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Abstract

Each time that we act, our actions are not just conditioned by the spatial information,

e.g., objects, people, and the scene where we are involved. These actions are also

conditioned temporally with the previous actions that we have done. Indeed, we live

in an evolving and dynamic world. To understand what a person is doing, we reason

jointly over spatial and temporal information. Intelligent systems that interact with

people and perform useful tasks will also require this ability. In light of this need,

video analysis has become, in recent years, an essential field in computer vision,

providing to the community a wide range of tasks to solve.

In this thesis, we make several contributions to the literature of video analysis,

exploring different tasks that aim to understand human actions and interactions. We

begin by considering the challenging problem of human action anticipation. In this

task, we seek to predict a person’s action as early as possible before it is completed.

This task is critical for applications where machines have to react to human actions.

We introduce a novel approach that forecasts the most plausible future human mo-

tion by hallucinating motion representations.

Then, we address the challenging problem of temporal moment localization. It

consists of finding the temporal localization of a natural-language query in a long

untrimmed video. Although the queries could be anything that is happening within

the video, the vast majority of them describe human actions. In contrast with the

propose and rank approaches, where methods create or use predefined clips as can-

didates, we introduce a proposal-free approach that localizes the query by looking

at the whole video at once. We also consider the temporal annotations’ subjectivity

and propose a soft-labelling using a categorical distribution centred on the annotated

start and end.

Equipped with a proposal-free architecture, we tackle the temporal moment lo-

calization introducing a spatial-temporal graph. We found that one of the limitations

of the existing methods is the lack of spatial cues involved in the video and the query,

i.e., objects and people. We create six semantically meaningful nodes. Three that are

feed with visual features of people, objects, and activities, and the other three that

capture the relationship at the language level of the "subject-object,” "subject-verb,"

and "verb-object." We use a language-conditional message-passing algorithm to cap-

ture the relationship between nodes and create an improved representation of the

activity. A temporal graph uses this new representation to determine the start and

end of the query.

Last, we study the problem of fine-grained opinion mining in video review using

a multi-modal setting. There is increasing use of video as a source of information for

guidance in the shopping process. People use video reviews as a guide to answering

what, why, and where to buy something. We tackle this problem using the three

ix
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different modalities inherently present in a video —audio, frames, and transcripts—

to determine the most relevant aspect of the product under review and the sentiment

polarity of the reviewer upon that aspect. We propose an early fusion mechanism of

the three modalities. In this approach, we fuse the three different modalities at the

sentence level. It is a general framework that does not lay in any strict constraints on

the individual encodings of the audio, video frames and transcripts.
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Chapter 1

Introduction

In the last few centuries, researchers from different fields have devoted significant

efforts to understanding human behaviours. Starting from philosophy asking the

essential questions of where we go and what we are, psychology and sociology have

described and classified behaviour aiming to help people in their daily life. In the

last decades, engineers and computer scientists have also put great effort into un-

derstanding human behaviour principally for the old dream of creating a robot that

might work collaboratively with humans in their daily life. To accomplish such a

task, we need to transfer many abilities and knowledge to computers. In light of

this, Computer Vision Researchers had made significant progress in the task of face

detection, gesture recognition, sentiment analysis, action recognition, action detec-

tion, action anticipation, among others. However, we are far behind the capabilities

of human vision.

Early works on understanding human behaviour are done in controlled and con-

strained images or videos. They mostly rely on hand-crafted features and algorithms

that describe the spatial relationship of points, and add temporal reasoning if it is

needed —usually failing to achieve applicability in unconstrained and uncontrolled

environments. Nowadays, with the increased amount of data and computing re-

sources, the most significant progress in computer vision is made by fully data-driven

approaches [LeCun et al., 1989; Bishop et al., 1995]. Deep learning methods opened

a new era of computer vision outperforming classic methods by a large margin in

fundamental tasks like object recognition and detection in images. Such methods

encourage researchers to work on more challenging and unconstrained benchmarks.

Undoubtedly, videos have become part of our daily life. There is a clear trend

in recent years to record any event, as well as consume videos. Recent YouTube

statistics1 in 2020 show that there are 2 billion of users worldwide generating and

consuming video content, and more than 1 billion hours are watched daily, with up

to 500+ hours of video uploaded to YouTube every minute.

Surveillance videos are another good example; metropolitan cities around the

world are constantly monitored by thousands of cameras located in strategic points

to safeguard and help citizens. Australia has doubled the amount of CCTV cameras

in the last decade with more than 1 million. The city of Sydney alone has 12.35

1https://au.oberlo.com/blog/youtube-statistics

1
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Hugging Handshake Shoot Basketball

Figure 1.1: Different samples of human actions using still images. Actions hugging,
handshake and shooting basketball can be seen in the left, middle and right image
respectively.(Images extracted from Wikipedia.)

cameras for every 1000 people 2. However, Australia is far from being the country

with more surveillance, as China has installed close to 200 million CCTV cameras

across the country which amounts to approximately one camera per seven citizens. 3

Analysing these data usually requires costly manual annotations that describe

a general impression of what the video is about and rarely have fine-grained in-

formation of what is happening inside an interval of the video. Therefore, web

search engines, like YouTube, commonly rely on textual data such as description or

tags to retrieve relevant videos, which make the process inefficient. The analysis of

surveillance videos is even more laborious. They are usually long untrimmed videos,

clueless of what it is happening on them, and without the help of machine learning

algorithms that automatically process the information it is not clear if CCTV cameras

are helping to reduce crime 4.

In this thesis, we tackle different problems to understand human actions in videos.

First, we introduce an approach to solving action anticipation by hallucinating video

representation. Then, we propose two different approaches to solve the temporal lo-

calisation of a query in a video. Finally, we present a multi-modal method for mining

opinions of video reviews.

1.1 Action Anticipation

When interacting with other people, humans have the ability to anticipate the be-

haviour of others and act accordingly. This ability comes naturally to us, and we

make use of it subconsciously. Almost all human interactions rely on this action-

anticipation capability. For example, when we greet each other, we tend to anticipate

what is the most likely response and act slightly proactively. When driving a car, an

experienced driver can often predict the behaviour of other road users. Tennis play-

ers predict the trajectory of the ball by observing the movements of the opponent.

The ability to anticipate the action of others is essential for our social life and even

2https://www.smh.com.au/national/nsw/sydney-in-the-top-15-cities-for-surveillance-levels-
20190820-p52irf.html

3https://www.nytimes.com/2018/07/08/business/china-surveillance-technology.html
4https://electronics.howstuffworks.com/police-camera-crime1.htm
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Figure 1.2: An example of the action anticipation task. The first row shows a video
sample from the UT-Interaction dataset of the Handshake action. The second row
illustrates how much information is used for action anticipation methods. The am-
biguity in the first part of the video is distinguishable. The first part of a video can
lead to a variety of possible actions.

survival. It is critical to transfer this ability to computers so that we can build smarter

robots in the future, with better social interaction abilities that think and act fast. In

computer vision, this topic is referred to as action anticipation [Ma et al., 2016a; Ryoo,

2011; Aliakbarian et al., 2017; Soomro et al., 2016a,b] or early action prediction.

To contextualize the "action" concept, we use the hierarchical taxonomy defined

by Moeslund et al. [2006]: action primitive, action and activities. Consider the following

examples: In basketball, “playing basketball” itself can be seen as an activity. It

involves many actions, such as “crossover“’, “euro step” or “layup”. Each of these

actions are the composition of many other action primitives such as,“jump”, “run”,

“turn-left”, “turn-right” or “dribble”. Another activity such as “eating pizza” might

involve actions including, e.g., “eating”, “cutting” or “chew” and each of those actions

can be decomposed in action primitives. In summary, an action primitive (or movement)

describes a basic and atomic motion entity out of which actions are built. Activities

are a set of several actions that typically depend on the context of the environment,

objects, or interacting humans.

Although action anticipation is somewhat similar to action recognition, they differ

by the information which is being exploited. Action-recognition processes the en-

tire action within a video and generates a category label, whereas action-anticipation

aims to recognise the action as early as possible, even before the entire video is seen.

More precisely, action-anticipation needs to predict the future action labels by pro-

cessing fewer image frames (from the incoming video), even if the human action is

still in progress.

In Chapter 3, we present our approach that forecasts motion representation of the

seen videos, in specific dynamic images, to anticipate what is the most likely action

that is happening in the video.
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Query: "person puts the books down."

Figure 1.3: An illustration of temporal localization of a natural language query in
an untrimmed video. Given a query and a video the task is to identify the temporal
start and end of the sentence in the video.

1.2 Temporal Localization of a Query in a Video

Vision-and-language understanding is an important problem that has drawn increas-

ing attention from the computer vision community over the past few years. This

research area includes tasks such as video captioning and video question answering.

While promising results have been achieved on these tasks, much work still needs

to be done to help identify and trim informative video segments in longer videos,

while aligning them with relevant textual descriptions. For this reason, tasks such

as automatically recognising when an activity is happening in a video, have recently

become a crucial endeavor in computer vision.

As the amount of video data available to the public continues to grow, searching

for particular visual events in large video collections has become increasingly rele-

vant for search engines. This growth has helped draw increased attention to the task

of activity localisation in recent years. Activity localisation is an essential and vital

task, which has vast applicability — just considering how laborious and error-prone

manual annotation can be, even for a small number of videos. In this sense, it is clear

that search engines have to retrieve videos not only based on the video metadata but

that they also must exploit their internal information in order to accurately localise a

given query. Applicability to research areas such as video surveillance, video editing

and robotics [Liu et al., 2019], among others, has also helped bring interest to this

task.

Earlier works in this context have focused on temporal action localization [Richard

et al., 2018; Lin et al., 2017; Escorcia et al., 2016a; Chao et al., 2018; Gao et al., 2017c;

Xu et al., 2019], which attempts to localize interesting actions in a video from a

predefined set of actions. However, this approach constrains the search engine to a

relatively small and unrealistic set of (pre-defined) queries from users.

Contemporarily, the task of temporal action localisation with natural language [Gao

et al., 2017a; Hendricks et al., 2017] has been proposed to address this issue. Con-

cretely, given a query, the goal is to determine the start and end locations of the asso-

ciated video segment in a long untrimmed video. About this task, we are specifically

interested in the problem of natural language-based queries, or temporal sentence
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It is the most powerful GPU that I have ever tried, you can run what ever game you want.

Although you can run every game in this piece of hardware, the power consumption of it is insane

Figure 1.4: Extracted videos from Youtube to illustrate the task of multi-modal opin-
ion mining for video review. In these videos the reviewers are assessing a GPU. They
both agree that the GPU can run every game which is a positive comment but one
of the reviewers raise the attention in the power consumption of the GPU, which is a
negative opinion of a feature or aspect of this GPU.

localisation in the video. Formally, given an untrimmed video and a natural lan-

guage query, the task is to identify the start and endpoints of the video segment (i.e.,

moment) that best correspond to the given query, as depicted in Figure 1.3.

In Chapters 4 and 5, we present a proposal-free method and spatio-temporal

graph to tackle the temporal moment localisation task.

1.3 Multi-modal Opinion Mining

From the steep growth of video content that is released through the Internet every

day, a significant portion is related to video reviews. People explain the most impor-

tant features or aspects of a product and what are their opinions and sentiments for

those aspects. The importance of looking for a second opinion is mainly because on

many occasions we need the help of an expert in order to make the right decision.

For example, when we want to buy a new cell phone, we usually ask family and

friends opinions of the screen, sound, battery and other aspects of the product, and

also we investigate what people are saying about the cellphone on the Internet. We

can find written reviews of the product which explain the different aspects of it and

how good those are compared to other models or brands. We also can search for

video reviews that usually show us in a more detailed manner all of these aspects vi-

sually through the frames in the videos and the opinion of the expert is said through
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the video.

The task of opinion mining and sentiment analysis is very well known for the

natural language processing community. The goal of the task is identifying and

extracting opinions and emotions from the written content. As a result, sentiment

can be automatically collected, analysed and summarised for consumers to buy with

more information or for companies to improve and create better products. Although

reviews often come under the form of a written commentary, people are increasingly

turning to video platforms such as YouTube looking for product reviews to help

them shop.

Video reviews are naturally different from written reviews given the multi modal-

ity inherent in videos, i.e., images, audio and transcript. In this scenario, the modal-

ities complement each other providing rich information of what the reviewer wants

to express to the audience. This complementary between modalities means that al-

though the content of each channel may be comprehended in isolation, in theory, we

need to process the information in all the channels simultaneously to fully compre-

hend the message [Hasan et al., 2019]. In this context, information extracted from

the nonverbal language in videos, such as gestures and facial expressions, as well

as from audio in the manner of voice inflections or pauses, and scenes, objects or

images in the video, become critical for performing well.

In this context, Marrese-Taylor et al. [2017] explored a new direction, arguing that

video reviews are the natural evolution of written product reviews and introduced a

dataset of annotated video product review transcripts. Similarly, Garcia et al. [2019b]

recently presented an improved version of the POM movie review dataset [Park et al.,

2014], with annotated fine-grained opinions. Although the videos in these kinds of

datasets represent a rich multi-modal source of opinions, the features of the language

in them may fundamentally differ from written reviews.

In Chapters 6, we present a multi-modal approach to tackle the opinion mining

in video reviews.

1.4 Contributions

This thesis contributes to video analysis for understanding human actions and in-

teractions, proposing methods that exploit the inherent components of a video, i.e.,

images, audio and language. Focusing on the spatial and temporal components of

videos. Our main contribution can be described as follows:

1. A forecasting method of video representation for action anticipation. We

tackle the task of action anticipation by proposing a method that forecasts mo-

tion representations. Said generated motion representations are used to predict

the action that will happen in the video. This approach relies on dynamic im-

ages as a motion representation. It exploits the way that the dynamic images

are constructed to propose a set of loss functions that enforce the network to

forecast dynamic images that are useful for action anticipation. Using this ap-

proach, we achieve a state of the art performance in the action anticipation
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task.

2. A proposal-free method for localising queries in a video. Proposal and rank-

ing methods for the task of localising queries in a long untrimmed video are

computationally expensive, and typically proposals do not deal correctly with

the length variability of the actions. Motivated by this problem, we propose to

analyse the whole video at once using an attention mechanism. We propose a

dynamic filter that is constructed using the natural language query. This filter

makes sure that the video reacts to the query in the locations where the action is

happening. To enforce this reaction, we propose a loss function that penalises

the attention mechanism when attending features outside of the action span.

We also consider the problem of subjectivity in the annotation of the start and

end of human actions by using soft labels to cope with annotation uncertainties.

With these contributions, we could replace the proposal and ranking approach

and obtain state of the art performance in the temporal moment localisation

task.

3. Spatio-temporal graph to consider object information in the localisation of a

query. Human actions are often performed in interaction with other humans

or objects. To localise a query that describes the human activity in a video, e.g.,

“The person with blue shorts is opening the fridge”, we need to capture the rela-

tionships between the objects and humans involved in the scene. Leveraging

our proposal-free method, we proposed a spatio-temporal graph that captures

the interaction between objects and human entities throughout the video. The

graph is conditioned in the natural language query to localise the query in

the video properly. After adding the spatial information to our method, we

improved the performance of our proposal-free method by a large margin.

4. A multi-modal approach to fine-grained opinion mining on video reviews.

Video reviews are a significant portion of the video content that is uploaded

every day to the Internet. We address the task of opinion mining on video re-

views by proposing a multi-modal approach that takes in consideration the vi-

sual and audio information, inherent in a video, and determines the aspects of

the product in review and the sentiment polarity of the opinion. We proposed

an early fusion mechanism that fuses the multi-modal information to classify

each of the words in the transcript. Using this approach, we demonstrated that

the use of visual and audio information in a typical natural language task is

beneficial to obtain better performance.

1.5 Thesis Outline

The remaining chapters of this thesis are summarised below:

Chapter 2 – Background. This chapter provides a general overview of the existing

literature related to video analysis and human action understanding, in order to put
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the contributions of this thesis in context. We also introduced some essential tech-

nical background that is assumed in the remainder of the thesis. Finally, we outline

various pre-existing datasets that we use for training and evaluating our models, in-

cluding datasets designed for action recognition and anticipation, temporal moment

localisation and multi-modal opinion mining.

Chapter 3 – Action Anticipation by Predicting Future Dynamic Images. In this

chapter, we introduce the task of action anticipation. First, we review existing meth-

ods on action anticipation from classical methods using hand-crafted features to a

new era with deep learning. Later, we present our approach for action anticipation

through forecasting dynamic images. Our method is evaluated on standard bench-

mark datasets showing that quantitatively our approach outperforms prior work. We

also present a qualitative analysis of the forecasting video representations.

Chapter 4 – Proposal-Free Temporal Moment Localisation Using Guided Atten-

tion. This chapter introduces the relatively new task of localising a natural language

query in a long untrimmed video. Then, we review existing methods for resolving

this task. We propose a method that removes the proposals step from the current

pipelines using a guided attention mechanism. Moreover, we acknowledge the sub-

jectivity in the temporal localisation task. Therefore, we use a soft-labelling approach

to reduce the disagreement between annotators. We evaluate our approach in stan-

dard benchmarks for the temporal moment localisation task outperforming prior

methods.

Chapter 5 – Spatio-Temporal Graph for Temporal Moment Localisation. In this

chapter, we present a method that places objects and human relationships at the

centre of the temporal localisation of queries in a video through generating a Spatio-

temporal graph that captures the relationships between the entities using a language

conditioned message-passing scheme. Our method is evaluated in line with the stan-

dard benchmark and a new instructional cooking dataset, the method outperforms

prior works. Qualitative results are also presented as part of the experiment.

Chapter 6 – Mining Opinions in Video Reviews. In this chapter, We start by

describing the fine-grained opinion mining task and motivating the necessity of a

multi-modal approach to a classic natural language problem. Then, we develop an

early fusion approach that can classify the most relevant aspects that are mentioned

in the video and the sentiment of the reviewer about that aspect. We evaluate our

method with two benchmarks that we adapt for this task. Our method outperforms

standard baselines in the natural language community by just adding the video and

audio information.

Chapter 7 – Conclusion and Future Directions. We conclude the thesis with a

summary of our main contributions and discussion of future research directions for

improving the work.
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Chapter 2

Background

In this chapter, we provide a brief technical introduction of the different theory, archi-

tectures and models that have been used throughout this thesis. First, we introduce

different ways to represent motion in video clips. Then, we explain Convolutional

Neural Networks (CNNs), which we use in this thesis for feature extraction and clas-

sification. Following with a brief background of word representations and recurrent

neural networks which we extensively use in the temporal moment localisation task.

Finally, we briefly contextualise the type of datasets used throughout the thesis to

understand better the following chapters in this thesis.

2.1 Motion representation

To understand human actions and interactions, we can naturally decompose the

video information in spatial and temporal components [Xu and Li, 2003; Blank et al.,

2005; Yilmaz and Shah, 2005; Simonyan and Zisserman, 2014]. The spatial informa-

tion is carried by individual frames which provide the appearance of the scene and

objects. The temporal information can be captured in the form of motion across

frames. This motion can help to disambiguate subtle difference between actions that

cannot rely on the clues provided by the appearance, e.g., sign language recogni-

tion or indoor activities. In this section, we briefly explain two methods to represent

motion between frames that have been extensively used for action recognition. We

start with the optical flow, which is a fundamental process for motion estimation

based on appearance. Then, we explain “dynamic images” which provide a motion

representation of consecutive ordered frames, summarising a video clip in a single

image. In this thesis, we use dynamic images as a motion representation for the

action anticipation task.

2.1.1 Optical Flow

Optical flow or motion estimation is a fundamental problem in computer vision. It

consists of computing the apparent motion of objects caused by the relative move-

ment between the objects and camera in consecutive frames of the video sequence.

11
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Assuming that the pixel intensities of an object are constant between consecutive

frames, as follows,

I(x, y, t) = I(x + dx, y + dy, t + dt) (2.1)

where dx and dy represent the motion of the pixel in x and y direction over a

time interval dt and, also assuming an small movement between frames, then we can

develop the image constraints with Taylor expansion, as follows,

I(x + dx, y + dy, t + dt) = I(x, y, t) +
∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
dt + ǫ (2.2)

where ǫ contains high order terms. Taken the limit of dt → 0 then we can ignore ǫ,

which leaves to:

∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
dt = 0 (2.3)

Dividing each term by dt we have:

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
= −∂I

∂t
(2.4)

We can recognise some terms in this equation ∂I
∂x and ∂I

∂y are the first-order deriva-

tives of the image intensity along the axes of the respective image. These can be

estimated using edge detection algorithms. The partial derivative ∂I
∂t is the rate of

change of image intensity with time and also can be estimated using the difference

between frames. The other two terms are related to the optical flow. They describe

the movement of the pixels along the two axes u = dx
dt and v = dy

dt . Unfortunately, we

cannot solve the optical flow components using just this equation since we have two

unknowns and only one equation. It is for that reason that a variety of methods in-

troduce additional constraints or assumptions to find another equation and estimate

the optical flow [Baker and Matthews, 2004; Brox et al., 2004].

The components of optical flow can be represented as an intensity image, as can

be seen in Figure 2.1. Recently, deep learning methods use those motion represen-

tation as an input to a neural network to classify actions [Simonyan and Zisserman,

2014; Bilen et al., 2016; Carreira and Zisserman, 2017].

2.1.2 Dynamic Images

Dynamic images, proposed by Bilen et al. [2016, 2017], are a compact motion repre-

sentation of videos which has shown to be useful for human action recognition. This

compact motion representation summarises the temporal evolution of a short video

clip (e.g., 10 frames) to a single still RGB image. Dynamic images are constructed

using the rank pooling principle [Fernando et al., 2017]. Rank pooling represents a

video as a ranking function of its frames I1, ..., In, which intention is capture the order

of the frames in a video using a ranking of the features.
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Figure 2.1: Motion representation. First row shows the last frame of a video sequence,
second row shows the representation of the motion using optical flow and the last
row is the motion representation using dynamic image.

In more details, let ψ(It) ∈ Rd be a feature vector extracted from the t-th frame

in the video and Vt = 1
t ∑

t
τ=1 ψ(Iτ) be time average of these features up to time t.

The ranking function predicts a ranking score for each frame at time t denoted by

S(t|d) = 〈d, Vt〉, where d ∈ Rd is a parameter vector of the linear ranking func-

tion [Fernando et al., 2017].

The parameter set d are learned so that the scores reflect the rank of the frames

in the video. Therefore, the ranking scores for later times (e.g., q where q > t) are

associated with larger scores, i.e., S(q|d) > S(t|d) whenever q > t. Learning d is

posed as a convex optimisation problem using the RankSVM [Smola and Schölkopf,

2004] formulation given as the following equation 2.5.

d⋆ = ρ(I1, ..., It; ψ) = argmin
d

E(d),

E(d) =
λ

2
||d||2+

2

T(T − 1) ∑
q>t

max{0, 1 − S(q|d) + S(t|d)}.

(2.5)

The first term in this objective function is the usual quadratic regularizer used

in SVMs. The second term is a hinge-loss soft-counting how many pairs q > t are

incorrectly ranked by the scoring function. Note in particular that a pair is considered

correctly ranked only if scores are separated by at least a unit margin, i.e. S(q|d) >
S(t|d) + 1. Optimising equation 2.5 defines a function ρ(I1, ·, IT; ψ) that maps a video
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sequence of length T to a single vector denoted by d⋆. Since this vector contains

enough information to rank all frames in the video clip, it can be assumed that it can

aggregate temporal information from all frames. Therefore, it can be used as a video

motion representation or a temporal representation. The process of constructing d⋆

from a sequence of video frames is the idea behind rank pooling.

When one applies rank pooling directly on the RGB image instead of the feature

space, the resulting d⋆ is an image known as the dynamic image. In this case, ψ(It)
is an operator that takes RGB images as input. Similarly, d⋆ has the same number

of elements as a single frame of the input video. In this case, the dynamic image d⋆

summarises the temporal information from the video sequence. Bilen et al. [2016]

presents an approximation to rank pooling, which it is much faster and works as

well in practice.

