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Abstract

Saliency detection models are trained to discover the region(s) of an image that attract
human attention. According to whether depth data is used, static image saliency
detection models can be divided into RGB image saliency detection models, and
RGB-D image saliency detection models. The former predict salient regions of the
RGB image, while the latter take both the RGB image and the depth data as input.
Conventional saliency prediction models (both RGB saliency and RGB-D saliency)
typically learn a deterministic mapping from images to the corresponding ground
truth saliency maps without modeling the uncertainty of predictions, following the
supervised learning pipeline. This thesis is dedicated to learning a conditional dis-
tribution over saliency maps, given an input image (or image pair for RGB-D data),
and modeling the uncertainty of predictions.

For RGB-D saliency detection, we present the first generative model based frame-
work to achieve uncertainty-aware prediction. Our framework includes two main
models: 1) a generator model, which maps the input image and latent variable to
stochastic saliency prediction, and 2) an inference model, which gradually updates
the latent variable by sampling it from the true or approximate posterior distribution.
The generator model is an encoder-decoder saliency network. To infer the latent vari-
able, we introduce two different solutions: i) a Conditional Variational Auto-encoder
with an extra encoder to approximate the posterior distribution of the latent variable;
and ii) an Alternating Back-Propagation technique, which directly samples the latent
variable from the true posterior distribution.

One drawback of the above models is that it fails to explicitly model the con-
nection between RGB image and depth data to achieve effective cooperative learn-
ing. We further introduce a novel latent variable model based complementary learn-
ing framework to explicitly model the complementary information between the two
modes, namely the RGB mode and depth mode. Specifically, we first design a reg-
ularizer using mutual-information minimization to reduce the redundancy between
appearance features from RGB and geometric features from depth in the latent space.
Then we fuse the latent features of each mode to achieve multi-modal feature fusion.
Extensive experiments on benchmark RGB-D saliency datasets illustrate the effective-
ness of our framework.

For RGB saliency detection, we propose a generative saliency prediction model
based on the conditional generative cooperative network, where a conditional la-
tent variable model and a conditional energy-based model are jointly trained to pre-
dict saliency in a cooperative manner. The latent variable model serves as a coarse
saliency model to produce a fast initial prediction, which is then refined by Langevin
revision of the energy-based model that serves as a fine saliency model. We call this
probabilistic coarse-to-fine saliency prediction.

xi
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xii

Apart from the fully supervised learning framework, we also investigate weakly
supervised learning, and propose the first scribble-based weakly-supervised salient
object detection model. In doing so, we first relabel an existing large-scale salient ob-
ject detection dataset with scribbles, namely S-DUTS dataset. Since object structure
and detail information is not identified by scribbles, directly training with scribble
labels will lead to saliency maps of poor boundary localization. To mitigate this prob-
lem, we propose an auxiliary edge detection task to localize object edges explicitly,
and a gated structure-aware loss to place constraints on the scope of structure to be
recovered.

To further reduce the labeling burden, we introduce a noise-aware encoder-decoder
framework to disentangle a clean saliency predictor from noisy training examples,
where the noisy labels are generated by unsupervised handcrafted feature-based
methods. The proposed model consists of two sub-models parameterized by neural
networks: (1) a saliency predictor that maps input images to clean saliency maps,
and (2) a noise generator, which is a latent variable model that produces noise from
Gaussian latent vectors. The whole model that represents noisy labels is a sum of
the two sub-models. The goal of training the model is to estimate the parameters of
both sub-models, and simultaneously infer the corresponding latent vector of each
noisy label. We propose to train the model by using an alternating back-propagation
algorithm, which alternates the following two steps: (1) learning back-propagation
for estimating the parameters of two sub-models by gradient ascent, and (2) inferen-
tial back-propagation for inferring the latent vectors of training noisy examples by
Langevin Dynamics. To prevent the network from converging to trivial solutions, we
utilize an edge-aware smoothness loss to regularize hidden saliency maps to have
similar structures as their corresponding images.

Following a similar setting, we propose to learn saliency from a single noisy
labelling, and exploit model consistency across iterations to identify inliers and out-
liers (i.e., , noisy labels). Extensive experiments on different benchmark datasets
demonstrate the superiority of our proposed framework, which can learn comparable
saliency prediction with state-of-the-art fully supervised saliency methods. Further-
more, we show that simply by treating ground truth annotations as noisy labelling,
our framework achieves tangible improvements over state-of-the-art methods.
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Chapter 1

Introduction

1.1 Introduction

When viewing a scene, the human visual system has the ability to selectively locate
attention [2, 3, 4, 5, 6] on informative contents, which locally stand out from their
surroundings. This selection is usually performed in the form of a spatial circum-
scribed region, leading to the so-called “focus of attention” [5], which scans the scene
rapidly in a bottom-up and task-independent manner or slowly in a top-down task-
dependent manner. [2] introduced a general attention model to explain the human
visual search strategies [7]. Specifically, the visual input is first decomposed into
a group of topographic feature maps which they defined as the early representa-
tions. Then, different spatial locations compete for saliency within each topographic
feature map, such that locations that locally stand out from their surrounding per-
sist. Lastly, all the feature maps are fed into a master “saliency map”, indicating the
topographically codes for saliency over the visual scene [5].

Following the above process of saliency selection, early saliency detection models
focus on detecting the informative locations, leading to the eye fixation prediction
[8] task, which aims to find the informative locations without preserving the seman-
tic structure information. [9] and [10] then extended the salient locations driven
methods [2, 5] and introduced the salient object detection task, which is a binary
segmentation task aiming to identify the full scope of the salient object. In this way,
“salient object” is defined as any item that is distinct from those around it. Many
factors can lead something to be “salient”, including the stimulus itself that makes
the item distinct, i.e., color, texture, direction of movement and etc. , and the in-
ternal cognitive state of the observer, leading to his/her understanding of saliency.
In this thesis, we discuss only the salient object detection to produce saliency map
highlighting the scope of the salient object.

As an important computer vision task, salient object detection is intrinsic to var-
ious tasks such as image cropping [11], context-aware image editing [12], image
recognition [13], interactive image segmentation [14], action recognition [15], image
caption generation [16] and semantic image labeling [17], where saliency models can
be used to extract class-agnostic important areas in an image or a video sequence.
Although considerable progress has been achieved, it still remains as a challenging
task and requires effective approaches to handle complex real-world scenarios.

1
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2 Introduction

Figure 1.1: The general pipeline of a fully supervised saliency detection network.

Conventional saliency detection methods either employ predefined features such
as color and texture descriptors [18][19], or indicators of appearance uniqueness [20]
and region compactness [21] based on specific statistical priors such as center prior
[22], contrast prior [23], boundary prior [24] and object prior [25]. One typical direc-
tion is computing the pixel-wise or superpixel-wise saliency directly from the above
handcrafted features [24, 26]. There also exist supervised models [23, 18] that are
trained with the pre-defined features. Due to the limited representation ability of the
handcrafted features, these conventional methods achieve acceptable results only on
relatively simple datasets (see [27] for a dedicated survey on saliency detection prior
to the deep learning revolution), but their performances deteriorate quickly when
the input images become cluttered and complicated.

Deep learning with convolutional neural networks (CNNs) has obtained great
success in many vision tasks, such as image classification [28] and semantic seg-
mentation [29]. The success has also been extended to the task of saliency detection
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40], where the problem is generally formulated
as a dense labeling task that automatically learns feature representations of salient
regions, outperforming handcrafted feature based solutions with a wide margin.

The de-facto standard for those deep learning based techniques is to train a deep
neural network using ground truth (GT) saliency maps provided by the correspond-
ing benchmark datasets as shown in Fig. 1.1, where the GT saliency maps are ob-
tained through human consensus or by the dataset creators [41, 42, 43]. Building
upon large scale saliency datasets, deep convolutional neural network based saliency
prediction models [33, 34, 37, 44, 45, 46, 47, 1, 48, 49] have made profound progress in
learning the mapping from the input image to the corresponding GT saliency map.

As discussed above, to model human visual attention in the deep learning era,
ground truth saliency maps are provided as an approximation of visual perception
saliency. In this way, multiple labelers are instructed to find the key objects corre-
sponds to saliency. To provide a binary saliency map, “majority voting” is usually
performed, which then defines the majority salient regions as being salient fore-
ground in the final ground truth saliency map. In Fig. 1.2, we show the provided
salient foreground region after majority voting (the object(s) with red rectangle(s))
and other candidate salient regions that are discarded after majority voting (the ob-
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Figure 1.2: The subjective nature of saliency.

ject(s) with blue rectangle(s)). It clearly shows that although the majority regions
represent the most salient regions, there still exist other candidate salient regions
that may attract human attention. We then argue that the existing “majority vot-
ing ground truth” based saliency models focus only on the “most” salient regions,
which can be biased and fail to discover the whole story of human visual perception
saliency.

Instead of obtaining a deterministic saliency prediction model that estimates the
most salient regions of the input image, in this thesis, we would like to produce a
series of predictions covering the possible salient regions following human visual
perception saliency. To do so, we first formulate the saliency prediction as a two-step
task: 1) coarse saliency prediction to identify the salient objects in a gross sense; 2)
fine-scale salient segmentation to find the whole scope of the salient objects. Then,
we propose to achieve distribution estimation that can produce all possible salient
regions for each input image with the trained statistics representing the saliency
distribution, e.g., mean value µ indicating average saliency estimation and standard
deviation σ measuring the uncertainty of prediction.

To estimate the distribution of saliency predictions, one can employ a generative
model, which is a powerful way of learning the data distribution. As a special case
of generative models, latent variable models, e.g., Variational Autoencoder (VAE)
[50, 51], Generative Adversarial Network (GAN) [52], introduce a latent variable to
the network representing randomness or uncertainty of prediction. In the VAE based
framework, the latent variable is assumed to follow a specific Gaussian distribution
with a prior distribution of a standard normal distribution. There exists an inference
model to map the input image to the latent variable, representing the posterior distri-
bution of the latent variable. The network is trained to minimize both the reconstruc-
tion loss (the difference of the reconstructed image and the raw input image) and a
regularizer that penalizes the distance between the prior and posterior distribution
of the latent variable. In GAN related frameworks, there exists no inference model,
and one can directly sample the latent variable from the fixed prior distribution,
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4 Introduction

e.g., standard normal distribution. Another approach to estimate the distribution
of predictions is the energy-based model (EBM) [53, 54, 55, 56, 57, 58, 59], which is
represented as a deep neural network to learn an energy function and assigns low
energy to in-distribution samples and vice versa.

Furthermore, we observe that the success of the above fully supervised models
highly depends on the availability of large scale pixel-wise annotations, which are
both expensive and time-consuming to obtain. For example, the most widely used
saliency detection training dataset, namely DUTS [41], includes 10,553 training im-
ages, which takes more than three months to label, and costs more than $10,000. To
relieve the burden of pixel-wise labeling, we also work on weakly-supervised and
unsupervised salient object detection. For the former, we aim at producing easy-to-
access labels instead of the pixel-wise annotation. For the latter, we further reduce
the labeling effort by directly computing the noisy saliency maps with conventional
handcrafted feature based solutions.

In this thesis, we introduce the first generative model based saliency detection
network with both the latent variable model [60, 61] and the energy-based model [62],
to produce a distribution of prediction instead of the point estimation as performed
by existing techniques. With our solution, we can produce multiple predictions for
each input image, and we then define the variance of those multiple predictions as
uncertainty, representing confidence of prediction.

Apart from the probabilistic network, we also design weakly-supervised [63] and
unsupervised [64, 65, 66] learning frameworks to learn saliency from easy-to-access
weak labels, namely scribble annotation based saliency detection network and noisy
label based learning strategies.

In the following, we first briefly introduce the main techniques we adopted in
this thesis in Section 1.2, including generative models, weakly supervised learning
and learning from noisy labeling. Then we introduce our main contributions in
Section 1.3. Note that, although the proposed solutions are for saliency detection
task, we claim that our solutions are general ideas, and they can be easily extend to
other dense prediction tasks. We introduce the possible extension of our solutions in
Chapter 8.

1.2 Related Techniques

Here we introduce related techniques to the high level themes of our work, which
will be discussed in detail in the corresponding chapters.

1.2.1 Generative Model

Different from deterministic models [28, 67] which directly achieve a mapping with
the provided training dataset, generative models [50, 51, 52, 56] learn an underlying
data distribution by analyzing the given training dataset as shown in Fig. 1.3. Once
trained, generative models can then produce new samples to match the data distri-
bution. In this way, we define deterministic models as point estimation techniques,
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Figure 1.3: The framework difference of the deterministic saliency network and gen-
erative model based saliency network.

and generative models as distribution estimation solutions. Two different generative
models are considered in this thesis: 1) a latent variable model and 2) an energy-
based model, where the former introduces an extra latent variable to account for the
uncertainty of prediction, and the latter models the distribution of the dataset and
generates new samples with a similar distribution.
Latent Variable Model:
Latent variable models are statistical models that relate observed variables (e.g., in-
put X and output Y) to the latent variables (e.g., z), which form a class of genera-
tive models that can infer the hidden structure of the provided data, e.g., p(y|x, z).
Given an input and output pair X, Y, deterministic models achieve point estimation
Y = fω(X), where ω represents the mapping function, e.g., for image segmentation,
ω is the parameter set that achieves a mapping from input image X to the segmenta-
tion map Y. Latent variable models estimate a distribution pθ(Y|X) with a generator
network, where θ is a parameter set of the generator network. Two main meth-
ods have been widely studied for training generative models, especially conditional
generative models: 1) Variational Autoencoders (VAE) and Conditional Variational
Autoencoders (CVAE) [50, 51]; and 2) Generative Adversarial Networks (GAN) and
Conditional Generative Adversarial Networks (CGAN) [52, 68]. A typical VAE con-
sists of an encoder, a decoder, and a loss function. The encoder is a neural network
parameterized with weights and biases θ, which maps the input X to a latent (hid-
den) representation z. The decoder is another neural network with weights and
biases φ, which reconstructs the data from z. To train a VAE, one aims to maximize
the evidence lower bound of log-likelihood of the data with a reconstruction loss
and a KL loss term as regularizer, where the former measures how the prediction is
similar with provided ground truth, and the latter measures the ignorance about the
prior distribution of the latent variable. Different from VAEs, where an extra encoder
makes it possible to infer the latent variable, GANs have no inference model, and the
discriminator is designed to check whether the prediction from generator is real or
fake. Both models involve an extra network (inference network for VAE based model,
or discriminator network for GANs) in addition to the task-related network.

In low-level vision, VAEs have been applied to tasks such as image background
modeling [69], latent representations with sharp samples [70], difference of motion
modes [71], medical image segmentation model [72], and modeling inherent am-
biguities of an image [73]. VAEs have also been explored in more complex vision
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tasks such as uncertain future forecast [74, 75], human motion prediction [76], and
shape-guided image generation [77]. Recently, VAE algorithms have been extended
to the 3D domain targeting applications such as 3D mesh deformation [78], and point
cloud instance segmentation [79]. Similarly, the existing GAN-based generative mod-
els [80, 81, 82, 83, 84, 85, 86] usually use GANs to detect higher-order inconsistency
between ground truth and the prediction.
Energy-based Model:
Energy-based generative models [57, 87, 88, 89, 59, 90, 91, 92, 58, 93, 94, 95, 96] define
an unnormalized density of a high-dimensional random variable of interest, which
is in the form of the exponential of the negative energy function parameterized by
a neural network. [55] defined energy as a composition of latent and observable
variables, while [97] designed a mapping function with EBM, where the input is di-
rectly mapped to the output space. Conventionaly, EBMs rely on stochastic gradient-
descent (SGD) optimization methods that are difficult to apply to high-dimensional
datasets, as the maximum likelihood learning of the energy-based model typically
requires MCMC sampling, which is computational challenging. Recently, [59, 58] in-
troduced Gradient based MCMC (Langevin Dynamics) for efficient and stable sam-
pling, which makes it possible to scale EBMs to high-dimensional domains.
Our contributions: We explore generative models for saliency detection from two
perspectives: 1) a generative model is adopted to estimate the labeling noise [65],
where a generative model based noise estimation module is learned to estimate la-
beling noise and the latent clean label; 2) with clean labels available, the generative
model is used to model the “subjective nature” of saliency [60, 61], where the latent
variable is used to model the attributes of saliency that may not exist in the given
training dataset. We claim that a generative model based saliency prediction network
can not only provide robust prediction towards labeling noise, but also is suitable to
achieve stochastic predictions, making it possible to estimate uncertainty within the
trained network.

1.2.2 Weakly Supervised Learning

Instead of using the pixel-wise annotations, weakly supervised learning models
[41, 98, 99, 63] rely only on easy-to-access annotations, e.g., bounding box, scribble,
point supervision, image-level labels [41, 98] as shown in Fig. 1.4. As no accurate
structure information is provided, weakly supervised learning models often focus
on structure-recovery strategies. For example, [41] adopts a DenseCRF [29] to con-
strain the structure of prediction, and [63] uses auxiliary edge detection branch and
structure-aware loss to produce sharp predictions. In this section, we introduce exist-
ing techniques for weakly supervised learning, including weakly supervised saliency
detection and weakly supervised semantic segmentation.
Weakly Supervised Saliency Detection
Starting with the weak annotations, especially image-level annotations as shown in
Fig. 1.4, existing weakly supervised saliency detection models follow a three-step
learning pipeline: 1) obtaining a class activation map (CAM) [100] with the pro-
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Figure 1.4: Comparison of different types of annotations.

vided image-level annotation; 2) refining the CAM with pair-wise constraints, e.g.,
DenseCRF [29], to produce sharp saliency prediction; 3) treating the sharp saliency
prediction as pseudo label and iteratively train the model. Following the above learn-
ing pipeline, Wang et al. [41] introduced a foreground inference network to produce
saliency maps with image-level labels. Hsu et al. [101] presented a category-driven
map generator to learn saliency from class activation maps. Li et al. [98] adopted an
iterative learning strategy to update an initial saliency map generated from unsuper-
vised saliency methods by learning with image-level supervision. A fully connected
CRF [29] was utilized in [41, 98] as post-processing to refine the produced saliency
map. Zeng et al. [102] propose training saliency models with diverse weak supervi-
sion sources, including category labels, captions, and unlabeled data.
Weakly-Supervised Semantic Segmentation
Different from weakly supervised saliency detection, which mainly define image-
level annotation as weak labels, the weakly supervised semantic segmentation task
explores various types of weak annotations. Dai et al. [103] and Khoreva [104] first
treat the bounding box annotation as a pseudo label, and then they iteratively up-
dated network parameters and pseudo labels until reaching a pre-defined maximum
epoch. Shi et al. [105] tackled the weakly-supervised semantic segmentation problem
by using multiple dilated convolutional blocks of different dilation rates to encode
dense object localization. Li et al. [106] presented an iterative bottom-up and top-
down semantic segmentation framework to alternatingly expand object regions and
optimize segmentation network with image tag supervision. Huang et al. [107] in-
troduced a seeded region growing technique to learn semantic segmentation with
image-level labels. Vernaza et al. [108] designed a random walk based label propaga-
tion method to learn semantic segmentation from sparse annotations.
Recovering Structure from Weak Labels
As weak annotations do not contain complete semantic regions of specific objects,
the predicted object structure is often incomplete, e.g., the prediction is usually too
smooth with limited structure information. To preserve rich and fine-detailed seman-
tic information, additional regularizers [109] are often employed to set constraints on
the structure of the prediction. Two main solutions are widely studied, including
graph model based methods (e.g., fully connected Conditional Random Field (CRF)
[29]) and boundary based losses [110]. The former recover structure information with
pair-wise term, and the latter defines self-supervised loss to force the structure of the
prediction to be well-aligned with image edges. Tang et al. [111] introduced a normal-
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ized cut loss as a regularizer with partial cross-entropy loss for weakly-supervised
image segmentation. Obukhov et al. [112] proposed a gated CRF loss to recover the
structure information. Lampert et al. [110] presented a constrain-to-boundary princi-
ple to recover detailed information.
Our contributions: Conventional weakly supervised saliency detection network usu-
ally start with image-level labels. We claim that scribble annotation is more accurate
and also very efficient to obtain. We then introduce the first scribble based saliency
detection network [63], and present auxiliary edge detection module together with
the structure-aware loss function to achieve effective weakly supervised learning with
scribble supervision. Our model greatly reduces the labeling effort and leads to com-
parable performance compared with the fully supervised models with pixel-wise la-
beling. Our framework presents a different solution for weakly supervised salient
object detection. As we mainly focus on the structure-preserving prediction, the un-
labeled pixels fail to contribute effectively to the model updating. More effective
solutions can be explored by better utilizing the unlabeled pixels to further improve
model performance.

1.2.3 Learning from Noisy Labeling

For the weakly supervised setting, weak annotations are provided as shown in Fig. 1.4.
An even cheaper setting is learning directly with noisy labeling, which can be gen-
erated with conventional handcrafted feature based methods. Conventionally, the
learning from noisy labeling techniques mainly work on image-level classification,
and three main directions have been explored: 1) developing regularization tech-
niques [113] to set constraints on the latent clean prediction; 2) estimating the noise
distribution [114] by assuming that noisy labels are corrupted from clean labels by
an unknown noise transition matrix [114] and 3) training on selected samples [115],
which does not require any prior assumption on noise distribution.
Learning image classification from noisy labeling
Zhang and Sabuncu [116] presented a set of noise-robust loss functions, which be-
longs to the first category. For the second category, Jindal et al. [117] proposed a
dropout-regularized noise model by augmenting an existing deep network with a
noise model that accounts for label noise. Recently, a lot work has been done for the
third direction. Jiang et al. [118] proposed to learn a MentorNet to produce a cur-
riculum for the StudentNet [119]. The latter one can focus on samples where their
labels are possibly correct. Liu and Tao [120] presented an importance reweighting
method, where uncertainty introduced by classification noise is reduced by estimat-
ing an importance weight parameter. Natarajan et al. [121] suggested the use of
weighted surrogate loss to reweight the importance of each sample. Ren et al. [122]
learned to assign weights to training examples based on their gradient directions
during each mini-batch. Nguyen et al. [123] introduced self-ensemble label filtering
to progressively filter out wrong labels during training. Chang et al. [115] put more
emphasis on uncertain samples to improve mini-batch stochastic gradient-descent
(SGD) for image classification.
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Learning saliency from noisy labeling
Different from weakly supervised saliency models, where human annotation is still
needed, noisy labeling based saliency models can learn saliency without human an-
notation. The noisy label is computed with conventional handcrafted feature based
methods [24]. Zhang et al. [124] proposed to fuse noisy saliency maps from hand-
crafted feature based methods with a heuristic. It combined an intra-image fusion
stream and a inter-image fusion stream to generate the learning curriculum and
pseudo ground-truth for supervising the training of the deep salient object detector.
Nguyen et al. [99] defined an image-level loss function to train with multiple noisy
labels to generate a coarse saliency map, and then iteratively refine it using a moving
average strategy and a fully-connected CRF.
Our contributions: Previous work on noisy labeling based saliency detection [124]
usually involves pseudo label generation based on the provided noisy label, which
may lead to error propagation due to the less accurate pseudo labels. We provide
two alternative solutions: 1) modeling the labeling noise [66, 65] with extra noise
estimation module; 2) iteratively identifying pixel-wise noisy annotations [64], and
the model is then updated with only loss function based on the clean pixels.

1.3 Thesis Outline

In this thesis, we intend to solve the saliency detection problem in a different way
compared with existing techniques via a probabilistic network. Furthermore, we aim
to relieve the labeling burden with easy-to-access labels. The thesis is then divided
into five parts to address each of these issues.

Part I: Uncertainty Inspired RGB-D Saliency Detection (Chapter 2)

Saliency is subjective to some extent, and different annotators may lead to dif-
ferent attention maps, or saliency maps representing the informative regions for the
annotators. In this case, we intend to design a framework to estimate uncertainty
for RGB-D saliency detection with a generative model. Particularly, we propose a
probabilistic RGB-D saliency detection network via conditional variational autoen-
coders (CVAE) [51] to model human annotation uncertainty and generate multiple
saliency maps for each input image by sampling in the latent space. With the pro-
posed saliency consensus process, we are able to generate an accurate saliency map
based on these multiple predictions. Different from existing techniques which learn
point estimates to produce a single saliency map for each input image, our algo-
rithms demonstrate the effectiveness of learning the distribution of saliency maps,
leading to a new state-of-the-art in RGB-D saliency detection model.

Part II: Complementary Learning for RGB-D Saliency Detection (Chapter 3)

As a multi-modal learning problem, most of the existing RGB-D saliency detec-
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tion models [125, 1] focus on implicitly fusing the two modalities at feature-level with
different fusion strategies, e.g., early fusion, late fusion or cross-level fusion. We in-
troduce a novel latent variable model based complementary learning framework to
explicitly model the complementary information between the two modalities [126].
Specifically, we first design mutual-information minimization as a regularizer to re-
duce the redundancy between appearance features from RGB and geometric features
from depth in the latent space. Then we fuse the latent features of each modality
to achieve multi-modal feature fusion. Extensive experiments on benchmark RGB-D
saliency datasets illustrate the effectiveness of our framework.

Part III: Probabilistic Coarse-to-Fine Saliency Prediction (Chapter 4)

The latent variable model can model labeling variants, producing uncertainty
of prediction, while the energy-based model can evaluate the dependency of each
variant, leading to higher-order similarity measure. We then introduce the first
probabilistic RGB saliency detection network with an energy-based model whose
energy function is parameterized by a bottom-top neural network and a conditional
latent variable model whose transformation function is parameterized by an encoder-
decoder framework [62]. The conditional latent variable model serves as coarse
saliency predictor to generate the initial saliency prediction, and the energy-based
model refines the coarse saliency map with an the energy function. The two gener-
ative models cooperate to achieve accurate and stochastic saliency prediction. Fur-
thermore, we extend our generative model to weakly supervised learning with a
cooperative learning while recovering algorithm. In this way, our model can learn
the energy-based model from incomplete data for weakly supervised saliency pre-
diction.

Part IV: Weakly-Supervised Saliency Detection via Scribble (Chapter 5)

Compared with laborious pixel-wise dense labeling, it is much easier to label
data by scribbles as shown in Fig. 1.4, which only costs a few seconds to label one
image. However, using scribble labels to learn salient object detection has not been
explored. We propose a weakly-supervised salient object detection model to learn
saliency from such annotations [63]. In doing so, we first relabel an existing large-
scale salient object detection dataset with scribbles, namely S-DUTS dataset. Since
object structure and detail information is not identified by scribbles, directly training
with scribble labels will lead to saliency maps of poor boundary localization. To
mitigate this problem, we propose an auxiliary edge detection task to localize object
edges explicitly, and a gated structure-aware loss to place constraints on the scope of
structure to be recovered.

Part V: Learning Saliency from Noisy Labeling (Chapter 6 and 7)

We define a saliency map computed with conventional handcrafted feature based
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methods as a noisy label. With this setting, we present a noise-aware encoder-
decoder network [65] to gradually disentangle the latent clean saliency map from
the noisy label. With the same setting, we introduce a sampling based principled
method [64] to learn saliency from the robust model fitting perspective. Different
from [127], where labels are updated according to the outputs of each iteration, we
design a strategy and generate an inlier/outlier mask to identify the clean labels.
To the best of our knowledge, this is the first time that sampling from single noisy
labelling has been used to address the task of saliency prediction.
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Chapter 2

Uncertainty Inspired RGB-D
Saliency Detection

We propose the first stochastic framework to employ uncertainty for RGB-D saliency
detection by learning from the data labeling process. Existing RGB-D saliency de-
tection models treat this task as a point estimation problem by predicting a single
saliency map following a deterministic learning pipeline. We argue that, however,
the deterministic solution is relatively ill-posed. Inspired by the saliency data la-
beling process, we propose a generative architecture to achieve probabilistic RGB-D
saliency detection which utilizes a latent variable to model the labeling variations.
Our framework includes two main models: 1) a generator model, which maps the
input image and latent variable to stochastic saliency prediction, and 2) an infer-
ence model, which gradually updates the latent variable by sampling it from the
true or approximate posterior distribution. The generator model is an encoder-
decoder saliency network. To infer the latent variable, we introduce two different
solutions: i) a Conditional Variational Auto-encoder with an extra encoder to ap-
proximate the posterior distribution of the latent variable; and ii) an Alternating
Back-Propagation technique, which directly samples the latent variable from the true
posterior distribution. Qualitative and quantitative results on six challenging RGB-D
benchmark datasets show our approach’s superior performance in learning the dis-
tribution of saliency maps. The source code is publicly available via our project page:
https://github.com/JingZhang617/UCNet.

2.1 Introduction

Object-level saliency detection (i.e., salient object detection) involves separating the
most conspicuous objects that attract human attention from the background [2, 128,
35, 66, 129, 34, 63, 130]. Recently, visual saliency detection from RGB-D images has
attracted lots of interests due to the importance of depth information in the human
vision system and the popularity of depth sensing technologies [1, 131, 132, 133, 47,
134, 60]. With the extra depth data, conventional RGB-D saliency detection models
focus on predicting one single saliency map for the RGB-D input by exploring the
complementary information between the RGB image and the depth data.

13

Draft Copy – 3 October 2021

https://github.com/JingZhang617/UCNet


14 Uncertainty Inspired RGB-D Saliency Detection

Figure 2.1: GT compared with our predicted saliency maps. For simple context im-
age (first row), we can produce consistent predictions. When dealing with complex
scenarios where there exists uncertainties in salient regions (second row), our model
can produce diverse predictions (“Our_CVAE Samples”), where “Our_CVAE” is our
deterministic prediction after the saliency consensus module, which will be intro-

duced in Section 2.3.3.

The standard practice for RGB-D saliency detection is to train a deep neural net-
work using ground-truth (GT) saliency maps provided by the corresponding bench-
mark datasets, thus formulating saliency detection as a point estimation problem by
learning a mapping function Y = f (X; θ), where θ represents network parameter set,
and X and Y are input RGB-D image pair and corresponding GT saliency map. Usu-
ally, the GT saliency maps are obtained through human consensus or by the dataset
creators [43]. Building upon large scale RGB-D datasets, deep convolutional neural
network-based RGB-D saliency detection models [47, 1, 48, 49, 131] have made pro-
found progress. We argue that the way RGB-D saliency detection progresses through
the conventional pipelines [47, 1, 48, 49, 131] fails to capture the uncertainty in label-
ing the GT saliency maps.

According to research in human visual perception [135], visual saliency detection
is subjective to some extent. Each person could have specific preferences [136] in
labeling the saliency map (which has been discussed in user-specific saliency detec-
tion [137]). More precisely speaking, the GT labeling process is never a deterministic
process, which is different from category-aware tasks, such as semantic segmenta-
tion [138], as a “Table” will never be ambiguously labeled as “Cat”, while the salient
foreground for one annotator may be defined as background by other annotators as
shown in the second row of Fig. 2.1.

In Fig. 2.1, we present the GT saliency map and other candidate salient regions
(produced by our CVAE-based method, which will be introduced in Section 2.3.2)
that may attract human attention. Fig. 2.1 shows that the deterministic mapping
(from “Image” to “GT”) may lead to an “over-confident” model, as the provided
“GT” may be biased as shown in the second row of Fig. 2.1. To overcome this, in-
stead of performing point estimation, we are interested in how the network achieves
distribution estimation with diverse saliency maps produced1, capturing the uncer-
tainty of human annotation. Furthermore, in practice, it is more desirable to have
multiple saliency maps produced to reflect human uncertainty instead of a single

1Diversity of predictions depends on the context of the image, where simple context images will
lead to consistent predictions, and complex context images may generate diverse predictions.
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saliency map prediction for subsequent tasks.
Inspired by human perceptual uncertainty, as well as the labeling process of

saliency maps, we propose a generative architecture to achieve probabilistic RGB-
D saliency detection with a latent variable z modeling human uncertainty in the
annotation. Two main models are included in this framework: 1) a generator (i.e.,
encoder-decoder) model, which maps the input RGB-D data and latent variable to
stochastic saliency prediction; and 2) an inference model, which progressively re-
freshes the latent variable. To infer the latent variable, we introduce two different
strategies:

• A Conditional Variational Auto-encoder (CVAE) [51] based model with an ad-
ditional encoder to approximate the posterior distribution of the latent variable.

• The Alternating Back-Propagation (ABP) [139] based technique, which directly
samples the latent variable from the true posterior distribution via Langevin
Dynamics based Markov chain Monte Carlo (MCMC) sampling [140, 140].

A preliminary version of this work appears in [60], which generates saliency
maps via a CVAE and augmented ground-truth to model diversity, and avoids the
posterior collapse problem [141]. Although [60] is effective in general, it still has
a number of shortcomings. Firstly, [60] requires engineering efforts (ground-truth
augmentation) to model diversity and achieve stabilized training (mitigating pos-
terior collapse). As an extension, we use a simpler technique to achieve the same
goal, by using the standard KL-annealing strategy [142, 143] with less human inter-
vention. Experimental results in Fig. 2.13 clearly illustrate the effectiveness of the
KL-annealing strategy. Secondly, we improve the quality of the generated saliency
maps by designing a more expressive decoder that benefits from spatial and channel
attention mechanisms [144]. Thirdly, inspired by [51] we modify the cost function
of [60] to reduce the discrepancy in encoding the latent variable at training and test
time, which is elaborated in Section 2.3.

Moreover, CVAE-based methods approximate the posterior distribution via an in-
ference model (or an encoder) and optimize the evidence lower bound (ELBO). The
lower bound is simply the composition of the reconstruction loss and the divergence
between the approximate posterior and prior distribution. If the model focuses more
on optimizing the reconstruction quality, the latent space may fail to learn mean-
ingful representation. On the other hand, if the model focuses more on reducing
the divergence between the approximate posterior and prior distribution, the model
may sacrifice the reconstruction quality. Additionally, since the model approximates
the posterior distribution rather than modeling the true posterior, it may lose ex-
pressivity in general. Here, we propose to use Alternating Back-Propagation (ABP)
technique [139] that directly samples latent variables from the true posterior. While
it is much simpler, our experimental results show ABP leads to impressive result
for generating saliency maps. Note that both CVAE-based and ABP-based solutions
can produce stochastic saliency predictions by modeling output space distribution
as a generative model conditioned on the input RGB-D image pair. Similar to UC-
Net, during the testing phase, a saliency consensus module is introduced to mimic
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16 Uncertainty Inspired RGB-D Saliency Detection

the majority voting mechanism for GT saliency map generation, and generate one
single saliency map in the end for performance evaluation. Finally, in addition to
producing state-of-the-art results, our experiments provide a thorough evaluation of
the different components of our model as well as an extensive study on the diversity
of the generated saliency maps.

Our main contributions are summarized as: 1) We propose the first uncertainty
inspired probabilistic RGB-D saliency prediction model with a latent variable z intro-
duced to the network to represent human uncertainty in annotation; 2) We introduce
two different schemes to infer the latent variable, including a CVAE [51] framework
with an additional encoder to approximate the posterior distribution of z and an
ABP [139] pipeline, which samples the latent variable directly from its true poste-
rior distribution via Langevin dynamics based Markov chain Monte Carlo (MCMC)
sampling [140]. Each of them can model the conditional distribution of output, and
lead to diverse predictions during testing; 3) Extensive experimental results on six
RGB-D saliency detection benchmark datasets demonstrate the effectiveness of our
proposed solutions.

2.2 Related Work

In this section, we first briefly review existing RGB-D saliency detection models.
We then investigate existing generative models, including Variational Auto-encoder
(VAE) [50, 51], and Generative Adversarial Networks (GAN) [52, 68]. We also high-
light the uniqueness of the proposed solutions in this section.

2.2.1 RGB-D Saliency Detection

Depending on how the complementary information of RGB images and depth data is
fused, existing RGB-D saliency detection models can be roughly classified into three
categories: early-fusion models [145, 60], late-fusion models [146, 49] and cross-level
fusion models [1, 45, 147, 48, 131, 132, 133, 47, 148, 134, 125, 149, 150, 151, 152]. The
first solution directly concatenates the RGB image with its depth information, form-
ing a four-channel input, and feed it to the network to obtain both the appearance in-
formation and geometric information. [145] proposed an early-fusion model to gen-
erate features for each superpixel of the RGB-D pair, which was then fed to a CNN
to produce saliency of each superpixel. The second approach treats each modality
independently, and predictions from both modalities are fused at the end of the net-
work. [146] introduced a late-fusion network (i.e., , AFNet) to fuse predictions from
the RGB and depth branch adaptively. In a similar pipeline, [49] fused the RGB and
depth information through fully connected layers. The third one fuses intermediate
features of each modality by considering correlations of the above two modalities.
To achieve this, [45] presented a complementary-aware fusion block. [48] designed
attention-aware cross-level combination blocks to obtain complementary information
of each modality. [131] employed a fluid pyramid integration framework to achieve
multi-scale cross-modal feature fusion. [133] designed a self-mutual attention model
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to effectively fuse RGB and depth information. Similarly, [132] presented a compli-
mentary interaction module (CIM) to select complementary representation from the
RGB and depth data. [47] provided joint learning and densely-cooperative fusion
framework for complementary feature discovery. [134] introduced a depth distiller
to transfer the depth knowledge from the depth stream to the RGB stream to achieve
a lightweight architecture without use of depth data at test time. A comprehensive
survey can be found in [153].

