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Abstract

Microbial life is the most widespread and the most abundant life form on earth.
Microbes exist in complex and diverse communities in environments from the deep
ocean trenches to Himalayan snowfields. Microbial life is essential for other forms of
life as well. Scientific studies of microbial activity include diverse communities such
as plant root microbiome, insect gut microbiome, and human skin microbiome. In
the human body alone, the number of microbial life forms surpasses human body
cells. Microbial communities are known to affect and shape the host ecosystem with
their influence. Hence, it is essential to understand microbial community dynamics.
With the advent of 16S rRNA sequencing, we have access to a plethora of data on the
microbiome, warrantying a shift from in vitro analysis to in silico analysis. This thesis
focuses on challenges in analysing microbial community dynamics through complex,
heterogeneous, and temporal data.

Firstly, we look at the mathematical modelling of microbial community dynamics
and the problem of inferring microbial interaction networks by analysing longitudi-
nal sequencing data. We look at this problem to minimise the assumptions involved
and improve the accuracy of the inferred interaction networks. Secondly, we explore
the temporally dynamic nature of microbial interaction networks. We look at the fal-
lacies of static microbial interaction networks and approaches suitable for modelling
temporally dynamic microbial interaction networks. Thirdly, we study multiple tem-
poral microbial datasets from similar environments to understand macro and micro
patterns apparent in these communities. We explore the individuality and confor-
mity of microbial communities through visualisation techniques. Finally, we explore
the possibility and identify challenges in representing heterogeneous microbial tem-
poral activity in unique signatures.

In summary, we have explored various aspects of complex, heterogeneous, and
time-series data through microbial temporal abundance datasets and have enhanced
the knowledge about these complex and diverse communities through a pattern
recognition approach.
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Chapter 1

Introduction

“I’m not talking about people [...] I’m
talking about bacteria, the real rulers of
the Earth.”

—Sean Williams,
The New Venusians

In this Chapter, I introduce the motivation behind my research in using pattern
recognition techniques for analysing complex microbial data and provide an outline
of the thesis. An introduction to the field is given in Section 1.1. The manuscripts
which were prepared during my PhD candidature are listed in Section 1.3 and an
outline of the remaining chapters are given in Section 1.2. Lastly, Section 1.4 sum-
marises the contributions of the thesis.

1.1 Background

Given the interdisciplinary nature of this research, I provide a background to the
microbiology aspect and data analysis aspect separately. In Section 1.1.1, we will
discover three questions we would like to ask about the microbiome, and how have
they been addressed so far, and the benefits of these questions being addressed. Next,
in Section 1.1.2, we will explore the nature of microbial data available to us and the
main challenges we face in analysing it.

1.1.1 Understanding the Microbiome

Microbial life exists all around us. They live in water, air and earth. They live in
harsh environments, just as they do in lush environments. They live in vast deserts,
and they live in the guts of tiny insects. In fact, in the human body, the number
of microbial organisms exceeds the number of individual cells of the human. Not
only do they live in the human body, but they are known to affect the hosts in many
ways [DeSalle and Perkins, 2015]. Because of these far-reaching effects of microbial
communities, it is essential that we study their behaviour. Then, the first question to
arise is, what “should” we study about microbial life. Boon et al. [2013] provide an
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exciting direction for this. They separate this quest for knowledge into three different
questions.

• Who is there?

• What are they doing?

• How will they respond [to external stimuli]?

They further suggest shifting the focus of exploration from the first two questions
into the third. However, gaps still exist in our understanding of the second question,
“What are they doing?”. In this thesis, I focus on exploring these gaps and attempt
to enhance the scientific understanding in answering the question of “what they
[microbial organisms] are doing [in their communities]”.

1.1.1.1 Who is there?

The first question proposed by Boon et al. [2013] is arguably the most important one.
This straightforward question inquires about the composition of a microbial commu-
nity. The seemingly simple task of visually observing the microbial community and
identifying its constituents is not practical, as it is impossible to discern this visually.
Due to the inability to visually observe, we rely on data-driven methods to answer
the question of “who is there [in those communities]”. Fortunately, DNA sequencing
methods have been greatly improved in the recent past [Reis-Filho, 2009]. 16S rRNA
sequencing is commonly used for this task. However, with microbial life, we face
an additional challenge—microbial life evolves faster than macro life [Pepper, 2014].
Hence, taxonomic differentiation is unclear. To address this challenge, the commonly
accepted method is to consider Operational Taxonomic Units (OTUs).

Simply put, OTUs are clusters of similar sequence variants identified through
processing 16S rRNA data. Usually, the sequences are clustered at a 97% identity
threshold. The pipeline for obtaining OTU data from 16S rRNA data is as follows.
Firstly, sequencing data–DNA contig data–are preprocessed to ensure quality. This
step usually involves combining forward and reverse reads into contigs and clean-
ing data to remove ambiguous reads and reads that deviate significantly from the
expected read length (250 base pairs). Secondly, unique reads are identified, aligned,
and re-cleaned. Thirdly, chimaeras (any combined sequences or sequences with
anomalies) are removed. Lastly, these reads are clustered and matched with known
reads to the satisfaction of 97% identity [Hiltemann et al., 2019]. 16S rRNA sequenc-
ing methods, also referred to as Next Generation Sequencing (NGS), are preferred
over whole-genome sequencing as they are faster and less costly [Reis-Filho, 2009].

1.1.1.2 What are they doing?

We are simply not satisfied with only knowing the composition of a microbial com-
munity. We are also interested in the activity within these communities. To illus-
trate the point, let us take the example of a microbial community in a human gut.
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Just knowing the composition of the gut microbial community is illuminating, but
it is only a start. In a clinical context, the activity of these microbial communities
would also be of great interest. We noted earlier that microbial community activity
is not directly observable. The barriers to direct observation raise the complexity
of the second problem—“What are they doing”? Simply expressed—it is practically
impossible to discern the nature of microbial activity precisely. However, we can ap-
proximate, infer, and make educated guesses about what is happening within these
communities.

Microbial ‘activity’ is considered to be a temporal concept (Quevauviller [2004]).
Exploiting our knowledge from the answer to the first question, we can consider mi-
crobial activity to be reflected in the temporal change in the composition of microbial
communities. To approximate microbial community activity, microbial communities
are sampled at regular intervals. The tabulation of microbial community composition
against time is what I refer to as an abundance profile of a community. To illustrate
with the previous example, to see what ‘they [microbes] are doing’ in a human gut
microbial environment, we can sample faeces from a host body at regular intervals
and sequence it to get the microbial abundance profile. This microbial composition,
which varies with time, provides us with an indication of microbial activity. The
abundance profile itself is useful to see the compositional change in the microbiome.
However, we are interested in exploring further. Some questions we are interested
in asking are—How did these temporal changes come to be? What made one OTU’s
abundance increase while the abundance of another decreased? Are OTU behaviours
inter-connected to each other? Many similar questions have been raised in the liter-
ature. The entirety of this thesis is on exploring this second question of ‘What are
they doing?’ through microbial abundance profile data.