The derivation of the rank pooling approximation is based on the idea of con-

sidering the first step in a gradient based optimisation of the equation 2.5. Start-

ing with d = ~0, the first approximated solution obtained by gradient descent is

d⋆ =~0 − η∇E(d)|d=~0 ∝ −∇E(d)|d=~0 for any η > 0, where

∇E(~0) ∝ ∑
q>t

∇max{0, 1 − S(q|d) + S(t|d)}|d=~0. (2.6)

= ∑
q>t

∇〈d, Vt − Vq〉

= ∑
q>t

Vt − Vq

Bilen et al. [2016] by further expanding d⋆ found an approximation to the rank pool-

ing as follows,

d⋆ ∝ ∑
q>t

Vq − Vt = ∑
q>t

[

1

q

q

∑
i=1

ψi −
1

t

t

∑
j=1

ψj

]

=
T

∑
t=1

αtψt (2.7)

where the coefficients αt are given by

αt = 2(T − t + 1)− (T + 1)(HT − Ht−1) (2.8)

where Ht = ∑
t
i=1 1/t is the t-th harmonic number and H0 = 0. Hence, the rank pooling

operator can be reduced to:

ρ̂(I1, ..., IT; ψ) =
T

∑
t=1

αtψt (2.9)

In summary, the construction of dynamic images using approximated rank pooling

is a simple weighted sum of the images with the coefficient α. We construct dynamic

images using this approximation by taking a weighted sum of input image sequence

where weights are given by predefined coefficients α. In this thesis, we make use of

dynamic images in chapter 3 as a motion representation for the action anticipation
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Figure 2.2: An example of the architecture of a Convolutional Neural Networks (Im-
age taken from Stanford University’s Introduction to Convolutional Neural Networks
course, 2018)

task.

2.2 Convolutional Neural Network

We use 2D convolutional neural networks to label still images or motion represen-

tation, such as mentioned in the previous section. Convolutional neural networks

(CNNs) are a type of neural network proposed by LeCun et al. [1989] to process

gridlike data, such as images. It proposed a convolutional neural network called

LeNet-5 which was able to classify hand-written digits from images. Nowadays,

CNNs can be seen as a powerful and useful tool to solve many machine learning and

computer vision tasks.

A Convolutional Neural Network is constructed using multiple stacks of different

layers. Including convolutional, pooling and fully-connected layers, as can be seen in

Figure 5. Convolutional layers are computational units that produce an output fea-

ture map by convolving an input with linear kernels containing learned parameters.

Each kernel operates independently through the input tensor by sliding across the

width and height of the image and producing a 2D response map. In contrast with

traditional methods that rely on hand-crafted features extraction methods to train

classifiers, CNNs can automatically learn a high-dimensional representation of an

input image. They use trainable filters, and local neighbourhood pooling operations,

which are applied to the input image and sub-sequences feature maps. Convolutions

have three properties that are particularly desirable for image processing and feature

extraction [Goodfellow et al., 2016].

Equivariance to translation, equivariant functions are ones that if the input changes

the output changes in the same way. In the case of images, it means that features can

be recognised regardless of their position in the image.

Parameter Sharing refers to using the same parameters for more than one func-

tion in the model. In contrast with neural networks, convolutions perform an efficient

parameter sharing since the same kernel is used at every position in the input.
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(a) (b)

Comparison between a) 2D convolutions and b) 3D convolutions in the way that
process the information

Sparse Interaction assuming that the kernel is smaller than the input, only ele-

ments that are nearby will interact with the kernel. This means that fewer parameters

are needed to be stored, reducing memory requirements.

A Convolutional Neural Network contains multiple stacks of convolutional layers

that combine the information between different filters. This multiple stack of layers

allows CNNs to learn concepts at an increasing level of abstraction as information is

processed through the network. It also usually involves interspersing convolutional

layers with non-linear activation function and pooling operations.

Since most of the real-world data is non-linear, Neural Networks require to han-

dle non-linearity. Various non-linear activation functions have been studied since the

creation of CNNs such as tanh or sigmoid. However, the rectified linear unit (ReLU),

proposed by Nair and Hinton [2010], is frequently used. ReLu is non-saturating, and

it has been found to perform better in most situations. Its output is given by:

f (x) = max(0, x) (2.10)

Pooling layer is a form of non-linear down-sampling using a summary statistic

such as the mean or maximum value of the incoming vector. It is inserted periodically

in-between successive convolutional layers. Pooling has some desirable properties,

such as making the network robust to small transformation and distortions since the

statistical mean or maximum is the same. It also makes the input representation

smaller and more computationally manageable.

The last part of a CNN is a set of fully connected layers, as can bee seen in Fig-

ure 2.2. Their purpose is to classify or predict values using the high-level feature

representation of the input created by the stack of convolutional and pooling layers.

Furthermore, adding a fully connected layer is a way of learning non-linear combi-

nation of these features. Fully connected layers expect a 1D real-valued vector as

input, which is obtained by flattening the 3D volume of the final pooling layer in

the architecture. This vector becomes the input to the fully connected layer which

produces non-spatial output. In the classification stage, a softmax function is usually

used as the activation function in the output layer of the fully connected layer. The

softmax function takes a vector of arbitrary real-valued scores, and it turns to a vector

of values between zero and one that sum to one, i.e., in the form of a probability.

An entire Convolutional Neural Network can express a single differentiable func-
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tion, whose parameters are trained using backpropagation. Back-propagation [Rumel-

hart et al., 1985], short for “backward propagation of errors”, is an algorithm for

supervised learning of neural networks that uses gradient descent. The method cal-

culates the gradient of the error function with respect to the neural network’s param-

eters. During training, the parameters are adapted to minimise a given a task-specific

loss function. It has been empirically observed many times that CNNs parameters

trained for one task can function as an effective visual feature extractor for many

other jobs. For example, by simply using the final layer of the convolution layers as

a feature representation of the input image. In this thesis, we use CNNs that have

been pre-trained for image classification, ImageNet [Russakovsky et al., 2015], and

object detection, Visual Genome [Krishna et al., 2016], as generic image encoders.

2.2.1 3D Convolution Neural Networks

Performing action classification in a video seems to be a natural extension of image

classification since videos are “just” a sequence of frames. Therefore, a naive ap-

proach would be aggregating or fusion all the predictions of every single frame in

the video [Karpathy et al., 2014]. However, this approach does not consider the tem-

poral information that is vital to understand the action that a human is performing

in a video clip. In light of this, recent approaches that consider the temporal infor-

mation using 3D convolutions emerge. These approaches are widely inspired by the

success of 2D convolutional neural networks in classification of images. In contrast

to 2D convolutional neural networks that use filters convolving the image in width

and height, 3D convolutions use filters that also convolve the video volume in the

depth direction, as can be seen in Figure 2.3

One of the first methods that use 3D CNNs for action recognition is proposed by

Tran et al. [2015]. In this work, authors build upon previous 2D CNNs work done

by Karpathy et al. [2014]. They repurposed a 3D convolution neural network as a

feature extractor. Extensively searching for the best architecture and 3D convolution

kernel.

They found that the network focussed on spatial appearance in the first few

frames and tracked the motion in the subsequent frames using deconvolutional lay-

ers to interpret the decision made by the neural network through a visualisation tool.

Later Carreira and Zisserman [2017] proposed an inflated version of a well know 2D

convolution neural network that has been used for image classification in the Ima-

geNet challenge.

Although 3D convolution neural networks have shown significant progress for

action recognition, there is still work to be done. This method struggles to capture

Spatio-temporal information across frames with a subtle difference. A more refined

understanding of objects or human motion will allow us to better tackle task like

sign-language recognition. Moreover, there is a substantial computational cost. A

simple 2D CNN for image classification could use 5 million of parameters compared

to six times more used by the same architecture inflated for 3D information. Taking

days or months for training this architecture depending on the dataset.
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2.3 Word Representations

In the intention to combine language and vision to understand the action that a hu-

man is performing in a video, it is necessary to create a word representation of the

text that is amenable for numerical computation. These representations are usually

called embeddings. In the early days of natural language, words were embed using

symbolic and fixed representations, such as dictionary lookup and one-hot embed-

dings. Those methods produce word representations that are easy to make but are

hard to train, requiring a large amount of memory, and they do not incorporate

meaning into the representation.

Recently methods are designed to consider semantic and syntactic dependencies

between words by exploiting the distribution of those in massive datasets. They

generate dense real-valued vector in a real space of tens or hundreds of dimensions.

Vectors representing similar meaning words like cookie and biscuit should have small

numerical difference since they are closely related.

One of the early used distributed word representations method is Skip-Gram

model [Mikolov et al., 2013], also known as Word2Vec. This method can learn dis-

tributed word representation in an unsupervised manner. For doing so, the method

tries to predict the source context words (surrounding words) given a target word

(the centre word). Thus, the words are representing utilising the means of their

neighbours.

While Word2Vec captures certain local context window, GloVe exploits overall

co-occurrence statistics of words from the corpus, which is a large collection of texts.

They construct a matrix of term co-occurrences. For each word, they compute the

conditional probability, e.g. for word water P(k|water), where k is a word from

vocabulary. If k is the word stream, the value of P would be high. If k is fashion, then

the expected value is low as they do not usually co-occur together. As it explained by

Pennington et al. [2014], the training objective of GloVe is to learn word vectors such

that their dot product equals the logarithm of the words’ probability of co-occurrence.

Owing to the fact that the logarithm of a ratio equals the difference of logarithms,

this objective associates ratios of co-occurrence probabilities with vector differences

in the word vector space. We extensively use GloVe embeddings in Chapters 4, 5 and

6.

Distributed word representations are powerful techniques. They do not suffer

from undesirable properties of simple methods, such as the need for large memory,

difficulty to be train and lack of semantic information in the word representation.

Although, Distributed word representations can incorporate semantic information of

words into their representation. They cannot produce vectors for Out-of-Vocabulary

words. Moreover, vector representations for rare words are usually not learned well

enough.
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Figure 2.4: Ilustration of the Recurrent Neural Networks of the Long Short-Term
Memory and Gated Recurrent Unit

2.4 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a type of artificial neural networks designed

to process sequential data. Unlike conventional feed-forward neural networks that

only operate on an input space, RNNs also operate on internal states or memory

which trace previous information passed to the network. This structure allows the

network to learn sequential dependencies in data. However, the long sequences make

it difficult to simple RNNs. Since they suffer to carry the information from earlier

inputs in the sequence to later ones.

In the backpropagation step, if a gradient value becomes extremely small, it does

not contribute to the learning process. We refer to that issue as the vanishing gradient

problem. Usually, earlier layers in an RNN suffer from this issue and forget what is

seen in longer sequences, thus having a short-term memory effect.

Long Short-Term Memory Networks and Gated Recurrent Units Networks were

created as the solution to short-term memory effect. They have internal mechanisms

called gates that can regulate the flow of information. We extensively make use of

this type of neural networks to encode the language and video representations within

Chapter 4, 5 and 6.

2.4.1 Long Short-Term Memory (LSTM) Networks

Long Short-Term Memory (LSTM) networks, proposed by Hochreiter and Schmid-

huber [1997], are an special type of RNN designed to learn long-term dependencies.

The LSTM receives an input xt and the previous hidden state ht−1 for each sigle step

over the input sequence x = {x1, x2, x3, · · · , xt} and output a new hidden state ht,

equation 2.11. In this subsection, we introduce the four gates that compose an LSTM,

Figure 2.4a.

ht = LSTM(xt, ht−1) (2.11)

Forget gate decides what information is passed through the cell state. The forget

gate consists on a fully connected layer with a sigmoid activation, equation 2.12. It
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looks at ht−1 and xt and output a number between 0 and 1 for each element in the

cell state Ct−1.

Input gate decides the new information that will be saved in the cell state. The

input gate consists on two parts, a fully connected layer with a sigmoid activation,

equation 2.13 that decide which values will be updated, and the candidates new

values C̃ which consist on a fully connected layer and a tanh activation function,

Equation 2.15.

Cell gate updates the old cell state for Ct−1 with the new cell state Ct. The cell gate

uses the forget gate and the input gate to decide what to keep or forget depending

on the decisions made in those gates, equation 2.16.

Output gate filters the cell state using a fully connected layer and a sigmoid activa-

tion layer to decide what values will be output by the LSTM at time t, Equations 2.14

and 2.17.

ft = σ(W f · [ht−1, xt] + b f ) (2.12)

it = σ(Wi · [ht−1, xt] + bi) (2.13)

ot = σ(Wo · [ht−1, xt] + bo) (2.14)

C̃t = tanh(Wc · [ht−1, xt] + bc) (2.15)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (2.16)

ht = ot ⊙ tanh(Ct) (2.17)

2.4.2 Gated Recurrent Units Networks

Recently introduced by Cho et al. in 2014 Gated Recurrent Units (GRU) networks is

also designed to solve the vanishing gradient problem. The GRU solves the problem

similarly to LSTM using gated units. It is composes of two gates, Update gate and

Reset gate, which decide what information passed to the output, Figure 2.4b.

Update gate determines how much information about the previous time steps or

past information needs to be passed along to the future, equation 2.19.

Reset gate decides how much of the past information the model needs to forget,

equation 2.18.

Although there is no evidence that GRU performs better than LSTM Chung et al.

[2014], the resulting model is simpler than standard LSTM models and has been

growing increasingly popular.

rt = σ(Wr · [ht−1, xt] + br) (2.18)

h̃t = tanh(Wh · [rt ⊙ ht−1, xt] + bh) (2.19)

ht = (1 − zt)⊙ ht−1 + zt ⊙ h̃t (2.20)
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2.5 Datasets

In this section, we present the different types of video datasets used throughout this

thesis. We follow the categories presented by Klaser [2010] to show that the type of

videos that we use throughout the thesis is the most complex. According to Klaser

2010 video datasets can be categories in controlled, constrained and unconstrained.

Controlled videos are acquired using different tools and techniques to facilitate auto-

mated processing. For instances, lighting condition can be controlled to better detect

human bodies; multiple cameras placed in specific locations to obtain desirable 3D

reconstruction. Markers that can be attached to human bodies for detecting joints,

limbs and facial gestures. These type of videos are not used throughout the thesis.

Constrained videos are collected with a limited degree of influence in the environ-

ment. Therefore, certain assumptions of the environment can be made, e.g., a single

person fully visible, favourable light conditions, static cameras or a limited set of

expected actions. For instance, videos from surveillance cameras belong to this cate-

gory since the camera placement and intrinsic parameters are fixed and known. An

algorithm such as background subtraction can be used. In this thesis, we made use

of three datasets that belong to this category. UT-Interaction [Ryoo and Aggarwal,

2010], TACoS [Rohrbach et al., 2014], and POM [Garcia et al., 2019b]. In the case of

UT-Interaction, videos are taken from a surveillance camera and have a limited set

of expected actions. Videos in TACoS are taken from a tripod located in front of a

kitchen table, and it also has a constrained list of possible actions related to cooking.

Finally, POM dataset consists of closeup to human people reviewing movies.

Unconstrained videos are recorded under conditions which cannot be influenced.

This is the case for, e.g., TV and cinema-style movie data, sports broadcasts, music

videos, or personal amateur clips. Only very few assumptions, if any, of a rather gen-

eral nature can be made, such as humans are present and relative well visible. The

main challenges for this more realistic data include changes of viewpoint, scale, and

lighting conditions, partial occlusion of humans and objects, cluttered backgrounds,

abrupt movement etc. In this thesis, we made use of seven different unconstrained

videos, which are mainly recollected from YouTube. JHMDB [Jhuang et al., 2013],

Youtubean [Marrese-Taylor et al., 2017], UCF101 [Soomro et al., 2012], Charades [Sig-

urdsson et al., 2016], ActivityNet [Caba Heilbron et al., 2015] and YouCookII [Zhou

et al., 2018b].
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Chapter 3

Action-Anticipation By Predicting

Future Dynamic Images

This chapter is based on:

Rodriguez-Opazo, C.; Fernando, B; Li, H. Action Anticipation By Predicting Fu-

ture Dynamic Images. Proceedings of the European Conference on Computer Vision, Work-

shop on Anticipating Human Behavior, 2018

The human motion in a video is one of the most distinctive clues to understanding

human actions. It provides temporal information that can help to recognise and pre-

dict the action and interactions of a human. In this chapter, we focus on the human

action anticipation task in videos. It is an essential and challenging task. It consists

of predicting the action taking place in a trimmed video by observing only a small

portion of an action in progress. This task is critical for applications where comput-

ers have to react to human actions as early as possible such as in pedestrian inten-

tion forecasting system in autonomous vehicles, human-robot interaction, assistive

robotics, among others. It is challenging because, with a limited observation of the

video, the future action of a human is unknown and highly ambiguous [Piedimonte

et al., 2015]. The starting of different actions, such as “walking” and “running”, is

quite similar.

We propose a method that forecasts the most plausible future human motion by

hallucinating a motion representation of a video’s small snippet. Instead of directly

predicting action labels of a partially seen sequence, we propose a new method that

generates future motion representation which will be used in predicting action la-

bels. We represent human motion using dynamic images [Bilen et al., 2016] and use

a set of tailored loss functions to encourage and guide the generative model to fore-

cast accurate future motion prediction by exploiting the relationship between static

appearance and motion information. Our method yields state-of-the-art performance

on the task in different benchmark datasets.

23
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3.1 Introduction

When interacting with other people, human beings have the ability to anticipate the

behaviour of others and act accordingly. This ability comes naturally to us, and we

make use of it subconsciously. Almost all human interactions rely on this action-

anticipation capability. For example, when we greet each other, we tend to anticipate

what is the most likely response and act slightly proactively. When driving a car,

an experienced driver can often predict the behaviour of other road users. Tennis

players predict the trajectory of the ball by observing the movements of the opponent.

The ability to anticipate the action of others is essential for our social life and even

survival. It is critical to transfer this ability to computers so that we can build smarter

robots in the future, with better social interaction abilities that think and act fast.

In computer vision, this topic is referred to as action anticipation [Ma et al., 2016a;

Ryoo, 2011; Aliakbarian et al., 2017; Soomro et al., 2016a,b] or early action prediction.

Although action anticipation is to some extent similar to action recognition, they differ

by the information being exploited. Action-recognition processes the entire action

within a video and generates a category label, whereas action-anticipation aims to

recognise the action as early as possible. More precisely, action-anticipation needs to

predict the future action label as early as possible by processing fewer image frames

(from the incoming video), even if the human action is still in progress.

Instead of directly predicting action labels [Aliakbarian et al., 2017], we propose

a new method that generates future motion representation from partial observations

of human action in a video. We argue that the generation of future motion repre-

sentation is a more intuitive task than generating future appearance, hence easier to

achieve. A method that is generating future appearance given the current appearance

requires to learn a conditional distribution of factors such as colour, illumination, ob-

jects and object parts; therefore, more challenging to achieve. In contrast, a method

that learns to predict future motion does not need to learn those factors. Further-

more, motion information is useful for recognising human actions as it is shown

by Bilen et al. [2017] and Simonyan and Zisserman [2014] and can be presented in

various image forms [Bilen et al., 2017; Ahad et al., 2012].

In this chapter, we propose to predict future motion representation for action

anticipation. Our method hallucinates what is in the next motion representation of

a video sequence given only a fraction of a video depicting a partial human action.

We make use of a convolutional autoencoder network that receives a motion image

as input at time t and outputs a motion image for the future (e.g., t + 1). Using the

Markov assumption, we generate more motion images of the future using already

generated motion images (i.e., we generate motion images for time t + 1, · · · , t +
k). Then we process generated motion images using Convolutional Neural Network

(CNN) to make action predictions for the future. As we can generate future motion

images, now we can predict human actions only observing a few frames of a video

containing an action. We train our action anticipation and motion generation network

with several loss functions. These loss functions are specifically tailored to generate

accurate representations of future motion and to make accurate action predictions.
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Figure 3.1: Training of our generation module using multiple loss functions. a)

Dynamic Loss evaluates the difference in motion information between predicted and
ground truth dynamic image using L2 norm. b) Classification Loss takes care of
generating dynamic images that are useful for action anticipation. c) Static Loss

computes the L2 norm between predicted and ground truth RGB information at
t + k to evaluate the difference in appearance.

Clearly, the motion information depends on the appearance and vice versa. For

example, motion representations, such as the optical flow, rely on two consecutive

RGB frames. Similarly, the content of dynamic images [Bilen et al., 2017] relies on

the appearance of consecutive frames. The relationship between static appearance

and motion information is somewhat surprising and mysterious [Carreira and Zis-

serman, 2017]. Recently, proposed dynamic images have managed to explore this

relationship to some degree of success [Bilen et al., 2017]. In particular, dynamic

images summarise the temporal evolution of appearance of few frames (e.g., ten

frames) into a single image. Therefore, this motion summary image (also known as

a dynamic image) captures the motion information of those frames. In this work,

we hallucinate dynamic images for the future and use them for the task of action

anticipation 1.

We generate dynamic images using both the expected appearance and motion of

the future. Specifically, future dynamic images are generated by taking into account

both reconstructive loss (coined dynamic loss) and future expected appearance, which

is coined static loss. As motion and appearances should be consistent with each

1However, the main concept of this chapter is applicable for other types of motion representation as
well, such as optical flow, motion history images, among others.
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other, static loss is designed to satisfy expected future appearance in the generated

dynamic images. In addition to that our generated dynamic images make use of

class information and therefore are discriminative. These loss functions are tailored

to generate accurate future dynamic images, as is depicted in Figure 3.1. In summary,

in this chapter, we study the motion representation of a video to understand human

actions and predict the action in a trimmed video as early as possible by forecasting

the motion representation of a small section of the video.

3.2 Related work

Action anticipation literature can be classified into classical methods that use hand-

crafted features and modern approaches that use a more holistic video representation

with deep learning techniques.

In the case of handcrafted features, Ryoo [2011] addressed the problem of early

recognition of unfinished activities. Two variants of the bag-of-words representations

are introduced to handle the computational issues of modeling how feature distri-

butions change over time. Yu et al. [2012] proposed to use spatial-temporal action

matching for the action anticipation task using spatial-temporal implicit shape mod-

els. Later, Li and Fu [2014] explore sequence mining where a series of actions and

object co-occurrences are encoded as symbolic sequences. Kong et al. [2014] investi-

gate the temporal evolution of human actions to predict the type of action as early

as possible. Their approach captures the temporal dynamics of human actions by ex-

plicitly considering all the history of observed features as well as features in smaller

temporal segments. More recently, Soomro et al. [2016b] propose to use binary SVMs

to localise and classify video snippets into sub-action categories and obtain the final

class label in an online manner using dynamic programming. Given the need to

train one classifier per sub-action, Soomro et al. [2016a] extended this approach us-

ing a structural SVM formulation. In addition to that, this method introduces a new

objective function to encourage the score of the correct action to increase as time

progresses.

While all the above methods utilise handcrafted features, most modern methods

use deep learning approaches for action anticipation [Ma et al., 2016a; Aliakbarian

et al., 2017; Jain et al., 2016a; Vondrick et al., 2016]. Deep learning-based methods can

be primarily categorised into two types; on one side, we have different approaches

that rely on novel loss functions for action anticipation [Ma et al., 2016a; Aliakbarian

et al., 2017; Jain et al., 2016a]. On the other side, we have methods that try to generate

future content by content prediction [Vondrick et al., 2016]. In this context, Ma et al.

[2016a] propose to use a Long Short-Term Memory (LSTM) with a ranking loss to

model the activity progression and use it for effective action anticipation tasks. They

use Convolutional Neural Network (CNN) features and an LSTM to model both

spatial and temporal information.

Similarly, Jain et al. [2016a] proposed a new loss function known as the exponen-

tially growing loss. In this work, they try to penalise errors increasingly over time
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using an LSTM-based framework. In the same line, Aliakbarian et al. [2017] proposed

a novel loss function for action anticipation that encourages the network to achieve

good predictions as early as possible. The method of Aliakbarian et al. [2017] tries

to overcome ambiguities in the early stages of actions by preventing false negatives

from the beginning of the sequence. Singh et al. [2017] proposes a slightly different

but related approach. Their method works in a different setup, online action detec-

tion, that can be used for action anticipation. Instead of predicting the future class

label, in Vondrick et al. [2016], the authors propose to predict future visual represen-

tation. However, the primary motivation in Vondrick et al. [2016] is to learn activity

representations using unlabeled videos.

Our work is different from the work of Vondrick et al. [2016] as we predict future

motion representation using dynamic images. We make use reconstruction loss, class

information loss, and expected future appearance to guide our neural network to

predict the next motion representation images. As our generated dynamic images

are trained for action anticipation, they are class-specific and different from original

dynamic images [Bilen et al., 2017]. As demonstrated, our generated dynamic images

are more effective than original dynamic images for the action anticipation task.

In a similar direction, Gao et al. [2017b] proposed to generate future appearance

images using an LSTM autoencoder that uses regression and classification losses to

anticipate actions. We argue that predicting future appearance representation is a

complicated task, and also we believe that action anticipation can benefit more from

motion prediction than the challenging appearance prediction. Predicting future con-

tent has been explored on other related problems in different domains of computer

vision. Some of the work focuses on predicting (or forecasting) the future trajectories

of pedestrians Kitani et al. [2012] or predicting motion from still images Pellegrini

et al. [2009]. However, we are the first to show the effectiveness of predicting good

motion representations for early action anticipation.

