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Abstract

We examine both Weyl pseudodifferential calculus and the Heisenberg group in

new settings, through two published papers and a chapter representing work to-

wards a construction of Haar bases of unimodular LC groups. We finish with

some remarks about an extension of both Heisenberg group and pseudodiffer-

ential calculus techniques to non-Abelian settings, detailing possible links with

representation theory and the Langlands program.

The first of the two papers achieves the following

“We give a simple proof of the fact that the classical Ornstein-Uhlenbeck

operator L is R-sectorial of angle arcsin |1− 2/p| on Lp(Rn, exp(−|x|2/2)dx) (for

1 < p < ∞). Applying the abstract holomorphic functional calculus theory of

Kalton and Weis, this immediately gives a new proof of the fact that L has a

bounded H∞ functional calculus with this optimal angle.”

In the second paper,

“We construct a Weyl pseudodifferential calculus tailored to studying bound-

edness of operators on weighted Lp spaces over Rd with weights of the form

exp(−φ(x)), for φ(x) a C2 function, a setting in which the operator associated to

the weighted Dirichlet form typically has only holomorphic functional calculus.

A symbol class giving rise to bounded operators on Lp is determined, and its

properties analysed. This theory is used to calculate an upper bounded on the

H∞ angle of relevant operators, and deduces known optimal results in some cases.

Finally, the symbol class is enriched and studied under an algebraic viewpoint.”

The construction of Haar bases on unimodular LC groups proceeds via the

tools of fractal tilings. After a review of these concepts we prove the key results

required to obtain a ”good” Haar basis, namely that the boundary of the relevant

tilings is of measure 0. We explain how the constructed Haar bases can be used

to study Fourier multipliers in such settings, detailing future work.
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Introduction

This thesis consists of four chapters with a division into two main parts. The

first two chapters deal with pseudodifferential operator theories in settings in

which classical pseudodifferential operator techniques are impossible to apply.

The third and fourth chapter represent some developments and ideas related

to non-commutative harmonic analysis, namely Haar bases and Heisenberg-like

groups.

Chapters 1 and 2 present work developed in tandem. Both of these chapters

are concerned with the development of pseudodifferential calculus theories which

are suitable for the study of certain Witten Laplacians on Rd. That is, we study

operators of the form

Lf(x) = −∆f(x) +∇φ(x) · ∇f(x)

on function spaces over Rd equipped with measure weighted by exp(−φ(x)), for

some φ : Rd → R continuously twice differentiable and approximately quadratic

positive semi-definite. The underlying metric measure spaces in such settings

are typically non-doubling, which results in significant technical difficulties. The

results of Garćıa-Cuerva, Mauceri, Meda, Sjögren, and Torrea in [GCMM+01]

show that in the Gaussian case φ(x) = x2

2
in which L is called the Ornstein-

Uhlenbeck operator, said operator has strictly holomorphic functional calculus on

Lp for p ∈ (1,∞), p 6= 2. Thus to study such operators via a pseudodifferential

calculus, symbol classes necessarily require some holomorphic nature, and this

eliminates most classical pseudodifferential techniques.

Despite these complications, van Neerven and Portal in [vNP18] have recov-

ered Lp − Lq boundedness and analytic extension properties of the semigroup

generated by the Ornstein-Uhlenbeck operator via the use of a Weyl pseudodif-

ferential calculus tailored to the specific weight exp
(
−x2

2

)
, with the observation

that passage through a Weyl pseudodifferential calculus “splits the analytic and

algebraic difficulties”. The result of this splitting is that the analytic arguments

required in [vNP18] are considerably simpler than those required in previous

1



2 INTRODUCTION

proofs of the recovered results.

Chapter 1 represents a natural evolution of the work in [vNP18], present-

ing a dramatically simplified proof of the result of [GCMM+01] via the Weyl

pseudodifferential calculus of [vNP18] (although the pseudodifferential calculus

is hidden in the proof). Chapter 1 has been published in Indagationes Mathe-

maticae as [Har19].

Chapter 2 presents a general theory of Weyl pseudodifferential calculus viable

for weighted settings. The Weyl pseudodifferential calculus is defined in such a

setting (Definition 2.2). The chapter culminates in the definition of a symbol

class HS0(M) which gives rise to Lp bounded operators (Definition 2.9 and The-

orem 8), analogous to Hörmander’s symbol class in classical pseudodifferential

operator theory. We find that some kind of holomorphic nature is present in such

symbols (Remark 5), as is to be expected based on the results of [GCMM+01].

The structure of HS0(M) prevents the use of classical pseudodifferential operator

techniques but is well-suited to algebraic techniques, through which we recover

and generalise the main theorem of [GCMM+01] in Theorem 10. Chapter 2 has

been uploaded to the arXiv [Har20], and is accepted for publication in the Illinois

Journal of Mathematics.

Chapter 3 represents the construction of Haar bases on certain locally compact

Hausdorff groups and possible applications of the theory, and proceeds via fractal

tiling and martingale methods. The chapter starts by recalling the definition of

the classical Haar basis on R along with the topics of multiresolution analysis,

fractal tilings, unconditionality, and their link to the classical Haar basis.

We abstract the required structure from R to the setting of general unimodular

metrisable LC groups, and provide in Theorems 3.20, 3.26 and 3.28 the key

regularity results necessary to produce a Haar basis (under two mild and mostly

group-theoretic assumptions which almost certainly always hold). The proof of

Theorem 3.20 is likely the most mathematically beautiful in this thesis. The key

Lp properties of the Haar basis are proven, which follow immediately from the

method of construction and the use of martingale methods.

The chapter concludes with some examples, discussion around the removal of

the assumptions, comparison to existing work, and planned future work. The ex-

amples suggest that such Haar basis are significantly “rough” in the non-Abelian

setting, in stark contrast to the Abelian setting. The main difference between
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what is achieved in Chapter 3 and existing work in this field is that we make

no use of Lie/nilpotency assumptions or techniques, and we make significant use

of martingale techniques. As for further work, we expect very similar methods

to those used in [Pet00], [Hyt08], [Hyt10] will allow us to study Lp behaviour

of Fourier multipliers via the constructed Haar bases, and we expect that a full

wavelet theory can be developed with our Haar bases as the first step with inter-

esting implications of the observed roughness of Haar bases in the non-Abelian

setting.

Chapter 4 begins by noting the significance of the Heisenberg group in the

results achieved in Chapters 1 and 2. We recall some results about Heisenberg

groups of general LCA groups and the significance of such groups in harmonic

analysis. Motivated by this significance, we detail the possible implications of

having a theory of Heisenberg-like groups in the non-Abelian setting and some

of our ongoing investigations in this direction, with interesting possibilities in

representation theory and the Langlands program.
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Chapter 1

Optimal Holomorphic Functional

Calculus for the

Ornstein-Uhlenbeck operator

1.1 Introduction

The Ornstein-Uhlenbeck operator appears in many areas of mathematics: as the

number operator of quantum field theory, the analogue of the Laplacian in the

Malliavin calculus, the generator of the transition semigroup associated with the

simplest mean-reverting stochastic process (the Ornstein-Uhlenbeck process), or

as the operator associated with the classical Dirichlet form on Rd equipped with

the Gaussian measure dµ = (2π)−
d
2 e−|x|

2/2dx. For the sake of this paper, the

Ornstein-Uhlenbeck operator will be defined via the Ornstein-Uhlenbeck semi-

group {Tt}t>0 whose action on f ∈ Lp(µ) is

Ttf(x) =

∫
Rd
Mt(x, y)f(y)dy, for x ∈ Rd

where Mt : R2d → R is given by

(x, y) 7→ 1

(2π)
d
2

(
1

1− e−2t

) d
2

exp

(
−1

2

|e−tx− y|2

(1− e−2t)

)
, (1.1)

the Mehler kernel.

Let us recall the basic properties of the Ornstein-Uhlenbeck semigroup used

in this article. For each p ∈ [1,∞] and each t > 0, the map f 7→ Ttf is bounded

Lp(µ) → Lp(µ), with operator norm at most 1, and is a positive operator. For

5



6 CHAPTER 1. H∞ CALCULUS FOR THE OU OPERATOR

p ∈ [1,∞), Tt : Lp(µ)→ Lp(µ) is a C0 semigroup, i.e. as t→ 0, Tt → I strongly

and TtTs = Tt+s for all t, s > 0. For a proof of these preliminary facts, see for

example Theorem 2.5 of [UR19]. It should be noted that although the Ornstein-

Uhlenbeck semigroup arises in many different areas of mathematics, these basic

properties can be proven solely with use of the explicit kernel and elementary

techniques. It is a simple calculation to show that Tt is bounded with norm

1 on both L∞(µ) and L1(µ), from which interpolation can be used to deduce

boundedness with norm 1 on Lp(µ) for p ∈ [1,∞]. Positivity follows from non-

negativity of the Mehler kernel. Strong continuity of the semigroup follows as

in typical proofs of the strong continuity of the classical heat semigroup, and

the semigroup property follows from a somewhat tedious exercise in integrating

Gaussian functions. It should be noted that by using other representations of the

Ornstein-Uhlenbeck semigroup, such as a spectral multiplier for the multivariate

Hermite ONB of L2(µ) or through a different representation via an integral kernel,

one may prove some of these results even more simply, however the difficulty

then becomes showing that all these representations for the Ornstein-Uhlenbeck

semigroup are equivalent (for example, see [NN18]). We consider the generator

of the Ornstein-Uhlenbeck semigroup on Lp(µ), p ∈ [1,∞), whose negative we

shall call the Ornstein-Uhlenbeck operator and denote by L. This operator is a

closed densely-defined unbounded operator on Lp(µ), p ∈ [1,∞), which uniquely

determines Tt. Thus from here on, we will use the notation exp(−tL) for the

operator Tt, on any of these spaces.

This paper presents a new proof of the following theorem.

Theorem 1. For p ∈ (1,∞), the Ornstein-Uhlenbeck operator has a bounded

H∞(Σθp) functional calculus on Lp(µ), where sin(θp) =
∣∣∣1− 2

p

∣∣∣.
See [5] for the theory of theH∞ functional calculus. That L has a boundedH∞

functional calculus (of some angle θ < π) follows from general results in the the-

ory of the H∞ functional calculus (for example, Theorem 10.7.13 of [HvNVW17]

states that any generator of an analytic semigroup on an Lp space for p ∈ (1,∞)

which is a positive contraction semigroup for real time has a bounded H∞ func-

tional calculus of some angle less than π
2
). The difficulty in Theorem 1 is to prove

the boundedness of the calculus with precisely the optimal angle θp.

Theorem 1 was originally proven by Garćıa-Cuerva, Mauceri, Meda, Sjögren

and Torrea in [GCMM+01], also proving that θp is optimal. They use Mauceri’s

abstract multiplier theorem to reduce the problem to precisely estimating u 7→
||Liu||. To do so, they express Liu as an integral of the semigroup, using a care-
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fully chosen contour of integration. They then consider the kernels of operators

corresponding to different parts of the contour, and decompose them into a local

and global part. To treat the global parts they then use a range of subtle kernel

estimates.

In [CD17], Carbonaro and Dragičević reproved and extended the result of

Theorem 1 to treat arbitrary generators of symmetric contraction semigroups on

an Lp space over a σ-finite measure space. Note that as they work on abstract

Lp spaces, their result gives dimension independent estimates working over Rd.

For their proof, they first reduce the problem to proving a bilinear embedding for

the semigroup, with constants depending optimally on the angle θp. They then

use the Bellman function method, controlling the bilinear form by an optimally

(depending on p) chosen function. This function turns out to be a known Bellman

function introduced by Nazarov and Treil, but just proving that it has the right

properties is a highly non-trivial task.

In contrast, the proof presented in this paper is based on the well-known result

that in Lp spaces, the optimal angle of the H∞ functional calculus of an operator

is equal to its optimal angle of R-sectoriality (see [HvNVW17] for the theory of

R-sectoriality, and its Theorem 10.7.13 for a proof of the stated result). Our

proof that the latter is equal to θp uses Theorem 10.3.3 of [HvNVW17], which

states an equivalence between an operator A being R-sectorial of angle θ < π
2

and −A being the generator of an analytic semigroup of angle π
2
− θ which is

R-bounded on each smaller sector. To deduce R-boundedness of the Ornstein-

Uhlenbeck semigroup on such sectors, a standard result on R-boundedness of

integral operators with radially decaying kernels is employed (Proposition 8.2.3

of [HvNVW17]). This key step only requires simple manipulations of the kernel

for the Ornstein-Uhlenbeck semigroup. It is based on an approach designed by

van Neerven and Portal in [vNP18], where they recover classical results about the

Ornstein-Uhlenbeck semigroup in a very direct manner. Their idea is to separate

algebraic difficulties from analytic difficulties by considering a non-commutative

functional calculus of the Gaussian position and momentum operators (the Weyl

calculus). Using this calculus, one sees how to modify the kernels in a way that

makes their analysis straightforward. A posteriori, the use of the Weyl calculus

can be removed, and the proof can be read as a simple computation exploiting

the change of time parameter t 7→ 1−e−t
1+e−t

(which has been used by many authors

before).

Throughout the paper, we make use of the following notation. The function

φ : Rd → R will have action x 7→ x2

2
. The standard Gaussian measure µ on Rd
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will thus be written with density dµ = (2π)−
d
2 e−φ(x)dx. The Lebesgue measure

on Rd will be denoted by λ. As we only ever work over Rd with Borel σ-algebra,

the measurable space over which we consider Lebesgue spaces will be dropped

from the notation. For θ ∈ [0, π], we will write Σθ for the open sector {z ∈
C\{0}; | arg(z)| < θ}.

1.2 R-Sectoriality of L

To simplify things, for the rest of the article we will assume that p ∈ (1,∞) is

fixed. Similarly, all concepts of boundedness and R-boundedness will be on either

Lp(µ) or Lp(λ) without explicit mention of the space, the measure being clear

from context.

Lemma 1.1. Mt has the alternate form for t > 0 and x, y ∈ Rd,

Mt(x, y) =
1

(2π)
d
2

(
1

1− e−2t

) d
2

exp

(
−st
(
x+ y

2
√

2

)2

− 1

4st

(
x− y√

2

)2
)

× exp

(
1

2
(φ(x)− φ(y))

)
,

where st = 1−e−t
1+e−t

.

Proof. We will rearrange the exponent from Equation (1.1) and show that it is

equal to the exponent given above for all x, y ∈ Rd and t > 0, as that is all that

has changed between the two representations. For each t > 0, x, y ∈ Rd we have
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−1

2

|e−tx− y|2

(1− e−2t)
= −1

2

|e−tx− y|2

(1− e−2t)
− 1

4
(x2 − y2) +

1

4
(x2 − y2)

= −1

2

|e−tx− y|2

(1− e−2t)
− 1

4
(x2 − y2) +

1

2
(φ(x)− φ(y))

= − 1

2(1− e−2t)

(
|e−tx− y|2 +

(1− e−2t)
2

(x2 − y2)
)

+
1

2
(φ(x)− φ(y))

= − 1

2(1− e−2t)

(
e−2tx2 − 2e−txy + y2 +

(1− e−2t)
2

(x2 − y2)
)

+
1

2
(φ(x)− φ(y))

= − 1

2(1− e−2t)

(
1

2

(
1 + e−2t

)
x2 − 2e−txy +

1

2

(
1 + e−2t

)
y2
)

+
1

2
(φ(x)− φ(y))

= − 1

8(1− e−2t)
×
[(

(1 + e−t)2 + (1− e−t)2
)
x2 + 2

(
(1− e−t)2 − (1 + e−t)2

)
xy

+
(
(1 + e−t)2 + (1− e−t)2

)
y2
]

+
1

2
(φ(x)− φ(y))

= − 1

8(1− e−2t)
(
(1− e−t)2(x+ y)2 + (1 + e−t)2(x− y)2

)
+

1

2
(φ(x)− φ(y))

= −

(
1− e−t

1 + e−t

(
x+ y

2
√

2

)2

+
1

4

1 + e−t

1− e−t

(
x− y√

2

)2
)

+
1

2
(φ(x)− φ(y))

= −

(
st

(
x+ y

2
√

2

)2

+
1

4st

(
x− y√

2

)2
)

+
1

2
(φ(x)− φ(y)).

The next definition, albeit a simple one, forms the backbone of the rest of our

arguments.
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Definition 1.2. Define the (multiple of an) isometry Up : Lp(µ)→ Lp(λ) by

Upf(x) = f(x) exp

(
−φ(x)

p

)
, for x ∈ Rd.

As explained previously, we need only show that the Ornstein-Uhlenbeck semi-

group has an analytic extension to a sector of the correct angle, and that it is

R-bounded on each smaller sector. We will in fact show a lot more with no more

effort. We shall work with the reparametrisation of the kernel of the semigroup in

terms of st from Lemma 2.10. The function t 7→ st is analytic and can clearly be

analytically extended to the domain C\iπ(2Z+ 1). We will consider the analytic

extension z 7→ sz on domains of the form

E :=
{
z ∈ C; sz ∈ Σπ

2
−θp ; z 6∈ iπZ

}
(1.2)

where sin(θp) = Mp :=
∣∣∣1− 2

p

∣∣∣. We will show the Ornstein-Uhlenbeck semigroup

extends to an analytic semigroup on the domain E. Moreover, we will simultane-

ously show that the Ornstein-Uhlenbeck semigroup is R-bounded on sets of the

form

Eε,δ =

{
z ∈ C; |<(sz)|2/|sz|2 = cos2(arg(sz)) > M2

p + ε;

dist(z, iπ(2Z + 1)) > δ; z 6∈ 2iπZ

}
(1.3)

for all ε, δ > 0. Note that, in terms of the reparametrisation sz, these sets are

open sectors of angle π
2
− θp or less, with certain points removed. We claim that

Σπ
2
−θp ⊂ E, and that for all ε′ > 0 there exists ε, δ > 0 such that Σπ

2
−θp−ε′ ⊂ Eε,δ

(see [vNP18] for details of this calculation). These results combined will imply

that the maximal domain of analyticity of the Ornstein-Uhlenbeck semigroup

contains the sector Σπ
2
−θp , and that it is R-bounded on each smaller sector, which

combined with the procedure outlined in the introduction will show at least that

the Ornstein-Uhlenbeck operator is R-sectorial of the desired angle.

Theorem 2. For p ∈ (1,∞), the Ornstein-Uhlenbeck operator on Lp(µ) is R-

sectorial of angle θp, where sin(θp) = Mp :=
∣∣∣1− 2

p

∣∣∣.
Proof. To determine (R-)boundedness of the analytic extension of exp(−tL) on

Lp(µ) we conjugate by the (multiple of an) isometry Up : Lp(µ) → Lp(λ),

and work with Up exp(−tL)U−1p on Lp(λ). As (multiples of) isometries preserve

(R-)boundedness, exp(−tL) has an analytic extension to z ∈ C if and only if

Up exp(−tL)U−1p does, and both families of operators will be R-bounded on the

same subdomains of the domain of analyticity. Using the integral kernel of Lemma
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2.10 and the explicit form of the isometry Up from Definition 2.5, we find the in-

tegral representation for f ∈ Lp(λ):

Up exp(−tL)U−1p f =

(
x 7→

∫
Rd
kt(x, y)f(y)dy

)
,

with

kt(x, y) =
1

(2π)
d
2

(
1

1− e−2t

) d
2

exp

(
−st
(
x+ y

2
√

2

)2

− 1

4st

(
x− y√

2

)2
)

× exp

((
1

2
− 1

p

)
(φ(x)− φ(y))

)
and st = 1−e−t

1+e−t
. If Up exp(−tL)U−1p were to have an analytic extension Up exp(−zL)U−1p

for z in some domain containing [0,∞), uniqueness theory of analytic functions

implies that Up exp(−zL)U−1p would also have an integral representation, with

kernel

kz(x, y) =
1

(2π)
d
2

(
1

1− e−2z

) d
2

exp

(
−sz

(
x+ y

2
√

2

)2

− 1

4sz

(
x− y√

2

)2
)

× exp

((
1

2
− 1

p

)
(φ(x)− φ(y))

)
,

where sz = 1−e−z
1+e−z

. To understand why this must be the case, we can act

Up exp(−tL)U−1p on some f ∈ Lp(µ), and then pair with some g ∈ (Lp(µ))∗ =

Lp
′
(µ) to obtain a function R+ → C, t 7→

〈
Up exp(−tL)U−1p f, g

〉
. This function

will have an analytic extension to the set of z for which the operator with in-

tegral kernel kz(x, y) is bounded on Lp(µ), and standard uniqueness results for

C-valued analytic functions implies that the analytic extension will be given by

the operator with integral kernel kz(x, y) applied to f and paired with g. Thus

Up exp(−tL)U−1p would have as weak-analytic extension the operator with integral

kernel kz(x, y), to the set of z for which this is bounded on Lp(µ). By the equiv-

alence of strong-analytic and weak-analytic Banach space valued functions (see,

for example, Chapter VII §3, Exercise 4 of [Con90]), the claim follows. (There is

a slight notational issue here, in that the definition of an analytic semigroup on a

Banach space X is only ever analytic in the strong operator topology, such that

the functions z 7→ exp(−zL)f are X-valued norm-analytic functions, for each

f ∈ X).

We will now work on bounding kz(x, y). We start by assuming that z ∈ E

(see Equation (1.2)). Note that this implies <(sz) > 0 and 1 − e−2z 6= 0. Then
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we have:

|kz(x, y)| ≤ 1

(2π)
d
2

∣∣∣∣ 1

1− e−2z

∣∣∣∣ d2 exp

(
−<(sz)

(
x+ y

2
√

2

)2

− 1

4
<
(

1

sz

)(
x− y√

2

)2
)

× exp

((
1

2
− 1

p

)
(φ(x)− φ(y))

)
≤ 1

(2π)
d
2

∣∣∣∣ 1

1− e−2z

∣∣∣∣ d2
× exp

(
−<(sz)

(
x+ y

2
√

2

)2

+Mp
1

4

∣∣x2 − y2∣∣− 1

4
<
(

1

sz

)(
x− y√

2

)2
)

=
1

(2π)
d
2

∣∣∣∣ 1

1− e−2z

∣∣∣∣ d2
× exp

(
−<(sz)

(
x+ y

2
√

2

)2

+Mp

∣∣∣∣x+ y

2
√

2

∣∣∣∣∣∣∣∣x− y√2

∣∣∣∣− 1

4
<
(

1

sz

)(
x− y√

2

)2
)

For notational simplicity, let u =
∣∣∣x+y
2
√
2

∣∣∣ and k =
∣∣∣x−y√

2

∣∣∣. Then rewriting in terms

of u and k and completing the square in u gives

|kz(x, y)| ≤ 1

(2π)
d
2

∣∣∣∣ 1

1− e−2z

∣∣∣∣ d2 exp

(
−<(sz)u

2 +Mpuk −
1

4
<
(

1

sz

)
k2
)

=
1

(2π)
d
2

∣∣∣∣ 1

1− e−2z

∣∣∣∣ d2
× exp

−(√<(sz)u−
Mp

2
√
<(sz)

k

)2

− 1

4

(
<
(

1

sz

)
−

M2
p

<(sz)

)
k2

.

So

|kz(x, y)| ≤ 1

(2π)
d
2

∣∣∣∣ 1

1− e−2z

∣∣∣∣ d2 exp

(
−1

4

(
<
(

1

sz

)
−

M2
p

<(sz)

)
k2
)

=
1

(2π)
d
2

∣∣∣∣ 1

1− e−2z

∣∣∣∣ d2 exp

(
−1

4

(
<
(

1

sz

)
−

M2
p

<(sz)

)(
x− y√

2

)2
)
.

=
1

(2π)
d
2

∣∣∣∣ 1

1− e−2z

∣∣∣∣ d2 exp

(
−1

8

(
<
(

1

sz

)
−

M2
p

<(sz)

)
(x− y)2

)
.
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For each z ∈ E, let gz : Rd → R be the function

x 7→ 1

(2π)
d
2

∣∣∣∣ 1

1− e−2z

∣∣∣∣ d2 exp

(
−1

8

(
<
(

1

sz

)
−

M2
p

<(sz)

)
x2
)
.

Then we have that for all z ∈ E, f ∈ Lp(λ) and a.e. x ∈ Rd

∣∣(Up exp(−zL)U−1p f
)
(x)
∣∣ ≤ (gz ∗ |f |)(x).