There are multiple approaches to process the data from abundance profiles to
infer microbial activity. One popular strategy is to infer quantified microbial interac-
tions by studying the abundance profiles Shaw et al. [2016]. A summary introduction
to this process is to consider the abundance profiles to reflect the actual interactions.
Any change in an OTU abundance is attributed to an interaction with another OTU
or the environment. Observing the parallels between macro and microbiological
communities, we apply ecological models in inferring these interactions. Analysing
the inferred interactions, we delve further into quantified interactions by exploring
the temporal changes in the interactions themselves. Having performed a primar-
ily quantitative analysis to answer the question of ‘What are they doing?’, we move
on to qualitative analysis of microbial community activity beyond numerical evalua-
tions by visualising the data obtained through microbial abundance profiles. In this
analysis of microbial activity, we consider the heterogeneity of microbial activity and
consider concepts of individuality and conformity in microbial behaviour. Finally, we
explore visual representations of microbial activity, visualising the answer to ‘What
they are doing?’.
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1.1.1.3 How will they respond [to external stimuli]?

Now that we know how they [microbes] interact and what they are doing in their
communities, we want to explore further about them. Answering the first two ques-
tions would, of course, make us understand better what is happening in the microbial
communities; our curiosity exceeds that. We can gain an even deeper understanding
if we figure out how the microbial life would respond to external stimuli — allowing
us to engage in measured interactions with the microbiome around us. To illustrate
the excitement of the ability to interact with the microbiome, we only need to look at
how the discovery of penicillin changed contemporary medicine enormously (Ligon
[2004]). We were able to change the composition of our body’s resident bacteria. We
now have in our arsenals not just antibiotics but also probiotics. What if we can elim-
inate harmful bacteria and support useful bacteria? What if we can come up with
individually tuned concoctions of pro/anti-biotics so that we can achieve the perfect
human gut microbiome? These are the motivations for us to explore a microbial
community’s response to external stimuli. How to do that is unfortunately out of the
scope of this thesis. However, it would be exciting follow-up work. Hence we will
briefly revisit this for a discussion at the end of the thesis.

1.1.2 Challenges Present in Microbial Data

In Sub Section 1.1.1 we talked about understanding the microbiome through data.
Specifically, we talked about the deluge of data related to the microbiome and how
we use data analysis methods to further our knowledge about microbial community
activity. This Sub Section will discuss what makes this analysis challenging due to
various aspects of the available data.

1.1.2.1 Data Complexity

We consider the data we receive in the format of microbial abundance profiles to be
complex data. ‘Complex’ is an umbrella term used to describe data that has several
– usually unfavourable – characteristics. The time-varying nature and heterogeneity,
which are discussed next, are also characteristics of complex data. Apart from this,
the large size of data, unavailability of specific data points (missing data), connec-
tivity within data points indicating an underlying structure, inclusion of significant
noise, irregular sampling when considering time-series data, high dimensionality,
and continuously growing nature are some other characteristics of complex data.
The above-mentioned characteristics can be observed in microbial abundance data
sets, necessitating the consideration of such complexity in the process of data analy-
sis.

1.1.2.2 Data Heterogeneity

Heterogeneity is the diverse nature of various aspects of data. In microbial data, we
observed heterogeneity in multiple aspects (González-Cabaleiro et al. [2017]). Firstly,
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microbial communities are composed of different microbial taxa, which creates a
degree of heterogeneity in their activities. Within these taxa, we categorise OTUs
according to their abundance. OTUs with high abundance (>1%), OTUs with low
abundance (<1% but >0.1%), rare OTUs (<0.1%) are usually considered separately
(Shaw et al. [2018]). Even within the same taxon, cellular heterogeneity may exist,
which will translate into behavioural heterogeneity. Since we are considering tem-
poral data, we are also open to observing behavioural changes with time. Temporal
heterogeneity may arise due to changing environmental factors or the fast evolution
of microbial communities, depending on the timelines we are considering. Chapters
3, 4, 5, and 6 all consider heterogeneity of the data in the analysis and discussions.

1.1.2.3 Analysing Time-Series Data

The temporal nature of the data brings its inherent challenges in addition to already
existing challenges of complexity and temporal heterogeneity. Biological data is usu-
ally prone to temporal noise (Tsimring [2014]). Causes for these can range from
irregular data collection, changing environmental conditions affecting populations
and equipment, as well as inherent uncertainties. Apart from this, modelling tem-
poral data with ecological models – which I do in the Chapters 3 and 4 – is prone
to accumulate errors with time. In my work, I attempt to alleviate some of these
adverse effects by utilising techniques suitable for time-series data.

1.2 Thesis Outline

An overview of the thesis outline is illustrated in Fig. 1.1. The following Sub Sections
detail each Chapter.

1.2.1 Chapter 1

This chapter provides a broad introduction to the overall thesis, including the moti-
vations, challenges and contributions of the thesis.

1.2.2 Chapter 2

Chapter 2 provides a detailed background to the problem of analysing microbial
community dynamics and contains a compilation of reviewed literature for each of
the research questions.

1.2.3 Chapter 3

In Chapter 3, I present IMPARO: Inferring Microbial interaction networks through
PARameter Optimisation, a novel method for inferring microbial interactions. This
Chapter also discusses the traditional assumptions involved with inferring microbial
interactions and how we can loosen the assumptions to improve the quality of the
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Chapter 3

Chapter 4 Chapter 5

Chapter 6

Figure 1.1: Illustrated thesis outline. Chapters pertaining to research questions are
represented by circles, while logical flow of ideas is represented with solid arrows.
Dashed arrows indicate lateral influence.

inferred Microbial Interaction Networks. We further discuss the ambiguity in Micro-
bial Interaction Networks inferred through model-based and statistical methods and
the possibility of multiple solutions. The findings presented in this Chapter resulted
in a journal publication (Vidanaarachchi et al. [2020]).

1.2.4 Chapter 4

In Chapter 4, I present an exploration of the temporal dynamics of microbial inter-
action networks, arguing that microbial interactions themselves are dynamic. We
discuss the importance of considering not only the composition but also the un-
derlying network of a microbial community to be temporally dynamic for an ac-
curate representation of the community dynamics. We discuss alternate modelling
approaches suitable for temporally dynamic microbial communities and show prob-
able evidence for heterogeneity in the said dynamics. The findings presented in
this Chapter resulted in a publication in IEEExplore indexed conference proceedings
(Vidanaarachchi et al. [2019]).

1.2.5 Chapter 5

In Chapter 5, we take a step back and look at the nature of the data available and
how to develop robust methods which will be capable of achieving qualitatively
and quantitatively superior results by collectively processing multiple datasets. This
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Chapter also introduces our novel visualisation pipeline, which provides insights
into microbial organisms’ individualist and conformist nature. I present results that
illustrate how some OTUs tend to be limited to a small number of Temporal Variation
of Abundance Profile) TVAP patterns amongst other particular trends. I also raise
the idea that sometimes the TVAP patterns may be connected to clinical factors. The
findings of this Chapter has been compiled into a manuscript aiming for a journal
publication.

1.2.6 Chapter 6

In Chapter 6, we explore the heterogeneous nature of microbial dynamics and visual
representations of these high-dimensional heterogeneous time-series data. I raise
exciting questions regarding unique representations of OTU dynamics and propose
interpretations to dimensionally reduced incremental OTU signatures. Initial find-
ings of this exploration has been compiled into a journal manuscript. However, the
visualisation techniques presented here warrant further interpretation and are ideally
tested with a varied collection of microbial datasets.