3.3 Method

Our work’s objective is to recognise human actions as early as possible from a video

sequence depicting human action. We present a method that hallucinates future mo-

tion from a partially observed human action sequence (RGB video clip). Then we

process these hallucinated future motion representations to make future action pre-

dictions, also known as action anticipation. Our motion representation is based on

dynamic images [Bilen et al., 2016, 2017]. Dynamic images model dynamic informa-

tion of a short video clip and summarise motion information to a single frame, more

information about dynamic images can be found in the background section 2.1.2 of

this thesis. We present a method to hallucinate future dynamic images using a con-

volutional autoencoder neural network. We process generated dynamic images to

predict future human actions using a CNN named dynamic CNN. To improve action

recognition performance further, we use observed still image appearance informa-

tion and process them with a static CNN. Furthermore, we make use of dynamic
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Figure 3.2: Overview of our anticipation approach. We receive as an input a se-
quence of RGB video frames (a). Then we use RGB images with windows size T to
compute the Dynamic Images for seen part of the video (b). The last dynamic image
of the seen part is used to feed our dynamic image generator and generate D̂t+1 (c).
Next, we feed Dynamic CNN with observed dynamic images and generated dynamic
images and Static CNN with RGB images (d). Finally, we fusion all the outputs of
our recognition networks (e).

images created from observed RGB data and use the same dynamic CNN to make

predictions. Therefore, we make use of three kinds of predictions and fuse them to

make the final prediction (see Figure 3.2). In the following section, we present our

dynamic image generation model in section 3.3.1. Then we discuss loss functions in

section 3.3.2 and how to train our model in section 3.3.3.

3.3.1 Future motion prediction

Given a collection of videos X with corresponding human action class labels Y, our

aim is to predict the human action label after observing as few frames from the start

of each video as possible.

Each video Xi ∈ X is a sequence of frames Xi = 〈I1, I2, · · · , In〉 of variable length

n. We process each sequence of RGB frames to obtain a sequence of dynamic images

using equation 2.7. Instead of summarising the entire video with a single dynamic

image, we propose to generate multiple dynamic images from a single video se-

quence using a fixed window size of length T. Therefore, each dynamic image is

created using T consecutive frames. We process each training video Xi and obtain a

sequence of dynamic images 〈D1, D2, · · · , Dn〉.
Our objective is to train a model that is able to predict the future dynamic image

Dt+k given the current dynamic images up to time t i.e., 〈D1, D2, · · · , Dt〉. Therefore,

we aim to model the following conditional probability distribution using a paramet-



§3.3 Method 29

ric model

P(Dt+k| 〈D1, D2, · · · , Dt〉 ; Θ) (3.1)

where Θ are the parameters of our generative model and k ≥ 1. We simplify this

probabilistic model using the Markov assumption on the sequence of dynamic im-

ages, hence now k = 1 and condition only on the previous dynamic image Dt. Then

our model simplifies to following equation 3.2. Note that even though the Markov as-

sumption is applied to the dynamic image, each dynamic image summarises several

video frames.

P(Dt+1|Dt; Θ) (3.2)

The model in equation 3.2 simplifies the training process. Moreover, it may be

possible to take advantage of different kinds of machine learning technique to im-

plement the model in equation 3.2.

Now the challenge is to find a good machine learning technique and loss function

to train such a model. We use a denoising convolutional autoencoder to hallucinate

future dynamic images given the current ones. Our convolutional autoencoder re-

ceives a dynamic image at time t and outputs a dynamic image for next time step

t + 1. In practice, dynamic images up to time t are observed, and we recursively

generate dynamic images for time t + 1, · · · , t + k using the Markov assumption.

Although we use a denoising convolutional autoencoder, our idea can also be imple-

mented with other generative models such as autoencoders [Baldi, 2012], variational

conditional autoencoders [Kingma et al., 2014; Sohn et al., 2015] and conditional gen-

erative adversarial networks [Mirza and Osindero, 2014] The autoencoder we use has

four convolution stages. Each convolution has kernels of size 5× 5 with a stride of 2,

and the number of features maps for the convolution layers are set to 64, 128, 256, and

512 respectively. Then the deconvolution is the inverted mirror of the encoding net-

work (see Figure 3.2), which is inspired by the architecture used in DCGAN [Radford

et al., 2016]. Next, we discuss suitable loss functions for training the autoencoder.

3.3.2 Loss functions for training the autoencoder

First, we propose to make use of reconstructive loss L2 distance between predicted

dynamic image D̂t+1 and the ground truth dynamic image obtained from the train-

ing data Dt+1 as shown in equation 3.3. We called this loss Dynamic loss to avoid

confusion with other losses that we propose later on that also use L2.

LDL = ||D̂t+1 − Dt+1||2 (3.3)

Even though this loss function helps us to generate expected future dynamic image,

it does not guarantee that the generated dynamic image is discriminative for ac-

tion anticipation. Indeed, we would like to generate a dynamic image that contains

more discriminative information that helps to perform the action anticipation task.
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Therefore, we propose to explore the teacher-student networks [Hinton et al., 2015]

to teach the autoencoder to produce dynamic images that would be useful for action

anticipation. First, we train a teacher CNN which takes dynamic images as input and

produces the action category label. Let us denote this teacher CNN by f (Di; Θcnn)
where it takes dynamic image Di and produces the corresponding class label vec-

tor ŷi. This teacher CNN that takes dynamic images as input and outputs labels is

called Dynamic CNN (see Fig 3.2). This teacher CNN is trained with cross-entropy

loss [Szegedy et al., 2017]. Let us denote our generator network as g(Dt; Θ) → Dt+1.

We want to take advantage of the teacher network f (; Θcnn) to guide the student gen-

erator g(Dt; Θ) to produce future dynamic images that are useful for classification.

Given a collection of current and future dynamic images with labels, we train the

generator with the cross-entropy loss as follows:

LCL = −∑
t

yi log f (g(Dt; Θ); Θcnn) (3.4)

where we fix the CNN parameter Θcnn. Obviously, we make the assumption that

CNN f (Di; Θcnn) is well trained and has good generalization capacity. We ensure

this by evaluating the performance of the Dynamic CNN to classify the action label

for real dynamic images. We call this loss as the classification loss which is denoted by

LCL. In theory, compared to original dynamic images [Bilen et al., 2016, 2017], our

generated dynamic images are class-specific and therefore discriminative.

Motion and appearance are related. Optical flow depends on the appearance of

two consecutive frames. Dynamic images depend on the evolution of appearance of

several consecutive frames. Therefore, it is important to verify that generated future

motion actually adhere to future expected appearance. Another advantage of using

dynamic images to generate future motion is the ability to exploit this property ex-

plicitly. We make use of future expected appearance to guide the generator network

to produce accurate dynamic images. Let us explain what we mean by this. When

we generate future dynamic image Dt+1, as demonstrated in equation 3.5, implicitly

we also recover the future RGB frame It+1. Using this equation 3.5, we propose so-

called static loss (SL) (equation 3.6) that consists of computing the L2 loss between

the generated RGB image Ît+1 and real expected image It+1.

Dt+1 =
T

∑
i=1

αi It+1+i (3.5)

= αT IT+t+1

T−1

∑
i=1

αi It+1+i

IT+t+1 =

Dt+1 −
T−1

∑
i=1

αi It+1+i

αT

The applicability of static loss does not limit only to matching the future expected

appearance, but also we guide the autoencoder model g(; Θ) to use all implicitly
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generated RGB frames from Ît+2 to ÎT+t+1 making the future dynamic image better

by modelling the evolution of appearance of static images. Indeed, this is a better

loss function than simply taking the dynamic loss as in equation 3.3.

LSL = || ÎT+t+1 − IT+t+1||2 (3.6)

3.3.3 Multitask learning

We train our autoencoder with multiple losses, the static loss (LSL), the dynamic loss

(LDL) and the classification loss (LCL). By doing so, we aim to generate dynamic

images that are good for classification, as well as a representative of future motion.

With the intention to enforce all these requirements, we propose to train our autoen-

coder in a batch-wise multitask manner. Overall, one might write down the global

loss function L = λslLSL + λdlLDL + λclLCL. However, instead of finding good scalar

weights λsl , λdl , and λcl , we propose to divide each batch into three sub-batches and

optimise each loss using only one of those sub batches. Therefore, during each batch,

we optimise all losses with different sets of data. We found this strategy leads to bet-

ter generalisation than optimising a linear combination of losses.

3.3.4 Inference

During inference, we receive RGB frames from a video sequence as input. Using

those RGB frames, we compute dynamic images following equation 2.7 with a window

size T = 10. In the case that the amount of frames is less than what is needed to

compute the dynamic image, we compute the dynamic image with the available

frames according to equation 2.7.

We use the last dynamic image (Dt) to predict the following dynamic image

(D̂t+1). We repeat this process to generate k number of future dynamic images.

We process each observed RGB frame I, observed dynamic images D and generated

dynamic images D̂ by respective static and dynamic CNNs that are trained to make

predictions (see Figure 3.2). Then, we obtain a score vector for each RGB frame, dy-

namic image and generated dynamic image. We sum them together and use average

pooling in the temporal dimension to make the final prediction.

3.4 Experiments and results

In this section, we report a series of experiments to evaluate our action anticipation

method. First, we present results for action recognition using the static CNN and the

dynamic CNN in section 3.4.1. Then, we evaluate the impact of different loss func-

tions for generating future dynamic images in section 3.4.2. After that in section 3.4.3,

we compare our method with state-of-the-art techniques for action anticipation. Fi-

nally, in section 3.4.4 we present further analysis on the performance of our method

through the iterative forecasting of new Dynamic Images and a visual comparison

between the forecasted and computed Dynamic Images.
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JHMDB UT-Interaction

Static CNN 55.0% 70.9%
Dynamic CNN 54.1% 71.8%

Table 3.1: Action recognition performance using dynamic and RGB images over JH-
MDB and UT-Interaction datasets. Action recognition performance is measured at
frame level.

Datasets We test our method using three popular datasets for human action anal-

ysis JHMDB [Jhuang et al., 2013], UT-Interaction [Ryoo and Aggarwal, 2010] and

UCF101-24 [Soomro et al., 2012], which have been used for action anticipation in

recent prior works [Aliakbarian et al., 2017; Soomro et al., 2016b; Singh et al., 2017].

The JHMDB dataset is a subset of the HMDB51 dataset [Kuehne et al., 2011].

It is created by keeping action classes that involve a single person action. Videos

have been collected from different sources such as movies and the world-wide-web.

JHMDB dataset consists of 928 videos and 21 action classes. Each video contains

one human action which usually starts at the beginning of the video. Following

the recent literature for action anticipation [Aliakbarian et al., 2017], we report the

average accuracy over the three splits and report results for so-called earliest setup.

For the earliest recognition, action recognition performance is measured only after

observing 20% of the video. To further understand our method, we also report

recognition performance with respect to time (as a percentage).

The UT-Interaction dataset (UTI) contains 20 video sequences where the average

length of a video is around 1 minute. These videos contain complete executions of 6

human interaction classes: shake-hands, point, hug, push, kick and punch. Each

video contains at least one execution of interaction, and up to a maximum of 8

interactions. There are more than 15 different participants with different clothing.

The videos are recorded with 30fps and with a resolution of 720 x 480 which we

resize to 320 x 240. To evaluate all methods, we use recommended 10-fold leave-one-

out cross-validation per set and report the mean performance overall sets.

The UCF101-24 dataset is a subset of the challenging UCF101 dataset. This subset

of 24 classes contains Spatio-temporal localisation annotation. It has been constructed

for THUMOS-2013 challenge2. On average, there are 1.5 action instances per video;

each instance cover approximately 70% of the duration of the video. We report the

action-anticipation accuracy for set 1, as has been done previously by Singh et al.

[2017].

3.4.1 Training of Static and Dynamic CNNs

In this section, we explain how we train our static and dynamic CNNs (see Figure 3.2).

Similar to Bilen et al. [2016] and Bilen et al. [2017], we train a Static CNN for RGB

frame-based video action recognition and a Dynamic CNN for dynamic image-based

action recognition. In all our experiments, each dynamic image is constructed using

2http://crcv.ucf.edu/ICCV13-Action-Workshop/download.html

http://crcv.ucf.edu/ICCV13-Action-Workshop/download.html
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10 RGB frames (T=10). We use different data augmentation techniques to reduce the

effect of over-fitting. Images are randomly flipped horizontally, rotated by a random

amount in a range of -20 to 20 degrees, horizontally shifted in a range of -64 to

64 pixels, vertically shifted in a range of -48 to 48 pixels, sheared in a range of 10

degrees counter-clockwise, zoomed in a range of 0.8 to 1.2 and shifted channels in a

range of 0.3. We make use of pre-trained Inception Resnet V2 [Szegedy et al., 2017]

to fine-tune both Static CNN and the Dynamic CNN using a learning rate of 1e−4.

We use a batch size of 32 and a weight decay of 4e−5. We use ADAM [Kingma

and Ba, 2015] optimiser to train these networks using epsilon of 0.1 and beta 0.5.

Action recognition performance using these CNNs for JHMDB and UTI datasets are

reported in Table 3.1. Note that the action recognition performance in Table 3.1

is only at the frame level (not video level). We use these trained Static and Dynamic

CNNs in the generation of future motion representation, dynamic images, and action

anticipation tasks.

3.4.2 Impact of loss functions

In this section, we investigate the effectiveness of each loss function, explained in

section 3.3.2, in the generation process of future dynamic images. We evaluate the

quality of the generated dynamic images for the action recognition task. We feed

the dynamic CNN, previously trained with real dynamic images, with the generated

dynamic images, and we report the accuracy in the action recognition task.

We perform this experiment constructing a sequence of dynamic images using

equation 2.7 for each test video in the dataset. Then for each dynamic image in the

test set, we generate the future dynamic image using our convolutional autoencoder.

Then we use our dynamic CNN (which has been pre-trained in the previous section)

to evaluate the action recognition performance of generated dynamic images (DIg).

Using this approach, we can evaluate the impact of several loss functions in the

generation of dynamic images. Notice that the number of generated dynamic images

is equal to real dynamic images in each dataset, which allow us to fairly compare the

action recognition performance between the predicted and real dynamic images.

We use the first split of JHMDB and the first set of UTI to perform this experi-

ment. We make use of the three proposed losses in section 3.3.2: dynamic-loss (LDL),

class-based loss (LCL) and static-loss (LSL) to train our autoencoder. We train the con-

volutional autoencoder using ADAM solver with a batch size of 32, a learning rate of

1e−4. We train our model for 30 epochs using the same augmentation process used

in section 3.4.1.

We use the generalisation performance of real dynamic images from Table 3.1 as a

reference to estimate the quality of generated dynamic images since we measure the

performance of generated dynamic images in the same way.

As can be seen in Table 3.2, a combination of LDL, LCL and LSL gives a good

recognition performance in the case of JHMDB dataset obtaining 54.0% for the gen-

erated dynamic images, which as good as when we feed the real dynamic image

to the dynamic CNN 54.1% (Table 3.1) — indicating that our generative model along
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JHMDB-21 UT-Interaction

LDL 42.8% 64.3%
LSL 49.5% 64.2%
LDL + LSL 53.4% 66.5%
LDL + LCL 52.5% 64.5%
LDL + LSL + LCL 54.0% 68.4%

Table 3.2: Results of using multitask learning to generate future dynamic images.
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Figure 3.3: Action anticipation performance with respect to portion of the video
observed on JHMDB (left) and UTI (right) datasets.

with the proposed loss functions is capable of generating representative and useful

future dynamic images. A similar trend can be seen for UTI dataset. Notice that

the LDL and LSL already produce good recognition performance on JHMDB and

UTI datasets, which suggest that those losses can generate images that understand

human motion. However, those generated images are not class-specific.

We conclude that convolutional autoencoder model trained with three losses is

able to generate robust future dynamic images. These generated dynamic images are

effective in action recognition.

3.4.3 Action anticipation

Our action anticipation network consist of a static CNN and a dynamic CNN (see

Figure 3.2). Our action anticipation baseline uses observed multiple RGB frames

and multiple dynamic images similar to Bilen et al. [2016]. In addition to that,

our method generates a K future dynamic images and makes use of them with dy-

namic CNN. Action anticipation performance is evaluated at different time steps

after observing fraction of the video (i.e., 10%, 20%, · · · , 100% of the video). Results

are shown in Figure 3.3, where we can see the effect of adding generated dynamic

images (MDIg) to our pipeline. In the case of JHMDB, the most significant im-
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Method Earliest Latest

S-SVN [Soomro et al., 2016a] 11.0% 13.4%
DP-SVM [Soomro et al., 2016a] 13.0% 14.6%
CuboidBayes [Ryoo, 2011] 25.0% 71.7%
CuboidSVM [Ryoo et al., 2010] 31.7% 85.0%
Context-Aware+Loss of [Jain et al., 2016a] 45.0% 65.0%
Context-Aware+Loss of [Ma et al., 2016a] 48.0% 60.0%
BP_SVM [Laviers et al., 2009] 65.0% 83.3%
I-BoW [Ryoo, 2011] 65.0% 81.7%
D-BoW [Ryoo, 2011] 70.0% 85.0%
E-LSTM [Aliakbarian et al., 2017] 84.0% 90.0%

Ours 89.2% 91.9%

Table 3.3: Comparison of action anticipation methods using UTI dataset. 50% of the
video is observed at Earliest.

Method Earliest Latest

DP-SVM [Soomro et al., 2016a] 5% 46%
S-SVM [Soomro et al., 2016a] 5% 43%
Where/What [Soomro et al., 2016b] 12% 43%
Context-Aware+Loss of [Jain et al., 2016a] 28% 43%
Ranking Loss [Ma et al., 2016a] 29% 43%
Context-Aware+Loss of [Ma et al., 2016a] 33% 39%
E-LSTM [Aliakbarian et al., 2017] 55% 58%
ROAD [Singh et al., 2017] 57% 68%

Ours 61% 63%

Table 3.4: Comparison of action anticipation methods on JHMDB dataset. 20% of
video is observed at Earliest.

provement is obtained at 20%, which is an enhancement of 5.1% with respect to the

baseline. In the UTI dataset, the most significant improvement is obtained at 40%

of the video observed with a performance enhancement of 5.0% with respect to the

baseline. Moreover, the less significant improvement is obtained when the video ob-

servation approaches the 100% with a 0.62% and 0.71% of improvement with respect

to the baseline on JHMDB and UTI dataset, respectively.

Another standard practice is to report the action anticipation performance using

earliest and latest prediction accuracies as done by Ryoo [2011]; Aliakbarian et al.

[2017]. Although, there is no agreement of what is the proportion of frames used in

the earliest configuration through different datasets. We make use of the proportion

that has been employed by baselines (20% and 50% of the video for JHMDB and

UTI, respectively). Therefore, following Aliakbarian et al. [2017] we report results

in Tables 3.4 and 3.3 for JHMDB and UTI datasets, respectively. We outperform
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Earliest Latest

ROAD (RTF) [Singh et al., 2017] 81.7% 83.9%
ROAD (AF) [Singh et al., 2017] 84.2% 85.5%

Ours 89.3% 90.2%

Table 3.5: Comparison of action anticipation methods on UCF101-24 dataset. 10% of
video is observed at Earliest.
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Figure 3.4: Impact of generating more future dynamic images recursively on a) JH-
MDB and b)UT-Interaction datasets. K is the number of generated dynamic images
based on observed RGB frames. K=0 means no dynamic image is generated.

other methods that rely on additional information, such as optical flow [Ma et al.,

2016a; Soomro et al., 2016a,b] and Fisher vector features based on improved Dense

Trajectories [Soomro et al., 2016a]. Our approach outperforms the state-of-the-art by

4.0% on JHMDB and by 5.2% on UTI datasets in the earliest configuration. Finally,

we report results on UCF101-24 dataset for action anticipation. For this dataset, we

use 10% of the video to predict the action class in the earliest configuration. As we

can see in Table 3.5, we outperform previous method [Singh et al., 2017] by 5.1% on

the earliest configuration.

These experiments evidence the benefits of generating future motion information

using our framework for action anticipation.

3.4.4 Further exploration

In Figure 3.4, we observe the influence of generating dynamic images recursively

for the earliest configuration in JHMDB and UTI datasets. We generate K number

of future dynamic images recursively. The first generation uses the very last true

dynamic image in the video. Then, we use the previously generated dynamic image

for the remaining K − 1 generations. As it can be seen in Figure 3.4, as we generate

more dynamic images into the future, the prediction performance degrades due to

the error propagation. We report action recognition performance for each generated

future dynamic image (i.e., for the generated future dynamic image at K). If we

do not generate any dynamic image for the future, we obtain an action recognition
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Figure 3.5: Visual comparison between generated dynamic image (bottom) and
ground truth (top). K refers to how many iterations we apply in the generation
of dynamic image.

performance of 55.9%. If we include generated dynamic images, we obtain the best

of 61.0% on JHMDB. A similar trend can be seen for UTI dataset, where without

future dynamic images, we obtain 87.4%, and after generation, we obtain an action

recognition performance of 89.2%. The influence of generating more future dynamic

images is shown in Figure 3.4.

Finally, we visually inspect the recursively generated dynamic images for K equal

to 1, 4, 7 and 10 in Figure 3.5. Although, we can use our model to generate quite

accurate dynamic images, as we predict into the further, the generated dynamic

images might contain some artifacts.

3.5 Summary

In this chapter, we have demonstrated how to hallucinate future video motion rep-

resentation for action anticipation. We propose several loss functions to train our

generative model in a multitask scheme. Our experiments demonstrate the effective-

ness of our loss functions to produce better future video representation for the task of

action anticipation. Moreover, experiments show that made use of the hallucinated

future video motion representations improves the action anticipation results of our

powerful backbone network. With our simple approach, we have outperformed the

state-of-the-art in action anticipation in three important action anticipation bench-

marks.
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Chapter 4

Proposal-Free Temporal Moment

Localisation Using Guided

Attention

This chapter is based on

Rodriguez-Opazo, C.; Marrese-Taylor, E.; Sadat-Saleh, F.; Li, H; Gould, S. Pro-

posal free Temporal Moment Localization of a Natural-Language Query in Video

using Guided Attention. Proceedings of the Winter Conference on Applications of Com-

puter Vision, 2020, pages 2453-2462.

Video analysis using natural language is drawing attention to the computer vision

and natural language communities over the past few years, acknowledging the im-

portance of these two modalities to understand the video content. In this chapter, we

study the problem of temporal moment localisation in a long untrimmed video using

natural language as the query. Given an untrimmed video and a query sentence, the

goal is to determine the start and end of the relevant visual moment in the video

that corresponds to the query sentence. In a vast majority of cases, these queries are

descriptions of human actions. However, some of the benchmarks used for this task

also have queries describing intrinsic temporal segments within a video such as ‘cred-

its’. While most previous works have tackled this by a propose-and-rank approach,

we introduce a more efficient, end-to-end trainable, and proposal-free approach that

is built upon three key components: First, we transfer language information to the

visual domain using a dynamic filter. Second, we also propose a new loss function

that guides the Dynamic Filter to attend the most relevant part of the video. Third,

soft labels to cope with annotation uncertainties. Our method is evaluated on three

standard benchmark datasets, Charades-STA, TACoS and ActivityNet-Captions. Ex-

perimental results show our approach outperforms state-of-the-art methods on these

benchmarks datasets, confirming the effectiveness of our method.

39
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Query:	
"The	woman	wraps	the	toy	in	the	tissue	paper	and	tapes	it	shut."

Figure 4.1: An illustration of temporal localisation of a natural language query in
an untrimmed video. Given a query and a video the task is temporally localize the
starting and ending of the sentence in the video.

4.1 Introduction

Vision-and-language understanding is an essential problem in computer vision, draw-

ing increasing attention from the community over the past few years, motivated by

its vast potential applications. This setting includes tasks such as video captioning

and video question answering. While promising results have been achieved in these

tasks, a fundamental issue remains to be tackled, namely, that these informative

video segments need to be manually trimmed (pre-segmented) and often aligned

with the relevant textual descriptions that accompany them.

Since searching for a specific visual event over a long video sequence is difficult

and inefficient to do manually, even for a small number of videos, automated search

engines are needed to deal with this requirement, especially when dealing with a

massive amount of video data. It is clear that these search engines have to retrieve

videos not only based on the video metadata, but they also must exploit their internal

information in order to localise the required information/segment accurately.

In light of this, automatically recognising when an activity is happening in a video

has become a crucial task in computer vision. Its applicability to other research areas

such as video surveillance and robotics [Liu et al., 2019], among others, has also

helped bring interest to this task. Earlier works in this area focused on temporal

action localisation [Richard et al., 2018; Lin et al., 2017; Xu et al., 2017; Zhao et al.,

2017; Escorcia et al., 2016b; Chao et al., 2018; Gao et al., 2017c], which attempted to

localise “interesting” actions in a video from a pre-defined set of actions. However,

this approach constrains the search engine to a relatively small and unrealistic set of

queries from users.