Therefore, provided the family of convolution operators f ∈ Lp(λ) 7→ gz ∗ f
is (R-)bounded for z in (a subset of) E, we will have proven, by domination

and isometry, that exp(−zL) is (R-)bounded on (the same subset of) E (to see

that domination implies R-boundedness, see Proposition 8.1.10 of [HvNVW17],

and note that in the proof of said proposition the fixed positive operator can be

replaced by an R-bounded family of positive operators). For z ∈ E, we find

<
(

1

sz

)
−

M2
p

<(sz)
=
<(sz)

|sz|2
−

M2
p

<(sz)
=

1

<(sz)

(
|<(sz)|2

|sz|2
−M2

p

)
> 0,

since <(sz) > 0 and |<(sz)|2/|sz|2 = cos2(arg(sz)) > M2
p by definition of E (since

cos
(
π
2
− θp

)
= sin(θp) = Mp). So for z ∈ E, gz ∈ L1(λ) and so by Young’s

convolution inequality, convolution by gz is a bounded operator on Lp(λ) with

operator norm at most ||gz||L1(λ). Now we will focus on sets of the form Eε,δ for

some fixed ε, δ > 0 (see Equation (1.3)). We will show that

sup
z∈Eε,δ

∫
Rd

sup
|y|>|x|

|gz(y)|dx <∞,

from which we can apply Proposition 8.2.3 of [HvNVW17] to find that the family

of convolution operators {gz∗}z∈Eε,δ is R-bounded on Lp(λ). Noting that each gz
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is radially decaying and positive, the quantity to bound is

sup
z∈Eε,δ

∫
Rd

sup
|y|>|x|

|gz(y)|dx = sup
z∈Eε,δ

∫
Rd
gz(x)dx

= sup
z∈Eε,δ

∫
Rd

1

(2π)
d
2

∣∣∣∣ 1

1− e−2z

∣∣∣∣ d2
× exp

(
−1

8

(
<
(

1

sz

)
−

M2
p

<(sz)

)
x2
)
dx

= sup
z∈Eε,δ

1

(2)
d
2

∣∣∣∣ 1

1− e−2z

∣∣∣∣ d2(1

8

(
<
(

1

sz

)
−

M2
p

<(sz)

))− d
2

≤ sup
z∈Eε,δ

2d
∣∣∣∣ 1

1− e−2z

∣∣∣∣ d2( ε

<(sz)

)− d
2

= sup
z∈Eε,δ

ε−
d
2 2d
(∣∣∣∣ <(sz)

1− e−2z

∣∣∣∣) d
2

≤ sup
z∈Eε,δ

ε−
d
2 2d
(

|sz|
|1− e−z||1 + e−z|

) d
2

= sup
z∈Eε,δ

ε−
d
2 2d


∣∣∣1−e−z1+e−z

∣∣∣
|1− e−z||1 + e−z|


d
2

= sup
z∈Eε,δ

ε−
d
2 2d
(

1

|1 + e−z|

)d
<∞

since z is bounded away from (2Z+ 1)iπ. So the family of convolution operators

{gz∗}z∈Eε,δ is R-bounded. By pointwise domination, Up exp(−zL)U−1p is bounded

for z ∈ E, and is R-bounded on subsets Eε,δ ⊂ E of the form (1.3). Hence by

isometric equivalence, exp(−zL) shares the same properties. Hence the claim

follows from the discussion preceding this proof.



Chapter 2

A Weyl Pseudodifferential

Calculus associated with

exponential weights on Rd

2.1 Introduction

We construct a Weyl pseudodifferential calculus on typically non-doubling mea-

sure spaces over Rd, with an aim to study the Lp behaviour of the natural analogue

of the Laplacian in such contexts. Typically, this analogue of the Laplacian is such

that bounded spectral multipliers on Lp have to be of holomorphic type for p 6= 2.

From a PDE point of view, the operators we consider are perturbations of the

Laplacian by an unbounded drift term, including the classical finite-dimensional

Ornstein-Uhlenbeck operator.

In the paper [vNP18], van Neerven and Portal introduce a Gaussian Weyl

calculus to study the classical Ornstein-Uhlenbeck operator L = −∆ + x · ∇ on

Lp
(
Rd, (2π)−

d
2 exp

(
−x2

2

)
dx
)

. This approach retrieves important known results

about the Ornstein-Uhlenbeck semigroup, such as boundedness Lp → Lq and

optimal domains of holomorphy for the semigroup, using analytic arguments as

simple as Schur estimates. With classical approaches, such properties are difficult

to prove.

The classical Ornstein-Uhlenbeck operator can be written in terms of a pair of

operators P (momentum) and Q (position), satisfying the Heisenberg commuta-

tion relations. The Weyl calculus examined by van Neerven and Portal in [vNP18]

is a certain choice of joint functional calculus for this pair (Q,P ), that is, a way

to assign to a suitable function a : R2d → C a bounded operator a(Q,P ). It was

15
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their philosophy that studying L via studying the joint functional calculus was

more natural, as it separates the strong algebraic properties of the pair (Q,P )

from the analytic issues found in proving properties of L directly. Essentially,

studying L directly is forgetting that it has its roots in an algebraically rich set-

ting. The approach used by van Neerven and Portal in [vNP18] is well-adapted to

studying the standard Ornstein-Uhlenbeck semigroup, thanks to an exact formula

for the semigroup in the (Q,P )-calculus.

To generalise the theory developed in [vNP18], van Neerven and Portal con-

sider in [vNP20] pairs of d-tuples of operators on a Banach space, which generate

uniformly bounded groups satisfying certain commutation relations, which they

refer to as a Weyl pair. This path of generalisation has been fruitful, and proves

that the sum of squares of all 2d operators comprising a Weyl pair with a bounded

Weyl calculus has a bounded Hörmander functional calculus (under some mild

conditions).

However, in the Gaussian case, the natural position and momentum operators

generate uniformly bounded groups on Lp if and only if p = 2. In fact, exp(iξP )

is bounded on Lp for p 6= 2 if and only if ξ = 0, in which case exp(i0P ) is the

identity. Thus the theory developed in [vNP20] cannot possibly be applied in

Gaussian situations. In this paper we consider such cases.

We will work on measure spaces of the form (Rd,B, µ), where B is the Borel

σ-algebra and dµ = exp(−φ(x))dx for φ ∈ C2(Rd) approximately quadratic (see

Remark 2). We introduce a generalised Weyl pair (Q,P ) associated with such a

measure via a specific unitary equivalence on L2(µ) to the standard Weyl pair on

Rd equipped with Lebesgue measure. Typically, the pair (Q,P ) will not generate

uniformly bounded groups on Lp(µ) for p 6= 2. Thus, our generalised Weyl

calculus will be developed as an extension theory: we work on Lp(µ)∩L2(µ) and

find conditions under which we have a bounded extension to Lp(µ).

For a functionM : Rd → Rd, we introduce the normed vector spaceHS0(M) ⊂
L∞
(
R2d
)

of Holomorphic Strip symbols. The main theorem of this paper (The-

orem 8) proves that for a correctly chosen function M based on p and φ, a ∈
HS0(M) implies that a(Q,P ) extends from Lp(µ)∩L2(µ) to a bounded operator

on Lp(µ), with norm bounded by ||a||HS0(M). We prove that symbols in HS0(M)

have a certain holomorphic extendability property, which is reminiscent of the

optimal functional calculus result for the classical Ornstein-Uhlenbeck operator

in the Gaussian case. We also deduce a simple condition on a set A ⊂ HS0(M)

which implies that {a(Q,P ); a ∈ A} is R-bounded on Lp(µ).

This theory is used to give a short proof of an upper bound on the optimal
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angle of the bounded functional calculus result for the Ornstein-Uhlenbeck oper-

ator associated with φ of the form φ(x) = xN(x) + lx, where N : Rd → Rd is a

positive definite real-symmetric linear operator, and l ∈ Rd. This result returns

the known optimal angle for the classical Ornstein-Uhlenbeck operator, for which

N = 1
2
I, l = 0. The proof depends on knowing the Weyl symbol for the semigroup

generated by the Ornstein-Uhlenbeck operator, which we provide. This explicit

knowledge of the symbol in the classical case is also crucial to the results of the

paper [vNP18].

The space HS0(M) is then examined further, with an aim to find symbols

for the semigroup generated by the relevant Ornstein-Uhlenbeck operator outside

of the quadratic case. We show that HS0(M) can be expanded and endowed

with a certain product to form the unital Banach algebra (HS(M),#), with

HS(M) ⊂ L∞
(
R2d
)

and # the Moyal product, in which case the generalised

Weyl calculus can be extended in a natural way such that it becomes a contractive

Banach algebra homomorphism HS(M)→ B(Lp(µ)).

Some ideas are then presented, about how the symbol class HS(M) and its

properties as a Banach algebra of functions could be used to study Ornstein-

Uhlenbeck like operators, such as determining symbols for relevant semigroups

and a factorisation of the functional calculus through the space HS(M).

2.2 Initial Definitions

The work of van Neerven and Portal in [vNP20] develops a Weyl calculus for

2d-tuples of operators satisfying the following definition:

Definition 2.1. A 2d-tuple (Q,P ) = (Q1, . . . , Qd, P1, . . . , Pd) of closed, densely

defined operators on a Banach space is called a Weyl pair if each operator gen-

erates a uniformly bounded group exp(ixiQi), exp(iξiPi) which satisfy the inte-

grated canonical commutation relations

exp(ixiQi) exp(ixjQj) = exp(ixjQj) exp(ixiQi), ∀i, j = 1, ...d

exp(iξiPi) exp(iξjPj) = exp(iξjPj) exp(iξiPi),∀i, j = 1, ...d

exp(ixQ) exp(iξP ) = exp(−ixξ) exp(iξP ) exp(ixQ).

In which case we define

exp(i(xQ+ ξP )) = exp(
1

2
ixξ) exp(ixQ) exp(iξP ),∀x, ξ ∈ Rd.
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This definition of exp(i(xQ + ξP )) for Weyl pairs can be motivated by the

Baker-Campbell-Hausdorff formula, for example, noting that formally differen-

tiating the integrated commutation relations produces the formal commutation

relation “[Qi, Pj] = iδijI”. It is easy to check that this definition does make

the set of operators {λ exp(i(xQ + ξP ));x, ξ ∈ Rd.λ ∈ C, |λ| = 1} into a (non-

commutative) group, in fact a representation of the (2d+ 1)-dimensional Heisen-

berg group. From here, the Weyl calculus is defined as:

Definition 2.2. For a Weyl pair (Q,P ) on a Banach space, we define the bounded

operator a(Q,P ) for a ∈ S(R2d) via the formula

a(Q,P ) =
1

(2π)d

∫
R2d

Fa(x, ξ) exp(i(xQ+ ξP ))dxdξ,

where F denotes the Fourier transform, normalised such that equality holds above

with Q and P replaced by elements of Rd. The map a 7→ a(Q,P ) is called the

Weyl pseudodifferential calculus, or the joint functional calculus, for the Weyl

pair (Q,P ).

That this definition makes sense follows from boundedness of the set of opera-

tors exp(i(xQ+ξP )) and integrability of the Schwartz function Fa. As an exam-

ple of a Weyl pair, consider the position and momentum operators (X,D) on the

Euclidean Lebesgue space Lp(λ) (p ∈ [1,∞]) given by Xif(x) = xif(x), Dif(x) =

−i ∂
∂xi
f(x) equipped with their natural domains. These generate the groups of

phase shift and translation respectively, both of which are bounded. That they

satisfy the integrated canonical commutation relations is a simple exercise, which

once checked shows that (X,D) on Lp(λ) are a Weyl pair, for any value of

p ∈ [1,∞]. The pair (X,D) will be referred to as the standard pair, and their

Weyl calculus is the standard Weyl calculus (see for example [H7̈9]).

The body of the work of [vN,P] follows from the next theorem, displaying the

semigroup generated by 1
2
(Q2 + P 2 − d) in the joint functional calculus, which

turns out to be the correct expression for the Ornstein-Uhlenbeck operator in the

case they consider. This formula has been known by physicists for the standard

pair (Q,P ) = (X,D) (in which case 1
2
(X2 + D2 − d) is the harmonic oscillator

operator minus d/2 times the identity), and relies heavily on the simple algebraic

nature of 1
2
(Q2 + P 2) in terms of (Q,P ).

Theorem 3. For t > 0, let at : R2d → C be the function

(x, ξ) 7→
(

2

1 + e−t

)d
exp(−st(x2 + ξ2)),
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where st = 1−e−t
1+e−t

. Then {at(Q,P )}t>0 is the semigroup generated by 1
2
(Q2 +P 2−

d), on its natural domain inherited from the domains of Q and P .

In this paper we wish to develop a different side to the Weyl calculus, in which

we do not require the bounded group assumption of Definition 2.1. The main

reason for this is because the key example we wish to apply the Weyl calculus

to - the original motivation of study for van Neerven and Portal in [vNP18] -

is the natural position and momentum operator pair in the standard Gaussian

weighted spaces Lp
(
Rd, exp

(
−x2

2

)
dx
)

, in which the momentum operator P does

not satisfy the bounded group generation property unless p = 2. However, in

this case we can define the Weyl calculus on L2 via Definition 2.2 and then

determine conditions under which a(Q,P ) extends to a bounded operator on Lp.

The cases we will consider will be based over Rd equipped with Borel measures

of the following form.

Definition 2.3. A function φ ∈ C2(Rd) will be referred to as a potential. asso-

ciated with a potential φ is the Borel measure µ on Rd with dµ = exp(−φ(x))dx.

We will generally assume φ to be a twice differentiable function throughout

the paper. Although the initial definitions work for any C2 function φ, to obtain

boundedness of operators we will later have to restrict to φ which is approximately

quadratic (see Remark 2). To be able to relate things to the standard pair, we

proceed via unitary equivalence:

Definition 2.4. For c > 0, define the (multiples of) unitary transformations

Ũ2 = A ◦ E : L2(µ)→ L2(λ)

where

E : L2(µ)→ L2(λ)

f 7→
(
x 7→ f(x) exp(−φ(x)

2
)
)

A : L2(λ)→ L2(λ)

f 7→ (x 7→ f(cx))

Definition 2.5. Define the isometry Up : Lp(µ)→ Lp(λ) by

f 7→
(
x 7→ f(x) exp(−φ(x)

p
)

)
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The generalised Weyl pairs we will consider in this context will be

Qi = Ũ−12 ◦Xi ◦ Ũ2

Pi = Ũ−12 ◦Di ◦ Ũ2

with domains Ũ−12 D(Xi), Ũ
−1
2 D(Di) respectively. That (Q,P ) satisfy the re-

quirements of Definition 2.1 on L2(µ) follows from their unitary equivalence to

the standard pair. It is a simple exercise to determine the action of Q and P on

their domains. They act as

(Qif)(x) = xi
c
f(x)

(Pif)(x) = −ic
(

∂
∂xi
− 1

2
∂φ
∂xi

)
f(x).

The integral kernel of operators a(Q,P ) can be calculated explicitly via unitary

equivalence to the standard Weyl Calculus (see, for example, [H7̈9]), leading to

the formula:

Theorem 4. For a ∈ S
(
R2d
)
, Q,P as above and f ∈ L2(µ), we have for all

y ∈ Rd

(a(Q,P )f)(y) =
1

(2π)dcd

∫
R2d

a

(
x+ y

2c
, ξ

)
exp

(
−iξ

(
x− y
c

))
× exp

(
1

2
(φ(y) + φ(x))

)
f(x)dξdµ(x).

Remark 1. The inclusion of c is to satisfy physicists. What many physicists

would consider as THE Ornstein-Uhlenbeck operator, and what we shall refer to

as the classical Ornstein-Uhlenbeck operator, is related to the choice φ(x) = x2

2
.

In its relationship to Fock spaces, a scaling is introduced to make the classical

Ornstein-Uhlenbeck operator appear more symmetric in some sense, which cor-

responds to taking c =
√

2. However, as we shall see later (take for example

Definition 2.16), in many ways it seems more natural to take c = 1. We will not

include the subscript c as part of the notation, but it will always be lurking in the

background ready to be set to 1 or
√

2. Note that the un-tilde’d U2 falls under

Definition 2.5, and does not depend on c.

To ensure technical correctness, we need some information about the domains

of important operators. The next theorem provides a suitable p-independent core

for our functional calculus

Theorem 5. The space Cφ = U−12 C∞c (Rd) is dense in Lp(µ) for all p ∈ [1,∞),

and elements of Cφ are in C2
c (Rd).
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Proof. Regularity follows from the chain rule and the regularity of φ. To show

density in Lp(µ) we will show density of UpCφ in Lp(λ), employing the isom-

etry of Definition 2.5. Note that UpCφ contains every function of the form

g exp
((

1
2
− 1

p

)
φ
)

for g ∈ C∞c (Rd), which are all bounded since exp
((

1
2
− 1

p

)
φ
)

is continuous and hence bounded on the compact set supp(g). Let X ⊂ Lp(λ) be

those functions which have compact support. Note that X is dense in Lp(λ) and

UpCφ is contained in X, so if we can show UpCφ is dense in X then we are done.

To this effect, fix some f ∈ X. Since f is compactly supported, exp
(
−
(

1
2
− 1

p

)
φ
)

attains a maximum on supp(f), and so F (·) = f(·) exp
(
−
(

1
2
− 1

p

)
φ(·)

)
∈ Lp(λ).

Since C∞c (Rd) is dense in Lp(λ), we can choose a sequence {gn} ⊂ C∞c (Rd) (fur-

thermore, each with support supp(gn) ⊂ 2supp(f), say) such that ||F−gn||Lp(λ) →
0. Thus we have:

||f(·)−gn(·) exp

((
1

2
− 1

p

)
φ(·)

)
||pLp(λ)

=

∫
2supp(f)

∣∣∣∣f(x)− gn(x) exp

((
1

2
− 1

p

)
φ(x)

)∣∣∣∣pdx
=

∫
2supp(f)

exp
((p

2
− 1
)
φ(x)

)
|F (x)− gn(x)|pdx

≤ C

∫
2supp(f)

|F (x)− gn(x)|pdx

≤ C||F − gn||pLp(λ)
→ 0.

So we are done.

The formula in Theorem 4 and the formula for the semigroup generated by
1
2
(Q2 + P 2 − d) (Theorem 3) is what allowed van Neerven and Portal to deduce

such significant results for the classical Ornstein-Uhlenbeck semigroup via the

Weyl calculus in [vNP20]. The explicit formula for kernels of a(Q,P ) will allow

us to work on boundedness on Lp(µ) of more general symbols.

We will now define the Ornstein-Uhlenbeck operator in our setting. We con-

sider the Dirichlet form E(f, g) =
∫
Rd∇f∇gdµ with domain Cφ. It follows from

the general theory of Dirichlet forms (see [FOT11]) that the operator on L2(µ)

associated with the form E is positive and generates a positive contraction C0-

semigroup, which extends to a positive contraction C0-semigroup on Lp(µ) for

all p ∈ (1,∞). We call this semigroup the Ornstein-Uhlenbeck semigroup and

denote it by exp(−tL), and its generator the Ornstein-Uhlenbeck operator which
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we will denote by L. It is a simple computation to find that on f ∈ Cφ, L has

action

Lf(x) = −∆f(x) +∇φ(x) · ∇f(x). (2.1)

Due to our set-up, we have the fact:

Corollary 2.6. For any potential φ ∈ C2 and p ∈ (1,∞), the corresponding

Ornstein-Uhlenbeck operator has a bounded H∞ functional calculus of some angle

less than π/2.

This follows from Theorem 10.7.13 of [HvNVW17], as below.

Theorem 6. Suppose (Ω,m) is a measure space (σ-algebra omitted). If an

unbounded operator T on Lp(Ω,m), p ∈ (1,∞) generates a positive contraction

semigroup, then T has a bounded H∞ functional calculus of some angle less than

π/2.

After developing the generalised Weyl calculus associated with the generalised

Weyl pair (Q,P ) as defined above, we will aim to study the Ornstein-Uhlenbeck

operator via the generalised Weyl calculus. In [vNP18], the formal expression for

the classical Ornstein-Uhlenbeck operator L = 1
2
(Q2+P 2−d) was very important.

This is no longer true in our case. We have as a replacement the following

theorem, representing L associated with φ in the generalised Weyl calculus of the

pair (Q,P ) associated with φ (at least formally).

Theorem 7. Take Q,P as above, and let h : R2d → R be the function taking

value h(x, ξ) = ξ2

c2
+ Cφ(x), where Cφ(x) = 1

4
|∇φ(cx)|2 − 1

2
∆φ(cx). For f ∈ Cφ,

define h(Q,P )f ∈ L1
loc(Rd) by ((x, ξ) 7→ Cφ(x))(Q,P ) interpreted as a multipli-

cation operator by Cφ(x/c) and
(

(x, ξ) 7→ ξ2

c2

)
(Q,P ) interpreted as 1

c2
P 2. Then

Lf = h(Q,P )f .

Proof. Fix f ∈ Cφ. Let H = U2LU
−1
2 . Note that U2f =: g ∈ C∞c (Rd), so we want

to consider H acting on g ∈ C∞c (Rd). Calculating (Hg)(x) for all x ∈ Rd gives:

(U−12 g)(x) = g(x/c) exp

(
φ(x)

2

)
.
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So (suppressing the summation over k until the last equality)

(LU−12 g)(x) =

((
−(∂k)

2 + ∂kφ(·)∂k
)
g(·/c) exp

(
φ(·)

2

))
(x)

=

(
−∂k

(
1

c
∂kg(·/c) exp

(
φ(·)

2

)
+

1

2
g(·/c) exp

(
φ(·)

2

)
∂kφ(·)

))
(x)

+ ∂kφ(x)

(
1

c
∂kg(x/c) exp

(
φ(x)

2

)
+

1

2
g(x/c) exp

(
φ(x)

2

)
∂kφ(x)

)
= − 1

c2
∂2kg(x/c) exp

(
φ(x)

2

)
− 1

2c
∂kg(x/c) exp

(
φ(x)

2

)
∂kφ(x)

− 1

2c
∂kg(x/c) exp

(
φ(x)

2

)
∂kφ(x)− 1

4
g(x/c) exp

(
φ(x)

2

)
(∂kφ(x))2

− 1

2
g(x/c) exp

(
φ(x)

2

)
∂2kφ(x)

+
1

c
∂kg(x/c) exp

(
φ(x)

2

)
∂kφ(x) +

1

2
g(x/c) exp

(
φ(x)

2

)
(∂kφ(x))2

= − 1

c2
∂2kg(x/c) exp

(
φ(x)

2

)
+

1

4
g(x/c) exp

(
φ(x)

2

)
(∂kφ(x))2

− 1

2
g(x/c) exp

(
φ(x)

2

)
∂2kφ(x)

=

(
− 1

c2
∆g(x/c) +

(
1

4
|∇φ(x)|2 − 1

2
∆φ(x)

)
g(x/c)

)
exp

(
φ(x)

2

)
.

So

(Hg)(x) = − 1

c2
∆g(x) +

(
1

4
|∇φ(cx)|2 − 1

2
∆φ(cx)

)
g(x)

=

((
− 1

c2
∆ + Cφ(·)

)
g(·)
)

(x).

This can be expressed directly in the standard Weyl calculus as h(X,D), for

h(x, ξ) := ξ2

c2
+ Cφ(x) with the same interpretation as in the statement of this

theorem. But h(Q,P )f = U−12 h(X,D)U2f = Lf , and so we are done.

2.3 Lp bounds on Weyl Pseudodifferential Op-

erators

In this section we investigate properties of the generalised Weyl calculus associ-

ated with a potential φ, insofar as they relate to the functional calculus for the

corresponding Ornstein-Uhlenbeck operator. In a later section we will return to

the study of the symbol calculus.
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Our symbols will correspond to certain functions a ∈ L∞(R2d), which shall

be denoted a(x, ξ) for x, ξ ∈ Rd. To define our symbol class, we need a few

intermediate definitions.

Definition 2.7. Define the Banach space of L1 dominated functions D∞,1 = {g ∈
L∞(Rd;L1(Rd));∃G ∈ L1(Rd), |g(x, k)| < G(k) for a.e. x, k ∈ Rd}, equipped

with the norm

||g||D∞,1 = inf
{
||G||L1(Rd);G ∈ L1(Rd), |g(x, k)| < G(k) for a.e. x, k ∈ Rd

}
.

We won’t prove that D∞,1 is a Banach space, although it is easy. Subadditivity

and homogeneity of || · ||D∞,1 is obvious. That || · ||D∞,1 is positive definite can be

seen by noting it is bounded below by the L∞(Rd;L1(Rd)) norm. Checking that

D∞,1 is complete is a standard exercise in telescoping sums, and using the fact

that L∞(Rd;L1(Rd)) is complete.

Definition 2.8. For a ∈ L∞(R2d), define Ia : Rd → S ′(Rd), via the action at

x ∈ Rd and for ϕ ∈ S(Rd) as

〈Ia(x), ϕ〉 =

∫
Rd
a(x, ξ)ϕ(ξ)dξ.