2.2.2 VAE or CVAE-based Deep Probabilistic Models

Ever since the seminal work by Kingma et al. [50] and Rezende et al. [154], VAE and
its conditional counterpart CVAE [51] have been widely applied in various computer
vision problems. A typical VAE-based model consists of an encoder, a decoder, and a
loss function. The encoder is a neural network with weights and biases θ, which maps
the input datapoint X to a latent (hidden) representation z. The decoder is another
neural network with weights and biases φ, which reconstructs the datapoint X from
z. To train a VAE, a reconstruction loss and a regularizer are needed to penalize the
disagreement of the latent representation’s prior and posterior distribution. Instead
of defining the prior distribution of the latent representation as a standard Gaussian
distribution, CVAE-based networks utilize the input observation to modulate the
prior on Gaussian latent variables to generate the output.

In low-level vision, VAE and CVAE have been applied to tasks such as latent rep-
resentations with sharp samples [70], difference of motion modes [71], medical im-
age segmentation models [72], and modeling inherent ambiguities of an image [73].
Further, VAE and CVAE have been explored in more complex vision tasks such as
uncertain future forecast [75], salient feature enhancement [74], human motion pre-
diction [76, 155], and shape-guided image generation [77]. Recently, VAE and CVAE
have been extended to 3D domain targeting applications such as 3D meshes defor-
mation [78], and point cloud instance segmentation [79]. For saliency detection, [69]
adopted VAE to model image background, and separated salient objects from the
background through the reconstruction residuals.

2.2.3 GAN or CGAN-based Dense Models

GAN [52] and its conditional counterparts [68] have also been used in dense pre-
diction tasks. Existing GAN-based dense prediction models mainly focus on two
directions: 1) using GANs in a fully supervised manner [80, 81, 82, 84, 156] and treat
the discriminator loss as a higher-order regularizer for dense prediction; or 2) apply
GANs to ‘semi-supervised scenarios [85, 86], where the output of the discriminator
serves as guidance to evaluate the degree of the unsupervised sample participating in
network training. In saliency detection, following the first direction, [83] introduced a
discriminator in the fixation prediction network to distinguish predicted fixation map
and ground-truth. Different from the above two directions, [157] adopted GAN in
a RGB-D saliency detection network to explore the intra-modality (RGB, depth) and
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cross-modality simultaneously. [158] used GAN as a denoising technique to clear up
the noisy input images. [156] designed a discriminator to distinguish real saliency
map (group truth) and fake saliency map (prediction), thus structural information
can be learned without CRF [159] as post-processing technique. [160] adopted Cy-
cleGAN [161] as an domain adaption technique to generate pseudo-NIR image for
existing RGB saliency dataset and achieve multi-spectral image salient object detec-
tion.

2.2.4 Uniqueness of Our Solutions

To the best of our knowledge, generative models have not been exploited in saliency
detection to model annotation uncertainty, except for our preliminary version [60].
As a conditional latent variable model, two different solutions can be used to infer the
latent variable. One is CVAE-based [51] method (the one we used in the preliminary
version [60]), which infers the latent variable using Variational Inference, and another
one is MCMC based method, which we propose to use in this work. Specifically, we
present a new latent variable inference solution with less parameter load based on
the alternating back-propagation technique [139].

CVAE-based models infer the latent variable through finding the ELBO of the
log-likelihood to avoid MCMC as it was too slow in the non-deep-learning era. In
other words, CVAEs approximates Maximum Likelihood Estimation (MLE) by find-
ing the ELBO with an extra encoder. The main issue of this strategy is “posterior
collapse” [141], where the latent variable is independent of network prediction, mak-
ing it unable to represent the uncertainty of human annotation. We introduced the
“New Label Generation” strategy in our preliminary version [60] as an effective way
to avoid posterior collapse problem. In this extended version, we propose a much
simpler strategy using the KL annealing strategy[142, 143], which slowly introduces
the KL loss term to the loss function with an extra weight. The experimental results
show that this simple strategy can avoid the posterior collapse problem with the
provided single GT saliency map.

Besides the KL annealing term, we introduce ABP [139] as an alternative solu-
tion to prevent posterior collapse in the network. ABP introduces gradient-based
MCMC and updates the latent variable with gradient descent back-propagation to
directly train the network targeting MLE. Compared with CVAE, ABP samples la-
tent variables directly from its true posterior distribution, making it more accurate
in inferring the latent variable. Furthermore, no assistant network (the additional
encoder in CVAE) used in ABP, which leads to smaller network parameter load.

We introduce ABP-based inference model as an extension to the CVAE-based
pipeline [60]. Experimental results show that both solutions can effectively estimate
the latent variable, leading to stochastic saliency predictions. Details of the two
inference models are introduced in Section 2.3.2.
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(a) Training pipeline (b) Testing pipeline

Figure 2.2: Training and testing pipeline. During training, the inferred latent variable
z and input image X are fed to the “Generator Model” for stochastic saliency predic-
tion. During testing, we sample from the prior distribution of z to produce diverse

predictions for each input image.

2.3 Our Model

In this section, we present our probabilistic RGB-D saliency detection model, which
learns the underlying conditional distribution of saliency maps rather than a map-
ping function from RGB-D input to a single saliency map. Let D = {Xi, Yi}N

i=1 be the
training dataset, where Xi denotes the RGB-D input, Yi denotes the GT saliency
map, and N denotes the total number of images in the dataset. We intend to
model Pω(Y|X, z), where z is a latent variable representing the inherent uncertainty
in salient regions which can be also seen in how a human annotates salient ob-
jects. Our framework utilizes two main components during training: 1) a generator
model, which maps input RGB-D X and latent variable z to conditional prediction
Pω(Y|X, z); and 2) an inference model, which infers the latent variable z. During
testing, we can sample multiple latent variables from the learned prior distribution
Pθ(z|X) to produce stochastic saliency prediction. The whole pipeline of our model
during training and testing is illustrated in Fig. 2.2 (a) and (b) respectively. Specif-
ically, during training, the model learns saliency from the “Generator Model”, and
updates the latent variable with the “Inference Model”. During testing, we sam-
ple from the “Prior” distribution of the latent variable to obtain stochastic saliency
predictions.

2.3.1 Generator Model

The Generator Model takes X and latent variable z as input, and produces stochastic
prediction S = Pω(Y|X, z), where ω is the parameter set of the generator model. We
choose ResNet50 [28] as our backbone, which contains four convolutional blocks. To
enlarge the receptive field, we follow DenseASPP [162] to obtain a feature map with
the receptive field of the whole image on each stage of the backbone network. We
then gradually concatenate the two adjacent feature maps in a top-down manner and
feed it to a “Residual Channel Attention” module [163] to obtain stochastic saliency
map S. As illustrated in Fig. 2.3, our generator model follows the recent progress
in dense prediction problems such as semantic segmentation [138], via a proper use
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Figure 2.3: Details of the “Generator Model”, which takes image X and latent variable
z as input, and produce stochastic saliency map S, where “S1-S4” represent the four
convolutional blocks of our backbone network. “DASPP” is the DenseASPP module
[162], “PAM” and “CAM” are position attention and channel attention module [144],

“RCA” is the Residual Channel Attention operation from [163].

of a hybrid attention mechanism. To this end, our generator model benefits from
two types of attention: a Position Attention Module [144] and a Channel Attention
Module [144]. The former aims to capture the spatial dependencies between any
two locations of the feature map, while the latter aims to capture the channel depen-
dencies between any two channel in the feature map. We follow [144] to aggregate
and fuse the outputs of these two attention modules to further enhance the feature
representations.

2.3.2 Inference Model

We propose two different solutions to infer or update the latent variable z: 1) A
CVAE-based [51] pipeline, in which we approximate the posterior distribution via a
neural network (i.e., , the encoder); and 2) An ABP [139] based strategy to sample di-
rectly from the true posterior distribution of z via Langevin Dynamics based MCMC
[140].
Infer z with CVAE: The Variational Auto-encoder [50] is a directed graphical model
and typically comprise of two fundamental components, an encoder that maps the
input variable X to the latent space Qφ(z|X), where z is a low dimensional Gaussian
variable and a decoder that reconstructs X from z to get Pω(X|z). To train the VAE,
a reconstruction loss and a regularizer to penalize the disagreement of the prior and
the approximate posterior distribution of z are utilized as:

LVAE = Ez∼Qφ(z|X)[− log Pω(X|z)] + DKL(Qφ(z|X)||P(z)), (2.1)
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Figure 2.4: RGB-D saliency detection via CAVE. The “Generator Model” is shown in
Fig. 2.3. During training, we sample from both posterior net z ∼ Qφ(z|X, Y) and
prior net z ∼ Pθ(z|X) to obtain predictions SCVAE and SGSNN respectively. During

testing, SGSNN is our prediction.

where the first term is the reconstruction loss, or the expected negative log-likelihood,
and the second term is a regularizer, which is Kullback-Leibler divergence DKL to
reduce the gap between the normally distributed prior P(z) and the approximate
posterior Qφ(z|X). The expectation Ez∼Qφ(z|X) is taken with the latent variable z
generated from the approximate posterior distribution Qφ(z|X).

Different from the VAE, which model marginal likelihood (P(X) in particular)
with a latent variable generated from the standard normal distribution, the CVAE
[51] modulates the prior of latent variable z as a Gaussian distribution with param-
eters conditioned on the input data X. There are three types of variables in the
conditional generative model: conditioning variable, latent variable, and output vari-
able. In our saliency detection scenario, we define output as the saliency prediction
Y, and latent variable as z. As our output Y is conditioned on the input RGB-D data
X, we then define the input X as the conditioning variable. For the latent variable
z drawn from the Gaussian distribution Pθ(z|X), the output variable Y is generated
from Pω(Y|X, z), then the posterior of z is formulated as Qφ(z|X, Y), representing
feature embedding of the given input-output pair (X, Y).

The loss of CVAE is defined as:

LCVAE = Ez∼Qφ(z|X,Y)[− log Pω(Y|X, z)] + λkl ∗ DKL(Qφ(z|X, Y)||Pθ(z|X)), (2.2)

where Pω(Y|X, z) is the likelihood of P(Y) given latent variable z and conditioning
variable X, the Kullback-Leibler divergence DKL(Qφ(z|X, Y)||Pθ(z|X)) works as a
regularization loss to reduce the gap between the prior Pθ(z|X) and the auxiliary
posterior Qφ(z|X, Y). Furthermore, to prevent the possible posterior collapse problem
as mentioned in Section 2.2.4, we introduce a linear KL annealing [142, 143] term
λkl as weight for the KL loss term DKL, which is defined as λkl = ep/Nep, where
ep is current epoch, and Nep is the maximum epoch number. In this way, during
training, the CVAE aims to model the conditional log likelihood of prediction under
encoding error DKL(Qφ(z|X, Y)||Pθ(z|X)). During testing, we can sample from the
prior network Pθ(z|X) to obtain stochastic predictions.

As explained in [51], the conditional auto-encoding of output variables at training
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Figure 2.5: Detailed structure of inference models, where K is dimension of the latent
space, “c1_4K” represents a 1× 1 convolutional layer of output channel size 4× K,

“fc” represents the fully connected layer.

may not be optimal to make predictions at test time, as the CVAE uses a posterior of
z (z ∼ Qφ(z|X, Y)) for the reconstruction loss in the training stage, while it uses the
prior of z (z ∼ Pθ(z|X)) during testing. One solution to mitigate the discrepancy in
encoding the latent variable at training and testing is to allocate more weights to the
KL loss term (e.g., λkl). Another solution is setting the posterior network the same as
the prior network, i.e., , Qφ(z|X, Y) = Pθ(z|X), and we can sample the latent variable
z directly from prior network in both training and testing stages. We call this model
the “Gaussian Stochastic Neural Network” (GSNN) [51], and the objective function
is:

LGSNN = Ez∼Pθ(z|X)[− log Pω(Y|X, z)]. (2.3)

We can combine the two objective functions introduced above (LCVAE and LGSNN)
to obtain a hybrid objective function:

LHybrid = αLCVAE + (1− α)LGSNN (2.4)

Following the standard practice of CVAE [51], we design a CVAE-based RGB-
D saliency detection pipeline as shown in Fig. 2.4. The two inference models
(Qφ(z|X, Y) and Pθ(z|X)) share same structure as shown in Fig. 2.5, except for
Qφ(z|X, Y), we have concatenation of X and Y as input, while Pθ(z|X) takes X as
input. Let’s define Pθ(z|X) as PriorNet, which maps the input RGB-D data X to a
low-dimensional latent feature space, where θ is the parameter set of PriorNet. With
the provided GT saliency map Y, we define Qφ(z|X, Y) as PosteriorNet, with φ being
the network parameter set. We use five convolutional layers and two fully connected
layers to map the input RGB-D image X (or concatenation of X and Y for Posterior-
Net) to the statistics of the latent space: (µprior, σprior) for PriorNet and (µpost, σpost)
for PosteriorNet respectively. Then the corresponding latent vector z can be achieved
with the reparameteration trick: z = µ + σ · ε, where ε ∼ N (0, I).

According to Eq. 2.4, the KL-divergence in LCVAE is used to measure the distri-
bution mismatch between the Pθ(z|X) and Qφ(z|X, Y), or how much information is
lost when using Qφ(z|X, Y) to represent Pθ(z|X). The GSNN loss term LGSNN, on
the other hand, can mitigate the discrepancy in encoding the latent variable during
training and testing. The hybrid loss in Eq. 2.4 can achieve structured outputs with
hyper-parameter α to balance the two objective functions in Eq. 2.2 and Eq. 2.3.
Infer z with ABP: As mentioned earlier, one drawback of CVAE-based models is the
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Algorithm 1 Learning Stochastic Saliency via Alternating Back-propagation
Input: Training dataset D = {(Xi, Yi)}N

i=1
Network Setup: Maximal epoch Nep, number of Langvin steps l, step size s, learning rate γ

Output: Network parameter set ω and the inferred latent variable {zi}N
i=1

1: Initialize backbone of the “Generator Model” with ResNet50 [28] for image classification,
and other new added layers with a truncated Gaussian distribution. Initialize zi with
standard Gaussian distribution.

2: for t = 1, ..., Nep do
3: Inferential back-propagation: For each i, run l steps of Langevin Dynamics to sample

zi ∼ Pω(zi|Yi, Xi) following Eq. 6.5, with zi initialized as Gaussian white noise (first
iteration) or obtained from previous iteration.

4: Learning back-propagation: Update model parameters via: ω ← ω + γ
∂L(ω)

∂ω , where
the gradient of L(ω) can be obtained through stochastic gradient descent.

5: end for

posterior collapse problem [141], where the model learns to ignore the latent variable,
thus it becomes independent of the prediction Y, as Qφ(z|X, Y) will simply collapse
to Pθ(z|X), and z embeds no information about the prediction. In our scenario,
the “Posterior Collapse” phenomenon can be interpreted as the fact that the latent
variable z fails to capture the inherent human uncertainty in the annotations. To this
end, we propose another alternative solution based on alternating back-propagation
[139]. Instead of approximating the posterior of z with an encoder network as in a
CVAE, we directly sample z from its true posterior distribution via gradient based
MCMC.

Alternating Back-Propagation [139] was introduced for learning the generator
network model. It updates the latent variable and network parameters in an EM-
manner. Firstly, given network prediction with the current parameter set, it infers
the latent variable by Langevin dynamics based MCMC, which they call “Inferential
back-propagation” [139]. Secondly, given the updated latent variable, the network
parameter set is updated with gradient descent, and they call it “Learning back-
propagation” [139]. Following the previous variable definitions, given the training
example (X, Y), we intend to infer z and learn the network parameter ω to minimize
the reconstruction error as well as a regularization term that corresponds to the prior
on z.

As a non-linear generalization of factor analysis, the conditional generative model
aims to generalize the mapping from continuous latent variable z to the prediction
Y conditioned on the input image X. As in traditional factor analysis, we define our
generative model as:

z ∼ P(z) = N (0, I), (2.5)

Y = fω(X, z) + ε, ε ∼ N (0, diag(σ)2), (2.6)

where P(z) is the prior distribution of z. The conditional distribution of Y given X
is Pω(Y|X) =

∫
p(z)Pω(Y|X, z)dz with the latent variable z integrated out. We define

the observed-data log-likelihood as L(ω) = ∑n
i=1 log Pω(Yi|Xi), where the gradient of
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Pω(Y|X) is defined as:

∂

∂ω
log Pω(Y|X) =

1
Pω(Y|X)

∂

∂ω
Pω(Y|X) = EPω(z|X,Y)

[
∂

∂ω
log Pω(Y, z|X)

]
. (2.7)

The expectation term EPω(z|X,Y) can be approximated by drawing samples from
Pω(z|X, Y), and then computing the Monte Carlo average. This step corresponds
to inferring the latent variable z. Following ABP [139], we use Langevin Dynamics
based MCMC (a gradient-based Monte Carlo method) to sample z, which iterates:

zt+1 = zt +
s2

2

[
∂

∂z
log Pω(Y, zt|X)

]
+ sN (0, Id), (2.8)

with
∂

∂z
log Pω(Y, z|X) =

1
σ2 (Y− fω(X, z))

∂

∂z
fω(X, z)− z, (2.9)

where t is the time step for Langevin sampling, and s is the step size. The whole
pipeline of inferring latent variable z via ABP is shown in Algorithm 1.
Analysis of two inference models: Both the CVAE-based [51] inference model and
ABP-based [139] strategy can infer latent variable z, where the former one approx-
imates the posterior distribution of z with an extra encoder, while the latter solu-
tion targets at MLE by directly sampling from the true posterior distribution. As
mentioned above, the CVAE-based solution may suffer from posterior collapse [141],
where the latent variable z is independent of the prediction, making it unable to rep-
resent the uncertainty of labeling. In this situation, the latent variable z is absorbed
by the network, and the model then produce consistent predictions with multiple
iterations of sampling of z from it’s prior distribution during testing, leading to a
deterministic model instead of a stochastic model. To prevent posterior collapse, we
adopt the KL annealing strategy [142, 143], and let the KL loss term in Eq. 2.2 grad-
ually contribute to the CVAE loss function. On the contrary, the ABP-based solution
suffers no posterior collapse problem, which leads to simpler and more stable train-
ing, where the latent variable z is updated based on the current prediction. In both
of our proposed solutions, with the inferred Gaussian random variable z, our model
can lead to stochastic prediction, with z representing labeling variants.

2.3.3 Output Estimation

Once the generative model parameters are learned, our model can produce predic-
tion from input X following the generative process of the conditional generative
model. With multiple iterations of sampling, we can obtain multiple saliency maps
from the same input X. To evaluate performance of the generative network, we need
to estimate the deterministic prediction of the structured outputs. Inspired by [51],
our first solution is to simply average the multiple predictions. Alternatively, we can
obtain multiple z from the prior distribution, and define the deterministic prediction
as Y = fω(X, E(z)), where E(z) is the mean of the multiple latent variable. Inspired
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Figure 2.6: Example showing how the saliency consensus module works.

by how the GT saliency map is obtained (e.g., Majority Voting), we introduce a third
solution, namely “Saliency Consensus Module”, which is introduced in detail.

Saliency Consensus Module: To prepare a training dataset for saliency detection,
multiple annotators are asked to label one image, and the majority [43] of saliency
regions is defined as being salient in the final GT saliency map.

Although the way in which the GT is acquired is well known in the saliency de-
tection community yet, there exists no research on embedding this mechanism into
deep saliency frameworks. The main reason is that current models define saliency
detection as a point estimation problem instead of a distribution estimation problem,
and the final single saliency map can not be further processed to achieve “majority
voting”. We, instead, design a stochastic learning pipeline to obtain the conditional
distributions of prediction, which makes it possible to perform a similar strategy
as preparing the training data to generate deterministic prediction for performance
evaluation. Thus, we introduce the saliency consensus module to compute the ma-
jority of different predictions in the testing stage as shown in Fig. 2.2 (b).

During testing, we sample z from PriorNet (for the CVAE-based inference model)
or directly sample it from a standard Gaussian distribution N (0, I), and feed it to
the “Generator Model” to produce stochastic saliency prediction as shown in Fig. 2.2
(b). With C different samplings, we can obtain C predictions P1, ..., PC. We simulta-
neously feed these multiple predictions to the saliency consensus module to obtain
the consensus of predictions for performance evaluation.

Given multiple predictions {Pc}C
c=1, where Pc ∈ [0, 1], we first compute the bi-

nary2 version Pc
b of the predictions by performing adaptive thresholding [164] on Pc.

For each pixel (u, v), we obtain a C dimensional feature vector Pu,v ∈ {0, 1}. We
define Pmjv

b ∈ {0, 1} as a one-channel saliency map representing the majority of Pu,v,

2As the GT map Y ∈ {0, 1}, we produce a series of binary predictions with each one representing
annotation from one saliency annotator.
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which is defined as:

Pmjv
b (u, v) =


1,

C

∑
c=1

Pc
b (u, v)/C ≥ 0.5,

0,
C

∑
c=1

Pc
b (u, v)/C < 0.5.

(2.10)

We define an indicator 1c(u, v) = 1(Pc
b (u, v) = Pmjv

b (u, v)) representing whether the
binary prediction is consistent with the majority of the predictions. If Pc

b (u, v) =

Pmjv
b (u, v), then 1c(u, v) = 1. Otherwise, 1c(u, v) = 0. We obtain one gray saliency

map after saliency consensus as:

Pmjv
g (u, v) =

∑C
c=1(Pc

b (u, v)× 1c(u, v))

∑C
c=1 1c(u, v)

. (2.11)

We show one toy example with C = 3 in Fig. 2.6 to illustrate how the saliency
consensus module works. As shown in Fig. 2.6, given three gray-scale predictions
(illustrated in blue), we perform adaptive thresholding to obtain three different bi-
nary predictions (illustrated in orange). Then we compute a majority matrix (illus-
trated in purple), which is also binary, with each pixel representing majority pre-
diction of the specific coordinate. Finally, after the saliency consensus module, our
final gray-scale prediction is computed based on mean of those pixels agreed (when
Pc

b (u, v) = Pmjv
b (u, v), we mean in location u, v, the prediction agrees with the major-

ity) with the majority matrix, and ignore others. For example, the majority of saliency
in coordinate (1, 1) is 1, we obtain the gray prediction after the saliency consensus
module as (0.9 + 0.7)/2 = 0.8, where 0.9 and 0.7 are predictions in (1, 1) of the first
and third predictions.

2.3.4 Loss function

We introduce two different inference models to update the latent variable z: a CVAE-
based model as shown in Fig. 2.4, and an ABP-based strategy as shown in Algorithm
1. To further highlight structure accuracy of the prediction, we introduce smoothness
loss based on the assumption that pixels inside a salient object should have a similar
saliency value, and sharp distinction happens along object edges.

As an edge-aware loss, smoothness loss was initially introduced in [165] to en-
courage disparities to be locally smooth with an L1 penalty on the disparity gra-
dients. It was then adopted in [109] to recover optical flow in the occluded area
by using an image prior. We adopt smoothness loss to achieve a saliency map of
high intra-class similarity, with consistent saliency prediction inside salient objects,
and distinction happens along object edges. Following [109], we define first-order
derivatives of the saliency map in the smoothness term as

LSmooth = ∑
u,v

∑
d∈−→x ,−→y

Ψ(|∂dPu,v|e−α|∂d Ig(u,v)|), (2.12)
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where Ψ is defined as Ψ(s) =
√

s2 + 1e−6, Pu,v is the predicted saliency map at
position (u, v), and Ig(u, v) is the image intensity, d indexes over partial derivative
in −→x and −→y directions. We set α = 10 in our experiments following the setting in
[109].

We need to compute intensity Ig of the image in the smoothness loss, as shown
in Eq. 2.12. To achieve this, we follow a saliency-preserving [166] color image trans-
formation strategy and convert the RGB image I to a gray-scale intensity image Ig
as:

Ig = 0.2126× I lr + 0.7152× I lg + 0.0722× I lb, (2.13)

where I lr, I lg, and I lb represent the color components in the linear color space after
Gamma function be removed from the original color space. I lr is achieved via:

Ilr =


Ir

12.92
, Ir ≤ 0.04045,(

Ir + 0.055
1.055

)2.4

, Ir > 0.04045,
(2.14)

where Ir is the original red channel of image I, and we compute Ig and Ib in the
same way as Eq. 2.14.
CVAE Inference Model based Loss Function: For the CVAE-based inference model,
we show its loss function in Eq. 2.4, where the negative log-likelihood loss mea-
sures the reconstruction error. To preserve structure information and penalize wrong
predictions along object boundaries, we adopt the structure-aware loss in [34]. The
structure-aware loss is a weighted extension of cross-entropy loss, which integrates
the boundary IOU loss [32] to highlight the accuracy of boundary prediction.

With smoothness loss LSmooth and CVAE loss LHybrid, our final loss function for
the CVAE-based framework is defined as:

LCVAE
sal = LHybrid + λ1LSmooth. (2.15)

We tested λ1 in the range of [0.1, 0.2, . . . , 0.9, 1.0], and found ralatively better perfor-
mance with λ1 = 0.3.
ABP Inference Model based Loss Function: As there exists no extra encoder for the
posterior distribution estimation, the loss function for the ABP inference model is
simply the negative observed-data log-likelihood:

LABP = −
n

∑
i=1

log Pω(Yi|Xi), (2.16)

which can be the same structure-aware loss as in [34] similar to CVAE-based inference
model.

Integrated with the above smoothness loss, we obtain the loss function for the
ABP-based saliency detection model as:

LABP
sal = LABP + λ2LSmooth. (2.17)
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Similarly, we also empirically set λ2 = 0.3 in our experiment.

2.4 Experimental Results

2.4.1 Setup

Datasets: We perform experiments on six datasets including five widely used RGB-D
saliency detection datasets (namely NJU2K [167], NLPR [168], SSB [169], LFSD [170],
DES [171]) and one newly released dataset (SIP [43]).
Competing Methods: We compare our method with 18 algorithms, including ten
handcrafted conventional methods and eight deep RGB-D saliency detection models.
Evaluation Metrics: Four evaluation metrics are used to evaluate the deterministic
predictions, including two widely used: 1) Mean Absolute Error (MAEM); 2) mean
F-measure (Fβ) and two recently proposed: 3) Structure measure (S-measure, Sα)
[172] and 4) mean Enhanced alignment measure (E-measure, Eξ) [173].

• MAE M: The MAE estimates the approximation degree between the saliency
map Sal and the ground-truth G. It provides a direct estimate of conformity
between estimated and GT map. MAE is defined as:

MAE =
1
N
|Sal − G|, (2.18)

where N is the total number of pixels.

• S-measure Sα: Both MAE and F-measure metrics ignore the important structure
information evaluation, whereas behavioral vision studies have shown that the
human visual system is highly sensitive to structures in scenes [172]. Thus, we
additionally include the structure measure (S-measure [172]). The S-measure
combines the region-aware (Sr) and object-aware (So) structural similarity as
their final structure metric:

Sα = α ∗ So + (1− α) ∗ Sr, (2.19)

where α∈ [0, 1] is a balance parameter and set to 0.5 as default.

• E-measure Eξ : E-measure is the recent proposed Enhanced alignment mea-
sure [173] in the binary map evaluation field. This measure is based on cog-
nitive vision studies, which combines local pixel values with the image-level
mean value in one term, jointly capturing image-level statistics and local pixel
matching information. Here, we introduce it to provide a more comprehensive
evaluation.

• F-measure Fβ: It is essentially a region based similarity metric. We provide the
mean F-measure using varying 255 fixed (0-255) thresholds as shown in Fig.
2.7.
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Table 2.1: Benchmarking results of seven leading handcrafted feature-based models
and eight deep models on six RGBD saliency datasets. ↑ & ↓ denote larger and

smaller is better, respectively. Here, we adopt mean Fβ and mean Eξ[173].
Handcrafted Feature based Models Deep Models Ours

Metric GP CDCPACSD LBE DCMCMDSF SE DF AFNetCTMFMMCIPCFTANetCPFPDMRAUC-NetCVAEABP
[174] [175] [167] [176] [177] [178] [179] [145] [146] [49] [147] [45] [48] [131] [1] [60]

N
JU

2K

Sα ↑ .527 .669 .699 .695 .686 .748 .664 .763 .822 .849 .858 .877 .879 .878 .886 .897 .902 .900
Fβ ↑ .357 .595 .512 .606 .556 .628 .583 .653 .827 .779 .793 .840 .841 .850 .873 .886 .893 .889
Eξ ↑ .466 .706 .594 .655 .619 .677 .624 .700 .867 .846 .851 .895 .895 .910 .920 .930 .937 .937
M ↓ .211 .180 .202 .153 .172 .157 .169 .140 .077 .085 .079 .059 .061 .053 .051 .043 .039 .039

SS
B

Sα ↑ .588 .713 .692 .660 .731 .728 .708 .757 .825 .848 .873 .875 .871 .879 .835 .903 .898 .904
Fβ ↑ .405 .638 .478 .501 .590 .527 .611 .617 .806 .758 .813 .818 .828 .841 .837 .884 .878 .886
Eξ ↑ .508 .751 .592 .601 .655 .614 .664 .692 .872 .841 .873 .887 .893 .911 .879 .938 .935 .939
M ↓ .182 .149 .200 .250 .148 .176 .143 .141 .075 .086 .068 .064 .060 .051 .066 .039 .039 .037

D
ES

Sα ↑ .636 .709 .728 .703 .707 .741 .741 .752 .770 .863 .848 .842 .858 .872 .900 .934 .937 .940
Fβ ↑ .412 .585 .513 .576 .542 .523 .618 .604 .713 .756 .735 .765 .790 .824 .873 .919 .929 .928
Eξ ↑ .503 .748 .613 .650 .631 .621 .706 .684 .809 .826 .825 .838 .863 .888 .933 .967 .975 .975
M ↓ .168 .115 .169 .208 .111 .122 .090 .093 .068 .055 .065 .049 .046 .038 .030 .019 .016 .016

N
LP

R

Sα ↑ .655 .727 .673 .762 .724 .805 .756 .806 .799 .860 .856 .874 .886 .888 .899 .920 .917 .919
Fβ ↑ .451 .609 .429 .636 .542 .649 .624 .664 .755 .740 .737 .802 .819 .840 .865 .891 .893 .891
Eξ ↑ .571 .782 .579 .719 .684 .745 .742 .757 .851 .840 .841 .887 .902 .918 .940 .951 .952 .852
M ↓ .146 .112 .179 .081 .117 .095 .091 .079 .058 .056 .059 .044 .041 .036 .031 .025 .025 .024

LF
SD

Sα ↑ .640 .717 .734 .736 .753 .700 .698 .791 .738 .796 .787 .794 .801 .828 .847 .864 .868 .866
Fβ ↑ .519 .680 .566 .612 .655 .521 .640 .679 .736 .756 .722 .761 .771 .811 .845 .855 .857 .859
Eξ ↑ .584 .754 .625 .670 .682 .588 .653 .725 .796 .810 .775 .818 .821 .863 .893 .901 .904 .903
M ↓ .183 .167 .188 .208 .155 .190 .167 .138 .134 .119 .132 .112 .111 .088 .075 .066 .065 .065

SI
P

Sα ↑ .588 .595 .732 .727 .683 .717 .628 .653 .720 .716 .833 .842 .835 .850 .806 .875 .883 .876
Fβ ↑ .411 .482 .542 .572 .500 .568 .515 .465 .702 .608 .771 .814 .803 .821 .811 .867 .877 .863
Eξ ↑ .511 .683 .614 .651 .598 .645 .592 .565 .793 .704 .845 .878 .870 .893 .844 .914 .927 .921
M ↓ .173 .224 .172 .200 .186 .167 .164 .185 .118 .139 .086 .071 .075 .064 .085 .051 .045 .049

Implementation Details: We train our model using PyTorch, and initialized the
encoder of the “Generator Model” with ResNet50 [28] parameters pre-trained on Im-
ageNet. Inside the “DASPP” module of the “Generator Model” in Fig. 2.3, we use
four different scales of dilation rate: 6, 12, 18, 24 same as [162], and set all intermedi-
ate channel size as M = 32. For both inference models, we set the dimension of the
latent variable as K = 3. Weights of new layers are initialized with N (0, 0.01), and
bias is set as constant. We use the Adam method with momentum 0.9 and decrease
the learning rate 10% after 80% of the maximum epoch. The base learning rate is
initialized as 5e-5. The whole training takes around 9 hours with training batch size
5, and maximum epoch 100 on a PC with an NVIDIA GeForce RTX GPU. For input
image size 352 × 352, the inference time of our CVAE model and ABP model are
0.06s and 0.05s on average respectively.

2.4.2 Comparison to State-of-the-art Methods

Quantitative Comparison: We report the performance of our method (with both
inference models) and competing methods in Table 2.1, where “CVAE” is our frame-
work with CVAE as inference model, and “ABP” represents the model that updates
latent variable z with alternating back-propagation. Results in Table 2.1 demonstrate
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Figure 2.7: E-measure and F-measure curves on six testing datasets (NJU2K, SSB,
DES, NLPR, LFSD and SIP). Best viewed on screen.

the benefits of both CVAE and ABP which consistently achieve the best performance
on all datasets. Specifically, on SSB [169] and SIP [43], our method achieves around
a 2.5% S-measure, E-measure and F-measure performance boost and a decrease in
MAE by 1.5% compared with the “Deep Models” in Table 2.1. Moreover, compared
with our preliminary version “UC-Net” [60], we observe improved performance,
which indicates the effectiveness of the proposed structure. We also show E-measure
and F-measure curves of competing methods and ours in Fig. 2.7. We observe that
our method produces not only stable E-measure and F-measure but also the best
performance.
To further evaluate the proposed method, we compute performance of eight cutting-
edge RGB saliency detection models on the RGB-D testing dataset3 and compared
with our “CVAE” based model. The results are shown in Table 2.2, which further
illustrates the superior performance of the proposed framework.
Qualitative Comparisons: In Fig. 2.8, we show five examples comparing our method
with six RGB-D saliency detection models. Salient objects in these images can be
large (fifth row), small (second row) or in complex backgrounds (first, third, fourth
and fifth rows). Especially for the example in the first row, the background is com-
plex, part of the background shares similar color and texture as the salient fore-
ground. Most of those competing methods (AFNet[146], CPFP[131] and DMRA[1])

3The RGB saliency models are trained on RGB saliency training set, and testing on RGB-D testing
set, where the depth is not used.
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Table 2.2: Performance of competing RGB saliency detection models and ours on
RGBD saliency datasets, where depth data is not used while testing using the RGB

saliency models. We adopt mean Fβ and mean Eξ .
Metric AFBNet NLDF PiCANet RAS DGRL CPD SCRN F3Net CAVE

[40] [32] [31] [180] [181] [37] [130] [34] Ours

NJU2K[167]

Sα ↑ .862 .813 .864 .754 .767 .875 .879 .861 .902
Fβ ↑ .835 .783 .818 .744 .716 .852 .863 .837 .893
Eξ ↑ .888 .848 .869 .800 .804 .903 .912 .890 .937
M ↓ .064 .091 .072 .115 .107 .056 .052 .061 .039

SSB[169]

Sα ↑ .893 .859 .896 .828 .824 .902 .902 .891 .898
Fβ ↑ .865 .831 .844 .820 .781 .880 .881 .868 .878
Eξ ↑ .918 .893 .899 .871 .865 .928 .928 .921 .935
M ↓ .045 .062 .053 .076 .073 .040 .041 .043 .039

DES[171]

Sα ↑ .879 .828 .883 .806 .833 .894 .907 .880 .937
Fβ ↑ .845 .758 .822 .762 .753 .870 .885 .845 .929
Eξ ↑ .893 .831 .872 .823 .849 .907 .927 .892 .975
M ↓ .035 .058 .039 .060 .054 .029 .026 .030 .016

NLPR[168]

Sα ↑ .881 .847 .876 .853 .840 .893 .894 .884 .917
Fβ ↑ .816 .782 .789 .810 .767 .844 .846 .838 .893
Eξ ↑ .896 .876 .870 .888 .873 .914 .920 .912 .952
M ↓ .042 .052 .051 .049 .053 .034 .036 .035 .025

LFSD[170]

Sα ↑ .817 .777 .827 .673 .782 .836 .827 .835 .868
Fβ ↑ .784 .756 .778 .672 .759 .811 .800 .810 .857
Eξ ↑ .838 .806 .825 .727 .817 .856 .847 .857 .904
M ↓ .094 .121 .103 .162 .117 .088 .088 .089 .065

SIP[43]

Sα ↑ .876 .795 .851 .718 .682 .870 .866 .866 .883
Fβ ↑ .847 .752 .806 .696 .606 .859 .861 .850 .877
Eξ ↑ .911 .840 .866 .766 .744 .910 .903 .905 .927
M ↓ .055 .100 .073 .121 .138 .053 .057 .055 .045

failed to correctly segment the precise salient foreground, while our approach achieves
better salient object detection with each of the proposed two inference models. For
the image in the last row, there exists an object (i.e., , green toy) that strongly stands
out from its background, while the depth map can to some extent decrease the
salience of such high-contrast region. All of the competing methods (DCMC[177],
SE[179], AFNet[146], CPFP[131] in particular) falsely detect part of the background
region as being salient, whereas our accurate predictions further indicate the effec-
tiveness of our solutions. With all the results in Fig. 2.8, we can see evidence of the
superiority of our approach.
Probabilistic Distribution Evaluation: As a probabilistic network, our models can
produce a distribution of plausible saliency maps instead of a single, determinis-
tic prediction for each input image. We argue that, for images with simple back-
ground, consistent predictions should be produced, whereas for complex images
with cluttered background, we expect our model to capture the uncertainty in the
saliency maps, and thus can generate diverse predictions. To evaluate performance
of our model, following the active learning pipeline [182], we first generate B = 100
easy and difficult samples. To achieve this, we first adopt three different conven-
tional saliency models (RBD [24], MR [26] and GS [183], which rank among the top
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Figure 2.8: Visual comparison of predictions of our methods and competing methods.
Note that, our final prediction is generated with the proposed “Saliency Consencus

Module” (see Section 2.3.3).