To address this issue the task of “temporal action localisation with natural lan-

guage” has been proposed recently [Gao et al., 2017a; Hendricks et al., 2017]. Given

a query, the goal is to determine the start and end locations of the associated video

segment in a long untrimmed video. In this context, we are specifically interested in

the problem of natural-language-based temporal localisation, or temporal sentence



§4.1 Introduction 41

localisation in the video. Formally, given an untrimmed video and a query in natu-

ral language, the task is to identify the start and endpoints of the video segment in

response to it, therefore effectively locating the temporal segment (i.e., moment) that

best corresponds to the given query, as depicted in Figure 4.1.

Current approaches to the localisation problem, either spatial or temporal, mainly

focus on creating a good multi-modal embedding space and generating proposals

based on the given query. In these propose and rank approaches, candidate regions are

first generated by a separate method and then fed to a classifier to get the probabili-

ties of containing target classes, effectively ranking them. Despite the relative success

of these approaches, this setting is ultimately restrictive in scope since it uses pre-

defined clips as candidates. These approaches are hard to extend for videos where

the activities have a considerable variance in the length.

To this end, we propose an approach that does not rely on candidate generation or

ranking, being able to directly predict the start and end times given a query in natural

language. Our model is guided by a dynamic filter, which is responsible for matching

the text and video feature embeddings, and a principal attention mechanism which

encourages the model to focus on the features within of segment of interest. To the

best of our knowledge, our approach is the first to do so.

Recent works on temporal action localisation with natural language Ghosh et al.

[2019] has adopted an approach akin to machine reading comprehension [Chen et al.,

2017], but in a multi-modal setting. Similar to ours, these models are trained in an

end-to-end manner. Specifically, they maximise the likelihood of correctly predicting

the start and end frames associated with a given query, analogous to predicting the

text span corresponding to the correct answer in machine reading comprehension.

We note, however, that annotating the start and end of a given activity in a video

is highly subjective compare with machine reading comprehension, as evidenced

by relatively low inter-annotator agreement [Sigurdsson et al., 2017; Alwassel et al.,

2018]. In light of this, our model incorporates annotation subjectivity in a simple yet

efficient manner, obtaining increased performance.

We conduct experiments on three challenging datasets, Charades-STA [Gao et al.,

2017a], TACoS [Rohrbach et al., 2014] and Activity Net Captions [Krishna et al.,

2017]. Our results demonstrate the effectiveness of our proposed method, obtain-

ing state-of-the-art performance on those datasets. It also empirically demonstrate

the effectiveness of our attention-based guidance mechanism, and of incorporating

the subjective nature of the annotations into the model, ultimately validating our

proposed approach through ablation analysis.

The rest of the chapter is organised as follows: Section 4.2 provides an overview

of related work on temporal action localisation with natural language. Section 4.3

describes our method to find sentence in the video. Section 4.4 presents our ex-

periments in two different benchmarks, quantitatively and qualitatively. Finally, in

Section 4.5 we summarise our findings.
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4.2 Related Work

4.2.1 Temporal Action Localization

The task of temporal action localisation aims to solve the problem of recognising

and determining temporal boundaries of action instances in videos. Since activities

(in the wild) consist of a diverse combination of actors, actions and objects over

various periods of time, earlier work focused on the classification of video clips that

contained a single activity, i.e., where the videos were manually trimmed.

More recently there has also been significant work in localising activities in longer,

untrimmed videos. For example, Shou et al. [2016] trained C3D [Tran et al., 2015]

with a localization loss and achieved state-of-the-art performance on THUMOS [Idrees

et al., 2017]. On the other hand, Ma et al. [2016b] used a temporal LSTM to gener-

ate frame-wise prediction scores and then merged the detection intervals based on

the predictions. Singh et al. [2016] extended the two-stream [Simonyan and Zisser-

man, 2014] framework with person detection and bi-directional LSTMs and achieved

state-of-the-art performance on the MPII-Cooking dataset [Rohrbach et al., 2015].

Escorcia et al. [2016a] took a different approach and introduced an algorithm for

generating temporal action proposals from long videos, which are used to retrieve

temporal segments that are likely to contain actions. Lin et al. [2017] proposed an

approach based on 1D temporal convolutional layers to skip the proposal genera-

tion step via directly detecting action instances in the untrimmed video, obtaining

excellent results on the THUMOS [Idrees et al., 2017] and MEXaction2 [mex, 2015]

datasets.

The major limitation of these action localisation methods is that they are restricted

to a pre-defined list of actions. As it is non-trivial to design a label space which has

enough coverage for such activities without losing useful details in users’ queries,

this approach makes it difficult to cover complex action queries.

4.2.2 Temporal language-driven moment localization

Language-driven temporal moment localisation is the task of determining the start

and end time of the temporal video segment that best corresponds to a given natural

language query. Essentially, this means using natural language queries to localise

activities in untrimmed videos. While the language-based setting allows for having

an open set of activities, it also corresponds to a more natural query specification, as

it directly includes objects and their properties as well as the interaction between the

involved entities.

The work of Hendricks et al. [2017] and Gao et al. [2017a] are generally regarded

as a pioneering papers on this task. While Hendricks et al. [2017] proposed to learn

a shared embedding for both video temporal context features and natural language

queries, suitable for matching candidate video clips and language queries using a

ranking loss and handcrafted heuristics, Gao et al. [2017a] proposed to generate

candidate clips using temporal sliding windows which are later ranked based on

alignment or regression learning objectives.
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The research line defined by Gao et al. [2017a], where proposals are generated

using temporal sliding windows was later extended by Ge et al. [2019], which lever-

age activity classifiers to help encode visual concepts, and add an actionness score to

help capture the semantics from verb-object pairs in the queries. Recently, Liu et al.

[2018] also resorted to sliding windows for generating proposals, but used a mem-

ory attention model when matching each proposal to the input query. Despite their

simplicity and ability to provide coarse control over the frames that are evaluated,

the main problem with these methods is that the matching mechanism between the

candidate proposals and the query is computationally expensive.

To tackle this issue some approaches have focused on reducing the number of

temporal proposals generated. These methods generally focus on producing query-

guided or query-dependent video clip proposals, skipping unlikely clips from the

matching step and thus speeding up the whole process. In this context, Chen et al.

[2018] propose to capture frame-by-word interactions between video and language

and then score a set of temporal candidates at multiple scales to localise the video

segment that corresponds to the query. Similarly, Xu et al. [2019] propose a multilevel

model to tightly integrate language and vision features and then use a fine-grained

similarity measure for query-proposal matching.

A slightly different but related approach is proposed by Hendricks et al. [2018],

where the video context is modelled as a latent variable to reason about the tem-

poral relationships. The work of Zhang et al. [2019] further improved on this by

utilising a graph-structured network to model temporal relationships among differ-

ent moments, therefore addressing semantic and structural misalignment problems.

On the other hand, Chen and Jiang [2019] focused on the proposal generation step,

integrating the semantic information of the natural language query into the proposal

generation process to get discriminative activity proposals. Although previous meth-

ods use techniques to directly generate candidate moment representations aligned

with language semantics instead of fetching video clips independently, they still de-

pend on ranking a fixed number of temporal candidates in each video, leading to

inefficiencies, due to the long duration of videos with great variance in their lengths.

More recently, methods that go beyond the scan and localise approach, which can

therefore directly output the temporal coordinates of the localised video segment

have been proposed. For example, Yuan et al. [2019] used a co-attention based model

for temporal sentence localization. In this context, some models also resort to rein-

forcement learning to dynamically observe a sequence of video frames conditioned

on the given language query.

Concretely, Hahn et al. [2019] use this approach and learn how to skip around the

video, therefore being able to more easily localise relevant clips in long videos. In-

stead of simply concatenating the video representation and query embedding, their

approach uses a gated attention architecture to model textual and visual representa-

tions in order to align the text and video content.

Finally, Ghosh et al. [2019] proposed a simpler approach that does not rely on

reinforcement learning and does not either involve retrieve and re-ranking multiple

proposal segments. Their approach focuses on predicting the start and end frames
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Figure 4.2: Overview of our proposal-free method with its four modules: sentence
and video encoders to extract features from each modality, a dynamic filter to trans-
fer language information to video, and a localization layer to estimate the starting
and ending points. In the attention filter module, T is the total number of features
extracted from the video and d is the dimensional space where the video and dy-
namic filter interact.

by leveraging cross-modal interactions between the text and video. In this context,

our method proposes a simple yet effective proposal-free approach which makes it

more practical to use.

4.3 Proposed Approach

Let V ∈ V be a video that can be characterized as a sequence of frames such that

V = [vt | t = 1, . . . , ℓ]. Each video in V is annotated with a natural language query

Q ∈ Q where Q is a sequence of words Q = [wj | j = 1, . . . , m], which describes what

is happening in a certain period of time. Formally, this interval is defined by ts and

te, the starting and ending points of the annotations in time, respectively.

We propose a model that is trained end-to-end on a set of example tuples of

annotated videos (Vk, Qk, ts
k, te

k). Although in the data a given video may be annotated

with more than one single moment, and one natural language description may be

associated to multiple moments, in this chapter we assume each derived case as

an independent, separate training example. Given a new video and sentence tuple

(Vr, Qr), our model predicts the most likely temporal localisation of the contents of

Qr in terms of its start and end positions ts⋆
r and te⋆

r in the video, therefore effectively

solving the problem of temporal localisation of sentences in videos. In the following,

for simplicity, we drop the index k associated to each training example.

Our model is designed in a modular way, offering more flexibility over previous

work. There are four main components which we proceed to describe in the follow-

ing sections. First, sections 4.3.1 and 4.3.2 give details about our video and natural

language query encoders, respectively. These can be seen as the initial components

in our model, responsible for effectively obtaining a semantically rich representation

for the data coming from each input modality. The output representations returned
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by these modules are later combined using a dynamic filter layer, described in section

4.3.3, which allows us to transfer language information to the visual domain. Finally,

section 4.3.4 describes our proposed localisation layer, which takes the filtered video

features and uses them to predict the start and end frames of the desired location.

Figure 4.2 shows an overview of our proposed approach.

4.3.1 Video Encoder

As discussed earlier, previous works on temporal sentence localisation in videos

mostly rely on proposal generation, either using sliding windows or other heuristics

[Gao et al., 2017a; Hendricks et al., 2017; Ge et al., 2019; Liu et al., 2018]. The pro-

cess of producing many temporal segment candidates is computationally expensive,

even though its efficiency can be improved if the proposals are processed in parallel.

Moreover, proposal-based mechanisms neglect time dependencies across segments,

treating them independently, thus ultimately failing to capture the temporal infor-

mation in the input video effectively.

Inspired by recent works in one-shot object detection, we propose a video encod-

ing layer that generates a visual representation summarising Spatio-temporal pat-

terns directly from the raw input frames. Concretely, given an input video V, let

FV(V) be our video encoding function mapping the l input video frames to a se-

quence of vectors G = {gi ∈ Rdv}, i = 1, . . . , T, with features that capture high-level

visual semantics in the video. Note that the length of the input vector in frames l and

the number of output features n may differ, which is why we denote them differently.

Because of the encoding of the video, the location of the annotated natural lan-

guage description needs to be re-scaled to match the new feature-wise setting. We

apply the mapping τ = (t · n · f ps)/l to convert from frame/feature index to time.

Concretely, ts and te are converted into τs and τe corresponding to specific integer

feature positions such that τs, τe ∈ [1, . . . , n].

Specifically, in this chapter, we model FV using I3D proposed by Carreira and

Zisserman [2017]. This method inflates the 2D filters of a well-known network, e.g.,

Inception [Szegedy et al., 2015; Ioffe and Szegedy, 2015] or ResNet [He et al., 2016] for

image classification to obtain 3D filters, helping us better exploit the Spatio-temporal

nature of the video. However, note that our video encoder later is generic, so other

alternatives such as C3D propose by Tran et al. [2015] could be utilised instead.

4.3.2 Sentence Encoder

The language encoder aims at generating a semantically rich representation of the

natural language query that is useful for localising relevant moments in the video.

We model our encoder as a function FQ(Q) that maps each word wj for j = 1, . . . , m

to a semantic embedding vector hj ∈ Rds , where ds defines the hidden dimension of

the obtained sentence representation.

Although our sentence encoding module is generic, in this work, we rely on

a bi-directional GRU [Chung et al., 2014] on top of pre-trained word embeddings.
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Specifically, we make use of GloVe [Pennington et al., 2014], which are vectors pre-

trained in a large collection of text documents. In this setting, our query encoding

function F is parametrised by both the GloVe embeddings and the GRU. Finally,

to obtain a fixed-length sentence representation, we utilise a mean pooling layer

over the hidden states obtained from the GRU, obtaining a final summarised query

representation h̄, as follows,

h̄ =
1

m

m

∑
j=1

hj (4.1)

4.3.3 Guided Attention

After encoding both the input sentence and video, we utilise an attention-based dy-

namic filter [Jia et al., 2016; Li et al., 2017; Gavrilyuk et al., 2018; Zhang et al., 2019].

The motivation behind this is to allow the model to generate filters to be applied

over the video features that dynamically change given the sentence query, effectively

reacting to specific parts of the video embedding and thus providing the model with

clues about the location.

Concretely, we first reduce the dimensionality of the sentence embedding ds and

the video embedding dv to the same space of size d using a fully-connected neural

network fs and fv, respectively. Then, we apply a filter function θ as follows,

θ(x) = tanh(Wθx + bθ) ∈ R
T (4.2)

As seen in Equation 4.2, our filter function θ(·) is a single-layer fully-connected

neural network. The sentence representation h̄ is fed into our function and the ob-

tained filter is later used to create a temporal attention over the projected video

features G. Specifically, we apply a softmax over the dot product between each video

feature gi and the output of the filter θ(h̄), as follows,

A = so f tmax

(

fv(G)⊺θ(h̄)√
n

)

∈ R
T (4.3)

Ḡ = A ⊙ fv(G) ∈ R
T×d (4.4)

where ⊙ denotes the Hadamard product, and the 1/
√

n constant is used to re-scale

the product for better training stability [Vaswani et al., 2017]. As a result of these

operations, each video feature is scaled by the attention filter based on the natural

language query.

Given a category of semantically similar natural language queries, for example

describing the same type of action, we would like our model to focus on the Spatio-

temporal features that most likely describe and generalise these semantics across

all examples where they are relevant, regardless of the additional context in the

videos. We, therefore, argue that the most relevant features should fall inside the time

boundary (τs to τe) defined by the starting and ending points of the target locations to
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be predicted. Although features from outside this segment could also contain useful

information for the localisation task, we hypothesise that by exploiting these features

the model should attain less generalisation power, as these features are not likely to

capture patterns that appear in the majority of different videos containing a given

type of action.

In light of this, we encourage our model to attend these relevant features and

therefore improve its generalization capabilities. Concretely, we guide our attention

mechanism to put focus on these features using a loss function on the output, as

follows,

Latt = −
n

∑
i=1

(1 − δτs≤i≤τe) log(1 − ai) (4.5)

where δ is the Kronecker delta and ai is the ith column in the attention matrix A. In

this way we penalise the network to attend features that are outside of the temporal

moment refered by the query.

4.3.4 Localisation Layer

The localisation layer is in charge of predicting the starting and ending points of the

moment in the video, using the previously constructed sequence of attended video

features ḡi for i = 1, . . . , n.

Humans have difficulty agreeing on the starting and ending time of action inside

a video, as evidenced by the low inter-annotation agreement in the relevant datasets

for temporal localisation [Sigurdsson et al., 2017; Alwassel et al., 2018]. Considering

that this is therefore a highly subjective task, we take a probabilistic approach and

propose to use soft-labels [Salimans et al., 2016; Szegedy et al., 2016] to model the

uncertainty associated with the labels.

The localisation layer starts by further contextualising the attended video features

ḡi utilising a 2-layer bidirectional GRU [Chung et al., 2014]. Then, we utilise two dif-

ferent fully connected layers to produce scores associated to the probabilities of each

position being the start/end of the location. For each case, we take the softmax of

these scores and thus obtain vectors τ̂
s, τ̂

e ∈ Rn containing a categorical probability

distribution for the predicted start and end positions, respectively.

To model annotation uncertainty, we take τs and τe and create two target categor-

ical distribution vectors τ
s ∼ N (τs, 1) ∈ Rn and τ

e ∼ N (τe, 1) ∈ Rn respectively,

where N (µ, σ) denotes a quantized Gaussian distribution centered at µ, with stan-

dard deviation σ. We train our model to minimize the Kullback-Leibler divergence

between the predicted and ground truth probability distributions, as follows.

LKL = DKL(τ̂
s ‖ τ

s) + DKL(τ̂
e ‖ τ

e) (4.6)

where DKL is the Kullback-Leibler divergence. The final loss for training our method

is the sum of the two individual losses defined previously.

Loss = LKL + Latt (4.7)
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During inference, we predict the starting and ending positions using the most

likely locations given by the estimated distributions:

τ̂s = argmax(τ̂s) τ̂e = argmax(τ̂e) (4.8)

These values correspond to positions in the feature domain of the video, so we con-

vert them back to time positions as explained previously.

4.4 Experiments

In this section, we first describe the datasets used in our experiments and give some

details about our learning procedure. Then, we provide an ablation study on the

effect of different components, and we compare our approach with other methods.

Finally, we provide a qualitative visualisation of the predicted localisation and atten-

tion.

4.4.1 Datasets

To evaluate our proposed approach we work with three challenging datasets for

temporal natural language-driven moment localisation, Charades-STA [Gao et al.,

2017a], TACoS [Rohrbach et al., 2014] and ActivityNet Caption [Caba Heilbron et al.,

2015; Krishna et al., 2017], which are widely utilised in previous works for evaluating

models on our task.

Charades-STA: built upon the Charades dataset [Sigurdsson et al., 2016] which pro-

vides time-based annotations using a pre-defined set of activity classes, and general

video descriptions. In Gao et al. [2017a], the sentences describing the video are

semi-automatically decomposed into smaller chunks and aligned with the activity

classes, which are later verified by human annotators. As a result of this process,

the original class-based activity annotations are effectively associated to their natural

language descriptions, totalling 13,898 pairs. We use the pre-defined train and test

splits, containing 12,408 and 3,720 moment-query pairs respectively. Videos are 31

seconds long on average, with 2.4 moments on average, each being 8.2 seconds long

on average.

MPII TACoS [Rohrbach et al., 2014] has been built on top of the MPII Composi-

tive dataset [Rohrbach et al., 2012]. It consists of detailed temporally aligned text

descriptions of cooking activities. The average length of the videos is five minutes.

A significant challenge in TACoS dataset is that descriptions span over only a few

seconds because of the atomic nature of queries such as ‘takes out the knife’ and

‘chops the onion’ (8.4% of them are less than 1.6s long). Such short queries allow a

smaller margin of error. In total, there are 18,818 pairs of a sentence and video clips.

We use the same split as in [Gao et al., 2017a], consisting of 50% for training, 25% for

validation and 25% for testing.

ActivityNet Caption (ANet-Cap): a large dataset built on top of ActivityNet [Caba Heil-

bron et al., 2015], which contains data derived from YouTube and annotated for the
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tasks of activity recognition, segmentation and prediction. ANet-Cap further im-

proves the annotations in ANet by incorporating descriptions for each temporal seg-

ment in the videos, totalling up to 100K temporal descriptions annotations over 20K

videos. These have an average length of 2.5 minutes and are associated with over 200

activity classes, making the content much more diverse compared to Charades-STA.

The temporally annotated moments are 36 seconds long on average, with videos

containing 3.5 moments on average. Besides moments being more prolonged than in

Charades-STA, we find that their associated natural language descriptions are also

longer, besides using a more varied and richer vocabulary. We utilise the pre-defined

train and validation splits in our experiments. Unlike Charades, Activity-Net con-

tains a moment covering the entire video among other moments within the video.

Although other similar datasets, such as DiDeMo [Hendricks et al., 2017] also

exist, we find it inadequate for evaluating our method. We note this dataset has been

constructed for purposes that are substantially different from ours. They discretise

videos into 5-second segments, and the task is to determine what is the start and end

segment of the query. Thus, lacking start and end temporal annotations.

4.4.2 Implementation Details

Pre-processing for the natural language input in the case of Charades-STA is minimal,

as we simply tokenise and keep all the words in the training data. In the case of

ANEt-Cap, we pre-process the text with spacy1 and replace all named entities as

well as proper nouns with special markers. Finally, we truncate all sentences to a

maximum length of 30 words and replace all tokens with a frequency lower than 5

in the corpus with a special UNK marker. The language encoder uses a hidden state

of size 256, without fine-tuning the pre-trained GloVe embeddings.

When it comes to the video encoder, we first pre-process the videos by extracting

features of size 1024 using I3D with average pooling, taking as input the raw frames

of dimension 256 × 256, at 25 fps. For Charades-STA, we use the pre-trained model

released by Carreira and Zisserman [2017] trained on Charades. For Anet-Cap we

use the model pre-trained on the kinetics400 dataset [Kay et al., 2017] released by the

same authors, which we also fine-tune on ANet-Cap afterwards.

All of our models are trained in an end-to-end fashion using Adam [Kingma and

Ba, 2015] with a learning rate of 10−4 and weight decay 10−3. To prevent over-fitting,

we add dropout 0.5 between the two layers in the localisation module, which has a

hidden size of 256. In addition to this, we also apply a simple data augmentation

technique that consists on creating new examples by randomly cropping segments

out from the initial part of the videos. We do this whenever the random cropping

does not overlap with the locations of the annotations.

1https://spacy.io

https://spacy.io
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4.4.3 Evaluation Metric

We evaluate our model by computing the temporal Intersection over Union (tIoU) at

different thresholds, which we denote using the α parameter. In this setting, for a

given value of α, whenever a given predicted time window has an intersection with

the gold-standard that is above the α threshold, we consider the output of the model

as correct. Following previous work, we also report the mean tIoU (mIoU) on the

ANet-Cap dataset, helping make our comparisons more comprehensive.

4.4.4 Ablation Study

To evaluate the effectiveness of some introduced components, we perform several

ablation studies on the Charades-STA dataset. Concretely, we focus on the soft-

labeling technique and the usage of the attention loss Latt. For the latter we simply

experiment omitting the term for the calculation of the gradients. For the former,

we replace the LKL loss with a likelihood-based loss similar to Ghosh et al. [2019], as

follows:

LNLL = − log(τ̂s[τs])− log(τ̂e[τe]) (4.9)

where τ̂
s and τ̂

e are the predicted probability distributions and τs and τe are the

respective indices from the ground-truth annotations.

Method α = 0.3 α = 0.5 α = 0.7

NLL 60.91 43.66 27.07
KL 66.69 47.20 29.35
NLL + AL 66.64 47.53 29.89
KL + AL 67.53 52.02 33.74

Table 4.1: Ablation study on the impact of the guided attention and soft-labeling on
Charades-STA.

We first compare our soft-labeling approach with the previously mentioned like-

lihood-based loss (NLL). As shown in Table 4.1, modelling the subjectivity of the

labelling process using soft-labels and our distribution-matching loss (KL) leads to a

significant improvement in the performance of our method, both in terms of retriev-

ing and localising the full extent of the queries in the given videos.

We also evaluate the contribution of the attention loss Latt to our pipeline. Ac-

cording to the results in Table 4.1, adding the attention loss (AL) leads to consistent

improvement in the performance of our method, both when modelling soft-labels

and when not. This confirms our hypothesis that the most generalisable features are

likely to be located within the boundaries of the query segment in the video. Finally,

the synergy of our two proposed techniques can be seen in the last row of Table 4.1.

4.4.5 Comparison to the State-of-the-Art

We compare the performance of our proposed approach on both datasets against

several prior work baselines.



§4.4 Experiments 51

Method α = 0.3 α = 0.5 α = 0.7

Random - 8.51 3.03
CTRL [Gao et al., 2017a] - 21.42 7.15
ABLR [Chen and Jiang, 2019] - 24.36 9.01
SMRL[Wang et al., 2019] - 24.36 11.17
SAP [Chen and Jiang, 2019] - 27.42 13.36
MLVI [Xu et al., 2019] 54.70 35.60 15.80
TripNet [Hahn et al., 2019] 51.33 36.61 14.50
ExCL [Ghosh et al., 2019] 65.10 44.10 23.30
MAN [Zhang et al., 2019] - 46.53 22.72

Ours 67.53 52.02 33.74

Table 4.2: Accuracy on Charades-STA for different tIoU α levels. Results for ABLR
are as reported by Chen and Jiang [2019].