We will make use of the Fourier transform F acting on tempered distributions

σ ∈ S ′(Rd), which we normalise such that 〈Fσ, ϕ〉 = 〈σ,F∗ϕ〉 for all ϕ ∈ S(Rd),

where

F∗ϕ(k) = (2π)−
d
2

∫
Rd
ϕ(ξ) exp(iξk)dξ.

Now we can define our symbol class.

Definition 2.9. Fix M : Rd → Rd. The space HS0(M) (standing for Holomor-

phic Strip) is a subspace of L∞(R2d), with

HS0(M) =

{
a ∈ L∞(R2d);∃!ga ∈ D∞,1,∀x ∈ Rd,∀ϕ ∈ S(Rd),

〈F(Ia(x)), ϕ〉 = (2π)
d
2

∫
Rd exp(−|M(x)k|)ga(x, k)ϕ(k)dk

}

and norm defined by

||a||HS0(M) = ||ga||D∞,1 .

For a ∈ HS0(M), we define F2a to be the measurable function R2d → C with

action

(x, k) 7→ (2π)
d
2 exp(−|M(x)k|)ga(x, k).
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In some sense, F2a(x, k) is the “Fourier transform in the second (ξ) variable”

with k the variable dual to ξ, which is our reason for using this notation. It is easy

to verify that if a(x, ·) ∈ L1(Rd) for each x ∈ Rd, then F2a is indeed the Fourier

transform in the second variable for each fixed x. However, not all symbols we

will consider will be integrable in the second variable, which makes our definition

via the space of tempered distributions useful.

We will also often refer to the ga ∈ D∞,1, Ga ∈ L1(Rd) associated with a ∈
HS0(M), by which we mean the unique such ga as seen in Definition 2.9, and Ga

dominating ga as in Definition 2.7. The main reason for using such a complicated

definition is that the integral kernel of a(Q,P ) for a ∈ S(R2d) from Theorem 4

is closely related to the Fourier transform in the second variable of the Schwartz

function a, as in the following lemma.

Lemma 2.10. Fix a potential φ ∈ C2, and let (Q,P ) be the associated generalised

Weyl pair. For a ∈ S(R2d), the integral kernel of the operator a(Q,P ) is given by

k(y, x) =
1

(2π)d/2cd
F2a

(
x+ y

2c
,
x− y
c

)
exp

(
1

2
(φ(y)− φ(x))

)
.

Proof. From Theorem 4, we have for f ∈ Cφ, y ∈ Rd,

(a(Q,P )f)(y) =
1

(2π)dcd

∫
R2d

a

(
x+ y

2c
, ξ

)
exp

(
−iξ

(
x− y
c

))
× exp

(
1

2
(φ(y) + φ(x))

)
f(x)dξdµ(x)

=
1

(2π)dcd

∫
R2d

a

(
x+ y

2c
, ξ

)
exp

(
−iξ

(
x− y
c

))
× exp

(
1

2
(φ(y)− φ(x))

)
f(x)dξdx

=
1

(2π)d/2cd

∫
Rd
F2a

(
x+ y

2c
,
x− y
c

)
exp

(
1

2
(φ(y)− φ(x))

)
f(x)dx,

noting that the order of integration can be changed, and the integration in ξ

carried out, as everything converges absolutely.

We make use of Lemma 2.10 to extend the generalised Weyl calculus to

HS0(M), as in the following definition:

Definition 2.11. For any function M : Rd → Rd, and any potential φ ∈ C2,

define for a ∈ HS0(M) the operator a(Q,P ) : Cφ → L1
loc(λ) via the action

(a(Q,P )f)(y) =
1

(2π)d/2cd

∫
Rd
F2a

(
x+ y

2c
,
x− y
c

)
exp

(
1

2
(φ(y)− φ(x))

)
f(x)dx.
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To ensure this definition makes sense, we check that for f ∈ Cφ, a(Q,P )f ∈
L1
loc(Rd).

Proof. Using the fact that a ∈ HS0(M) for some M : Rd → Rd, there exists a

G ∈ L1(Rd) such that |F2a(x, k)| ≤ G(k) for a.e. x, k ∈ Rd. Hence we find for

a.e. y ∈ Rd

|(a(Q,P )f)(y)| = 1

(2π)d/2cd

∣∣∣∣∫
Rd
F2a

(
x+ y

2c
,
x− y
c

)
exp

(
1

2
(φ(y)− φ(x))

)
f(x)dx

∣∣∣∣
≤ 1

(2π)d/2cd

∫
supp(f)

G

(
x− y
c

)
exp

(
1

2
(φ(y)− φ(x))

)
|f(x)|dx

Since f ∈ Cφ, supp(f) is compact and ||f ||L∞(λ) is bounded. Since φ is continuous,

it will be bounded on supp(f), by C > 0 say. So

|(a(Q,P )f)(y)| ≤ 1

(2π)d/2cd
exp(C/2)||f ||L∞(λ) exp(φ(y)/2)

∫
supp(f)

G

(
x− y
c

)
dx

≤ 1

(2π)d/2
exp(C/2)||f ||L∞(λ)||G||L1(λ) exp(φ(y)/2).

Since φ is continuous, (y 7→ exp(φ(y)/2)) ∈ L1
loc(λ), and thus so is a(Q,P )f .

We now show our main theorem: that for a ∈ HS0(M) for the correct M ,

a(Q,P ) extends to a bounded operator on Lp(µ). The correct M is as follows.

Definition 2.12. A pair (M, ε) consisting of a measurable function M : Rd → Rd

and a number ε ≥ 0 is a called a valid growth pair for φ ∈ C2(Rd) and p ∈ [1,∞]

if for all x, y ∈ Rd,∣∣∣∣(∣∣∣∣12 − 1

p

∣∣∣∣|φ(x)− φ(y)| −
∣∣∣∣(x− yc

)
M

(
x+ y

2c

)∣∣∣∣)∣∣∣∣ ≤ ε.

Theorem 8. Fix a potential φ ∈ C2, let (Q,P ) be the associated generalised

Weyl pair, and fix p ∈ [1,∞]. Suppose there exists a valid growth pair (M, ε) for

φ and p. Then for a ∈ HS0(M) the operator a(Q,P ), defined as in Definition

2.11, extends to a bounded operator on Lp(µ) and

||a(Q,P )||B(Lp(µ)) ≤ eε||a||HS0(M).

That is, the generalised Weyl calculus extends to a bounded linear map

HS0(M)→ B(Lp(µ)).
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Proof. Let Up : Lp(µ)→ Lp(λ) be the isometry from Definition 2.5. Then a(Q,P )

has a bounded extension to Lp(µ) if and only if Upa(Q,P )U−1p has a bounded

extension to Lp(λ), in which case ||a(Q,P )||B(Lp(µ)) = ||Upa(Q,P )U−1p ||B(Lp(λ)).

We will use a Young’s convolution inequality argument to show that under our

conditions Upa(Q,P )U−1p extends boundedly to Lq(λ) for all q ∈ [1,∞] with norm

at most eε||a||HS0(M). We then remove the isometries on Lp to obtain the desired

result.

From Definition 2.11, Upa(Q,P )U−1p can be expressed as an integral operator

on Lq(λ) with kernel k : R2d → C where for x, y ∈ Rd,

k(y, x) =
1

(2π)d/2cd
F2a

(
x+ y

2c
,
x− y
c

)
exp

((
1

2
− 1

p

)
(φ(y)− φ(x))

)
.

Using the definition of F2a and HS0(M), we find

k(y, x) =
1

(2π)d/2cd
F2a

(
x+ y

2c
,
x− y
c

)
exp

((
1

2
− 1

p

)
(φ(y)− φ(x))

)
=

1

cd
ga

(
x+ y

2c
,
x− y
c

)
× exp

((
1

2
− 1

p

)
(φ(y)− φ(x))−

∣∣∣∣(x− yc
)
M

(
x+ y

2c

)∣∣∣∣),
for a unique ga ∈ D∞,1. Our assumption implies(

1

2
− 1

p

)
(φ(x)− φ(y))−

∣∣∣∣(x− yc
)
M

(
x+ y

2c

)∣∣∣∣ ≤ ε,

which we incorporate to find

|k(y, x)| ≤ eε
1

cd

∣∣∣∣ga(x+ y

2c
,
x− y
c

)∣∣∣∣
≤ eε

1

cd
Ga

(
x− y
c

)
,

for some Ga ∈ L1(Rd). Young’s convolution inequality implies extendability and

that

||Upa(Q,P )U−1p ||B(Lq(λ)) ≤ eε
1

cd

∫
Rd
Ga

(x
c

)
dx

= eε
∫
Rd
Ga(x)dx.

Taking infimum over all Ga dominating ga in the sense of Definition 2.7 gives

||Upa(Q,P )U−1p ||B(Lq(λ)) ≤ eε||a||HS0(M). Removing the isometries on Lp we obtain

our desired result.
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Remark 2 (Existence of a Valid Growth Pair). If p = 2, the function taking value

0, and ε = 0 is a valid growth pair for any φ ∈ C2(Rd). If φ(x) = xN(x)+lx+ε(x),

where N is a linear map Rd → Rd, l ∈ Rd, and ε is a bounded C2 function, then

M can be taken to be an affine function of x with real-symmetric linear part,

depending only on c, p,N and l. We will not make such an assumption until

Section 2.5, and so we will keep M as a general measurable function from Rd to

itself unless otherwise specified.

Note that for φ of the form x 7→ xN(x) + lx + ε(x) with ε(x) a bounded C2

function, an operator will be bounded on Lp(µ) if and only if it is bounded on

Lp(µ̃), where µ̃ is associated with φ̃(x) = xN(x) + lx, as the two measures are

equivalent and the Radon-Nikodym derivative of one with respect to the other

is exp(±ε(x)), which is bounded above and below by positive constants. Thus

boundedness of operators in our generalised Weyl calculus should only depend

on c, p,N and l. However, the operators which we should care about (such as

the relevant Ornstein-Uhlenbeck operator L), will depend on all of φ, not just its

unbounded terms.

Remark 3 (Extension). It should be noted that the way this functional calculus

is defined is quite different to the standard methods. Rather than a convergence

lemma or a density argument, we have found an integral operator expression

for “nice” symbols, and then extended to a large class of symbols for which the

integral representation can be made sense of. Thus when we say that the gener-

alised Weyl calculus extends to HS0(M), we mean both that for a ∈ HS0(M),

a(Q,P ) : Cφ → L1
loc(λ) as defined in Definition 2.11 extends uniquely to a

bounded operator on Lp(µ) (by density of Cφ as in Theorem 5), and also that

if a ∈ S(R2d) ∩ HS0(M), then the expressions for a(Q,P ) from Definitions 2.2

and 2.11 agree (by Lemma 2.10).

Remark 4. Suppose that a : R2d → C is such that for each x ∈ Rd, a(x, ξ + iη)

can be extended to a holomorphic function for η in B(0, |M(x)|), and such that

there exists a constant K > 0 such that for any multiindex α with |α| ≤ (d+ 1)

we have

sup
u∈Rd,η∈B(0,|M(u)|)

∫
Rd

∣∣∣∂(α)ξ a(u, ξ + iη)
∣∣∣dξ ≤ K.

Then a ∈ HS0(M). However, this integrability condition is much stronger than

what we actually require for admission into HS0(M). Although, as we shall see,

some “pseudo-holomorphic” nature is always apparent for symbols in HS0(M).
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Remark 5 (Holomorphic Nature of HS0(M)). It is well-known that if a function

f ∈ L∞(Rd) has Fourier transform of the form

(Ff)(ξ) = (2π)
d
2 exp(−a|ξ|)g(ξ)

for some a > 0, g ∈ L1(Rd), then f almost everywhere agrees with the restriction

to Rd of a function holomorphic on the cylinder {ξ + iη; |η| < a} (this can be

verified via a change of contour in the integral expression for the inverse Fourier

transform). Furthermore, this holomorphic extension has a continuous exten-

sion to the closure of the cylinder, and the supremum norm of said continuous

extension is bounded by ||g||L1(Rd).

There is an analogous statement for elements of HS0(M). Fix a ∈ HS0(M),

x, ξ ∈ Rd and t ∈ [−1, 1]. Then we find

1

(2π)
d
2

∣∣∣∣∫
Rd
F2a(x, k) exp(ik(ξ + itM(x)))dk

∣∣∣∣
≤ 1

(2π)
d
2

∫
Rd
|F2a(x, k)| exp(−tkM(x)))dk

=

∫
Rd

exp(−|kM(x)| − tkM(x))|ga(x, k)|dk

≤ inf

∫
Rd
Ga(k)dk

≤ ||ga||D∞,1
= ||a||HS0(M),

where the infimum is over allGa dominating ga as in Definition 2.7. By the Fourier

inversion formula, the above agrees ξ-almost everywhere with a(x, ξ) when t = 0.

We thus take the above as a definition of an extension of a to the set

DM =
{

(x, ξ + iη) ∈ Rd × Cd; ξ ∈ Rd, ∃t ∈ [−1, 1] s.t. η = tM(x).
}

We denote this extension at x, ξ, η as a(x, ξ+ iη). For each fixed x, continuity as

a function of ξ and t follows by the dominated convergence theorem. If d = 1,

for fixed x this extension is holomorphic as a function of ξ + iη ∈ C, which also

follows from the DCT.

If d ≥ 2 and fixed x ∈ Rd, it does not make sense to speak of holomorphy

of a(x, ·) due to its domain not being an open subset of Cd. However, for fixed

x ∈ Rd, (ξ, t) 7→ a(x, ξ + itM(x)) will be a real-analytic function on Rd × (−1, 1)

and will satisfy some modified form of the Cauchy-Riemann equations.
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That functions a ∈ HS0(M) possess for each fixed x ∈ Rd such a “pseudo-

holomorphic” extension to the strip {ξ ∈ Rd, ∃t ∈ [−1, 1] s.t. η = tM(x)} is

where the name Holomorphic Strip originated.

Remark 6 (Comparison to the standard symbol classes). We should compare

the symbol class HS0(M) to standard symbol classes giving rise to bounded op-

erators through the Weyl calculus. If we take φ(x) = 0 our space of functions is

Lp(λ) and our generalised Weyl pair is the standard one, in which there are many

known symbol classes giving rise to bounded operators (see for instance [SMP93],

Chapter 6). These classes typically assume boundedness and decay in the ξ vari-

able of sufficiently many derivatives of a(x, ξ), and allow for some singular integral

operators. If φ(x) = 0 we can take M = 0, in which case HS0(0) will be the space

of functions whose Fourier transform in the second variable is dominated by an

integrable function, thus not including singular integral operators. This implies

boundedness, continuity in ξ and decay of a(x, ξ) (by the Riemann-Lebesgue

Lemma), but does not give a rate of decay or any differentiability. Similarly, in

the case p = 2 but φ(x) 6= 0, our generalised Weyl calculus is unitarily equivalent

to the standard Weyl calculus, and we can again take M = 0.

Alternatively, when φ(x) 6= 0 and p 6= 2, we find the relevant M is non-zero

and so by Remark 5, symbols in HS0(M) must have pseudo-holomorphic ex-

tendability condition. In this case, there is no isometry back to Lp(λ), mapping

the associated Weyl pair to the standard Weyl pair. At first sight, this seems

infinitely worse than the standard symbol classes. However, this may be the best

that can be done. The classical Ornstein-Uhlenbeck operator, associated with

φ(x) = x2

2
, is known to only have bounded functional calculus which is holomor-

phic (see [GCMM+01]), and so if we expect to be able to study the functional

calculus of the classical Ornstein-Uhlenbeck operator via the associated gener-

alised Weyl calculus we should be forced into accepting some sort of holomorphic

extendability condition on the symbols which give rise to bounded operators.

For the specific case φ(x) = x2

2
, we can factorise the exponential term

exp

((
1

2
− 1

p

)
(φ(y)− φ(x))

)
of the integral kernel of Up ◦a(Q,P )◦U−1p into a function of x+y

2
and x−y. Using

this, for any Up ◦ a(Q,P ) ◦ U−1p for (Q,P ) associated with φ(x), we can find a

symbol ã such that Up ◦ a(Q,P ) ◦ U−1p = ã(X,D), where (X,D) is the standard

Weyl pair. Thus we could derive boundedness of a(Q,P ) by checking when ã

satisfies the standard symbol estimates of classical pseudodifferential operator
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theory. However, by carrying out this calculation formally, we find that for x, ξ ∈
Rd, ã(x, ξ) = a

(
x
c
, cξ + ic

(
1
2
− 1

p

)
x
)

, defined as in Remark 5. So for such an

argument to work, we would need standard symbol estimates on the “boundary”

of this extension. It is clear that this method would still lead to some strong

restrictions on symbols.

We can push the techniques used to prove Theorem 8 ever so slightly to

prove the following R-boundedness theorem. See [HvNVW17] for the theory of

R-boundedness.

Theorem 9. Fix p ∈ (1,∞), a potential φ, and suppose there exists a valid

growth pair (M, ε) for φ and p. Let A ⊂ HS0(M), and G ⊂ D∞,1 be the set

of ga corresponding to each a ∈ A as in Definition 2.9. Suppose that for each

ga ∈ G we can choose a dominating Ga ∈ L1(Rd) such that the supremum over

our selections of the quantity ∫
Rd

ess sup
|y|≥|x|

|Ga(y)|dx

is finite. Then A(Q,P ) = {a(Q,P ), a ∈ A} is R-bounded on Lp(µ).

Proof. We apply the same technique as was used in Theorem 8, introducing the

isometries Up : Lp(µ) → Lp(λ) from Definition 2.5. We will show that the set

Up◦A(Q,P )◦U−1p is R-bounded on Lq(λ) for all q ∈ (1,∞), specifically for q = p,

in which case we obtain R-boundedness of A(Q,P ) on Lp(µ) by removing the

isometries. As in Theorem 8, the integral kernel of an operator Up ◦a(Q,P )◦U−1p
is given by

ka(y, x) =
1

(2π)d/2cd
F2a

(
x+ y

2c
,
x− y
c

)
exp

((
1

2
− 1

p

)
(φ(y)− φ(x))

)
and so for all x, y ∈ Rd,

|ka(y, x)| ≤ 1

cd

∣∣∣∣ga(x+ y

2c
,
x− y
c

)∣∣∣∣ exp

(
−
∣∣∣∣(x− yc

)
M

(
x+ y

2c

)∣∣∣∣)
× exp

((
1

2
− 1

p

)
(φ(y)− φ(x))

)
≤ eε

1

cd
Ga

(
x− y
c

)
So each Up◦a(Q,P )◦U−1p has kernel dominated by a convolution, namely convolu-

tion against eε 1
cd
Ga

( ·
c

)
. Hence R-boundedness of the set of convolution operators
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{f 7→ eε 1
cd
Ga

( ·
c

)
∗ f} on Lq(Rd) will imply R-boundedness of Up ◦A(Q,P ) ◦ U−1p

on Lq(Rd) (see Proposition 8.1.10 of [HvNVW17], and note that in the proof of

said proposition the fixed positive operator can be replaced by an R-bounded

family of positive operators). Applying Proposition 8.2.3 of [HvNVW17] and

our assumptions shows that {f 7→ eε 1
cd
Ga

( ·
c

)
∗ f} is R-bounded on Lq(λ) for all

q ∈ (1,∞). Therefore, A(Q,P ) is R-bounded on Lp(µ).

2.4 An Application

In this section we will use our generalised Weyl calculus developed in the previous

section to show that for φ of the form φ(x) = xN(x) + lx, where N : Rd →
Rd is a positive-definite real-symmetric linear operator and l ∈ Rd is a vector,

the associated Ornstein-Uhlenbeck operator has bounded H∞(Σθp) functional

calculus on Lp(µ), where sin(θp) = Mp := |1 − 2
p
|. This result generalises that

of [GCMM+01], which shows that the given angle is optimal for the bounded H∞

functional calculus of the classical Ornstein-Uhlenbeck operator (corresponding

to N as half the identity and l = 0). In this proof, the use of the generalised

Weyl calculus can be a posteriori removed, leading to a strikingly simple proof

in the classical case (see [Har19]). We include the argument here to show that

Theorem 8 has important consequences despite the simplicity of its proof and the

complexity of the definition of HS0(M).

Theorem 10. For p ∈ (1,∞), φ(x) = xN(x) + lx where N : Rd → Rd is a

positive definite real-symmetric linear operator and vector l ∈ Rd, the associated

Ornstein-Uhlenbeck operator has bounded H∞(Σθp) functional calculus on Lp(µ),

where sin(θp) = Mp := |1− 2
p
|.

Our proof is based on the well-known result that in Lp spaces, if an operator

is known to have a bounded H∞ functional calculus of some angle, the optimal

angle of the H∞ functional calculus of the operator is equal to its optimal angle of

R-sectoriality (see [HvNVW17] for the theory of R-sectoriality, and its Theorem

10.7.13 for a proof of the stated result). We have already seen that any of the

Ornstein-Uhlenbeck operators considered in this paper automatically have H∞

functional calculus of some angle (see Corollary 2.6), so all that we need to do

is optimise the angle. Our proof that the angle of R-sectoriality of the relevant

Ornstein-Uhlenbeck operator is equal to θp uses Theorem 10.3.3 of [HvNVW17],

which states an equivalence between an operator A being R-sectorial of angle

θ < π
2

and −A being the generator of an analytic semigroup of angle π
2
− θ which
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is R-bounded on each smaller sector. We prove the required analytic extendability

and R-boundedness of the relevant Ornstein-Uhlenbeck semigroup by using the

following generalisation of Theorem 3 to transfer to a study of the generalised

Weyl calculus, and Theorem 9 to deduce the required R-boundedness result.

Theorem 11. Suppose φ(x) = xN(x) + lx for a positive semi-definite real-

symmetric linear map N : Rd → Rd and vector l ∈ Rd. Then for the associated

Ornstein-Uhlenbeck operator L we have for all t > 0 (initially defined as a map

Cφ → L1
loc(Rd))

exp(−tL) = aN,lt (Q,P )

where

aN,lt (x, ξ) = det
(
cosh(tN)−1 exp(tN)

)
× exp

(
− 1

c2
ξNt(ξ)−

(
cN(x) +

l

2

)
Nt

(
cN(x) +

l

2

))
and

Nt = N−1 tanh(tN),

with all functions of N interpreted via the functional calculus of a real-symmetric

operator on Rd with the standard inner product (if 0 ∈ σ(N), we set Nt to act as

multiplication by t on the 0-eigenspace, which can be motivated by noting that

for fixed t > 0, n 7→ tanh tn
n

has a unique entire analytic extension, with value t at

n = 0).

Proof. Note that L with domain Cφ is unitarily equivalent to − 1
c2

∆ +Cφ(x) with

domain C∞c (Rd), where Cφ(x) = 1
4
|∇φ(cx)|2− 1

2
∆φ(cx), as is seen in the proof of

Theorem 7. Note that as φ(x) is a second degree polynomial in the components

of x, Cφ(x) will also be a second degree polynomial in the components of x. The

work of Hörmander in [Hör18] gives an explicit representation for the classical

Weyl symbol for the semigroup generated by operators of the form −∆ + V (x)

where V is a degree two polynomial in the components of x. Using Hörmander’s

formula in our particular case and noting the joint unitary equivalence of L with

− 1
c2

∆ + Cφ(x) and a(Q,P ) with a(X,D), we obtain the claimed expression for

aN,lt .

To deduce the desired H∞ functional calculus result, we need only show that

the relevant Ornstein-Uhlenbeck semigroup has an analytic extension to a sector

of the correct angle, and that it is R-bounded on each smaller sector. We will in

fact show a lot more with no more effort. The function t 7→ Nt is analytic and
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can clearly be extended to C\
⋃
n∈σ(N)

iπ
n

(2Z + 1). We will consider the analytic

extension z 7→ Nz on domains of the form

EN := {z ∈ C;σ(Nz) ⊂ Σπ
2
−θp}\

⋃
n∈σ(N)

iπ

n

(
Z +

1

2

)
(2.2)

where sin(θp) = Mp :=
∣∣∣1− 2

p

∣∣∣. We will show the Ornstein-Uhlenbeck semigroup

extends to an analytic semigroup on the domain E. Moreover, we will show that

the Ornstein-Uhlenbeck semigroup is R-bounded on sets of the form

EN
ε,δ :=

{
z ∈ C;σ(cos2(arg(Nz))) ∈ (M2

p + ε,∞),

dist
(
z,
(⋃

n∈σ(N)
iπ
2n
Z
)
\{0}

)
> δ

}
(2.3)

for all ε, δ > 0. The condition on the spectrum of the cosine of the argument

of Nz is a rephrasing of the spectrum of Nz being contained in a sector slightly

smaller than Σθp , which is a useful form for the proof to come. Note the condition

on the distance to
(⋃

n∈σ(N)
iπ
2n
Z
)
\{0} ensures we remain uniformly away from

the poles and zeroes of Nz, besides z = 0. We claim that Σπ
2
−θp ⊂ EN for any N ,

and that for all ε′ > 0 there exists ε, δ > 0 such that Σπ
2
−θp−ε′ ⊂ EN

ε,δ (see [vNP18]

for details of this calculation in the case N is a multiple of the identity, and

note that the general case follows by taking intersections over the eigenvalues of

N). These results combined will imply that the maximal domain of analyticity

of the Ornstein-Uhlenbeck semigroup contains the sector Σπ
2
−θp , and that it is

R-bounded on each smaller sector.