Figure 2.9: Image distribution by analysing entropy and standard deviation.

six conventional handcrafted feature based RGB saliency models [164]), and define
them as f 1, f 2 and f 3 respectively. Given image Xi

4 in training dataset D, we com-
pute its corresponding saliency map f 1(Xi), f 2(Xi) and f 3(Xi). We choose entropy
as measure for image complexity. Then, we define mean saliency map of Xi as
Pi = ( f 1(Xi) + f 2(Xi) + f 3(Xi))/3. We define the complexity of the image as task
driven (for saliency detection). Then given a ground-truth saliency map Yi and mean
saliency map Pi, we define foreground entropy as: −Pi log Pi.

We then define mean entropy as a complexity measure, and choose B images with
the smallest entropy as the easy samples and B images with the largest entropy as the

4We use the RGB data only.
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Table 2.3: The code type and inference time of existing approaches. M = Matlab. Pt
= PyTorch. Tf = Tensorflow.

Method LHM CDB DESM GP CDCP ACSD LBE DCMC MDSF
[168] [184] [171] [174] [175] [167] [176] [177] [178]

Time (s) 2.13 0.60 7.79 12.98 60.00 0.72 3.11 1.20 60.00
Code Type M M M M&C++ M&C++ C++ M&C++ M C++
Method SE DF AFNet CTMF MMCI PCF CPFP Our_ABP Our_CVAE

[179] [145] [146] [49] [147] [45] [131]
Time (s) 1.57 10.36 0.03 0.63 0.05 0.06 0.17 0.05 0.06
Code Type M&C++ M&C++ Tf Caffe Caffe Caffe Caffe Pt Pt

difficult samples (with B = 100). We sample Sn = 5 times from the prior distribution
and compute the variance of each group. Specifically, for image pair Xi, with Sn
iterations of sampling, we obtain its prediction {Sj

i}Sn
j=1. We compute the similarity

of these Sn different predictions, and treat it as prediction diversity evaluation. We
show entropy and standard deviation of images in Fig. 2.9.
Inference Time5 and Model Complexity Comparison: We summarize basic infor-
mation of competing methods in Table 2.3 for clear comparison, including their code
type and inference time. Table 2.3 shows that the inference time6 of our method is
comparable with competing methods, which further illustrates that our model can
achieve probabilistic predictions with no inference time sacrificed. Further, the ex-
isting RGB-D saliency detection models (AFNet [146], CTMF [49], MMCI [147], PCF
[45], CPFP [131]) adopt the VGG16 network [67] as backbone to achieve cross-level
feature fusion, where there exists two sets of VGG16 [67] backbones for both RGB
image and depth feature extraction. We use the ResNet50 backbone [28]. Although
ResNet50 backbone has more parameters (around 50M) than the VGG16 backbone
(around 30M), as an early fusion model, we use one copy of the backbone network
for feature extraction, leading to comparable a parameters number compared with
existing techniques.

2.4.3 Structured Output Generation

As a generative network, we introduce a latent variable z modeling uncertainty of
human annotation. We further show examples of our model generating structured
outputs as shown in Fig. 2.10. The “Our_CVAE Samples” in Fig. 2.10 represents three
random samples of our method with the CVAE inference model, and “Our_ABP
Samples” are samples with the ABP strategy. “Our_CVAE” and “Our_ABP” are
the deterministic predictions of our frameworks with the above two inference mod-
els obtained via our “Saliency Consensus Module”. Fig. 2.10 shows that both the
two inference models can produce reasonable stochastic predictions, and the final
deterministic prediction after the “Saliency Consensus Module” (“Our_CVAE” and

5Conventional handcrafted-feature based methods are implemented on CPU, and deep RGB-D
saliency prediction models are based on GPU, thus we report CPU time for the former and GPU
time for the later.

6The inference time we report represents prediction with one random sampling from the PriorNet.
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Figure 2.10: Structured outputs generation, where “Our_CVAE Samples” and
“Our_CVAE” are samples and the deterministic prediction respectively.

Table 2.4: Evaluation of the effect of different components in our models, and alter-
native structures. We present mean Fβ and mean Eξ .

NJU2K SSB DES NLPR LFSD SIP

Method Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓
Middle .897 .888 .933 .042 .895 .880 .934 .041 .931 .920 .968 .018 .916 .887 .950 .026 .854 .843 .888 .073 .873 .863 .914 .048

Late .890 .875 .929 .046 .891 .866 .931 .042 .929 .909 .970 .020 .907 .877 .947 .028 .839 .828 .887 .076 .870 .853 .916 .051

AveP .900 .892 .936 .040 .897 .877 .934 .040 .935 .924 .970 .017 .914 .890 .951 .025 .857 .842 .899 .067 .880 .876 .926 .046

AveZ .901.890 .927 .040 .892 .875 .930 .040 .929 .921 .971 .018 .914 .884 .950 .026 .855 .843 .892 .068 .880 .874 .926 .046

GSNN .900.887 .935 .040 .894 .873 .930 .041 .931 .919 .971 .018 .913 .885 .949 .026 .852 .834 .894 .070 .871 .864 .916 .051

CVAE_S .900 .890 .932 .040 .894 .876 .931 .041 .936 .927 .974 .016 .914 .891 .949 .026 .856 .843 .897 .068 .877 .867 .920 .048

NoS .893 .881 .933 .042 .885 .876 .930 .044 .931 .921 .966 .017 .914 .878 .950 .027 .853 .845 .898 .069 .882 .868 .924 .047

CE .900.891 .936 .041 .894 .876 .930 .040 .935 .921 .970 .018 .913 .891 .950 .025 .851 .833 .887 .075 .876 .856 .916 .051

HHA .897.886 .934 .042 .902 .882 .937 .038 .930 .917 .970 .019 .919 .892 .950 .024 .850 .834 .888 .074 .870 .856 .915 .052

w/o KLA .900.890 .932 .041 .893 .870 .931 .040 .932 .923 .972 .017 .913 .887 .948 .027 .854 .841 .893 .069 .881 .872 .923 .046

Our_CAVE .902 .893 .937 .039 .898 .878 .935 .039 .937 .929 .975 .016 .917 .893 .952 .025 .868 .857 .904 .065 .883 .877 .927 .045

Our_ABP .900.889 .937 .039 .904 .886 .939 .037 .940 .928 .975 .016 .919 .891 .852 .024 .866 .859 .903 .065 .876 .863 .921 .049

(a) Early fusion model (b) Middle fusion model (c) Late fusion model

Figure 2.11: Detail network structures of different fusion schemes: the early fusion
model (a), the middle fusion model (b) and the late fusion model (c).

“Our_ABP”) is consistent with the provided GT, which verifies effectiveness of both
our latent variable and the “Saliency Consensus Module”.
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2.4.4 Ablation Studies

We further analyse the proposed framework in this section, including the generative
network related strategies, the loss functions, the alternative depth data (HHA [185]
in particular), and the solution to prevent network from posterior collapse. We show
the performance in Table 2.4. Note that unless otherwise stated, we use the CVAE-
based inference model in the following experiments.
Different Fusion Schemes: The latent variable z can be fused to the network in
three different ways: early fusion (in the input layer), middle fusion (in bottleneck
network), or late fusion (before the output layer). We propose an early fusion model
as shown in Fig. 2.11 (a). We further design a middle fusion models and a late
fusion model as shown in Fig. 2.11 (b) and (c) respectively. The performance of each
model is shown in Table 2.4 “Middle” and “Late”. For the middle fusion model,
last convolutional layer of the fourth group (e.g., S4) of the backbone network is
fed to a 1 × 1 convolutional layer to obtain a M = 32 dimensional feature map,
which is then map to a K (dimension of the latent variable z) dimensional feature
vector with a fully connected layer (“fc”). To avoid posterior collapse [141], inspired
by [76], we mix (“Mixup”) the feature vector and z channel-wise; thus, the network
cannot distinguish between features of the deterministic branch and the probabilistic
branch. We then expand the mixed feature vector in the spatial dimension, and
feed it to another 1× 1 convolutional layer to achieve feature map S4’ of the same
dimension as S4, and replace S4 with S4’ in Fig. 2.3. For the late fusion model, the
“Generator Model” represents the generator model in Fig. 2.3 before the last “RCA”
module. We expand z in spatial dimension and concatenate it with the deterministic
feature. We also perform “Mixup” here similar to the middle fusion model. We then
feed the mixed feature map to one “RCA” module and “DASPP” model to achieve
prediction S. We observe slightly worse performance of the middle fusion model
(“Middle”) and late fusion model (“Late”). The main reason is that strong non-linear
representation can be obtained when the latent variable is fed to the beginning of the
network, which is also consistent with the result that “Middle” is better than “Late”.

Figure 2.12: Dimension analysis of the latent variable.

Analysing the Effect of the Dimension of z: The scale of z may influence both
network performance and diversity of predictions. In our experiments, we set di-
mension of z to 3. We further carry out experiments with dimension of z in the range
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of [3, 32], and show mean absolution error of our model on six benchmark RGB-D
saliency dataset in Fig. 2.12. We observe relatively stable performance for differ-
ent dimension of z. The relatively stable performance regardless of dimension of z
shows that the capacity of the network is large enough to take different degree of
stochasticity in the input. Further, as there exists only a few quite difficult samples,
and lower dimension of z is enough to capture variants of labeling.
Deterministic Prediction Generation: As introduced in Section 2.3.3, three differ-
ent solutions can be used to generate a deterministic prediction for performance
evaluation, including 1) averaging multiple predictions; 2) averaging multiple latent
variables; and 3) the proposed saliency consensus module. We evaluate performance
of other deterministic inference solutions and show performance in Table 2.4 “AveP”
and “AveZ”, representing the average-prediction solution and average-z solution re-
spectively. We observe similar performance of “AveP” and “AveZ” compared with
the proposed saliency consensus module. The similar performance of “AveP” and
“AveZ” illustrates that both conventional deterministic prediction generation solu-
tions work well for the saliency detection task. The better performance of “Ours”
indicates effectiveness of the proposed solution.
Effectiveness of Loss Functions: Due to the inconsistency of Qφ(z|X, Y) and Pθ(z|X)
used in the training and testing stage respectively, the model may behave differently
during training and testing. To mitigate the discrepancy in encoding the latent vari-
able, and achieve similar network behavior during training and testing, we introduce
Gaussian Stochastic Neural Network (GSNN) and a hybrid loss function as shown
in Eq. 2.4. To test how our network performs with only the CVAE loss in Eq. 2.2 or
GSNN loss in Eq. 2.3, we train two extra models and show performance as “CVAE_S”
and “GSNN” respectively. We see clear performance decreased with each loss used
solely. Further, although the two models perform worse than the proposed solution,
we still observe consistent better performance compared with competing methods.
Both the performance drop of “CVAE_S” and “GSNN” compared with “Ours”, and
better performance of “CVAE_S” and “GSNN” compared with competing methods,
indicate effectiveness of the proposed generative model for saliency detection.
Smoothness Loss: We introduce the smoothness loss to our loss function to set con-
straints on the structure of the prediction. To evaluate the contribution of the smooth-
ness loss, we remove it from our loss function and show the performance as “NoS”.
The lower performance indicates the effectiveness of the smoothness loss. Moreover,
as shown in Eq. 2.12, the smoothness loss takes saliency prediction and gray-scale
image as input, which can also be interpreted as a self-supervised regularizer.
Structure-aware Loss vs. Cross-entropy Loss: Similar to [34], we use structure-aware
loss instead of the widely used cross-entropy loss to penalize prediction along object
edges, thus we can achieve structure-preserving saliency prediction. To prove that
our model can also works well with basic cross-entropy loss, we designed another
model with cross-entropy loss used instead of the structure-aware loss, and show per-
formance as “CE”. We notice clear decreased performance of “CE” on “LFSD” and
“SIP” dataset. For both “LFSD” and “SIP” dataset, there exists salient foreground
regions that share similar color as the background, which makes the cross-entropy
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Table 2.5: Comparison with the state-of-the-art RGB saliency detection models on six
benchmark RGB saliency datasets. We adopt mean Fβ and mean Eξ .

DUTS ECSSD DUT HKU-IS THUR SOC
Method Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓
DGRL [181] .846 .790 .887 .051 .902 .898 .934 .045 .809 .726 .845 .063 .897 .884 .939 .037 .816 .727 .838 .077 - - - -
PiCAN [31] .842 .757 .853 .062 .898 .872 .909 .054 .817 .711 .823 .072 .895 .854 .910 .046 .818 .710 .821 .084 .801 .332 .810 .133
NLDF [32] .816 .757 .851 .065 .870 .871 .896 .066 .770 .683 .798 .080 .879 .871 .914 .048 .801 .711 .827 .081 .816 .319 .837 .106
BASN [33] .876 .823 .896 .048 .910 .913 .938 .040 .836 .767 .865 .057 .909 .903 .943 .032 .823 .737 .841 .073 .841 .359 .864 .092
AFNet [40] .867 .812 .893 .046 .907 .901 .929 .045 .826 .743 .846 .057 .905 .888 .934 .036 .825 .733 .840 .072 .700 .062 .684 .115
MSNet [39] .862 .792 .883 .049 .905 .886 .922 .048 .809 .710 .831 .064 .907 .878 .930 .039 .819 .718 .829 .079 - - - -
SCRN [130] .885 .833 .900 .040 .920 .910 .933 .041 .837 .749 .847 .056 .916 .894 .935 .034 .845 .758 .858 .066 .838 .363 .859 .099
LDF [188] .890 .861 .925 .034 .919 .923 .943 .036 .839 .770 .865 .052 .920 .913 .953 .028 .842 .768 .863 .064 - - - -
Ours_CVAE.888.860 .927 .034 .921 .926 .947 .035 .839 .773 .869 .051 .921 .919 .957 .026 .848 .765 .862 .064 .849 .369 .872 .089
Ours_ABP .890 .864 .931 .034 .915 .918 .941 .037 .843 .770 .864 .050 .917 .913 .949 .027 .849 .773 .869 .066 .842 .365 .868 .091

based model ineffective in those scenarios. While the structure-aware loss can penal-
ize prediction with wrong structure information, making it effective for those difficult
images.

HHA vs. Depth: HHA [185] is a widely used technique that encodes the depth data
to three channels: horizontal disparity, height above ground, and the angle the pixel’s
local surface normal makes with the inferred gravity direction. HHA is widely used
in RGB-D dense models [186, 49] to obtain better feature representation. To test if
HHA also works in our scenario, we replace depth with HHA, and performance is
shown in “HHA”. We observe similar performance achieved with HHA instead of
the raw depth data. Those models using HHA aim to obtain better depth represen-
tation, as the raw depth is not usually in low-quality. The proposed stochastic model
introduces randomness to the network, which can also serve as denoising technique
to improve robustness of the model, and this is also consistent with the observation
in [187].

Training without KL Annealing: As discussed in Section 2.2.4, we introduce KL
annealing strategy to prevent the possible posterior collapse problems of the CVAE-
based model. To test contribution of this strategy, we simply remove the KL anneal-
ing term, and set weight of the KL loss term in Eq. 2.2 as 1 from the first epoch.
Performance of this experiment is shown as “w/o KLA”. Although the performance
on the six benchmark RGB-D saliency datasets does not show effect of KL annealing
clearly (as we generate a deterministic prediction), we observed that it highly affects
the diversity of the prediction as shown in Fig. 2.13, which presents the mean vari-
ance of multiple predictions on the RGB-D testing sets. Specifically, we perform five
iterations of random sampling during testing, and compute variance of those five
different predictions. We show mean of the variance maps in Fig. 2.13. Further, we
show the mean variance of our CVAE-based and ABP-based models as “CVAE” and
“ABP” respectively. Fig. 2.13 clearly shows that both of our proposed solutions can
generate more diverse predictions than “w/o KLA”, leading to larger variance than
“w/o KLA”.
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Figure 2.13: Mean variance of multiple predictions using our CAVE-based model
(“CVAE”), ABP-based model (“ABP”), and the CAVE-based model without KL an-

nealing term (“w/o KLA”). Best viewed on screen.

2.4.5 Probabilistic RGB Saliency Detection

We propose a generative model based RGB-D saliency detection network, and we
extend it to RGB saliency detection to test flexibility of the proposed framework, and
show performance in Table 2.5. We train our model (“Ours_CVAE” and “Ours_ABP”)
with DUTS training dataset [41], and evaluate performance of our methods and com-
peting methods on six widely-used benchmarks: (1) DUTS testing dataset; (2) ECSSD
[189]; (3) DUT [26]; (4) HKU-IS [30]; (5) THUR [190] and (6) SOC [191]. Note that,
similar to the RGB-D based framework, we use the same network structure, except
that the input image X is RGB data instead of the RGB-D image pair. The consis-
tent better performance of our network (“Ours_CVAE” or “Ours_ABP”) illustrates
flexibility of our model, which can be lead to new benchmark performance for both
RGB-D saliency detection and RGB saliency detection.

2.5 Conclusion

Inspired by human uncertainty in ground-truth annotation, we proposed the first
uncertainty inspired RGB-D saliency detection model. Different from existing meth-
ods, which generally treat saliency detection as a point estimation problem, we pro-
pose to learn the distribution of saliency maps, and proposed a generative learning
pipeline to produce stochastic saliency predictions. Further, we introduce two differ-
ent inference models: 1) a CVAE-based inference model, where an extra encoder to
approximate true posterior distribution of the latent variable z; and 2) an ABP-based
inference model to sample z directly from its true posterior distribution with gradient
based MCMC. Under our formulation, our model is able to generate multiple pre-
dictions, representing uncertainty of human annotation. With the proposed saliency
consensus module, we are able to produce accurate saliency prediction following a
similar pipeline to the ground-truth annotation generation process. Quantitative and
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qualitative evaluations on six standard and challenging benchmark RGB-D datasets
demonstrated the superiority of our approach in learning the distribution of saliency
maps.

Furthermore, we thoroughly investigate the generative model and include anal-
ysis of both the latent variable, the loss function and the different fusion schemes to
introduce z to the network. We observe that our model is mostly influenced by the
dimension of the latent variable, which not only has impact on deterministic predic-
tion performance, but also influences the stochastic predictions. We will investigate
the effectiveness of the latent variable with uncertainty estimation techniques [192].
As an extension, we also perform RGB saliency detection. Without changing network
structure (we only change the input from RGB-D data to RGB data), we achieve state-
of-the-art performance compared with the last RGB saliency models, which further
explains superiorty of our solution.

Two different inference models are introduced to learn the proposed generative
network as shown in Fig. 2.2 (a). From our experience, both the CVAE-based and
ABP-based inference models can lead to diverse saliency predictions as shown in Fig.
2.13. However, as extra encoder is used in the CVAE model, it leads to more network
parameters than the ABP-based solution. On the other hand, as we update the latent
variable by running multiple steps of Langevin Dynamics based MCMC as shown
in Eq. 2.8, which leads to relatively longer training time for the ABP-based solution.
Combining the advantage of both techniques to achieve both efficient training and
effective stochastic predictions is our next step.
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Chapter 3

RGB-D Saliency Detection via
Cascaded Mutual Information
Minimization

Existing RGB-D saliency detection models do not explicitly constrain RGB and depth
modes to achieve effective cooperative learning. In Chapter 2, we introduced the
uncertainty-aware RGB-D saliency detection framework [60], which is an early-fusion
model that directly fuses the two modes in the input layer, thus it fails to explic-
itly model the relationship between the RGB image and depth data for saliency
detection. In this chapter, we introduce a novel latent variable model based com-
plementary learning framework to explicitly model the complementary information
between the two modes. Specifically, we first design mutual-information minimiza-
tion as a regularizer to reduce the redundancy between appearance features from
RGB and geometric features from depth in the latent space. Then we fuse the latent
features of each mode to achieve multi-mode feature fusion. Extensive experiments
on benchmark RGB-D saliency datasets illustrate the effectiveness of our framework.
To prosper the development of this field, we further contribute the largest (10×scale
of previous) Ours dataset, which contains 20,625 image pairs with 15,625 high qual-
ity polygon-/scribble-/object-/instance-/rank-level annotations. Based on these rich
labels, we additionally conduct three new benchmarks1 with strong baselines and
observe some interesting phenomena, which can help motivate future model de-
sign. We believe our systematic study can contribute to several promising direc-
tions, e.g., unsupervised/semi-supervised/weakly-supervised cross-mode learning.
Source code and dataset are available at https://github.com/JingZhang617/cascaded_
rgbd_sod.

3.1 Introduction

Saliency detection models are trained to discover the region(s) of an image that
attract human attention. According to whether depth data is used, static image

1Code, results, and benchmarks will be made publicly available.
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Image Depth GT BBSNet Ours

Figure 3.1: Comparison of saliency prediction of a state-of-the-art RGB-D saliency
detection model, e.g., BBSNet [125], with ours.

Table 3.1: Comparison with the widely used datasets.

Dataset Year Size Type Depth Source #Train #Test

SSB [169] 2012 1,000 Internet Stereo cameras+ optical flow [193] - 1,000
NLPR [168] 2014 1,000 Indoor/Outdoor Microsoft Kinect [194] 700 300

DES [171] 2014 135 Indoor Microsoft Kinect [194] - 135
NJU2K[167] 2014 1,985 Movie/Internet FujiW3 camera + Sum’s optical flow [195] 1,500 485
LFSD [170] 2014 80 Indoor/Outdoor Lytro Illum cameras [196] - 80

DUT [1] 2019 1,200 Indoor/Outdoor Lytro2 camera+ [197] 800 400
SIP [43] 2020 929 Person in outside Huawei Mate10 - 929

OUR 2021 20,625 Indoor/Outdoor Holopix Social Platform [198] 13,025 7,600

saliency detection models can be divided into RGB image saliency detection mod-
els [33, 130, 34, 35, 134] and RGB-D saliency detection models [60, 1, 152, 131]. The
former predicts saliency regions from an input RGB image, while the latter takes
both the RGB image and depth data as input. With the availability of extra depth
data as shown in Table 3.1, RGB-D saliency detection attracts great attention recently.
Although huge performance improvement has been witnessed, none of the state-of-
the-art (SOTA) methods model the procedure of complementary learning explicitly.

The RGB image provides appearance information, while the depth data intro-
duces geometric information. Effective fusion of these two types of data can lead to
a model that benefits from both modes. Towards this goal, existing RGB-D saliency
detection models focus on fusing the information of these two modes. Three main
fusion strategies have been widely studied for RGB-D saliency detection: early fusion
[145, 60], late fusion [146, 49, 134] and cross-level fusion [1, 45, 147, 48, 131, 132, 133,
125, 150, 151, 152].

Although the three fusion strategies can learn from both RGB and depth data,
there is no constraint in the network design to force a network to learn complemen-
tary information from the two modes. As a multi-mode learning task, a trained
model should maximize the joint entropy of different modes within the network
capacity. In other words, maximizing the joint entropy is also equal to the minimiza-
tion of mutual information, which prevents a network from focusing on redundant
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information. To explicitly model the complementary information between the RGB
image and depth data, we introduce a latent-variable model based RGB-D saliency
detection network with a mutual information minimization regularizer. Specifically,
we design a “Complementary Learning” module as shown in Fig. 3.2 to achieve two
main benefits: 1) explicitly modeling the redundancy between appearance features
and geometric features; 2) fusing appearance features with depth features in latent
space to achieve multi-mode fusion.

Furthermore, we observe that the existing RGB image saliency detection training
datasets [41, 199] contain more than 10K images, while there is no large-scale RGB-
D saliency detection training set. In Table 3.1 we compare the widely used RGB-D
saliency datasets, in terms of the size, types of data, the sources of depth data, and
their roles (for training “Tr” or for testing “Te”) in RGB-D saliency detection. We
note that the conventional training set for RGB-D saliency detection is a combination
of samples from the NJU2K [167] dataset and NLPR [168], which includes only 2,200
image pairs in total. Although another 800 training images from the DUT dataset [1]
can serve as the third part of the training set, the total number of training images is
3,000, which is quite small compared with existing RGB saliency detection training
sets. In addition, we observe there are similar backgrounds in the existing RGB-D
saliency training set, e.g., more than 10% of the training dataset comes from the same
scene with similar illumination conditions. The lack of diversity in the dataset may
render models with poor generalization ability. Moreover, the largest testing set [43]
contains only 1,000 image pairs, which may not be enough to evaluate the overall
performance of the deep RGB-D saliency detection models.

To provide a large RGB-D saliency detection dataset for robust model training,
and a sufficient size of testing set for model evaluation, we contribute the largest-scale
(10×scale of previous) RGB-D saliency detection dataset, relabeled from Holo50K
dataset [198], with 8,025 image pairs for training and 7,600 image pairs for testing.
Importantly, we not only provide binary annotations, but also annotations for stereo-
scopic saliency detection, scribble and polygon annotations for weakly supervised
RGB-D saliency detection, instance-level RGB-D saliency annotations and RGB-D
saliency ranking. We also contribute 5,000 unlabeled training image pairs for semi-
supervised or self-supervised RGB-D saliency detection. Our main contributions are:

• We design a latent variable model based RGB-D saliency detection network
to explicitly model complementary information between the RGB image and
depth data.

• We contribute the largest RGB-D saliency detection dataset (Ours), with a ∼15K
labeled set and a 5K unlabeled set. For the labeled set, we provide five types of
annotations for both fully-/weakly-/un-supervised RGB-D saliency detection.

• We present new benchmarks for RGB-D saliency detection, and introduce base-
line models for stereoscopic and weakly supervised RGB-D saliency detection.

Draft Copy – 3 October 2021



44 RGB-D Saliency Detection via Cascaded Mutual Information Minimization

Figure 3.2: Overview of the proposed latent variable based complementary learning
framework. Four main modules are included in our framework: 1) a “Saliency En-
coder” module to extract feature from both the RGB image and the depth data; 2)
a “Latent Feature” module to obtain latent features from each mode; 3) a “Comple-
mentary Learning” module to explicitly achieve complementary learning with the
mutual information minimization constraint; and 4) a “Saliency Decoder” module to

generate the predictions.

3.2 Related Work

3.2.1 RGB-D saliency datasets

The widely used RGB-D saliency detection datasets include NJU2K [167], NLPR
[168], SSB [169], DES [171], LFSD [170], SIP [43], DUT [1], etc., as shown in Table
3.1. The typical training dataset is the combination of 1,485 images from NJU2K
[167] and 700 images from NLPR [168]. Piao et al. [1] introduces the DUT dataset,
with 800 images for training and 400 images for testing. To prosper the RGB-D
saliency detection task, we introduce the largest RGB-D saliency detection training
and testing dataset, which will be introduced in Section 3.4.

3.2.2 RGB-D saliency models

For RGB-D saliency detection, one of the main focuses is to explore the complemen-
tary information between the RGB image and the depth data. The former provides
appearance information of the scenario, while the latter introduces geometric infor-
mation. Depending on how information from these two modes is fused, existing
RGB-D saliency detection models can be divided into three categories: early-fusion
models [145, 60], late-fusion models [146, 49, 134] and cross-level fusion models
[1, 45, 147, 48, 131, 132, 133, 125, 150, 151, 152]. The first solution directly con-
catenates the RGB image with its depth information, forming a four-channel input,
while the late fusion models treat each mode (RGB and depth) separately, and then
fusion is achieved in the output layer. The above two solutions perform multi-mode
fusion in the input or output, while the cross-level fusion models implement multi-
mode fusion in the feature level. Specifically, features of an RGB image and depth
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are gradually fused to effectively learn complementary information. Although those
competing methods fuse the RGB image and depth data, none of them explicitly illus-
trate how the complementary information is learnt. We propose a cross-level fusion
model as shown in Fig. 3.2. By designing the “Complementary Learning” module,
we aim to reduce redundancy of appearance features and geometric features, and at
the same time, we can effectively fuse features of the two modes in the latent space.

3.2.3 Latent variable models

Latent variable models [50, 52] are those with an extra latent variable embedded in
the network to achieve stochastic predictions, which are widely used in image recon-
struction and image synthesise [200, 201, 56], uncertainty estimation [202], etc.. In
saliency detection, [60] uses a latent variable model to model the labeling variants
for saliency distribution estimation. Li et al. [69] introduces superpixel-wise VAE [50]
to reconstruct the background, and define the residual of the reconstructed back-
ground and the original image as salient foreground. A GAN [52] based framework
is trained by [83] to achieve higher-order ground truth and a prediction similarity
measure. The discriminator in [157] is designed to achieve multi-mode fusion. Here,
we adopt the latent variable model to formulate the complementary information be-
tween the RGB image and depth data.

3.3 Proposed Method

We introduce a latent variable based complementary learning framework in Fig. 3.2
to explicitly model complementary information for RGB-D saliency detection.

3.3.1 Saliency encoder

Denote our training dataset as T = {Xi, Yi}N
i=1, where i indexes the images and N

is the size of the training set, Xi and Yi are the input RGB-D image pair and its
corresponding ground-truth (GT) saliency map. We feed the training image pairs
(RGB image I and the depth D) to the saliency encoder, as illustrated in Fig. 3.2, to
extract appearance features fαa(I) and geometric features fαg(D) respectively, where
αa and αg are the parameters of our RGB saliency encoder and depth saliency encoder
respectively.

We build the saliency encoder upon the ResNet50 network [28], which includes
four convolutional groups {s1, s2, s3, s4}. We add one additional convolutional layer
of kernel size 3× 3 after each sc ∈ {sc}4

c=1 to reduce the channel dimension of sc

to C = 32, and obtain feature maps {e1, e2, e3, e4}. The final output of the saliency
encoder module includes ea = {e1

a, e2
a, e3

a, e4
a} for the RGB image branch, and eg =

{e1
g, e2

g, e3
g, e4

g} for the depth branch. Note that, the RGB saliency encoder and depth
saliency encoder share the same network structure but not weights.
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3.3.2 Latent feature

Given the output ea = {e1
a, e2

a, e3
a, e4

a} from the RGB saliency encoder and eg = {e1
g, e2

g, e3
g, e4

g}
from the depth saliency encoder, the “Latent Feature” module is developed to map
ea and eg to latent feature za = fβa(ea) and zg = fβg(eg) respectively, where βa and βg

are the parameters of the latent feature module for RGB images and depth respec-
tively. Specifically, we first concatenate {ec}4

c=1 along channels to obtain a feature
map of channel size 4 ∗ C, and then feed it to the latent feature net for latent feature
extraction. The latent feature module is composed of five convolutional layers and
two fully connected layers. The five convolutional layers have the same kernel size
of 4×4 and stride size 2. The convolutional layers gradually map the appearance
features or geometric features of channel size 4 ∗ C to feature maps of channel size
C, 2 ∗ C, 4 ∗ C, 8 ∗ C and 2 ∗ C respectively, and we obtain a 2 ∗ C channel feature
map in the end. Then two fully connected layers of size K = 6 are adopted to obtain
the mean µ and standard deviation σ of the latent feature z following the variational
auto-encoder (VAE) learning pipeline [50]. We reconstruct the latent feature z with
reparameterization [50]: z = µ + ε ∗ σ, where ε ∼ N(0, 1).

3.3.3 Complementary learning

After obtaining the latent features za and zg for the RGB image and depth data, we
introduce a mutual information minimization regularizer to explicitly reduce the re-
dundancy between these two modes. Our basic assumption is that a good appearance
saliency feature and geometric saliency feature pair should carry both common parts
(semantic related) and different attributes (domain related). Mutual information MI
is used to measure the difference between the entropy terms:

MI(za, zg) = H(za) + H(zg)− H(za, zg), (3.1)

where H(.) is the entropy, H(za) and H(zg) are marginal entropies, and H(za, zg) is
the joint entropy of za and zg. Intuitively, we have the Kullback–Leibler divergence
(KL) of the two latent variable (or the conditional entropies) as:

KL(za||zg) = H(za, zg)− H(za), (3.2)

KL(zg||za) = H(za, zg)− H(zg). (3.3)

Combing Eq. 3.1, Eq. 3.2 and Eq. 3.3 we obtain:

MI(za, zg) = H(za, zg)− (KL(za||zg) + KL(zg||za)). (3.4)

Given the RGB image and the depth data, H(za, zg) is non-negative and fixed,
then minimizing the mutual information can be achieved by minimizing the nega-
tive symmetric KL term: Lmi = −(KL(za||zg) + KL(zg||za)). Intuitively, MI(za, zg)
is the reduction of uncertainty in za when zg is observed, or vice versa. As a multi-
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mode learning task, each mode should learn some new attributes of the task from
other modes. Thus, by minimizing MI(za, zg), we can effectively explore the comple-
mentary attributes of both modes.

Moreover, as za encodes the appearance information, and zg encodes the geomet-
ric information, we intend to fuse the appearance feature and geometric feature in
the latent space to achieve effective multi-mode fusion. Specifically, we map e4

a from
the RGB saliency encoder branch to a K = 32 dimensional feature vector by using
one fully connected layer. Then we concatenate it with zg, and map the concate-
nated feature with one DenseASPP [162] to obtain the RGB saliency prediction Pa.
Similarly, we can obtain the depth saliency prediction Pg by fusing e4

g with za.

3.3.4 Saliency decoder

With the complementary learning branch, we obtain RGB saliency prediction Pa and
depth saliency prediction Pg with latent features from depth and the RGB image
respectively. The saliency decoder fγ takes the saliency features from the saliency
encoder branches in Fig. 3.2, as well as Pa and Pg as input to compute our final
prediction, where γ is the parameter set of the saliency decoder. Specifically, with
the output ea = {e1

a, e2
a, e3

a, e4
a} from the RGB saliency encoder and eg = {e1

g, e2
g, e3

g, e4
g}

from the depth saliency encoder, we add a position attention module and a channel
attention module [144] after each {ec

a}4
c=1 and {ec

g}4
c=1. Then we concatenate the four

groups of feature maps after the dual attention and feed it to the DenseASPP [162]
to obtain our saliency prediction Pf . To further fuse information from both modes,
we concatenate Pa, Pg and Pf channel-wise, and feed it to a 3× 3 convolutional layer
to achieve our final prediction P.

3.3.5 Objective function

We adopt the binary cross-entropy loss Lce as our objective function to train our
latent variable model based complementary learning framework, where the comple-
mentary constraint, as indicated in Eq. 3.1, pushes the saliency feature distribution of
the RGB image to be apart from that of the depth data. Our final objective function
is:

L = Lce(P, Y) + λ1Lce(Pf , Y) + λ2Lce(Pa, Y) + λ3Lce(Pg, Y) + λLmi(za, zg), (3.5)

and empirically we set λ1 = 0.8, λ2 = 0.6, λ3 = 0.4, λ = 0.1.

3.4 Newly Collected Dataset

Existing training images for RGB-D saliency detection (the standard composite train-
ing dataset) come from two main datasets: (1) NJU2K [167] and (2) NLPR [168].
Piao et al. [1] introduces an additional 800 images for training and another 400 im-
ages for testing to the DUT dataset. As suggested by [1], to test model performance
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(a) (b) (c) (d) (e) (f) (g)

Figure 3.3: Annotations of our new RGB-D saliency detection datasets: (a) the RGB
image, (b) the depth data and (c) the binary ground truth, (d) the instance level an-
notation, (e) the ranking based annotation, (f) the scribble annotation and (g) the
polygon annotation. Our diverse annotations will facilitate developing different ful-

ly/weakly supervised RGB-D saliency detection.

on the DUT testing dataset, one needs to train with the combination of the NJU2K
and NLPR training sets, and fine-tune the model on the DUT training dataset. We
argue that the limited size of the training set compared with RGB saliency detec-
tion2 may lead to models with poor generalization ability. Furthermore, different
splits of a training set often lead to inconsistent performance evaluation. To further
boost RGB-D saliency detection, we contribute the largest RGB-D saliency detection
dataset. Moreover, we provide binary annotation, instance level annotation, ranking
based annotation, weak annotation as shown in Fig. 3.3.

3.4.1 Dataset annotation

Our new Ours is based on Holo50K [198], which is a stereo dataset. We select 15,625
stereo image pairs from it to be labeled (the candidate labeled set) and another 5,000
image pairs as the unlabeled set. Note that the stereo pairs in Holo50K dataset are
directly captured by a stereo camera without rectification, so we use a SOTA off-the-
shelf optical flow algorithm [203] to compute the pseudo depth of both the candidate
labeled set and unlabeled set with the left-right view images as input.