Method α = 0.3 α = 0.5 α = 0.7

MCN [Hendricks et al., 2017] 1.64 1.25 -
ABLR [Yuan et al., 2019] 18.90 9.30 -
CTRL [Gao et al., 2017a] 18.32 13.30 -
ACRN [Yuan et al., 2019] 19.52 14.62 -
TGN [Chen et al., 2018] 21.77 18.90 -
TripNet [Hahn et al., 2019] 23.95 19.17 9.52
MAC [Ge et al., 2019] 24.17 20.01 -
ExCL [Ghosh et al., 2019] 44.20 28.00 14.60

Ours 24.54 21.65 16.46

Table 4.3: Accuracy on TACoS for different intersection over union α levels.

Proposal-based methods: We compare our approach to a broad selection of models

based on proposal generation, including MCN [Hendricks et al., 2017], TGN [Chen

et al., 2018], MAN [Zhang et al., 2019], as well as some recent work such as SAP

[Chen and Jiang, 2019], MLVI [Xu et al., 2019] and ACRN [Liu et al., 2018].

Reinforcement-learning-based methods: We compare our results to TripNet [Hahn

et al., 2019] and SMRL [Wang et al., 2019], both of which utilise RL to learn how to

jump through the video until the correct localisation is found.

Proposal-free methods: We consider two recent works, ABLR [Yuan et al., 2019]

and ExCL [Ghosh et al., 2019], both aiming for proposal-free moment localization.

Similar to ours, these techniques utilise the complete video representation to predict

the start and end of a relevant segment. However, our approach is different since it

models the uncertainty of the labelling process. Note also that while ABLR utilises a

co-attention layer, ExCL does not rely on attention layers at all.

Comparing the performance of our method in the Charades-STA benchmark,

our proposed approach outperforms all the baselines by a large margin, as can be

seen in Table 4.2. The mean temporal intersection over union of our approach is

48.22, reflecting the capability of our method to correctly identify the correct temporal

extent of the natural language query, as can also be seen in the performance at α = 0.7
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Method α = 0.1 α = 0.3 α = 0.5 α = 0.7 mean tIoU

MCN [Hendricks et al., 2017] 42.80 21.37 9.58 - 15.83
CTRL [Gao et al., 2017a] 49.09 28.70 14.00 - 20.54
ACRN [Yuan et al., 2019] 50.37 31.29 16.17 - 24.16
MLVI [Xu et al., 2019] - 45.30 27.70 13.60 -
TGN [Chen et al., 2018] 70.06 45.51 28.47 - -
TripNet [Hahn et al., 2019] - 48.42 32.19 13.93 -
ABLR [Yuan et al., 2019] 73.30 55.67 36.79 - 36.99

Ours 75.25 51.28 33.04 19.26 37.78

Table 4.4: Accuracy on ANet-Cap for different tIoU α levels

and α = 0.9 where our method obtains 33.74 and 9.68 accuracy for those thresholds.

TACoS is a challenging benchmark not only because the length of the videos is

much longer than Charades-STA, but also because it presents a bigger variability

of segment duration for a query. The localisation layer in our system is a vanilla

GRU, which could have difficulties predicting the precise spans of queries in very

long videos, in the case of TaCoS videos can be as long as one hour. We believe that

the variability of the moment durations in such long videos can harm the training

process. Despite that, our method outperforms all previous methods at α = 0.7,

showing the robustness of our approach.

ANet-Cap is another challenging dataset similar to TACoS with significant variability

of the duration of the segments. However, as shown in Table 4.4, our method yields

good performance at different levels of tIoU. In particular, it outperforms all previous

methods at α = 0.1 and α = 0.7, showing the effectiveness of our method to recall

the correct temporal extent of the sentence query. Although our method cannot

outperform the performance of ABLR at α = 0.3 and α = 0.5, it yields better mIoU

than previous methods in this benchmark, as can be seen in Table 4.4. It is important

to note that in this case, we do not compare with ExCL [Ghosh et al., 2019] since their

reported results have more than 3,300 missing videos making those results not fair

for comparison.

As suggested by the empirical evidence, our method consistently outperforms

others on estimating the correct extension of the queries. This good estimation indi-

cates that our proposed mechanism for incorporating the uncertainty of the labelling

process is effective yet simple, playing a key role in helping the network to find the

correct starting and ending points. In addition to this, the evidence also suggests

that our novel attention mechanism, which guides the localisation layer to focus on

the features that are within the corresponding segments in the video, also aids the

network. By allowing the model to attend the features that better represent similar

action across different videos, we obtain better generalisation.
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Query:	"Person	sits	in	a	nearby	computer	chair."

14.2 20.1

14.2475 20.155

34.75					GT

Prediction

Attention

Query:	"person	open	the	door."

2.6 10.0

27.23

					GT

Prediction

Attention

31.42

Figure 4.3: Examples of success and failure cases of our proposal-free method for
Charades-STA

4.4.6 Qualitative Results

Two different samples one showing success and one a failure case of our method on

Charades-STA dataset can be seen in Figure 4.3. Each sample presents the ground

truth localisation, the attention weights and predicted localisation of a given query.

For attention, brighter colours mean more weight. In the successful case, given the

query “Person sits in a nearby computer chair”, our method could localise the moment

at a tIoU of 98.28%, with maximum attention at 16.27 seconds peaking at 0.83. It

is interesting to see that only one or two video features seem to be necessary for

retrieving the starting and ending correctly.

On the second example in Figure 4.3 we show how our method fails to localise

the query “person open the door”. It is possible to see that the appearance of the

retrieved moment, when the person actually leaves the room, is very similar to the

ground truth, Figure 4.4. We attribute this result to the features for opening the door

and leaving the room being too close, especially on this example. Probably high-

quality spatio-temporal features or deeper reasoning about the context would help

the network to disambiguate this type of scenarios.

Other success cases of our algorithm on the Charades-STA dataset can be seen in

Figures 4.5 and 4.6. It is interesting to see that as soon as our method can attend

frames inside of the action, the localisation layer can predict a good start and end

temporal location.

Failure cases of our method are presented in Figures 4.7 and 4.8. We can see that

attention layer gets confused in the first example; it does not know what is the most
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Figure 4.4: Similar appearance frames for failure case on Charades-STA

important feature for the query, making the localisation layer fail to predict good

temporal localisation. Figure 4.8 shows that the attention layer gets confused with

frames that has similar appearance, Figure 4.9.
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2.8 9.0

2.8

					GT

Prediction

Attention

9.1

Query:	"A	person	is	throwing	the	bag	at	the	light	switch."

29.75

Figure 4.5: Success case of our proposal-free method on Charades-STA dataset

1.4 7.2

1.39

					GT

Prediction

Attention

7.297

Query:	"person	puts	the	books	down."

30.58

Figure 4.6: Success case of our proposal-free method on Charades-STA dataset

14.6 

0.0 

     GT

Prediction

Attention

Query: "the person was putting the bag into the cabinet."

30.71 21.2 

5.584 

Figure 4.7: Failure case of our proposal-free method on Charades-STA
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0.0 

29.42 

     GT

Prediction

Attention

33.62 8.7 

33.62 

Query: "person reading a book."

Figure 4.8: Failure case of our proposal-free method on Charades-STA

Figure 4.9: Confusing frames for one of the failure case of Charades-STA

Although videos in ActivityNet Caption are much longer than videos in Charades-

STA, our method still can get good localisation performance if the attention layer

does a good job, as can be seen in Figures 4.10 and 4.11. Notice that Figure 4.11

shows a long action that spans more than 2.5 minutes.

Failure cases of our method on ActivityNet Caption dataset are presented in Fig-

ures 4.12 and 4.13. Our method has similar difficulties in Charades-STA and Activ-

ityNet Caption. Every time that the attention fails to focus in frames inside of the

corresponding moment the localization layer cannot predict the correct temporal lo-

calization of the query. Figure 4.14 shows frames that are also related to query in

Figure 4.13. These images suggest that our method can understand what a credits is

and where is located but cannot distinguish ending or starting

18.70 120.55

15.51 121.29

					GT

Prediction

Attention

140.99

Query:	"We	then	see	one	man	climbing	a	sheer	cliff."

Figure 4.10: Success case of our proposal-free method in ActivityNet Caption dataset
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					GT

Prediction

Attention

229.8650.57 220.66

51.04 229.86

Query:	"They	then	get	up	with	jump	ropes	and	the	two	begin	doing	various	types	of	jumps."

Figure 4.11: Success case of our proposal-free method in ActivityNet Caption dataset

					GT

Prediction

Attention

86.9824.35 26.09

0.0 86.98

Query:	"The	right	man	serves	again."

Figure 4.12: Failure case of our proposal-free method in ActivityNet Caption dataset

					GT

Prediction

Attention

162.61

0.0 86.98

Query:	"We	seen	the	ending	credits."

174.85

Figure 4.13: Failure case of our proposal-free method in ActivityNet Caption dataset.

Figure 4.14: Confusing frames for one of the failure case of ActivityNet Caption
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4.5 Summary

In this chapter, we have presented a novel end-to-end architecture that is designed to

address the problem of temporal localisation of natural-language queries in videos,

also known as temporal moment localization. Our approach uses a guided attention

mechanism that focuses on more generalisable features to guide the localisation esti-

mation. Moreover, we also consider the key problem of subjectivity in the annotation

process by modelling the label uncertainty in a simple but efficient way, also obtain-

ing substantial performance gains. As a result, our approach achieves state-of-the-art

performance on both Charades-STA, TACoS and ANet-Cap datasets.



Chapter 5

Spatio-Temporal Graph for

Language-based Query Localization

in Video

This chapter is based on

Rodriguez-Opazo, C.; Marrese-Taylor, E.; Fernando, B.; Li, H; Gould, S. DORi:

Discovering Object Relationships for Moment Localization of Natural Language Query

in a Video. Proceedings of the Winter Conference on Applications of Computer Vision, 2021.

Localising actions in a long untrimmed video requires not just to understand the

human motion involved in the execution of this, but also to understand the objects

involved in the action and the sequence of actions performed previously. In the

previous Chapter 4, we provide a solution for temporal moment localisation using a

proposal-free approach and demonstrating the importance of attending generalisable

temporal segments and how to deal with the uncertainty annotations. However, we

have seen in Figures 4.4 and 4.9 how the method gets confused. Similar action such

as "looking a mobile" or "reading a book" requires object information to understand

the video adequately.

In this chapter, we continue studying the task of temporal moment localisation.

However, we focus on adding spatial information, such as humans and objects in-

volved in the video, to create a tailored activity representation for this task. Our key

innovation is to learn a video feature embedding through a language-conditioned

message-passing algorithm suitable for temporal moment localisation which cap-

tures the relationships between humans, objects and activities in the video. These

relationships are obtained by a spatial subgraph that contextualised the scene rep-

resentation using objects and human features detected by Faster-RCNN. Moreover,

a temporal sub-graph captures the activities within the video through time. We

evaluate our method on the same three standard benchmarks presented in the pre-

vious chapter, and we also introduce YouCookII as a new benchmark for this task.

YouCookII is instructional videos that focused on the human and objects involved in

the reproduction of a recipe. Experiments show our method outperforms state-of-

the-art methods on these datasets, confirming the effectiveness of our approach.

59
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5.1 Introduction

As the amount of video data continues to grow, searching for specific visual events

in large video collections has become increasingly relevant for search engines. This

search engine requirement has helped draw increased attention to the task of activity

detection in recent years. This task is especially important, considering that manually

annotating videos is laborious and error-prone, even for a small number of videos.

In this sense, it is clear that search engines have to retrieve videos not only based

on video metadata but that they must also consider the videos’ content in order to

localise a given query accurately.

It is for that reason that we retain our interest in the task of temporal sentence

localisation, in which given an untrimmed video and a natural language query, the

goal is to identify the start and end points of the video segment (i.e., moment) that

best corresponds to the given query.

Many of the existing approaches to the localisation problem in vision-and-language,

either spatial or temporal, have focused on creating a good multi-modal embedding

space and generating proposals based on the given query. As it is mentioned in

the previous chapter, in the propose and ranking methods, first a particular method

generates candidate regions (proposals) which are then passed to a second stage that

rank them and adjust the start and end locations of the query. Most recently, Ghosh

et al. [2019] and our method presented in Chapter 4 do not rely on proposals.

Evidence shows that solving grounded language tasks often requires reasoning

about relationships between objects in the context of the task [Hu et al., 2019]. For

example, the work of Sigurdsson et al. [2017] showed that the performance in action

recognition tasks improves by a large margin if we have a perfect object recognition

oracle. Moreover, the majority of the queries that are used for this task are related to

human actions. In this chapter, our primary motivation is to capture the relationship

between humans and objects with the activity that they are performing. One can

‘read a book’ or ‘look at the mobile.’ A good way to identify and disambiguate what

the person is doing is to make use of object clues.

In light of this, in this chapter, we propose a mechanism to obtain contextualised

activity representations based on a language-conditioned message passing algorithm.

As activities are usually the result of the composition of several actions or interactions

between a subject and objects [Jiang et al., 2013], our algorithm incorporates both

spatial and temporal dependencies. Therefore, modelling the relationship between

subjects and objects in a scene and how these change over time, supporting the

temporal moment localisation task.

We conduct experiments on four challenging datasets, Charades-STA [Gao et al.,

2017a], ActivityNet [Caba Heilbron et al., 2015; Krishna et al., 2017], TACoS [Rohrbach

et al., 2014] and YouCookII [Zhou et al., 2018b,a], demonstrating the effectiveness

of our proposed method and obtaining state-of-the-art performance. Our results

highlight the importance of our message-passing algorithm in modelling the rela-

tionship between human and object and their interaction to understand the activity,

ultimately validating our proposed approach. Our approach is the first to incor-
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porate a language-conditioned message-passing algorithm to obtain contextualised

activity representations using the objects and subjects for this task to the best of our

knowledge.

5.2 Related Work

In the same manner that chapter 4, this work is related to the temporal action lo-

calisation task, which aims to recognise and determine the temporal boundaries of

action instances in videos. There is extensive previous work on this task, ranging

from models that train existing video feature extractors with a localisation loss [Shou

et al., 2016], to systems that generally rely on temporal action proposal, as well as

more sophisticated models that perform contextual modelling, capturing objects and

their interactions [Gu et al., 2018; Girdhar et al., 2019].

After the introduction of the AVA dataset [Gu et al., 2018], which contains clips

labelled with people and their actions, various proposals have attempted to perform

contextual modelling, i.e. capturing objects and object interactions for action local-

isation. This contextual modelling is the case of Girdhar et al. [2019], who recently

proposed a Transformer-based model which uses its attention mechanism, learns to

emphasise hands and faces, which are often crucial to discriminate an action.

Since action localisation is restricted to a pre-defined list of options, Gao et al.

[2017a] and Hendricks et al. [2017] introduced a variation of the task called language-

driven temporal moment localisation. Essentially, this means to use natural language

queries to localise activities in untrimmed videos. While the language-based setting

allows for having an open set of activities, it also corresponds to a more natural query

specification, as it directly includes objects and their properties as well as relations

between the involved entities.

Early approaches for this task, including Liu et al. [2018] and Ge et al. [2019],

were mainly based on generating proposals or candidate clips which could later be

ranked. More recently, Chen et al. [2018], Chen and Jiang [2019], and Xu et al. [2019],

have worked on reducing the number of proposals by producing query-guided or

query-dependent approaches.

Despite their ability to provide coarse control over the video snippets, proposal-

based methods suffer from the computationally expensive candidate proposal match-

ing, which has led to the development of methods that can directly output the tem-

poral coordinates of the segment. In this context, Yuan et al. [2019] first proposed

to use a co-attention-based model, and soon after Ghosh et al. [2019] focused di-

rectly on predicting the start and end frames using regressions. More recently, our

work in Chapter 4 used dynamic filters and modeled label uncertainty to further im-

prove performance [Rodriguez-Opazo et al., 2020], while Mun et al. [2020] and Zeng

et al. [2020] proposed more sophisticated modality matching strategies. Compared to

these works, although our approach is also proposal-free, we differ in the sense that

we aim at incorporating specific spatial information that is useful for the localisation

problem.
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This chapter is also related to context modelling in action recognition. In this

context, structural-RNN [Jain et al., 2016b] models a spatio-temporal graph using an

RNN mixture that is differentiable, with applications on human motion modelling

and human activity detection. While we build on top of a concept similar to this, we

inject the language component into the spatio-temporal graph and focus on the task

of temporal moment localisation of a natural language query. Our method adds the

language into the pipeline using an attention mechanism that captures the objects’

and subjects’ interactions at the language level.

Context modeling has also been recently utilized in other computer vision tasks,

such as referring expression comprehension [Yu et al., 2018] and VQA [Hu et al.,

2019]. In the latter, the authors proposed a Language-Conditioned Graph Network

(LCGN) where each node represents an object and is described by a context-aware

representation from related objects through iterative message-passing conditioned on

the textual input. Our work is fundamentally different from this as our task requires

us to model the temporal component in our graph. Moreover, LCGN emphasises

the role of edge representations in the graph whilst our approach is node-centric as

connections between two given node types share the same edges.

Furthermore, Zeng et al. [2019] used graph convolutions to obtain contextualised

representations for action localisation, while Zhang et al. [2019] utilised a graph-

structured network to model temporal relationships among different moments and

thus obtain contextualised moment representations. Their approach is different from

ours as they rely on proposals to perform the task. More recent approaches, such

as SLTFNet [Jiang et al., 2019], rely on attention instead of message-passing to deal

with the spatio-temporal nature of the moment localisation task.

Finally, Zhang et al. [2020] have recently proposed a novel task that requires not

only to perform temporal language-driven moment localisation but also to locate the

objects mentioned in the query spatially. Their approach is similar to ours in the

sense that it also utilises a spatio-temporal graph. However, the textual clues are

incorporated after the graph construction rather than being an explicit part of it.

5.3 Graph Based Temporal Moment Localization

In temporal moment localisation, the objective is to find the temporal location of

a natural language query Q in an untrimmed video V. The video consists of a

sequence of frames V = [vt | t = 1, . . . , ℓ] and the query is a sequence of words

Q = [wj | j = 1, . . . , m] that describes a short moment in the video. We denote

the starting and ending times of the moment described by query Q as ts and te,

respectively.

We propose a model that explicitly captures the relationship between objects and

humans, as well as the activities performed in a video, using a spatio-temporal graph.

Concretely, we utilise a language-conditioned message-passing algorithm, which al-

lows us to obtain contextualised activity representations for better moment localisa-

tion. Let G = (V , ES ∪ ET) represent our spatio-temporal graph, where V , ES and ET
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Video Query
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the light switch."Activity
(I3D)

a

i−1 a

i

a

i+1

Mult
ATTN

O

H

a

i

Spatio-Temporal Graph

a) Bounding box of the features extracted from keyframe, using
Faster-RCNN, and the Spatial Graph that receives those features.
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Figure 5.1: Overview of our spatio-temporal graph for temporal moment localisa-
tion: For each activity feature ai, we create a Spatial graph to find the relationship
between object and human nodes conditioned in the query, and thus improve the
activity representation to be used by the Temporal graph.

are the set of nodes, spatial edges and temporal edges, respectively, as can be seen in

Figure 5.1.

We factorize our spatio-temporal graph into spatial and temporal sub-graphs,

denoted by GS = (V , ES) and GT = (V , ET), respectively.

The spatial graph is designed to improve the activity representations by exploit-

ing the relationships between objects and humans in a given scene conditioned on

an attended language representation for each of this relationships. As we know

[Sigurdsson et al., 2017], actions and moments are characterised by complex interac-

tions between humans as well as human-object interactions. Our spatial sub-graph

is designed to exploit these spatial relationships specifically. It is iteratively applied

through the video (Figure 5.1.a.)

On the other hand, the temporal sub-graph is designed to model the relationships

between the improved activity representations at different times to more efficiently

localise the start and end points of the query in the video (Figure 5.1.b.)

5.3.1 Spatial graph

Consider the query presented in Figure 5.1, “a person is throwing the bag at the light

switch”. It describes what action (verb) is performed by a subject and what objects are

involved in that action. Our spatial graph is designed to capture the relationships

between these visual entities conditioned on the linguistic entities. As such, we

decompose our graph into six semantically meaningful nodes, three for representing

visual information and three for representing linguistic information.
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5.3.1.1 Linguistic Nodes

We create language nodes to capture essential information in the query related to

the visual input: We expect but not enforce that these nodes captures the subject-verb

relationship node SV (person-throwing), the subject-object relation node SN (person-

bag/light switch) and the verb-object relation node VN (throwing-bag/light switch).

Therefore, there is no need to extract such information from the sentence using meth-

ods like dependency parsing. We let the attention mechanisms decide the most rele-

vant words for each node.

To obtain representations for each one of the linguistic nodes, we start by encod-

ing each of the words wj for j = 1, . . . , m in the query Q using a function Fw : w 7→ h,

which maps each word to a semantic embedding vector hj ∈ Rdw , where dw defines

the hidden dimension of the word embedding. Specifically, we use GLoVe embed-

dings [Pennington et al., 2014] to obtain the vector representations for each word.

We then initialise three-headed multi-head attention module [Vaswani et al., 2017]

using an aggregated, fixed-length query vector q. Concretely, we construct this vector

using a bi-directional GRU [Chung et al., 2014] over the word embeddings and mean

pooling, which allows us to more accurately capture the global meaning of the input

query by first contextualising each word representation. We project each of the word

embeddings using a linear mapping to obtain the key k components of multi-head

attention. In the case of the values v we use the contextualised word representations

from the GRU. Each head attends these contextualised vectors and returns a re-

weighted combination of them, using softmax(qk⊤)v and aimed at understanding a

specific relation between the visual nodes at the linguistic level.

5.3.1.2 Visual Nodes

As mentioned above, our spatial graph contains three semantically meaningful nodes

that represent visual information, specifically an activity node A, a human node

H and an object node O. This setting allows us to share factors for semantically

similar observations taken from the video [Jain et al., 2016b], which provides several

advantages. First, the model can deal with more observations of objects and humans

without increasing the number of parameters that need to be learnt. Second, we

alleviate the problem of having jittered object detections in videos, especially due to

objects appearing and disappearing across frames.

To capture the relationships between activity, human and object observations,

we densely connect these nodes within a single video frame. Such relationships

are commonly parameterised by factor graphs that convey how a function over the

graph factorises into simpler functions [Kschischang et al., 2001]. Similarly, we learn

a non-linear mapping function for each of the semantically alike observations that

are associated with the same semantic node. In this sense, each semantic node,

human H, object O and activity A, is considered to be a latent representation of the

corresponding observation. Let us take as an example the case of the object node O,

where we observe a table in the video, represented by a feature vector x, obtained
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directly from the object detector. In this case, we use a function,

ΨO
.
= tanh(WOx + bO) (5.1)

Similar mapping functions (with different parameters), namely ΨH and ΨA are

defined for the other semantic nodes.

Activity node: We use a video encoder that generates a video representation

summarizing spatio-temporal patterns directly from the raw input frames. Con-

cretely, let FV be our video encoding function that maps a video into a sequence of

vectors [ai ∈ Rdv | i = 1, . . . , T]. These features capture high-level visual semantics in

the video. Note that length of the video, ℓ = |V|, and the number of output features,

t = |FV(V)|, are different due to temporal striding. As in the previous Chapter 4,

we model FV using I3D [Carreira and Zisserman, 2017]. This method inflates the 2D

filters of a well-known convolutional neural network, e.g., Inception [Szegedy et al.,

2015; Ioffe and Szegedy, 2015] or ResNet [He et al., 2016] for image classification to

obtain 3D filters.

Human and object nodes: Activity representations are obtained using small clips

of frames. This means that there may be a set of many frames from where to extract

spatial information that is semantically relevant for each node. Utilising every frame

is computationally expensive, and given the piece-wise smooth nature of the video,

this could also prove to be redundant. As such, in this work, we propose to utilise

key-frames associated with each activity representation to extract observations for

human and object nodes. Since many frames in a video are blurry due to various

reasons, e.g., the natural movement of the objects and the camera motion, we select

the sharpest key-frame in the subset of frames. Here we use the Laplace variance

algorithm [Pech-Pacheco et al., 2000], which is a well-known approach for measuring

the sharpness of an image.

While our method is agnostic to the choice of object detector, in this work we use

Faster RCNN [Ren et al., 2015; Anderson et al., 2018] for the detection and spatial

representation of the objects in all key-frames. Our Faster RCNN detector is trained

on the Visual Genome [Krishna et al., 2016] dataset, which consists of 1,600 object

categories. These categories are manually assigned to either the human and object

nodes depending on the type of object. The human node receives the set of features

H = {h1, ..., hK} corresponding to the categories associated to human body parts,

clothes and subjects, while the object node receives the set of features that are not

associated to human labels with that O = {o1, ..., oJ}. This label-based categorisation

is based on a manual analysis of the label names supported by the Faster RCNN

detector. In this way, when taking the predicted labels for each object, we can use

our categorisation to re-label them as human or object and thus assign each instance

to their corresponding visual node.