Theorem 12. Suppose φ(x) = xN(x) + lx for a positive semi-definite real-

symmetric linear map N : Rd → Rd and vector l ∈ Rd. For p ∈ (1,∞), the

associated Ornstein-Uhlenbeck semigroup has an analytic extension on Lp(µ) to

the domain EN . Furthermore, if N is positive definite, this extension is R-

bounded on each domain EN
ε,δ for all ε, δ > 0.

Proof. Let z ∈ EN . By Theorem 11, exp(−zL) = az(Q,P ) (dropping N, l from

the notation), where

az(x, ξ) = det
(
cosh(zN)−1 exp(zN)

)
× exp

(
− 1

c2
ξNz(ξ)−

(
cN(x) +

l

2

)
Nz

(
cN(x) +

l

2

))
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and Nz = N−1 tanh(zN). Computing F2az(x, k) gives:

F2az(x, k) = 2−
d
2 cd det

(
N
− 1

2
z cosh(zN)−1 exp(zN)

)
× exp

(
−c

2

4
kN−1z (k)−

(
cN(x) +

l

2

)
Nz

(
cN(x) +

l

2

))

For φ(x) = xN(x) + lx and fixed p ∈ (1,∞), we claim M : Rd → Rd, x 7→
Mp

(
c2N(x) + cl

2

)
, and ε = 0 are a valid growth pair. To see this, we have for all

x, y ∈ Rd

∣∣∣∣12 − 1

p

∣∣∣∣|φ(x)− φ(y)| = Mp

2
|xN(x) + lx− yN(y)− ly|

=
Mp

2
|(x− y)N(x+ y) + l(x− y)|

=

∣∣∣∣(x− yc
)
Mp

(
c2N

(
x+ y

2c

)
+
cl

2

)∣∣∣∣.

Using this, we can rewrite F2az(x, k) as

F2az(x, k) = 2−
d
2 cd det

(
N
− 1

2
z cosh(zN)−1 exp(zN)

)
× exp

(
−c

2

4
kN−1z (k)− 1

c2M2
p

M(x)Nz(M(x))

)

We will show that az satisfies the conditions of admission into HS0(M) for this

specific M , from which Theorem 8 gives boundedness on Lp(µ) of az(Q,P ). The

decomposition of az as in Definition 2.9 has

gaz(x, k) =
cd

2dπ
d
2

det
(
N
− 1

2
z cosh(zN)−1 exp(zN)

)
× exp

(
−c

2

4
kN−1z (k) + |kM(x)| − 1

c2M2
p

M(x)Nz(M(x))

)

We wish to show gaz ∈ D∞,1, so we must dominate in x by an integrable function
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in k. Letting ι be the sign of kM(x), we find by completing the square in M(x):

|gaz(x, k)| = cd

2dπ
d
2

∣∣∣det
(
N
− 1

2
z cosh(zN)−1 exp(zN)

)∣∣∣
exp

(
−c

2

4
k<(N−1z )(k) + ιkM(x)− 1

c2M2
p

M(x)<(Nz)(M(x))

)
=

cd

2dπ
d
2

∣∣∣det
(
N
− 1

2
z cosh(zN)−1 exp(zN)

)∣∣∣
exp

(
−c

2

4
k<(N−1z )(k) +

c2M2
p

4
k<(Nz)

−1(k)

−
(

1

cMp

<(Nz)
1
2 (M(x))− ιcMp

2
<(Nz)

− 1
2 (k)

)2
)

=
cd

2dπ
d
2

∣∣∣det
(
N
− 1

2
z cosh(zN)−1 exp(zN)

)∣∣∣
exp

(
−c

2

4
k
(
<(N−1z )−M2

p<(Nz)
−1)(k)

−
(

1

cMp

<(Nz)
1
2 (M(x))− ιcMp

2
<(Nz)

− 1
2 (k)

)2
)
,

where by
(

1
cMp
<(Nz)

1
2 (M(x))− ιcMp

2
<(Nz)

− 1
2 (k)

)2
we mean the inner product of

the contents of the brackets with itself, which is non-negative. So we may take

as dominating function

Gaz(k) =
cd

2dπ
d
2

∣∣∣det
(
N
− 1

2
z cosh(zN)−1 exp(zN)

)∣∣∣ exp

(
−c

2

4
σmin
z k2

)

Where σmin
z denotes the lowest eigenvalue of

(
<(N−1z )−M2

p<(Nz)
−1). For Gaz

to be integrable, we require σmin
z > 0, or equivalently <(N−1z ) −M2

p<(Nz)
−1 to

be positive definite. As <(Nz),=(Nz) are both in the functional calculus of the

single self-adjoint operator N , they commute and so we find

<(N−1z ) = <(Nz)(N
∗
zNz)

−1.

Using this, we find

<(N−1z )−M2
p<(Nz)

−1 =
(
<(Nz)

2(N∗zNz)
−1 −M2

p I
)
<(Nz)

−1. (2.4)

But σ(Nz) is a finite subset of Σπ
2
−θp so σ(<(Nz)

−1) is a finite subset of (0,∞), and

so this is a product of commuting positive definite operators and is hence positive
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definite, noting <(Nz)
2(N∗zNz)

−1 = cos2(arg(Nz)) > M2
p I. As integrability of

Gaz implies boundedness of az(Q,P ), we find that exp(−zL) has a holomorphic

extension as a B(Lp(µ))-valued function from the domain R+ to the domain EN .

Next we wish to investigate the semigroup for sets EN
ε,δ ⊂ E, for all ε, δ > 0

(see (2.3)). For z ∈ EN
ε,δ, we find that the dominating functions Gaz(k) are radially

decaying for each z, and so the bound in Theorem 9 becomes checking finiteness

of:

sup
z∈ENε,δ

∫
Rd
Gaz(k)dk

= sup
z∈ENε,δ

∫
Rd

cd

2dπ
d
2

∣∣∣det
(
N
− 1

2
z cosh(zN)−1 exp(zN)

)∣∣∣ exp

(
−c

2

4
σmin
z k2

)
dk

= sup
z∈ENε,δ

cd

2dπ
d
2

∣∣∣det
(
N
− 1

2
z cosh(zN)−1 exp(zN)

)∣∣∣π d
2

(
c2

4
σmin
z

)− d
2

= sup
z∈ENε,δ

∣∣∣det
((
σmin
z Nz

)− 1
2 cosh(zN)−1 exp(zN)

)∣∣∣
= sup

z∈ENε,δ

∣∣det
(
σmin
z Nz

)∣∣− 1
2
∣∣det

(
cosh(zN)−1 exp(zN)

)∣∣.
As the spectrum of N is contained in the positive real line and EN

ε,δ is at least

a distance of δ from the purely imaginary periodic poles of cosh(zN)−1, we find

|cosh(zN)−1 exp(zN)| is uniformly bounded for z ∈ EN
ε,δ. Thus the second deter-

minant above is uniformly bounded. As we have assumed z ∈ EN
ε,δ, we find that(

<(Nz)
2(N∗zNz)

−1 −M2
p I
)

=
(
cos2(arg(Nz))−M2

p I
)
> εI > 0, and so by Equa-

tion 2.4, σmin
z is bounded below by ε times the lowest eigenvalue of (<(Nz))

−1

which is the same as ε divided by the largest eigenvalue of <(Nz). So express-

ing det
(
σmin
z Nz

)
as the product of its eigenvalues, the supremum over z ∈ EN

ε,δ

of
∣∣det

(
σmin
z Nz

)∣∣− 1
2 will be finite if and only if the ratio of largest eigenvalue

of <(Nz) and smallest eigenvalue of Nz is uniformly bounded. We find by the

spectral mapping theorem, that this ratio of eigenvalues is of the form

m

n

<(tanh(zn))

| tanh(zm)|
,

where n,m ∈ σ(N). As we have assumed N is positive definite, n,m > 0. Thus

we find ∣∣∣∣mn <(tanh(zn))

| tanh(zm)|

∣∣∣∣ ≤ m

n

∣∣∣∣ tanh(zn)

tanh(zm)

∣∣∣∣
=
m

n

∣∣∣∣(e2zn − 1)(e2zm + 1)

(e2zn + 1)(e2zm − 1)

∣∣∣∣.
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We denote this final bound Cn,m(z). As |<(z)| → ∞, Cn,m(z) converges to m/n

uniformly in =(z), so we may restrict to a set En
ε,δ ∩ {|<(z)| ≤ C}. On such a

set, z is uniformly distant from the zeroes of (e2zn + 1)(e2zm − 1), except z = 0.

However,

lim
z→0

m

n

(e2zn − 1)(e2zm + 1)

(e2zn + 1)(e2zm − 1)
=
m

n
lim
z→0

(e2zn − 1)

(e2zm − 1)

=
m

n
lim
z→0

2ne2zn

2me2zm

= 1.

So Cn,m(z) is bounded near 0. Away from zero and with bounded real part,

Cn,m(z) is the product of two functions periodic in =(z),

m

∣∣∣∣(e2zm + 1)

(e2zm − 1)

∣∣∣∣ and
1

n

∣∣∣∣(e2zn − 1)

(e2zn + 1)

∣∣∣∣,
whose poles z remains distant from. Using periodicity, boundedness is equivalent

to boundedness on a compact set for each periodic function individually. However,

both are continuous, and thus bounded. Thus Cn,m(z) is uniformly bounded on

EN
ε,δ, and thus so is the relevant ratio of eigenvalues. As there are only finitely

many choices for m,n ∈ σ(N), we find that the relevant ratio of eigenvalues is

uniformly bounded. Hence

sup
z∈ENε,δ

∫
Rd
Gaz(k)dk <∞,

and so we apply Theorem 9 to deduce that {az(Q,P ); z ∈ EN
ε,δ} is R-bounded on

Lp(µ).

Remark 7. Both the domain E
1
2
I , and the union of all domains of the form of E

1
2
I

ε,δ

are exactly the classical Epperson region, which is known to be the largest domain

on which the classical Ornstein-Uhlenbeck semigroup has a bounded analytic

extension on Lp(µ) (see for example, [Epp89]). The set EN is thus an analogue

of the Epperson region, for certain variants of the classical Ornstein-Uhlenbeck

operator. By examining how E
1
2
I

ε,δ fill out E
1
2
I as ε, δ → 0, it can be seen that

the Ornstein-Uhlenbeck semigroup is R-bounded if and only if it is uniformly

bounded. This implies that the angle of sectoriality and R-sectoriality of the

classical Ornstein-Uhlenbeck operator agree.
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2.5 The Symbol Class HS(M)

The first thing we wish to do is enrich the symbol class HS0(M) with an identity.

In fact, without much more effort we can easily include symbols corresponding

to anything in the Borel functional calculus of the position operators Q.

Definition 2.13. Let B ⊂ L∞(R2d) be the sub-Banach space

{b ∈ L∞(R2d); b(x, ξ) = b(x, 0), for a.e. x, ξ ∈ Rd}.

Lemma 2.14. HS0(M) ∩B = {0}.

Proof. We will calculate F(Ib(x)) for b ∈ B. Fixing some ϕ ∈ S(Rd), we have:

〈F(Ib(x)), ϕ〉 = 〈Ib(x),F∗ϕ〉

= (2π)−
d
2

∫
R2d

b(x, ξ)ϕ(k) exp(iξk)dξdk

= (2π)−
d
2 b(x, 0)

∫
R2d

ϕ(k) exp(iξk)dξdk

= (2π)
d
2 b(x, 0)ϕ(0)

=
〈

(2π)
d
2 b(x, 0)δ0, ϕ

〉
.

Where δ0 is the Dirac distribution. The second last equality follows from noting

that (2π)−d
∫
R2d ϕ(k) exp(iξk)dξdk is the evaluation at 0 of the inverse Fourier

transform of the Fourier transform of ϕ. This clearly shows that b does not

satisfy the requirements of admission into HS0(M) unless b = 0.

Definition 2.15. Fix M : Rd → Rd. The space HS(M) (standing for Holomor-

phic Strip) is a subspace of L∞(R2d), with

HS(M) = HS0(M)⊕B

with the norm of a = a0 + ab, a0 ∈ HS0(M), ab ∈ B defined by

||a||HS(M) = ||a0||HS0(M) + ||ab||L∞(R2d).

(Note that this norm is well-defined as HS0(M) ∩B = {0}, as in Lemma 2.14).

Due to the generality of symbols in B, we can no longer use the formula of

Theorem 4 as a definition for the operator associated with a symbol in B. We

thus provide an explicit extension of the generalised Weyl calculus to B (as a

contraction with respect to the HS(M) norm and operator norm), motivated by

our intuition as to how things should work. With this definition, the generalised

Weyl calculus will extend to a bounded map HS(M) 7→ B(Lp(µ)).
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Definition 2.16. Define the extension of the generalised Weyl calculus to a =

ab ∈ B via the action

(a(Q,P )f)(y) = ab(y/c)f(y).

This is natural because, formally, for a = ab ∈ B and f ∈ Cφ, so

exp

(
−1

2
φ(·)

)
f(·) ∈ S(Rd),

we have

(a(Q,P )f)(y) =
1

(2π)dcd

∫
R2d

a

(
x+ y

2c
, ξ

)
exp

(
−iξ

(
x− y
c

))
× exp

(
1

2
(φ(y) + φ(x))

)
f(x)dξdµ(x)

=
1

cd
exp

(
1

2
φ(y)

)∫
Rd
ab

(
x+ y

2c

)
δ0

(
x− y
c

)
× exp

(
−1

2
φ(x)

)
f(x)dx

=
1

cd
exp

(
1

2
φ(y)

)〈
ab

(
·+ y

2c

)
δ0

(
· − y
c

)
, exp

(
−1

2
φ(·)

)
f(·)

〉
= ab

(
2y

2c

)
exp

(
1

2
(φ(y)− φ(y))

)
f(y)

= ab(y/c)f(y).

Where δ0 is the Dirac distribution. This extension is clearly contractive as a map

B → B(Lp(µ)). Combining this with Theorem 8, we have:

Theorem 13. Fix φ ∈ C2(Rd) and p ∈ [1,∞], and suppose there exists a valid

growth pair (M, ε) for φ and p. Then the generalised Weyl calculus extends

uniquely to a linear map HS(M)→ B(Lp(µ)) and we have

||a(Q,P )||B(Lp(µ)) ≤ eε||a||HS(M).

Exactly as we have shown for HS0(M), we also get for free that symbols in

HS(M) have some holomorphic nature.

Remark 8 (Holomorphic Nature of HS(M)). Exactly as in Remark 5, for any

symbol a ∈ HS(M) and x ∈ Rd, a(x, ξ + iη) has an extension as a function of

ξ+ iη for η = tM(x), t ∈ (−1, 1), and the essential range of a(x, ξ+ iη) on domain

{(x, ξ + iη) ∈ Rd × Cd;∃t ∈ (−1, 1) s.t. η = tM(x)} is bounded by ||a||HS(M).

This follows trivially, as a(x, ξ) = a0(x, ξ)+ab(x) and a0 ∈ HS0(M) has the given

extendability, while the constant function ξ 7→ ab(x) has an entire and bounded

(and constant) extension.
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A similar R-boundedness theorem also holds.

Theorem 14. Fix φ ∈ C2(Rd) and p ∈ [1,∞], and suppose there exists a valid

growth pair (M, ε) for φ and p. Let A ⊂ HS(M), and let G ⊂ D∞,1, AB ⊂
B be the sets of ga, ab corresponding to each a ∈ A as in the decomposition

HS(M) = HS0(M)⊕B in Definition 2.15. Suppose that for each ga ∈ G we can

choose dominating Ga ∈ L1(Rd) such that the supremum over our selections of

the quantity ∫
Rd

ess sup
|y|≥|x|

|Ga(y)|dx

is finite. Also suppose that

sup
ab∈B
||ab||L∞(Rd) <∞.

Then A(Q,P ) = {a(Q,P ), a ∈ A} is R-bounded on Lp(µ).

Proof. First note that A ⊂ A0 + AB, where A0 and AB are the projections of

A onto HS0(M) and B respectively, so by subadditivity of R-boundedness it

suffices to check that A0(Q,P ) and AB(Q,P ) are R-bounded on Lp(µ). That

A0(Q,P ) is R-bounded follows from Theorem 9. Since everything in AB is in

B, Definition 2.16 implies that AB(Q,P ) consists of multiplication operators

f(x) 7→ ab(x/c)f(x). Then since supab∈B ||ab||L∞(Rd) <∞, B(Q,P ) is R-bounded

on Lq(µ) for all q ∈ (1,∞), and hence on Lp(µ) (see, for example, Example 8.1.9

of [HvNVW17]).

We wish to study the space HS(M) - equipped with a natural product (to be

defined below) - to gain knowledge about operators on Lp(µ) related to Q and

P . To do so, we need to verify some facts about HS(M).

Theorem 15. For any measurable M : Rd → Rd, HS(M) is complete.

Proof. Note that HS(M) is a direct sum of the spaces HS0(M) and B, so pro-

viding both of these spaces are complete, we will be done. That B is complete

is obvious. Let {an} ⊂ HS0(M) be a Cauchy sequence, with corresponding

sequence {gn} ⊂ D∞,1
Then since an is HS0(M)-Cauchy, we find {gn} is D∞,1-Cauchy, and hence

has a limit g ∈ D∞,1, say. Let a ∈ L∞(R2d) be for each x, ξ ∈ Rd,

a(x, ξ) = (2π)−
d
2

∫
Rd

(2π)
d
2 g(x, k) exp(−|M(x)k|) exp(ikξ)dk
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Note this is well-defined for each x, ξ as |exp(−|M(x)k|) exp(ikξ)| ≤ 1 and

|g(x, k)| < G(k) for someG ∈ L1(Rd), and hence |a(x, ξ)| is bounded by ||G||L1(Rd).

By the Fourier inversion formula on S(Rd), F(Ia(x)) ∈ S ′(Rd) is given by inte-

gration against (2π)
d
2 g(x, k) exp(−|M(x)k|), and so a ∈ HS0(M). It is clear that

||an−a||HS0(M) → 0 by construction. So HS0(M) is complete, and hence HS(M)

is complete.

In the study of the standard Weyl calculus, there is a bilinear product S(R2d)×
S(R2d)→ S(R2d), known as the Moyal product and denoted #, which makes the

Weyl calculus into an algebra homomorphism, I.e. such that for all a1, a2 ∈
S(R2d), a1(X,D)a2(X,D) = (a1#a2)(X,D). We wish to define a similar product

on HS(M), making the functional calculus an algebra homomorphism. Note

that as our generalised Weyl pairs (Q,P ) are unitarily equivalent to the standard

pair (X,D) on L2, any such product should agree with the Moyal product on

HS(M) ∩ S(R2d), and hence we will also refer to such a product on HS(M) as

the Moyal product and denote it #.

In the classical case, the Moyal product is either written in terms of an oscilla-

tory integral involving a1(x, ξ) and a2(x, ξ), or as an asymptotic formula involving

derivatives of a1 and a2. We will avoid both of these expressions by deducing what

the product must be from the relation a1(Q,P )a2(Q,P ) = (a1#a2)(Q,P ). As

both the definition of HS(M) and the generalised Weyl calculus for (Q,P ) are

written in terms of F2a instead of a explicitly, we will find a formula for the Moyal

product in terms of F2 of the symbols.

Theorem 16. For a1 = a10 + a1b , a
2 = a20 + a2b ∈ HS(M) = HS0(M) ⊕ B,

the Moyal product a1#a2 ∈ L∞(R2d) is given as the sum of a10#a
2
b ∈ HS0(M),

a1b#a
2
0 ∈ HS0(M), a1b#a

2
b ∈ B, and a10#a

2
0 ∈ L∞(R2d) where

1. F2(a
1
0#a

2
0) = (2π)−

d
2
∫
Rd F2a

1
0

(
x+ v−k

2
, v
)
F2a

2
0

(
x+ v

2
, k − v

)
dv.

2. F2(a
1
0#a

2
b)(x, k) = F2a

1
0(x, k)a2b

(
x+ k

2

)
.

3. F2(a
1
b#a

2
0)(x, k) = a1b

(
x− k

2

)
F2a

2
0(x, k).

4. (a1b#a
2
b)(x) = a1b(x)a2b(x).

Furthermore, suppose M : Rd → Rd is an affine function with real-symmetric

linear part. Then a10#a
2
0 ∈ HS0(M), and the Moyal product is a Banach algebra

product on HS(M), such that for all a1, a2 ∈ HS(M)

||a1#a2||HS(M) ≤ ||a1||HS(M)||a2||HS(M).
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Proof. We will only prove the first and second formula, as the third follows in

almost the same way as the second, and the fourth is apparent from Definition

2.16. Recall Definition 2.11, which states for a ∈ HS0(M),

(a(Q,P )f)(y) =
1

(2π)d/2cd

∫
Rd
F2a

(
x+ y

2c
,
x− y
c

)
exp

(
1

2
(φ(y)− φ(x))

)
f(x)dx.

Thus we find(
a10(Q,P )a20(Q,P )f

)
(y) =

1

(2π)dc2d

∫
R2d

F2a
1
0

(
z + y

2c
,
z − y
c

)
exp

(
1

2
(φ(y)− φ(z))

)
F2a

2
0

(
x+ z

2c
,
x− z
c

)
exp

(
1

2
(φ(z)− φ(x))

)
f(x)dxdz

=
1

(2π)d/2cd

∫
Rd

(
1

(2π)d/2cd

∫
Rd
F2a

1
0

(
z + y

2c
,
z − y
c

)
F2a

2
0

(
x+ z

2c
,
x− z
c

)
dz

)
exp

(
1

2
(φ(y)− φ(x))

)
f(x)dx

and by making a change of variables v = (z − y)/c we find

1

(2π)d/2cd

∫
Rd
F2a

1
0

(
z + y

2c
,
z − y
c

)
F2a

2
0

(
x+ z

2c
,
x− z
c

)
dz

=
1

(2π)d/2

∫
Rd
F2a

1
0

(
x+ y

2c
− 1

2

x− y
c

+
v

2
, v

)
F2a

2
0

(
x+ y

2c
+
v

2
,
x− y
c
− v
)
dv.

By comparing with Definition 2.11, it can be seen that this confirms the formula

for F2(a
1
0#a

2
0)(x, k).

For the second term, we find

(
a10(Q,P )a2b(Q,P )f

)
(y) =

1

(2π)d/2cd

∫
Rd
F2a

1
0

(
x+ y

2c
,
x− y
c

)
a2b

(x
c

)
× exp

(
1

2
(φ(y)− φ(x))

)
f(x)dx

and

F2a
1
0

(
x+ y

2c
,
x− y
c

)
a2b

(x
c

)
= F2a

1
0

(
x+ y

2c
,
x− y
c

)
a2b

(
x+ y

2c
+

1

2

x− y
c

)
,

which, after comparison with Definition 2.11, confirms the stated formula.

Note that by boundedness of a1b , a
2
b , the three products besides a10#a

2
0 lie

in the spaces as given above. To see that the formula for F2(a
1
0#a

2
0) implies
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a10#a
2
0 ∈ L∞(R2d), we have

∣∣F2(a
1
0#a

2
0)(x, k)

∣∣ ≤ (2π)−
d
2

∫
Rd

∣∣∣∣F2a
1
0

(
x+

v − k
2

, v

)
F2a

2
0

(
x+

v

2
, k − v

)∣∣∣∣dv
= (2π)

d
2

∫
Rd

exp

(
−
∣∣∣∣M(x+

v − k
2

)
v

∣∣∣∣− ∣∣∣M(x+
v

2

)
(k − v)

∣∣∣)
×
∣∣∣∣ga10(x+

v − k
2

, v

)
ga20

(
x+

v

2
, k − v

)∣∣∣∣dv
≤ (2π)

d
2

∫
Rd

∣∣∣∣ga10(x+
v − k

2
, v

)
ga20

(
x+

v

2
, k − v

)∣∣∣∣dv
≤ (2π)

d
2

∫
Rd
Ga10

(v)Ga20
(k − v)dv,

which is in L1(Rd) as the convolution of two L1 functions. Hence F2(a
1
0#a

2
0) ∈

D∞,1, and so a10#a
2
0 ∈ L∞(R2d) as the partial inverse Fourier transform of a

function dominated by an L1 function (as in the proof of Theorem 15).