1.2.7 Chapter 7

Finally, Chapter 7 offers a summary of the thesis, my conclusions and identified
future work in this field of study.

1.2.8 Chapter Outlines

In Chapters 3, 4, 5 and 6, I adhere to a uniform structure as follows:

Background These sections contextualise the research question, present the pre-
vious work done pertaining to the question, and explain my moti-
vations and contributions.

Results These sections provide the results that I have obtained in each
study.

Discussion These sections provide an in-depth discussion of each study, in-
cluding identified future work.

Conclusion These sections briefly summarise each study and present their con-
clusions

Methods Please note that following the conventions of bioinformatics report-
ing, we provide the methods sections at the end of each chapter.
These sections contain a thorough explanation of the computa-
tional methods used in each study and the datasets and terminol-
ogy where required.
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1.3 Manuscripts

Some material in this thesis proposal is contained in the following manuscripts.

• Vidanaarachchi, R., Shaw, M., Tang, S.L., and Halgamuge, S.K., 2020. IMPARO:
Inferring Microbial Interactions through Parameter Optimisation. BMC Molec-
ular and Cell Biology. (Vidanaarachchi et al. [2020])

• Vidanaarachchi, R., Shaw, M., Halgamuge, S.K., 2019. Computational Inference
of Microbial Interactions and their Dynamics. 14th IEEE International Con-
ference on Industrial and Information Systems (ICIIS). (Vidanaarachchi et al.
[2019])

• Vidanaarachchi et al. 2021. CoPR: Collective Pattern Recognition—a Frame-
work for Microbial Community Activity Analysis. (Manuscript being finalised
for submission to a journal)

• Vidanaarachchi et al. 2021. Incremental Microbial OTU Signatures. (Manuscript
being finalised for submission to a journal)

My contribution is between 90%–95% for the four manuscripts listed above. I
conceptualised the research problems, implemented and tested codes, carried out
the experiments and wrote the initial manuscript. My PhD supervisors, who are the
co-authors of the manuscripts, advised me to develop and formalise the ideas, frame
the concept, and improve the presentation of the reports.

The following manuscript was prepared in collaboration during my PhD candi-
dature but did not form a part of this thesis.

• Faleel, A., Vidanaarachchi, R., Shaw, M., Halgamuge, S.K., 2021. From The In-
ternational Space Station To Tropical Rainforests And Polar Ice Caps: Microbial
Communities Foretell The Effects Of Climate Change. 10th IEEE International
Conference on Information and Automation for Sustainability (ICIAfS) (Pend-
ing Publication)

1.4 Contributions

My main contributions in this thesis are two-fold. Firstly, I apply data analysis meth-
ods and build pipelines for the analysis of longitudinal microbial abundance data.
Secondly, I present novel ideas to push the boundaries of modelling dynamic micro-
bial communities.

Pertaining to data analysis, firstly, I use a genetic algorithm (GA) to optimise the
answer to a question for which the ground truth is not known. I highlight the im-
portance of not discarding the non-optimal answers in the GA and show how they
can be potentially valid answers within a reasonable error margin given the noise-
addled nature of our data. Secondly, I critically evaluate the shortcomings of the
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Lotka–Volterra model for temporally dynamic biological processes and discuss pos-
sible alternatives. Thirdly, I introduce a pattern recognition pipeline for parallel sets
of heterogeneous data and engage unsupervised learning methods for information
extraction. Lastly, I explore methods of representing heterogeneous, high dimen-
sional time-series data in unique signatures.

My contributions pertaining to systems biology are as follows. Firstly, I describe
the current assumptions involved in inferring microbial interaction networks (MINs).
Then I explore the possible scenarios for relaxing the assumptions involved and
whether the relaxation of said assumptions can indeed improve the results quantita-
tively and qualitatively. I also reiterate the fundamental issue of assuming a unique,
verifiable solution to the problem of inferring microbial interactions. Secondly, I
question the use of first order differential equations to model microbial communi-
ties and suggest that they may be better modelled through second order differential
equations. Although Lotka-Volterra equations have been used for more than a cen-
tury to model ecological community interactions, in the scope of microbial commu-
nities, assuming the interaction parameters themselves stay static can result in loss
of essential information. Thirdly, through the results of the visualisation, I question
the strategy behind striving to find a unique pattern in OTU temporal variation pat-
terns. I contrast the unique pattern approach, where I obtain multiple signals in an
unsupervised approach. I also discuss the concepts of individuality and conformity
in the context of microbial community dynamics. Lastly, I explore the options for
obtaining a unique signal for OTU community dynamics.
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Chapter 2

Related Work

In this chapter, I present the existing body of literature under four main themes.
Throughout this thesis, I have drawn inspiration not only from the literature of mi-
crobiology and bioinformatics but also from the literature pertaining to other com-
plex systems. In Section 2.1, I introduce the literature pertaining to the inference
of static microbial interaction networks in a single environment. In Section 2.2, I
explore the studies on time-varying systems. Then, in Section 2.3 I discuss the lit-
erature and ideas related to collective pattern recognition. Lastly, in Section 2.4, I
present existing literature on characterising temporal processes in general and the
dynamic characterisations of the microbiome.

2.1 Microbial Interaction Networks and their Inference

In this section of our literature survey, we broadly cover the topics related to Chap-
ter 3. First, we will look at the microbial interaction network inference as a whole in
Section 2.1.1. Then we will look at methods that we can use in inferring microbial
networks through parametric models in Section 2.1.2. We think this approach is the
most suitable as most microbial interaction inference methods use some form of the
Lotka-Volterra (LV) equations to model the interaction networks.

2.1.1 Inference Approaches

Table 2.1 summarises previous work of ten microbial interaction inference algo-
rithms. More extensive details about each of these methods are presented in Sec-
tion 3.1.1. Most methods utilise a model-based approach rather than relying on
correlation based analysis. LIMITS [Fisher and Mehta, 2014] present proof for corre-
lation not being equal to the interaction between species. A majority of methods test
on both real-life and simulated data. As mentioned above, most methods also use
a variant of the LV equations to model the interaction network. Durán et al. [2021]
shine a new light on the problems discussed in this thesis in their network analy-
sis pipeline using machine learning technologies. They successfully challenge linear
techniques for multivariate analysis and reveal bacterial network reorganisations due
to external factors.