To provide annotations for the candidate labeled set, we firstly ask five “coarse”
annotators to coarsely label each image (only the right view image is used) with scrib-
ble annotations according to their own preference of saliency. Secondly, the “fine”
annotators will segment the full scopes of salient objects and provide instance-level
annotations. Thirdly, we perform majority voting to obtain the binary GT saliency
maps for our RGB-D saliency detection task. Moreover, based on the scribble anno-
tations and instance-level saliency maps, we rank each saliency instance according to
the initial scribble annotations to form our RGB-D saliency ranking dataset.

We also provide weak annotations for weakly-supervised RGB-D saliency detec-
tion, including scribble annotations and polygon annotations as shown in Fig. 3.3.
We define majority of scribble annotations from multiple coarse annotators as the
scribble annotations of our dataset. Specifically, we first obtain the instance with the

2The two largest RGB saliency training datasets have 10,553 (DUTS [41]) and 10,000 (MSRA10K
[199]) images respectively.
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Figure 3.4: Global contrast of RGB images (a) and depth images (b). Interior contrast
of RGB images (c) and depth images (d).

majority of scribble. Then, we define the scribble on the majority instance as our
scribble annotation. We label the majority salient instance with polygons to form our
polygon based annotations.

3.4.2 Dataset analysis

Contrast analysis: As a contrast based task, an effective training dataset for RGB-
D saliency detection should include a wide range of images with salient objects of
different contrast. Hence, we compute the global and interior contrast of both the
RGB images and depth images of our new training dataset and the existing training
dataset as shown in Fig. 3.4(a)-(d), where the x-axis is the corresponding contrast and
the y-axis represents the number of images. Global contrast measures the saliency of
the object, indicating the noticeability of the salient object, while the interior contrast
measures the consistency inside the same salient object, representing the intra-class
consistency. To obtain global contrast, we compute the H dimensional color his-
togram3 of both the salient foreground and background. Then we adopt Chi-squared
distance to measure the global contrast between the salient object and background.
We define the mean of the Chi-squared distance as the image global contrast. For
interior contrast, we compute the entropy of the color histogram of the salient object.

As shown in Fig. 3.4 (a)-(b), we obtain smaller global contrast for RGB images
and higher global contrast for depth maps. The small RGB global contrast indicates
the greater difficult of the new training images, while the high depth global contrast
indicates that our depth is a good option complementary to the RGB images for
salient object detection. Further, the higher interior contrast of both our training RGB
images and depth in Fig. 3.4 (c) and (d) indicates the new dataset is challenging.
Depth quality estimation: The quality of the depth plays an important role for
RGB-D saliency detection. We adopt two evaluation metrics to measure the depth
quality. Firstly, we use the smoothness error [109] to measure the edge alignment of
the depth. Then we use the warping error [203] to measure the correctness of depth.
The former highlights the structure of depth, while the latter focuses on the overall
accuracy of depth.

The smoothness error was originally used for occlusion-aware flow estimation

3Following [204], we set H = 16 dimensional histogram for the Red, Green and Blue channel of the
RGB image respectively, and the color histogram is then the concatenation of above histograms.
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Figure 3.5: (a) Smoothness error and (b) Warping error of the new dataset compared
with the standard composite training dataset.

[109]. Given input image I and depth D, we define the smoothness error as:

Ls = ∑
u,v

∑
d∈−→x ,−→y

Ψ(|∂dDu,v|e−α|∂d I(u,v)|), (3.6)

where Ψ is defined as Ψ(s) =
√

s2 + 1e−6, Du,v is the depth at position (u, v), and
I(u, v) is the image intensity, d indexes over partial derivatives in the −→x and −→y
directions. We set α = 10 following the setting in [109].

For each image, we compute its mean smoothness error, and show the distribu-
tion of the smoothness errors for our training set and the combination of existing
training sets (NJU2K [167], NLPR [168], and DUT [1]) in Fig. 3.5 (a). The relatively
smaller mean smoothness error indicates better edge-alignment of our depth maps.

We further adopt the photometric warping loss as another metric to evaluate the
quality of depth from the perspective of warping errors between the stereo image
pair. As the warping error measures reconstruction errors from one view to the
other one based on the given depth, we only compare with NJU2K [167], as it is
the only training set that contains both left and right view images. We manifest the
warping errors of our Ours and NJU2K in Fig. 3.5 (b). The smaller warping error of
our training set further indicates better depth quality of our dataset.

3.4.3 High-quality Diverse Annotation

A high-quality dataset should have samples from diverse scenes and objects of di-
verse categories. Further, the annotation should be precise. We then analysis the
diversity of the dataset, and show more of our diverse annotations.

To analyse the diversity of the scene, we feed images of our entire dataset to an
existing scene classification network [205] to predict the scene category for each im-
age. Further, with our instance level annotation, we obtain the instance pool of our
dataset, which is then fed to an existing image classification network to predict object
level category. Note that, as there exists no “Person” category in ImageNet, we test
with image classification model trained on Microsoft COCO dataset to predict cate-
gory of each instance in our dataset. We show the object category distribution and
scene category distribution in Fig. 3.6, which clearly shows that our dataset contains
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Figure 3.6: Object distribution (top) and scene distribution (bottom) of our new
dataset.

various scenes and diverse objects. In addition, for the scene classification model, it
produces the indoor/outdoor category distribution as well, which indicates a 57%
indoor scenes and 43% outdoor scenes. The balanced indoor/outdoor distribution
further illustrates the high-quality of our new dataset.

Our dataset is labeled following a four-step process. Firstly, the coarse annotators
label the whole dataset with scribble annotation. Then, the fine annotators segment
the full scope of each instance with scribble on it. Thirdly, we check the annotation.
Lastly, the low-quality annotations will be sent back to the fine annotators to label
it again. In Fig. 3.7 we show five samples of low-quality which are re-labeled (“Re-
jected”), and high-quality after the third step (“Accepted”). Our main criteria is that
we want to keep all the instances with scribble on them to be labeled. Further, we
want that all the instances are distinguishable, which will makes our dataset effective
for instance saliency detection.

3.4.4 More Statistics

We provide the complete information of the existing RGB-D saliency datasets and
the proposed dataset in Table 3.1. It clearly shows that our dataset is the largest-scale
dataset with more diverse annotations.
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Figure 3.7: Visualization of our annotation. The “Rejected” samples are relabeled to
obtain high-quality annotation as the “Accepted” ones.

(a) (b) (c) (d)

Figure 3.8: More statistics of our new dataset. (a) Distribution of the furthest salient
points to image center. (b) Distribution of salient objects to image center. (c) Distri-

bution of salient object sizes. (d) Number of salient instances.

Further, we analyse the center bias of our dataset, the size of the salient objects,
the number of salient objects, and show the results in Fig. 3.8 (a)-(d). Center bias
is a common artifact of sense for salient objects, which indicates that salient objects
are usually located in the center of the image. We follow [191] and use the “furthest
salient point to image center” and “salient object center to image center” as metrics
to evaluate the center-bias of existing datasets and ours. For both the above center
based curves, the x-axis is the distance, and y-axis is the probability. According
to [191], the smaller probability of both center based metrics indicate the less center
bias, and Fig. 3.8 (a)-(b) clearly show that our new dataset suffers less from the center
bias. The size of the salient object is defined as the proportion of salient pixels in the
image. Fig. 3.8 (c) shows that salient objects in our new dataset varies in a broader
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Figure 3.9: Annotations of our new RGB-D saliency detection datasets. From left
to right: (a) the RGB image, (b) the depth data, (c) the binary ground truth, (d) the
instance level annotation, (e) the ranking based annotation, (f) the scribble annotation
and (g) the polygon annotation. Our diverse annotations will facilitate developing

different fully/weakly supervised RGB-D saliency detection.

range. In Fig. 3.8 (d), we show the number of instances in each image of our new
dataset. The wide distribution of instance number indicates the complexity of our
new dataset.

3.4.5 Dataset Visualization

We provide five different types of annotations, including binary ground truth, in-
stance level annotation, ranking based annotation, scribble annotation and polygon
annotation. We show more samples from our dataset in Fig. 3.9. Compared with
conventional binary ground truth, the extra annotations can further boost related
tasks for both fully and weakly supervised saliency detection.
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3.4.6 Dataset Splitting

Our new dataset has 20,625 samples, where 15,625 samples are labeled, and the other
5,000 samples are unlabeled. We then divide the labeled set into one training set
with 8,025 samples and two different testing sets of size 4,600 and 3,000 respectively,
namely the “Normal” one and the “Difficult” one. The training dataset is generated
by randomly select 8,025 images from the labeled set. For the testing datasets, we
intend to introduce two sets of different difficulty. Specifically, we rank the RGB
images based on both global and interior contrast, and define samples of low global
contrast and high interior contrast be the difficult samples. Then we have a pool of
difficult samples Dd and normal samples Dn, with size of 1,800 and 5,800 respectively.
We random select 30% samples from Dd and 70% samples from Dn to obtain our
“Normal” testing set, and the other samples form our “Difficult” set.

3.5 Experiments

We compare the proposed complementary learning framework with competing RGB-
D saliency detection models, and report the performance in Table 3.2 & 3.3. Further-
more, we retrain the state-of-the-art RGB-D saliency detection models on our new
training dataset, and provide the performance of those models on our testing dataset
in Table 3.4. We also explore our dataset by providing three benchmark and baseline
models on our weak annotations and stereoscopic saliency dataset.

3.5.1 RGB-D saliency detection

Dataset: For fair comparisons with existing RGB-D saliency detection models, we
follow the conventional training setting, in which the training set is a combination of
1,485 images from the NJN2K dataset [167] and 700 images from the NLPR dataset
[168]. We then test the performance of our model and competing models on the
NJU2K testing set, NLPR, testing set LFSD [170], DES [171], SSB [169] SIP [43] and
DUT [1] testing set.
Metrics: We evaluate the performance of the models on four golden evaluation
metrics, i.e., , Mean Absolute Error (M), Mean F-measure (Fβ), Mean E-measure
(Eξ) [173] and S-measure (Sα) [172].
Training details: Our model is trained in Pytorch using the ResNet50 [28] as back-
bone as shown in Fig. 3.2. The encoders of RGB and depth share the same network
structure, and are initialized with ResNet50 [28] trained on ImageNet, and other
newly added layers are randomly initialized. We resize all the images and ground
truth to the same spatial size of 352× 352 pixels. We set the maximum epoch as 100,
and initial learning rate as 5e-5. We adopt the “step” learning rate decay policy, and
set the decay size as 80, and decay rate as 0.1. The whole training takes 4.5 hours
with batch size 5 on an NVIDIA GeForce RTX 2080 GPU.
Quantitative comparison: We compare the performance of our model and state-of-
the-art RGB-D saliency detection models, and report the performance in Table 3.2
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Table 3.2: Benchmarking results of leading handcrafted feature-based models and
deep models (∗) on six RGB-D saliency datasets. ↑ & ↓ denote the larger and smaller

is better, respectively. Here, we adopt mean Fβ and mean Eξ[173].
Early Fusion Models Late Fusion Models Cross-level Fusion Models

MetricDANetUCNetJLDCFCDBA2deleAFNetCTMFDMRATANetCPFPS2MABBS-NetCoNetHDFNetBiaNet Ours
[206]∗ [60]∗ [47]∗ [184] [134]∗ [146]∗ [49]∗ [1]∗ [48]∗ [131]∗ [133]∗ [125]∗ [150]∗ [151]∗ [152]∗ Ours∗

N
JU

2K

Sα ↑ .897 .897 .902 .632 .873 .822 .849 .886 .879 .878 .894 .921 .911 .908 .915 .933
Fβ ↑ .877 .886 .885 .498 .867 .827 .779 .873 .841 .850 .865 .902 .903 .892 .903 .916
Eξ ↑ .926 .930 .935 .572 .913 .867 .846 .920 .895 .910 .914 .938 .944 .936 .934 .949
M ↓ .046 .043 .041 .199 .051 .077 .085 .051 .061 .053 .053 .035 .036 .038 .039 .034

SS
B

Sα ↑ .892 .903 .903 .615 .876 .825 .848 .835 .871 .879 .890 .908 .896 .900 .904 .915
Fβ ↑ .857 .884 .873 .489 .874 .806 .758 .837 .828 .841 .853 .883 .877 .870 .879 .887
Eξ ↑ .915 .938 .936 .561 .925 .872 .841 .879 .893 .911 .914 .928 .939 .931 .926 .943
M ↓ .048 .039 .040 .166 .044 .075 .086 .066 .060 .051 .051 .041 .040 .041 .043 .036

D
ES

Sα ↑ .905 .934 .931 .645 .881 .770 .863 .900 .858 .872 .941 .933 .906 .926 .931 .947
Fβ ↑ .848 .919 .907 .502 .868 .713 .756 .873 .790 .824 .909 .910 .880 .910 .910 .928
Eξ ↑ .961 .967 .959 .572 .913 .809 .826 .933 .863 .888 .952 .949 .939 .957 .948 .973
M ↓ .028 .019 .021 .100 .030 .068 .055 .030 .046 .038 .021 .021 .026 .021 .021 .016

N
LP

R

Sα ↑ .908 .920 .925 .632 .887 .799 .860 .899 .886 .888 .916 .930 .900 .923 .925 .935
Fβ ↑ .850 .891 .894 .421 .871 .755 .740 .865 .819 .840 .873 .896 .859 .894 .894 .902
Eξ ↑ .945 .951 .955 .567 .933 .851 .840 .940 .902 .918 .937 .950 .937 .955 .948 .958
M ↓ .031 .025 .022 .108 .031 .058 .056 .031 .041 .036 .030 .023 .030 .023 .024 .020

LF
SD

Sα ↑ .845 .864 .862 .520 .831 .738 .796 .847 .801 .828 .837 .864 .842 .854 .845 .867
Fβ ↑ .826 .855 .848 .376 .829 .736 .756 .845 .771 .811 .806 .843 .834 .835 .834 .856
Eξ ↑ .872 .901 .894 .465 .872 .796 .810 .893 .821 .863 .855 .883 .886 .883 .871 .903
M ↓ .082 .066 .070 .218 .076 .134 .119 .075 .111 .088 .094 .072 .077 .077 .085 .064

SI
P

Sα ↑ .878 .875 .880 .557 .826 .720 .716 .806 .835 .850 .872 .879 .868 .886 .883 .889
Fβ ↑ .829 .867 .873 .341 .827 .702 .608 .811 .803 .821 .854 .868 .855 .875 .873 .882
Eξ ↑ .914 .914 .918 .455 .887 .793 .704 .844 .870 .893 .905 .906 .915 .923 .913 .928
M ↓ .054 .051 .049 .192 .070 .118 .139 .085 .075 .064 .057 .055 .054 .047 .052 .046

Figure 3.10: F-measure and E-measure curves on four testing datasets (first row:
F-measure curves; second row: E-measure curves).

and Fig. 3.10. Note that, we use the training set of NJU2K and NLPR as competing
deep RGB-D saliency detection models. We observe that performance differences of
current RGB-D saliency detection are very subtle, e.g., HDFNet [151], BiaNet [152],
and CoNet [150]. The consistently better performance of our model indicate the
effectiveness of our solution.
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Table 3.3: Model performance on DUT [1] testing set.
Metric UCNet JLDCF A2dele DMRA CPFP S2MA CoNet HDFNet Ours

[60] [47] [134] [1] [131] [133] [150] [151] Ours
Sα ↑ .907 .905 .884 .886 .749 .903 .919 .905 .925
Fβ ↑ .902 .884 .889 .883 .695 .881 .911 .889 .918
Eξ ↑ .931 .932 .924 .924 .759 .926 .947 .929 .956
M ↓ .038 .043 .043 .048 .100 .044 .033 .040 .031

Image Depth GT BBS-Net A2Dele DMRA UCNet CoNet Ours

Figure 3.11: Performance comparison with state-of-the-art methods on our new test-
ing dataset.

Performance on the DUT [1] dataset: Some existing RGB-D saliency detection ap-
proaches [1, 133] fine-tune their models on the DUT training dataset [1] to evaluate
their performance on the DUT testing set. To test our model on the DUT testing set,
we follow the same training strategy. In Table 3.3, all the models are trained with the
conventional training set and then fine-tuned on the DUT training set. The consis-
tently superior performance further illustrates the superiority of our model. Further-
more, since the current testing performance is achieved in a train-retrain manner, we
re-train these models with a combination of the conventional training set and DUT
as the training set, and observe consistently worse performance in this case. This
observation tells us that inconsistent annotations may occur in these three training
sets (i.e., NJU2K, NLPR and DUT). It also motivates us to collect a larger training
dataset (Ours) with consistent annotations for robust model training. In Table 3.4,
we retrain existing RGB-D saliency detection models with out new training dataset,
and show their performance on our new testing datasets. The better performance
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Table 3.4: Performance on our new testing datasets.
Metric UCNet JLDCF A2dele DMRA CPFP S2MA CoNet BBS-Net Ours

[60] [47] [134] [1] [131] [133] [150] [125] Ours

N
or

m
al

Sα ↑ .894 .894 .833 .782 .795 .877 .820 .902 .906
Fβ ↑ .883 .875 .835 .744 .716 .829 .796 .879 .883
Eξ ↑ .929 .919 .882 .812 .801 .881 .850 .923 .924
M ↓ .036 .042 .060 .105 .104 .059 .082 .039 .036

D
iffi

cu
lt Sα ↑ .822 .845 .787 .743 .770 .828 .779 .853 .859

Fβ ↑ .814 .832 .795 .724 .704 .789 .774 .834 .843
Eξ ↑ .859 .870 .838 .775 .776 .836 .813 .876 .887
M ↓ .079 .075 .092 .137 .131 .092 .113 .071 .068

Table 3.5: Performance of the ablation study models.
NJU2K[167] SSB [169] DES [171] NLPR [168] LFSD [170] SIP [43]

Method Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓
K3 .928 .908 .947 .032 .909 .892 .939 .036 .934 .922 .964 .018 .925 .904 .956 .022 .869 .845 .898 .067 .885 .879 .919 .047
K32 .924 .909 .944 .033 .908 .894 .941 .036 .938 .923 .966 .017 .927 .906 .959 .021 .856 .853 .900 .065 .885 .878 .921 .046
SS .916 .907 .943 .034 .899 .882 .932 .040 .936 .927 .968 .017 .920 .896 .954 .024 .861 .852 .889 .077 .885 .876 .920 .047
W0 .918 .907 .944 .033 .892 .877 .923 .042 .934 .924 .964 .017 .924 .900 .945 .023 .843 .836 .881 .076 .884 .878 .916 .048
W1 .919 .909 .946 .032 .905 .886 .937 .037 .938 .927 .971 .016 .923 .903 .956 .022 .857 .853 .891 .071 .887 .882 .921 .045
Ours .933 .916 .949 .034 .915 .887 .943 .036 .947 .928 .973 .016 .935 .902 .958 .020 .867 .856 .903 .064 .889 .882 .928 .046

of our solution further illustrate effectiveness of our solution. Further, the huge per-
formance gap between those existing techniques further show necessary of our new
training dataset.
Qualitative comparison: We further visualize our prediction and other in Fig. 3.1.
The qualitative comparisons demonstrate that with the complementary learning strat-
egy, our model can explore better complementary information for effective multi-
mode learning. More results are shown in the supplementary materials.

3.5.2 Ablation study

Three main factors may influence the performance of our model, including: (1) the
dimension of the latent space; (2) the structure of the “Latent Feature” module; and
(3) the weight of the mutual information regularizer term in Eq. 3.5. We then perform
three main ablation studies to further analyse the components of our model.
The dimension of the latent space: We set the dimension of latent space as K = 6.
To test the impacts of different dimensions of the latent space on the network perfor-
mance, we set K = 3 and K = 32, and report their performance as “K3” and “K32”
respectively in Table 3.5. The experimental results demonstrates that our model
achieves relative stable performance with different dimensions of the latent space.
This is because the features from the “Saliency Encoder” module are representative.
The structure of the “Latent Feature” module: As discussed in Section 3.3.2, the
“Latent Feature” module is composed of five convolutional layers and two fully con-
nected layers for latent feature extraction. One may also achieve latent feature extrac-
tion directly from the output of the “Saliency Encoder”. Specifically, we can use two
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Table 3.6: Performance of the stereo saliency detection baseline.
NJU2K[167] NJU400[167] Ours-Normal Ours-Difficult

Sα ↑ Fβ ↑ M ↓ Sα ↑ Fβ ↑ M ↓ Sα ↑ Fβ ↑ M ↓ Sα ↑ Fβ ↑ M ↓
.874 .851 .056 .882 .851 .044 .874 .855 .047 .825 .812 .080

fully connected layers to map the concatenation of {ec}4
c=1 to µ and σ. In Table 3.5, we

report the performance of our model with this simple setting, marked as “SS”. We
observe the performance decreases, which indicates necessity of introducing more
non-linearity to effectively extract the latent feature of each mode.
The weight of the mutual information regularizer: The weight λ of the mutual
information regularization term controls the level of complementary information.
Empirically, we set λ = 0.1. We then test how the model performs with smaller
or larger λ, and set λ = 0 and λ = 1 respectively. We show the performance of
those variants in Table 3.5, denoted by “W0” and “W1”. The inferior performance of
“W0” indicates the effectiveness of our complementary information modeling strat-
egy. Further, compared with our model, we observe relatively worse performance
of “W1”, which indicates the mutual information regularizer can indeed influence
model performance. We will investigate a better strategy to adaptively set the weight
of the mutual information in the future.

3.5.3 New Benchmarks on our dataset

The straightforward way to use our training dataset is using it for RGB-D saliency
detection. Due to the multiple annotations provided in our new dataset as shown in
Fig. 3.4, we further discuss three benchmarks that would need our annotations. We
believe that our rich labels can motivate future model design.
Benchmark #1: Stereo saliency detection. As our RGB-D saliency dataset is con-
structed on a stereo dataset [198], we directly train a stereo image pair based saliency
object detection model, where the depth is implicitly instead of explicitly obtained
from the stereo image pairs. Although there exist some stereoscopic saliency detec-
tion models [207, 177, 169, 208], all of them take both the image(s) and depth as input.
The video fixation prediction work in [209] introduces an intrinsic depth saliency es-
timation model for video fixation prediction without explicitly obtaining the depth
data. Similar to [209], we design a real4 stereoscopic saliency detection model, and
provide a baseline to manifest the potential of our dataset for stereoscopic saliency
detection. There are two existing stereoscopic saliency detection datasets, i.e., , the
NJU2K testing set [167] and NJU400 [167] dataset, which include 500 and 400 left-
right view image pairs respectively. Together with our new testing sets, we have
four stereoscopic saliency detection testing sets as shown in Table 3.6. We train our
stereoscopic saliency detection model on our new training dataset, and the left-right
view images are taken as inputs and the GT saliency maps in the right view images

4We define the stereoscopic saliency models taking input only the left and right view images as the
“real” stereoscopic saliency models.
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Table 3.7: Performance of the weakly supervised saliency detection baselines.
NJU2K[167] SSB[169] NLPR [168] SIP [43] Ours-Normal Ours-Difficult

Method Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓
Scribble .823 .806 .869 .080 .820 .803 .884 .073 .820 .737 .863 .058 .815 .793 .888 .076 .802 .780 .856 .082 .767 .749 .812 .115
Polygon .847 .827 .896 .065 .853 .831 .913 .056 .848 .789 .899 .043 .846 .822 .909 .060 .827 .805 .884 .065 .786 .774 .841 .096

are used as supervision. We then adopt the same “Saliency Encoder” and “Saliency
Decoder” as in Fig. 3.2. Instead of explicitly using the depth data, we implicitly
model the geometric information by using a cost volume between the saliency en-
coder and decoder. We then show its performance in Table 3.6, and we will explain
the architecture in details in the supplementary material.
Weakly-supervised RGB-D saliency detection. Inspired by [63], we also intro-
duce scribble and polygon (see Fig. 3.3 (f) and (g)) based weakly supervised RGB-D
saliency detection networks to further explore our new dataset for weakly supervised
learning.
Benchmark #2: Scribble based supervision. As no structure information exists in
scribble annotations, we follow [63] and use the smoothness loss and an auxiliary
edge detection branch as a constraint to maintain structure information in the predic-
tion. Specifically, as our initial scribble annotations locate inside the salient objects,
we then create extra background scribble annotations following [63]. In this case,
we have both foreground scribbles and background scribbles, and we can train our
weakly supervised RGB-D saliency detection by concatenating RGB and depth in the
input layer by adopting the model in [63]. Performance of the scribble annotation
based baseline model is shown in Table 3.7 “Scribble”.
Benchmark #3: Polygon based supervision. The polygon label is generated after
majority voting. Fig. 3.3 (g) shows that the polygon label covers a larger area with
better structure information than scribbles. We training directly with polygon anno-
tations as pseudo labels, and provide performance of this baseline model in Table 3.7
“Polygon”.

3.6 Conclusion

We proposed a novel complementary learning based RGB-D saliency detection frame-
work that explicitly models complementary information between RGB images and
depth data. By minimizing the mutual information between these two modes dur-
ing training, our model focuses on the complementary information rather than the
mutual information. In this fashion, our model is able to exploit the multi-mode
information more effectively. Moreover, we introduced the largest RGB-D saliency
detection dataset with five types of annotations to prosper the development of fully-
/weakly-/un-supervised RGB-D saliency detection tasks. Extensive benchmarks on
seven datasets and our new dataset demonstrate the superiority of our model com-
pared to the existing 20 SOTAs. Note that, different from existing RGB or RGB-D
based saliency training datasets [41, 167] where a single version of the ground truth

Draft Copy – 3 October 2021



60 RGB-D Saliency Detection via Cascaded Mutual Information Minimization

is provided to the input image or image pair, we provide multiple annotations for
each input RGB-D image pair, making it convenient to perform prediction distribu-
tion estimation as our previous work in [60] in Chapter 2. In [60], the latent variable
was introduced to model labeling variants, representing the “subjective nature” of
saliency. As there existed no such rich annotations, [60] used a “hide and seek” tech-
nique [210] to generate diverse pseudo labels for each input image pair, which may
be less accurate. With our diverse and accurate annotations for each input image pair,
we can then perform accurate latent space exploring, which will be an extension of
our work.
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Chapter 4

Energy-Based Generative
Cooperative Saliency Prediction

We introduced the latent variable model based RGB-D saliency detection frameworks
in both Chapter 2 and Chapter 3. In this chapter, as an extension, we consider
learning a conditional distribution over saliency maps, given an image, to model
the uncertainty of predictions for RGB saliency detection. Specifically, we propose a
generative saliency prediction model based on the conditional generative cooperative
network, where a conditional latent variable model and a conditional energy-based
model are jointly trained to predict saliency in a cooperative manner. The latent
variable model serves as a coarse saliency model to produce a fast initial prediction,
which is then refined by Langevin revision of the energy-based model that serves
as a fine saliency model. We call this probabilistic coarse-to-fine saliency prediction.
Moreover, we propose a cooperative learning while recovering strategy and apply
it to weakly supervised saliency prediction, where saliency annotation of training
images is partially observed. Lastly, we find that the learned energy function can
serve as a refinement module that can refine the results of other pre-trained saliency
prediction models. Experimental results show that our model can achieve state-
of-the-art performance with stochastic predictions representing the uncertainty of
model’s predictions.

4.1 Introduction

Saliency detection aims to locate the region of an image that attracts human attention.
Most existing saliency detection models [37, 33, 130, 34, 35, 46, 188] define saliency
detection as a pixel-wise binary prediction task to achieve a deterministic mapping
from the image to it’s ground truth saliency map without modeling the “uncertainty”
of predictions, representing the confidence of model’s predictions. We argue that this
may lead to overconfident models with poor generalization ability [211].

Further, the inherently subjective nature of saliency indicates that saliency de-
tection is never a deterministic one-to-one mapping but a stochastic one-to-many
mapping. We claim that instead of formulating saliency detection as a deterministic
regression problem, it is more natural to represent the uncertainty of visual saliency

61
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Figure 4.1: Probabilistic coarse to fine saliency prediction model. Training process:
Image X and the latent variable ĥ are fed to the “latent variable model” Gα to generate
initial prediction Ŷ, which is then refined with the energy-based model Uθ to obtain
Ỹ. The refined prediction further updates the latent variable with gradient based

MCMC. Testing process: The refined prediction Ỹ is our final prediction.

with a conditional probability distribution over saliency maps given an input im-
age. To this end, developing probabilistic representational models for visual saliency
is not only useful and natural for saliency prediction in computer vision, but also
beneficial for understanding human attention in computational neuroscience.

With the above motivation, we propose a novel deep conditional generative model
for probabilistic visual saliency prediction by representing the distribution of saliency
outputs as a generative model conditioned on the input image, as shown in Fig. 4.1.
The prediction process with such a model can be achieved by performing sampling
from the distribution of outputs. Building upon recent developments in cooperative
learning and sampling of deep energy-based models [56], we propose a conditional
cooperative network for probabilistic visual saliency prediction.

The model consists of an energy-based model whose energy function is param-
eterized by a bottom-top neural networks and a conditional latent variable model
whose transformation function is parameterized by an encoder-decoder framework.
The energy-based model is flexible and powerful in distribution parameterization but
computationally challenging because its maximum likelihood estimation typically
requires Markov Chain Monte Carlo (MCMC) sampling to access the analytically in-
tractable normalizing constant. By bringing in a latent variable model as an ancestral
sampler to approximate or initialize the MCMC computational process for efficient
sampling, the energy-based model can be learned efficiently. The energy function in
the energy-based model, in turn, can be used to refine the latent variable model’s
samples, achieving the proposed “probabilistic coarse to fine saliency detection”.

Moreover, based on the conditional cooperative network, we propose a novel co-
operative learning while cooperative recovering strategy for weakly supervised saliency
learning, in which we learn our model from incomplete data, where each training
image is associated with a partially observed annotation (e.g., scribble [63]). At each
learning iteration, the incomplete saliency ground truth is firstly recovered in the
low-dimensional latent space of the latent variable model via inference, and then it is
refined by pushing it to the local mode in the energy landscape of the energy-based
model. The recovered saliency maps are treated as pseudo labels to train the pro-
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posed framework. Although [60, 65] introduced probabilistic models in their frame-
work, we introduce the first energy-based generative model for saliency prediction,
which serves as a trainable loss function to improve model performance.

In experiments, we demonstrate that our model can not only achieve state-of-the-
art performance in both fully supervised and weakly supervised saliency prediction,
but also produce stochastic predictions representing uncertainty of model’s predic-
tion. Furthermore, we show that the learned energy function of the energy-based
model can serve as a learned cost function to refine the results of other pre-trained
saliency prediction models.

Our main contributions are fourfold. Firstly, we introduce the cooperative train-
ing based saliency detection framework to model the “uncertainty” of saliency with a
latent variable model and an energy-based model. Secondly, we extend our method
to saliency prediction with incomplete annotations to recover the unlabeled area.
Thirdly, our energy-based model, once trained, can be easily embedded in existing
saliency models as a refinement module. Lastly, experimental results in both fully
and weakly supervised settings illustrate that we can achieve both high accuracy
predictions and meaningful uncertainty estimation.

4.2 Related Work

Fully/Weakly Supervised Saliency Models. Existing fully supervised saliency pre-
diction models [181, 31, 32, 34, 46, 33, 130, 37, 212, 35, 188] mainly focus on ex-
ploring image context information and generating structure-preserving predictions.
[130, 35, 212, 181, 31, 46, 37] introduced saliency prediction models by effectively inte-
grating higher- and lower-level features. [34, 32, 188] proposed edge-aware loss term
to penalize errors along object boundaries. Note that all the above models are de-
terministic models. Recently, [60] introduced a conditional variational auto-encoder
[50, 154] for stochastic RGB-D saliency detection. Similarly, we introduce a cooper-
ative learning pipeline to achieve probabilistic coarse-to-fine RGB saliency detection
via a latent variable model. However, [60] does not have a “fine” model, and this is
the first time an energy-based model has been used for probalistic saliency detection.

The weakly supervised saliency models [41, 98, 99, 63] learn saliency from easy-
to-obtain weak labels, including image-level labels [41, 98], noisy labels [99, 66, 124]
or partial scribble labels [63]. Although a probabilistic model was explored in [65],
they used a generative model for noise modeling. For the weakly-supervised task,
we use a latent variable to model the distribution of the hidden clean saliency map.
Energy-Based Generative Models. Energy-based generative models [57, 87, 88, 89,
59, 90, 91, 92, 58, 93, 94, 95, 96] define an unnormalized density of a high-dimensional
random variable of interest, which is in the form of the exponential of the negative
energy function parameterized by a neural network. Maximum likelihood learning of
the energy-based model typically requires MCMC sampling, which is computational
challenging. To relieve the computational burden of MCMC, cooperative network in
[56] proposes to learn a separate latent variable model (or directed graphical model)
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to serve as an efficient approximate sampler for training the energy-based model. We
propose a conditional model under the cooperative learning framework for visual
saliency modeling and prediction. Our solution can be treated as an conditional
version of [56]. While differently, we also extent the conditional model to weakly
supervised learning with a cooperative learning while recovering algorithm. In this
way, our model can learn the energy-based model from incomplete data for weakly
supervised saliency prediction.
Conditional Deep Generative Models. Our framework belongs to the family of
conditional generative models, which also include conditional generative adversarial
networks (CGANs) [68] and conditional variational auto-encoders (CVAEs) [51]. Dif-
ferent from existing CGAN-based conditional generative models [80, 81, 82, 83, 84,
85, 86], which use GANs to detect higher-order inconsistency between ground truth
and the prediction, or CVAEs based models [73, 60] in which a latent variable model
representing an implicit density is learned, our model learns an explicit density via
energy-based modeling. More importantly, our model allows an additional refine-
ment for the latent variable model during prediction, which is sorely lacking in both
CGANs and CVAEs frameworks.

4.3 Methodology

Our training dataset is D = {(Xi, Yi)}n
i=1, where n is size of the dataset. We propose a

cooperative training [56] based RGB saliency detection method with a latent variable
model and an energy-based model. The former uses an non-iterative ancestral sam-
pler to generate an initial prediction with a latent variable h modeling uncertainty of
saliency. The later refines the initial prediction with an iterative Langevin sampler
incorporating higher-order structure disagreement, as shown in Fig. 4.1.

4.3.1 Probabilistic Saliency Prediction via Conditional Sampling

In this section, we propose a novel saliency prediction approach based on cooperative
training of an energy-based model and a latent variable model.

Energy-Based Model as Fine Saliency Predictor. Let X be an image, and Y be
its saliency map. The energy-based model pθ(Y|X) defines a distribution of saliency
Y given an image X by

pθ(Y|X) =
pθ(Y, X)∫
pθ(Y, X)dY

=
1

Z(X; θ)
exp[−Uθ(Y, X)], (4.1)

where the energy function Uθ(Y, X), parameterized by a bottom-up neural network,
plays the role of a trainable objective function in the task of saliency prediction, and θ

represents network parameter set. Z(X; θ) =
∫

exp[−Uθ(Y, X)]dY is the normalizing
constant. When Uθ is learned and an image X is given, the prediction of saliency Y
can be achieved by Langevin sampling [213] Y ∼ pθ(Y|X), which makes use of the
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gradient of the energy function and iterates the following step:

Yτ+1 = Yτ −
δ2

2
∂Uθ(Yτ, X)

∂Y
+ δ∆τ, ∆τ ∼ N(0, ID), (4.2)

where τ indexes the Langevin time steps, and δ is the step size. The Langevin
dynamics [213] is equivalent to a stochastic gradient descent algorithm that seeks to
find the minimum of the objective function defined by Uθ(Y, X). The Gaussian noise
term ∆τ is a Brownian motion that prevents the gradient descent from being trapped
by local minima of Uθ(Y, X).

Latent Variable Model as Coarse Saliency Predictor. Let h be a latent Gaus-
sian noise vector, Gα(X, h) be a mapping function parameterized by a noise-injected
encoder-decoder network with skip connections. α contains all the learning parame-
ters in the network. The latent variable model is given by:

h ∼ N(0, Id), Y = Gα(X, h) + ε, ε ∼ N(0, σ2 ID), (4.3)

which defines an implicit conditional distribution of saliency Y given an image X,
i.e., , pα(Y|X) =

∫
p(h)pα(Y|X, h)dh, where pα(Y|X, h) = N(Gα(X, h), σ2 ID). The

saliency prediction can be achieved by an ancestral sampling by first sampling an
injected Gaussian white noise h and then transforming the noise and the image X to
a saliency map Y.

Saliency Prediction by Coarse-to-Fine Predictor. We propose to predict the
saliency of an image by a cooperative sampling strategy, where we first use the coarse
saliency predictor to generate an initial prediction Ŷ via a non-iterative ancestral sam-
pling, and then we use the fine saliency predictor to refine the initial prediction via
iterative Langevin revision to obtain the revised saliency Ỹ. We call this coopera-
tive sampling based coarse-to-fine prediction. In this way, we take both advantages
of these two saliency predictors in the sense that the fine saliency predictor (i.e., ,
Langevin sampler) is initialized by the efficient coarse saliency predictor (i.e., ., an-
cestral sampler), while the coarse saliency predictor is refined by the accurate fine
saliency predictor that aims to minimize a cost function Uθ .