We now suppose that M is affine with real-symmetric linear part, say M(x) =

M̃(x) + ` where M̃ is linear and real-symmetric, and ` ∈ Rd. Then

|M(x)k| −
∣∣∣∣M(x+

v − k
2

)
v

∣∣∣∣− ∣∣∣M(x+
v

2

)
(k − v)

∣∣∣
=
∣∣∣M̃(x)k + `k

∣∣∣− ∣∣∣∣M̃(x)v + M̃

(
v − k

2

)
v + `v

∣∣∣∣
−
∣∣∣M̃(x)k + `k + M̃

(v
2

)
k − M̃(x)v − M̃

(v
2

)
v − `v

∣∣∣
=
∣∣∣M̃(x)k + `k

∣∣∣− ∣∣∣∣M̃(x)v + M̃

(
v − k

2

)
v + `v

∣∣∣∣
−
∣∣∣∣M̃(x)k + `k − M̃(x)v − M̃

(
v − k

2

)
v − `v

∣∣∣∣,

which is of the form |A+B| − |A| − |B| for A,B ∈ Rd, and is hence less than or

equal to 0 by the triangle inequality. Thus we find
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∣∣F2(a
1
0#a

2
0)(x, k)

∣∣
≤ (2π)

d
2

∫
Rd

exp

(
|M(x)k| −

∣∣∣∣M(x+
v − k

2

)
v

∣∣∣∣− ∣∣∣M(x+
v

2

)
(k − v)

∣∣∣)
exp(−|M(x)k|)

∣∣∣∣ga10(x+
v − k

2
, v

)
ga20

(
x+

v

2
, k − v

)∣∣∣∣dv
≤ (2π)

d
2 exp(−|M(x)k|)

∫
Rd

∣∣∣∣ga10(x+
v − k

2
, v

)
ga20

(
x+

v

2
, k − v

)∣∣∣∣dv
≤ (2π)

d
2 exp(−|M(x)k|)

∫
Rd
Ga10

(v)Ga20
(k − v)dv

= (2π)
d
2 exp(−|M(x)k|)Ga10

∗Ga20
(k)

Where ∗ denotes the convolution. Note that Ga10
∗Ga20

∈ L1(Rd) as Ga10
, Ga20

∈
L1(Rd), so a10#a

2
0 ∈ HS0(M). Further, ||Ga10

∗Ga20
||L1(Rd) ≤ ||Ga10

||L1(Rd)||Ga20
||L1(Rd)

so ||a10#a20||HS0(M) ≤ ||a10||HS0(M)||a20||HS0(M).

We check the other terms of a1#a2.

F2(a
1
0#a

2
b)(x, k) = F2a

1
0(x, k)a2b

(
x+

k

2

)
= (2π)

d
2a2b

(
x+

k

2

)
g1(x, k) exp(−M(x)|k|),

with a2b
(
x+ k

2

)
g1(x, k) ∈ D∞,1 with norm bounded by ||g1||D∞,1||a2b ||L∞(R2d).

F2(a
1
b#a

2
0)(x, k) = a1b(x−

k

2
)F2a

2
0(x, k)

= (2π)
d
2a1b

(
x− k

2

)
g2(x, k) exp(−M(x)|k|),

with a1b
(
x− k

2

)
g2(x, k) ∈ D∞,1 with norm bounded by ||a1b ||L∞(R2d)||g2||D∞,1 .

(a1b#a
2
0)(x) = a1b(x)a2b(x),

with a1b(x)a2b(x) ∈ B with L∞ norm bounded by ||a1b ||L∞(R2d)||a2b ||L∞(R2d). Putting
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these together and using subadditivity of the HS0(M) norm gives

||a1#a2||HS(M) = ||a10#a20 + a10#a
2
b + a1b#a

2
0||HS0(M) + ||a10#a20||L∞(R2d)

≤ ||a10#a20||HS0(M) + ||a10#a2b ||HS0(M) + ||a1b#a20||HS0(M)

+ ||a10#a20||L∞(R2d)

≤ ||a10||HS0(M)||a20||HS0(M) + ||a10||HS0(M)||a2b ||L∞(R)

+ ||a1b ||L∞(R)||a20||HS0(M) + ||a10||L∞(R)||a20||L∞(R2d)

=
(
||a10||HS0(M) + ||a1b ||L∞(R)

)(
||a20||HS0(M) + ||a20||L∞(R2d)

)
= ||a1||HS(M)||a2||HS(M)

We have the easily verified lemma and corollary:

Lemma 2.17. Assuming M is affine, the Moyal product is associative, and has

as identity the constant function 1(x, ξ) = 1.

Corollary 2.18. Fix φ ∈ C2(Rd) and p ∈ [1,∞], and suppose there exists a valid

growth pair (M, ε) for φ and p, with M affine with real-symmetric linear part.

Then (HS(M),#) is a unital Banach algebra, and the generalised Weyl calculus

HS(M) → B(Lp(µ)), a 7→ a(Q,P ) is a bounded Banach algebra homomorphism

with norm at most eε.

This corollary makes our symbol class HS(M) very distinct from the standard

symbol classes of pseudodifferential calculus, and more like a single operator

functional calculi. This suggests we really have the “right” norm for symbols, or

at least something very close. We can hypothesise that Corollary 2.18 will allow

us to get closer to bounded functional calculus for L via softer Banach algebra

techniques.

2.6 Concluding Remarks

2.6.1 Semigroup Generation in HS(M)

The application of the generalised Weyl calculus developed in Section 2.4 was only

possible because the symbol at for the Ornstein-Uhlenbeck semigroup, such that

at(Q,P ) = exp(−tL), was known explicitly for φ of the form φ(x) = xN(x) +

lx. In this subsection we present some ideas about how one might be able to
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determine or prove existence of the symbol for the semigroup in cases other than

such polynomials.

If we suppose that at(Q,P ) = exp(−tL) for some symbol at ∈ HS(M) and

that we can extend the Moyal product to include products with h, of Theorem 7

with h(Q,P ) = L, then the semigroup properties of exp(−tL) correspond to the

following properties of at {
dat
dt

= −h#at, t > 0

a0 = 1.
(2.5)

We have replaced a (strong) ODE in the Banach algebra B(Lp(µ)) with an ODE

in the Banach algebra HS(M). Since HS(M) is also a space of functions, we have

a lot of explicit tools to solve for the symbol at, such as taking ansatz. By taking

a good ansatz, the above ODE can be solved explicitly when φ(x) = xN(x) + lx,

which is what was done by the author in determining the formula in Theorem

11. This was also essentially the method used by Hörmander in [Hör18], whose

proof we refer to in the proof of our formula, although the method was discovered

independently.

This method also lends itself to non-quadratic φ, or perturbation, as an ab-

stract semigroup generation problem in a Banach algebra. Noting Remark 2, we

know that any φ for which the theory presented in this paper is applicable must

typically be a bounded C2 perturbation of a potential of the form xN(x) + lx,

and that the relevant HS(M) class of symbols is the same for φ and xN(x) + lx.

Thus it would be natural to consider the symbol for the semigroup of the relevant

Ornstein-Uhlenbeck operator as a perturbation of the symbol for the semigroup

for the Ornstein-Uhlenbeck associated with xN(x) + lx.

2.6.2 Banach Algebra Techniques

The idea of the HS(M)-valued ODE in Equation 2.5 could be taken even further.

If we consider h# as an unbounded operator on the Banach space HS(M) with an

appropriate domain, we could ask when does h# have a bounded H∞ functional

calculus, I.e. a bounded Banach algebra homomorphism H∞(Ω)→ B(HS(M)),

f 7→ f(h#), for some domain Ω ⊂ C. Supposing such a bounded Banach algebra

homomorphism exists, abstract theory of Banach algebras and the “associative”

nature of the unbounded operator h# (namely, that h#(a1#a2) = (h#a1)#a2)

will imply that the image of the homomorphism will lie in the subspace of

B(HS(M)) naturally identifiable with HS(M) (as a Banach algebra A is al-

ways contained in B(A)). Making this identification, we can then compose with
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our generalised Weyl calculus, another bounded Banach algebra homomorphism,

to obtain a bounded Banach algebra homomorphism H∞(Ω)→ B(Lp(µ)). As re-

solvents of h# would map to resolvents of L under this homomorphism, it must

be a bounded H∞ functional calculus for L on Lp(µ). Diagrammatically, this

process is as follows:

H∞(Ω) // HS(M) ⊂ B(HS(M)) // B(Lp)

f

∈

� // f(h#)
∈

� // f(h#)(Q,P ) = f(L)

∈

Thus we would find that the bounded H∞ functional calculus of L factors

through HS(M), and so we would know that symbols for the functional calculus

for L exist in HS(M), even if we can’t write them explicitly. There are some

interesting complications to this approach, such that the domain of h# cannot

possibly be dense as its domain cannot include the subspace generated by the

identity (or B ⊂ HS(M), for that matter), while an assumption of dense domain

is common in the literature of the H∞ functional calculus.

This leads us naturally to consider the spectrum of a symbol in HS(M). We

have seen in Remark 5 that symbols a ∈ HS(M) have a “pseudo-holomorphic” ex-

tension to the domain DM = {(x, ξ+ iη) ∈ Rd×Cd;∃t ∈ (−1, 1) s.t. η = tM(x)},
and that the image of this holomorphic extension is contained in the closed com-

plex disc of radius ||a||HS(M). It is true that the spectrum of an element of a

Banach algebra is always contained in the set of complex numbers of modulus

less than or equal to the norm of the element. Also, when we look at the mul-

tiplication operator subspace B ⊂ HS(M), it is clear that the spectrum of an

element is the essential range of the element, as an L∞ function of x. Similarly,

if M = 0 then HS(M) will contain the Banach algebra L1(Rd) with convolution

as product (corresponding to those symbols which do not depend on x, in which

case the Moyal product degenerates to convolution in k of the partial Fourier

transforms). It is true for L1(Rd) with convolution as product, that the spectrum

of an element is the range of its Fourier transform. Thus we could hypothesise

that for a ∈ HS(M),

σHS(M)(a) := {λ ∈ C; (a− λ) is not invertible in HS(M)}

is related to the set

EssRan(a(x, ξ + iη)),

where the essential range is taken for the extension discussed in Remark 5, over

the domain DM = {(x, ξ + iη) ∈ Rd × Cd;∃t ∈ (−1, 1) s.t. η = tM(x)}.
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While it might seem reasonable to think that the spectrum of a symbol is

exactly the essential range of this extension of the symbol, that is most likely not

true due to the following example. Consider one of the cases presented in Section

2.4, for φ(x) = x2

2
, the unbounded operator h# with h(x, ξ) = 1

2
(x2 + ξ2− d) and

h(Q,P ) = L the classical Ornstein-Uhlenbeck operator. In this case, a family of

symbols for the semigroup generated by L was found, which is uniformly bounded

in HS(M) for real time, and so h# generates (in some sense) a uniformly bounded

semigroup in/on HS(M) for real time. Thus h# should have spectrum with real

part bounded below by 0. However, the range of h over the relevant domain for

the analytic extension will always include the point −d
2
, which should cause the

semigroup to blow up for large time.

If there was some relationship between the spectrum of a symbol in HS(M)

and the range of its holomorphic extension, it would show that if M 6= 0, the

only elements of HS(M) with real spectrum are elements of B which take real

values. Assuming our argument about factorisation of the H∞ functional calculus

through HS(M) holds true, this could be seen as a more explicit reason as to

why the classical Ornstein-Uhlenbeck operator has only holomorphic functional

calculus on Lp(µ), for p 6= 2. Namely, the symbol h(x, ξ) = 1
2
(x2 + ξ2− d) for the

classical Ornstein-Uhlenbeck operator will have non-real spectrum as an element

of HS(M), even though the classical Ornstein-Uhlenbeck operator has only real

spectrum.
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Chapter 3

Haar Bases and Fractal Tilings of

LC Groups

3.1 Introduction

3.1.1 Haar Basis and Daubechies Wavelets on R

The Haar Basis on R

The Haar basis on R consists of the functions ψHaar
n,l : R → C for n, l ∈ Z, given

by

ψHaar
n,l (t) =


2
n
2 ; t ∈ [2−nl, 2−n(l + 1/2))

−2
n
2 ; t ∈ [2−n(l + 1/2), 2−n(l + 1))

0; otherwise.

Alternatively, the Haar basis is the set of all integer translations and L2-

normalised pullbacks under scaling by 2n, n ∈ Z of the Haar mother wavelet

ψ0,0:

ψHaar
0,0 (t) =


1; t ∈ [0, 1/2)

−1; t ∈ [1/2, 1)

0 otherwise

The Haar basis is a ubiquitous tool in harmonic analysis on R. Not only does

it form an orthonormal basis of L2(R), it also forms an unconditional basis of

Lp(R) (see [HvNVW16]). This unconditionality makes the Haar basis essential

for Lp analysis, in which equal bandwidth Fourier decompositions fail to be un-

conditional (as opposed to the exponentially growing bandwidth decompositions

51
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in the Littlewood-Paley decomposition). Furthermore, that the Haar basis con-

sists of discretely valued and compactly supported functions makes it a useful

tool in computer simulation. The main issue one could claim of the Haar basis is

that there is no differential regularity, a problem solved via more general wavelet

theories.

Multiresolution Analysis and Daubechies Wavelets

The Haar basis is a simple example of a multiresolution analysis, and many of its

useful properties follow from this more general theory. Over L2(R), a mutireso-

lution analysis is a sequence of closed subspaces {Vn}n∈Z which are nested,

Vn ⊂ Vn−1,

with ⋃
n∈Z

Vn = L2(R),

and ⋂
n∈Z

Vn = {0}.

Furthermore, the subspaces are related via

f ∈ Vn ⇐⇒ f(2n·) ∈ V0,

and are invariant under discrete translations

f ∈ V0 ⇐⇒ f(· − l) ∈ V0 ∀l ∈ Z.

Lastly, we require that there exists a scaling function φ0 ∈ V0 such that {φ0(· −
l); l ∈ Z} is an orthonormal basis for V0.

The picture one should have is that the spaces are giving increasingly high

resolution pictures as n→ −∞ with “pixel” given by the scaling function φ0.

From a multiresolution analysis, one can show that the set of orthogonal

complements Wn (such that Vn−1 = Vn ⊕Wn) are mutually orthogonal, have a

similar scaling structure under pullback by multiplication by powers of 2, and

have orthonormal bases generated by dilations and translations of a single L2

normalised function ψ0,0; the mother wavelet. From

L2(R) =
⋃
n∈Z

Vn =
⊕
n∈Z

Wn,
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one finds that the set of integer translations and normalised dilations by powers

of 2 of ψ0,0 form an orthonormal basis for L2(R). Such a basis is called a wavelet

basis.

This theory has been developed by Daubechies, Meyer and others (for ex-

ample, see the standard text [Dau92]). Daubechies has produced a series of

compactly supported wavelet bases of increasing regularity which have found sig-

nificant applications in both analysis and industry. The construction involves

many interesting areas of mathematics, including the interplay between Fourier

analysis on R and its symmetric spaces, and polynomial algorithms. The least

regular of this series of wavelet bases exactly recovers the Haar basis of R, corre-

sponding to the scaling function taken as the characteristic function of [0, 1].

3.1.2 Fractal Tilings

The theory of fractals as fixed points of iterated function systems was developed

in the work of Hutchinson [Hut81] and has found many applications within the

sciences at large. This theory can be “inverted” to produce the fractal tilings, as

unified in the work of Barnsley and Vince [BV14]. In this section we will explain

the components of both of these theories relevant to the current goal. For the

sake of this chapter, fractal will be synonymous with “attractor of a contractive

IFS”.

Throughout this section, X will denote a complete metric space with distance

function d.

Definition 3.1. A contractive iterated functions system (IFS) F is a finite set of

strict contractions fi : X → X, i = 1, . . . , n, i.e. functions satisfying

d(fi(x), fi(y)) ≤ λd(x, y),

for some fixed 0 ≤ λ < 1.

The main existence theorem of [Hut81] is an example of a contraction mapping

argument, with respect to the Hausdorff metric.

Definition 3.2. The Hausdorff metric δ on the set B of non-empty closed bounded

subsets of X is defined to be

δ(A,B) = sup{d(a,B), d(b, A); a ∈ A, b ∈ B},

where d(a,B) = inf{d(a, b); b,∈ B}.
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Theorem 3.3. (B, δ) is a complete metric space.

By considering a contractive IFS F as a function on B via the action F(A) :=⋃n
i=1 fi(A) (the Hutchinson operator) and showing that this constitutes a δ-

contractive map, Hutchinson proves

Theorem 3.4. Given a contractive IFS on the complete metric space X, there

exists a unique closed, bounded set K ⊂ X such that

K =
n⋃
i=1

fi(K).

Furthermore, K is compact, and given any A ∈ B, limm→∞ δ(Fm(A), K) = 0.

The subset K provided by the above theorem is called the attractor of the

contractive IFS F.

By visualising the fixed point property of attractors, one can see that such

fractals are made up of (possibly overlapping) distorted images of themselves,

which are themselves made up of distorted images of themselves, a process which

continues all the way down. By reversing the procedure as in [BV14], one can

obtain a (fractal) tiling instead, per the following definition:

Definition 3.5. A tile in a metric space X is a nonempty compact subset. A

tiling of a subset S ⊂ X is a set of non-overlapping tiles whose union is S (i.e.

tiles with disjoint interiors). A tiling of all of X is called a full tiling.

Similarly,

Definition 3.6. An attractor K of a contractive IFS F = {fi}ni=1 is called

overlapping if for some i 6= j,fi(K) and fj(K) are overlapping. Otherwise K

is called non-overlapping. A non-overlapping attractor is either totally discon-

nected, fi(K) ∩ fj(K) = ∅ for i 6= j, or just touching, ∂fi(K) ∩ ∂fj(K) 6= ∅ for

some i 6= j ∈ {1, . . . , n}.

Note if K is non-overlapping and has non-empty interior then K must be

just-touching.

Now suppose that each function in the contractive IFS F has a (continuous)

inverse. Suppose further that the unique attractor K of F has non-empty in-

terior. Then Barnsley and Vince in Theorem 3.8 of [BV14] prove that X can

be tiled by copies of K (this is a particularly simple case which suffices for our
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purposes; Barnsley and Vince prove similar tiling results under the assumption of

a non-contractive point-fibred IFS). The picture in this simplified case is roughly

as follows:

Choose a point k0 in the interior of K. Then there exists an open ball B(k0, ε)

around k0 contained in K. The inverses of functions in F must be strictly dilating,

and so any preimage of K under any finite sequences of functions in F contains

an open ball, the radius of which depends exponentially on sequence length. By

making a careful choice of a sequence of inverses the centre of said balls can be

chosen to not move very much, so the open balls cover X. Taking the union as

M → ∞ and using the fact that K is the attractor of F to write the relevant

pre-image as a union of images of K under compositions of functions in F and

their inverses provides a tiling of all of X.

In the sequel, we will make this sketch explicit in the particular cases we care

about.

3.1.3 Unconditionality and Conditional Expectations

We next take a very brief look at unconditionality and conditional expectations,

restricting to only those parts of the theory relevant to our needs (including

making use of slightly more restrictive definitions than need be). Throughout

this section, we let X be a Banach space and I denote a countably infinite set.

Unless otherwise mentioned, the results in this section are all classical and can

be found in [HvNVW16], Chapters 3 and 4.

It is a common result shown to people early in their studies of real analy-

sis that if a sequence of real numbers {xn}n∈Z is conditionally summable (i.e.

limN→∞
∑N

n=1 xn exists) but not absolutely summable (i.e. limN→∞
∑N

n=1 |xn|
does not exist), then for every real number x there is some reordering σ : N→ N
such that

lim
N→∞

N∑
n=1

xσ(n) = x.

If a sequence is absolutely summable, then the limit is invariant under such

permutations. In higher (infinite) dimensional spaces, the notion of unconditional

summability lies between conditional summability and absolute summability, and

still allows for some controlled cancellation.

Definition 3.7 (Definition 4.1.2 of [HvNVW16], paraphrased). A sequence {xi}i∈I ⊂
X is called unconditionally summable with sum x ∈ X if for every ε > 0 there



56 CHAPTER 3. HAAR BASES ON LC GROUPS

exists a finite set Fε ⊂ I such that if F ⊂ I is a finite set containing Fε then

||x−
∑
i∈F

xi|| < ε.

In this case we write “
∑

i∈I xi = x unconditionally”.

There are many equivalent characterisations of unconditional summability, we

have chosen the one simplest for our interests (see [HvNVW16] for details). It is

clear from the definition that over Lp for p ∈ [1,∞), if a sequence of functions

{fi}i∈N have supports which are disjoint up to a set of measure 0, then if the

partial sums
∑N

i=1 fi converge to some f then it must be the case
∑

i∈N fi = f

unconditionally in Lp. Similarly, we have

Definition 3.8 (Definition 4.1.8 of [HvNVW16]). A pre-decomposition of X

is a family {Di}i∈I of bounded projections (i.e. D2
i = Di) on X satisfying

DiDj = 0 whenever i 6= j.

A pre-decomposition is called an unconditional decomposition if∑
i∈I

Dix = x

unconditionally for all x ∈ X. If each Di has one-dimensional image, we call such

a set an unconditional basis (which we say is normalised if each projection has

norm 1).

Remark 9. The previous definition does not exactly reproduce a basis in the

usual sense, but is rather the set of projections associated with a basis. We make

this association throughout.

Examples include (projections onto) orthonormal bases in Hilbert spaces. Sig-

nificant non-examples include the Fourier basis on Lp of the unit circle for p 6= 2,

and equal bandwidth Fourier projections on Lp(R) for p < 2. One of the most

significant properties of unconditional decompositions is the following.

Theorem 3.9 (Proposition 4.1.10 of [HvNVW16], paraphrased). A pre-decomposition

{Di}i∈I is an unconditional decomposition if and only if

• the sums
∑

i∈F Dix, where x ∈ X and F ⊂ I is finite, are dense in X.
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• For any a = {ai}i∈I ∈ `∞(I) and x ∈ X, the sequence {aiDix}i∈I is un-

conditionally summable, and there exists some constant C > 0 independent

of a such that the operator

x 7→Ma(x) :=
∑
i∈I

aiDix

is bounded with norm ||Ma|| ≤ C||a||`∞.

Thus unconditional decompositions provide enough “independence” that `∞

multiplier operators can be defined and controlled, with significant applications

in the study of functional calculus/spectral multipliers. We will make use of the

following lemma, which is immediately true from the definitions presented thus

far.

Lemma 3.10. Suppose {Dn}n∈Z is an unconditional/orthonormal decomposition

of X. Given a normalised unconditional/orthonormal basis for Dn(X) for each

n ∈ Z, the union is an unconditional/orthonormal basis for X.

We now turn to conditional expectations as a source of unconditional decom-

positions. We let (S,A, µ) denote a measure space.

Definition 3.11. A family of sub σ-algebras {Fn}n∈Z of A is called a filtration

if Fn ⊂ Fn+1 for all n ∈ Z. A filtration is called σ-finite if µ is σ-finite on each

Fn.

In the setting of probability spaces, a filtration can be thought of as the

events whose probabilities can be measured at time n. Through analogy with

conditional expectations, one may “condition” over events which have already

happened to learn something (probabilistic) about the future. This leads to the

following definition

Definition 3.12 (Definition 2.6.4 of [HvNVW16], paraphrased). Let F ⊂ A
be a sub σ-algebra. A function g ∈ L1

loc(S,F , µ) is said to be a conditional

expectation with respect to F of f ∈ L1
loc(S,A, µ) if for all A ∈ F∫

A

gdµ =

∫
A

fdµ.

Roughly in words, g is a function defined in terms of the “knowable events”

which has the same expectation as f on any such knowable event. By combining

many of the results from Chapter 2 of [HvNVW16] (albeit in much less generality

than they are given), we obtain
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Theorem 3.13. If µ is σ-finite on F , then conditional expectations exist and

are unique for all f ∈ Lp(S,A, µ) for any p ∈ [1,∞). We denote the unique

conditional expectation of such an f as E(f |F). The map f 7→ E(f |F) is linear

and contractive on Lp(S,A, µ) for any p ∈ [1,∞).

The following theorem provides the link back to unconditionality.

Theorem 3.14 (Burkholder, Theorem 4.1.11 of [HvNVW16], paraphrased). Let

(S,A, µ) be a measure space with σ-finite filtration {Fn}n∈Z such that the σ-

algebra generated by
⋃
n∈ZFn is A. Then the martingale difference sequence

{Dn}n∈Z defined by

Dn = E(·|Fn+1)− E(·|Fn)

is an unconditional/orthogonal decomposition for Lp(S,A, µ) for all p ∈ (1,∞)/p =

2.