11
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Table 2.1: Review of existing algorithms for inferring microbial
interactions

Algorithm Publication Biological
Model

Statistical /
Optimisation
Approach

Verification Real Life
Data

Simulated
Data

Nature of
Output

Unnamed Barberán et al.
[2012]

Not
Applicable—
Statistical
Method

Checker-board
Score

Non-
Randomness

Soil micro-
biome

Not Available A Co-
occurrence
Network

SparCC Friedman and
Alm [2012]

Not
Applicable—
Statistical
Method

Approximating
Correlations

Root Mean
Squared Error

Human Mi-
crobiome
Project

By sampling
joint abun-
dances of real
life data

A Correlation
Network

LIMITS Fisher and
Mehta [2014]

Discrete-time
Lotka Volterra
(dLV)

Linear Regres-
sion

R2 Moving Pic-
tures of the
Human Mi-
crobiome

dLV simula-
tion

Interaction
matrix

RMN Tsai et al.
[2015]

OTU Triplets Tanh Func-
tions

Accuracy (Bi-
nary Classifi-
cation)

An infant gut
data set

Tanh simula-
tion

A Microbial
Regulatory
Network

SPIEC-EASI Kurtz et al.
[2015]

Not
Applicable—
Statistical
Method

Stability ap-
proach to reg-
ularisation
selection

Precision Re-
call Curves

American Gut
Project

Based on
American Gut
Project Data

Microbial As-
sociations

Boolean Dy-
namics Model

Steinway et al.
[2015]

Subsystem
Enrichment
Model

Perturbation
Analysis

In-vitro Valida-
tion

A data set of
Clostridium dif-
ficile infection
in the gut

Not Available Infers specific
interactions

continues on next page



§
2.

1
M

icrobialInteraction
N

etw
orks

and
their

Inference
13

Table 2.1: Review of existing algorithms for inferring microbial
interactions

Algorithm Publication Biological
Model

Statistical /
Optimisation
Approach

Verification Real Life
Data

Simulated
Data

Nature of
Output

MetaMIS Shaw et al.
[2016]

Lotka Volterra
(LV)

Partial Least
Square Re-
gression

Recreation of
the abundance
profile and
Bray-Curtis
dissimilarity

Moving Pic-
tures of the
Human Mi-
crobiome

Not Available Consensus
Network

Boolean
Abundance
Analysis

Claussen et al.
[2017]

Competitive
Synergistic
Links (CSL)

Entropy Shifts
on Abundance
vectors under
Boolean Oper-
ators (ESABO)

Jaccard Index A human gut
data set

CSL simula-
tion

Species Inter-
action Net-
work

SgLV-EKF Alshawaqfeh
et al. [2017]

Stochastic
Generalised
LV (SgLV)

Extended
Kalman Fil-
ter

Mean Squared
Error

A data set of
Clostridium dif-
ficile infected
murine gut

SgLV simula-
tion

Microbial In-
teraction Net-
work

Unnamed Gao et al.
[2018]

Generalised
LV

Forward Step-
wise Regres-
sion

Previously
known inter-
actions

A cheese mi-
crobial com-
munity

Not Available Combined
Interaction
Network

IMPARO Vidanaarachchi
et al. [2020]

Generalised
LV and Com-
munity Dy-
namics Model

Genetic Algo-
rithm

Recreation of
abundance
profile and
Bray Curtis
dissimilarity

Moving Pic-
tures of the
Human Mi-
crobiome

GLV and
Community
Dynamics
Model simula-
tion

Microbial In-
teraction Net-
work
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2.1.2 Parameter Optimisation

When modelling microbial interaction networks with Lotka–Volterra equations (The
LV equations are detailed in Chapter 4), we are faced with a large parameter opti-
misation problem, as the number of parameters in an LV model is quadratic to the
number of taxa represented in the model. Some methods use regression to estimate
the parameters, while others choose evolutionary algorithms. In this section, we will
summarise some of the available options.

One of the most straight forward approaches to optimise parameters is the use
of regression analysis. Linear Regression, Partial Component Regression (PCR), and
Partial Least Squares (PLS) are some methods that can be used. Apart from these,
Bayesian networks and various evolutionary algorithms have been used. As these
are well-established methods, we will not go into great detail about them in our
literature survey.

2.2 Behavioural Dynamics of Microbial Interaction Networks

In this section, which broadly covers the topics related to Chapter 4, we discuss
the literature related to behavioural dynamics of microbial activity. Firstly, we will
discuss the literature on time-varying systems in Section 2.2.1. Secondly, we will
summarise literature pertaining to the dynamics of microbial communities in Sec-
tion 2.2.2.

2.2.1 Time-Varying Systems

As there is a limited amount of studies exploring the microbial interactions’ tempo-
ral dynamics, we will first look at time-varying interactions and their inference as
recorded in other areas. Primarily we will consider literature from the area of gene
expression analysis, as there are similarities observable in gene expression analysis
and microbial interaction analysis.

Song et al. [2009b] present one of the early works in modelling time-varying pro-
cesses. They propose time-varying dynamic Bayesian networks (TV-DBN) to model
the structurally-varying directed dependency structures. Applying their method to
yeast cell cycle gene expression datasets, they also mention the suitability of their
method for data with sample scarcity. Data scarcity, again, is a common challenge
gene expression data analysis shares with longitudinal microbial data analysis.

Song et al. [2009a], the same authors from the above study present another
method—a kernel re-weighted logistic regression method—to reverse engineer dy-
namic interactions between genes based on their longitudinal expression values.
Again, this is a very similar problem to the analysis of dynamic microbial inter-
actions.

Kolar et al. [2012] present a very interesting study in estimating time-varying net-
works. They introduce two methods based on temporally smoothed l1-regularised
logistic regression approaches. They study gene expression data from Drosophila
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melanogaster and temporally re-wiring political networks by examining voting pat-
terns in the US Senate.

The three methods discussed above are all applied in gene expression network
analysis. The methods vary from dynamic Bayesian networks to logistical regres-
sion. We note that the results are analysed in the context of biology to determine
whether the inferred gene expression networks make sense—this validation issue is
also present in the OTU interaction inference problem. However, translation of this
into the area of microbial interaction networks has been lacking.

2.2.2 Temporal Dynamics of Microbial Interactions

There is limited work done on the temporal dynamics of microbial interactions. Most
work, as we discussed in Section 2.1 focus on the temporal dynamics of the microbial
composition. We will highlight a few key papers which we consider to be important.

In their review of microbial interactions Layeghifard et al. [2017] considers time-
varying microbial interactions as well. In their conclusion, they propound that the
use of network biology is still in its infancy. They propose that the complexity of con-
ceptualisation as well as implementing suitable models contribute to this. They sug-
gest reexamining the interaction inference processes—including the data collection—
to suit novel network modelling practices.

Faust et al. [2015] highlight the importance of implementing time-varying net-
works constructs to infer microbial interactions. They also suggest building static
networks, which infer the interactions in overlapping time-segments as a starting
point. They also point to results from an analysis of the human gut microbiome,
which shows that taxon associations, including their stability and strength, vary over
time.

Hosoda et al. [2021] introduce unsupervised learning-based microbial interaction
inference method using Bayesian estimation (Umibato) to improve the estimation of
time-varying microbial interactions. They use Gaussian process regression and a
continuous-time regression hidden Markov model. This method, so far, is the best
work available in the field of dynamic microbial interaction inference.