Since our conditional model represents a stochastic mapping, the prediction is
stochastic as well. To evaluate the learned model on saliency prediction tasks, we
can draw multiple h′s from the prior N(0, Id) and use their average to generate Ŷ,
then a Langevin dynamics with noise disabled (i.e., , gradient descent) is performed
to push Ŷ to its nearest local minimum Ỹ based on the learned energy function. The
resulting Ỹ is treated as a prediction of our model.

4.3.2 Cooperative Learning of the Fine Saliency Predictor and the Coarse
Saliency Predictor

MCMC-based Maximum Likelihood Estimation of Fine Saliency Predictor. Given
a training dataset {(Xi, Yi)}n

i=1, we train the fine saliency predictor via maximum
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likelihood estimation, which maximizes the log-likelihood of the data:

L(θ) =
1
n

n

∑
i=1

log pθ(Yi|Xi), (4.4)

whose gradient is:

∆θ =
1
n

n

∑
i=1
{Epθ(Y|Xi)[

∂

∂θ
Uθ(Y, Xi)]−

∂

∂θ
Uθ(Yi, Xi)} (4.5)

. We rely on the cooperative sampling in Eq. 4.2 to sample Ỹi ∼ pθ(Y|Xi) to approxi-
mate the gradient:

∆θ ≈ 1
n

n

∑
i=1

∂

∂θ
Uθ(Ỹi, Xi)−

1
n

n

∑
i=1

∂

∂θ
Uθ(Yi, Xi). (4.6)

We can use Adam with ∆θ to update θ. We denote ∆θ({Yi}, {Ỹi}) as a function of
{Yi} and {Ỹi}.
Maximum Likelihood Training of Coarse Saliency Predictor by MCMC Teaching.
Even though the fine saliency predictor learns from the training data, the coarse
saliency predictor learns to catch up with the fine saliency predictor by treating
{(X, Ỹ)}n

i=1 as training examples. The learning objective is to maximize the log-
likelihood of the samples drawn from pθ(Y|X), i.e., , L(α) = 1

n ∑n
i=1 log pα(Ỹi|Xi),

whose gradient can be computed by

∆α =
n

∑
i=1

Eh∼pα(h|Yi ,Xi)

[
∂

∂α
log pα(Yi, h|Xi)

]
. (4.7)

This leads to an MCMC-based solution that iterates (i) an inference step: inferring
latent h̃ by sampling from posterior distribution h ∼ pα(h|Y, X) via Langevin dy-
namics, which iterates the following:

hτ+1 = hτ +
δ2

2
∂

∂h
log pα(Y, hτ|X) + δ∆τ, (4.8)

where ∆τ ∼ N(0, Id), ∂
∂h log pα(Y, hτ|X) = 1

σ2 (Y − Gα(X, hτ))
∂

∂h Gα(X, hτ) − hτ, and
(ii) a learning step: with {h̃i, Ỹi, Xi}, we update α via Adam optimizer with

∆α ≈ 1
n

n

∑
i=1

1
σ2 (Ỹi − Gα(Xi, h̃i))

∂

∂α
Gα(Xi, h̃i). (4.9)

Since Gα is parameterized by a differentiable neural network, both ∂
∂h Gα(X, hτ) in

Equation (4.8) and ∂
∂α Gα(Xi, h̃i) in Equation (4.9) can be efficiently computed by back-

propagation. We denote ∆α({h̃i}, {Ỹi}) as a function of {h̃i} and {Ỹi}. Algorithm 2
presents a description of the cooperative learning algorithm with the fine and coarse
saliency predictors.
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4.3.3 Weakly Supervised Learning

Our model can be learned from a partially-observed training dataset D′ = {(Xi, Y′i )}n
i=1,

where only partial pixel-wise annotation is available, e.g., scribble [63].
Recovery by Coarse Saliency Predictor in Latent Space. Given an image Xi

and its incomplete saliency map Y′i , the recovery of the missing part of Y′i can be
achieved by first inferring the latent variable h′i based on partially observed saliency
information via h′i ∼ pα(h|Y′i , Xi), and then generating Ŷ′i = Gα(Xi, h′i) with the
inferred h′i. Let Oi be a binary mask, with the same size as Y′, indicating the locations
of visible annotations in Y′i . Oi varies for different Y′i and can be extracted from
Y′i . The Langevin dynamics for recovery iterates the same step in Equation (4.8)
except that ∂

∂h log pα(Y′, hτ|X) = 1
σ2 (O ◦ (Y−Gα(X, hτ)))

∂
∂h Gα(X, hτ)− hτ, where sign

◦ denotes element-wise matrix multiplication operation.

Algorithm 2 Learning a coarse-to-fine saliency predictor for probabilistic
saliency detection
Input:
(1) Training images {Xi}n

i with associated saliency maps {Yi}n
i ;

(2) maximal number of learning iterations T.
Output: Parameters θ and α

1: Initialize θ and α
2: for t← 1 to T do
3: Draw ĥi ∼ N(0, Id)
4: Sample initial prediction Ŷi = Gα(Xi, ĥi).
5: Revise Ŷi to obtain Ỹi by Langevin in Eq. (4.2)
6: Revise ĥi to obtain h̃i by Langevin in Eq. (4.8)
7: Update α with ∆α({h̃i}, {Ỹi}) using Adam
8: Update θ with ∆θ({Yi}, {Ỹi}) using Adam
9: end for

Algorithm 3 Learning while recovering
Input: (1) Images {Xi}n

i with incomplete annotations {Y′i }n
i ; (2) Number of learning

iterations T
Output: Parameters θ and α

1: Initialize θ and α
2: for t← 1 to T do
3: Infer ĥ′i from the visible part of Y′i by Langevin dynamics in Eq. (4.8)
4: Obtain initial recovery Ŷi = Gα(Xi, ĥ′i).
5: Revise Ŷ′i to obtain Ỹ′i by Langevin in Eq. (4.2)
6: Draw ĥi ∼ N(0, Id)
7: Sample initial prediction Ŷi = Gα(Xi, ĥi).
8: Revise Ŷi to obtain Ỹi by Langevin in Eq. (4.2)
9: Revise ĥi to obtain h̃i by Langevin in Eq. (4.8)

10: Update α with ∆α({h̃i}, {Ỹi}) using Adam
11: Update θ with ∆θ({Ỹ′i }, {Ỹi}) using Adam
12: end for

Recovery by Fine Saliency Predictor in Energy Landscape. With the initial re-

Draft Copy – 3 October 2021



68 Energy-Based Generative Cooperative Saliency Prediction

(a) The latent variable network

(b) Multi-scale dilation network

Figure 4.2: Network structure of the latent variable network, where s1, ..., s4 are four
convolutional blocks of our backbone network, “RCA” is the residual channel atten-

tion module in [163].

covered result Ŷ′ by the coarse saliency predictor pα, the fine saliency predictor pθ

can further recover the result by running finite steps of Langevin dynamics in Equa-
tion (4.2) initialized from Ŷ′ and obtain Ỹ′. The underlying principle is that the initial
recovery Ŷ′ might be just around the local modes of the energy function. A few steps
of Langevin dynamics (i.e., , stochastic gradient descent) of pθ , starting from Ŷ′i , will
push Ŷ′i to its nearby low energy mode, in which its potential fully observed version
Yi could be.

Cooperative Learning while Cooperative Recovering. At each iteration t, we
perform the above cooperative recovery of the training saliency map {Y′}n

i=1 via pθ(t)

and pα(t) , while learning pθ(t+1) and pα(t+1) from {Xi, Ỹ′(t)i }n
i=1, where Ỹ′(t)i is the re-

covered saliency map at t-th iteration. The parameter θ is still updated via Equation
(4.6) except that we replace Yi by Ỹ′i . That is, at each iteration, we use the recovered
Ỹ′i , instead of the original Yi, along with Ỹi to compute the gradient of log-likelihood,
which is denoted by ∆θ({Ỹ′i }, {Ỹi}). The algorithm simultaneously performs (i) co-
operative recovering of missing annotations; (ii) cooperative sampling to generate
annotations; (iii) cooperative learning of the two models by updating parameters
with both recovered annotations and generated annotations. See Algorithm 3 for a
description of the learning while recovering algorithm.
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4.3.4 Network Structure

Latent Variable Model: The latent variable model Gα(X, h) maps the concatenation
of image X and latent variable h (we expand h to same spatial size of X) to coarse
saliency map Ŷ as shown in Fig. 4.2 (a). As indicated in existing saliency detec-
tion models [37, 33, 34, 130], two issues may influence the performance of saliency
models: 1) structure recovery solution and 2) multi-scale strategy. To solve the first
problem, we adopt structure aware similarity as in [34] to further penalize errors
along edges of the prediction in training the latent variable model. To achieve multi-
scale saliency detection, we design an encoder-decoder based network with ResNet50
[28] as backbone, which includes four convolutional group s1, ..., s4. We first design
a multi-scale dilation network (MSD), shown in Fig. 4.2 (b), with gradually enlarged
dilation rates to capture different scales of context information (“MSD” includes four
3 × 3 convolutional layers with dilation rates of [3, 6, 12, 18] to map {sc}4

c=1 to an
M = 32 channel feature map. Then the channel-reduced features are concatenated
to form feature {rc}4

c=1 of each convolutional group). Then these channel-reduced
features {rc}4

c=1 are again concatenated and fed to the “Residual Channel Attention”
(RCA) module [163] to obtain discriminative feature representation f eat. Finally, one
3× 3 convolutional layer is adopted to map f eat to a one-channel saliency map Ŷ.
Energy Function: The energy function Uθ(Y, X) is composed of five convolutional
layers and one fully connected layer. The kernel sizes, strides and output channel
size of these five convolutional layers are (3,1,32), (4,2,64), (4,2,128), (4,2,256) and
(4,1,1) respectively. Then, a fully connected layer is adopted to map the feature map
after the last convolutional layer to a 100 dimensional feature vector, representing the
energy of the input pair.

4.3.5 Alternative Generative Models for Saliency Detection

We further investigate alternative generative models for saliency detection, and de-
sign two extra stochastic RGB saliency detection frameworks by using CVAE [51] and
CGAN [68].
Learning RGB Saliency via CVAE: CVAE [51] is a conditional directed graph model,
which includes three variables, the input X or conditional variable that modulates
the prior on Gaussian latent variable Z, that generate the output prediction Y. Two
main modules are included in a conventional CVAE based framework: a generator
model Pθ(Y|X, Z), which generates prediction Y with input X and Z as input, and
an inference model Pθ(Z|X, Y), which infers the latent variable Z with input X and
output Y as input. Learning a CVAE framework involves approximation of the true
prior distribution Pθ(Z|X) with a inference model Qφ(Z|X, Y). The parameter sets of
a CVAE can be estimated in a stochastic variational Bayes (SGVB) [50] framework by
maximizing the expected variational lower bound (ELBO) as:

L(θ, φ; X) = Eqφ(h|X,Y)[log(pθ(Y|X, h))]− DKL(qφ(h|X, Y)||pθ(h|X)), (4.10)

where the first term is the expected log-likelihood and the second term measures
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the information lost using Qφ(Z|X, Y) to approximate the true prior distribution of
latent variable Z.

Following Eq. 4.10, we add an extra encoder qφ(h|X, Y) and pθ(h|X) to the gen-
erator model in Fig. 4.2 (a). The encoder is composed of five convolutional layers
to map the input image X or concatenation of X and Y to low dimensional vectors:
mean µ and standard deviation σ, and then the latent variable h is obtained with the
reparameterazation trick as z = µ + σ� ε, where ε ∈ N (0, Id).
CGAN based Saliency Detection: Similar to CVAE, two different models (a genera-
tor and a discriminator) play the minimax game in CGAN as shown below:

min
G

max
D

V(D, G) = E(X,Y)∈pdata(X,Y)[log D(Y|X)] + Eh∈q(h)[log(1− D(G(X, h))],

(4.11)
where G and D are the generator model and discriminator model respectively, pdata(X, Y)
is the joint distribution of training data, q(h) is the prior distribution of the latent vari-
able h, which is usually defined as q(h) = N (0, Id). We use the same generator as in
Fig. 4.2 for generator of the CGAN. We design a fully convolutional discriminator as
[85], to distinguish the prediction and ground truth pixel-wise as real or fake.

4.4 Experiments

Datasets: We used the DUTS dataset [41] for training the fully supervised model, and
scribble annotation S-DUTS [63] for training the weakly supervised model. Testing
images include 1) DUTS testing dataset, 2) ECSSD [189], 3) DUT [26], 4) HKU-IS [30],
5) THUR [190] and SOC [191].
Competing methods: We compared our method against eleven state-of-the-art fully
supervised deep saliency detection methods: DGRL [181], PiCANet [31], F3Net [34],
NLDF [32], PoolNet [46], BASNet [33], AFNet [40], MSNet [39], SCRN [130], ITSD
[44] and LDF [188]. We also compare our weakly supervised solution in Section 4.3.3
with the scribble saliency detection model SSAL [63].
Evaluation Metrics: We evaluate performance of ours and competing methods with
four saliency evaluation metrics, including: Mean Absolute Error (M), mean F-
measure (Fβ), mean E-measure (Eξ) [173] and S-measure (Sα) [172].
Training Details: We trained our model using Pytorch with a maximum of 30 epochs.
Each image is rescaled to 352× 352. ResNet50 [28] is chosen as backbone of the latent
variable model. Empirically, we set the dimension of the latent space as h = 8. We
used Adam with momentum 0.9 and decrease the learning rate 10% after 20 epochs.
The learning rates of the latent variable model and EBM function are initialized to
1e-4 and 1e-3 respectively. It took 20 hours of training with batch size seven on a PC
with an NVIDIA GeForce RTX GPU.

4.4.1 Comparison with Fully-supervised Models

Quantitative comparison: We evaluate performance of competing methods and ours
and show results in Table 4.1, where “PCF” is the proposed Probabilistic Coarse-to-
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Table 4.1: Performance comparison with benchmark saliency prediction models, in-
cluding fully supervised models, weakly supervised models and alternative genera-

tor models.
DUTS ECSSD DUT HKU-IS THUR SOC

Method Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓
Deep Fully Supervised Models

DGRL .846 .790 .887 .051 .902 .898 .934 .045 .809 .726 .845 .063 .897 .884 .939 .037 .816 .727 .838 .077 .791 .348 .820 .137
PiCAN .842 .757 .853 .062 .898 .872 .909 .054 .817 .711 .823 .072 .895 .854 .910 .046 .818 .710 .821 .084 .801 .332 .810 .133
F3Net .888 .852 .920 .035 .919 .921 .943 .036 .839 .766 .864 .053 .917 .910 .952 .028 .838 .761 .858 .066 .828 .340 .846 .098
NLDF .816 .757 .851 .065 .870 .871 .896 .066 .770 .683 .798 .080 .879 .871 .914 .048 .801 .711 .827 .081 .816 .319 .837 .106
PoolN .887 .840 .910 .037 .919 .913 .938 .038 .831 .748 .848 .054 .919 .903 .945 .030 .834 .745 .850 .070 .829 .355 .846 .098
BASN .876 .823 .896 .048 .910 .913 .938 .040 .836 .767 .865 .057 .909 .903 .943 .032 .823 .737 .841 .073 .841 .359 .864 .092
AFNet .867 .812 .893 .046 .907 .901 .929 .045 .826 .743 .846 .057 .905 .888 .934 .036 .825 .733 .840 .072 .700 .062 .684 .115
MSNet .862 .792 .883 .049 .905 .886 .922 .048 .809 .710 .831 .064 .907 .878 .930 .039 .819 .718 .829 .079 - - - -
SCRN .885 .833 .900 .040 .920 .910 .933 .041 .837 .749 .847 .056 .916 .894 .935 .034 .845 .758 .858 .066 .838 .363 .859 .099
ITSD .885 .840 .913 .041 .919 .917 .941 .037 .840 .768 .865 .061 .917 .904 .947 .031 .836 .753 .852 .070 .773 .361 .792 .166
LDF .892 .861 .925 .034 .919 .923 .943 .036 .839 .770 .865 .052 .920 .913 .953 .028 .842 .768 .863 .064 .835 .369 .856 .103
PCF .890 .856 .924 .034 .926 .930 .954 .031 .852 .788 .879 .046 .923 .917 .957 .026 .847 .771 .867 .061 .839 .368 .860 .092

Weakly Supervised Models
SSAL .803 .747 .865 .062 .863 .865 .908 .061 .785 .702 .835 .068 .865 .858 .923 .047 .800 .718 .837 .077 .804 .309 .793 .143
WPCF .813 .755 .863 .059 .872 .874 .910 .060 .791 .707 .840 .061 .871 .859 .929 .042 .804 .717 .839 .074 .812 .314 .806 .137

Alternative Generator Models
CVAE .866 .824 .900 .041 .906 .910 .932 .043 .816 .737 .844 .055 .910 .903 .943 .032 .835 .755 .859 .065 .843 .361 .866 .098
CGAN .846 .785 .883 .049 .900 .895 .928 .047 .799 .705 .828 .063 .894 .875 .930 .039 .823 .732 .850 .071 .841 .362 .859 .103

Fine fully supervised saliency model. We observe consistent performance improve-
ment of “PCF” compared with benchmark models. We also designed two alternative
generator network based saliency detection pipelines with CVAEs [51] and CGANs
[68] respectively (details about these two alternative network are introduced Section
4.3.5), and performance is shown as “CVAE” and “CGAN”. As indicated in both
Table 4.1 and our experience of training, we found that the CGANs-based model is
very sensitive to the weights of the discriminator loss, and the whole training is not
very stable. The CVAEs-based model can achieve stable training, while imbalanced
training (generator model and inference model) may lead to posterior collapse [141],
where the latent variable h is independent of the prediction Y, thus it fails to capture
the uncertainty of human annotation. The performance gap between ours and alter-
native generator network further illustrates superior performance of our solution.
Qualitative comparison: As a generative model, we intend to model human un-
certainty of annotation, thus, diversity of prediction is a main standard to evaluate
performance of our model. We visualize predictions of ours and two competing
methods (F3Net and SCRN) as shown in Fig. 4.3, where “Our Samples” represent
our predictions with four iterations of sampling, and “Ours” is computed with an
average of multiple latent variable h as input (introduced in Section 4.3.1). Fig. 4.3
shows that the deterministic one-to-one mapping may over-confidently segment too
many or too few regions as salient. The proposed solution can produce multiple
predictions with each iteration of sampling, which is more consistent with the “sub-
jective” nature of saliency. Furthermore, as shown in the “Ours” column, when
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Image GT F3Net SCRN Our Samples Ours

Figure 4.3: Visual comparison of predictions of ours and competing saliency models.

Scribble GT Rec-ed Image GT Our Samples Ours
(a) Training Process (b) Testing Process

Figure 4.4: Examples showing the training and testing related data of our “coop-
erative learning while recovering” weakly supervised learning solution. Note that,

scribble is only used during training stage.

Table 4.2: Performance comparison of extra module analysis models.
DUTS ECSSD DUT HKU-IS THUR SOC

Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓
EBM as Refinement Module

NLDF_R .867 .827 .911 .040 .906 .911 .939 .041 .814 .738 .850 .058 .909 .903 .951 .030 .827 .747 .854 .068 .812 .327 .825 .132
PoolN_R .890 .852 .921 .035 .923 .920 .945 .036 .840 .766 .867 .050 .925 .914 .952 .027 .834 .745 .850 .070 .829 .355 .846 .106
BASN_R .882 .836 .893 .042 .923 .919 .944 .035 .843 .788 .875 .050 .913 .914 .950 .030 .834 .745 .850 .071 .841 .359 .864 .092
SCRN_R .887 .854 .922 .035 .923 .923 .944 .036 .839 .759 .861 .052 .919 .913 .953 .028 .849 .763 .863 .064 .846 .369 .868 .091

Ablation Study
DGen .872 .832 .917 .038 .909 .911 .940 .040 .820 .745 .857 .055 .911 .903 .952 .030 .828 .748 .855 .068 .832 .359 .852 .101
SGen .881 .849 .920 .036 .918 .923 .946 .036 .834 .766 .865 .052 .918 .914 .954 .027 .833 .756 .856 .068 .835 .362 .864 .095
DEBM .883 .851 .921 .035 .916 .920 .944 .036 .835 .769 .866 .050 .919 .915 .955 .026 .833 .757 .858 .064 .841 .367 .870 .096
CRFs .880 .842 .925 .036 .905 .909 .931 .042 .826 .739 .853 .056 .910 .914 .957 .031 .837 .769 .862 .066 .842 .363 .865 .094
Ours .890 .856 .924 .034 .926 .930 .954 .031 .852 .788 .879 .046 .923 .917 .957 .026 .847 .771 .867 .061 .839 .368 .860 .092

taking the average of latent variable h as input, we can produce predictions that are
most similar to the provided ground truth compared with the competing methods.

4.4.2 Weakly Supervised Saliency Detection

We extend our solution to weakly supervised saliency detection with scribble anno-
tation [63]. As shown in Fig. 4.4 (a), compared with the fully annotated ground
truth (“GT”), the scribble annotation (“Scribble”) is sparse (orange scribble is salient
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Image GT NLDF NLDF_R BASN BASN_R SCRN SCRN_R

Figure 4.5: Visual comparison of without (“NLDF”) and with (“NLDF_R”) EBM as
refinement module.

region, and blue scribble represents background). With the proposed “cooperative
learning while recovering” strategy, we can recover the missing annotation region
as shown in “Rec-ed”. Different from [63], which incorporates an extra edge detec-
tion module and smoothness loss [109] to push the prediction share similar shape
as the input image, we instead put the smoothness constraint into the energy-based
model while updating the parameter set θ in Eq. 4.6. “WPCF” in Table 4.1 is our
weakly supervised learning model. Note that, the scribble annotation is only used
during training as partial supervision. During testing, given input image, we can
still produce stochastic predictions as shown in Fig. 4.4 (b). Compared with “SSAL”,
“WPCF” achieves consistent better performance. Moreover, as a probabilistic model,
“WPCF” can generate multiple predictions representing the uncertainty of human
annotation, while “SSAL” can not.

4.4.3 Energy Function as a Refinement Module

As shown in Eq. 4.2, the energy-based model can iteratively refine the prediction
with Langevin sampling. With the trained EBM, we treat it as a refinement module,
and add it to four existing deep saliency detection models. Performance is shown
in Table 4.2 and Fig. 4.5. “NLDF_R”, “SCRN_R” “BASN_R” and “PoolN_R”, rep-
resenting using EBM to refine NLDF [32], SCRN [130], BASN [33] and PoolN [46]
respectively1. Compared with the original performance of the above four existing
models, we observe consistent performance improvement with EBM as a refinement
module, especially for NLDF, we achieve around 5% performance improvement for S-
measure, F-measure and E-measure, and 2% performance improvement for MAE. We
further show three examples of those models with and without EBM as refinement.
Both performance improvement and visual comparison illustrates the effectiveness
of EBM as a refinement module.

1We choose these four models due to their accessible codes and saliency maps
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4.4.4 Ablation Study

We carried out the following experiments as shown in Table 4.2 to further analyse
our solution.
Training the deterministic latent variable model: Gα can be trained directly with-
out the latent variable h, i.e., Gα(X), and the result is shown as “DGen”. We observe
competing performance of “DGen” compared with existing benchmark fully super-
vised saliency detection models. While, the gap between “DGen” and ours “Ours”
illustrates superior performance of the proposed solution.
Training directly the latent variable model: We treat the stochastic saliency encoder-
decoder Gα(X, h) as our final model, where the latent variable h is updated through
Langevin dynamics as shown in Eq. 4.8. The result is shown in “SGen”. Compared
with “DGen”, “SGen” achieves better performance, which illustrates effectiveness of
the latent variable model.
Training the deterministic latent variable model with EBM as refinement: We add
EBM to “DGen” as a refinement module during both training and testing. The result
is shown in “DEBM”. The gap between “DEBM” and “DGen” is consistent with EBM
as refinement of pre-trained saliency models in Section 4.4.3, which further proves
feasibility of EBM as saliency refinement module.
Refine the latent variable model with CRFs [29]: As a popular post-processing
technique, dense CRFs [29] can be adopted to refine predictions of our latent vari-
able model. We refine “DGen” with the dense CRFs, where we use the same hyper
parameters of [29] for semantic segmentation. The results are shown as “CRFs”. We
observe unstable performance of “CRFs”, and the main reason for this is the difficulty
in finding the effective hyper parameters. In order to find the right hyper parameter
set, [214] introduced the trainable CRFs, which is just similar to our trainable EBM.

4.5 Conclusion

In this chapter, we propose a generative saliency prediction model based on the
conditional generative cooperative network, where a latent variable model and an
energy-based model are jointly trained in a cooperative learning scheme. The latent
variable model serves as a coarse saliency predictor that provides a fast initial predic-
tion, which is then refined by Langevin revision of the energy-based model. More-
over, we introduce a cooperative learning while recovering strategy and extend our
model to weakly supervised saliency detection. Further, we find that the learned en-
ergy function can serves as a refinement module, which can be easily embedded into
existing pre-trained saliency models. Experimental results compared with both fully
supervised and weakly supervised saliency models illustrate the effectiveness of the
proposed framework. To focus on the learning pipeline, we discuss RGB saliency de-
tection to avoid analysing the multi-modal learning issue within the RGB-D saliency
detection framework of Chapter 2 and Chapter 3. However, our learning pipeline
works in general, which can be easily extend to existing RGB-D saliency framework.
We will work on it to further evaluate our learning pipeline.
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Chapter 5

Weakly-Supervised Salient Object
Detection via Scribble Annotations

For both RGB-D saliency detection models in Chapter 2 and 3, and RGB saliency de-
tection framework in Chapter 4, we followed the supervised learning pipeline, with
pixel-wise clean ground truth saliency map as supervision. Compared with laborious
pixel-wise dense labeling, it is much easier to label data by scribbles, which only costs
1∼2 seconds to label one image. However, using scribble labels to learn salient object
detection has not been explored. In this chapter, we propose a weakly-supervised
salient object detection model to learn saliency from such annotations. In doing so,
we first relabel an existing large-scale salient object detection dataset with scribbles,
namely S-DUTS dataset. Since object structure and detail information is not identi-
fied by scribbles, directly training with scribble labels will lead to saliency maps of
poor boundary localization. To mitigate this problem, we propose an auxiliary edge
detection task to localize object edges explicitly, and a gated structure-aware loss to
place constraints on the scope of structure to be recovered. Moreover, we design a
scribble boosting scheme to iteratively consolidate our scribble annotations, which
are then employed as supervision to learn high-quality saliency maps. As existing
saliency evaluation metrics neglect to measure structure alignment of the predic-
tions, the saliency map ranking metric may not comply with human perception.
We present a new metric, termed saliency structure measure, as a complementary
metric to evaluate sharpness of the prediction. Extensive experiments on six bench-
mark datasets demonstrate that our method not only outperforms existing weakly-
supervised/unsupervised methods, but also is on par with several fully-supervised
state-of-the-art models1.

5.1 Introduction

Visual salient object detection (SOD) aims at locating interesting regions that attract
human attention most in an image. Conventional salient object detection methods
[24, 23] based on hand-crafted features or human experience may fail to obtain high-
quality saliency maps in complicated scenarios. The deep learning based salient
object detection models [130, 60] have been widely studied, and significantly boost

1Our code and data is publicly available at: https://github.com/JingZhang617/Scribble_Saliency.
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(a) GT(scribble) (b) GT(Bbx) (c) GT(per-pixel)

(d) Baseline (e) Bbx-CRF (f) BASNet

(g) WSS (h) Bbx-Pred (i) Ours

Figure 5.1: (a) Our scribble annotations. (b) Ground-truth bounding box. (c) Ground-
truth pixel-wise annotations. (d) Baseline model: trained directly on scribbles. (e)
Refined bounding box annotation by DenseCRF [29]. (f) Result of a fully-supervised
SOD method [33]. (g) Result of model trained on image-level annotations [41] (h)

Model trained on the annotation (e). (i) Our result.

the saliency detection performance. However, these methods highly rely on a large
amount of labeled data, which require time-consuming and laborious pixel-wise an-
notations. To achieve a trade-off between labeling efficiency and model performance,
several weakly supervised or unsupervised methods [98, 102, 99, 66] have been pro-
posed to learn saliency from sparse labeled data [98, 102] or infer the latent saliency
from noisy annotations [99, 66].

We propose a new weakly-supervised salient object detection framework by learn-
ing from low-cost labeled data, (i.e., , scribbles, as seen in Fig. 5.1(a)). Here, we opt to
scribble annotations because of their flexibility (although bounding box annotation
is an option, it’s not suitable for labeling winding objects, thus leading to inferior
saliency maps, as seen in Fig. 5.1 (h)). Since scribble annotations are usually very
sparse, object structure and details cannot be easily inferred. Directly training a deep
model with sparse scribbles by partial cross-entropy loss [111] may lead to saliency
maps of poor boundary localization, as illustrated in Fig. 5.1 (d).
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Figure 5.2: Percentage of labeled pixels in the S-DUTS dataset.

To achieve high-quality saliency maps, we present an auxiliary edge detection
network and a gated structure-aware loss to enforce boundaries of our predicted
saliency map to align with image edges in the salient region. The edge detection
network forces the network to produce feature highlight object structure, and the
gated structure-aware loss allows our network to focus on the salient region while
ignoring the structure of the background. We further develop a scribble boosting
manner to update our scribble annotations by propagating the labels to larger re-
ceptive fields of high confidence. In this way, we can obtain denser annotations as
shown in Fig. 5.7 (g).

Due to the lack of scribble based saliency datasets, we relabel an existing saliency
training dataset DUTS [41] with scribbles, namely S-DUTS dataset, to verify our
method. DUTS is a widely used salient object detection dataset, which contains
10,553 training images. Annotators are asked to scribble the DUTS dataset accord-
ing to their first impressions without showing them the ground-truth salient objects.
Fig. 5.2 indicates the percentage of labeled pixels across the whole S-DUTS dataset.
On average, around 3% of the pixels are labeled (either foreground or background)
and the others are left as unknown pixels, demonstrating that the scribble anno-
tations are very sparse. Note that, we only use scribble annotation as supervision
signal during training, and we take RGB image as input to produce dense saliency
map during testing.

Moreover, the rankings of saliency maps based on traditional mean absolute error
(MAE) may not comply with human visual perception. For instance, in the 1st row
of Fig. 5.3, the last saliency map is visually better than the fourth one and the third
one is better than the second one. We propose saliency structure measure (Bµ) as a
complementary metric of existing evaluation metrics that takes the structure align-
ment of the saliency map into account. The measurements based on Bµ are more
consistent with human perception, as shown in the 2nd row of Fig. 5.3.

We summarize our main contributions as: (1) we present a new weakly-supervised
salient object detection method by learning saliency from scribbles, and introduce
a new scribble based saliency dataset S-DUTS; (2) we propose a gated structure-
aware loss to constrain a predicted saliency map to share similar structure with the
input image in the salient region; (3) we design a scribble boosting scheme to ex-
pand our scribble annotations, thus facilitating high-quality saliency map acquisi-
tion; (4) we present a new evaluation metric to measure the structure alignment of
predicted saliency maps, which is more consistent with human visual perception; (5)
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M = 0 M = .054 M = .061 M = .104 M = .144

B� = 0 B� = .356 B� = .705 B� = .787 B� = .890

Figure 5.3: Saliency map ranking based on Mean Absolute Error (1st row) and our
proposed Saliency Structure Measure (2nd row).

experimental results on six salient object detection benchmarks demonstrate that our
method outperforms state-of-the-art weakly-supervised algorithms.

5.2 Related Work

Deep fully supervised saliency detection models [33, 215, 130, 60, 216, 35, 217] have
been widely studied. As our method is weakly supervised, we mainly discuss re-
lated weakly-supervised dense prediction models and approaches to recover detail
information from weak annotations.

5.2.1 Learning Saliency from Weak Annotations

To avoid requiring accurate pixel-wise labels, some SOD methods attempt to learn
saliency from low-cost annotations, such as bounding boxes [218], image-level labels
[41, 98], and noisy labels [66, 124, 99], etc.. This motivates SOD to be formulated as
a weakly-supervised or unsupervised task. Wang et al. [41] introduced a foreground
inference network to produce saliency maps with image-level labels. With the same
weak labels, Hsu et al. [101] presented a category-driven map generator to learn
saliency from class activation map. Li et al. [98] adopted an iterative learning strat-
egy to update an initial saliency map generated from unsupervised saliency methods
by learning with image-level supervision. A fully connected CRF [29] was utilized
in [41, 98] as post-processing to refine the produced saliency map. Zeng et al. [102]
proposed to train saliency models with diverse weak supervision sources, includ-
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ing category labels, captions, and unlabeled data. Zhang et al. [124] fused saliency
maps from unsupervised methods with heuristics within a deep learning framework.
In a similar setting, Zhang et al. [66] proposed to collaboratively update a saliency
prediction module and a noise module to learn a saliency map from multiple noisy
labels.

5.2.2 Weakly-Supervised Semantic Segmentation

Dai et al. [103] and Khoreva [104] proposed to learn semantic segmentation from
bounding boxes in a weakly-supervised way. Hung et al. [85] randomly interleaved
labeled and unlabeled data, and trained a network with an adversarial loss on the un-
labeled data for semi-supervised semantic segmentation. Shi et al. [105] tackled the
weakly-supervised semantic segmentation problem by using multiple dilated con-
volutional blocks of different dilation rates to encode dense object localization. Li
et al. [106] presented an iterative bottom-up and top-down semantic segmentation
framework to alternatingly expand object regions and optimize segmentation net-
work with image tag supervision. Huang et al. [107] introduced a seeded region
growing technique to learn semantic segmentation with image-level labels. Vernaza
et al. [108] designed a random walk based label propagation method to learn seman-
tic segmentation from sparse annotations.

5.2.3 Recovering Structure from Weak Labels

As weak annotations do not contain complete semantic region of the specific object,
the predicted object structure is often incomplete. To preserve rich and fine-detailed
semantic information, additional regularizations are often employed. Two main solu-
tions are widely studied, including graph model based methods (e.g., CRF [29]) and
boundary based losses [110]. Tang et al. [111] introduced a normalized cut loss as
a regularizer with partial cross-entropy loss for weakly-supervised image segmenta-
tion. Tang et al. [219] modeled standard regularizers into a loss function over partial
observation for semantic segmentation. Obukhov et al. [112] proposed a gated CRF
loss for weakly-supervised semantic segmentation. Lampert et al. [110] introduced a
constrain-to-boundary principle to recover detail information for weakly-supervised
image segmentation.

5.2.4 Comparison with Existing Scribble Models

Although scribble annotations have been used in weakly-supervised semantic seg-
mentation [220, 221], our proposed scribble based salient object detection method is
different from them in the following aspects: (1) semantic segmentation methods tar-
get at class-specific objects. In this manner, class-specific similarity can be explored.
On the contrary, salient object detection does not focus on class-specific objects, thus
object category related information is not available. For instance, a leaf can be a
salient object while the class category is not available in the widely used image-level
label dataset [222, 223]. Therefore, we propose edge-guided gated structure-aware
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Figure 5.4: Illustration of our network. For simplicity, we do not show the scribble
boosting mechanism here. “I” is the intensity image of input “x”. “C”: concatenation

operation; “conv1x1”: 1×1 convolutional layer.

loss to obtain structure information from image instead of depending on image cate-
gory. (2) although boundary information has been used in [221] to propagate labels,
Wang et al. [221] regressed boundaries by an `2 loss. Thus, the structure of the seg-
mentation may not be well aligned with the image edges. In contrast, our method
minimizes the differences between first order derivatives of saliency maps and im-
ages, and leads to saliency map better aligned with image structure. (3) benefiting
from our developed boosting method and the intrinsic property of salient objects, our
method requires only scribble on any salient region as shown in Fig. 5.9, while scrib-
bles are required to traverse all those semantic categories for scribble based semantic
segmentation [220, 221].

5.3 Learning Saliency from Scribbles

Let’s define our training dataset as: D = {xi, yi}N
i=1, where xi is an input im-

age, yi is its corresponding annotation, N is the size of the training dataset. For
fully-supervised salient object detection, yi is a pixel-wise label with 1 representing
salient foreground and 0 denoting background. We define a new weakly-supervised
saliency learning problem from scribble annotations, where yi in our case is scrib-
ble annotation used during training, which includes three categories of supervision
signal: 1 as foreground, 2 as background and 0 as unknown pixels. In Fig. 5.2,
we show the percentage of annotated pixels of the training dataset, which indicates
that around 3% of pixels are labeled as foreground or background in our scribble
annotation.

There are three main components in our network, as illustrated in Fig. 5.4: (1)
a saliency prediction network (SPN) to generate a coarse saliency map sc, which is
trained on scribble annotations by a partial cross-entropy loss [111]; (2) an edge de-
tection network (EDN) is proposed to enhance structure of sc, with a gated structure-
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Figure 5.5: Our “DenseASPP” module. “conv1x1 d=3” represents a 1×1 convolu-
tional layer with a dilation rate 3.

aware loss employed to force the boundaries of saliency maps to comply with image
edges; (3) an edge-enhanced saliency prediction module (ESPM) is designed to fur-
ther refine the saliency maps generated from SPN.

