usually 20) by
majority vote, with the most common label for any given radio object being assigned
as the true label in RadioGalaxy Zoo. This is not the only possible aggregation strategy,
though. We employed the Dawid-Skene method (Dawid & Skene, 1979) ourselves in
Section 5.3.1 to help assess the performance of our cross-identification algorithm, and
this model for example may also be applied to Radio Galaxy Zoo. There are in fact ag-
gregation strategies that work in tandem with a machine learning model to get better
labels, such as Raykar et al. (2010). These methods simultaneously take into account
the labels and the labellers, and can accommodate for different levels of ability in the
labellers, or different levels of difficulty in the examples being labelled.

Our RLFs could be improved. The RLF calculations in Chapter 5 are severely lim-
ited by the availability of redshifts. We limited our analyses to host galaxies that did
have available spectroscopic redshifts in SDSS, but we could also have employed the
less-reliable but considerably more prolific photometric redshifts. These are derived
from regressionmodels rather than direct observations of redshifted spectral lines, and
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so can be produced from photometric surveys without dedicated spectroscopy. How-
ever, without methods to handle the uncertainty introduced by photometric redshifts,
the resulting RLFswould be unreliable. Decreasing the uncertainty in photometric red-
shifts is not the only way forward. We may also develop methods for understanding
and incorporating their uncertainties into downstream calculations like those used for
RLFs, for example, using probabilistic programming (e.g. Bingham et al., 2019). This
will allow these photometric redshifts to be used and tremendously increase sample
sizes. Besides existing photometric redshifts, future surveys will also produce many
more redshifts, both spectroscopic and photometric. This will be very important for
surveys like EMU, which are both deep and wide with low redshift availability.

The RGZ-Ex dataset (Chapter 5) also lets us pose many other interesting science
questions. We demonstrated in Appendix 5.J that rare galaxy classes can be identified
from within this dataset, including examples that have never before been identified in
the literature. Our dataset may be augmented with other features and used to iden-
tify unusual objects in a similar way. Besides this, our fractional RLFs could also be
extended with any number of galaxy properties. One particularly interesting prop-
erty could bemorphology, as other algorithms in radio astroinformatics are developed
which can automatically identify morphologies (e.g. Wu et al., 2019). Such a classifier
could be used to segment RGZ-Ex and a fractional morphological RLF could be ob-
tained. These morphologies may even be classes that are not easily separated, such as
those found by self-organising maps (e.g. Polsterer et al., 2015). Of course, there are
other properties that are more easily extracted, such as optical lines and colours which
could be taken from SDSS using our SDSS cross-identifications.

While creating features for FDFs in Chapter 6 we demonstrated that W2 distance
was a sensible distancemeasure between FDFs. This is useful formore than just feature
construction, as it implies a geometry on the space of FDFs. This distance could be
used to help gain insight on the behaviours of future algorithms that work on FDFs. A
particularly exciting idea is to improve QU fitting by modifying the distance function
to match ours. Our features could also be used to develop other methods for FDF
analysis, like outlier detection or data visualisation.

Further research is needed to close the domain gap for FDFs. This is an interesting
case study as it is such a simple case, where we know essentially all the physics behind
the observations and the observations are one-dimensional. Even this is not enough,
and whether through unmodelled physics (e.g. more than two screens, depolarisa-
tion) or unmodelled observational properties (e.g. radio frequency interference), sim-
ulation and observation do not fully line up. Such research is critical if wewant to train
machine learning algorithms on simulations in the future, and we very much want to
do this to augment our limited observational training data. Similarly, the domain gap
must be reduced for radio continuum observations. Our results in Chapter 4 show that
pilot surveys like ATLAS may not contain enough complex sources to train machine
learning models, and while larger surveys like FIRST exist, transferring models from a
survey undertaken with one set of observing parameters (telescope, frequency, depth,
resolution...) is both non-trivial and as-yet relatively unexplored.
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7.2 Implications for radio citizen science

Our results in Chapter 4 demonstrated that machine learning methods trained on cit-
izen science labels perform comparably to those trained on expert labels, even when
those labels are lower quality than expert labels. We applied this insight in Chap-
ter 5 to obtain scientific results, using machine learning to extrapolate the labels to a
larger dataset. While Radio Galaxy Zoo alone was not enough to fully label FIRST, Ra-
dio Galaxy Zoo working in tandem with machine learning was. This is a pattern that
may hold true for future surveys and applications, too. Future astronomical research
at-scale may leverage the idea of people working with machine learning, sometimes
called human-in-the-loop (e.g. Holzinger, 2016) learning, to pore through data-at-scale.

7.3 Implications for wide-area radio surveys

As we move toward larger and larger datasets, an important question is how applica-
ble our models will be across the sky. Our results in Chapter 4 showed that we can
expect some generalisation, as our model trained on one patch of sky was applicable
to another without a great loss of performance. Similarly, our classifier trained on part
of FIRST seemed to work well on the rest of the dataset. This is promising as it implies
that limited area surveys may help develop training sets that generalise to the whole
sky, potentially making the process of generating training sets considerably cheaper.

With our work in Chapter 4 and 5 we demonstrated that a large set of good quality,
complex data is required for training good astroinformatics algorithms. Pilot datasets
like ATLAS will not work by themselves: The sources they contain are too simple and
their complex sources are too few. A sensible question to ask is, could we simulate
data for training purposes? We trained our classifier in Chapter 6 on simulated data
and found that it was difficult to bridge the domain gap between simulation and ob-
servation, even in a well-understood, one-dimensional case—let alone the complex
three-dimensional projected morphologies we observe in imagery. Getting across this
domain gap will be difficult and will necessarily be a major topic of research in the
astroinformatics field in the near future.

Tying observations, simulations, and models together are the representation of the
data: features. Our results in Chapter 6 show that judicious choice of features can
outperform even complex and powerful models. This is good for two reasons. The
first reason is that these features may be more easily interpreted. The meaning of the
features may be understood to be representative of some physical property, or at least
the relationship between physical reality and predictions may be more easily found.
The second reason is that featuresmay be selectedwhich can generalisewell to datasets
beyond just the training set. In other words, features that are less overfit to the training
set. This is of particular concern when developing predictive models on simulated
training data, as features being less suited for real data than for simulations is one
aspect that may contribute to the domain gap. Choosing good features in astronomy
may bemore important than inmany other fields towhichmachine learning is applied,
aswhile inmost fields it is possible to conduct experiments, in astronomywe only have
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one Universe to look at. We need to make the best use we can of the limited radio sky.

7.4 Final remarks

Radio astronomy faces a deluge of data, with current and upcoming surveys delivering
incredible amounts of data for science use. While we can get a lot out of these data—
from investigations into new physics, to finding rare and unusual objects—doing so is
dependent on the development of new methods for astronomy at scale. These future
methods will necessarily be computational, and so the challenge lies in encoding the
abstract concepts of astronomy and astrophysics into a rigorously defined set of rules
that a computer can interpret and execute en masse. This is decidedly non-trivial, and
the nuance and unique skills required to do so motivates the burgeoning field of astro-
informatics. By combining concepts from deep within the often disparate fields of
astronomy and machine learning, we hope that we will be able to make the absolute
most of the incredible new technologies and instruments that will arise in the future
of radio astronomy.
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