2.3 Concepts of Collective Pattern Recognition

In this section, which broadly covers the topics related to Chapter 5, we discuss the
literature related to collective pattern recognition. Firstly, we summarise the litera-
ture pertaining to the availability of datasets in Section 2.3.1. Secondly, we discuss
the literature about the concept of collective pattern recognition and computational
algorithms used in various approaches in Section 2.3.2. Thirdly, in Section 2.3.3, we
explore the literature on the concepts of individuality and conformity, as this encom-
passes the central philosophy behind Chapter 5. Lastly, we look at the literature to
discover the potential applications of our research in the field of precision medicine
in Section 2.3.3.2.
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2.3.1 Availability of Datasets

In any data analysis problem, it is essential that we explore the availability of data
and the nature of available data prior to the analysis. In solving the problems of
understanding microbial communities’ temporal behaviours, the analysis heavily
depends on the available data. Even with the advances in technology, some data
collection approaches are too costly or too time-consuming to be practical. Primarily
as we rely on time-series data, the quality of available data could vary.

2.3.1.1 Favourable Qualities of Time-Series Data

Time-series data collection, in other words, record keeping, has been done for mil-
lennia. Especially with the advent of naval trade, regular numeric data collection
has been a common practice [Wilkinson et al., 2011]. However, not all datasets are
collected equally. We will look at some aspects of time-series data that affect their
quality.

Numerousness For time series data analysis, it is of utmost importance that we
have a significant number of data points be available for the analysis. In fact, Hanke
and Wichern [2013] suggests at least 50 data points available for any time-series
data analysis task. This number may vary depending on the nature of the research
problem at hand, but the quantity of data is essentially important.

Sampling Frequency The next important quality of a good dataset is that the sam-
pling has been performed at a satisfactory period. It is hard to pinpoint an exact
number, as this varies vastly with the nature of the problem [Nason et al., 2017].
In the context of microbial abundance data, the nature of the dynamics we capture
depends on the sampling frequency. For example, if we only sample a gut micro-
biome daily, we will not be able to identify the diurnal effects. However, higher
sampling frequencies are practically impossible sometimes, and we have to rely on
interpolation methods [Castiglioni et al., 2003].

Consistency of Sampling Even when the data is numerous, a relative consistency
of sampling intervals is helpful. Unfortunately, with biological data achieving this
consistency is more complicated than with data from the fields such as physics or
economics. Studies such as Nason et al. [2017] suggest that inconsistent sampling
is more of a problem pertaining to classical time-series analysis and that a regular
sampling frequency is not essentially required for Bayesian and other model-based
methods. Nevertheless, we find that microbial abundance data sampling rates vary
heavily. We will illustrate some examples in the following sections.

2.3.1.2 Longitudinal Microbial Datasets

In this section, we explore some of the temporal microbial abundance datasets avail-
able and discuss the suitability according to the criteria we described above.
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Moving Pictures of the Human Microbiome Published in Caporaso et al. [2011],
Moving Pictures of the Human Microbiome is one of the largest human microbial
time-series datasets available. Their data comes from two individuals—a male and
a female. The microbial samples are collected from four body sites—faecal matter,
mouth, left and right palms. The data from the male subject were collected for 15
months, with an almost daily sampling rate. The data from the female were collected
for six months at the same rate. Considering this information, we can conclude that
this dataset is numerous and has a relatively consistent and high sampling frequency
making it an ideal dataset for analysis.

American Gut Project The American Project [McDonald et al., 2018] is an open
platform for citizen science, where individuals had sampled themselves and sent in
their microbial samples for analysis to the authors. The sample collection and dis-
patch were performed at regular temperatures. Their impressive collection has mi-
crobial sequencing data from over 15000 samples from more than 11000 participants
from all over the world. Their collection includes longitudinal data from individu-
als who have contributed multiple samples over different time intervals. Again this
is a fascinating dataset purely due to the vast amounts of data collected. As for
time-series studies, the sampling was not highly frequent not consistent.

Murine Gut Microbial Samples Marino et al. [2014] collected gut microbial sam-
ples from five germ-free adult female mice. At the beginning of the study, caecal
contents from an adult mouse were homogenised at inoculated into the female mice.
Then the mice’s faecal matter were obtained daily over 21 days. The collected sam-
ples were immediately frozen as well. This study is relatively short. However, the
data collection process minimised external influences and was fairly consistent.

An Infant’s Gut Microbiome In their study, Koenig et al. [2011] collected more
than 60 faecal samples from an infant—from birth up until the age of 2.5 years. Fur-
thermore, this infant’s dietary, social and clinical information was recorded to study
the impact of life events on the microbiome. The male infant, delivered via vagi-
nal delivery, was immunised and healthy other than an ear infection. The report
recorded that he was given antibiotics in that incident. Also of interest is the change
in diet from breast milk, formula milk, solid food, etc. This study is interesting as
it collects background information on potential events which could affect the mi-
crobiome. This study also illustrates the difficulty of adequately quantifying ‘pure’
microbial interactions from experiments conducted in situ.

Smear Cheese Microbiome In this interesting experiment by Mounier et al. [2008],
they analysed the microbial composition of the smear cheese ripening process. In-
oculating pasteurised milk with a frozen starter culture which consisted of nine
known microorganisms isolated from various cheese batches, this experiment also
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shows the advantages of a controlled in vitro environment in analysing the micro-
biome. The cheese was sampled daily for 21 days in duplicate. In a later stage of
the experiment—after five months, they again sample the cheese on four different
days. This dataset is an example of the inconsistent sampling approaches present in
microbiology, which introduces difficulty in modelling the microbial dynamics.

Oropharyngeal Microbiome In this study on the human oropharynx, Bach et al.
[2021] sampled the composition of the oropharyngeal microbiome of 18 adults at
a weekly interval for 40 weeks. The otherwise healthy adults self-reported disease
during the time frame of the experiment, which would provide interesting insights
regarding external/environmental factors. This research generated OTU tables with
97% similarity. The researchers provide a Phylum-level analysis of the data as well.

Bodily Microbiome of Horses O’Shaughnessy-Hunter et al. [2021] present a study
of the bodily microbiome of horses, collected from four body sites — dorsum, ventral
abdomen, pastern and groin. The study has included 12 healthy horses from the
same farm. This study is interesting because the four samples were collected in four
seasons over a year, reflecting the weather’s effect on the microbiome. This study also
uses 16S rRNA data and identifies OTUs based on a 97% similarity. Unfortunately,
the sampling frequency and the number of samples are lacking for an adequate
longitudinal analysis.

2.3.1.3 Parallel Collections of Longitudinal Datasets

In the previous section, we explored some datasets and discovered the difficulties
in collecting the perfect dataset for microbial behavioural analysis. This difficulty is
why we are interested in studies where data is collected for a shorter duration but
in several similar host environments. In this section, we will explore several dataset
collections. In these collections, if we were to select a particular dataset representing
one microbial environment, it would be insufficient for the needs of our analysis.
However, as the collection contains parallel data from a significant number of parallel
sources, we can augment the lack of individual data. Availability of datasets of this
nature was crucial for our work in Chapter 5.