5.3.1 Weakly-Supervised Salient Object Detection

Saliency prediction network (SPN): We build our front-end saliency prediction net-
work based on VGG16-Net [67] by removing layers after the fifth pooling layer. Sim-
ilar to [224], we group the convolutional layers that generate feature maps of the
same resolution as a stage of the network (as shown in Fig. 5.4). Thus, we denote
the front-end model as f1(x, θ) = {s1, ..., s5}, where sm(m = 1, ..., 5) represents fea-
tures from the last convolutional layer in the m-th stage (“relu1_2, relu2_2, relu3_3,
relu4_3, relu5_3”), θ is the front-end network parameters.

As discussed in [105], enlarging receptive fields by different dilation rates can
propagate the discriminative information to non-discriminative object regions. We
employ a dense atrous spatial pyramid pooling (DenseASPP) module [162] on top
of the front-end model to generate feature maps s′5 with larger receptive fields from
feature s5. In particular, we use varying dilation rates in the convolutional layers of
DenseASPP. Then, two extra 1× 1 convolutional layers are used to map s′5 to a one
channel coarse saliency map sc.

As we have unknown category pixels in the scribble annotations, partial cross-
entropy loss [111] is adopted to train our SPN:

Ls = ∑
(u,v)∈Jl

Lu,v, (5.1)

where Jl represents the labeled pixel set, (u, v) is the pixel coordinates, and Lu,v is
the cross-entropy loss at (u, v).

Edge detection network (EDN): Edge detection network encourages SPN to pro-
duce saliency features with rich structure information. We use features from the
intermediate layers of SPN to produce one channel edge map e. Specifically, we map
each si(i = 1, ..., 5) to a feature map of channel size M with a 1× 1 convolutional
layer. Then we concatenate these five feature maps and feed them to a 1× 1 convolu-
tional layer to produce an edge map e. A cross-entropy loss Le is used to train EDN:

Le = ∑
u,v

(E log e + (1− E) log(1− e)), (5.2)
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where E is pre-computed by an existing edge detector [225].

Edge-enhanced saliency prediction module (ESPM): We introduce an edge-enhanced
saliency prediction module to refine the coarse saliency map sc from SPN and obtain
an edge-preserving refined saliency map sr. Specifically, we concatenate sc and e and
then feed them to a 1× 1 convolutional layer to produce a saliency map sr. Note that,
we use the saliency map sr as the final output of our network. Similar to training
SPN, we employ a partial cross-entropy loss with scribble annotations to supervise
sr.

Gated structure-aware loss: Although ESPM encourages the network to produce
saliency map with rich structure, there exists no constraints on scope of structure to
be recovered. Following the “Constrain-to-boundary” principle [110], we propose a
gated structure-aware loss, which encourages the structure of a predicted saliency
map to be similar to the salient region of an image.

We expect the predicted saliency map having consistent intensities inside the
salient region and distinct boundaries at the object edges. Inspired by the smoothness
loss [165, 109], we also impose such constraint inside the salient regions. Recall
that the smoothness loss is developed to enforce smoothness while preserving image
structure across the whole image region. However, salient object detection intends to
suppress the structure information outside the salient regions. Therefore, enforcing
the smoothness loss across the entire image regions will make the saliency prediction
ambiguous, as shown in Tabel 5.2 “M3”.

To mitigate this ambiguity, we employ a gate mechanism to let our network fo-
cus on salient regions only to reduce distraction caused by background structure.
Specifically, we define the gated structure-aware loss as:

Lb = ∑
u,v

∑
d∈−→x ,−→y

Ψ(|∂dsu,v|e−α|∂d(G·Iu,v)|), (5.3)

where Ψ is defined as Ψ(s) =
√

s2 + 1e−6 to avoid calculating the square root of zero,
Iu,v is the image intensity value at pixel (u, v), d indicates the partial derivatives on
the −→x and −→y directions, and G is the gate for the structure-aware loss (see Fig .5.6
(d)). The gated structure-aware loss applies L1 penalty on gradients of saliency map
s to encourages it to be locally smooth, with an edge-aware term ∂I as weight to
maintain saliency distinction along image edges.

Specifically, as shown in Fig. 5.6, with predicted saliency map (a)) during training,
we dilate it with a square kernel of size k = 11 to obtain an enlarged foreground
region (c)). Then we define gate (d)) as binarized (c)) by adaptive thresholding. As
seen in Fig. 5.6(e), our method is able to focus on the saliency region and predict
sharp boundaries in a saliency map.

Objective Function: As shown in Fig. 5.4, we employ both partial cross-entropy
loss Ls and gated structure-aware loss Lb to coarse saliency map sc and refined map
sr, and use cross-entropy loss Le for the edge detection network. Our final loss
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(a) (b) (c) (d) (e)

Figure 5.6: Gated structure-aware constraint: (a) Initial predicted saliency map. (b)
Image edge map. (c) Dilated version of (a). (d) Gated mask in Eq. 5.3. (e) Gated

edge map.

function is then defined as:

L = Ls(sc, y) + Ls(sr, y) + β1 · Lb(sc, x) + β2 · Lb(sr, x) + β3 · Le, (5.4)

where y indicates scribble annotations. The partial cross-entropy loss Ls takes scrib-
ble annotation as supervision, while gated structure-aware loss Lb leverages image
boundary information. These two losses do not contradict each other since Ls focuses
on propagating the annotated scribble pixels to the foreground regions (relying on
SPN), while Lb enforces sr to be well aligned to edges extracted by EDN and prevents
the foreground saliency pixels from being propagated to backgrounds.

5.3.2 Scribble Boosting

While we generate scribbles for a specific image, we simply annotate a very small
portion of the foreground and background as shown in Fig. 5.1. Intra-class discon-
tinuity, such as complex shapes and appearances of objects, may lead our model to
be trapped in a local minima, with incomplete salient object segmented. Here, we
attempt to propagate the scribble annotations to a denser annotation based on our
initial estimation.

A straightforward solution to obtain denser annotations is to expand scribble
labels by using DenseCRF [29], as shown in Fig. 5.7(c). However, as our scribble
annotations are very sparse, DenseCRF fails to generate denser annotation from our
scribbles (see Fig. 5.7(c)). As seen in Fig. 5.7(e), the predicted saliency map trained
on (c) is still very similar to the one supervised by original scribbles (see Fig. 5.7(d)).

Instead of expanding the scribble annotation directly, we apply DenseCRF to our
initial saliency prediction sinit, and update sinit to scrf. Directly training a network
with scrf will introduce noise to the network as scrf is not the exact ground-truth. We
compute difference of sinit and scrf, and define pixels with sinit = scrf = 1 as fore-
ground pixels in the new scribble annotation, sinit = scrf = 0 as background pixels,
and others as unknown pixels. In Fig. 5.7 (g) and Fig. 5.7 (h), we illustrate the inter-
mediate results of scribble boosting. Note that, our method achieves better saliency
prediction results than the case of applying DenseCRF to the initial prediction (see
Fig. 5.7 (f)). This demonstrates the effectiveness of our scribble boosting scheme.
In our experiments, after conducting one iteration of our scribble boosting step, our
performance is almost on par with fully-supervised methods.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.7: Illustration of using different strategies to enrich scribble annotations.
(a) Input RGB image and scribble annotations. (b) Per-pixel wise ground-truth. (c)
Result of applying DenseCRF to scribbles. (d) Saliency detection, trained on scribbles
of (a). (e) Saliency detection, trained on scribbles of (c). (f) Applying DenseCRF to the
result (d). (g) The confidence map between (d) and (f) for scribble boosting. Orange
indicates consistent foreground, blue represents consistent background, and others

are marked as unknown. (h) Our final result trained on new scribble (g).

5.3.3 Saliency Structure Measure

Existing saliency evaluation metrics (Mean Abosolute Error, Precision-recall curves,
F-measure, E-measure [173] and S-measure [172]) focus on measuring accuracy of
the prediction, while neglect whether a predicted saliency map complies with human
perception or not. In other words, the estimated saliency map should be aligned with
object structure of the input image. In [32], bIOU loss was proposed to penalize on
saliency boundary length. We adapt the bIOU loss as an error metric Bµ to evaluate
the structure alignment between saliency maps and their ground-truth.

Given a predicted saliency map s, and its pixel-wise ground truth y, their bi-
narized edge maps are defined as gs and gy respectively. Then Bµ is expressed as:

Bµ = 1− 2·∑(gs·gy)

∑(g2
s+g2

y)
, where Bµ ∈ [0, 1]. Bµ = 0 represents perfect prediction. As edges

of prediction and ground-truth saliency maps may not be aligned well due to the
small scales of edges, they will lead to unstable measurements (see Fig. 5.8). We di-
late both edge maps with square kernel of size 3 before we compute the Bµ measure.
As shown in Fig. 5.3, Bµ reflects the sharpness of predictions which is consistent with
human perception.

5.3.4 Network Details

We use VGG16-Net [67] as our backbone network. In the edge detection network,
we encode sm to feature maps of channel size 32 through 1× 1 convolutional layers.
In the “DenseASPP” module (Fig. 5.5), the first three convolutional layers produce
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Figure 5.8: The first two images show the original image edges. We dilate the original
edges (last two images) to avoid misalignments due to the small scales of original

edges.

Figure 5.9: Illustration of scribble annotations by different labelers. From left to
right: input RGB images, pixel-wise ground-truth labels, scribble annotations by

three different labelers.

saliency features of channel size 32, and the last convolutional layer map the feature
maps to s′5 of same size as s5. Then we use two sequential convolutional layers to
map s′5 to one channel coarse saliency map sc. The hyper-parameters in Eq. 5.3 and
Eq. 5.4 are set as: α = 10, β1 = β2 = 0.3, β3 = 1.

We train our model for 50 epochs using Pytorch, with the SPN initialized with
parameters from VGG16-Net [67] pretrained on ImageNet [222]. The other newly
added convolutional layers are randomly initialized with N (0, 0.01). The base learn-
ing rate is initialized as 1e-4. The whole training takes 6 hours with a training batch
size 15 on a PC with a NVIDIA GeForce RTX 2080 GPU.

5.4 Experimental Results

5.4.1 Scribble Dataset

In order to train our weakly-supervised salient object detection method, we relabel
an existing saliency dataset with scribble annotations by three annotators (S-DUTS
dataset). In Fig. 5.9, we show two examples of scribble annotations by different
labelers. Due to the sparsity of scribbles, the annotated scribbles do not have large
overlaps. Thus, majority voting is not conducted. As aforementioned, labeling one
image with scribbles is very fast, which only takes 1∼2 seconds on average.
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Table 5.1: Evaluation results on six benchmark datasets. ↑ & ↓ denote larger and
smaller is better, respectively.

Fully Sup. Models Weakly Sup./Unsup. Models
MetricDGRL UCF PiCANetR3NetNLDFMSNetCPDAFNetPFANPAGRNBASNet SBF WSIWSSMNLMSWOurs

[181] [226] [31] [227] [32] [39] [37] [40] [228] [38] [33] [124] [98] [41] [66] [102]

EC
SS

D

Bµ ↓ .500 .699 .592 .472 .594 .542 .434 .510 .660 .574 .364 .759 .801 .808 .681 .851 .550
Fβ ↑ .903 .845 .872 .914 .871 .886 .908 .901 .859 .872 .913 .782 .762 .767 .810 .761 .865
Eξ ↑ .937 .887 .909 .940 .895 .922 .932 .929 .864 .887 .938 .835 .792 .796 .836 .788 .908
M ↓ .043 .071 .054 .042 .066 .048 .043 .045 .047 .064 .040 .096 .068 .108 .090 .098 .061

D
U

T

Bµ ↓ .619 .812 .685 .606 .715 .642 .549 .603 .644 .645 .480 .812 .839 .830 .776 .890 .655
Fβ ↑ .726 .632 .711 .747 .683 .710 .739 .743 .701 .675 .767 .612 .641 .590 .597 .597 .702
Eξ ↑ .845 .760 .823 .853 .798 .831 .845 .846 .799 .772 .865 .763 .761 .729 .712 .728 .835
M ↓ .063 .120 .072 .063 .080 .064 .057 .057 .062 .071 .057 .108 .100 .110 .103 .109 .068

PA
SC

A
L-

S Bµ ↓ .648 .783 .704 .662 .731 .671 .616 .659 .710 .692 .582 .815 .855 .831 .776 .870 .665
Fβ ↑ .829 .787 .799 .797 .793 .813 .822 .824 .754 .766 .821 .735 .653 .698 .748 .685 .788
Eξ ↑ .835 .795 .805 .781 .783 .822 .820 .827 .746 .755 .821 .746 .647 .690 .741 .693 .798
M ↓ .115 .140 .128 .145 .145 .119 .122 .116 .137 .152 .122 .167 .206 .184 .158 .178 .140

H
K

U
-I

S Bµ ↓ .496 .679 .561 .477 .553 .498 .421 .483 .530 .533 .359 .734 .782 .752 .627 .830 .537
Fβ ↑ .884 .819 .854 .892 .871 .878 .895 .888 .872 .864 .903 .783 .763 .773 .820 .734 .858
Eξ ↑ .939 .886 .910 .939 .914 .930 .940 .934 .898 .898 .943 .855 .800 .819 .858 .786 .923
M ↓ .037 .062 .046 .036 .048 .039 .033 .036 .042 .048 .032 .075 .089 .079 .065 .084 .047

TH
U

R

Bµ ↓ .578 - .659 - .652 .620 .524 .574 .743 .631 .489 .785 - .788 .717 - .596
Fβ ↑ .727 . .710 - .711 .718 .750 .733 .683 .740 .737 .627 - .653 .691 - .718
Eξ ↑ .838 . .821 - .827 .829 .851 .840 .804 .842 .841 .770 - .775 .807 - .837
M ↓ .077 . .084 - .081 .079 .094 .072 .094 .070 .073 .107 - .097 .086 - .0772

D
U

TS

Bµ ↓ .564 .796 .635 - .649 .582 .462 .540 .617 .587 .400 .808 .879 .780 .712 .829 .603
Fβ ↑ .790 .663 .757 - .757 .792 .825 .812 .765 .778 .823 .622 .569 .633 .725 .648 .747
Eξ ↑ .887 .775 .853 - .851 .883 .902 .893 .830 .842 .896 .763 .690 .806 .853 .742 .865
M ↓ .051 .112 .062 - .065 .049 .043 .046 .061 .056 .048 .107 .116 .100 .075 .091 .062

Image GT PiCANet NLDF CPD BASNet SBF MSW M1 Ours

Figure 5.10: Comparisons of saliency maps. “M1” represents the results of a baseline
model marked as “M1” in Section 5.4.4.

5.4.2 Setup

Datasets: We train our network on our newly labeled scribble saliency dataset: S-
DUTS. Then, we evaluate our method on six widely-used benchmarks: (1) DUTS
testing dataset [41]; (2) ECSSD [189]; (3) DUT [26]; (4) PASCAL-S [229]; (5) HKU-IS
[30] and (6) THUR [190].
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Competing methods: We compare our method with five state-of-the-art weakly-
supervised/unsupervised methods and eleven fully-supervised saliency detection
methods.
Evaluation Metrics: Four evaluation metrics are used, including Mean Absolute
Error (MAEM), Mean F-measure (Fβ), mean E-measure (Eξ [173]) and our proposed
saliency structure measure (Bµ).

Figure 5.11: E-measure (1st two figures) and F-measure (last two figures) curves on
two benchmark datasets. Best Viewed on screen.

5.4.3 Comparison with the State-of-the-Art

Quantitative Comparison: In Table 5.1 and Fig. 5.11, we compare our results with
other competing methods. As indicated in Table 5.1, we achieves consistently the best
performance compared with other weakly-supervised or unsupervised methods un-
der these four saliency evaluation metrics. Since state-of-the-art weakly-supervised
or unsupervised models do not impose any constraints on the boundaries of pre-
dicted saliency maps, these methods cannot preserve the structure in the prediction
and produce high values on Bµ measure. In contrast, our method explicitly enforces
a gated structure-aware loss to the edges of the prediction, and achieves lower Bµ.
Moreover, our performance is also comparable or superior to some fully-supervised
saliency models, such as DGRL and PiCANet. Fig. 5.11 shows the E-measure and
F-measure curves of our method as well as the other competing methods on HKU-IS
and THUR datasets. Due to limits of space, E-measure and F-measure curves on the
other four testing datasets are provided in the supplementary material. As illustrated
in Fig. 5.11, our method significantly outperforms the other weakly-supervised and
unsupervised models with different thresholds, demonstrating the robustness of our
method. Furthermore, the performance of our method is also on par with some
fully-supervised methods as seen in Fig. 5.11.
Qualitative Comparison: We sample four images from the ECSSD dataset [189] and
the saliency maps predicted by six competing methods and our method are illus-
trated in Fig. 5.10. Our method, while achieving performance on par with some
fully-supervised methods, significantly outperforms other weakly-supervised and
unsupervised models. In Fig. 5.10, we further show that directly training with scrib-
bles produces saliency maps with poor localization (“M1”). Benefiting from our EDN
as well as gated structure-aware loss, our network is able to produce sharper saliency
maps than other weakly-supervised and unsupervised ones.

Draft Copy – 3 October 2021



88 Weakly-Supervised Salient Object Detection via Scribble Annotations

Table 5.2: Ablation study on six benchmark datasets.
Metric M0 M1 M2 M3 M4 M5 M6 M7 M8 M9

EC
SS

D
Bµ ↓ .550 .896 .592 .616 .714 .582 .554 .771 .543 .592
Fβ ↑ .865 .699 .823 .804 .778 .845 .835 .696 .868 .839
Eξ ↑ .908 .814 .874 .859 .865 .898 .890 .730 .908 .907
M ↓ .061 .117 .083 .094 .091 .068 .074 .136 .059 . 070

D
U

T

Bµ ↓ .655 .925 .696 .711 .777 .685 .665 .786 .656 .708
Fβ ↑ .702 .518 .656 .626 .580 .679 .658 .556 .691 .671
Eξ ↑ .835 .699 .807 .774 .743 .823 .805 .711 .823 .816
M ↓ .068 .134 .083 .102 .116 .074 .081 .108 .069 .080

PA
SC

A
L-

S Bµ ↓ .665 .921 .732 .760 .787 .693 .676 .792 .664 .722
Fβ ↑ .788 .693 .748 .727 .741 .772 .768 .657 .792 .771
Eξ ↑ .798 .761 .757 .731 .795 .791 .782 .664 .800 .804
M ↓ .140 .171 .160 .173 .152 .145 .152 .204 .136 .143

H
K

U
-I

S Bµ ↓ .537 .892 .567 .609 .670 .574 .559 .747 .535 .564
Fβ ↑ .858 .651 .813 .789 .747 .835 .812 .646 .857 .821
Eξ ↑ .923 .799 .904 .878 .867 .911 .900 .761 .920 .907
M ↓ .047 .113 .060 .083 .080 .055 .062 .123 .047 .058

TH
U

R

Bµ ↓ .596 .927 .637 .677 .751 .635 .606 .780 .592 .650
Fβ ↑ .718 .520 .660 .641 .596 .696 .683 .586 .718 .690
Eξ ↑ .837 .687 .803 .773 .750 .824 .814 .718 .834 .804
M ↓ .077 .150 .099 .118 .123 .085 .087 .125 .078 .086

D
U

TS

Bµ ↓ .603 .923 .681 .708 .763 .639 .634 .745 .604 .687
Fβ ↑ .747 .517 .688 .652 .607 .728 .685 .578 .743 .728
Eξ ↑ .865 .699 .833 .805 .776 .857 .828 .719 .856 .855
M ↓ .062 .135 .079 .101 .106 .068 .080 .106 .061 .080

5.4.4 Ablation Study

We carry out nine experiments (as shown in Table 5.2) to analyze our method, in-
cluding our loss functions (“M1”, “M2” and “M3”), network structure (“M4”), Dense-
CRF post-processing (“M5”), scribble boosting strategy (“M6”), scribble enlargement
(“M7”) and robustness analysis (“M8”, “M9”). Our final result is denoted as “M0”.
Direct training with scribble annotations: We employ the partial cross-entropy loss
to train our SPN in Fig. 5.4 with scribble labels. The performance is marked as
“M1”. As expected, “M1” is much worse than our result “M0” and the high Bµ

measure also indicates that object structure is not well preserved if only using the
partial cross-entropy loss.
Impact of gated structure-aware loss: We add our gated structure-aware loss to
“M1”, and the performance is denoted by “M2”. The gated structure-aware loss
improves the performance in comparison with “M1”. However, without using our
EDN, “M2” is still inferior to “M0”.
Impact of gate: We propose gated structure-aware loss to let the network focus on
salient regions of images instead of the entire image as in the traditional smooth-
ness loss [109]. To verify the importance of the gate, we compare our loss with the
smoothness loss, marked as “M3”. As indicated, “M2” achieves better performance
than “M3”, demonstrating the gate reduces the ambiguity of structure recovery.
Impact of the edge detection task: We add edge detection task to “M1”, and use
cross-entropy loss to train the EDN. Performance is indicated by “M4”. We observe
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that the Bµ measure is significantly decreased compared to “M1”. This indicates that
our auxiliary edge-detection network provides rich structure guidance for saliency
prediction. Note that, our gated structure-aware loss is not used in “M4”.
Impact of scribble boosting: We employ all the branches as well as our proposed
losses to train our network and the performance is denoted by “M5”. The predicted
saliency map is also called our initial estimated saliency map. We observe decreased
performance compared with “M0”, where one iteration of scribble boosting is em-
ployed, which indicates effectiveness of the proposed boosting scheme.
Employing DenseCRF as post-processing: After obtaining our initial predicted saliency
map, we can also use post-processing techniques to enhance the boundaries of the
saliency maps. Therefore, we refine “M5” with DenseCRF, and results are shown in
“M6”, which is inferior to “M5”. The reason lies in two parts: 1) the hyperparame-
ters for DenseCRF is not the best; 2) DenseCRF recover structure information without
considering saliency of the structure, causing extra false positive region. Using our
scribble boosting mechanism, we can always achieve boosted or at least comparable
performance as indicated by “M0”.
Using Grabcut to generate pseudo label: Given scribble annotation, one can enlarge
the annotation by using Grabcut [230]. We carried out experiment with pseudo label
y′ obtained by applying Grabcut to our scribble annotations y, and show performance
in “M7”. During training, we employ the same loss function as in Eq. 5.4, except
that we use cross-entropy loss for Ls. Performance of “M7” is worse than ours. The
main reason is that pseudo label y′ contains noise due to limited accuracy of Grabcut.
Training directly with y′ will overwhelm the network remembering the noisy label
instead of learning useful saliency information.
Robustness to different scribble annotations: We report our performance “M0” by
training the network with one set of scribble dataset. We then train with another
set of the scribble dataset (“M8”) to test robustness of our model. We observe staple
performance compared with “M0”. This implies that our method is robust to the
scribble annotations despite their sparsity and few overlaps annotated by different
labelers. We also conduct experiments with merged scribbles of different labelers as
supervision signal and show performance of this experiment in the supplementary
material.
Different edge detection methods: We obtain the edge maps E in Eq. 5.2 from
RCF edge detection network [225] to train EDN. We also employ a hand-crafted
edge map detection method, “Sobel”, to train EDN, denoted by “M9”. Since Sobel
operator is more sensitive to image noise compared to RCF, “M9” is a little inferior
to “M0”. However, “M9” still achieves better performance than the results without
using EDN, such as “M1”, “M2” and “M3”, which further indicates effectiveness of
the edge detection module.

5.5 Conclusions

We proposed a weakly-supervised salient object detection (SOD) network trained on
our newly labeled scribble dataset (S-DUTS). Our method significantly relaxes the
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requirement of labeled data for training a SOD network. By introducing an auxiliary
edge detection task and a gated structure-aware loss, our method produces saliency
maps with rich structure, which is more consistent with human perception mea-
sured by our proposed saliency structure measure. Moreover, we develop a scribble
boosting mechanism to further enrich scribble labels. Extensive experiments demon-
strate that our method significantly outperforms state-of-the-art weakly-supervised
or unsupervised methods and is on par with fully-supervised methods. Different
from existing scribble-based dense prediction techniques that either explore only the
boundary information [221] or mainly focus on modeling the image inherent pair-
wise term [220], we introduce an alternative solution, namely the structure-aware
loss function, which serves as a self-supervised regularization. As an extension of
our framework, we aim to achieve self-supervised learning based semantic segmen-
tation via scribble annotation. Our main focus will be exploring the self-supervised
learning techniques for effective structure modeling with the scribble annotations.
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Chapter 6

Learning Noise-Aware
Encoder-Decoder from Noisy
Labels by Alternating
Back-Propagation for Saliency
Detection

To further relieve the labelling effort as in Chapter 5, we propose a noise-aware
encoder-decoder framework to disentangle a clean saliency predictor from noisy
training examples, where the noisy labels are generated by unsupervised handcrafted
feature-based methods. Compared with the scribble annotations in Chapter 5, the
noisy labels are automatically computed, with no human intervention, leading to a
much cheaper setting. The proposed model consists of two sub-models parameter-
ized by neural networks: (1) a saliency predictor that maps input images to clean
saliency maps, and (2) a noise generator, which is a latent variable model that pro-
duces noises from Gaussian latent vectors. The whole model that represents noisy
labels is a sum of the two sub-models. The goal of training the model is to estimate
the parameters of both sub-models, and simultaneously infer the corresponding la-
tent vector of each noisy label. We propose to train the model by using an alter-
nating back-propagation (ABP) algorithm, which alternates the following two steps:
(1) learning back-propagation for estimating the parameters of two sub-models by
gradient ascent, and (2) inferential back-propagation for inferring the latent vectors
of training noisy examples by Langevin Dynamics. To prevent the network from
converging to trivial solutions, we utilize an edge-aware smoothness loss to regular-
ize hidden saliency maps to have similar structures as their corresponding images.
Experimental results on several benchmark datasets indicate the effectiveness of the
proposed model.

91
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Figure 6.1: An illustration of our framework. Representation: Each noisy label Y is
represented as a sum of a clean saliency S and a noise map ∆. The clean saliency
S is predicted from an image X by an encoder-decoder network f1, and the noise is
produced from a Gaussian noise vector Z by a generator network f2. Training: given
the observed image X and the corresponding noisy label Y, (i) the latent vector Z is
inferred by MCMC and (ii) the parameters {θ1, θ2} of the encoder-decoder f1 and the
generator f2 are updated by the gradient ascent for maximum likelihood. Testing:
once the model is learned, the disentangled salicey predictor f1 is the desired model

for salicey prediction.

6.1 Introduction

Visual saliency detection aims to locate salient regions that attract human attention.
Conventional saliency detection methods [24, 26] rely on human designed features to
compute saliency for each pixel or superpixel. The deep learning revolution makes it
possible to train end-to-end deep saliency detection models in a data-driven manner
[31, 36, 37, 38, 39, 40, 33, 231, 34, 129, 35, 212, 232, 60], outperforming handcrafted
feature-based solutions by a wide margin. However, the success of deep models
mainly depends on a large amount of accurate human labeling [41, 42, 233], which is
typically expensive and time-consuming.

To relieve the burden of pixel-wise labeling, weakly supervised [98, 41, 63] and
unsupervised saliency detection models [66, 124, 99] have been proposed. The former
direction focuses on learning saliency from cheap but clean annotations, while the
latter one studies learning saliency from noisy labels, which are typically obtained
by conventional handcrafted feature-based methods. We follow the second direc-
tion and propose a deep latent variable model that we call the noise-aware encoder-
decoder to disentangle a clean saliency predictor from noisy labels. In general, a
noisy label can be (1) a coarse saliency label generated by algorithmic pipelines us-
ing handcrafted features, (2) an imperfect human-annotated saliency label, or even
(3) a clean label, which actually is a special case of noisy label, in which noise is
none. Aiming at unsupervised saliency prediction, our paper assumes noisy labels
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to be produced by unsupervised handcrafted feature-based saliency methods, and
places emphasis on disentangled representation of noisy labels by the noise-aware
encoder-decoder.

Given a noisy dataset D = {(Xi, Yi)}n
i=1 of n examples, where X and Y are image

and its corresponding noisy saliency label, we intend to disentangle noise ∆ and clean
saliency S from each noisy label Y, and learn a clean saliency predictor f1 : X → S. To
achieve this, we propose a conditional latent variable model, which is a disentangled
representation of noisy saliency Y. See Figure 6.1 for an illustration of the proposed
model. In the context of the model, each noisy label is assumed to be generated by
adding a specific noise or perturbation ∆ to its clean saliency map S that is dependent
on its image X. Specifically, the model consists of two sub-models: (1) saliency
predictor f1: an encoder-decoder network that maps an input image X to a latent
clean saliency map S, and (2) noise generator f2: a top-down neural network that
produces a noise or error ∆ from a low-dimensional Gaussian latent vector Z.

As a latent variable model, the rigorous maximum likelihood learning (MLE) typ-
ically requires to compute an intractable posterior distribution, which is an inference
step. To learn the latent variable model, two algorithms can be adopted: variational
auto-encoder (VAE) [50] or alternating back-propagation (ABP) [139], [234], [235].
VAE approximates MLE by minimizing the evidence lower bound with a separate
inference model to approximate the true posterior, while ABP directly targets MLE
and computes the posterior via Markov chain Monte Carlo (MCMC). We general-
ize the ABP algorithm to learn the proposed model, which alternates the follow-
ing two steps: (1) learning back-propagation for estimating the parameters of two
sub-models, and (2) inferential back-propagation for inferring the latent vectors of
training examples. As there may exist infinite combinations of S and ∆ such that
S + ∆ perfectly matches the provided noisy label Y, we further adopt the edge-aware
smoothness loss [109] to serve as a regularization to force each latent saliency map S
to have a similar structure as its input image X. The learned disentangled saliency
predictor f1 is the desired model for testing.

Our solution is different from existing weak or noisy label-based saliency ap-
proaches [66, 124, 99, 236] in the following aspects: Firstly, unlike [66], we don’t
assume the saliency noise distribution is a Gaussian distribution. Our noise genera-
tor parameterized by a neural network is flexible enough to approximate any forms
of structural noises. Secondly, we design a trainable noise generator to explicitly
represent each noise ∆ as a non-linear transformation of low-dimensional Gaussian
noise Z, which is a latent variable that need to be inferred during training, while
[66, 124, 99, 236] have no noise inference process. Thirdly, we have no constraints
on the number of noisy labels generated from each image, while [66, 124, 99] re-
quire multiple noisy labels per image for noise modeling or pseudo label generation.
Lastly, our edge-aware smoothness loss serves as a regularization to force the pro-
duced latent saliency maps to be well aligned with their input images, which is
different from [236], where object edges are used to produce pseudo saliency labels
via multi-scale combinatorial grouping (MCG) [237].

Our main contributions can be summarized as follows:
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• We propose to learn a clean saliency predictor from noisy labels by a novel
latent variable model that we call noise-aware encoder-decoder, in which each
noisy label is represented as a sum of the clean saliency generated from the
input image and a noise map generated from a latent vector.

• We propose to train the proposed model by an alternating back-propagation
(ABP) algorithm, which rigorously and efficiently maximizes the data likeli-
hood without recruiting any other auxiliary model.

• We propose to use an edge-aware smoothness loss as a regularization to prevent
the model from converging to a trivial solution.

• Experimental results on various benchmark datasets show the state-of-the-art
performances of our framework in the task of unsupervised saliency detection,
and also comparable performances with the existing fully-supervised saliency
detection methods.

6.2 Related Work

Fully supervised saliency detection models [231, 34, 129, 35, 212, 33, 37, 215, 131]
mainly focus on designing networks that utilize image context information, multi-
scale information, and image structure preservation. [231] introduces feature pol-
ishing modules to update each level of features by incorporating all higher levels
of context information. [34] presents a cross feature module and a cascaded feed-
back decoder to effectively fuse different levels of features with a position-aware
loss to penalize the boundary as well as pixel dissimilarity between saliency outputs
and labels during training. [35] proposes a saliency detection model that integrates
both top-down and bottom-up saliency inferences in an iterative and cooperative
manner. [212] designs a pyramid attention structure with an edge detection mod-
ule to perform edge-preserving salient object detection. [33] uses a hybrid loss for
boundary-aware saliency detection.

Learning saliency models without pixel-wise labeling can relieve the burden of
costly pixel-level labeling. Those methods train saliency detection models with low-
cost labels, such as image-level labels [41, 98, 102], noisy labels [66, 124, 99], object
contours [236], scribble annotations [63], etc.[41] introduces a foreground inference
network to produce initial saliency maps with image-level labels, which are further
refined and then treated as pseudo labels for iterative training. [124] fuses saliency
maps from unsupervised handcrafted feature-based methods with heuristics within a
deep learning framework. [66] collaboratively updates a saliency prediction module
and a noise module to achieve learning saliency from multiple noisy labels. In [99],
the initial noisy labels are refined by a self-supervised learning technique, and then
treated as pseudo labels. [236] creates a contour-to-saliency network, where saliency
masks are generated by its contour detection branch via MCG [237] and then those
generated saliency masks are further used to train its saliency detection branch.
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Learning from noisy labels techniques mainly focus on three main directions: (1)
developing regularization [238, 79]; (2) estimating the noise distribution by assuming
that noisy labels are corrupted from clean labels by an unknown noise transition ma-
trix [114, 239] and (3) training on selected samples [118, 120]. [238] deals with noisy
labeling by augmenting the prediction objective with a notion of perceptual consis-
tency. [79] proposes a framework to solve noisy label problem by updating both
model parameters and labels. [239] proposes to simultaneously learn the individual
annotator model, which is represented by a confusion matrix, and the underlying
true label distribution (i.e., , classifier) from noisy observations. [118] proposes to
learn an extra network called MentorNet to generate a curriculum, which is a sample
weighting scheme, for the base ConvNet called StudentNet. The generated curricu-
lum helps the StudentNet to focus on those samples whose labels are likely to be
correct.

6.3 Proposed Framework

The proposed model consists of two sub-models: (1) a saliency predictor, which
is parameterized by an encoder-decoder network that maps the input image X to
the clean saliency S; (2) a noise generator, which is parameterized by a top-down
generator network that produces a noise or error ∆ from a Gaussian latent vector Z.
The resulting model is a sum of the two sub-models. Given training images with
noisy labels, the MLE training of the model leads to an alternating back-propagation
algorithm, which will be introduced in details in the following sections. The learned
encoder-decoder network, which takes as input an image X and outputs its clean
saliency S, is the disentangled model for saliency detection.

6.3.1 Noise-Aware Encoder-Decoder Network

Let D = {(Xi, Yi)}n
i=1 be the training dataset, where X is the training image, Y is

the noisy label of X, n is the size of the training dataset. Formally, the noise-aware
encoder-decoder model can be formulated as follows:

S = f1(X; θ1), (6.1)

∆ = f2(Z; θ2), Z ∼ N (0, Id), (6.2)

Y = S + ∆ + ε, ε ∼ N (0, σ2 ID), (6.3)

where f1 in Eq. (6.1) is an encoder-decoder structure parameterized by θ1 for saliency
detection. It takes as input an image X and predicts its clean saliency map S. Eq.
(6.2) defines a noise generator, where Z is a low-dimensional Gaussian noise vector
following N (0, Id) (Id is the d-dimensional identity matrix) and f2 is a top-down
deconvolutional neural network parametrized by θ2 that generates a saliency noise
∆ from the noise vector Z. In Eq. (6.3), we assume that the observed noisy label
Y is a sum of the clean saliency map S and the noise ∆, plus a Gaussian residual
ε ∼ N (0, σ2 ID), where we assume σ is given and ID is the D-dimensional identity
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matrix. Although Z is a Gaussian noise, the generated noise ∆ is not necessarily
Gaussian due to the non-linear transformation f2.

We call our network the noise-aware encoder-decoder network as it explicitly
decomposes a noisy label Y into a noise ∆ and a clean label S, and simultaneously
learns a mapping from the image X to the clean saliency map S via an encoder-
decoder network as shown in Fig. 6.1. Since the resulting model involves latent
variables Z, training the model by maximum likelihood learning typically needs to
learn the parameters θ1 and θ2, and also infer the noise latent variable Zi for each
observed data pair (Xi, Yi). The noise and the saliency information are disentangled
once the model is learned. The learned encoder-decoder sub-model S = f1(X; θ1) is
the desired saliency detection network.