5.3.1.3 Language-conditioned message-passing

We argue that the setting of the scene contains important clues to improve the repre-

sentation of a given activity. Examples of these clues are human clothes, objects that
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are present in the scene as well as their appearance. To the best of our knowledge,

previous work on moment localisation has not utilised this information. Therefore,

we propose to obtain an activity representation suitable for the moment localisa-

tion task, by capturing object, human and activity relationships. Concretely, we

use a mean-field like approximation of the message-passing algorithm to capture

such relationships. The messages sent between nodes are conditioned on the natu-

ral language query. We propose to use this approximation instead of the standard

message-passing algorithm due to high demand on memory and compute, especially

to process all the key-frames in a given video. The messages are iteratively sent a

total of N times, which is a hyperparameter of our model. In the equations below,

index n = 1, ..., N denotes the iteration step for each of the nodes. Notice that in the

rest of this subsection, we drop the temporal index i in the activity feature a since the

message-passing is done for each of the activity features independently.

First, we capture the relationship between the visual observations of the nodes

human H, object O and activity A with the corresponding language nodes SN ,SV
and VN that connect the semantic meaning of the visual nodes, using a linear map-

ping function f specific for each node. The input for this function is the concatenation

of the language with the visual observation. For instance, in the case of the object

observations, the mapping functions f have the following shape.

fSN ,O(SN , oj,n) = Wsno[SN ; oj,n] + bsno = Φ
j,n
SN ,O (5.2)

fVN ,O(VN , oj,n) = Wvno[VN ; oj,n] + bvno = Φ
j,n
VN ,O (5.3)

where Wsno and Wvno are learnable linear projections, “;” represents the concatena-

tion between the features and j is the j-th object observation in the object node O .

Similarly, we have specific mapping functions

fSV ,A(SV , an) = Φn
SV ,A fVN ,A(VN , an) = Φn

VN ,A, (5.4)

fSN ,H(SN , hk,n) = Φ
k,n
SN ,H and fSV ,H(SV , hk,n) = Φ

k,n
SV ,H (5.5)

for the activity and human observations, where k is the k-th human observation.

For clarity, we explain the message-passing algorithm again using the object node

as an example. The object node O receives messages from the human H and the

activity A nodes. The message from the human node is constructed using a linear

mapping function that receives as an input the concatenation of the object-query

relationship Φ
j,n
SN ,O and the aggregation of all the human-query relationships ∑k Φ

k,n
SN ,H.

A similar process is done for the message received from the activity observations, as

can be seen in Equation 5.7, below.

Ψ
j,n
H,SN ,O = fH,SN ,O(Φ

j,n
SN ,O, ∑

K
k=1 Φ

k,n
SN ,H) (5.6)

Ψ
j,n
A,VN ,O = fA,VN ,O(Φ

j,n
VN ,O, Φn

VN ,A) (5.7)
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oj,n+1 = σ(mo(Ψ
j,n
H,SN ,O ⊙ Ψ

j,n
A,VN ,O)⊙ oj,0) (5.8)

Finally, the new representation of the object observation is computed using Equa-

tion 5.8, where oj,0 is the initial object representation, σ is an activation function, ⊙
is the Hadamard product and mo is a linear function with a bias that constructs the

message for the object oj. A similar process is applied for each observation, as can be

seen in Equations 5.9 to 5.12 below, where we create the message for each edge and

Equations 5.13 to 5.14 and show how these messages are later used to contextualize

the features. Note that the parameters learnt for each specific case are shared. For

instance, parameters for fA,SV ,H and fH,SV ,A are the same.

Ψn
H,SV ,A = fH,SV ,A(Φ

n
SV ,A, ∑

K
k=1 Φ

k,n
SV ,H) (5.9)

Ψn
O,VN ,A = fO,VN ,A(Φ

n
VN ,A, ∑

J
j=1 Φ

j,n
VN ,O) (5.10)

Ψ
k,n
O,SN ,H = fO,SN ,H(Φ

k,n
SN ,H, ∑

J
j=1 Φ

j,n
SN ,O) (5.11)

Ψ
k,n
A,SV ,H = fA,SV ,H(Φ

k,n
SV ,H, Φn

SV ,A) (5.12)

an+1 = σ(ma(Ψ
n
H,SV ,A ⊙ Ψn

O,VN ,A)⊙ a0) (5.13)

hk,n+1 = σ(mh(Ψ
k,n
O,SN ,H ⊙ Ψ

k,n
A,SV ,H)⊙ hk,0) (5.14)

5.3.2 Temporal graph

The temporal graph is responsible for predicting the starting and ending points of

the moment in the video. It uses the previously computed activity representations

ai,N for i = 1, . . . , t where N is the final iteration in the message passing. The tempo-

ral graph is implemented using a 2-layer bi-directional GRU [Cho et al., 2014], which

receives as input the improved activity representation, and it is designed to contextu-

alise the temporal relationship between the activity features. To obtain a probability

distribution for the start and end predicted positions, we utilise two different fully

connected layers to produce scores associated to the probabilities of each output of

the GRU being the start/end of the location. Then, we take the softmax of these

scores and thus obtain vectors τ̂
s, τ̂

e ∈ Rt containing a categorical probability distri-

bution. Even though we do not constrain the starting and ending points to follow

the right order in time, this does not result in any difficulties in practice.

5.4 Training

Our method is trained end-to-end on a dataset consisting of annotated tuples (V, Q, ts, te).
Note that each video V may include more than one moment and may therefore ap-

pear in multiple tuples. We treat each training sample independently. Given a new
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video and sentence tuple (Vr, Qr), our model predicts the most likely temporal local-

ization of the moment described by Qr in terms of its start and end positions, ts⋆
r and

te⋆
r , in the video. We use the Kullback-Leibler divergence and a spatial loss proposed

in Chapter 4 of this thesis. We explain this in more detail in the supplemental ma-

terial. Given the predicted/ground truth starting/ending times of the moment, we

use the following loss function during training:

LKL = DKL(τ̂
s ‖ τ

s) + DKL(τ̂
e ‖ τ

e) (5.15)

where DKL is the Kullback-Leibler divergence. Moreover, inspired by our previous

work, we use a spatial loss that aims to create activity features that are good at

identifying where the action is occurring. This loss, equation 5.16, receives as input

y = softmax(g(A)) where A is the matrix that results by concatenating the improved

activity representations over time, and g is a linear mapping that gives us a score for

each activity representation. We apply a softmax function over these and our loss

penalizes if this normalized score is large for those features associated to positions

that lie outside the temporal location of the query.

Lspatial = −
t

∑
i=1

(1 − δτs≤i≤τe) log(1 − yi) (5.16)

where δ is the Kronecker delta. The final loss for training our method is the sum

of the two individual losses defined previously setting L = LKL + Lspatial. During

inference, we predict the starting and ending positions using the most likely locations

given by the estimated distributions, using τ̂s = argmax(τ̂s) and τ̂e = argmax(τ̂e).
Since values correspond to positions in the feature domain of the video, so we convert

them back to time positions.

5.5 Experiments and Results

In this section we give details about the experiments performed to test our proposed

approach. We begin by describing the datasets used in our study, to later provide

details about the training and evaluation procedures we followed.

5.5.1 Datasets

To evaluate our proposed approach we work with three widely utilized and chal-

lenging datasets, namely Charades-STA [Gao et al., 2017a], ActivityNet Caption

[Caba Heilbron et al., 2015; Krishna et al., 2017] and TACoS [Rohrbach et al., 2014],

explained in detail in section 4.4. In addition to these, we also consider the YouCookII

dataset [Zhou et al., 2018b,a]. This decision is motivated by its activity-centric nature

as YoucookII is built upon instructional videos making it an excellent candidate to

evaluate our proposals.
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YouCookII: consists of 2,000 long untrimmed videos from 89 cooking recipes ob-

tained from YouTube by Zhou et al. [2018b]. Each step for cooking these dishes was

annotated with temporal boundaries and aligned with the corresponding section of

the recipe. Recipes are written following the usual style of the domain [Lin et al.;

Gerhardt et al., 2013], which includes very specific instruction-like statements with a

wide degree of detail. The videos on this dataset are taped by individual persons at

their houses while following the recipes using movable cameras. Similarly to TACoS,

the average video length is 5.26 minutes. In terms of relevant moment segments, each

video has 7.73 moments on average, with each segment being 19.63 seconds long on

average. Videos have a minimum of three and a maximum of 16 moments.

In Table 5.1 we can see the summarize details of the exact sizes of the train/vali-

dation/test splits for each dataset.

Dataset Train Validation Test

Charades-STA 12,408 3,720 -

ActivityNet Captions 37,414 17,502 -

YouCookII 10,337 3,492 -

TACoS 10,146 4,589 4,083

Table 5.1: Exact sizes of the train/validation/test splits for each dataset. Charades-
STA, ActivityNet and YouCookII withheld the test set, therefore, the common prac-
tice is to report the data in the validation set

5.5.2 Implementation Details

We first pre-process the videos by extracting features of size 1024 using I3D with

average pooling, taking as input the raw frames of dimension 256× 256, at 25fps. We

use the pre-trained model trained on Kinetics for TACoS, ActivityNet and YouCookII

released by Carreira and Zisserman [2017]. For Charades-STA, we use the pre-trained

model trained on Charades. We extract the top 15 object detections in terms of

confidence for each of the keyframes using Faster-RCNN.

All of our models are trained in an end-to-end fashion using ADAM Kingma and

Ba [2015] with a learning rate of 10−4 and weight decay 10−3. As mentioned earlier,

our temporal graph is modelled using a two-layer BiGRU. We use a hidden size of

256 and to prevent over-fitting, we add a dropout of 0.5 between the two layers.

5.5.3 Evaluation

We evaluate our model by two widely use metrics proposed by Gao et al. [2017a]. The

Recall at various thresholds of the temporal Intersection over Union (R@α) measuring

the percentage of predictions that have tIoU with ground truth larger than certain α,

and mean averaged tIoU (mIoU). We use three α threshold values 0.3, 0.5 and 0.7.
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N R@0.3 R@0.5 R@0.7 R@0.9 mIoU

0 47.46 22.88 14.38 6.00 33.67
1 73.21 55.32 36.02 11.48 52.11
2 79.01 67.16 48.71 17.97 59.30
3 79.25 68.41 50.56 19.14 60.29

4 70.99 60.31 44.16 17.32 54.01

Table 5.2: Performance when using a different number of iterations (N) for the
message-passing algorithm, on a subsection of the training split of Charades-STA.

5.5.4 Ablation Study

To show the effectiveness of our proposals we perform several ablation studies each

aimed at assessing the contribution of different components of our model. All of our

ablative experiments are based on a segment of the training split of the Charades-STA

dataset. As mIoU provides a more comprehensive evaluation of the performance of

our model, we utilised this metric to select the best model configuration for the rest

of the experiments in this paper.

Since feed-forwarding through our proposed spatial graph is an iterative pro-

cess, we first studied the impact on the performance of the number of iterations (N)

utilised in the message-passing algorithm of our full model. As shown in Table 5.2,

we experimented setting N to a minimum value of 0 (where nodes are not updated

at all) up to a maximum number of 4 iterations. As expected, performance tends to

improve with larger values of N, with a saturation point at N = 3. Based on these

results, all of our models in the rest of this paper are trained to utilise three iterations.

Table 5.3 summarises the results of our ablation studies, which include: (1) Con-

catenating the mean-pooling of the features extracted by Faster RCNN directly with

the activity representation, therefore eliminating the human and object nodes (No

Graph) to assess the relevance of our graph in using the spatial information. (2)

Evaluating the importance of distinguishing between human versus object features

by testing how our model performs when assigning all the detected features to one

spatial node (No Node Types). In (3) and (4) we remove the use of human (No H)

and object (No O) spatial information, respectively. (5) Assessing the contribution

of the linguistic nodes (No LA) by modifying our graph so that it only contains a

single textual node connected to the rest of the graph in a way analogous to our full

model. (6) Testing the importance of the spatial loss Lspatial which encourages our

model to focus on the features within the segment of interest. As can be seen, the

importance of each one of our studied components is validated as ablations always

result in consistent performance drops in terms of both mIoU as well as tIoU at the

majority of α thresholds.

No Node Types This ablation experiment is intended to show the importance of con-

sidering the Faster-RCNN features related to human labels as a different source of

information. The experiment consists of assigning the same 15 object features ex-
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Model R@0.3 R@0.5 R@0.7 R@0.9 mIoU

(1) No Graph 44.32 13.46 7.66 2.50 31.09
(2) No Node Types 74.78 61.24 43.35 14.59 55.18
(3) No H Node 75.46 60.60 43.31 15.51 55.32
(4) No O Node 75.66 61.28 44.08 15.39 56.13
(5) No LA 76.79 66.32 49.92 20.87 58.93
(6) No Lspatial 76.79 66.60 52.54 23.57 59.95

Full Model 79.25 68.41 50.56 19.14 60.29

Table 5.3: Results of our ablation studies, performed on a section of the training split
of Charades-STA.

tracted for each of the keyframes only to the Object node O. In this way, limit the

ability of the network to only be able to find relations between objects and activ-

ity representations, but without reducing the total amount of data that is available

to it. We consider this experiment is very relevant as it shows that the additional

information provided by the objects detected is not the only reason to explain the

performance improvements, but rather the way in which this data is used is more

relevant. In fact, enabling the model to obtain state-of-the-art performance in differ-

ent and challenging benchmarks.

No Language Attention In this case, we replace the set of linguistic nodes by a

single query node Q. It receives a high-dimensional representation (denoted by q) of

the natural language query Q, as can be seen in Figure 5.2. This high-dimensional

representation is constructed using a function FQ : Q 7→ q that first maps each word

wj for j = 1, . . . , m in the query to a semantic embedding vector hj ∈ Rdw , where dw

defines the hidden dimension of the word embedding. Representations for each word

are then aggregated using mean pooling to get a semantically rich representation of

the whole query.

O

H

a

i

Q

Figure 5.2: Spatial graph with a single query node Q

Although the query node is generic, in this work, we use a bi-directional GRU
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[Cho et al., 2014] on top of GLoVe word embeddings, which are pre-trained on a

large collection of documents, for computing the hj. Therefore, our query functions

FQ is parameterised by both GLoVe embedding and the GRU.

Again we capture the relationship between this high-dimensional representation

of the query and any observation of the nodes human H, object O and activity A,

using a linear mapping function f specific for each node, as follows:

Φn
Q,A = fQ,A(q, an) (5.17)

Φ
j,n
Q,O = fQ,O(q, oj,n) (5.18)

Φ
k,n
Q,H = fQ,H(q, hk,n) (5.19)

where functions fQ,A, fQ,O, fQ,H are simple linear projections. For example, in the case

of the object observations we have fQ,O(q, oj,n) = Wqo[q; oj,n] + bqo, where the subindex

qo denotes the dependency of the parameters of the linear function which are specific

for each relation. To compute the messages that are passed between the nodes, we

utilize the following functions:

Ψ
j,n
H,Q,O = fH,Q,O(Φ

j,n
Q,O, ∑

K
k=1 Φ

k,n
Q,H) (5.20)

Ψ
j,n
A,Q,O = fA,Q,O(Φ

j,n
Q,O, Φn

Q,A) (5.21)

Ψn
H,Q,A = fH,Q,A(Φ

n
Q,A, ∑

K
k=1 Φ

k,n
Q,H) (5.22)

Ψn
O,Q,A = fO,Q,A(Φ

n
Q,A, ∑

J
j=1 Φ

j,n
Q,O) (5.23)

Ψ
k,n
O,Q,H = fO,Q,H(Φ

k,n
Q,H, ∑

J
j=1 Φ

j,n
Q,O) (5.24)

Ψ
k,n
A,Q,H = fA,Q,H(Φ

k,n
Q,H, Φn

Q,A) (5.25)

where again fH,Q,O, fA,Q,O, fH,Q,A, fO,Q,A, fO,Q,H and fA,Q,H are linear mappings, each re-

ceiving as input a concatenations of the corresponding features capturing. Finally,

we update the representation of the human, action and object nodes based on the

following formulas.

oj,n+1 = σ(mo(Ψ
j,n
H,Q,O ⊙ Ψ

j,n
A,Q,O)⊙ oj,0) (5.26)

an+1 = σ(ma(Ψ
n
H,Q,A ⊙ Ψn

O,Q,A)⊙ a0) (5.27)

hk,n+1 = σ(mh(Ψ
k,n
O,Q,H ⊙ Ψ

k,n
A,Q,H)⊙ hk,0) (5.28)

where ⊙ is the element-wise product and mo, ma, mh are again linear functions.

5.5.5 Comparison with the state-of-the-art

We compare the performance of our proposed approach on the datasets considered

against several prior works. We consider a broad selection of models based on differ-

ent approaches, specifically proposal-based techniques including CTRL [Gao et al.,

2017a], SAP [Chen and Jiang, 2019], MAN [Zhang et al., 2019] and CBP [Wang et al.,

2020], as well as TripNet [Hahn et al., 2019], a method based on reinforcement learn-
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Method R@0.3 R@0.5 R@0.7 mIoU

Random - 8.51 3.03 -
CTRL - 21.42 7.15 -
ABLR † - 24.36 9.00 -
TripNet 51.33 36.61 14.50 -
CBP 50.19 36.80 18.87 35.74
MAN - 46.53 22.72 -
EXCL 65.10 44.10 22.60 -
DRN - 53.09 31.75 -
TMLGA 67.53 52.02 33.74 48.22
LGVTI 72.96 59.46 35.48 51.38

Ours 73.36 59.62 41.24 53.62

Table 5.4: Performance comparison of our spatio-temporal graph approach with ex-
isting methods for different tIoU α levels. Values are reported on the validation split
of Charades-STA. † Results for ABLR are as reported by Chen and Jiang [2019].

Method R@0.3 R@0.5 R@0.7 mIoU

Random 5.60 2.50 0.80
CTRL 28.70 14.00 - 20.54
ABLR † 55.67 36.79 - 36.99
TripNet 48.42 32.19 13.93 -
CBP 54.30 35.76 17.80 36.85
TMLGA 51.28 33.04 19.26 37.78
LGVTI 58.52 41.51 23.07 41.13

Ours 57.89 41.49 26.41 42.78

Table 5.5: Performance comparison of our spatio-temporal graph approach with ex-
isting methods for different tIoU α levels. Values are reported on the validation split
of ANet-Cap.

ing. In addition to that, we also compare our approach to more recent methods that

do not rely on proposals, including ABLR [Yuan et al., 2019], ExCL [Ghosh et al.,

2019], Our method, Chapter 4, TMLGA [Rodriguez-Opazo et al., 2020] and LGVTI

[Mun et al., 2020]. Finally, we also consider a random baseline that simply selects an

arbitrary video segment as the moment for each example.

Tables 5.4, 5.5 and 5.6 summarizes our results on the datasets Charades-STA,

ActivityNet Captions and TACoS respectively, while also comparing the obtained

performance to relevant prior work. It is possible to see that our method is able to

outperform previous work by a consistent margin, especially for the α = 0.7 band

and also in terms of the mean tIoU (mIoU). Comparing results across these datasets,

we also see that the performance of all models drops substantially on ActivityNet

Captions and TACoS, compared to Charades-STA. We think this is mainly due to the
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Method R@0.3 R@0.5 R@0.7 mIoU

Random 1.81 0.83 -
CTRL 18.90 13.30 - -
ABLR † 18.90 9.30 - -
TripNet 23.95 19.17 9.52 -
CBP 27.31 24.79 19.10 21.59
EXCL 44.20 28.00 14.60 -
TMLGA 24.54 21.65 16.46 22.06
DRN - 23.17 - -

Ours 31.80 28.69 24.91 26.42

Table 5.6: Performance comparison of our spatio-temporal graph approach with ex-
isting methods for different tIoU α levels. Values are reported on the test split of
TACoS.

Method R@0.3 R@0.5 R@0.7 mIoU

Random 4.84 1.72 0.60 -
TMLGA 33.48 20.65 10.94 23.07

Ours 43.73 29.93 17.61 30.43

Table 5.7: Performance on YouCookII for different tIoU α levels.

nature of the datasets. On one side, TACoS contains a considerable amount of video

moments that only span a few seconds, which is equivalent to two or three activity

features. On the other side, ActivityNet Captions mostly has one query describing

the complete extent of a video. This bias is hindering the training performance of

proposal-free approaches. Moreover, ActivityNet Captions has queries that describe

a video’s intrinsic information, i.e., opening sequence or credits, where our method

could not distinguish the temporal difference, and better temporal reasoning is nec-

essary.

Table 5.7 shows the performance of our model on the YouCookII dataset. To the

best of our knowledge, since no previous work has been evaluated on this dataset,

we used our method [Rodriguez-Opazo et al., 2020] explained in Chapter 4 released

by its authors as an additional baseline. As can be seen, we are able to outperform

both the random baseline and TMLGA by a large margin, especially on the lower α

bands.

Finally, we also study the effect of using a different pre-trained model to obtain ac-

tivity representations in our proposed approach. Concretely, we test the performance

of our model using VGG-16 features instead of I3D on Charades-STA. Table 5.8 sum-

marises our obtained results and compares them to prior work also utilising these

features. As can be seen, although VGG features provide lower performance than

I3D in our experiments, therefore experimentally validating our choice, our model

is still able to outperform existing approaches also using these features by a large
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Model R@0.3 R@0.5 R@0.7 R@0.9 mIoU

SAP - 27.42 13.36 - -
MAN - 41.24 20.54 - -

DORi 61.83 43.47 26.37 7.63 42.52

Table 5.8: Performance of our spatio-temporal graph approach with VGG-16 features,
We compared to relevant prior work that uses the same type of features.

margin, showing the superiority of our proposed approach.

5.5.6 Qualitative results

Language Attention In the following Figures 5.3 and 5.4, we present a set of samples

of the multihead attention to the query sentence on the Charades-STA dataset. In

the case of node SN which models the subject-object relationship focuses on the

dot at the end of the sentence, which can be interpreted as the need of the node to

read the whole sentence. However, node VN consistently focuses on the verb of the

sentences, and node SV focuses on the verb and objects in the scene.

Visualization of localization

In the following Figures, we present success and failure cases of our method

on Charades-STA, YouCookII and TACoS dataset. Each visualisation is showing a

subsample of the keyframes inside of the prediction with their corresponding spatial

observations. In green observations associated with the human node H and orange

for the object node O. Moreover, each visualisation is presenting the ground-truth

and predicted localisation in seconds of the given query.

5.5.6.1 Charades-STA

Success cases of our algorithm on the Charades-STA dataset can be seen in Figure 5.5.

In Figure 5.5a, given the query “a person cooks a sandwich on a panini maker” our

method could localize the moment at a tIoU of 99.56%. The label of the features

extracted by Faster-RCNN to localize the query are ‘bottle’, ‘counter’, ‘door’, ‘drawer’,

‘faucet’, ‘floor’, ‘glasses’, ‘hair’, ‘jacket’, ‘jeans’, ’kitchen’, ’microwave’, ‘pants’, ‘shelf’, ‘shirt’,

‘sink’, ’stove’, ’sweater’, ‘toaster’, ‘wall’, ‘window’, ‘woman’.

In the case of Figure 5.5b, given the query “the person closes a cupboard door.”

our method could localize the moment at a tIoU of 97.88%. The features extracted by

Faster RCNN for this query are ’arm’, ’building’, ’cabinet’, ’counter’, ’door’, ’faucet’,

’hair’, ’hand’, ’head’, ’jacket’, ’kitchen’, ’man’, ’microwave’, ’refrigerator’, ’shirt’, ’sink’,

’sleeve’, ’stove’, ’sweater’, ’wall’, ’window’, ’woman’.

Failure cases of our method are presented in Figure 5.6. In the first example,

given a query “a person opens a door goes into a room.” our method could detect

correct spatial features, such as ‘door’ and ‘knob’, and the correct span of the query,
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Figure 5.3: First example of the linguistic nodes attentions on Charades-STA.
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Figure 5.4: Second example of the linguistic nodes attentions on Charades-STA.

according to our qualitative evaluation. However, in this case, the annotation for the

query is localised incorrectly in the video. It refers to the last part of the video, where

a person is using a laptop, as can be seen at the right of Figure 5.6a. In Fig. 5.6b we

can see our method localising the query “person walks over to the refrigerator open

it up”, however, the annotation is not considering that the moment is performed two

times in the video.
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0.0 9.1

0.0

Query: "a person cooks a sandwich on a panini maker."

GT

Prediction

29.16

9.06

(a) Example of success 1.

14.9 21.9

14.99 21.96

Query: "the person closes a cupboard door"

Prediction

29.16

(b) Example of success 2.

Figure 5.5: Success examples of our spatio-temporal graph approach on Charades-
STA dataset.
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Query: "a person opens a door goes into a room."