Premature Infants’ Gut Microbiome La Rosa et al. [2014] compiles a dataset from
58 premature infants’ gut microbiome during a stay at a neonatal intensive care unit
(NICU). The NICU is a controlled environment where exposure to external micro-
biota is minimal. They have collected 922 samples averaging just over 15 data points
per infant. However, the data sampling depended on the stool passing of the infants,
rendering it non-consistent. The study also reported other clinically relevant infor-
mation as well. This collection of datasets is a perfect example of data augmentation
with parallel datasets. Usually, the low number of samples and the inconsistent rate
of sampling would be a deterrent. However, with a high number of parallel datasets
(58), we can look into the prospect of recognising patterns collectively.
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Vaginal Microbiome of Reproductive-Age Women Gajer et al. [2012] presents a
collection of datasets from 32 reproductive-age women’s vaginal microbiome. The
samples were collected twice weekly for 16 weeks, with 937 samples averaging 29 per
woman. This data is also accompanied by longitudinal background data on vaginal
activity in terms of health and behaviour. Again, this is an excellent dataset where we
can use collective pattern recognition approaches. The longitudinal background data
provides essential information in aligning the datasets according to key events—such
as menstrual cycles (in the context of this collection).

Human Microbiome Related to Pregnancy DiGiulio et al. [2015] present a compre-
hensive study of the human microbiome related to pregnancy. They collected a total
of 3767 samples from 49 women during and after pregnancy. The collection sites in-
cluded the vagina, distal gut, saliva and tooth/gum—the study averages 20 samples
per site per woman. Comprehensive longitudinal studies such as this are essential to
recognise the connections between the behavioural dynamics of multiple body sites’
microbial communities. It is also an interesting dataset as the data has been collected
around an important life event—pregnancy. In their analysis, the authors identify
specific microbial trends associated with pre-term birth.

Neonatal Gut and Respiratory Microbiome In another comprehensive study, Grier
et al. [2018] presents data from 82 infants, both pre-term and full-term, collected from
the gut, nasal cavity and throat. The data were collected weekly during their hospital
stay and monthly after discharge. This study, which we use for our analysis in
Chapters 5 and 6 is an interesting dataset due to the high number of similar subjects
and the distinct nature of the body-sites. While the gut microbiome is primarily
anaerobic, the respiratory (nasal and throat) microbiome is aerobic. However, the
average samples per body site are limited, with 13 samples on average for the gut,
12 and 6 for the nasal and throat environments.

Goat Kids’ Gut Microbiome In this study by Zhuang et al. [2020], the researchers
collected eight samples of the gut microbiome of 48 goat kids. The samples were
collected almost weekly, from birth until post-weaning. The selected time frame
allowed the researchers to identify gut microbial compositions during the colostrum
phase, breast milk phase, combined breast milk and starter feed phase, and the starter
feed only phase. OTUs were calculated at the 97% similarity rate by analysing 16S
rRNA sequencing. This study consisted of 48 healthy goats. Again, this dataset
is exemplary to study with collective pattern recognition techniques, as the eight
sampling points would otherwise limit identifying temporal dynamics.

Supragingival Plaque Microbiome Study of Twins In this experiment by Freire
et al. [2020], supragingival plaque samples were collected from 70 sets of twins
and one set of triplets (totalling 143 participants). There were 62 monozygotic, 36
opposite-sex dizygotic, and 45 same-sex dizygotic participants. They ranged from
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5.5–12 years in age with a median age of 9. The sampling frequency is very low
at six-monthly intervals, and only three sampling points are available. 16S rRNA
sequencing was used, and OTUs were generated directly from raw reads. Although
this is a fascinating study with many participants, it is difficult to carry a longitudinal
microbial analysis due to the lack of sampling points.

Faecal Microbiome of Humans with Inflammatory Bowel Disease Clooney et al.
[2021] presents a study on the faecal microbiome of humans with Inflammatory
Bowel Disease. This study boasts a reasonably large sample size of 692 individu-
als (303 with Crohn’s Disease, 228 with ulcerative colitis, and 161 controls). Unfor-
tunately, the sampling rate is at 16-week intervals, with a total of three sampling
events per individual. They also collect interesting background data including, ge-
ographic locations, surgical histories, alcohol consumption, medication, and diets.
However, they also report that the compositional variance is unexplained with re-
gard to the background and clinical data. Microbial data were collected with 16S
rRNA sequencing.

2.3.2 Collective Pattern Recognition Approaches

In this section, we will discuss, compare, and contrast the existing approaches where
we identify the notion of collective pattern recognition. We will also explore common
aspects of these approaches and the algorithms that have been utilised.

2.3.2.1 Existing Methods

There is existing literature that exploits the availability of multiple datasets to im-
prove the inferring processes. However, most such methods seem to be used in
analysing gene expression datasets. As we note in several points of this thesis, meth-
ods used for gene expression data and methods used for microbial abundance data
share some commonalities. We have provided a summary of these methods in Ta-
ble 2.2.

2.3.2.2 Curve Fitting

Curve fitting approaches are a standard part of many collective pattern recognition
approaches. Biological datasets are usually sparsely and inconsistently sampled. In
a collection of datasets, sampling points rarely overlap each other. Hence, a curve
fitting approach is taken in most methods we reviewed, with the notable exception
of Chandereng and Gitter [2020]. In this section, we will discuss some popular ap-
proaches to curve fitting.

Interpolation Interpolation estimates the points in-between the sampled points by
approximating a polynomial. For microbial data, this would usually be a higher
degree polynomial, which allows capturing temporal trends.
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Table 2.2: An overview of a selection of collective pattern recog-
nition approaches

Algorithm Publication Datasets Used Curve Fitting Alignment Meth-
ods

Other

Unnamed Lugo-Martinez et al.
[2019]

Longitudinal mi-
crobial abundance
data

B-Spline Using a first degree
polynomial function

Combined with a
Dynamic Bayesian
Network

genewarp Aach and Church
[2001]

RNA and protein
expression data

Can be use with or
without interpola-
tion

Inflated Alignment
Score

Presented as a pack-
age of executables

TimeFit Bar-Joseph et al.
[2003]

Time-series gene
expression data

B-Spline Using a first degree
polynomial function

Clustered using k-
nearest neighbours

Unnamed Smith et al. [2009] ” Multi-segment
method

Shorting Correlation
Optimal Warping
(SCOW)

Clustered using k-
means

GenTXWarper Criel and Tsi-
porkova [2006]

” None Dynamic Time
Warping

Not Applicable

Unnamed Dong et al. [2020] ” Not Applicable Bayesian Multiple
Kernel Learning

Introduced as a sta-
tistical framework
for predicting viral
exposure

Unnamed Somani et al. [2020] ” Gaussian proccess
interpolation

Central Composite
Design

Identifies disease-
relevant pathways

Lag Penalised
Weighted Correla-
tion (LPWC)

Chandereng and
Gitter [2020]

Gene expression
and Protein phos-
phorylation data

No interpolation as
a design decision to
conserve originality
of data

LPWC Adjusted Rand In-
dex (ARI) clustering

TimeMeter Jiang et al. [2020] Time-series tran-
scriptomic data

Unspecified Dynamic Time
Warping

Uses four alignment
quality metrics
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Regression Regression differs from interpolation by finding the best line that fits
the available data points rather than approximating the values in-between the data
points. Regression can be used with higher degree polynomials or non-linear func-
tions.

B-spline B-spline, or basis spline a type of interpolation where the polynomial is
piece-wise. The spline usually contains low-degree polynomials which fit smoothly
together [De Boor, 2001].