6.3.2 Maximum Likelihood via Alternating Back-Propagation

For notation simplicity, let f = { f1, f2} and θ = {θ1, θ2}. The proposed model is
rewritten as a summarized form: Y = f (X, Z; θ) + ε, where Z ∼ N (0, Id) and ε

is the observation error. Given a dataset D = {(Xi, Yi)}n
i=1, each training exam-

ple (Xi, Yi) should have a corresponding Zi, but all data shares the same model
parameter θ. Intuitively, we should infer Zi and learn θ to minimize the reconstruc-
tion error ∑n

i=1 ‖Yi − f (Xi, Zi; θ)‖2 based on our formulation in Section 6.3.1. More
formally, the model seeks to maximize the observed-data log-likelihood: L(θ) =

∑n
i=1 log pθ(Yi|Xi). Specifically, let p(Z) be the prior distribution of Z. Let pθ(Y|X, Z) ∼
N ( f (X, Z; θ), σ2 I) be the conditional distribution of the noisy label Y given Z and X.
The conditional distribution of Y given X is pθ(Y|X) =

∫
p(Z)pθ(Y|X, Z)dZ with the

latent variable Z integrated out.
The gradient of L(θ) can be calculated according to the following identity:

∂

∂θ
log pθ(Y|X) =

1
pθ(Y|X)

∂

∂θ
pθ(Y|X) = Epθ(Z|Y,X)

[
∂

∂θ
log pθ(Y, Z|X)

]
. (6.4)

The expectation term Epθ(Z|Y,X) is analytically intractable. The conventional way
of training such a latent variable model is the variational inference, in which the
intractable posterior distribution pθ(Z|Y, X) is approximated by an extra trainable
tractable neural network pφ(Z|Y, X). We resort to Monte Carlo average through
drawing samples from the posterior distribution pθ(Z|Y, X). This step corresponds to
inferring the latent vector Z of the generator for each training example. Specifically,
we use Langevin Dynamics [140] (a gradient-based Monte Carlo method) to sample
Z. The Langevin Dynamics for sampling Z ∼ pθ(Z|Y, X) iterates:

Zt+1 = Zt +
s2

2

[
∂

∂Z
log pθ(Y, Zt|X)

]
+ sN (0, Id), (6.5)

with
∂

∂Z
log pθ(Y, Z|X) =

1
σ2 (Y− f (X, Z; θ))

∂

∂Z
f (X, Z)− Z, (6.6)
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where t and s are the time step and step size of the Langevin Dynamics respectively.
In each training iteration, for a given data pair (Xi, Yi), we run l steps of Langevin
Dynamics to infer Zi. The Langevin Dynamics is initialized with Gaussian white
noise (i.e., , cold start) or the result of Zi obtained from the previous iteration (i.e., ,
warm start). With the inferred Zi along with (Xi, Yi), the gradient used to update the
model parameters θ is:

∂

∂θ
L(θ) ≈

n

∑
i=1

∂

∂θ
log pθ(Yi, Xi|Zi),=

n

∑
i=1

1
σ2 (Yi − f (Xi, Zi; θ))

∂

∂θ
f (Xi, Zi). (6.7)

Algorithm 4 Alternating back-propagation for noise-aware encoder-decoder
Input: Dataset with noisy labels D = {(Xi, Yi)}n

i=1, learning epochs K, number of Langevin
steps l, Langevin step size s, learning rate γ
Output: Network parameters θ = {θ1, θ2}, and the inferred latent vectors {Zi}n

i=1
1: Initialize θ1 with the VGG16-Net[67] for image classification, θ2 with a truncated Gaussian

distribution, and Zi with a standard Gaussian distribution.
2: for k = 1, ..., K do
3: Inferential back-propagation: For each i, run l steps of Langevin Dynamics with

a step size s to sample Zi ∼ pθ(Zi|Yi, Xi) following Eq. (6.5), with Zi initialized as a
Gaussian white noise or the result from previous iteration.

4: Learning back-propagation: Update model parameters θ by Adam [240] optimizer
with a learning rate γ and the gradient ∂

∂θ [L(θ) − λls(X, S; θ)], where the gradient of
L(θ) is computed according to Eq. (6.7).

5: end for

To encourage the latent output S of the encoder-decoder f1 to be a meaningful
saliency map, we add a negative edge-aware smoothness loss [109] defined on S
to the log-likelihood objective L(θ). The smoothness loss serves as a regularization
term to avoid a trivial decomposition of S and ∆ given Y. Following [109], we use
first-order derivatives (i.e., , edge information) of both the latent clean saliency map
S and the input image X to compute the smoothness loss

ls(X, S) = ∑
u,v

∑
d∈x,y

Ψ(|∂dSu,v|e−α|∂dXu,v|), (6.8)

where Ψ is the Charbonnier penalty formula, defined as Ψ(s) =
√

s2 + 1e−6, (u, v)
represent pixel coordinates, and d indexes over the partial derivative in x and y
directions. We estimate θ by gradient ascent on L(θ)− λls(X, S; θ). In practice, we
set λ = 0.7, and α = 10 in Eq. (6.8).

The whole process of updating both {Zi} and θ = {θ1, θ2} is summarized in
Algorithm 4, which is implemented as alternating back-propagation, because both
gradients in Eq. (6.5) and (6.7) can be computed via back-propagation.
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6.3.3 Comparison with Variational Inference

The proposed model can also be learned in a variational inference framework, where
the intractable pθ(Z|Y, X) in Eq. 6.4 is approximated by a tractable qφ(Z|Y, X), such
as qφ(Z|Y, X) ∼ N (µφ(Y, X), diag(vφ(Y, X))), where both µφ and vφ are bottom-up
networks that map (X, Y) to Z, with φ standing for all parameters of the bottom-up
networks. The objective of variational inference is:

min
θ

min
φ

KL(qdata(Y|X)pφ(Z|Y, X)‖pθ(Z, Y|X)) =

min
θ

min
φ

KL(qdata(Y|X)‖pθ(Y|X)) + KL(pφ(Z|Y, X)‖pθ(Z|Y, X)).
(6.9)

Recall that the maximum likelihood learning in our algorithm is equivalent to
minimizing KL(qdata(Y|X)‖pθ(Y|X)), where qdata(Y|X) is the conditional training
data distribution. The accuracy of variational inference in Eq. 6.9 depends on the
accuracy of an approximation of the true posterior distribution pθ(Z|Y, X) by the
inference model pφ(Z|Y, X). Theoretically, the variational inference is equivalent to
the maximum likelihood solution, when KL(pφ(Z|Y, X)‖pθ(Z|Y, X)) = 0. However,
in practice, there is always a gap between them due to the design of the inference
model and the optimization difficulty. Therefore, without relying on an extra assist-
ing model, our alternating back-propagation algorithm is more natural, straightfor-
ward and computationally efficient than variational inference. We refer readers to
[241] for a comprehensive tutorial on latent variable models.

Figure 6.2: An illustration of the encoder-decoder-based saliency detection network
(Green part in Fig.6.1).
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6.3.4 Network Architectural Design

We now introduce the architectural designs of the encoder-decoder network ( f1 in
Eq. 6.1, or the green encoder-decoder in Fig. 6.1) and the noise generator network
( f2 in Eq. 6.2, or the yellow decoder in Fig. 6.1) in this section.

Noise Generator: We construct the noise generator by using four cascaded de-
convolutional layers, with a tanh activation function at the end to generate a noise
map ∆ in the range of [−1, 1]. Batch normalization and ReLU layers are added be-
tween two nearby deconvolutional layers. The dimensionality of the latent variable
d = 8.

Encoder-Decoder Network: Most existing deep saliency prediction networks are
based on widely used backbone networks, including the VGG16-Net [67], ResNet
[28], etc. Due to stride operations and multiple pooling layers used in these deep ar-
chitectures, the saliency maps that are generated directly using the above backbone
networks are low in spatial resolution, causing blurred edges. To overcome this,
we propose an encoder-decoder-based framework with the VGG16-Net [67] as the
backbone as shown in Fig. 6.2. We denote the last convolutional layer of each convo-
lutional group of VGG16-Net by s1, s2, ..., s5 (corresponding to “relu1_2”, “relu2_2”,
“relu3_3”, “relu4_3”, and “relu5_3”, respectively). To reduce the channel dimension
of sm, a 1× 1 convolutional layer is used to transform sm to s′m of channel dimension
32. Then a Residual Channel Attention (RCA) module [163] is adopted to effectively
fuse the intermediate high- and low-level features. Specifically, given the high- and
low-level feature maps s′m and s′m−1, we first upsample s′m to s′′m, which has the same
spatial resolution as s′m−1, by bilinear interpolation. Then we concatenate s′′m and
s′m−1 to form a new feature map Fm. Similar to [163], we feed Fm to the RCA block to
achieve the discriminative feature extraction. Inside each channel attention block, we
perform “squeeze and excitation” [242] by first “squeezing” the input feature map
Fm to be half of the original channel size to obtain better nonlinear interactions across
channels, and then “exciting” the squeezed feature map back to the original channel
size. By adding a 3× 3 convolutional layer to the lowest level of the RCA module,
we obtain a one-channel saliency map Si = f1(Xi; θ1).

6.4 Experiments

6.4.1 Experimental Setup

Datasets: We evaluate our performance on five saliency benchmark datasets. We use
10,553 images from the DUTS dataset [41] for training, and we generate noisy labels
from images using handcrafted feature based-methods, such as RBD [24], MR [26]
and GS [183] due to their high efficiencies. Testing datasets include the DUTS testing
set, ECSSD [189], DUT [26], HKU-IS [30] and THUR [190].

Evaluation Metrics: Four metrics are used to evaluate the performance of our
method and the competing methods, including two widely used metrics, i.e., , Mean
Absolute Error (M) and mean F-measure (Fβ), and two newly released structure-

Draft Copy – 3 October 2021



100 Noise-aware Encoder-Decoder based Saliency Detection

Table 6.1: Benchmarking performance comparison. Bold numbers represent best
performance methods. ↑ & ↓ denote larger and smaller is better, respectively.

Fully Suppervised Models Weakly Sup./Unsup. Models
Metric DGRL NLDF MSNet CPD AFNet SCRN BASNet C2S WSI WSS MNL MSW Ours

[181] [32] [39] [37] [40] [130] [33] [236] [98] [41] [66] [102]

D
U

TS

Sα ↑ .8460 .8162 .8617 .8668 .8671 .8848 .8657 .8049 .6966 .7484 .8128 .7588 .8276
Fβ ↑ .7898 .7567 .7917 .8246 .8123 .8333 .8226 .7182 .5687 .6330 .7249 .6479 .7467
Eξ ↑ .8873 .8511 .8829 .9021 .8928 .8996 .8955 .8446 .6900 .8061 .8525 .7419 .8592
M ↓ .0512 .0652 .0490 .0428 .0457 .0398 .0476 .0713 .1156 .1000 .0749 .0912 .0601

EC
SS

D

Sα ↑ .9019 .8697 .9048 .9046 .9074 .9204 .9104 - .8049 .8081 .8456 .8246 .8603
Fβ ↑ .8978 .8714 .8856 .9076 .9008 .9103 .9128 - .7621 .7744 .8098 .7606 .8519
Eξ ↑ .9336 .8955 .9218 .9321 .9294 .9333 .9378 - .7921 .8008 .8357 .7876 .8834
M ↓ .0447 .0655 .0479 .0434 .0450 .0407 .0399 - .1137 .1055 .0902 .0980 .0712

D
U

T

Sα ↑ .8097 .7704 .8093 .8177 .8263 .8365 .8362 .7731 .7591 .7303 .7332 .7558 .7914
Fβ ↑ .7264 .6825 .7095 .7385 .7425 .7491 .7668 .6649 .6408 .5895 .5966 .5970 .7007
Eξ ↑ .8446 .7983 .8306 .8450 .8456 .8474 .8649 .8100 .7605 .7292 .7124 .7283 .8158
M ↓ .0632 .0796 .0636 .0567 .0574 .0560 .0565 .0818 .0999 .1102 .1028 .1087 .0703

H
K

U
-I

S Sα ↑ .8968 .8787 .9065 .9039 .9053 .9158 .9089 .8690 .8079 .8223 .8602 .8182 .8901
Fβ ↑ .8844 .8711 .8780 .8948 .8877 .8942 .9025 .8365 .7625 .7734 .8196 .7337 .8782
Eξ ↑ .9388 .9139 .9304 .9402 .9344 .9351 .9432 .9103 .7995 .8185 .8579 .7862 .9191
M ↓ .0374 .0477 .0387 .0333 .0358 .0337 .0322 .0527 .0885 .0787 .0650 .0843 .0428

TH
U

R

Sα ↑ .8162 .8008 .8188 .8311 .8251 .8445 .8232 .7922 - .7751 .8041 - .8101
Fβ ↑ .7271 .7111 .7177 .7498 .7327 .7584 .7366 .6834 - .6526 6911 - .7187
Eξ ↑ .8378 .8266 .8288 .8514 .8398 .8575 .8408 .8107 - .7747 .8073 - .8378
M ↓ .0774 .0805 .0794 .0635 .0724 .0663 .0734 .0890 - .0966 .0860 - .0703

aware metrics: mean E-measure (Eξ) [173] and S-measure (Sα) [172].
Training Details: Each input image is rescaled to 352× 352 pixels. The encoder

part in Fig. 6.2 is initialized using the VGG16-Net weights pretrained for image
classification [67]. The weights of other layers are initialized using the “truncated
Gaussian” policy, and the biases are initialized to be zeros. We use the Adam [240]
optimizer with a momentum equal to 0.9, and decrease the learning rate γ by 10%
after running 80% of the maximum epochs K = 20. The learning rate is initialized to
be 0.0001. The number of Langevin steps l is 6. The Langevin step size s is 0.3. The
σ in Eq.(6.3) is 0.1. The whole training takes 8 hours with a batch size 10 on a PC
with an NVIDIA GeForce RTX GPU. We use the PaddlePaddle [243] deep learning
platform.

6.4.2 Comparison with the State-of-the-art Methods

We compare our method with seven fully supervised deep saliency prediction mod-
els and five weakly supervised/unsupervised saliency prediction models, and their
performances are shown in Table 6.1 and Fig. 6.3. Table 6.1 shows that compared
with the weakly supervised/unsupervised models, the proposed method achieves
the best performance, especially on DUTS and HKU-IS datasets, where our method
achieves an approximately 2% performance improvement for S-measure, and a 4%
improvement for mean F-measure. Further, the proposed method even achieves com-
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Figure 6.3: F-measure and E-measure curves on four datasets (DUTS, ECSSD, HKU-
IS, THUR). Best viewed in color on screen.

parable performances with some newly released fully supervised models. For exam-
ple, we achieve comparable performance with NLDF [32] and DGRL [181] on all
the five benchmark datasets. Fig.6.3 shows the 256-dimensional F-measure and E-
measure (where the x-axis represents threshold for saliency map binarization) of
our method and the competing methods on four datasets, where the weakly su-
pervised/unsupervised methods are represented by dotted curves. We can observe
that the performances of the fully supervised models are better than those of the
weakly supervised/unsupervised models. As shown in Fig.6.3, our performance
shows stability with different thresholds relative to the existing methods, indicating
the robustness of our model.

Figure 6.4 demonstrates a qualitative comparison on several challenging cases.
For example, the salient object in the first row is large, and connects to the image
border. Most competing methods fail to segment the border-connected region, while
our method almost finds the whole salient region in this case. Also, salient object in
the second row has a long and narrow shape, which is challenging to some competing
methods. Our method performs very well and precisely detect the salient object.

6.4.3 Ablation Study

We conduct the following experiments for an ablation study.
(1) Encoder-decoder f1 only: To study the effect of the noise generator, we eval-

uate the performance of the encoder-decoder (as shown in Fig. 6.2) directly learned
from the noisy labels, without noise modeling or smoothness loss. The performance
is shown in Table 6.2 with a label “ f1”, which is clearly worse than ours. This result is
also consistent with the conclusion that deep neural networks is not robust to noise
[244].

(2) Encoder-decoder f1 + smoothness loss ls: As an extension of method “ f1”,
one can add the smoothness loss in Eq. (6.8) as a regularization to better use the
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Fully Supervised Weak/Un Supervised

Image DGRL SCRN BSNet CPD MSW RBD Ours GT Seg

Figure 6.4: Comparison of saliency predictions, where each row displays an input im-
age, its predicted saliency maps by four fully supervised competing methods (DGRL,
SCRN, BASNet, and CPD), one weakly (MSW) and one unsupervised (RBD) meth-
ods, our prediction (Ours), the ground truth (GT) saliency map and our segmented

foreground image (Seg).

Table 6.2: Ablation study. Some certain key components of the model are removed
and the learned model is evaluated for saliency prediction in terms of Sα, Fβ, Eξ , and

M. ↑ & ↓ denote larger and smaller is better, respectively.

DUTS ECSSD DUT HKU-IS THUR

Model Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓
f1 .644 .453 .632 .157 .685 .559 .650 .174 .679 .497 .663 .147 .706 .572 .674 .143 .665 .472 .656 .151

f1&ls .668 .519 .699 .125 .727 .675 .743 .138 .685 .537 .720 .121 .743 .681 .775 .107 .687 .547 .727 .121

f &lc .813 .725 .806 .075 .846 .810 .836 .090 .733 .597 .712 .103 .860 .820 .858 .065 .804 .691 .807 .086

Full .828 .747 .859 .060 .860 .852 .883 .071 .791 .701 .816 .070 .890 .878 .919 .043 .810 .719 .838 .070

image prior information. We show the performance with a label “ f1 & ls” in Table
6.2. We observe a performance improvement compared with “ f1”, which indicates
the usefulness of the edge-aware smoothness loss.

(3) Noisy-aware encoder-decoder without edge-aware smoothness loss: To study
the effect of the smoothness regularization, we try to remove the smoothness loss
from our model. As a result, we find that it will lead to trivial solutions i.e., ,
Si = 0H×W for all training images.

(4) Alternative smoothness loss: We also replace our smoothness loss ls by a
cross-entropy loss lc(S, X) that is also defined on the first-order derivative of the
saliency map S and that of the image X. The performance is shown in Table 6.2 as “ f
& lc”, which is better than or comparable with the existing weakly supervised/un-
supervised methods shown in Table 6.1. By comparing the performance of “ f & lc”
with that of the full model, we observe that the smoothness loss ls(S, X) in Eq. 6.8
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Table 6.3: Experimental results for model analysis. ↑ & ↓ denote larger and smaller
is better, respectively.

DUTS ECSSD DUT HKU-IS THUR

Model Sα ↑ Fβ ↑ Eξ ↑M ↓ Sα ↑ Fβ ↑ Eξ ↑M ↓ Sα ↑ Fβ ↑ Eξ ↑M ↓ Sα ↑ Fβ ↑ Eξ ↑M ↓ Sα ↑ Fβ ↑ Eξ ↑M ↓
f -BAS .870 .823 .894 .042 .910 .910 .935 .040 .839 .769 .866 .056 .904 .900 .945 .032 .821 .737 .840 .073

f -RBD .824 .753 .854 .066 .869 .856 .890 .070 .776 .675 .799 .082 .886 .863 .918 .047 .803 .700 .823 .082

f -MR .814 .759 .839 .064 .857 .856 .876 .073 .762 .669 .779 .079 .972 .866 .901 .050 .794 .696 .804 .086

f -GS .787 .740 .811 .071 .826 .836 .843 .087 .737 .652 .753 .083 .837 .843 .865 .062 .804 .723 .840 .071

RBD .644 .453 .632 .157 .685 .559 .650 .174 .679 .497 .663 .147 .706 .572 .674 .143 .665 .472 .656 .151

MR .620 .442 .596 .199 .686 .567 .632 .191 .642 .476 .625 .191 .668 .545 .628 .180 .639 .460 .624 .179

GS .619 .414 .623 .184 .657 .507 .622 .208 .637 .437 .633 .175 .690 .534 .660 .169 .636 .427 .634 .176

f1* .840 .769 .868 .054 .893 .883 .915 .054 .783 .676 .802 .073 .894 .871 .926 .040 .815 .720 .834 .077

f * .861 .803 .887 .045 .906 .899 .927 .046 .815 .721 .836 .060 .905 .887 .933 .036 .831 .743 .849 .070

cVAE .771 .695 .842 .078 .817 .812 .874 .086 .747 .665 .801 .085 .824 .800 .895 .068 .754 .659 .800 .100

Ours .828 .747 .859 .060 .860 .852 .883 .071 .791 .701 .816 .070 .890 .878 .919 .043 .810 .719 .838 .070

works better than the cross-entropy loss lc(S, X). The former puts a soft constraint
on their boundaries, while the latter has a strong effect on forcing both boundaries
of S and X to be the same. Although the saliency boundary are usually aligned with
the image boundary, but they are not exactly the same. A soft and indirect penalty
for edge dissimilarity seems to be more useful.

6.4.4 Model Analysis

We further explore our proposed model in this section.
(1) Learn the model from saliency labels generated by fully supervised pre-

trained models: One way to use our method is treating it as a boosting strategy for
the current fully-supervised models. To verify this, we first generate saliency maps
by using a pre-trained fully-supervised saliency network, e.g., BASNet [33]. We treat
the outputs as noisy labels, on which we train our model. The performances are
shown in Table 6.3 as f -BAS. By comparing the performances of f -BAS with those of
BASNet in Table 6.1, we find that f -BAS is comparable with or better than BASNet,
which means that our method can further refine the outputs of the state-of-the-art
pre-trained fully-supervised models if their performances are still far from perfect.

(2) Create one single noisy label for each image: In previous experiments, our
noisy labels are generated by handcrafted feature-based saliency methods in the set-
ting of multiple noisy labels per image. Specifically, we produce three noisy labels
for each training image by methods RBD [24], MR [26] and GS [183], respectively. As
our method has no constraints on the number of generated noisy labels per image,
we conduct experiments to test our models learned in the setting of one noisy label
per image. In Table 6.3, we report the performances of the models learned from
noisy labels generated by RBD [24], MR [26] and GS [183], respectively. We use f -
RBD, f -MR and f -GS to represent their results, respectively. We observe comparable
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performances with those using the setting of multiple noisy labels per image, which
means our method is robust to the number of noisy labels generated from each image
and the quality of the generated noisy labels. (RBD ranks the 1st among unsuper-
vised saliency detection models in [42]. RBD, MR and GS represent different levels
of qualities of noisy labels). We also show in Table 6.3 the performances of the above
handcrafted feature-based methods, which are denoted by RBD, MR and GS, respec-
tively. The big gap between RBD/MR/GS and f -RBD/ f -MR/ f -GS demonstrates the
effectiveness of our model.

(3) Train the model from clean labels: The proposed noise-aware encoder-decoder
can learn from clean labels, because clean label can be treated as a special case of
noisy label, and the noise generator will learn to output zero noise maps in this sce-
nario. We show experiments on training our model from clean labels obtained from
the DUTS training dataset. The performances denoted by f * are shown in Table 6.3.
For comparison purpose, we also train the encoder-decoder component without the
noise generator module from clean labels, whose results are displayed in Table 6.3
with a name f1*. We find that (1) our model can still work very well when clean labels
are available, and (2) f * achieves better performance than f1*, indicating that even
though those clean labels are obtained from training dataset, they are still “noisy” be-
cause of imperfect human annotation. Our noise-handling strategy is still beneficial
in this situation.

(4) Train the model by variational inference: We train our model by alternat-
ing back-propagation algorithm that maximizes the observed-data log-likelihood,
where we adopt Langevin Dynamics to draw samples from the posterior distribu-
tion pθ(Z|Y, X), and use the empirical average to compute the gradient of the log-
likelihood in Eq.(6.4). One can also train the model in a conditional variational in-
ference framework [51] as shown in Eq. (6.9). Following cVAE [51], we design an
inference network pφ(Z|Y, X), which consists of four cascade convolutional layers
and a fully connected layer at the end, to map the image X and the noisy label Y to
the d = 8 dimensional latent space Z. The resulting loss function includes a recon-
struction loss ‖Yi − f (Xi, Zi, θ)‖2, a KL-divergence loss KL(pφ(Z|Y, X)‖pθ(Z|Y, X))
and the edge-aware smoothness loss presented in Eq.(6.8). We present the cVAE re-
sults in Table 6.3. Our results learned by ABP outperforms those by cVAE. The main
reason lies in the fact that the gap between the approximate inference model and the
true inference model, i.e., , KL(pφ(Z|Y, X)‖pθ(Z|Y, X)), is hard to be zero in prac-
tise, especially when the capacity of pφ(Z|Y, X) is less than that of pθ(Z|Y, X) due to
an inappropriate architectural design of pφ(Z|Y, X). On the contrary, our Langevin
Dynamics-based inference step, which is derived from the model, is more natural
and accurate.

6.5 Conclusion

Although clean pixel-wise annotations can lead to better performance, the expensive
and time-consuming labeling process limits the applications of those fully supervised
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models. Inspired by previous work [124, 66, 99], we propose a noise-aware encoder-
decoder network for disentangled learning of a clean saliency predictor from noisy
labels. The model represents each noisy saliency label as an addition of perturbation
or noise from an unknown distribution to the clean saliency map predicted from the
corresponding image. The clean saliency predictor is an encoder-decoder framework,
while the noise generator is a non-linear transformation of a Gaussian noise vector, in
which the transformation is parameterized by a neural network. Edge-aware smooth-
ness loss is also utilized to prevent the model from converging to a trivial solution.
We propose to train the model by a simple yet efficient alternating back-propagation
algorithm [139, 234], which is superior to variational inference. Extensive experi-
ments conducted on different benchmark datasets demonstrate the effectiveness and
robustness of our model and learning algorithm. Note that, we choose VGG16-Net
[67] backbone as it has less parameters than the ResNet backbones [28]. We observe
that the capacity of the backbone network influences noisy labeling based models
a lot. On the one hand, higher capacity means better regression/classification abil-
ity with the given training dataset. However, the higher capacity can also lead to
overfitting issues, where the model may overfit on the noisy data, leading to poor
generalization ability. We will investigate into this issue.
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Chapter 7

Learning Saliency from Single
Noisy Labelling: A Robust Model
Fitting Perspective

In Chapter 6, we introduced a latent variable model to learn saliency from noisy
labelling. With the same goal, we address a natural question: can we learn saliency
prediction while identifying clean labels in a unified framework given the noisy labels? To
answer this question, we call on the theory of robust model fitting and formulate
deep saliency prediction from a single noisy labelling as robust network learning
and exploit model consistency across iterations to identify inliers and outliers (i.e.,
, noisy labels). Extensive experiments on different benchmark datasets demonstrate
the superiority of our proposed framework, which can learn comparable saliency
prediction with state-of-the-art fully supervised saliency methods. Furthermore, we
show that simply by treating ground truth annotations as noisy labelling, our frame-
work achieves tangible improvements over state-of-the-art methods.

7.1 Introduction

Visual saliency prediction [27, 245] has enjoyed a great performance leap in recent
years, thanks to the advances in deep Convolutional Neural Networks (CNNs) [138]
and in particular through the use of fully supervised learning ([46, 33, 130, 34, 246,
215]). However, the superior performance of fully supervised saliency prediction
models come at the expense of gathering large-scale annotated data [41, 42], which
is extremely expensive and time-consuming. To minimize the labor associated with
labelling, a viable direction is to learn deep models from noisy datasets [247].

In this chapter, we are interested in learning saliency prediction from a single noisy
labelling, where the noisy labelling is produced by existing easy-to-access and cheap
unsupervised conventional saliency methods [24, 189]. Under such a configuration,
for each image, only one single noisy version of a saliency map is available. It is
well-known that deep CNNs can memorize data even when the labels are completely
random [244]. Therefore, directly training with noisy data may guide the network

107
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Figure 7.1: First row: input image, its ground truth saliency map, noisy saliency map
by RBD [24] and saliency map by MNL [66]. Second and third rows show the early,
middle and final iterations masks (or weights) and saliency maps of our hard mask

selection and soft mask reweigting methods respectively.

to overfit to the corrupted labels. While considerable efforts have been made in
learning deep models for image classification from noisy annotations [247, 248, 249,
118, 127, 247], the pixelwise dense labelling counterparts (e.g., saliency prediction
[27], semantic segmentation [138], instance segmentation [250], and monocular depth
estimation [251]) have received little attention.

Existing work in learning from dense noisy labelling [66, 124, 99] requires mul-
tiple noisy versions of pixel-wise labelling for each input image. Zhang et al. [66]
made a strong assumption in modeling the noise with a single Gaussian distribu-
tion, which may hinder performance under complex noise distributions. The recur-
sive optimization in [124] depends on a dedicated design and is computationally
expensive. Nguyen et al. [99] defined image-level loss function to train with noisy
labels to generate coarse saliency map, and then iteratively refined it with moving
average and fully-connected CRF. Different from them, we intend to design a model
without using a noise prior, and deal with learning from a single noisy labelling in a
much more efficient way.

Specifically, we call on the theory of “robust model fitting” [252] based on one
key observation: though dense labelling is never free from noise, there exists a sufficient
amount of clean and noise-free labels. Such clean labels, if correctly identified, can be used
to achieve high-quality outcomes. Thus we pose learning saliency from a single noisy
labelling as “learn a deep saliency model and identify inliers and outliers in a unified
framework”.

The success of robust model fitting depends on the validation of two assumptions:
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Figure 7.2: Performance evaluation (Mean Absolute Error) of saliency prediction by
training a same network with different levels of supervision across seven different

datasets.

1. A subset of samples is sufficient to fit the model;

2. Inliers are consistent with each other in reaching a consensus (given the desired
model) while outliers are not.

To illustrate whether the first assumption holds, we trained a deep network with
varying levels of supervision on a clean label dataset (see Fig. 7.2). We achieve this by
randomly sampling a specific percentage of pixels of the prediction to compute the
partial cross-entropy loss. In Fig. 7.2, “Rate0.1” means the percentage of sampling
is 10%, “Noisy-Subset” indicates supervision as the intersection of noisy label and
clean label1, “All” is trained with pixel-wise clean dataset. The reasonable level of
performance stability in Fig. 7.2 reinforces our belief that partial labels can lead to
comparable saliency models. Furthermore, we find that the higher rates of sampling
may not always lead to better performance. The main reason is that pixels contribute
differently to the network training. For example, many local image regions in train-
ing sets may be of similar appearance which will be less helpful in network learning
[253]. Also, we notice that in some datasets, the random sampling based model out-
performs “All”. This is because our training data is hand-annotated, and it may be
poorly aligned, especially along object edges [254]. Further, we observe worse per-
formance of the “Noisy-Subset” in the PASCAL-S dataset, which is the result of the
relatively poor generalization ability with partial supervision. To prevent this, we
introduce edge preserving saliency in Section 7.4.

To identify inliers, our idea is to benefit from consistency, a measure we define
based on evolution of the network. In Fig. 7.1, we demonstrate how the network
evolves across iterations, which reveals that: 1) clean pixels inside or outside salient
objects tend to have higher consistencies in model prediction; 2) pixels with noisy
labels or those on object boundaries vary across iterations have lower consistencies.
This observation supports the second assumption, which is also consistent with ob-
servations in [123].

Our proposed method focuses more on pixels with high consistency. Such a
mechanism allows us to find inliers (high confidence samples), similarly to RANSAC [252].

1We compare noisy label with clean label, and define the regions in the noisy label with accurate
prediction as the “Noisy-Subset”
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Figure 7.3: Conceptual illustration of our framework. We start with noisy pseudo
label. By iteratively updating a dense mask for partial supervision with the noisy

labelling, we can effectively identify the inlier labels inside the noisy labels.

We propose two simpler and more effective approaches by iteratively updating a
dense mask to find or weight the possible inliers, where each mask element repre-
sents the weight of the current pixel to contribute to the loss. As shown in Fig. 7.1,
after several iterations, our method successfully identifies inliers and ourliers2

Our main contributions can be summarized as:

1. We pose deep saliency prediction from a single noisy labelling as a robust
model fitting problem, and jointly learn a deep saliency model and identify
inliers as shown in Fig. 7.3.

2. We introduce two approaches, namely hard mask selection and soft mask
reweighting, to assign each pixel a hard {0, 1} mask or soft [0, 1] weight for
loss updating, representing our confidence on noisy level of this pixel.

3. Experimental results show that our method outperforms existing weakly super-
vised or unsupervised methods, and achieves comparable performances with
state-of-the-art deep fully supervised saliency prediction methods.

7.2 Related Work

In this section, we briefly review three forms of deep saliency prediction methods,
namely supervised, semi-supervised and unsupervised methods. Interested readers

2In our saliency prediction task, inliers represent noise-free label/annotation while outliers indicate
incorrect label/annotation.
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are referred to surveys such as [27, 245, 153] for more detailed discussions. We later
discuss related studies in learning from noisy labels.
Supervised Saliency Prediction: Fully supervised deep saliency prediction models
[181, 31, 32, 34, 66, 46, 33, 130, 215, 255, 256] train classifiers to assign saliency value
to each pixel (or superpixel). Wei et al. [34] presented cross feature module and
cascaded feedback decoder to effectively fuse different level feature, and a position
aware loss was further introduced to emphasize hard pixels during training. Wu et
al. [130] introduced stacked cross refinement network to generate edge-preserving
features for accurate saliency detection. To better use context information, Liu et
al. [31] presented a pixel-wise context attention strategy to use effective neighbour
pixels for saliency prediction. Liu et al. [46] expanded the role of pooling in con-
volutional neural networks by building a global guidance module and a feature ag-
gregation module for detail enriched saliency prediction. Qin et al. [33] introduced
a hybrid loss for boundary-aware saliency detection to generate accurate saliency
prediction with sharp boundaries.
Weakly Supervised Saliency Prediction: Weakly supervised saliency models [41,
98, 63, 236] learn saliency from cheaper annotations. Among these models, Wang et
al. [41] introduced a foreground inference network to iteratively produce potential
saliency maps using image-level labels. Li et al. [236] designed contour-to-saliency
network by converting an existing contour detection model to saliency detection
model without using manual saliency annotations. Zhang et al. [63] labeled scrib-
ble saliency dataset to learn saliency from scribble annotation.
Unsupervised Saliency Prediction: Different from weakly supervised saliency mod-
els, where human annotation is still needed. The unsupervised saliency models
learn saliency without human annotation. Zhang et al. [124] proposed to fuse noisy
saliency maps from handcrafted feature based methods with heuristic. Zhang et
al. [66] formulated unsupervised saliency detection as learning from multiple noisy
labelling, where a latent saliency prediction module and a noise modeling module
work collaboratively and are optimized jointly. Nguyen et al. [99] defined image-level
loss function to train with multiple noisy label to generate coarse saliency map, and
then iteratively refined it with moving average and fully-connected CRF. In contrast
to previous studies [124, 66, 99], our proposed approach requires only one single
noisy label per pixel to learn saliency. Also, our method does not rely on any prede-
fined noise distribution priors [66].
Learning from Noisy Labels To handle noisy labels, three main directions have been
explored: 1) developing regularization techniques [113]; 2) estimating the noise dis-
tribution [114]; 3) training on selected samples [115]. Since our model belongs to
the third category, we focus on sampling-based methods. Jiang et al. [118] proposed
to learn a MentorNet to produce a curriculum for the StudentNet. Thus the latter
one can focus on samples where their labels are possibly correct. Liu and Tao [120]
presented an importance reweighting method, where uncertainty introduced by clas-
sification noise is reduced by estimating an importance weight parameter. Ren et
al. [122] learned to assign weights to training examples based on their gradient di-
rections during each mini-batch. Nguyen et al. [123] introduced self-ensemble label
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filtering to progressively filter out wrong labels during training.
All of the above learning from noisy labels methods deal with image classifica-

tion. In this chapter, we propose a principled method for dealing with the dense
prediction task of saliency prediction from the robust model fitting perspective. Dif-
ferent from [127], where labels are updated according to the outputs of each iteration,
we fix the noisy labels and make use of the inlier/outlier mask to identify the clean
ones. To the best of our knowledge, this is the first time that sampling from single
noisy labelling has been used to address the task of saliency prediction.

7.3 Model

We focus on learning saliency from a single noisy labelling by using a deep neural
network. Specifically, given a color image xxxi, we would like to learn a saliency map
yyyi from its noisy saliency map ŷyyi, which is produced by a “cheap” and easy to access
unsupervised saliency method. Directly training the network with a single noisy
labelling will not work as it is well-known that network training is highly prone
to noise in the supervision signals [244]. Existing multiple noisy labelling based
methods [124, 66, 99] also will not work due to the requirement of multiple noisy
labelling for label updating [124, 99] or noise distribution estimation [66]. Instead,
we propose a principled way to infer saliency maps from a robust model-fitting
perspective, thus we can simultaneously infer the saliency map robustly and identify
the inliers for the desired model.

As mentioned before, the success of robust model fitting depends on fulfilling
two assumptions as described in Section 7.1. In the following sections, we formulate
the problem and further study the validity of the above assumptions.