16.8 30.4GT

Prediction 0.0 5.94

(a) Example of failure 1.

Query: "person walks over to the refrigerator open it up"

GT

Prediction

4.90.0

12.87 18.44

33.8

(b) Example of failure 2.

Figure 5.6: Failure examples of our spatio-temporal graph approach on Charades-
STA.
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5.5.6.2 YouCookII

Although videos in YouCookII are much longer than videos in Charades-STA, our

method still can get good localisation performance. In Figure 5.8a given the query

“spread the sauce onto the dough” our method localise the query at a tIoU of 98.57%.

The label of the feature extracted by Faster-RCNN on this case are ‘bacon’, ‘bird’,

‘board’, ‘bottle’, ‘bowl’, ‘cabinet’, ‘cake’, ‘cherry’, ‘chocolate’, ‘cookie’, ‘counter’, ‘cutting

board’, ‘dessert’, ‘door’, ‘drawer’, ‘finger’, ‘floor’, ‘fork’, ‘fruit’, ‘glass’, ‘grape’, ‘ground’,

‘hand’, ‘handle’, ‘jeans’, ‘ketchup’, ‘knife’, ‘meat’, ‘olive’, ‘pancakes’, ‘pepperoni’, ‘person’,

‘phone’, ‘pizza’, ‘plant’, ‘plate’, ‘sauce’, ‘saucer’, ‘shirt’, ‘sleeve’, ‘spoon’, ‘table’, ‘towel’,

‘tree’, ‘wall’.

Figure 5.8 presents a success case of our method on YouCookII dataset. The vi-

sualization is presenting a subsample of the key-frames inside of the prediction with

their corresponding spatial observations, with green observations associated with the

human node H and orange to the object node O. Moreover, each visualization is pre-

senting the ground-truth localisation and predicted localisation of the given query.

As shown in Figure 5.8, given the query “cover the dish with mashed potatoes”, our

method could localise the moment at a tIoU of 98.88%. The most relevant features ex-

tracted by Faster-RCNN to localise the query are ’arm’, ’bowl’, ’cake’, ’hand’, ’kitchen’,

’man’, ’mug’, ’spoon’, ’stove’, ’tray’.

269.0 300 GT 

Prediction

398.2

Query: "cover the dish with mashed potatoes" 

300.15 268.8

Figure 5.7: Visualization of a success case of our method in the YouCookII dataset.
The second row shows the observations associated to the Human node (green) and
Object node (orange).

Figure 5.8b shows the query “cook the pizza in the oven”, which belong to the

same video. In this case, the label of the features extracted by Faster-RCNN are

‘arm’, ‘bar’, ‘board’, ‘building’, ‘cabinet’, ‘car’, ‘ceiling’, ‘cheese’, ‘cord’, ‘counter’, ‘crust’,

‘cucumber’, ‘curtain’, ‘door’, ‘drawer’, ‘fireplace’, ‘floor’, ‘food’, ‘fork’, ‘glass’, ‘grill’, ‘hand’,

‘hotdog’, ‘key’, ‘keyboard’, ‘kitchen’, ‘knife’, ‘knob’, ‘laptop’, ‘leaf’, ‘leaves’, ‘leg’, ‘light’,

‘man’, ‘microwave’, ‘mouse’, ‘oven’, ‘oven door’, ‘person’, ‘pizza’, ‘plate’, ‘pole’, ‘rack’,

‘roof’, ‘room’, ‘salad’, ‘screen’, ‘shadow’, ‘sleeve’, ‘slice’, ‘spinach’, ‘stove’, ‘table’, ‘television’,

‘thumb’, ‘tracks’, ‘train’, ‘tray’, ‘vegetable’, ‘vegetables’, ‘wall’, ‘window’, ‘wood’ and our

method could localise the query with a temporal intersection over union of 97.60%.
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GT

Prediction

Query: "spread the sauce onto the dough"

131.0 158.0

130.64 157.97

366.8

(a) Success example 1.

GT

Prediction

Query: "cook the pizza in the oven"

257.0 288.0

256.29 287.95

366.8

(b) Success example 2.

Figure 5.8: Success examples of our spatio-temporal graph approach in the
YouCookII dataset.

Failure cases of our method on YouCookII dataset are presented in Figure 5.9. In

these cases, it is possible to see that our approach is able to recognise the activity

add and mix correctly. However, the objects “dressing, ginger and garlic” are not de-

tected by Faster-RCNN, probably given that the object detector has not been trained

to deal with some of the kinds of objects present on this dataset. We think this natu-

rally hinders the disambiguation capabilities of our model, especially in terms of the

repetitive actions such as adding, mixing and pouring, which are often performed

throughout recipes like the one depicted in the example.
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GT

Prediction

Query: "pour the dressing over the salad and mix"

153.0 162.0

164.84 186.86

206.88

(a) Failure case 1.

GT

Prediction

Query: "add oil ginger and garlic to a pot"

275.0 301.0

135.39 141.05

517.2

(b) Failure case 2.

Figure 5.9: Failure cases of our spatio-temporal graph approach in the YouCookII
dataset.
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5.5.6.3 TACoS

Figures 5.10 and 5.11 show two examples of success and failure cases on the TaCoS

dataset, respectively. It is possible to see the how challenging this dataset is in gen-

eral, as in the the cases where our approach fails it is in fact difficult even for us to

localise the given query.

34.3 42.24

Query: "The person gets out a cutting board."

GT

Prediction

365

34.39 42.28

(a) Success example 1.

23.53

34.39

Query: "The person takes a bottle of oil and an onion from the pantry."

GT

Prediction 23.50

34.58 574.5

(b) Success example 2.

Figure 5.10: Success examples of our spatio-temporal graph approach in the TACoS
dataset.
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Query: "He takes the skin off of the onion."

Prediction

69.73

14.74 20.69

574.550.75

(a) Failure case 1.

Query: "He sliced mango"

GT

Prediction

131.55102.06

132.11 152.75

365

(b) Failure case 2.

Figure 5.11: Failure cases of our spatio-temporal graph approach in the TACoS
dataset.
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5.6 Summary

In this chapter, we have presented a novel approach to temporal moment localisation

of a language query in a video. Our approach consists of a spatio-temporal graph

for capturing the relationships between detected human-human, human-objects and

activities over time. We proposed a message-passing algorithm that propagates infor-

mation across the graph conditioned on a natural language query, to ultimately infer

the arbitrarily long segment in the video that most likely described by the query. Us-

ing our approach, we are able to achieve state-of-the-art results on several benchmark

datasets.
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Chapter 6

A Multi-Modal Approach to

Fine-Grained Opinion Mining on

Video Reviews

This chapter is based on:

Marrese-Taylor, E.*;Rodriguez-Opazo, C.*; Balazs-Thenot J.; Gould, S; Matsuo Y.

A Multi-modal Approach to Fine-grained Opinion Mining on Video Reviews Pro-

ceedings of the 2nd Grand Challenge and Workshop on Human Multimodal Language part

of the 56th Annual Meeting of the Association for Computational Linguistics, 2020.

In this chapter, we study the problem of fine-grained opinion mining in video re-

views. In contrast with the previous chapters in this thesis, we made use of all the

available modalities present in the videos —audio, vision and language— to analyze

its information. Specifically, we refer to language for the transcript of the speech

made within the video. The well-known setting of opinion mining refers to the task

of automatically extracting the author’s opinion from texts. Despite the recent ad-

vances in opinion mining for written reviews, few works have tackled other sources

of reviews such as videos. We argue that video reviews have become indispensable

to people’s decision-making process of buying.

In light of this issue, we propose a multi-modal approach for mining fine-grained

opinions from video reviews that can determine the aspects of the item under review

discussed in the video and the sentiment orientation towards them. Our approach

works at the sentence level without the need for time annotations and uses features

derived from the audio, video and language transcriptions. We evaluate our ap-

proach on two datasets and show that leveraging the video and audio modalities

provides increased performance over text-only baselines. Our method provides evi-

dence that these additional modalities are key in better understanding video reviews.

* Equal contribution
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6.1 Introduction

Sentiment analysis (SA) is an important task in natural language processing, aiming

at extracting opinions and identifying the emotions and subjectivity express in the

opinion. As a result, sentiment can be automatically collected, analyzed and sum-

marized. Because of this, SA has received much attention not only in academia but

also in industry, helping provide feedback based on customers’ opinions about prod-

ucts or services. The underlying assumption in SA is that the entire input has an

overall polarity, however, this is usually not the case. For example, laptop reviews

generally not only express the overall sentiment about a specific model (e.g., “This is

a great laptop”), but also relate to its specific aspects, such as the hardware, software

or price. Subsequently, a review may convey opposing sentiments (e.g., “Its perfor-

mance is ideal, I wish I could say the same about the price”) or objective information

(e.g., “This one still has the CD slot”) for different aspects of an entity. Aspect-based

sentiment analysis (ABSA) or fine-grained opinion mining aims to extract opinion

targets or aspects of entities being reviewed in a text, and to determine the sentiment

reviewers express for each. ABSA allows us to evaluate aggregated sentiments for

each aspect of a given product or service and gain a more granular understanding

of their quality. This is of especial interest for companies as it enables them to re-

fine specifications for a given product or service, and leading to an improved overall

customer satisfaction.

Fine-grained opinion mining is also important for a variety of NLP tasks, in-

cluding opinion-oriented question answering and opinion summarization. In prac-

tical terms, the ABSA task can be divided into two sub-steps, namely aspect ex-

traction (AE) and (aspect level) sentiment classification (SC), which can be tackled

in a pipeline fashion, or simultaneously (AESC). These tasks can be regarded as a

token-level sequence labeling problem, and are generally tackled using supervised

learning. The 2014 and 2015 SemEval workshops, co-located with COLING 2014 and

NAACL 2015 respectively, included shared tasks on ABSA [Pontiki et al., 2014] and

also followed this approach, which has also served as a way to encourage develop-

ments alongside this line of research [Mitchell et al., 2013; Irsoy and Cardie, 2014; Liu

et al., 2015; Zhang et al., 2015].

The flexibility provided by the deep learning setting has helped multi-modal

approaches to bloom. Examples of this include tasks such as machine translation

[Specia et al., 2016; Elliott et al., 2017], word sense disambiguation [Chen et al., 2015],

visual question answering [Chen et al., 2017], language grounding [Beinborn et al.;

Lazaridou et al., 2015], and sentiment analysis [Poria et al., 2015; Zadeh et al., 2016].

Specifically in this last example, the task focuses on generalizing text-based sentiment

analysis to opinionated videos, where three communicative modalities are present:

language (spoken words), visual (gestures), and acoustic (voice).

Although reviews often come in the form of a written commentary, people are in-

creasingly turning to video platforms such as YouTube looking for product reviews to

help them shop. In this context, Marrese-Taylor et al. [2017] explored a new direction,

arguing that video reviews are the natural evolution of written product reviews and
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introduced a dataset of annotated video product review transcripts. Similarly, Garcia

et al. [2019b] recently presented an improved version of the Persuasive Opinion Mul-

timedia (POM) movie review dataset [Park et al., 2014], with annotated fine-grained

opinions.

Although the videos in these kinds of datasets represent a rich multi-modal

source of opinions, the features of the language in them may fundamentally differ

from written reviews given that information is conveyed through multiple channels

(one for speech, one for gestures, one for facial expressions, one for vocal inflections,

etc.) In these, different information channels complement each other to maximize

the coherence and clarity of their message. This means that although the content

of each channel may be comprehended in isolation, in theory we need to process

the information in all the channels simultaneously to fully comprehend the message

[Hasan et al., 2019]. In this context, information extracted from nonverbal language

in videos, such as gestures and facial expressions, as well as from audio in the man-

ner of voice inflections or pauses, and from scenes, object or images in the video,

become critical for performing well.

In light of this, our paper introduces a multi-modal approach for fine-grained

opinion mining. We conduct extensive experiments on two datasets built upon tran-

scriptions of video reviews, Youtubean [Marrese-Taylor et al., 2017] and a fine-grain

annotated version of the POM dataset [Park et al., 2014; Garcia et al., 2019b], adapting

them to our setting by associating timestamps to each annotated sentence using the

video subtitles. Our results demonstrate the effectiveness of our proposed approach

and show that by leveraging the additional modalities we can consistently obtain

better performance.

6.2 Related Work

Our work is related to aspect extraction using deep learning, a task that is often tack-

led as a sequence labeling problem. In particular, our work is related to Irsoy and

Cardie [2014], who pioneered in the field by using multi-layered RNNs. Later, Liu

et al. [2015] successfully adapted the architectures by Mesnil et al. [2013] which were

originally developed for slot-filling in the context of Natural Language Understand-

ing.

Literature offers related work on the usage of RNNs for open domain targeted

sentiment [Mitchell et al., 2013], where Zhang et al. [2015] experimented with neural

CRF models using various RNN architectures on a dataset of informal language from

Twitter.

Regarding target-based sentiment analysis, the literature contains several ad-hoc

models that account for the sentence structure and the position of the aspect on it

[Tang et al., 2016a,b]. These approaches mainly use attention-augmented RNNs for

solving the task. However, they require the location of the aspect to be known in

advance and therefore are only useful in pipeline models, while instead we model

aspect extraction and sentiment classification as a joint task or using multi-tasking.
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AESC has also often been tackled as a sequence labeling problem, mainly using

Conditional Random Fields (CRFs) [Mitchell et al., 2013]. To model the problem in

this fashion, collapsed or sentiment-bearing IOB labels [Zhang et al., 2015] are used.

Pipeline models (i.e. task-independent model ensembles) have also been extensively

studied by the same authors. Xu et al. [2014] performed AESC by modeling the

linking relation between aspects and the sentiment-bearing phrases.

When it comes to the video review domain, there is related work on YouTube

mining, mainly focused on exploiting user comments. For example, Wu et al. [2014]

exploited crowdsourced textual data from time-synced commented videos, propos-

ing a temporal topic model based on LDA. Tahara et al. [2010] introduced a similar

approach for Nico Nico, using time-indexed social annotations to search for desirable

scenes inside videos.

On the other hand, Severyn et al. [2014] proposed a systematic approach to mine

user comments that relies on tree kernel models. Additionally, Krishna et al. [2013]

performed sentiment analysis on YouTube comments related to popular topics using

machine learning techniques, showing that the trends in users’ sentiments is well

correlated to the corresponding real-world events. Siersdorfer et al. [2010] presented

an analysis of dependencies between comments and comment ratings, proving that

community feedback in combination with term features in comments can be used for

automatically determining the community acceptance of comments.

We also find some papers that have successfully attempted to use closed caption

mining for video activity recognition [Gupta and Mooney, 2010] and scene segmenta-

tion [Gupta and Mooney, 2009]. Similar work has been done using closed captions to

classify movies by genre [Brezeale and Cook, 2006] and summarize video programs

[Brezeale and Cook, 2006]. Regarding multi-modal approaches for sentiment anal-

ysis, we see that previous work has focused mainly on sentiment classification, or

the related task of emotion detection [Lakomkin et al., 2017], where the CMU MOSI

dataset [Zadeh et al., 2016] appears as the main resource. In this setting, the main

problem is how to model and capture cross-modality interactions to predict the sen-

timent correctly. In this regard Zadeh et al. [2017] proposed a tensor fusion layer that

can better capture cross-modality interactions between text, audio and video inputs,

while Poria et al. [2017] modeled inter-dependencies across difference utterances of

a single video, obtaining further improvements.

Blanchard et al. [2018] are the first to tackle scalable multi-modal sentiment clas-

sification using both visual and acoustic modalities. More recently Ghosal et al.

[2018] proposed an RNN-based multi-modal approach that relies on attention to

learn the contributing features among multi-utterance representations. On the other

hand Pham et al. [2018] introduced multi-modal sequence-to-sequence models which

perform specially well in bi-modal settings. Akhtar et al. [2019] proposed a multi-

modal, multi-task approach in which the inputs from a video (text, acoustic and

visual frames), are exploited for simultaneously predicting the sentiment and ex-

pressed emotions of an utterance. Our work is related to all of these approaches,

but it is different in that we apply multi-modal techniques not only for sentiment

classification, but also for aspect extraction.
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Figure 6.1: Overview of our proposed approach for multi-modal opinion mining.
We use the three inherent modules to process the inherent information in a video.
First the text encoding module that generates a reprentation of the transcript of the
video. Then, the audio and video encoding modules that creates video representation
for the audio and frames, respectively. Finally, we use a fusion module to fuse the
modalities with the natural language and obtain the sequence labeling.

Finally, Marrese-Taylor et al. [2017] and Garcia et al. [2019b] contributed multi-

modal datasets obtained from product and movie reviews respectively, specifically

for the task of fine-grained opinion mining. Furthermore, Garcia et al. [2019a] re-

cently used the latter to propose a hierarchical multi-modal model for opinion min-

ing. Compared to them, our approach follows a more traditional setting for fine-

grained opinion mining, while also offering a more general framework for the prob-

lem. Garcia et al. [2019a] utilize a single encoder that receives as input the concatena-

tion of the features for each modality, for each token. This requires explicit alignment

between the features of the different modalities at the token level. In contrast, since

each modality is encoded separately in our approach, we only require the feature

alignment to be at the sentence level.

6.3 Task Description

Opinion mining can be performed at several levels of granularity, the most common

ones being the sentence level, and the more fine-grained aspect level. Fine-grained

opinion mining can be further subdivided in two tasks: aspect extraction and aspect-

level sentiment classification. The former deals with finding the aspects being re-

ferred to, and the latter with associating them with a sentiment.

Previous work usually casts this task as a sequence-labeling problem, where mod-

els have to predict whether a token is a part of an aspect and infer its sentiment

polarity [Mitchell et al., 2013; Zhang et al., 2015; Liu et al., 2015]. Depending on the
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I love the saturated colors !

LAE O O O B I O
LSC φ φ φ + + φ
LC O O O B+ I+ O

Table 6.1: Label definition alternatives for the tasks in ABSA using sequence labeling.

dataset annotations, aspect categories are in some cases specified as well.

Formally, given a sentence s = [x1, . . . , xn], we want to automatically annotate

each token xi with its aspect membership and polarity. In the simpler case where

we only want to perform Aspect Extraction, a common annotation scheme is to tag

each token with a label yi ∈ LAE where LAE = {I, O, B}. In this scheme, commonly

known as IOB, O labels indicate that a token is not a member of an aspect, B labels

indicate that a token is at the beginning of an aspect, and I labels indicate that the

token is inside an aspect.

Similarly, performing token-level Sentiment Classification only is equivalent to

tagging each token with a label yi ∈ LSC where LSC = {φ,+,−}, and φ denotes no

sentiment, + denotes a positive polarity and − a negative one.

It is also possible to define a collapsed annotation scheme, where aspect member-

ship and sentiment polarity are encoded in a single tag. We define the label set for

this setting as LC = {O, B+, B−, I+, I−}.

Table 6.1 shows the possible ways to annotate the sentence “I love the saturated

colors!” under these three annotation schemes, where the aspect being referred to is

“saturated colors”.

Labels can be further augmented with type information. For example Liu et al.

[2015] used different tags for opinion targets (e.g. B-TARG), and opinion expressions

(e.g., B-EXPR), however, we do not rely on this information.

6.4 Proposed Approach

We propose a multi-modal approach for aspect extraction and sentiment classifica-

tion that leverages video, audio and textual features. This approach assumes we

have a video review v containing opinions, its extracted audio stream a, and a tran-

scription of the audio into a sequence of sentences S. Further, each sentence s ∈ S

is annotated with its respective start and end times in the video effectively mapping

them to a video segment vs ⊂ v and its corresponding audio segment as ⊂ a. These

segments do not necessarily cover the whole video, i.e., ∪S

s=1 vs ⊆ v since the reviews

may include parts that have no speech and therefore no sentences are associated

to those. Our end goal is to produce a sequence of labels l = [y1, . . . , yn] for each

sentence s = [x1, . . . , xn] while exploiting the information contained in vs and as.

Figure 6.1 presents a high-level overview of our approach. We rely on an encoder-

decoder paradigm to create separate representations for each modality [Cho et al.,

2014]. The text encoding module generates a representation for each token in the
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input text, while the video and audio encoding layers produce utterance-level repre-

sentations from each modality.

We propose combining these representations with an approach inspired by early-

fusion [Xu et al., 2019], which allows for the word-level representations to interact

with audio and visual features. Finally, a sequence labeling module is in charge of

taking the final token-level representations and producing a token-level label. In the

following sub-sections we describe each component of our model.

6.4.1 Text Encoding Module

This module generates a representation of the natural language input so that the

obtained representation is useful for the sequence labeling task. Our text encoder

first maps each word xi into an embedded input sequence x = [x1, . . . , xn], then

projects this into a vector ht
i ∈ Rdt , where dt corresponds to the hidden dimension of

the obtained text representation. Although our text encoding module is generic, in

this paper we implement it as a bi-directional GRU [Cho et al., 2014], on top of pre-

trained word embeddings, specifically GloVe [Pennington et al., 2014], as follows.

ht
i = BiGRU(xi, ht

i−1) (6.1)

6.4.2 Audio Encoding Module

We assume the existence of a finite set of time-ordered audio features a = [a1, . . . , am]
extracted from each audio utterance as, for instance with the procedure described in

Section 6.5.2. We feed these vectors into another bi-directional GRU to add context

to each time step, obtaining hidden states ha
j ∈ Rda .

ha
j = BiGRU(aj, ha

j−1) (6.2)

To obtain a condensed representation from the audio signal we again utilize mean

pooling over the intermediate memory vectors, obtaining h̄a.

6.4.3 Video Encoding Module

We propose a video encoding layer that generates a visual representation summariz-

ing spatio-temporal patterns directly from the raw input frames. Concretely, given

a video segment v = [v1, . . . , vT], where vi is a vector representing a single frame

in vs, our encoding module first maps this sequence into another sequence of video

features v̂ = [v̂1, . . . , v̂l ] following the method described in Section 6.5.2. Later, this

new sequence is mapped into a vector h̄v ∈ Rdv that captures summarized high-level

visual semantics in the video, as follows:

hv
k = BiGRU(v̂k, hv

k−1) (6.3)
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6.4.4 Fusion Module

We utilize an early fusion strategy similar to Xu et al. [2019] to aggregate the rep-

resentations obtained from each modality. We concatenate the contextualized rep-

resentation ht
i for each token to the summarized representations of the additional

modalities, h̄a and h̄v, and feed this final vector representation to an additional Bi-

GRU:

hi = BiGRU([ht
i ; h̄a; h̄v], hi−1) (6.4)

As a result, our model now allows the representation of each word in the input sen-

tence to interact with the audio and visual features, enabling it to learn potentially

different ways to associate each word with the additional modalities. An alternative

way to achieve this would be to utilize attention mechanisms to enforce such asso-

ciation behavior, however, we instead let the model learn this relation without using

any additional inductive bias.

6.4.5 Sequence Labeling Module

The main labeling module is a multi-layer perceptron guided by a self attention com-

ponent. The self attention component enriches the representation hi with contextual

information coming from every other sequence element by performing the following

operations:

ui,j = v⊤
α tanh(Wα[hi; hj] + bα) (6.5)

αi,j = softmax(ui,j) (6.6)

ti =
n

∑
j=1

αi,j · hj (6.7)

oi = Wl [hi; ti] + bl (6.8)

where oi is a vector associated to input xi, and vα, Wα, Wl and bα, bl are trainable

parameters. As shown, these vectors are obtained using both the corresponding

aligned input hi and the attention-weighted vector ti.

Following previous work, we feed these vectors into a Linear Chain CRF layer,

which performs the final labeling. Neural CRFs have proven to be especially effective

for various sequence segmentation or labeling tasks in NLP [Ma and Hovy, 2016;

Yang and Zhang, 2018; Yang et al., 2018], and have also been used successfully in

the past for open domain opinion mining [Zhang et al., 2015]. Concretely, we model

emission and transition potentials as follows,

ψi := e(xi, yi; θ) = hi · yi (6.9)

ψi,j := q(yi, yj; Π) = Πyi ,yj
(6.10)

where hi is the fused hidden state for position i and θ denotes the parameters in-

volved in computing this vector, yi is a one-hot vector associated to yi, and Π is a

trainable matrix of size LAE or LC depending on the setting —see Section 6.5 for
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more details on this. The score function of a given input sentence s and output

sequence of labels l is defined as:

Φ(s, l) =
n

∑
i=1

log e(x, yi; θ) + log q(yi, yi−1; Π) (6.11)

In this work we directly optimize the negative log-likelihood associated to this score

during training, and apply Viterbi decoding during inference to obtain the most

likely labels.

6.5 Experimental Setup

We evaluate our proposal in several experimental settings based on previous work.

• Simple: We only focus on the task of aspect extraction, following a sequence

labeling approach with regular IOB tags in LAE.