LOESS Locally Estimated Scatterplot Smoothing (LOESS) is a local regression method
built on classical regression methods, with local weighting, based on the concepts of
the Savitzky-Golay filter [Savitzky and Golay, 1964]. It obtains a smooth plot from a
set of scattered data points while respecting local trends.

2.3.2.3 Alignment Approaches

In many collective pattern recognition approaches, an alignment of the different sam-
ples followed the curve fitting. Various temporal alignment approaches could be
used for this step.

Linear Transformation A linear transformation is one of the most common ap-
proaches to aligning temporal datasets. They usually involve shifting and scaling on
one or both axes. For the case of two datasets, this can be intuitively understood as
applying a linear transformation for one dataset to minimise the difference between
the two datasets. When considered for multiple datasets, the most common dataset
is selected, and the rest are transformed to match the pattern of the selected one.

Dynamic Time Warp distance Dynamic Time Warp (DTW) distance calculates an
optimal match between two different temporal datasets. This distance metric is help-
ful as it can identify matches between sequences that are temporally “warped” in
a non-linear manner. Although it does not provide a direct alignment per se, this
measure is a valuable tool to substitute alignment where a metric of similarity at the
best alignment is required.

2.3.2.4 Clustering Approaches

Some collective pattern recognition approaches choose to cluster the data after align-
ment, depending on the study’s aims. In our work of Chapter 5, we use clustering;
hence, we will mention some clustering mechanisms.

k-means clustering A straightforward clustering algorithm, k-means, identifies k
number of centroids in the data and allocates every other point to the closest centroid.
This method is usually inadequate for most complex applications [Teknomo, 2006].
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Gaussian Mixture Model Clustering A problem with k-means clustering is that it
does not account for the variance of a dataset. In a two dimensional visualisation,
k-means clustering places clusters in perfect circles. Gaussian mixture model (GMM)
clustering is capable of identifying non-circular clusters as well. It employs an Expec-
tation Maximisation (EM) algorithm in determining the cluster membership of data
points. GMM clustering also has the advantage of providing the likelihood of cluster
membership; hence it can also be called a soft classification method [Bilmes, 1998].

Mean Shift Clustering Mean shift clustering is a parallelisable clustering approach,
with the added advantage of not needing a cluster number in advance. It uses a
Kernel Density Estimation (KDE) mechanism to identify the densest areas of the
data as peaks. Then, it lets the other datapoints assign themselves to one of the
peaks depending on a metric of distance and the density of the peak [Comaniciu and
Meer, 2002].

DBSCAN Density Based Spatial Clustering of Applications with Noise (DBSCAN)
is a clustering approach proposed by Ester et al. [1996]. DBSCAN algorithm can be
summarised in three steps. Firstly, it identifies data points within a certain radius
to each point and considers them to be core points if they have more than a cer-
tain number of neighbours. Secondly, it finds connected components made up of
core points. Thirdly, it associates every non-core points to the identified connected
components (clusters) and disregards the rest as noise [Schubert et al., 2017]. This
algorithm is excellent in recognising non-linear clusters.

OPTICS Ordering Points To Identify Cluster Structure (OPTICS) is an extension of
DBSCAN which introduces two metrics for determining the cluster membership—
core distance and reachability distance Ankerst et al. [1999].

2.3.3 Individuality and Conformity

Individuality is a quality, trait or behaviour that sets some entity apart from other
similar entities. In contrast, conformity is the opposite, where some entity’s qualities,
traits and behaviours can be expected to be predicted according to set standards.
The constant contrast between individuality and conformity has been discussed as a
topic of philosophy for millennia. We will briefly explore literature pertaining to the
concepts of individuality and conformity in this section.

2.3.3.1 General Notions

This concept has been applied in the field of social science to describe human popu-
lations [Mughal, 2014; Wilson, 2009]. Kingsbury [1997] presents the balance between
individuality and conformity as an academic discussion in the area of law and com-
pliance. There are many discourses of this pertaining to fashion, lifestyle choices
etc.
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However, these concepts have been noted in nature as well. The concept of indi-
viduality and conformity has been discussed in the literature of ecology [Hull, 1980]
and made a comeback only recently in the field of microbiology [Montassier et al.,
2018].

2.3.3.2 Notions in Microbiology

As mentioned earlier, a discussion on individuality and conformity in the micro-
biome is presented in the work of Montassier et al. [2018]. The individuality of mi-
crobial communities has been identified in the literature [Martins and Locke, 2015].
Especially in research on the gut microbiome, precision medicine has been proposed
and successfully used in several studies De Filippis et al. [2018]; Cammarota et al.
[2020]. Conforming behaviour has also been reported in the literature Gong et al.
[2016]. Based on the ideas summarised above, we define individuality and confor-
mity as a fuzzy concept in the context of microbial behavioural patterns.

Community State Types In the case of OTU communities, the concept of Commu-
nity State Types Ravel et al. [2011] is an existing approach to explaining the balance
of individuality and conformity in microbial communities. This concept has been
used in many publications to date. Grier et al. [2018]; DiGiulio et al. [2015] and other
studies report community state types (CSTs) in various microbial communities. The
idea of CST is based on the composition of the constituent OTUs and is defined for
a snapshot in time.

2.4 Characterisation of Temporal Dynamics of the Microbiome

In this section, which broadly covers the topics related to Chapter 6, we discuss
the literature related to the characterisation of the microbiome (Section 2.4.1) and
the characterisation of temporal dynamics in other systems (Section 2.4.2). Apart
from this, we discuss the literature pertaining to the study of the characterisation of
temporal dynamics (Section 2.4.3).

2.4.1 Characterisation of the Microbiome

The literature pertaining to the characterisation of the microbiome is immense. Hence
we describe a selection of approaches that have been used to characterise the micro-
biome. Both static and dynamic characterisations are described here. We also discuss
Community State Types (CSTs), which have been used successfully to characterise the
dynamics of the vaginal microbiome.

2.4.1.1 Static Microbial Signatures

First, we should clarify that the microbial signatures here refer to the characterisation
of the microbiome through compositional profiling, which is distinct to the meaning
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we use in Chapter 6 where the signature refers to the low dimensional mapping.
However, both are characterisations of microbial communities in their own rights.

In Desikan [2017] the author reports the use of the microbial composition of an en-
vironment as a uniquely identifiable signature for that environment. Various bodily
microbial community signatures have been proposed to have to potential to identify
humans individually [Tridico et al., 2014]. Banerjee et al. [2018] suggests the use of
microbial signatures to identify the state of the host environment. In their work,
they show that microbial signatures have specific associations with different types
of breast cancer. Romero et al. [2014] show that the vaginal microbiota of pregnant
women is different to that of a non-pregnant woman. These example studies show
that even the microbiota’s static composition is an indicative signature or a charac-
terisation of the host environment.

2.4.1.2 Dynamic Microbial Signatures

Literature also has interesting findings pertaining to the dynamic microbial signa-
tures (or characterisations). In their study Gerber et al. [2012] show that by analysing
temporal microbial abundance data through a computational framework that uses
continuous-time dynamic models and Bayesian dimensionality adaption methods,
they are able to successfully characterise the microbial community’s reaction to the
use of antibiotics. In Yang et al. [2019] they show that dynamic signatures of the in-
fant gut microbiome are able to capture information about the delivery and feeding
modes of the infants. They use feature-based characterisations, where the features
included microbial composition as well as bacterial richness, bacterial diversity etc.