7.3.1 Problem Formulation

We start with a training set D = {(xxxi, yyyi)}N
i=1, where each xxxi is a color image of

size U×V and yyyi ∈ {0, 1}U×V is a binary saliency map (also denoted by {(xxxi, ŷyyi)}
in the noisy labelling setting). Deep saliency models learn a mapping function fΘ :
RU×V×3 → [0, 1]U×V , where Θ is a set of network parameters. Therefore, fΘ(xxxi) = sssi
denotes the predicted saliency map, and the empirical risk when learning from clean
labelling can be defined as follows:

L(Θ | XXX,YYY) =
1
N

N

∑
i=1

∑
(u,v)

`
(

sss(u,v)
i , yyy(u,v)

i

)
, (7.1)

where XXX = {xxxi}N
i=1,YYY = {yyyi}N

i=1, and (u, v) denotes the pixel coordinates in an image,
and ` : [0, 1]× {0, 1} → R is the cross-entropy loss defined as:

`(s, y) = −
(
y log(s) + (1− y) log(1− s)

)
. (7.2)

When clean labels are available, the optimal network model is obtained by minimiz-
ing Eq. 7.1 using stochastic gradient descent.
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7.3.2 Robust Model Fitting Perspective

For a dense prediction task, the network is trained by minimizing the per-pixel wise
defined loss function as shown in Eq. 7.1. We argue that such dense information is
mostly redundant for our problem and propose to exploit the robust model fitting
principle in the context of deep learning. Even though the noisy labels come from
weak saliency model (an unsupervised one), we assume there still exists a consid-
erable proportion of labels that are correct, and can be considered as inliers to the
desired model. With this, we are left with two problems: 1) Whether all the labelling
is needed to supervise network learning? 2) How to identify the inliers under deep
convolutional neural network?
Whether all the labelling is needed? The loss function for learning dense saliency
prediction (i.e., , Eq. 7.1) is basically a sum of per-pixel loss and there is no pairwise
or high-order terms in the loss function. Therefore, evaluating the loss function with
partial supervision will not change the learning procedure. To prove this assump-
tion/observation, we train the same deep saliency prediction network with different
levels of supervision by random sampling r% of image xxxi and clean label yyyi for
loss function evaluation. As illustrated in Fig. 7.2, when we varied the proportion of
available labels from 10% to 100%, the performance of saliency prediction is relatively
stable with different levels of supervision, which indicates that partial cross-entropy
[111] is indeed sufficient to train a reasonable saliency detection model.
How to identify inliers/outliers? Now, we are left with the problem of how to iden-
tify the inliers to the desired saliency prediction model. Existing methods use the
fitting loss as a function to determine inliers [118][252]. This principle has also been
used in meta-learning and self-paced learning [249]. To be more specific, an inlier is
determined as samples with smaller loss: 1 (`( fΘ(xxxi), ŷyyi) ≤ λ), where the hyperpa-
rameter λ is a user-defined threshold. The above strategy could be sensitive to the
initialization due to its iterative optimization style. We instead propose to exploit
the model consistency during iterations, and use uncertainty/variance as guidance to
iteratively select pixels for next iteration. Specifically, we propose to score the pixels
with the network evolution consistency, where the underlying assumption/belief is
that the network learns to predict inliers consistently in the initial phases of network
evolution, and eventually learns to fit the outliers [123].

In the active learning setting, the prediction variance can be used to measure the
uncertainty of each sample (pixel) for either a regression problem or a classification
problem [257], where high variance stands for uncertain samples, and low variance
represents consistent model behavior. We select low uncertainty/variance samples
for model updating. Thus we introduce a dense weight matrix Ωi for image xxxi, with
each element in Ωi representing the weight of the current pixel for loss updating. Ωi
is then defined as:

Ω(u,v)
i = g(Hi(u, v)), (7.3)

where Hi = ∪tH
(t−1)
i is the set (or union ∪t) of predictions for image xxxi before the

current iteration t, and function g defines the sampling strategy given the history
of predictions, which represents an indicator function for hard mask selection and a
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linear function for soft mask reweighting3.
Specifically, we formulate the problem as joint optimization of network parame-

ters Θ to predict the saliency map, and masking parameters Ω to identify inliers to
the network model as follows:

(Θ∗, Ω∗) = arg min
Θ,Ω
L(Θ, Ω | XXX, ŶYY) +R(Ω, λ), (7.4)

where ŶYY is the noisy label set, function R(·, ·) denotes a sampling strategy with
regularization to maximize the inlier set of the desired saliency prediction model
(either in a hard way or in a soft way) and λ is a sampling related hyperparameter.
The loss function L(Θ, Ω | XXX, ŶYY) (denoted as L(Θ, Ω) for convenience) with the
sampling strategy controlled by masking Ω is defined as:

L(Θ, Ω) =
1
N

N

∑
i=1

∑
(u,v)

Ω(u,v)
i `

(
sss(u,v)

i , ŷyy(u,v)
i

)
. (7.5)

We investigate two different ways of generating {Ωi}N
i=1. With the hard mask

pixel sampling strategy, we have Ω(u,v)
i ∈ {0, 1}, thereby selecting a subset of pixels

to evaluate the loss function. With the soft mask pixel reweighting strategy, we have
Ω(u,v)

i ∈ [0, 1], assigning soft weights to each pixel, which can be viewed as a relaxed
version of the first one.

7.4 Solutions

In this section, we present the above mentioned two solutions to our proposed model
for learning saliency from single dense noisy labelling. We introduce a hard masking
strategy in Sec. 7.4.1 and a soft reweighting strategy in Sec. 7.4.2.

7.4.1 Hard Mask Selection

In the context of our problem, stochastic optimizers such as stochastic gradient de-
cent (SGD) can be seen as a sampler where each pixel is assigned the same constant
weight for loss updating. To reduce the effect of noisy labelling, one possible way
is to decrease the weight of difficult examples during the course of training, making
the model more robust to the noise [258, 259, 115]. Along this pipeline, we propose
a hard mask selection method to learn from single noisy labelling. To this end, we
make use of the pixel selection strategy Ω(u,v)

i ∈ {0, 1} and set Ω(u,v)
i = 1 if (u, v) is a

clean pixel of the i-th image and 0 otherwise.
With the loss defined in Eq. 7.5, and an initial sampling strategy Ω, alternat-

ing minimization [260] can be used to update the network parameters Θ and inlier
selection strategy Ω for the next iteration. Thus the loss function is alternatively
minimized with respect to Θ and Ω, one at a time while the other is fixed. Given

3Note that, our framework facilitates computation of supervised loss mostly on possible clean pixels
rather than the entire set including noisy labels.
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a sampling strategy Ω, the network parameter Θ is typically optimized by SGD.
For a fixed network parameter Θ, following [260], we exploit the “inlier set maxi-
mization” principle in robust model fitting and define the regularization R(Ω, λ) as:
R(Ω, λ) = −λ ∑N

i=1 ‖Ωi‖1, i.e., , the (relaxed) number of inliers, then the optimal Ωi
can be derived as:

Ω(u,v)
i = 1(`(sss(u,v)

i , ŷyy(u,v)
i ) ≤ λ), (7.6)

where 1 is the indicator function. This inlier selection strategy could be sensitive to
initialization due to its iterative optimization style. Instead, we propose to exploit
the network model consistency during iterations, and use uncertainty/variance as
guidance to select samples that are probably clean. Thus we score the samples with
the network evolution consistency. Also, according to [115, 261], prediction vari-
ance is proportional to network loss, and larger prediction variance indicates a high
uncertainty sample. Thus, we replace Eq. 7.6 with:

Ω(u,v)
i = 1(varu,v(Hi) ≤ λ), (7.7)

where varu,v(Hi) represents the variance at image point (u, v) of the prediction for
all history models.

Eq. 7.7 suggests selecting pixels that produce smaller variance, or as [260] defined,
the “easy” samples. For a fixed Θ, those easy samples with variance smaller than
threshold λ will be selected for training in the next iteration. Otherwise, they will not
be selected. For a fixed Ω, the model is only trained on selected pixels to update Θ
(partial cross-entropy loss [111]). The hyper-parameter λ controls the learning pace,
especially the amount of samples for later iteration training, we use λ = 0.02 in all
the hard masking related experiments.

Initialization: Within the hard mask selection strategy, we randomly select a
small proportion (10% to achieve stable training) of the noisy labelling to get an
initial Ω. An example of the evolution of mask is illustrated as a binary image in the
first, second and third image of the second row in Fig. 7.1. The experimental results
show that we can achieve relatively stable performance with different initialization
of the hard mask.

7.4.2 Soft Mask Reweighting

The hard mask selection strategy can be interpreted as substituting the original cross-
entropy loss with a truncated loss [116], where samples with weak consistency over
the history of models are assigned constant loss, which leads to zero loss gradient.
Thus these samples will not contribute to the learning dynamics.

However, the hard mask pixel selection method has the potential to discard pos-
sibly clean but diversely behaved samples during training. Thus, we further propose
a soft mask reweighting strategy to assign a soft weight for each pixel in an image.
The loss function Lsoft(Θ, Ω) is then defined as in Eq. 7.5 where the dense weight
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matrix Ωi is defined as

Ω(u,v)
i = 2/(1 + exp(k var2

u,v(Hi))), (7.8)

where k ∈ R+ is used to control the descent degree of the soft weights according to
different variance. We set k = 4 in our experiments. The soft weight Ωi encourages
pixels with consistent behavior to contribute more than those with diverse behavior.

Note that, even though these two strategies are discussed separately, they can
generalize to a uniform model with k set to a large value to get an approximate hard
mask selection model.

Initialization: Within the soft mask reweighting strategy, in the first iteration, we
set all the pixels as clean, leading to an all-1 matrix Ω. Iteratively, we get a gray
weight matrix (in the range of [0, 1]) as shown in the first, second and third image of
the third row in Fig. 7.1.

7.4.3 Edge Preserved Saliency Detection

Both hard mask selection and soft mask reweighting strategies iteratively assign
pixel-wise importance to each sample to update the loss, which may lead to a saliency
map with a blurred boundary, especially for the sampling based hard mask selection
strategy. To recover the lost structure information, we add another structure-aware
regularization Re similar to [262] to loss function in Eq. 7.5, which is defined as:

Re = `(e(xxx), e(sss)), (7.9)

where e(.) is an edge detection operator4, xxx and sss are the input color image and
predicted saliency map, and ` is the cross-entropy loss defined as Eq. 7.2. The basic
assumption of Eq. 7.9 is that the edge of the saliency map should be similar to the
edge of the raw input image. Thus, the edge-preserved loss function is defined as:
Le(Θ, Ω) = L(Θ, Ω) +Re, where L(Θ, Ω) is defined in Eq. 7.5.

7.4.4 Model Analysis

1) How to handle error propagation? In each iteration of our method, we select a
subset of possible clean pixels through pseudo labelling to train the model, and it
is possible that we may wrongly select some noisy pixels. To prevent possible error
propagation, we adopt an early stopping strategy, since deep models tend to learn
clean pixels before over-fitting to noisy samples.
2) How are the hard mask and soft mask connected? Considering both Eq. 7.7
and Eq. 7.8, we discover that the soft mask reweighting solution can be treated as a
general case of the hard mask solution, and by setting k in Eq. 7.8 to a large number,
the soft mask in Eq. 7.8 is approximately a hard mask as in Eq. 7.7. 3) How dose the
model perform during testing? Our model is trained with noisy label as supervision.
During testing, given RGB image xxx, we directly produce its saliency map sss.

4e(.) is achieved by extracting first-order derivative of the image.
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7.5 Experimental Results

7.5.1 Implementation

We trained our model using Pytorch, with 30 maximum epochs. We initialized our
model using ResNet50 [28] trained for image classification, and adapt it to saliency
prediction following [29]5. We used the SGD method with momentum 0.9. The base
learning rate is initialized as 2.5 × 10−4 with the “poly” decay policy. The whole
training took 6 hours with training batch size 20 on a PC with an NVIDIA GeForce
RTX GPU.

7.5.2 Setup

Dataset: We have evaluated the performance of our proposed model on eight saliency
benchmarking datasets. We used 10,553 images from the DUTS dataset [41] for train-
ing and generated noisy saliency maps by using handcrafted feature based method
(RBD [24] in particular, due to its efficiency). Testing images include: 1) the DUTS
testing dataset (5,019); 2) ECSSD (1,000) [189], 3) DUT (5,168) [26], 4) HKU-IS (4,447)
[30], 5) the MSRA-B Testing dataset (2,500) [9], 6) PASCAL-S (850) [229], 7) THUR
(6,232) [190] and 8) SOC (1,200) [191], with number after dataset indicating the size
of the corresponding dataset.
Evaluation metrics: Four evaluation metrics are used, including Mean Absolute Er-
ror (M), mean F-measure (Fβ), mean E-measure (Eξ) [173] and S-measure (Sα) [172].
MAE is defined as the average per-pixel difference between the ground truth and the
estimated saliency map. F-measure Fβ is a region-based similarity metric. E-measure
Eξ combines local pixel values with the image-level mean value in one term, jointly
capturing image-level statistics and local pixel matching information. S-measure Sα is
a structure based measure, which combines both the region-aware and object-aware
structural similarity metric.

7.5.3 Comparison with the State-of-the-Art

Quantitative Comparison: We compared our method with the state-of-the-art meth-
ods, and the results are reported in Table 7.1 and Fig. 7.4. “Our Models” in Table
7.1 indicate the performance of our methods, including 1) “HS” and 2) “SR” repre-
senting results of our proposed hard mask selection strategy and soft reweighting
strategy respectively. “Ours” in Fig. 7.4 represents the results of our model using the
soft reweighting strategy.

Our method starts with a single noisy labelling, and by assigning a weight/mask
to each pixel, we adaptively select probably clean pixels of each training image for
loss updating. Different from our approach, WSI [124] adopts an extra classification
network with an image-level label [223], and a fully connected CRF [29] was also
used for saliency map post-processing. Our methods achieve consistently better per-
formance, with approximate 8% increase in both Fβ and Eξ with only single noisy

5Note that, we adopt the DeeplabV2[29] framework, and our solutions can be extended to other
structures with ease.
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Table 7.1: Benchmarking results. Bold numbers represent the best performance. ↑
& ↓ denote larger and smaller is better, respectively.

Fully Sup. Models Weakly Sup./Unsup. ModelsOur Models
MetricF3NetNLDFPoolNetBASNetAFNetMSNetSCRNEGNetMINetDRFIRBD SBF WSIWSSMNL HS SR

[34] [32] [46] [33] [40] [39] [130] [215] [255] [18] [24] [124] [98] [41] [66]

D
U

T
S

Sα ↑ .888 .816 .887 .866 .867 .862 .885 .887 .884 .676 .644 .743 .697 .748 .813 .793 .806
Fβ ↑ .852 .757 .840 .823 .812 .792 .833 .839 .844 .481 .453 .622 .569 .633 .725 .712 .732
Eξ ↑ .920 .851 .910 .896 .893 .883 .900 .907 .917 .628 .632 .763 .690 .806 .853 .853 .853
M ↓ .035 .065 .037 .048 .046 .049 .040 .039 .037 .155 .157 .107 .116 .100 .075 .070 .067

EC
SS

D

Sα ↑ .919 .870 .919 .910 .907 .905 .920 .918 .920 .730 .685 .830 .805 .808 .846 .855 .852
Fβ ↑ .921 .871 .913 .913 .901 .886 .910 .914 .920 .589 .559 .798 .762 .774 .810 .844 .863
Eξ ↑ .943 .896 .938 .938 .929 .922 .933 .937 .945 .649 .650 .848 .792 .801 .836 .904 .885
M ↓ .036 .066 .038 .040 .045 .048 .041 .041 .036 .172 .174 .089 .114 .106 .090 .066 .069

D
U

T

Sα ↑ .839 .770 .831 .836 .826 .809 .837 .841 .833 .696 .679 .747 .759 .730 .733 .771 .766
Fβ ↑ .766 .683 .748 .767 .743 .710 .749 .760 .757 .507 .497 .612 .641 .590 .597 .668 .679
Eξ ↑ .864 .798 .848 .865 .846 .831 .847 .857 .860 .653 .663 .763 .761 .729 .712 .818 .805
M ↓ .053 .080 .054 .057 .057 .064 .056 .053 .056 .150 .147 .108 .100 .110 .103 .080 .072

H
K

U
-I

S Sα ↑ .917 .879 .919 .909 .905 .907 .916 .918 .919 .740 .706 .829 .808 .822 .860 .854 .863
Fβ ↑ .910 .871 .903 .903 .888 .878 .894 .902 .909 .594 .572 .783 .763 .773 .820 .828 .864
Eξ ↑ .952 .914 .945 .943 .934 .930 .935 .944 .952 .669 .674 .855 .800 .819 .858 .906 .909
M ↓ .028 .048 .030 .032 .036 .039 .034 .031 .029 .145 .143 .075 .089 .079 .065 .054 .047

M
SR

A
-B

Sα ↑ - .910 - .920 .906 - - - - .813 .793 .880 .868 .853 .889 .880 .889
Fβ ↑ - .869 - .905 .883 - - - - .682 .688 .841 .836 .803 .867 .870 .878
Eξ ↑ - .915 - .944 .926 - - - - .734 .752 .895 .865 .849 .901 .913 .915
M ↓ - .050 - .034 .043 - - - - .123 .112 .060 .068 .078 .053 .050 .048

PA
SC

A
L-

S Sα ↑ .802 .756 .806 .785 .797 .794 .801 .798 .795 .624 .614 .732 .669 .704 .768 .753 .765
Fβ ↑ .833 .793 .833 .821 .824 .813 .820 .827 .825 .510 .530 .735 .653 .698 .748 .773 .774
Eξ ↑ .836 .783 .833 .821 .827 .822 .821 .824 .830 .554 .582 .746 .647 .690 .741 .768 .762
M ↓ .111 .145 .114 .122 .116 .119 .118 .121 .115 .256 .247 .167 .206 .184 .158 .148 .153

TH
U

R

Sα ↑ .838 .801 - .823 .825 .819 .845 - - .705 .665 .757 - .775 .804 .794 .806
Fβ ↑ .761 .711 - .737 .733 .718 .758 - - .512 .472 .627 - .653 .691 .695 .725
Eξ ↑ .858 .827 - .841 .840 .829 .858 - - .663 .656 .770 - .775 .807 .816 .839
M ↓ .066 .081 - .073 .072 .079 .066 - - .147 .151 .107 - .097 .086 .086 .072

SO
C

Sα ↑ .828 .816 - .841 .700 - .838 .850 - .709 .701 .763 - .775 .814 .834 .843
Fβ ↑ .340 .319 - .359 .062 - .363 .346 - .187 .212 .273 - .271 .310 .321 .344
Eξ ↑ .846 .837 - .864 .684 - .859 .866 - .689 .703 .774 - .780 .823 .843 .863
M ↓ .098 .106 - .092 .115 - .099 .085 - .197 .206 .153 - .141 .093 .089 .088

labeling used. MNL [66] achieves comparable performance with some of the deep
fully supervised models, while our method, using only a single noisy labelling (MNL
relies on multiple noisy labels) is much cheaper, and its performance is also better,
with on average of 3% performance increase of Fβ and Eξ , as well as around 2% de-
crease inM. Figure 7.4 shows the mean F-measure (first row) and mean E-measure
(second row) curves of our method and competing methods on four benchmark
datasets. By iteratively identifying both inliers and ourliers with an edge-preserved
regularization in Eq. 7.9, we achieve better performance compared with competing
setting, and especially for the THUR dataset, our performance is even comparable
with state-of-the-art fully supervised methods.

Qualitative Comparisons: Figure 7.5 demonstrates three visual comparisons. The
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Figure 7.4: F-measure and E-measure curves on four benchmark datasets (ECSSD,
DUT, HKU-IS and THUR). Best Viewed on screen.

Image GT F3Net MNL Ours

Figure 7.5: Comparison of saliency maps with competing methods.

salient object in the first row is large, which is a hard scenario for some deep models,
while our model can produce high quality saliency maps with the complete salient
region being segmented. The salient objects in the second image share similar ap-
pearance as the background, while our method can still produce saliency map with
higher inter-class distinction. The background in the third image is quite complex,
and competing methods (F3Net [34] and MNL [66]) fail to discriminate salient ob-
jects from the cluttered background, while our method produces nearly clear salient
map.

7.5.4 Assumption Validation

It has been proved that a deep neural network can memorize any data even if it
is highly corrupted [244], which makes it very sensitive to label noise, as shown in
Table 7.2 “Noisy”, representing training a neural network directly using noisy label
as pseudo ground truth. Further, as illustrated in “NoS”, with subset of clean labels
selected from the noisy labels, performance can be boosted substantially. Beside this,
for dense prediction tasks, all the pixels inside the image are used for loss compu-
tation. As discussed in Sec. 7.3.2, by randomly sampling a subset clean pixels for
updating the loss, we achieve relatively stable performance as shown in Fig. 7.2. For
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Table 7.2: Assumption Validation and Ablation Study
Metric DUTS ECSSD DUT HKU-IS MSRA-B PASCAL-S THUR

Assumption Validation

Noisy
Fβ ↑ .5162 .6730 .5166 .6667 .7589 .6381 .5388

M ↓ .1493 .1454 .1490 .1220 .0941 .2173 .1426

NoS
Fβ ↑ .7385 .8559 .6882 .8656 .8755 .7626 .7209

M ↓ .0656 .0730 .0702 .0475 .0487 .1562 .0717

Ablation Study

MR-O
Fβ ↑ .4419 .5672 .4763 .5450 .6791 .5142 .4595

M ↓ .1989 .1913 .1907 .1798 .1323 .2658 .1792

MR-W
Fβ ↑ .7162 .8614 .6639 .8498 .8756 .7749 .7094

M ↓ .0703 .0688 .0758 .0517 .0493 .1510 .0751

VGG
Fβ ↑ .7392 .8635 .6825 .8626 .8706 .7907 .7124

M ↓ .0653 .0690 .0727 .0479 .0499 .1461 .0761

NoE
Fβ ↑ .7177 .8499 .6603 .8501 .8686 .7666 .7174

M ↓ .0697 .0725 .0760 .0509 .0518 .1536 .0734

Clean
Fβ ↑ .7689 .8826 .6764 .8707 .8631 .8075 .7197

M ↓ .0537 .0535 .0726 .0403 .0504 .1232 .0774

C_O
Fβ ↑ .7799 .8863 .7027 .8703 .8788 .8035 .7325

M ↓ .0512 .0518 .0646 .0421 .0446 .1274 .0718

BAS_O
Fβ ↑ .7922 .8918 .7456 .8958 .9031 .7995 .7470

M ↓ .0565 .0591 .0600 .0394 .0380 .1448 .0666

Web
Fβ ↑ .7125 .7770 .6248 .7794 .8412 .6808 .6694

M ↓ .0829 .0936 .0866 .0863 .0619 .1796 .0899

Ours
Fβ ↑ .7318 .8631 .6792 .8640 .8782 .7744 .7250

M ↓ .0674 .0687 .0723 .0473 .0482 .1529 .0719

some datasets, these sampling models achieve even better performance, which can
be explained based on [263]. [263] proved that models can sometimes achieve lower
generalization error after being trained with a subset of actively selected training
data. In other words, focusing on informative samples can be beneficial even when
all labels are available.

7.5.5 Ablation Study

We conduct different ablation studies to illustrate the effectiveness of our proposed
method as shown in Table 7.2. We use the soft mask reweighting method for all
the ablation experiments, and “Ours” in Table 7.2 is performance of the soft mask
reweighting solution.
1) Different noisy labelling: In our experiments, we used RBD [24] to generate noisy
labels. We further carried out an experiment with noisy saliency maps generated
by MR [26], and show the performance as “MR-O” and “MR-W”, representing the
original performance of MR and learning saliency from MR with our solution. The
big gap between “MR-O” and “MR-W” further indicates the effectiveness of our
method. Note that, as our noisy label is generated by conventional method(s), we
cannot control the actual portion of noisy data as the image-level noisy label handling
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methods (they can control portion of noise as their noisy label is generated by adding
noise to clean data), and we can only achieve this by using different noisy map
generation methods.
2) Different network structure: We adopted ResNet50 as our backbone. To illustrate
the superiority of our method regarding different network structure, we trained with
VGG-16 [67] instead6. The performance reported as “VGG” clearly shows that the
proposed method can still work well, which further illustrate the effectiveness of our
noise handling strategy.
3) Learning without edge loss: As discussed in Sec. 7.4.3, training directly with
the loss function in Eq. 7.5 will lead to a saliency map with blurred boundaries. We
remove the edge loss Re from our loss function and show performance as “NoE”.
Performance of “NoE” indicates that our solution can still work well compared with
competing methods as shown in Table 7.1, while the edge-preserved regularization
can further boost our performance.
4) Hard-mask performance with regrading to λ in Eq. 7.7: We define λ as a thresh-
old to distinguish inliers and ourliers, and set it to a small number (thus around 5%
pixels will be selected as inliers in each iteration) in our experiments. To test how the
network performs with different λ, we carried out experiments with λ in a range of
[0, 0.05]7 and show performance in Fig. 7.6. We observe relatively stable performance
with small λ settings.
5) Soft-mask performance with regrading to k in Eq. 7.8: k is used to control the
descent degree of the soft weights. We design extra experiments with respect to k
in the range of [1, 20]8, and show the performance as Fig. 7.7. Similar to Fig. 7.6,
we again observe relatively stable performance with k in the range of [1, 20], which
further illustrate the robutstness of our solution.

Figure 7.6: Model performance with regard to different λ in Eq. 7.7.

6) Learn from clean data: To test how our solution performs with clean labels avail-
able, we conducted two experiments: 1) training directly with clean label (“Clean”);
2) performing our solution by treating clean labels as noisy (“C_O”). The gap be-
tween “Clean” and “C_O” suggests the importance of noise handling even when the
clean labelling is provided. Furthermore, we notice that the identified noise in “C_O”
mainly along object edges, which is also consistent with the observation in [254] that

6Both of them are dilated version following DeeplabV2 [29]
7We define a smaller range for λ to avoid selecting too many outliers.
8Similar to hard mask strategy, we control k in a relatively compact range to avoid outliers contribut-

ing too much to network learning.
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Figure 7.7: Model performance with regard to different k in Eq. 7.8.

the human annotated dense ground truth may not well align with object edges.
7) Learn with state-of-the-art saliency network? Our network is based on DeeplabV2
[29]. To test how our network performs with better network structure used, we
implement our solution with BASNet [33] structure, and show the performance as
“BAS_O”. We can draw two conclusions from “BAS_O”: 1) better backbone struc-
ture can further boost our performance; 2) comparing “BAS_O” with “C_O”, we
notice limited performance difference, which shows that the noise handling strategy
is much more important than network structure in noisy labeling setting.
8) Learn from Web data: As our method does not rely on pixel-wise accurate la-
beling, we used the Webvision1.0 dataset 9 to train our models from scratch (“Web”).
We notice comparable performance of “Web” with competing weakly/un-supervised
methods, which indicate the effectiveness of our solution. Further, we observe a gap
between our performance “Ours” in Table 7.2 and “Web”. One reason is that we
randomly initialized the weights in “Web”, while for “Ours”, we use the weights
from Imagenet for weight initialization. Secondly, more complex images in Webvi-
sion1.0 dataset leading to more noisy training dataset than the benchmark DUTS[41]
based noisy dataset. Note that, the “Web” experiment is totally unsupervised and
self-explanatory, which further indicates the effectiveness of our proposed solution.

7.6 Conclusion

In this chaper, similar to Chapter 6, we focus on tackling a challenging and practical
problem in saliency prediction (salient object detection) of learning saliency from a
single noisy labelling. We formulated the problem as jointly learning a saliency pre-
diction model and identifying the inliers. We proposed two approaches to address
the problem, namely, hard mask selection and soft mask reweighting. Extensive
experiments on benchmarking datasets demonstrate the superiority of our meth-
ods. One possible extension of our solution is to the multiple object segmentation
task, e.g., semantic segmentation [29, 138], where we have access to noisy labeling
of each semantic category. A straight forward solution can be achieved by defin-
ing the multi-category problem as multiple binary segmentation problem, where we
simultaneously identify the noisy label for each category by directly applying the
proposed solution. Another extension is combining the proposed solution with our
latent variable techniques [60, 126, 65]. In this work, we iteratively identify clean

9https://www.vision.ee.ethz.ch/webvision/2017/index.html
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labels with the variance of model prediction, assuming that the clean labels lead to
relative consistent predictions across the epochs of learning. With the latent vari-
able model based noise estimation module as in [65], we can define consistency loss
between two types of noise, leading to more accurate and reliable noise estimation.
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Chapter 8

Conclusion

Saliency detection is a category-free technique, which intends to detect and segment
the most informative regions of the image that attract human attention. The large
amount of pixel-wise labeled dataset and the booming development of deep learning
makes saliency detection a very active topic recently. However, this problem is yet to
be solved, and new challenges still remains.

8.1 Summary and Contribution

In this thesis, we mainly focus on two main important issues about saliency detection:
1) uncertainty-aware saliency detection to model the subjective nature of saliency and
2) weakly-/un-supervised saliency detection techniques to learn saliency from easy-
to-access labels. We then summarize our contributions, and compare the proposed
approaches with future research directions.

8.1.1 Our Contributions

CVAE based Uncertainty-aware RGB-D Saliency Detection. Existing RGB-D saliency
detection models design deterministic networks to produce a single prediction for
each input image. We argue that such one-to-one mappings fail to model the un-
certainty of labeling, representing the subjective nature of saliency. In this way, we
propose the first generative model based RGB-D saliency detection network [60, 61]
with a latent variable to model the labeling variants. In our framework, the latent
variable is conditional on the input image, which captures the hidden attributes of
the image, making our model a probabilistic network to produce distribution estima-
tion instead of point estimation.
Complementary Learning for RGB-D Saliency Detection via Latent Variable Model.
One main drawback of existing RGB-D saliency detection models is that they fail to
explicitly model the complementary information of the RGB image and the depth
data, where the former captures appearance information and the latter encodes ge-
ometry information. Existing methods fuse the two different modes feature-wise
to achieve implicitly complementary learning. We introduce the first cross-mode
fusion model [126] to explicitly model the complementary information for RGB-D

125
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saliency detection. Particularly, we intend to minimize the mutual information of the
two modes, where the mutual information can be approximated with the symmetric
KL-divergence, making it easy to be implemented. Furthermore, we introduce the
largest RGB-D saliency detection dataset (10x’ larger than existing dataset) to boost
this community.
Integrated Latent Variable Model and Energy-based Model for RGB Saliency De-
tection. The latent variable model introduces latent variables to the network, thus
it can model the uncertainty of labeling. The energy-based model defines a unnor-
malized scalar (the energy) to measure the compatibility of the variants. We design
a probabilistic coarse-to-fine learning framework [62] for RGB saliency detection,
where the latent variable model produces initial prediction, and the energy-based
model serves as higher-order similarity measure to measure the accuracy of the ini-
tial prediction and refine it further with the gradient-based MCMC.
Learning RGB Saliency with Scribble Annotation. Compared with pixel-wise la-
beling, scribble annotation is easy to obtain, which only takes a few seconds to label
one image. We then introduce a new weakly supervised learning setting: learning
saliency from scribble annotation [63]. We first relabel existing RGB saliency de-
tection dataset with scribble, then we design an edge-aware network to learn from
partial supervision (the scribble annotation) and recover the missing structure infor-
mation with an auxiliary edge detection branch and a structure-aware loss function.
Learning RGB Saliency from Noisy Labeling. To further relieve the burden of la-
beling, we present an approach to learn saliency from noisy labeling [66], which can
be easily obtained by using handcrafted feature based conventional methods. Within
this setting, we design two different solutions: 1) noisy auto-encoder based [65] and
2) robust model fitting based [64]. For the former, we introduce an extra noise gen-
erator to approximate noise in the noisy labeling, and for the latter, we iteratively
sample from the noisy labeling to select inlier (clean label) for model training.

8.1.2 Proposed Approaches Comparison and Extension

Latent variable model + mutual information regularizer: In [60, 61] (Chapter 2), we
achieve RGB-D saliency detection via early fusion, where the RGB image and depth
are concatenated in the input layer, thus we can focus on the generative learning
pipeline of the latent variable model. In [126] (Chapter 3), the mutual information
regularizer is proven effective for multi-modal learning. It is then straightforward
to borrow the benefits of both strategies with a cross-level feature generative model
that aims to achieve both effective stochastic predictions and effective multi-modal
learning.
Latent variable model + energy-based refinement: In [62] (Chapter 4), we adopt
a Langevin dynamic [264] based latent variable model, namely alternating back-
propagation (ABP) [139], to produce an initial prediction, which is then refined with
the energy-based model (EBM). As our focus is to analyse how the EBM can be used
as fine predictor, we choose ABP [139] as the coarse generative saliency predictor
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due to it’s efficiency. A potential extension is to define the conditional variational
auto-encoder (CVAE) [51] (in Chapter 2) as the latent variable model and evaluate
how EBM can contribute within a CVAE-EBM framework.
Weakly supervised learning + latent variable model: We present an auxiliary edge
detection module and a structure-aware loss function within our weakly supervised
learning pipeline to recover the missing structure information with the scribble an-
notation in Chapter 5. One drawback of the solution is that the unlabeled pixels, es-
pecially the unlabeled pixels within the semantic instances, fail to contribute enough
to the model updating. An useful extension is through the use of a latent variable
model, where a latent variable can be learned to approximate the latent distribution
of the pixel-wise annotation. The basic assumption is that the partial annotation
(scribble) should lie in the same latent space as the full annotation (pixel-wise anno-
tation).
Generative noise estimation + sampling based inlier/outlier discovery: In both [65]
(Chapter 6) and [64] (Chapter 7), we study the learning from noisy labeling problem.
The main drawback of the above techniques is the error propagation problem due to
the less accurate noise modeling. To solve it, we can define the noise modeling based
consistency loss, which aims to estimate the accuracy of the noise estimation module
with noise from both the generative noise estimation module (Chapter 6) and the
outlier discovery solution (Chapter 7).

8.2 Work Extension

As a basic computer vision task, saliency detection belongs to the “Dense predic-
tion” task as shown in Fig. 8.1. We divide the existing dense prediction tasks into a
classification task and a regression task. The former produces pixel-wise classifica-
tion maps, which includes semantic segmentation [29], instance segmentation [250],
saliency detection [42], etc. The latter regresses the pixel-wise prediction for the in-
put image, including depth estimation [265], image super-resolution [266], image
deblurring [267], etc. We claim that, although our solutions above are performed on
saliency detection, the general ideas can be easily extended to other dense prediction
tasks. The proposed generative model frameworks can be used in both classification
tasks and regression tasks, as shown in Fig. 8.1, to achieve uncertainty estimation,
representing model confidence of the predictions. The sampling based inlier and
outlier identifying solution can be used in the depth estimation task to deal with the
less accurate (or noisy) depth issue. Our scribble annotation based solution provides
an alternative strategy for weakly-supervised semantic segmentation and instance
segmentation.

8.2.1 Uncertainty-aware Semantic/Instance Segmentation

As discussed in [254], there exists a significant level of semantic boundary noise in
existing semantic segmentation or instance segmentation ground truth maps. This
mainly comes from the difficulty in labeling the precise boundaries of objects. The
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Figure 8.1: The widely studied computer vision tasks.

main issue of training directly with above less accurate ground truth map is that the
trained model may over-fit on the noisy label, leading to poor generalization ability.
Following our proposed solution in [65], a generative model can be trained for noise
estimation, which is capable of capturing the noise in any distribution. Further, our
uncertainty-aware solutions in [60, 61, 62] can also be adopted to model the aleatoric1

uncertainty [192] of the less accurate dataset.

8.2.2 Depth Calibration

Depth data can be captured using a Kinect or computed directly from the stereo
image pairs. For both scenarios, the generated depth may not be very accurate. For
monocular depth estimation, current techniques simply train models to achieve map-
ping from an RGB image to the corresponding depth map. With our sampling based
strategy in [64], we can iteratively identify pixels with noisy depth. As shown in [64],
our sampling strategy can effectively select candidate clean depth as supervision.
Further, for RGB-D based dense prediction tasks, our generative model pipeline in
[60, 61] can be adopted to estimate the uncertainty of the depth map, achieving depth
calibration for RGB-D image pair based dense prediction tasks.

8.2.3 Difficulty-aware Image Super-resolution/Deblurring

The purpose of image super-resolution or image deblurring is to generate high-
resolution images from the low-quality input images. To make an image clear and
high in quality, one can focus more on the semantic boundaries of the image, as an
image of sharp boundaries usually has higher resolution than the images with blur-
ring boundaries. With the proposed generative model in [60, 61, 62], the produced
uncertainty map can serve as a guidance for hard pixel (which is usually the pix-
els along object boundaries) recognition. Based on the generated uncertainty map,
more focus can be put on recovering the resolution of hard pixels for image super-
resolution or image delurring.

1Aleatoric uncertainty captures noise inherent in the observations [192].
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8.3 Future Work

In this thesis, we introduce generative model based RGB-D and RGB saliency detec-
tion networks. Further, we present our weakly supervised learning framework and
learning from noisy labeling strategies. Although our solutions can help develop-
ment of saliency detection to some extend, there still exists challenges to be taken in
the future.

8.3.1 Attribute-aware Latent Variable Model for Saliency Detection

In our current generative model based frameworks, the latent variable is conditioned
on the input image, while we cannot control each dimension of the latent variable.
In other words, the dimension of the latent variable is tuned to achieve reasonable
prediction without explaining meaning of each dimension. The main reason is that
the current saliency datasets have one single ground truth for each image (or image
pair for the RGB-D saliency dataset). In this situation, our loss function is simply
defined between model prediction and the given one version of ground truth. To
make the latent variable meaningful, an attribute-aware latent variable model can be
investigated with multiple ground truth saliency maps for each input image.

8.3.2 Data Augmentation for Robust Model Training

The current saliency detection datasets [41, 42] are mainly obtained by relabeling
existing datasets for the task of saliency detection, and it happens that the training
dataset may be biased, which may lead to poor generalization ability during testing.
Data augmentation is an effective solution to improve model generalization ability
by augment the training dataset with new samples out of the distribution of cur-
rent dataset. An effective data augmentation strategy can be used in both dataset
preparing and model training, which has potential to further boost the performance
of saliency detection, leading to better model generalization ability.
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