• Collapsed Aspect-Level (CAL): We perform aspect extraction and aspect-level

sentiment classification with a sequence labeling model, utilizing sentiment-

bearing IOB tags in LC.

• Collapsed Sentence-Level (CSL): Like the previous setting, but we only keep

sentence examples that contain a single sentiment, so we can perform sentence-

level sentiment classification. Again, we use sequence labeling with sentiment-

bearing IOB tags in LC.

• Joint Sentence-Level (JSL): We use a multi-tasking approach and perform se-

quence labeling for aspect extraction with regular IOB tags in LAE, and se-

quence classification to predict the sentence-level sentiment. In this sense, we

add a final 3-layer fully-connected neural network that receives a mean-pooled

representation of the fusion layer h̄ = 1
n ∑

n
i=1 hi and predicts a sentence-level

sentiment. As loss function we utilize the mini-batch average cross-entropy

with the gold standard class label. The total loss is the sum of the losses for

sequence labeling and sequence classification.

Previous work has also shown that most sentences present a single aspect, and

therefore a single sentiment [Marrese-Taylor et al., 2017; Zuo et al., 2018; Zhao et al.,

2010], which motivates the introduction of the CSL and JSL settings. For these cases

we filtered out sentences that do not fit this description.

6.5.1 Data

We report results on two different datasets containing fine-grained annotations for

both opinion targets and sentiment.

First, we work with the Youtubean dataset [Marrese-Taylor et al., 2017], which

contains sentences extracted from YouTube video annotated with aspects and their
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1 168

2 00:20:41 ,150 --> 00:20:45 ,109

3 - How did he do that?

4 - Made him an offer he could not refuse.

Figure 6.2: Excerpt of a subtitle chunk (in SubRip format,) showing its main compo-
nents.

respective sentiments. The data comes from the user-provided closed-captions de-

rived from 7 different long product review videos about a cell phone, totaling up to

71 minutes of audiovisual data. In total there are 578 long sentences from free spo-

ken descriptions of the product, on average each sentence consist of 20 words. The

dataset has a total of 525 aspects, with more than 66% of the sentences containing at

least one mention.

Second, we work with the fine-grained annotations gathered for the POM dataset

by Garcia et al. [2019b]. This dataset is composed of 1000 videos containing reviews

where a single speaker in frontal view makes a critique of a movie that he/she has

watched. There are videos from 372 unique speakers, with 600 different movie titles

being reviewed. Each video has an average length of about 94 seconds and contains

15.1 sentences on average. The fine-grained annotations we utilize are available for

each token indicating if it is responsible for the understanding of the polarity of the

sentence, and whether it describes the target of an opinion; each sentence has an

average of 22.5 tokens. We assume that whenever there is an overlap between the

span annotations for a given target and a certain polarity, the corresponding polarity

can be assigned to that target, otherwise it is labeled as neutral.

Since the annotated sentences in both datasets are not associated to specific times-

tamps, in this work we propose a method based on heuristics to rescue the video

segments that correspond to each annotated sentence by leveraging video subtitles

(or closed-captions.)

As shown in Figure 6.2, closed captions or subtitles are composed of chunks that

contain: (1) A numeric counter identifying each chunk, (2) The time at which the

subtitle should appear on the screen followed by –> and the time when it should

disappear, (3) The subtitle text itself on one or more lines, and (4) A blank line

containing no text, indicating the end of this subtitle. These chunks exhibit a large

variance in terms of their length, meaning that sentences are usually split into many

chunks.

Starting from a subtitle file associated to a given product review video, we apply a

fuzzy-matching approach between each annotated sentence for that review and each

closed caption chunk. This is repeated for each one of the videos in our datasets.

Whenever an annotated sentence matches exactly or has over 90% similarity with a

closed caption chunk, its time-span is associated to that sentence. Finally, the “start”

and “end” timestamps assigned to each sentence are defined by the start and end

time spans of their first and last associated closed captions, sorted by time.
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6.5.2 Implementation Details

Pre-processing for the natural language input is performed utilizing spacy2, which

we use mainly to tokenize. Input sentences are trimmed to a maximum length of

300 tokens, and tokens with frequency lower than 1 are replaced with a special UNK

marker. To work with the POM dataset, which is already tokenized, we first convert

it to the ABSA format, which is tokenization agnostic, and then we process it.

Although our audio encoder is generic, in this work we follow Lakomkin et al.

[2017] and use Fast Fourier Transform spectrograms to extract rich vectors from each

audio segment. Specifically, we use a window length of 1024 points and 512 points

overlap, giving us vectors of size 513. Alternative audio feature extractors such as

Degottex et al. [2014] could also be utilized.

On the other hand, we model video feature extraction using I3D [Carreira and

Zisserman, 2017]. This method inflates the 2D filters of a well-known network e.g.

Inception [Szegedy et al., 2015; Ioffe and Szegedy, 2015] or ResNet [He et al., 2016] for

image classification to obtain 3D filters, helping us better exploit the spatio-temporal

nature of video. We first pre-process the videos by extracting features of size 1024

using I3D with average pooling, taking as input the raw frames of dimension 256 ×
256, at 25 fps. We use the model pre-trained on the kinetics400 dataset [Kay et al.,

2017] released by the same authors. Despite our choice to obtain video features,

again we note that our video encoder is generic, so other alternatives such as C3D

[Tran et al., 2015] could be utilized.

Finally, all of our models are trained in an end-to-end fashion using Adam [Kingma

and Ba, 2015] with a learning rate of 10−3. To prevent over-fitting, we add dropout

to the text encoding layer. We use a batch size of 8 for the Youtubean dataset, and of

64 for the POM dataset. The language encoder uses a hidden state of size 150, and

we fine-tune the pre-trained GloVe.

On each case we compare the performance of our proposed approach against a

baseline model that does not consider multi-modality, does not utilize pre-trained

GloVe word embeddings and is based on a cross-entropy loss, in which case we

simply utilize the mini-batch average cross-entropy between ŷi = softmax(oi) and

the gold standard one-hot encoded labels yi, a vector that is the size of the tag label

vocabulary for the corresponding task.

6.5.3 Evaluation

Since the size of Youtubean is relatively small, all our experiments in this dataset are

evaluated using 5-fold cross validation. In the case of the POM dataset, we report

performance on the validation and test sets averaging results for 5 different random

seeds. In both cases we compare models using paired two-sided t-tests to check for

statistical significance of the differences.

To evaluate our sequence labeling tasks we used the CoNLL conlleval script, taking

the aspect extraction F1-score as our model selection metric for early stopping. To

2https://spacy.io

https://spacy.io
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Setting Model
Aspect Extraction Sentiment Classification

P R F1 P R F1

Simple
Baseline 0.531 0.542 0.533 - - -

Ours 0.602** 0.568 0.584*** - - -

CAL
Baseline 0.546 0.538 0.539 0.710 0.688 0.696

Ours 0.590 0.572 0.581* 0.722 0.722 0.718

CSL
Baseline 0.526 0.463 0.490 0.746 0.722 0.724

Ours 0.563 0.581*** 0.568** 0.720 0.674 0.688

JSL
Baseline 0.483 0.521 0.496 0.946 0.946 0.946

Ours 0.544*** 0.552 0.545*** 0.946 0.946 0.946

Table 6.2: Summary of our results on the Youtubean dataset, *** denotes statistical
significance at 99% confidence, ** at 95% and * at 90%.

perform joint aspect extraction and sentiment classification, we considered positive,

negative and neutral as sentiment classes, and decoupled the IOB collapsed tags using

simple heuristics. Concretely, we recover the aspect extraction F1-score as well as

classification performances for each sentiment class.

6.6 Results

To evaluate the effectiveness of our proposals, we perform several ablation studies

on the Simple setting for the Youtubean dataset. Using variations of our baseline

with pre-trained GLoVe embeddings (GV), conditional random field (CRF), audio

and video modalities (A+V). Experiments are also performed using 5-fold cross-

validation, and comparisons are always tested for significance using paired two-sided

t-tests.

As Table 6.4 shows, although every proposed model variation performs better

than the baseline, only the model uses video and audio modalities obtains a statis-

tically superior performance. We also see that our proposed multi-modal variation

is the one that obtains the best performance, also being statistically significant at the

highest level of confidence. We believe these results show that our proposed multi-

modal architecture is not only able to exploit the features in the audio and video

inputs, but it can also leverage the information in the pre-trained word embeddings

and benefit from having an inductive bias that is tailored for the task at hand, in this

case, with a loss based on structured prediction for sequence labeling.

Table 6.2 summarizes our results for the Youtubean dataset, where we can see

that our proposed multi-modal approach is able to outperform the baseline model

for all settings in the aspect extraction task. When it comes to sentiment classification,

our multi-modal approaches do not obtain significant performance gain in all cases,

sometimes performing worse although without statistical significance. We also
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Okay        do          not         see     this        film
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Gold Standard
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Ours
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This        movie         has            everything
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Gold Standard

Baseline

Ours

Figure 6.3: Qualitative comparison between baseline and our method on the POM
dataset. Green and red boxes represent positive and negative sentiment respectively.

You  get  a   ton   of   settings   and  features   in    the   camera    app  which   is    also improved

Gold Standard

Baseline

Ours

The   first   thing   we   notice   is   that   the   back   cover   is   way  less  glossy.

Gold Standard

Baseline

Ours

Figure 6.4: Qualitative comparison between baseline and our method on the
Youtubean dataset. Green and yellow boxes represent positive and neutral senti-
ment respectively.
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Setting Model
Aspect Extraction Sentiment Classification

P R F1 P R F1

Simple
Baseline 0.394 0.379 0.386 - - -

Ours 0.396 0.406 0.399 - - -

CAL
Baseline 0.364 0.401* 0.382 0.540*** 0.416 0.270

Ours 0.444** 0.368 0.402** 0.488 0.466*** 0.342***

CSL
Baseline 0.387 0.375 0.408* 0.614 0.446 0.296

Ours 0.438* 0.378 0.404 0.532 0.446 0.304

JSL
Baseline 0.381 0.357 0.367 0.798 0.802 0.788

Ours 0.442*** 0.401* 0.420* 0.924*** 0.924*** 0.922***

Table 6.3: Summary of our results for the test set of the POM dataset, *** denotes
statistical significance at 99% confidence, ** at 95% and * at 90%.

compare our results to the performance reported by Marrese-Taylor et al. [2017],

who experimented on the Simple and CSL settings. Their models also use pre-trained

word embedding —although different from GloVe— and as input they additionally

receives binary features derived from POS tags and other word-level cues. We note,

however, that they only experimented with a maximum length of 200 tokens, which

makes our results not directly comparable. Their performance on aspect extraction

for the Simple and CAL tasks are 0.561 and 0.555 F1-Score respectively, both of which

are lower than ours. In terms of sentiment classification, they report results for each

sentiment class with F1-Scores of 0.523, 0.149 and 0.811 for the positive, negative and

neutral classes, respectively. Our model is able to outperform this baseline, with a

cross-class average F1-Score of 0.718. We do not deepen the analysis in this regard,

as numbers are difficult to interpret without statistical testing.

Tables 6.5 and 6.3 summarise our results for the POM dataset for the validation

and test splits, respectively. Compared to the previous dataset we see similar results

where our multi-modal approach consistently outperforms the baseline for aspect

extraction, but with the gains being comparatively smaller. We also see that our

model is able to significantly outperform the baseline in the sentiment classification

tasks at least in two of out the three settings. In terms of previous work, our results

cannot be directly compared to Garcia et al. [2019a] and Garcia et al. [2019b] as their

problem setting is different from ours.

On a more broad perspective, we think the performance differences across datasets

are related to the nature of each dataset. Meanwhile Youtubean contains reviews

about actual physical products, which are often shown in the videos at the same

time the reviewer is speaking, the POM dataset contains movie reviews where the

speakers directly face the camera during most of the video, without utilizing any

additional support material. As a result, the video reviews in the Youtubean dataset

mainly focus on capturing images of the products under discussion, with relatively

fewer scenes showing the reviewer. This means that there may be few visual cues
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Model
Aspect Extraction

P R F1

T 0.532 0.543 0.533
T + CRF 0.558 0.528 0.541
T + GV 0.562 0.537 0.548

T + GV + CRF 0.576* 0.569 0.571**
T + A + V 0.587* 0.578 0.580*

T + CRF + A + V 0.578 0.570 0.573*
T + GV + CRF + A + V 0.602** 0.568 0.584***

Table 6.4: Ablation study on aspect extraction on the simple setting. *** denotes
differences against the only text model (T) results are statistically significant at 99%
confidence, ** at 95% and * at 90%. (A + V) refers to the audio and video modalities,
(GV) stands for GLoVe embeddings and (CRF) for the model trained using the Con-
ditional Random Fields loss.

Setting Model AE F1 SC F1

Simple
Baseline 0.428 -

Ours 0.433 -

CAL
Baseline 0.412 0.240

Ours 0.427*** 0.310**

CSL
Baseline 0.408 0.264

Ours 0.423* 0.262

JSL
Baseline 0.387 0.950***

Ours 0.469** 0.840

Table 6.5: Results for the validation set of the POM dataset, where *** denotes results
are statistically significant at 99% confidence, ** at 95% and * at 90%.

in the manner of facial expressions or other specific actions that the models could

exploit in order to perform better at the sentiment classification task, but more cues

useful for aspect extraction. This situation is reverted in the POM dataset, which

could explain why our models tend to perform better for sentiment classification,

but offering smaller gains for the AE task.

We also think performance differences across datasets are to some extent ex-

plained by the nature of the annotations on each case. The annotation guidelines

utilized to elaborate each dataset are actually quite different, with the annotations in

the Youtubean dataset closely following those of the well-known SemEval datasets,

which are target-centric and the POM standards substantially diverging from this.

Concretely, Garcia et al. [2019b] propose a two-level annotation method, where “the

smallest span of words that contains all the words necessary for the recognition of an

opinion” are to be annotated. As a result, aspects annotated in the POM dataset often
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include pronouns which are more difficult to identify as aspects, often requiring co-

reference resolution. With regards to aspect polarity, while it can be extracted directly

from the Youtubean annotations, in the case of POM we needed some pre-processing

as target and sentiment are annotated using independent text spans.

Qualitative results of the POM and Youtubean dataset in a multitask CAL can be

seen in Figure 6.3 and 6.4 respectively, results suggest that the method learn to use

the information from additional modalities and enhance the sentiment and aspect

prediction.

Finally, as we observe that our models tend to obtain bigger gains on the AE tasks

rather than on SC, we think this behaviour can be partially attributed to the inductive

bias of our model, which makes it specially suitable for sequence segmentation tasks.

6.7 Summary

In this chapter we have presented a multi-modal approach for fine-grained opinion

mining, introducing a modular architecture that utilizes features derived from the

audio, video frames and language transcription of video reviews to perform aspect

extraction and sentiment classification at the sentence level. To test our proposals

we have taken two datasets built upon video review transcriptions containing fine-

grained opinions, and introduced a technique that leverages the video subtitles to

associate timestamps to each annotated sentence. Our results offer empirical evi-

dence showing that the additional modalities contain useful information that can be

exploited by our models to offer increased performance for both aspect extraction

and sentiment classification, consistently outperforming text-only baselines.



Chapter 7

Conclusion and Future Directions

This thesis focuses on video analysis for understanding human actions and interac-

tions. We studied different tasks where we have to anticipate, localise and summarise

human actions. To conclude our work, in this chapter, we summarise the main con-

tributions of this thesis and discuss some open problems and exciting directions for

future research.

7.1 Summary

In order to contextualise our research with the scientific literature needed to tackle

these challenging problems, we provide a brief background in Chapter 2. We started

our technical contribution in Chapter 3 introducing a method for action anticipation

by forecasting motion representations, concretely dynamic images. Our approach

hallucinates future dynamic images by observing an early portion of the videos.

The intuition is that the generation of motion representations are easier and more

meaningful for the task of action anticipation than still images. We propose two loss

functions that encourage an autoencoder to forecast useful motion representations,

taking advantage of the way that dynamic images are created. We also encourage the

autoencoder to produce discriminative motion representations tailored to the action

anticipation task. Using this approach, we achieved a state of the art performance in

the action anticipation task. In this chapter, we learned the importance of temporal

information for understanding human actions in videos.

Then we studied the problem of temporal moment localisation using a natural-

language query. In contrast with the previous task where we use only visual in-

formation, in this task, we use natural language to guide the localisation of action

or moment in long untrimmed videos. In Chapter 4, we presented a proposal-free

method. In contrast with the propose and ranking approaches, where methods cre-

ate or use predefined clips as candidates, we introduce a proposal-free approach

that localises the query by looking at the whole video at once. We also consider the

subjectivity of the temporal annotations and propose a soft-labelling using a categor-

ical distribution centred on the annotated start and end. Using this approach, we

achieved a state of the art performance in the task.

Qualitative analysis in Chapter 4 suggests that when the method is confused it is

103
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because it does not consider any spatial information. In light of this, in Chapter 5, we

introduce a new approach based on a spatial-temporal graph. The principal moti-

vation of this work is to capture the human-human and human-objects relationships

with the activity. We proposed a unique spatial graph that models such relationships

conditioned in the input query. We create three semantically meaningful nodes for

visual features, Human, Object, and Activity nodes. Human and Object nodes re-

ceive the observations made by an object detector mechanism, and the Activity node

receives an activity representation using a 3D convolutional neural network.

Moreover, we create three different language nodes that model the relationship

at the language level of the "subject-object," "subject-verb," and "verb-object." We use

a language-conditional message passing to send messages between nodes and create

an improved representation of the activity used by a temporal graph to determine

the start and end of the query. Using this approach, we achieved a state of the art

performance in the temporal moment localisation task in different benchmarks.

In Chapter 6, the final technical chapter of this thesis, we studied the problem of

fine-grained opinion mining in video review using a multi-modal setting. People use

video reviews as a guide to answering what, why, and where to buy something. We

tackled this problem using the three different modalities naturally present in a video

—audio, appearance (frames), and language (speech transcript)— to determine the

most relevant aspect of the object under review and the sentiment polarity of the

reviewer upon that aspect. We proposed an early fusion mechanism of the three

modalities. This approach allows to fuse the modalities at the sentence level, and it

is a general framework that does not lay in any strict constraints on the individual

encodings. Using this approach, we prove the benefit that vision and audio can bring

to a task that has been typically tackled by the natural language community using

only text.

7.2 Future Work

Our work is motivated by the vast applicability that video analysis and human action

understanding can bring to improve our daily life, e.g., domestic robots will need

action anticipations capabilities to help humans to perform a specific task. Search

engines that understand the content of the video can help people to find where they

leave objects in a house or localise important events in a video such as nocturnal

seizures. Summarising the video content automatically to create useful visualisa-

tions that can help in the decision-making process of buying, creating or improving

products. In this section, we present a discussion of potential future research direc-

tions towards understanding human action in videos to release all the potential in its

applications.

7.2.1 Action anticipation: Uncertainty and Robotics

In Chapter 3, we described an action anticipation mechanism that forecasts motion

representation recursively. Although the method reaches state of the art performance
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by forecasting dynamic images, there is still room to improve. One of the main prob-

lems of generating sequences of motion representations is the propagation of error

through consecutive generations. Therefore, determining the number of dynamic

images that maximise the action anticipation capabilities of our method is an excit-

ing direction to explore. It is not only necessary for the method mentioned above.

It could help many other video techniques that rely on forecast video frames or fea-

tures. In our specific case, the use of discriminative motion representation allows us

to use information gain to determine such numbers.

Although action anticipation in videos has received considerable attention in the

last years, there are few empirical studies of using these approaches in real scenarios.

Action anticipation for reactive robot response is among those [Koppula and Saxena,

2015]. It consists of predicting the human’s action and executing the action of an

agent accordingly. It could be used to prevent accidents [Aliakbarian et al., 2018]

or to perform a task cooperatively [Villani et al., 2018]. However, these works focus

on predicting an action without context or goal, i.e., an agent opening a refrigerator,

since it perceives that a person is close to it, but they are not involved in a task

together. We imagine a synthetic or real environment where the robot performs a

task collaboratively with a human, such that each action that the robot undertakes

is geared towards accomplishing a task, e.g., assemble furniture. In such a scenario,

the robot’s errors in anticipating the action could be catastrophic or just another path

to accomplish the goal. This scenario can be considered as a partially observable

Markov decision process, in which the human’s future actions depend on the agent’s

actions. In this context, we believe that action anticipation is an essential tool to

create a complete agent, an agent that can see, communicate and act [Anderson, 2018].

In our view, the current state of the art for the task of action anticipation is in the

necessary stage to move to this next step, as well as the other subfields needed to

create a complete agent. It is for that reason that we believe there is great potential

for future researchers that might focus on creating complete agents that help people

to accomplish a task.

7.2.2 Moment Localisation: Closing the Loop and Compositional Videos

In the case of temporal moment localisation, Chapters 4 and 5, we proposed a

proposal-free method that can localise a query by seeing the whole video at once.

The possibility to see the whole video allows us to think in methods that can close

the loop between vision and language. For each query or description, there exists a

temporal section in the video that is performing such a description. As also, for each

moment in the video there is a natural language sentence that can describe the mo-

ment. This scenario is ideal for using cycle consistency approaches [Zhu et al., 2017;

Felix et al., 2018], where one method localises a segment in the video that is related

to the query and through another method, e.g., dense video captioning [Krishna

et al., 2017], we generate the query for that segment. We believe that this direction

can help both tasks, temporal moment localisation and dense video captioning, to

generate more accurate localisations and diverse captions. However, it is likely that
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these types of methods will need a more sophisticated attention mechanism in the

temporal domain.

Although the guided attention that we introduced in Chapter 4 is satisfying the

needs to localise the query, it will possibly not work for caption generation. Softmax

usually attends one or two features in the segment, which limitate the information

that is transferred to a captioner. Thus, we believe the use of a structured attention

mechanism that provides much broader information to the captioner and also helps

the localisation [Kim et al., 2017; Qiu et al., 2020].

In the context of closing the loop, we can extend our spatial-temporal graph to

solve the task of dependency parsing. Dependency parsing is the task of analysing

the grammatical structure of a sentence and establishing the relationship between

words [Nivre et al., 2016, 2007; Ji et al., 2019]. Our method uses a multi-head attention

mechanism to attend to the words that capture the relationship between the subject,

nouns and verbs. However, we have seen that the attention mechanism is not fully

capturing such language relationships. The network uses what it thinks is the most

valuable language relationships to localise the task. We believe that guiding the

language module to feed the spatial-temporal graph with the correct relationship

of the words could help the method to understand the video better. Moreover, we

believe that an additional source of information that can help a dependency parsing

method is the relationship between the activity, human and object visual nodes. This

symbiotic relationship between visual and language should be exploited, and it is an

exciting direction for future research.

Another technical future line of work is modelling the relationship between start

and end. Currently, our proposed methods do not impose any constraint on the

temporal boundaries. For example, one can impose the simple constraint that the

start must be before the end. Others can capture the prior information of the duration

of an action and impose this constraint in the start and end, taking in consideration

the different speeds in a video.

Temporal moment localisation can be applied in many different tasks, which can

help humans in their daily life. We believe one of the ideal scenarios where this

method can be used is compositional videos. We imagine a method that generates

new videos through the combination of different moments. For example, we create

a new recipe which does not have a video associated with it. Ideally, we would use

different moments that can compose the video recipe and create a completely new

tutorial without the need of human intervention.

7.2.3 Video Opinion Mining: Gestures and Sarcasm

Our work in Chapter 6 demonstrated that the use of visual and audio features pro-

vide useful information for the opinion mining task. Our method is straightforward,

and we believe it is the starting point in this direction of research. We believe that for

better capturing the sentiment polarity of an opinion, we need to add fine-grained

representations of the spatial-visual information in the videos, such as faces and ges-

tures. In the same direction, adding a fine-grained representation of the objects could
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help in the aspect extraction, and we need a method that captures the relationship

between objects and gestures in the scene.

In terms of the fusion mechanism, we think that aligning features from the dif-

ferent modalities to cope with their different information speed would be beneficial.

Currently, we are concatenating the video and audio representation naively. We

concatenate a rough representation of these modalities for each of the words in a

transcript. Thus, a more sophisticated fusion mechanism that aligns video, audio

and words in the transcript could better capture the aspect and sentiments in the

speech.

We also think there is a need for more and better datasets for this task with more

unconstrained and natural video reviews considering a more general setting with

different types of objects.

7.3 Conclusion

This thesis has explored the challenge of video analysis for understanding human

actions and interactions. Towards this end, we have leveraged the temporal and

spatial information to propose methods that better capture the necessary information

in a video to localise, forecast and summarise human actions. Nevertheless, as we

discussed in previous sections, there is still much work to be done on improving these

methods and there are many exciting directions in which they can be extended. We

hope that our work can provide the direction on which further research can stand.
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