That the martingale difference sequence consists of projections is due to the

filtration property Fn ⊂ Fn+1 and properties of conditional expectations. Den-

sity of the images of {Dn}n∈Z follows from the so-called martingale convergence

theorem and the assumption that the σ-algebra generated by
⋃
n∈ZFn is A.

The following characterisation of the images of {Dn}n∈Z will be of significant

use to us. We do not prove the following lemma as we have taken a very shallow

look into the theory of conditional expectations, although it follows directly from

the definitions.

Lemma 3.15. Suppose that {Fn}n∈Z is a σ-finite filtration such that the σ-algebra

generated by
⋃
n∈ZFn is A. Suppose further that each Fn is generated by a count-

able set Tn such that every intersection between pairs of distinct elements of Tn

has measure 0. Then the image of Dn on Lp(S,A, µ) can be characterised as

those Lp functions which are a.e. constant on elements of Tn+1 and have integral

zero on every element of Tn.

3.1.4 The Haar Basis on R from a Fractal Tiling and as-

sociated Conditional Expectation

From a choice of invertible contractive IFS on R and martingale techniques we can

recover the Haar basis and some of its significant harmonic-analytic properties.

Consider the invertible contractive IFS FHaar := {f0+2Z, f1+2Z} on R equipped

with the Euclidean distance, where
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f0+2Z(t) =
1

2
t, f1+2Z(t) =

1

2
(t+ 1).

It is immediately obvious that these maps are both contractive with contrac-

tion parameter 1
2
. It can be easily verified that the attractor of FHaar is the unit

interval [0, 1], which has non-empty interior and is just-touching.

Thus the method of Barnsley and Vince can be applied, resulting in the tiling

of R by the intervals THaar
0 = {[l, l + 1]; l ∈ Z}. By utilising the fractal nature,

we get a scale of similar tilings THaar
n = {[2−nl, 2−n(l+ 1)]; l ∈ Z} for each n ∈ Z.

We include the negation in n to match standard notation used for filtrations.

We next use martingale methods to proceed from tiling to Haar basis. For

each n ∈ Z, denote by FHaar
n the σ-algebra generated by the tiling THaar

n , and

note that since each tile in THaar
n is the union of (two) tiles in THaar

(n+1), we find

FHaar
n ⊂ FHaar

n+1 . Thus, by definition, {FHaar
n }n∈Z is a filtration. Furthermore,

the σ-algebra generated by
⋃
n∈ZFHaar

n is B(R), the Borel σ-algebra of R. The

latter equality can be deduced by noting that due to contractivity of FHaar, any

bounded open ball is both contained in and contains the interior of a tile in one of

the tilings THaar
n , and the interior of tiles in THaar

n are clearly contained in FHaar
n .

Let DHaar
n = E

(
·|FHaar

n+1

)
− E

(
·|FHaar

n

)
denote the sequence of associated mar-

tingale difference operators. By Theorem 3.14, for p ∈ (1,∞)/p = 2 the decom-

position

Lp(R,B(R)) =
⊕
n∈Z

Dn(Lp(R,B(R)))

is unconditional/orthogonal. By Lemma 3.15 the image of Dn on Lp consists of

those Lp functions a.e. constant on tiles in THaar
n+1 which have integral zero on

any tile in THaar
n . From this characterisation, it can be seen that the span of the

subset of the Haar basis with support of measure 2−n is dense in the image of Dn.

Combined with the fact such a subset of the Haar basis has supports overlapping

on measure 0 sets, the projections associated with the given subset of the Haar

basis is an unconditional/orthonormal basis for the image of Dn (normality due

to our choice of scaling). Finally, noting the projection operators

f(t) 7→ ψHaar
n,l (t)

∫
R
f(s)ψHaar

n,l (s)ds

are normalised on Lp for all p ∈ [1,∞), Lemma 3.10 implies that (the projec-

tions associated with) the Haar basis is an unconditional/orthonormal basis for

Lp(R,B(R) for p ∈ (1,∞)/p = 2.
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3.2 Fractal Tilings of LC Groups

Fractal tilings of Rd based on integer matrices which act as dilations with respect

to the Euclidean norm and translations by the integer lattice have been investi-

gated by Vince in [Vin00], and Gelbrich in [Gel94] generalised from the integer

lattice to any crystallographic group, which still produces a tiling of Rd. In this

section, we instead investigate certain tilings of groups other than Rd.

3.2.1 Notation and Initial Properties

The previous section showed that the construction of the Haar basis and the

proof of its unconditionality can essentially be reduced to the construction of the

fractal tilings {THaar
n }n∈Z, which in turn follow from the IFS FHaar and properties

of its attractor.

The key property of the IFS FHaar and its attractor [0, 1] which makes the Haar

basis correspond to a multiresolution analysis is the fact that each tiling THaar
n

consists of translates of a single tile, rather than the more general homeomorphic

images one may expect from fractal tiling theory, and that the different tilings

are related by dilations.

We now try to replicate this for metrisable LC groups. Let G be such a

group with identity e. We equip G with a right G-invariant metric d inducing the

topology on G, that is, a metric d : G×G→ [0,∞) such that for all f, g, h ∈ G,

d(gf, hf) = d(g, h).

It is a theorem of Struble [Str74] that such a metric exists. Local compactness

implies that (G, d) is a complete metric space. Furthermore, we suppose that G

is unimodular, and we fix a bi-invariant Haar measure µ on G and equip G with

B(G), its Borel σ-algebra.

As a replacement for the integer translations arising in multiresolution analysis

and the classical Haar basis, we suppose that G has a countable lattice L ⊂ G

(a lattice is a closed discrete subgroup such that G/L is compact, and hence

the projection G → G/L is a local homeomorphism). No normality is assumed

of L. As a replacement for dilation by 2, we suppose that G has a continuous

automorphism φ : G → G which is a strict dilation with respect to the metric

d with dilation factor C > 1 (that is, d(φ(g), φ(h)) ≥ Cd(g, h) for all g, h ∈ G),

such that φ(L) ⊂ L. We fix this notation for the rest of this chapter.

Recall that every two non-trivial right Haar measures are positive multiples

of each other. Noting that the pullback φ∗µ of µ by φ is a non-trivial right Haar
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measure, there must exist some positive real number, which we denote |φ|, such

that φ∗µ = |φ|µ.

Remark 10. It has been brought to the attention of the author during the review

period of this thesis that work of Müller-Römer in [MR76] and Siebert in [Sie86]

shows that any locally compact group admitting a contractive automorphism

(i.e. the inverse of a strictly dilating automorphism) must in fact be a simply

connected Lie group whose Lie algebra admits a positive grading (and is hence

nilpotent and unimodular). Thus we could simplify things significantly by using

this structure from the beginning. However, we continue to work without making

direct use of the Lie/simply connected/nilpotent structure as the eventual aim

is to apply these methods to homogeneous spaces rather than locally compact

groups, and it seems that the assumptions can be significantly weakened in the

homogeneous space case. For example, one can clearly construct a Haar basis on

the circle by using the covering map R 7→ R/Z, despite the circle not being simply

connected and possessing no strictly dilating automorphism. The full generality

at which the constructions of this chapter can be applied will be developed in

future work.

From this initial setup, we have the following observations:

Lemma 3.16. The index |L : φ(L)| is greater than 1.

Proof. As L is discrete and closed, there exists a closest element l ∈ L \ {e} to e.

As φ is an automorphism it fixes e. Suppose l ∈ φ(L). Then there exists l′ ∈ L
such that φ(l′) = l, so d(l, e) = d(φ(l′), e) > Cd(l′, e) > d(l′, e), contradicting

minimality. Hence there is at least one non-trivial coset in L/φ(L), and so |L :

φ(L)| > 1.

Lemma 3.17. The metric d on G is unbounded, hence G is not compact and

µ(G) = ∞, and L is not finite. Furthermore, for each positive number M , L

contains an infinite set of points each of which at least distance M apart.

Proof. The initial claim follows from the fact that φ is a strict dilation with

respect to d. The next two claims follow immediately, and the fourth follows

from compactness of G/L. Note that since L is discrete there is some minimum

distance M0 between points of L, so there are infinitely many points of L (in fact,

all of L) at least distance M0/2 apart. By repeatedly applying φ and using the

facts that φ is a strict dilation and φ(L) ⊂ L, the last claim follows.
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Lemma 3.18. φ(L) is a lattice, and the map φ̃ : G/L → G/φ(L) defined by

φ̃(gL) = φ(g)φ(L) is a homeomorphism.

Proof. Discreteness and closedness of φ(L) is immediate from the fact that φ is a

strict dilation, and hence the projection G→ G/φ(L) is a local homeomorphism.

We claim the map φ̃ : G/L → G/φ(L) defined by φ̃(gL) = φ(g)φ(L) is well

defined, and is a continuous surjection. Noting φ is invertible, the fact φ̃ is

well-defined and injective follows from the observation gL = hL ⇐⇒ g−1h ∈
L ⇐⇒ φ(g)−1φ(h) ∈ φ(L) ⇐⇒ φ(g)φ(L) = φ(h)φ(L). Similarly, given any

gφ(L) ∈ G/φ(L), we can choose φ−1(g)L ∈ G/L and find φ̃(φ−1(g)L) = gφ(L).

Continuity of φ̃ follows from the fact that the projections G→ G/L,G→ G/φ(L)

are local homeomorphisms, and the fact that φ is continuous. Hence G/φ(L) =

φ̃(G/L) is the continuous image of a compact space and is thus compact. That

φ̃ is a homeomorphisms follows from the fact it is a continuous bijection between

compact spaces.

The following lemma is seemingly our only reason for taking G unimodular,

but it plays a significant role in the regularity of our upcoming tilings.

Lemma 3.19. G/L possesses a non-zero finite left G-invariant Borel measure

µG/L. The measure µG/L is such that for measurable sets U ⊂ G on which the nat-

ural projection πL : G → G/L restricted to U is injective, µ(U) = µG/L(πL(U)).

Similarly, there exists a left G-invariant Borel measure µG/φ(L) on G/φ(L) with

analogous properties.

Proof. This follows from our assumption that G is unimodular, the fact that

both L and φ(L) are discrete and hence unimodular, and Theorem 3 of Chapter

7, Section 2.6 of [BB04].

The following theorem is the key technical hurdle in obtaining well-behaved

tilings.

Theorem 3.20. |L : φ(L)| = |φ|, and hence |L : φ(L)| <∞.

The idea of the proof is to use an a priori misbehaved “tile” T , which is

nonetheless “fractal” up to translations by L and φ(L), to compute the measure

of G/φ(L) in two different ways. It may help to follow the proof with a picture

of what happens for the Haar IFS FHaar.

Proof. Consider the natural quotient maps πL : G→ G/L, πφ(L) : G→ G/φ(L),

which are local homeomorphisms as L, φ(L) are lattices. Since πL, πφ(L) are local
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homeomorphisms with countable fibres they are both bi-measurable (image and

pre-image of Borel measurable sets are Borel measurable).

We construct a measurable fundamental domain for G/L, i.e. a measurable set

T ⊂ G such that πL|T : T → G/L is a bijection, and hence µ(T ) = µG/L(G/L) ∈
(0,∞) as per Lemma 3.19. As πL is a local homeomorphism and G/L is compact,

we can pick a finite open cover {Ui} for G/L such that πL has a continuous inverse

on the closure of each Ui.

As L is infinite and discrete and there are only finitely many compact sets

Ui, we can choose continuous right inverses si : Ui → G to πL|π−1
L (Ui) for each i.

Any right translation by elements of L commutes with the projection πL. Fur-

thermore, the image of each si is compact, and hence we can right translate each

si such that the images are disjoint (noting the last part of 3.17, and the fact

we have chosen a right invariant distance). By cutting intersections, we obtain

a finite disjoint measurable collection of sets {Vi} with Vi ⊂ Ui for each i which

cover G/L. Finally, set T =
⊔
i si(Vi). By construction πL restricted to T is

bijective, and so µ(T ) = µG/L(G/L) by Lemma 3.19.

We next use the fundamental domain T to construct two different fundamen-

tals domains for G/φ(L), the comparison of which will prove the theorem.

The first of these is φ(T ). Measurability follows since φ is a homeomorphism

and hence bi-measurable. Bijectivity of πφ(L)|φ(T ) follows from bijectivity of the

three maps πL|T , φ, and φ̃ (see Lemma 3.18), and the fact that πφ(L) ◦φ = φ̃◦πL.

For the second, choose a set of representatives L′ for each left coset L/φ(L),

of which there are countably many since L is countable. We impose the further

restriction that T` ∩ T`′ = ∅ whenever `, `′ are distinct members of L′, which is

possible due to the Lemma 3.17 and the fact that T is contained in a compact set.

I claim that T̃ =
⊔
`∈L′ T` is also a measurable fundamental domain for G/φ(L).

Measurability is clear as the countable union of measurable sets. For bijectivity,

we can use the fact φ(L) ⊂ L to decompose left L-cosets into left φ(L)-cosets,

finding

G =
⊔
t∈T

tL =
⊔
t∈T

⊔
`∈L′

t`φ(L) =
⊔
t̃∈T̃

t̃φ(L),

where the first equality holds as T is a measurable fundamental domain for G/L.

Hence T̃ is a measurable fundamental domain for G/φ(L).

Using right invariance of µ and the fact T̃ =
⊔
`∈L′ T` is a countable disjoint
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union, we find

µG/φ(L)(G/φ(L)) = µ(T )

= µ

(⊔
`∈L′

T`

)
=
∑
`∈L′

µ(T`)

=
∑
`∈L′

µ(T )

= |L′|µ(T )

= |L : φ(L)|µ(T ).

But using the other fundamental domain φ(T ), we find

µG/φ(L)(G/φ(L)) = µ(φ(T )) = |φ|µ(T ).

As µ(T ) = µG/L(G/L) ∈ (0,∞), this implies |L : φ(L)| = |φ|.

3.2.2 The Tiling and its Regularity

We now have enough knowledge to introduce a contractive IFS and prove prop-

erties of its attractor.

Definition 3.21. Fix a choice of representatives L′ ⊂ L for the finite set of left

cosets L/φ(L). The IFS FL′ is the finite set of functions f` : G → G for ` ∈ L′

with action

f`(g) = φ−1(g`).

Lemma 3.22. FL′ is a contractive IFS.

Proof. As φ is a strictly dilating automorphism with dilation parameter C > 1,

φ−1 is a strictly contractive automorphism with contraction parameter C−1 < 1.

Recalling that d is right G-invariant, we have for all g, h ∈ G, ` ∈ L′

d(f`(g), f`(h)) = d
(
φ−1(g`), φ−1(h`)

)
= d
(
φ−1(g)φ−1(`), φ−1(h)φ−1(`)

)
= d
(
φ−1(g), φ−1(h)

)
≤ C−1d(g, h),

so f` is a strict contraction.
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Thus FL′ has a unique compact attractor, which we denote KL′ . Due to the

ongoing nature of this research we make the following definition and assumptions,

which are almost surely provable and both hold in every case investigated.

Definition 3.23. A choice of representatives L′ ⊂ L for the finite set of left

cosets L/φ(L) is admissible if

• e ∈ L′

• There is some distinguished `0 ∈ L′ which is in the interior of φ(KL′)

(equivalently, φ−1(`0) is an interior point of KL′). We call such `0 the

centre of L′.

• KL′ is non-overlapping, and (hence) KL′ is just-touching.

Assumption 3.24 (Admissible choice exists). There exists an admissible choice

of representatives.

We also make a group-theoretic assumption.

Assumption 3.25 (Centre-shifted φ-nary expansion). Given an admissible choice

of representatives L′ with centre `0, any element in l ∈ L can be written as

Expandn(`1, . . . `n) := `nφ(`n−1)φ
2(`n−2) . . . φ

n−1(`1)φ
n−1(`−10

)
for some n ∈ N and `1, . . . `n ∈ L′. For each fixed n, Expandn : (L′)n → L is

injective.

Note injectivity does not depend on the choice of centre but surjectivity does.

In the case of FHaar, both {0, 1} and {−1, 0} are admissible choices of representa-

tives. The attractors are respectively [0, 1] and [−1, 0], which respectively contain

1/2,−1/2 as interior points, and so 1 and −1 are the only possible respective cen-

tres. The second assumption with L′ = {0, 1} is equivalent to the fact that every

natural number less than 2n has a unique binary expansion, and so the integers

in {−2n−1, . . . , 2n−1− 1} have a unique expansion as above with n bits, and such

sets cover Z.

We fix L′ to be admissible with a choice of centre `0 ∈ L′, and now investigate

the regularity of its attractor and tiling. From Assumption 3.24, we may use the

method of Barnsley and Vince sketched in the introduction to produce a tiling

from FL′ and KL′ . We make a very specific choice of dilating sequence, which

makes this a very regular tiling.
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Theorem 3.26. G is tiled by TL
′

0 , the set of right L-translates of KL′, that is

G =
⋃
l∈L

KL′l

and the union is non-overlapping.

Proof. The inverse of f`0 is g 7→ φ(g)`−10 . From the fact

KL′ =
⋃
`∈L′

φ−1
(
KL′`

)
,

we find

f−1`0

(
KL′

)
= φ

(
KL′

)
`−10

= φ

(⋃
`∈L′

φ−1
(
KL′`

))
`−10

=
⋃
`∈L′

KL′``−10 ,

and the union is just-touching. As e ∈ L′ by admissibility, we can dilate via

f−1e = φ. By an easy induction argument,

φn−1
(
f−1`0

(
KL′

))
=

⋃
`1,...`n∈L′

KL′Expandn(`1, . . . `n)

where the union is just-touching. By Assumption 3.25, we thus hit every element

of L.

Note that

φn−1
(
f−1`0
(
φ−1(`0)

))
= φn−1

(
`0`
−1
0

)
= e

for all n ≥ 1. As φ−1(`0) is an interior point of KL′ (due to admissibility),

there exists an open ball of positive radius centred at φ−1(`0) contained in KL′ .

Hence e is an interior point of φn−1
(
f`0
(
KL′

))
for all n ≥ 1, and due to the

fact φ is a strict dilation, each φn−1
(
f`0
(
KL′

))
contains an open ball centred at

e with positive radius which grows exponentially as n increases. Thus the sets{
φn−1

(
f`0
(
KL′

))}
n≥1 cover all of G. Using the above representation of such sets

as unions of right L-translates of KL′ , we conclude

G =
⋃
l∈L

KL′l

and the union is non-overlapping.
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Remark 11. The outcome of the above construction did not depend on a specific

choice of centre, only that one exists.

Lemma 3.27. The tiling G =
⋃
l∈LK

L′l is locally finite, i.e. for each tile there

are finitely many tiles which intersect it non-trivially.

Proof. Due to right L-invariance of the tiling, the result will follow for every tile if

we show it for a single tile. Note `0 is an interior point of KL′ (by admissibility),

KL′ is bounded, and φ−1 is a strict contraction. Thus there must exist some n ∈ N
such that φ−n

(
KL′

)
`0 is contained in a ball around `0 in the interior of KL′ . So

KL′φn(`0) is contained in a ball in the interior of φn
(
KL′

)
, and so can intersect no

more translates of KL′ than are contained in φn
(
KL′

)
, of which there are finitely

many (based on similar reasoning to in the proof of the previous theorem).

We next move to regularity, depending critically on Theorem 3.20.

Theorem 3.28. The boundary of KL′ has measure zero, µ
(
∂KL′

)
= 0.

Proof. Note that since KL′ is compact, L is countable, and G =
⋃
l∈LK

L′l as a

just-touching union, the boundary of KL′ is the countable union

∂KL′ =
⋃

l∈L\{e}

KL′ ∩KL′l.

Due to Lemma 3.27, only finitely many of the translates intersect KL′ , and so

we can choose some large n such that all relevant translates and KL′ lie within

f−n`0 K
L′ . We find

µ
(
f−n`0

(
KL′

))
= µ

(
φn
(
KL′

)
φn
(
`−10

)
φn−1

(
`−10

)
. . . φ

(
`−10

)
`−10

)
= µ

(
φn
(
KL′

))
= |φ|nµ

(
KL′

)
.
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While by right invariance and subadditivity of µ,

µ
(
f−n`0 K

L′
)

= µ

( ⋃
`1,...`n∈L′

KL′Expandn(`1, . . . `n)

)
≤

∑
`1,...`n∈L′

µ
(
KL′Expandn(`1, . . . `n)

)
=

∑
`1,...`n∈L′

µ
(
KL′

)
= |L′|nµ

(
KL′

)
= |L : φ(L)|nµ

(
KL′

)
.

By Assumption 3.25, specifically that Expandn : (L′)n → L is injective, equality

above can only occur if every pairwise intersection has measure 0. Theorem 3.20

tells us |φ| = |L : φ(L)|, and so we have equality by comparison to the earlier

computation. Thus every pairwise intersection KL′ ∩KL′l has measure zero. As

there are only countably (finitely) many such intersections and ∂KL′ is contained

within them, µ
(
∂KL′

)
= 0 as claimed.

From this we obtain the intuitively satisfying corollary:

Corollary 3.29. Up to a set of measure zero which is contained in ∂KL′, KL′

is a fundamental domain for G/L.

Remark 12. This is not the end of the story on regularity of KL′ . We expect

that KL′ is in fact a regular closed set (the closure of its interior) based on the

filtration properties mentioned at the start of the next section. We also expect

that our requirement that L′ be an admissible choice of representatives will result

in KL′ being connected (or possibly even path-connected in the case G is locally

path-connected). This will be explored in future, along with proving Assumptions

3.24 and 3.25.

3.3 The Haar Basis and properties

We can finally introduce our Haar Basis. Due to the nature of this section as one

long construction, we keep most of the proofs in-text divided up amongst a few

definitions.
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Definition 3.30. For n ∈ Z, let

TL
′

n =
{
φ−n

(
KL′l

)
; l ∈ L

}
=
{
φ−n

(
KL′

)
l′; l′ ∈ φ−n(L)

}
=
{
φ−n(K);K ∈ TL′0

}
It follows immediately from the fact φ is a homeomorphism and Theorem 3.26

that for each n ∈ Z, TL
′

n is a tiling of G. It follows from the fact

KL′ =
⋃
`∈L′

φ−1
(
KL′`

)

that every tile in TL
′

n is a finite union of tiles in TL
′

n+1. We can thus form a

well-defined filtration.

Definition 3.31. Define {FL′n }n∈Z to be the filtration with FL′n the σ-algebra

generated by TL
′

n .

That φ is a strict dilation and KL′ is bounded with non-empty interior implies

that the σ-algebra generated by
⋃
n∈ZFL

′
n is B(G).

Consider the martingale difference operators DL′
n = E

(
·|FL′n+1

)
− E

(
·|FL′n

)
.

Note that each tiling is locally finite (Lemma 3.27), that the measure of the

boundary of each tile is 0 (Theorem 3.28) and hence the measure of the inter-

section of any two tiles is 0, and the fact there are countably many tiles. Thus

we may apply Lemma 3.15, to deduce that the image of DL′
n on Lp can be char-

acterised as those Lp functions which are a.e. constant on tiles in TL
′

n+1, with

integral 0 over each tile in TL
′

n .

Consider the n = 0 case, then, up to a set of measure 0, a function f in the

image of DL′
0 on Lp must be of the form

f =
∑
l∈L

cl1
(
φ−1
(
KL′l

))
,

for some {cl} ∈ `p(L), where 1
(
φ−1
(
KL′l

))
denotes the indicator function of

φ−1
(
KL′l

)
. Due to the fractal nature of our tiling, every tile in TL

′
0 is of the form

KL′l′ =

(⋃
`∈L′

φ−1
(
KL′`

))
l′
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for some l′ ∈ L. Hence for the integral of f over each tile in TL
′

0 to be 0, we have

0 =

∫
KL′ l′

∑
l∈L

cl1
(
φ−1
(
KL′l

))
dµ

=

∫
(
⋃
`∈L′ φ

−1(KL′`))l′

∑
l∈L

cl1
(
φ−1
(
KL′l

))
dµ

=
∑
`∈L′

∫
φ−1(KL′`)l′

∑
l∈L

cl1
(
φ−1
(
KL′l

))
dµ

=
∑
`∈L′

(∑
l∈L

clµ
(
φ−1
(
KL′l

)
∩ φ−1

(
KL′`

)
l′
))

=
∑
`∈L′

c`φ(l′)µ
(
φ−1
(
KL′`

)
l′
)

= µ
(
φ−1
(
KL′

))∑
`∈L′

c`φ(l′)

where we have used the fact that the intersection of non-equal tiles has measure

0 and µ is right G-invariant. Since µ
(
KL′

)
6= 0, this shows f ∈ DL′

0 (Lp(G,B(G)))

if and only if

f =
∑
l∈L

cl1
(
φ−1
(
KL′l

))
,

for some {cl} ∈ `p(L) and for all l′ ∈ L,∑
`∈L′

c`φ(l′) = 0.

Let Ve be the set of such f which are supported on KL′ =
⋃
`∈L′ φ

−1(KL′`
)
, we

thus only have the condition ∑
`∈L′

c` = 0.

Note that the dimension of Ve is |L′| − 1 = |L : φ(L)| − 1 = |φ| − 1 as the

kernel of a non-trivial linear functional on a space of dimension |L′| (and the

chain of equalities courtesy of Theorem 3.20). As each tile φ−1
(
KL′`

)
has the

same measure

µ
(
φ−1
(
KL′`

))
= |φ|−1µ

(
KL′`

)
= |φ|−1µ

(
KL′

)
and their intersections have measure 0, the L2 inner product restricted to Ve is

|φ|− 1
2µ
(
KL′

) 1
2 times the standard dot product of the column vector of constants

{c`} seen as an element of C(|φ|−1).
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Definition 3.32. We call a choice of orthonormal basis {ψd0,e}
|φ|−1
d=1 for Ve a set of

mother wavelets for FL′ .

Definition 3.33. For n ∈ Z, l ∈ L, d = 1, . . . |φ| − 1, define ψdn,l : G→ C by

ψdn,l(g) = |φ|
n
2ψd0,e

(
φn
(
gl−1

))
.

Definition 3.34. We introduce the notation P d
n,l for the projection onto ψdn,l,

f(g) 7→ ψdn,l(g)

∫
G

ψdn,l(h)f(h)dµ(h).

Theorem 3.35. Fix a set of mother wavelets for FL′. For each n ∈ Z, {P d
n,l; l ∈

L, d = 1, . . . , |φ|−1} is an unconditional/orthonormal basis for DL′
n (Lp(G,B(G)))

for all p ∈ (1,∞)/p = 2. Furthermore, {P d
n,l;n ∈ Z, l ∈ L, d = 1, . . . , |φ| − 1} is

an unconditional/orthonormal basis for Lp(G,B(G)) for all p ∈ (1,∞)/p = 2.

Proof. We prove the first statement in the case n = 0, from which we will deduce

the rest. As we have seen, DL′
0 (Lp(G,B(G))) is the set of functions f for which

f =
∑
l∈L

cl1
(
KL′l

)
,

for some {cl} ∈ `p(L) and for all l′ ∈ L,∑
`∈L′

c`φ(l′) = 0.

It is clear from this characterisation that DL′
0 (Lp(G,B(G))) is the closure of the

direct sum of right φ(L)-translates of Ve. As the support of functions in Ve are

contained within φ
(
KL′

)
and the right φ(L)-translates of φ

(
KL′

)
tile G with

intersections of measure 0, the decomposition of DL′
0 (Lp(G,B(G))) into right

φ(L)-translates of Ve is unconditional/orthogonal. As Ve is finite dimensional

and we have chosen {ψd0,e}
|φ|−1
d=1 to be orthonormal, {ψd0,e}

|φ|−1
d=1 is an uncondi-

tional/orthonormal basis for Ve. Hence the set of projections corresponding to

right φ(L)-translates of {ψd0,e}
|φ|−1
d=1 are an unconditional/orthonormal basis for

DL′
0 (Lp(G,B(G))), and this is exactly the set {P d

0,l; l ∈ L, d = 1, . . . , |φ| − 1}.
We next extend to n 6= 0. Recall the characterisation of DL′

n (Lp(G;B(G)) as

those Lp functions which are a.e. constant on tiles in TL
′

n , with integral 0 over

each tile in TL
′

n−1. Combined with the fact that TL
′

n =
{
φ−n(K);K ∈ TL′0

}
, this

implies that f(g) 7→ |φ|n2 f(φn(g)) is a multiple of an isometry DL′
0 (Lp(G;B(G))→

DL′
n (Lp(G;B(G)) for all p. The choice of normalisation makes it unitary on
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for p = 2. Conjugating {P d
0,l; l ∈ L, d = 1, . . . , |φ| − 1} by the multiple of

an isometry/unitary produces a normalised unconditional/orthonormal basis for

DL′
n (Lp(G;B(G)). A quick calculation verifies that such maps are exactly {P d

n,l; l ∈
L, d = 1, . . . , |φ| − 1}. We have thus proven the first statement.

Finally we apply Theorem 3.14 and Lemma 3.10 to deduce the second state-

ment.

3.4 Examples and Concluding Remarks/Further

Ideas

3.4.1 Easy Example: R with a different dilating automor-

phism

We take G = R with its usual group structure and Euclidean metric, take as

lattice L = Z, but replace the dilating automorphism from the Haar IFS FHaar

with φ(x) = 3x. It can be quickly verified that the only possible admissible choices

of representatives are {0, 1, 2}, {−1, 0, 1} and {−2,−1, 0}, with corresponding

attractors [0, 1], [−1/2, 1/2] and [−1, 0]. For {0, 1, 2} and {−2,−1, 0} either of

the non-zero elements can be chosen as centre, while for {−1, 0, 1} any of the

three points satisfies the requirements to be a centre. Any combination of the

choices will then satisfy Assumption 3.25.

3.4.2 Easy Example: R2 and Rd

For one tiling, we take

• G = R2 with its usual LC group structure.

• L = Z2

• φ = 2I

• L′ = {(0, 0), (1, 0), (0, 1), (1, 1)}.

The tile obtained is the unit square KL′ = [0, 1] × [0, 1], and we note after the

fact that (1, 1) is a centre for L′ (in fact, the only possible centre). In this case

it is obvious that we get a tiling by KL′ which is very well-behaved, so we won’t

bother verifying Assumption 3.25.
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As an alternative, we can keep everything the same except swap to L′ =

{(0, 0), (0, 1), (1, 1), (1, 2)}. In this case KL′ is a quadrilateral with vertices given

by the elements of L′, and (1, 2) is a centre (again the only possible).

In fact, it can be quickly verified that if we choose any two `1, `2 ∈ L \ φ(L)

representatives for distinct cosets in L/φ(L) which are as close as possible to

e, then L′ = {e, `1, `2, `1 + `2} is an admissible choice of representatives, the

corresponding attractor is the quadrilateral with vertices L′, and `1 + `2 is the

unique centre.

This is readily generalised to Rd, in which case we pick for d cosets in L/φ(L)

a closest possible representative `1, . . . `d to e, and then take take

L′ =

{
d∑
i=1

ci`i; ci ∈ {0, 1}

}
.

The attractor will be the parallelepiped with vertices L′, and the unique centre

is
∑d

i=1 `i.

3.4.3 Non-Trivial Example: The simply-connected Heisen-

berg Group H3(R)

The following example is of a very special nature, in that the group G is a

homogeneous Lie group (hence simply-connected, graded, nilpotent). Such Lie

groups have by definition a particularly nice choice of dilating automorphisms φr

for every r ∈ (1,∞), and there always exists a right invariant metric d inducing

the topology on G such that φr scales distances, d(φr(g), φr(h)) = rd(g, h) (an

example of a Carnot-Carathéodory metric). Fractal tilings of a certain sub-class

of such groups has been investigated by Strichartz in [Str92], which includes the

following example.

We take H3(R) the simply-connected Heisenberg group, which is given by

H3(R) :=


1 a c

0 1 b

0 0 1

; a, b, c ∈ R

,
with matrix multiplication. It is easily verified that if we denote the matrix1 a c

0 1 b

0 0 1
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as M(a, b, c), then M(a, b, c)M(a′, b′, c′) = M(a+a′, b+b′, c+c′+ab′). From here,

we see that the identity is M(0, 0, 0), and M(a, b, c)−1 = M(−a,−b,−c+ab). The

group H3(R) is unimodular (in fact nilpotent), and in the coordinates used above

left/right Haar measure agrees with Lebesgue measure on (a, b, c) ∈ R3.

We use the right H3(R)-invariant distance which is given in the coordinates

above by

d((a, b, c), (a′, b′, c′)) =

((
(a− a′)2 + (b− b′)2

)2
+ (c′ − c+ b(a− a′))2

) 1
4

.

The verification that this is indeed right invariant and defines a distance function

is left to the reader (This distance is associated with the Korányi norm, see [FR16]

for details).

From here, we make the following choices:

• We take L = H3(Z) =


1 m p

0 1 n

0 0 1

;m,n, p ∈ Z

, which is discrete with

respect to the distance d and is a lattice as {M(a, b, c); a, b, c ∈ [0, 1]} is

compact and surjects onto the quotient H3(R)/L

• We take φ : H3(R) → H3(R) to be φ(M(a, b, c)) = M(2a, 2b, 4c), which

is easily checked to be an automorphism and a strict dilation, in fact

d((2a, 2b, 4c), (2a′, 2b′, 4c′)) = 2d((a, b, c), (a′, b′, c′)). Furthermore, φ(L) ⊂
L.

• We take L′ := {M(m,n, p);m,n ∈ {0, 1}, p ∈ {0, 1, 2, 3}} as a choice of rep-

resentatives for L/φ(L).

Some images of (approximations to) the resulting attractor KL′ are included

in Figure 3.1, from which one can see M(1, 1, 2) is the unique centre (all other

elements of L′ are on the boundary). Note that the tile has a partially rough

boundary, the presence of which we will discuss later on.

We now verify that Assumption 3.25 holds in this case with the specific choice

of centre M(1, 1, 2), which will imply that KL′ tiles G under right translation by

L.

Lemma 3.36. Assumption 3.25 holds for the choices above.

Proof. We use the notation `i = M(mi, ni, pi). First we claim
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Figure 3.1: The attractor of the IFS considered in Subsection 3.4.3, as a subset of

R3 in the coordinates (a, b, c) ∈ R3. Note the relevant translations are not those

of R3 and the relevant distance is not the Euclidean one. The rough face is in the

direction corresponding to coordinate c, and so one can see that the only possible

centre for L′ is M(1, 1, 2), all other points lying on the boundary. This is also the

only figure in this entire thesis.

Expandw(`1, . . . , `w)φw−1(`0) = M(Mw, Nw, Pw)

where

Mw =
w∑
k=1

2w−kmk, Nw =
w∑
k=1

2w−knk,

and

Pw =
w∑
k=1

4w−kpk +
w∑
k=2

4w−kmk

(
k−1∑
j=1

2k−jnj

)

Note all three formulae hold if w = 1 trivially. If we assume all three formulae

hold for some w ≥ 1, then we have

Expandw+1(`1, . . . , `w, `w+1)φ
w(`0) = `w+1φ

(
Expandw(`1, . . . , `w)φw−1(`0)

)
= M(mw+1, nw+1, pw+1)M(2Mw, 2Nw, 4Pw)

= M(mw+1 + 2Mw, nw+1 + 2Nw,

pw+1 + 4Pw + 2mw+1Nw)

By substitution, we find mw+1 + 2Mw = Mw+1, nw+1 + 2Nw = Nw+1, and pw+1 +

4Pw + 2mw+1Nw = Pw+1. Hence by induction the claim is true.
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From the formulae proven above, we can see ((m1, . . . ,mw), (n1, . . . , nw)) 7→
(Mw, Nw) is injective and has image all the pairs of natural numbers in

{0, . . . , 2w − 1}.

Due to non-negativity of everyNw′ for w′ ≤ w for any fixed choice of (m1, . . . ,mw),

(n1, . . . , nw), combined with the fact (p1, . . . , pw) 7→
∑w

k=1 4w−kpk bijects onto

{0, . . . 4w − 1}, we thus find Expandw(·, . . . , ·)φw−1(`0) bijects onto the set of all

triplets (Mw, Nw, Pw) of natural numbers with

Mw, Nw ∈ {0, . . . , 2w − 1} with expansions Mw =
w∑
k=1

2w−kmk, Nw =
w∑
k=1

2w−knk,

and

Pw ∈ {PMw,Nw , . . . , 4
w − 1 + PMw,Nw},

where

PMw,Nw :=
w∑
k=2

4w−kmk

(
k−1∑
j=1

2k−jnj

)
.

As right multiplication by φw−1(`0) is invertible, we thus find for each w ∈ N,

Expandw is injective. To check that the union over w of the images of Expandw
covers all of L, we right multiply the above image by

φw−1
(
`−10

)
= M

(
2w−1, 2w−1, 4w−1 ∗ 2

)−1
= M

(
−2w−1,−2w−1,−4w−1

)
to find that the image of Expandw(`1, . . . , ·) corresponds to the set of all triplets(
M̃, Ñ , P̃

)
with

M̃, Ñ ∈ {−2w−1, . . . , 2w−1 − 1}

and

P̃ ∈
{
−4w−1 + PM̃+2w−1,Ñ+2w−1 , . . . , 3 ∗ 4w−1 − 1 + PM̃+2w−1,Ñ+2w−1

}
.

As w varies these sets indeed cover Z3, so we have verified Assumption 3.25.

3.4.4 Removal of the Assumptions

As seen in all the examples considered, both Assumptions 3.24 and 3.25 hold. It

is highly expected that existence of an admissible choice of representatives always

holds, the proof of which we expect will involve examining the interplay between

the three quotient maps G → G/L, G → G/φ(L), G/φ(L) → G/L and the

homeomorphism φ̃ : G/L→ G/φ(L).
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As seen in the examples, we could hypothesise that an admissible choice of

representatives can be made by starting with some collection L′′ of representatives

closest to e of a few of the cosets in L/φ(L), and taking L′ to be a set generated by

products of elements of L′′. It seems from the examples that a possible choice of

centre may then be an element of L′ which is maximally factorisable with respect

to elements of L′′.

Injectivity of the expansion maps Expandn : (L′)n → L, which we have already

noted in Assumption 3.25 is independent of the choice of centre, is expected to

hold directly from some group theoretic argument, and is seen as being essentially

equivalent to existence of a well-behaved division algorithm. However, that the

images of Expandn cover L will critically rely on properties of the centre.

3.4.5 Study of Fourier Multipliers using Haar Bases

In studying Fourier multipliers on Rd (i.e. translation invariant operators), the

most natural decomposition to use from the point of view of spectral theory is the

Fourier decomposition, which corresponds to decomposing the Fourier transform

of a function into a sum of functions each supported on a collection of sets {Ti}
with measure zero intersection.

One issue with this approach in the Lp, p < 2 setting is that equal bandwidth

Fourier decomposition (eg taking the above {Ti} to be a tiling of Rd by translates

of a single cube) turns out to not be an unconditional one (see [HvNVW16]). From

Theorem 3.9, this excludes such a decomposition from being helpful for studying

boundedness of Fourier multipliers in such settings. By instead taking the sets

in {Ti} to be exponentially growing annuli Ti = {x ∈ R; |x| ∈ [2i−1, 2i]}, then un-

conditionality does hold for the corresponding decomposition (this is an example

of a Littlewood-Paley decomposition; see for example Chapter 5 of [HvNVW16]

for details). The issue now is that such a decomposition does not allow for much

freedom in Fourier multipliers (they must act as a constant multiple of the iden-

tity on increasingly large subspaces corresponding to the exponentially increasing

bandwidth decompositions).

Another issue with the Fourier basis (present even in the p = 2 setting) arises

in computer implementation: the Fourier transform of a function with compact

support never has compact support. Thus every part of a Fourier decomposition

with each element of {Ti} compact must have non-compact support. This has

obvious implications in computer implementation, making both the computer of

Fourier decompositions and the storage of said decomposition difficult.
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The Haar basis, on the other hand, is unconditional on Lp for all p ∈ (1,∞)

and consists only of compactly supported functions. The issue then, is that the

Haar basis is clearly not invariant under translations and so seems a priori ill-

suited to the study of Fourier multipliers.

Work by Petermichl in [Pet00], (see also work by Bourgain [Bou86] and

Nazarov-Treil-Volberg [NTV03], among others), uses an averaging procedure to

represent some certain “hard” Fourier multipliers (Hilbert transform) via the

use of the Haar basis, which initiated significant research into such methods.

In essence, even though the Haar basis isn’t itself translation invariant, each

subset with support of measure an integer multiple of 2−n is invariant with re-

spect to translations by 2−nZ. Hence the relevant group of translations is actually

R/2−nZ, which is compact. To single out the Hilbert transform among all Fourier

multipliers, a characterisation of the Hilbert transform in terms of its invariance

properties was used. Rather than just invariance under translation, the Hilbert

transform is also invariant under dilations. As was the case for translations, the

Haar basis is also invariant under a large subgroup of dilations, with only a com-

pact group of relevant dilations. By averaging over both the relevant compact

groups of dilation and translation, the Hilbert transform is recovered from a smart

starting choice of operator on the Haar basis.

The work of Hytönen in [Hyt08], [Hyt10], along with many others, builds upon

Petermichl’s method. Hytönen provides Lp boundedness of Calderón-Zygmund

operators and a proof of the A2 conjecture using a method of averaging over

translations of operators defined in terms of the Haar basis (with both multiplier

and shift components).

We expect that very similar methods can be used in our setting to study Lp

boundedness of Fourier multipliers on LC groups via the use of the Haar bases

developed in this chapter. For the case G = H3(R), Lp boundedness of Riesz

transforms associated with sub-Laplacians has been studied by others (see for

example [ST12] and the references therein). Riesz transforms in such settings

can be characterised in terms of invariance properties (Theorem 1.4 of [ST12]),

and so we expect to be able to use the methods developed in [Pet00] to express

such operators in terms of the Haar bases constructed in this chapter and study

their Lp boundedness via unconditionality of such bases. Notably, compactness of

G/L and self-similarity of our tilings under dilations provides room for a similar

averaging argument. Following this, we expect similar arguments to those in

[Hyt10] will provide boundedness of operators similar to those in the Calderón-

Zygmund class.
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One aspect we expect to play a role in this development is the non-trivial

roughness of the boundary of our tiling. It is expected that optimal boundedness

of Fourier multipliers can be related to roughness of the tile boundary, which

itself is present due to the underlying group being non-Abelian. This would be

an incredibly satisfying link from a mathematical point of view, combining fractal

geometry, functional analysis and group theory.

3.4.6 Comparison to Existing Works

Fractal tilings have been a popular topic of study for many decades now, and

they have found applications in many different areas of mathematics. Unlike our

tilings, there are earlier works which intersect the work presented here on a set

of strictly positive measure, which we now discuss. There has been significant

work in this area so we do not suppose to cover it all, but following the references

below leads to the general picture that a lot of work has been put towards studying

wavelets on homogeneous Lie groups.

The previously-mentioned work of Strichartz [Str92] investigates tilings of

simply-connected rationally-graded nilpotent Lie groups, a subclass of the class

of homogeneous Lie groups. Within this study it is shown very explicitly that

such groups have a lattice L and dilation φ satisfying the requirements we have

put forth (although Strichartz chooses a specific set of representatives rather than

working with any admissible choice), and it is shown that the resulting tile has

boundary of measure 0. For specific examples very similar to H3(R), it is shown

the boundary of tiles decomposes into parts which have strictly differing Hausdorff

dimension based on a homogeneous distance function (the dimension is explicitly

calculated and found to be integral), a quantitative version of our observation

that there is a rough part and smooth part to the tile in Figure 3.1. This is

explained in the simplest case as arising from the grading on the Lie algebra and

the fact that curves parallel or perpendicular to each graded component have

different Hausdorff dimensions. With the further restriction of a stratification

structure on the Lie groups considered, Strichartz also investigates asymptotic

heat flow associated with fractal measures arising from his tilings.

In the series of works [LP97], [Pen02], [LL06], [LLW09], Liu, Liu, Peng and

Wang (individually and together) use methods similar to those presented in this

chapter to construct Haar bases on H3(R), and show that such a construction

provides a unitary basis on L2. They develop the theory further towards smooth

wavelets via representation theory, remaining mostly in the L2 setting (with some
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study of Lp convergence of so-called cascade sequences which are related to mul-

tiresolution analysis). Building on this series, Li and Yang in [YL15] produce a

wavelet basis for the Heisenberg group, with some relationship to the lattice and

dilation considered in our example for H3(R), by essentially tensoring wavelet

bases on R, and characterise various function spaces in terms of such wavelets.

Fractals on Carnot groups (another certain subclass of simply-connected nilpo-

tent Lie groups similar to those studied in [Str92]) have been investigated by

Balogh, Berger, Monti and Tyson among others, for example in [BBMT10], with

research which seems to focus mostly on regularity/dimensional considerations.

There has been much other work in the area by the listed authors and others

such as Führ, Lemarié, Maggioni and Mayeli.

The work presented in this chapter thus differs in two major ways from the

existing literature. The first of these differences is that the general theory devel-

oped here only makes use of topological/metric space structure, as opposed to

the referenced papers which make heavy use of nilpotency to restrict attention

to polynomial functions on the relevant Lie algebra and to apply the Baker-

Campbell-Hausdorff formula, for example. Hence there is hope that the methods

developed in this chapter could be applied to homogeneous spaces related to a

more general class of LC groups, a hope currently under investigation by the au-

thor. The other main difference is that we have made use of martingale methods

(filtrations, conditional expectations, Burkholder’s theorem), which allows the

theory developed to automatically apply to Lp spaces for p ∈ (1,∞).

3.4.7 Further Ideas

Besides those already mentioned, we have the following further ideas which would

make interesting topics of further investigation:

1. As seen in the examples, KL′ was always piecewise linear for G Abelian,

while for G non-Abelian KL′ had distinctly rough boundary. In [Str92],

Strichartz has calculated the Hausdorff dimension of the boundary of fractal

tilings of groups closely related to H3(R) and explains that such roughness

should always be present in tilings of such groups. Is this true outside of the

cases Strichartz has studied, or outside of the setting of simply-connected

nilpotent Lie groups more generally?

2. That we have chosen to use admissible choices of representatives for L/φ(L)

seems to lead to tilings which are very regular from the point of view of both
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topology and measure theory. Can we prove or quantify a statement similar

to “An admissible choice of representatives leads to the “most regular” tiling

possible, and the regularity is independent of exactly which admissible choice

is made”. Similarly, if we fix a φ and let L vary while enforcing the use

of an admissible choice of representatives, how does the inherent regularity

depend on the choice of L? Such a choice seems to make no difference in

the examples examined in this chapter.

3. Can the methods developed in this chapter be used to construct Haar bases

on homogeneous spaces as mentioned in Remark 10, in which it seems the

initial assumptions can be weakened considerably?

4. As the Haar basis is the first step in the theory of Daubechies wavelet

bases [Dau92], can we similarly produce increasingly regular compactly sup-

ported wavelet bases which form a multiresolution analysis with respect to

translation by L and dilating automorphism φ, of which the bases con-

structed in this chapter are a first step? It is expected such a construction

would rely on the interplay between the representation theory of G and

Fourier analysis on the homogeneous spaces G/L, for which an answer to

the previous question would be pertinent.
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Chapter 4

Future Directions: Heisenberg

groups outside the Abelian

Setting

In Chapters 1 and 2 we have witnessed the strength of maintaining a tie to the

Heisenberg group when studying pseudodifferential operators. In the following

few sections we examine the Heisenberg group itself and its deep interaction with

Fourier analysis (in the general setting of LCA groups).

We finish this thesis by presenting some ideas and ongoing research about

how a construction of a Heisenberg group-like object in the non-Abelian setting

could be used to study such settings, work in constructing group-group dualities

in which Heisenberg groups could take form, and ideas about how to look at

the Langlands duality for algebraic reductive groups in such a way that could

conceivably produce a Heisenberg group.

Unless otherwise specified, the quoted results in this chapter may be found in

Folland’s Abstract Harmonic Analysis, [Fol95].

4.1 The Abelian Case

4.1.1 The Pontryagin dual and Heisenberg group of an

LCA group

Recall the definition of the Pontryagin dual group of a Hausdorff locally compact

Abelian (LCA) group G:

Definition 4.1. The Pontryagin dual group Ĝ of an LCA group G is the LCA

83
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group which consists of the continuous homomorphisms G→ S1 =: {z ∈ C; |z| =
1}, with group operation given by pointwise multiplication and topology given

by uniform convergence on compact sets.

That the Pontryagin dual is in fact LCA requires proof, which can be found

in [Fol95]. The Pontryagin dual acts very much like the dual of a reflexive Banach

space, in that the natural inclusion of G into
ˆ̂
G is an isomorphism.

Theorem 4.2 (Pontryagin Duality). G and
ˆ̂
G are canonically (homeomorphi-

cally) isomorphic via the evaluation map g 7→ (Ĝ 3 φ 7→ φ(g) ∈ S1).

There are many properties LCA groups can have which hold if and only if

their Pontryagin dual have a corresponding property. As
ˆ̂
G ∼= G, these pairs of

properties are reflexive. We note some of them below.

1. Finite/finite.

2. Compact/discrete.

3. Torsion-free and discrete/connected and compact.

4. Torsion/profinite.

5. Lie/compactly generated.

6. Second countable/Second countable.

7. Separable/metrizable.

From here we can construct a Heisenberg group, exactly as for the case G =

Rd. Note that we equip G with its Borel σ-algebra and a Haar measure (which is

automatically bi-invariant as we are only considering Abelian groups), but omit

both from the notation.

Definition 4.3. The Heisenberg group H(G) of an LCA group G is the subgroup

of U(L2(G)) generated by the translation action of G given by g ·f(h) = f(g−1h),

and the action of Ĝ given by point-wise multiplication φ · f(h) = φ(h)f(h).

In the specific case that G = Rd, we may identify R̂d with Rd by choosing

an inner product 〈·, ·〉, and associating to ξ ∈ Rd the homomorphism φξ ∈ R̂d,

φξ(x) = exp(i〈ξ, x〉). Making this identification, the Heisenberg group of Rd is

isomorphic to R2d × S1, with product

(x, ξ, ω)(x′, ξ′, ω′) =

(
x+ x′, ξ + ξ′, ωω′ exp

(
i

2
(〈x, ξ′〉 − 〈x′, ξ〉)

))
,
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and is a Lie group with the standard smooth structure of R2d × S1.

Upon obtaining a definition for the Heisenberg group of an LCA group, we

can construct pseudodifferential calculus on G exactly as for the Euclidean case:

we weight and integrate over the action of the Heisenberg group. From this point

of view, pseudodifferential calculus (and hence Fourier multipliers) have a clear

link to the Heisenberg group.

A much deeper link is now examined. The Mackey-Stone-von Neumann the-

orem (Theorem 2 of [Mac49]) describes all unitary irreducible representations of

such Heisenberg groups.

Theorem 4.4 (Mackey-Stone-von Neumann). Suppose the LCA group G is sep-

arable. Up to unitary equivalence, the strongly continuous irreducible unitary

representations of H(G) with centre acting non-trivially are determined by the

action of the centre. Furthermore, the defining representation of H(G) on L2(G)

is strongly continuous, unitary and irreducible.

More precisely, on any irreducible representation the centre must act by mul-

tiples of the identity (which follows from Schur’s theorem), and thus a repre-

sentation of H(G) produces a homomorphism Z(H(G)) → S1. Providing this

homomorphism is non-trivial, the above theorem states that the homomorphism

determines the isomorphism class of the whole representation. The special case

G = Rd is known as the Stone-von Neumann Theorem.

We can combine this rigidity of the representation theory to deduce the exis-

tence of the Fourier transform on such LCA groups and its properties. Note that

the proof of the Mackey-Stone-von Neumann theorem does not rely on existence

of the Fourier transform, so this does not result in a circular construction.

First note that due to Pontryagin duality, G ∼= ˆ̂
G, we can determine that

H(G) ∼= H
(
Ĝ
)

. Under this isomorphism, the defining representations of H(G)

on L2(G) and H
(
Ĝ
)
∼= H(G) on L2

(
Ĝ
)

are both irreducible and have the same

action of the centre. Hence

Corollary 4.5. There exists a unitary map F : L2(G) → L2
(
Ĝ
)

which inter-

twines the action of H(G), H
(
Ĝ
)
∼= H(G) on either space.

One can verify that the intertwining property above implies that the map F
swaps products and convolutions, and swaps translation and multiplication by

characters. Using these facts, one finds that F is exactly the Fourier transform

on G



86 CHAPTER 4. FUTURE DIRECTIONS

Proposition 4.6. The map F : L2(G) → L2
(
Ĝ
)

is the Fourier transform, and

is given by the explicit expression (for f in some suitable dense subspace)

F(f)(φ) = C

∫
G

f(g)φ(g)dµ(g),

where C is a normalisation constant.

Remark 13. Although it holds essentially by definition of the Pontryagin dual

group, we make very explicit the following basic fact about how the Fourier

transform can be used to explore the representation theory of G. As the Fourier

transform intertwines the representations of H(G) on L2(G) and L2
(
Ĝ
)

, the

decompositions of L2(G) and L2
(
Ĝ
)

into G ⊂ H(G) invariant subspaces must be

respected by the Fourier transform. Restricting the corresponding representations

to G ⊂ H(G), we find that the G-invariant subspaces on the L2
(
Ĝ
)

side are much

easier to classify than those in L2(G), since G acts by multiplication on L2
(
Ĝ
)

.

Remark 14 (Metaplectic Representation and the Harmonic Oscillator). In the

case G = Rd, the fact ˆ(Rd) ∼= Rd means that we can push the (Mackey-)Stone-von

Neumann theorem much further to obtain the metaplectic representation. Out

of this, we automatically obtain some of the special properties of the harmonic

oscillator H = −∆ + x2 on L2(Rd).

Let Sp(Rd) denote the symplectic group, automorphisms of H(Rd) which fix

the centre. There are many “non-diagonal” automorphisms in Sp(Rd) due to the

fact ˆ(Rd) ∼= Rd (i.e. automorphisms which don’t restrict to an automorphism of

G, Ĝ ⊂ H(G) separately). If we let π : H(Rd)→ U(L2(Rd)) denote the standard

representation, it follows by the (Mackey-)Stone-von Neumann Theorem that for

all Ψ ∈ Sp(Rd), there exists a U(Ψ) ∈ U(L2(Rd)) such that for all h ∈ H(Rd),

π(Ψ(h)) = U(Ψ)π(h)U(Ψ)−1.

The map Ψ 7→ U(Ψ) is only defined up to multiplication by unit complex numbers

(as these are exactly the unitary operators which commute with all π(h) by

irreducibility). The map Ψ 7→ U(Ψ) is hence a projective representation. It turns

out that this projective representation can be lifted to an honest representation

of the double cover of Sp(Rd), which we denote Mp(Rd), the metaplectic group.

This representation of Mp(R) on L2(R) is known as the metaplectic, Segal-Shale-

Weil, or oscillator, representation.

Consider Ψ ∈ Sp(Rd) with Ψ(k, η, ω) = (η,−k, ω) (in the coordinates intro-

duced earlier). This automorphism corresponds to the ever-present automorphism
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H(G) ∼= H
(
Ĝ
)

and U(Ψ) is the usual Fourier transform on L2(Rd). Note that

Ψ is an involution but it is a well known fact that the Fourier transform on Rd is

of order 4: this discrepancy is evidence of the fact we are forced to take a double

cover.

Restricting to d = 1, Sp(R) contains SO(2) as a maximal compact subgroup,

acting as rotation on the (k, η) part of (k, η, ω) ∈ H(R). Restricting the metaplec-

tic representation to the lift of this compact subgroup, we find that the generator

of the action is exactly i times the Harmonic oscillator, H = −∆ + x2. Thus

H is self-adjoint as exp(iH) is unitary, H has eigenvalues differing by integers

as an integer multiple of 2πiH must exponentiate to the identity, and that these

eigenvalues are half-integer is related to the fact that we pass through the dou-

ble cover. Furthermore, the existence of the creation and annihilation operators

follows from finding a copy of SL(2,R) inside Sp(R).

More information about the metaplectic representation can be found in [Fol16].

4.2 The non-Abelian Case

4.2.1 Fourier decomposition and multipliers

We say a group is “nice” if it is required to satisfy any of a long list of requirements

which we are not going deep enough into the theory to describe, such as Type I,

liminal, post-liminal, etc.

For a compact LCA group G with normalised Haar measure, the Pontryagin

dual Ĝ is discrete and constitutes an orthonormal basis of L2(G), an analogue of

Fourier series on S1. For each φ ∈ Ĝ, span(φ) is an irreducible G-invariant sub-

space under the representation (g · f)(h) = f(g−1h), as φ(g−1h) = φ(g)−1φ(h) ∈
span(φ). Similarly, each φ ∈ Ĝ can be seen as an irreducible unitary representa-

tion of G on C, with g acting as multiplication by φ(g).

Each of the above observations generalises in a reasonable way to non-Abelian

compact LC groups, in the unitary dual and Peter-Weyl theorem.

Definition 4.7. LetG be a “nice” LC group. The (left/right) unitary dual Ĝ ofG

is the set of equivalence classes of (left/right) irreducible unitary representations

of G.

The unitary dual is certainly not a group, but it can be embedded into the

set of equivalence classes of all unitary representations of G which is an Abelian

monoid under tensor products. The unitary dual can be equipped with a natural
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topology, although this topology can be bad if G is not “nice” (for example, if G

isn’t compact or Abelian then Ĝ is typically not Hausdorff). If G is Abelian, the

unitary dual is a group under the operation of tensor product of representations,

and is naturally isomorphic to the Pontryagin dual.

Theorem 17 (Peter-Weyl). Let G be a compact LC group with normalised (left/

right) Haar measure µ. Then every (left/right) irreducible unitary representa-

tion of G is finite dimensional, and there are countably many such equivalence

classes of representations. The set of matrix elements ρi,j of each equivalence

class of (left/right) irreducible unitary representations ρ of G scaled by
√

dim(ρ)

forms an orthonormal basis of L2(G, µ). The subspace of L2(G) spanned by

each column/row of the matrix elements of irreducible unitary representation ρ is

(left/right) G-invariant and irreducible, and the action of G on such a subspace

is equivalent to ρ/ρ∗. I.e.

L2(G) ∼=
⊕
[ρ]∈Ĝ

Vρ∗ ⊗ Vρ ∼=
⊕
[ρ]∈Ĝ

HS(Vρ) ∼=
⊕
[ρ]∈Ĝ

V dim(Vρ)
ρ

Where the direct sum is over equivalence classes of irreducible unitary representa-

tions ρ : G→ U(Vρ), and HS(Vρ) denotes the space of Hilbert-Schmidt operators

on Vρ equipped with the Hilbert-Schmidt norm. Specifically, the decomposition

L2(G) ∼=
⊕
[ρ]∈Ĝ

HS(Vρ)

corresponds to the jointly left/right irreducible G-invariant subspaces of L2(G).

There are extensions of the Peter-Weyl theorem to classes of non-compact LC

groups, analogous to the Fourier transform on R, except that irreducible unitary

representations may be infinite dimensional, and the direct sum is replaced by

a direct integral of Hilbert spaces (this also requires the unitary dual to have a

measurable structure, which can be pathological if G is not sufficiently “nice”).

The closest analogue is that for unimodular “nice” LC groups, but unimodularity

can be removed at the price of requiring some kind of extra symmetrisation in

the above formula.

Under the decomposition granted by the Peter-Weyl theorem, Fourier multi-

pliers are defined as below

Definition 4.8. Let G be a compact LC group, Ĝ its unitary dual. A (left/right)

Fourier multiplier on G is an operator T ∈ B(L2(G)) such that T respects the
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decomposition L2(G) ∼=
⊕

[ρ]∈ĜHS(Vρ) and there exists an assignment Ĝ 3 [ρ] 7→
σT (ρ) ∈ B(Vρ) such that under the given decomposition T acts as (left/right)

multiplication by σT (ρ) on HS(Vρ). The assignment σT is called the (left/right)

symbol of the Fourier multiplier.

The left and right Fourier multipliers can be combined into two-sided Fourier

multipliers, but these are not so easy to define in terms of a symbol (the näıve

approach of defining two-sided Fourier multipliers to have both a left and right

symbol does not quite work because the collection of such operators is not closed

under addition). The two-sided Fourier multipliers are however closer to what is

found in the Abelian case, in that they can be characterised as elements of the

bicommutant of the joint left/right regular representations of G, analogous to

the statement that Fourier multipliers on Rd are exactly the translation invariant

operators.

4.2.2 Current pseudodifferential calculi on LC groups

Some current pseudodifferential calculi on suitably nice LC groups mirror those

on manifolds, taking a phase space/Kohn-Nirenberg approach. Having found a

suitable dual to G in the unitary dual Ĝ, pseudodifferential operators are defined

to have symbols as operator-valued functions on G × Ĝ, analogous to the view

that pseudodifferential operators on Rd live in phase space, the (co)tangent bundle

T ∗Rd. Such theories have been developed by Fischer, Mantoiu, Ruzhansky and

Turunen among others, see for example [RT10], [FR14].

A particularly fruitful approach of M. Mantoiu and M. Ruzhansky in [MR17]

emulates the Weyl system approach, defining a Weyl system G × Ĝ 3 (g, ρ) 7→
W (g, ρ) ∈ U(L2(G, Vρ)) which satisfies relations analogous to the reduced Heisen-

berg group {(k, η, 1)} ⊂ H
(
Rd
)

(when extended to an assignment from G times

the Abelian monoid generated by Ĝ contained in the Abelian monoid of all equiv-

alence classes of unitary representations of G under tensor product, so that a sense

of composition can be defined). Pseudodifferential operators are then defined as

operators associated to sesquilinear forms built out of (operator-weighted) sums

of the Weyl system.

However, all of these approaches remain asymmetric outside of the Abelian

setting, due to the fact that Ĝ is not a group. As we have seen that maintaining

links to the Heisenberg group provides a strong algebraic setting with which to do

pseudodifferential calculus, we aim instead to start from a Heisenberg-like group.
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4.3 Duality and Heisenberg groups of LC groups

Motivated by the fact that the Heisenberg group H(G) of an LCA group G

produces both a symmetric pseudodifferential operator theory and through the

rigidity of its representation theory implies the existence of the Fourier transform,

we would like to develop a theory of Heisenberg-like groups for non-Abelian LC

groups. The first step to do so is the development of a group-to-group duality

theory for non-Abelian LC groups, which should be (typically) reflexive. Upon

defining a reasonable dual group G∗ to G, we would next need a reasonable space

HG on which both act with non-trivial interaction (e.g. there is obviously a joint

action on L2(G × G∗), but this does not produce any interaction between the

group and its dual). Ideally we can take HG = L2(G), but we expect this may

not be possible outside the Abelian setting. The Heisenberg group H(G) would

then be defined to be the group generated by the actions of G and G∗ on HG.

Providing there is some analogue of the Mackey-Stone-von Neumann theorem

for such Heisenberg-like groups and something similar to H(G) ∼= H(G∗) holds,

we would then be granted a Fourier transform intertwining the representations

of H(G) on HG and H(G) ∼= H(G∗) on HG∗ , with similar implications to the

representation theory of G,G∗ as in the discussion in Remark 13.

4.3.1 One approach to duality of LC groups and why it

fails

The following work was done towards defining a duality theory for LC groups,

although it was realised that this could not provide a satisfying Heisenberg group

(the method detailed below will either be non-reflexive or only result in H(G) ∼=
H
(
Ĝ
)

if G is LCA). However, we will explain later on that this was in fact based

on somewhat similar ideas to Langlands duality for reductive algebraic groups

(via the Geometric Satake equivalence).

For G non-Abelian, there may exist no non-trivial continuous homomorphisms

to S1. To avoid this issue, we reinterpret the Pontryagin dual of an LCA group

as symmetries rather than homomorphisms.

Theorem 18. For G an LCA group, the action of Ĝ on any Lp(G) space, p ∈
[1,∞] by pointwise multiplication is faithful, preserves every Lp(G) norm, and

acts as automorphisms of the convolution algebra. I.e. for φ ∈ Ĝ, f, g ∈ L1(G),

φ · (f ∗ g) = (φ · f) ∗ (φ · g).
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Hence we can see the Pontryagin dual as a subgroup of( ⋂
1≤p≤∞

Isom(Lp(G))

)
∩ Aut

(
L1(G), ∗

)
,

where Isom(X) denotes the group of isometries of Banach space X. In the case

G = R we can already see that this inclusion is proper, as U : Lp(R) → Lp(R),

(Uf)(x) = f(−x) does not belong to Ĝ but does belong to the other.

For algebraic convenience, we note that any operator in( ⋂
1≤p≤∞

Isom(Lp(G))

)
∩ Aut

(
L1(G), ∗

)
has a unique extension to an automorphism of vN(G), the von Neumann algebra

generated by L1(G) acting via convolution on L2(G). The algebra vN(G) has

benefits over the Banach algebra (L1(G), ∗), in that G naturally embeds into

vN(G) via the (left/right) regular representation, and so we will work with vN(G)

rather than (L1(G), ∗).
Every component of the above theorem has a clear analogue if G is non-

Abelian, the only necessary change being that we need to choose to use either

the left or right Haar measure and convolution. The above theorem gives a

starting point to finding a possible dual for non-Abelian LC groups which is itself

a group, and hence a path to a Heisenberg group in such settings.

We find a simpler expression for the group
(⋂

1≤p≤∞ Isom(Lp(G))
)
∩Aut(vN(G))

within which we wish to find a suitable dual group G∗. Noting that G ↪→ vN(G),

any Ψ ∈ Aut(vN(G)) will map G into the group of invertible elements of vN(G).

It is true that G is a subgroup of the group of units of vN(G), and in fact any

non-zero multiple of any element of G is a unit, but it turns out to be very difficult

problem to determine if this is the entire group of units.

A very similar question, determining the group of units in the group algebra

of a torsion-free group, is open and progress is considered very difficult. The unit

conjecture of Kaplansky [Kap70] conjectures that the units of the group algebra

are exactly the units of the ground field times the elements of the group.

However, that we consider the intersection
(⋂

1≤p≤∞ Isom(Lp(G))
)
∩Aut(vN(G))

rather than Aut(vN(G)) allows us to avoid requiring a proof of Kaplansky’s unit

conjecture. Lamperti’s Corollary 3.1 of [Lam58] states the following:

Corollary 4.9. Suppose that U is a linear transformation of functions measurable

on measure space (X,F, µ) which preserve Lp norms for two different values of
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p ∈ [1,∞]. Then there exists a measure preserving set isomorphism M : F → F

and function h : X → C with |h(x)| = 1 a.e. on M(X), such that

Uf(x) = h(x)Mf(x).

It follows that U preserves all Lp norms.

Where a measure-preserving set isomorphism is a map M : F → F , defined

up to sets of µ measure zero such that for all A,A1, . . . ∈ F

1. M(X\A) = M(X)\M(A)

2. M(
⋃∞
n=1An) =

⋃∞
n=1M(An)

3. µ(M(A)) = µ(A),

and Mf is defined by extension from MχA = χM(A) for characteristic functions

χA, A ∈ F .

It is easy to verify from this corollary that if X = G, F is the Borel σ-algebra

and µ is left or right Haar measure, then the only such maps which also extend

to automorphisms of vN(G) (i.e. algebraic automorphisms which are continuous

in the topology on vN(G)) have M (induced by) a continuous automorphism of

G, and h : G→ S1 a homomorphism.

Hence we have the following theorem

Theorem 4.10.( ⋂
1≤p≤∞

Isom(Lp(G))

)
∩Aut(vN(G)) ∼= Autmp(G)nHom(G,S1) ∼= Autmp

S1
(G×S1),

where Autmp(G) denotes the set of (left/right) Haar measure preserving contin-

uous automorphisms of G, the semidirect product is the one implied by the above

paragraph, and Autmp
S1(G × S1) denotes continuous (left/right) Haar measure

preserving automorphisms of G× S1 which act trivially on {eG} × S1.

Thus, in the same way that the Pontryagin dual of an LCA group is typically

seen as a set of certain homomorphisms from G to S1 (equivalently, automor-

phisms of G × S1 of the form (g, ω) 7→ (g, h(g)ω)), we can see our hypothetical

G∗ as a subgroup of Autmp
S1(G×S1). The extra freedom of permitting automor-

phisms of G allows us to avoid the problem of not having enough homomorphisms

G→ S1.
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We can now see that either reflexivity or H(G) ∼= H(G∗) must fail in general

if we define the dual group as in this section, and define the Heisenberg group

as the group of operators generated by the left/right regular representation of

G and the action of G∗ on L2(G). If we suppose G is non-Abelian, then for

reflexivity to be possible we would need G∗ to be non-Abelian. Hence under the

above identification, G∗ must not be contained within Hom(G,S1) ⊂ Autmp(G)n
Hom(G,S1), i.e. there exists some (φ, h) ∈ G∗ under the above identification with

φ non-trivial. The action of (φ, h) ∈ G∗ on L2(G) is given by

(φ, h) · f(g) = h(g)f(φ(g)).

Comparing to left translation, we find

Lk · ((φ, h) · f(g)) = Lk · h(g)f(φ(g)) = h(k)−1h(g)f
(
φ(k)−1φ(g)

)
while

(φ, h) · (Lk · f(g)) = (φ, h) · f
(
k−1g

)
= h(g)f

(
k−1φ(g)

)
.

These two expressions differ by a global multiplication by h(k)−1 and a left trans-

lation by φ(k)−1k, so the commutator [Lk, (φ, h)] lies within G × S1 (seen as

operators on L2(G) via left translation and multiplication by a phase). Thus

G× S1 ⊂ H(G) is normal and since there is some (φ, h) ∈ G∗ with φ non-trivial

(and thus some k ∈ G with φ(k)−1k 6= e), G∗× S1 ⊂ H(G) is not normal. Hence

it is impossible for H(G) to be isomorphic to H(G∗) in any canonical sense, as

normality is preserved under isomorphisms.

For this reason, we have stopped investigating such a setup and instead turn

to a well-developed form of group-to-group duality.

4.3.2 Langlands Duality and the geometric Satake equiv-

alence

The Langlands program represents an enormous area of current research, which

in very short terms includes the aim of providing an algebraic parametrisation of

finite dimensional representations over certain fields of algebraic reductive groups.

This is analogous to how for an LCA group G, the points of the Pontryagin

dual Ĝ parametrise the irreducible unitary representations, albeit much more

complicated.

One of the first components of the Langlands program is the Langlands dual

group LG. An algebraic reductive group can be characterised by combinatorial
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data known as a root datum in a bijective fashion, and the class of possible root

datum has a clear reflexive duality operation on it. Roughly, the Langlands dual

group LG of G is defined to be the group which has root datum dual to that of G.

Langlands duality is inherently reflexive. Part of the Langlands program aims to

relate the (algebraic) geometry of LG to the representation theory of G.

This combinatorial construction for LG does not provide a clear space HG

on which G and LG act. However, work of Mirkovic and Vilonen in [MV04]

has produced a geometric and non-combinatorial construction of the Langlands

dual group known as the geometric Satake equivalence, out of which I hope to

be able to find a reasonable choice for HG. This construction proceeds by de-

veloping a certain monoidal category
(
PG(O)(GrG, k), ∗

)
out of geometric objects

related to G and noting that the constructed monoidal category satisfies enough

requirements to be equivalent to the category (Repk(H),⊗) of finite dimensional

representations over field k of some other algebraic reductive group H (i.e. an

algebraic version of Tannakian reconstruction can be applied a la Deligne-Milne

and Rivano [DM82]). A lot of work is then put in to show that this other group

H is in fact the Langlands dual group LG.

Without going into too many details, the objects in the monoidal category(
PG(O)(GrG, k), ∗

)
are examples of perverse sheaves, some of which behave very

similarly to vector-valued Dirac measures or surface measures which are “locally

constant” in some sense. The monoidal product ∗ is in fact a convolution on a

space related to G. From this point of view, such a geometric equivalence makes

sense from the point of view of LCA groups, as per Remark 13 and Theorem 18.

The complication in using the geometric Satake equivalence to instantly pro-

duce a Heisenberg group out of a group and its Langlands dual is that the objects

of the category PG(O)(GrG, k) are not exactly functions (or more accurately, per-

verse sheaves) on G itself, but on the related space GrG. It is unclear to me, due to

my lack of experience in this subject, if we can make G act on this other space by

something analogous to left/right translations. I am currently investigating the

possibility of swapping the category PG(O)(GrG, k) with another category which

has objects which “live on” G instead, albeit with more complicated behaviour

(no longer “locally constant”).

Another hope I have from working on this is a development of a Langlands-

style duality for a class of LC groups, where we would instead work with unitary

complex representations rather than finite dimensional representations over cer-

tain fields. The idea here is that the geometric Satake equivalence may have

an analytic/measure-theoretic counterpart as per the previous paragraph, and if
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such an analytic variant exists we may be able to extend it to reasonably well-

behaved LC groups. This would require a version of Tannaka-Krein duality and

reconstruction for non-compact LC groups/ a priori infinite dimensional unitary

representations, of which I have not been able to locate in the literature. One

of the particularly nice things about such a possibility is that the geometric Sa-

take equivalence tells you something about LG from knowledge of G, rather than

the other way around. This is a not particularly interesting observation in the

world of reductive algebraic groups, as Langlands duality is inherently reflexive.

However, even if an extension of Langlands duality to LC groups were to not be

reflexive in general, there would still be benefits to having a pre-dual, as is the

case for Banach spaces and von Neumann algebras.
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