Knights et al. [2011] suggests using machine learning methods to harness the
value of microbial signatures for various clinical prediction tasks, including person-
alised medicine, treatment prognosis, forensic identification etc. They suggest the
use of supervised learning for feature selection and signature discovery. Sanguinetti
et al. [2019] and Zheng et al. [2020] are two interesting studies that explore dynamic
microbial signatures in the identification and/or classification of illnesses. They re-
spectively studied the relationship of microbial signatures to reduced memory and
cognitive functions and the classification of unipolar versus bipolar depression using
microbial signatures.

2.4.1.3 Community State Types and Representation of Heterogeneity

Ravel et al. [2011] presents a landmark paper in the characterisation of microbial
communities, where they classify the vaginal microbiota into Community State Types
(CSTs). They identify five different CSTs the vaginal microbiome exists in. They also
identify that these CSTs change over time. This is important because this characteri-
sation explicitly identifies the heterogeneous and time-variant nature of the microbial
communities. Since then, these CSTs have been used in multiple studies pertaining to
the human vaginal microbiome. [DiGiulio et al., 2015; Stewart et al., 2018b; Romero
et al., 2014; De Seta et al., 2019; Ma and Li, 2017; Brooks et al., 2017; Mitra et al., 2015]
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2.4.2 Characterisation of Temporal Dynamics in Other Systems

Not just microbial systems, but many other systems share the problem of charac-
terisation of the temporal dynamics. While the characterisation of the microbiome
has its unique challenges due to the nature of microbiological data, many studies
have been done in the fields of physics and economics. Especially, the studies from
physics relate more to biological studies as they are interested in multivariate char-
acterisations and dealing with imperfect data (such as data with noise, measurement
errors etc. [Bradley and Kantz, 2015; Zou et al., 2019]).

Teodorescu [2012] in their review show that characterisation of time-series data
pertaining to nonlinear dynamic systems has been used in multiple fields of engi-
neering. In the field of hydrology, Toth [2013] successfully uses the characterisa-
tion of time-series data coming from stream flow and precipitation to classify catch-
ment sites. In the field of finances, Pecar [2004] uses time-series characterisation in a
feature-based approach (using white noise and Wiener process plots) to successfully
characterise eight real-life data sets from the New York stock exchange.

2.4.3 Utilities for Characterising Temporal Dynamics

In this section, we will explore the literature about non-linear time-series analysis and
dimension reduction approaches suitable for characterising multivariate time-series
in the low dimension.

2.4.3.1 Non-Linear Time-Series Analysis

Time-series analysis is inherently complex due to the natural temporal order. This
distinctly places time-series analysis as a separate category within data analysis,
as the directionality and order of data are to be preserved in the analysis pro-
cess. Characterising time-series data hence has this additional challenge [Zou et al.,
2019]. Early approaches in this characterisation involved linear stochastic models
such as autoregressive (AR) and moving average (MA) and combinations such as
autoregressive moving average (ARMA), autoregressive integrated moving average
(ARIMA)models. However, for most natural processes, the set of linear stochastic
models prove to be inadequate [Bradley and Kantz, 2015].

[Fulcher, 2017] summarises the features utilised in time-series characterisation
argues that the feature selection is ultimately more useful than the categorisation of
a time-series to be linear or non-linear. Some popular characterisations are in terms
of features are value distribution, entropy, correlation properties, stationarity etc.
which honour the directional nature of a time series. We can also find more nuanced
features when we specifically consider non-linear models.

Time-series analysis starts with a hypothesis on the appropriate model for the
data. As such, modelling natural processes involves many assumptions in the hy-
pothesis on the appropriate model. Packard et al. [1980], and Takens [1981] in their
landmark publications introduces the non-linear time-series analysis in the field of



§2.4 Characterisation of Temporal Dynamics of the Microbiome 27

fluid analysis. Non-linear time-series analysis improves our hypothesis by broad-
ening our models and through the ability to extract non-linear features of naturally
occurring time-series data. [Bradley and Kantz, 2015]

Another separation for time-series analysis is the univariate or multivariate na-
ture of the data [Fulcher, 2017]. In this work, we are solely interested in multivariate
data as microbial behavioural dynamics, and associated abundance profile data are
always multivariate.

2.4.3.2 Dimension Reduction Approaches

As mentioned earlier, most time-series data related to natural processes are multi-
variate, as is the case with microbial abundance data. Hence, to visualise these in
a low dimensional space, dimension reduction approaches are often taken. Often,
temporal data are collected once and then visualised, but rarely there are instances
where continuous visualisation is important as well. This is especially true with
fast advancing technology, such as next-generation sequencing (NGS), resulting in
a plethora of data. The approaches mentioned below are well suited for obtaining
a visual characterisation of high-dimensional, complex, time-series data. They are
trained on a neural network or related models that can capture complex non-linear
features.

Parametric t-SNE Van Der Maaten [2009] introduces parametric t-SNE, which learns
a parametric mapping between the high-dimensional space and the low-dimensional
space while preserving the local structure of the data is preserved in the latent space.
With a parametric mapping, more data points could be added continuously, allowing
the visualisation of time-series multivariate data.

Parametric UMAP Sainburg et al. [2020] introduces a parametric version of the
Uniform Manifold Approximation and Projection (UMAP) algorithm. The original
UMAP algorithm is non-parametric and graph-based. Summarily it operates in two
steps. First, it computes a graphical representation of the dataset. Then it learns a
set of neural network weights that preserves the structure of the original graph. The
neural network weights are now the parameters of the trained parametric-UMAP
model. Original UMAP algorithm [McInnes et al., 2018] used to learn an embedding
which preserved the structure of the graph via optimisation.

SONG Senanayake et al. [2019] introduces Self Growing Nebulous Growths(SONG),
which is again a parametric, non-linear dimension reduction technique that presents
a topology-preserving lower-dimensional visualisation. It is capable of handling both
homogeneous and heterogeneous data increments into its mapping, making it more
suitable for complex data such as microbial abundance data.
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Chapter 3

IMPARO: Inferring Microbial
Interactions through Parameter
Optimisation

This chapter is partially composed of material which were published in a manuscript ti-
tled “IMPARO: Inferring Microbial Interactions through Parameter Optimisation” by Vi-
danaarachchi R., Shaw, M., Tang, S.L., Halgamuge, S.K. in BMC Molecular and Cell Biology
[Vidanaarachchi et al., 2020]

Summary

Background Microbial Interaction Networks (MINs) provide important informa-
tion for understanding bacterial communities. MINs can be inferred by examining
microbial abundance profiles. Abundance profiles are often interpreted with the
Lotka Volterra model in research. However existing research fails to consider a bi-
ologically meaningful underlying mathematical model for MINs or to address the
possibility of multiple solutions.

Results In this chapter we present IMPARO, a method for inferring microbial inter-
actions through parameter optimisation. We use biologically meaningful models for
both the abundance profile, as well as the MIN. We show how multiple MINs could
be inferred with similar reconstructed abundance profile accuracy, and argue that a
unique solution is not always satisfactory. Using our method, we successfully in-
ferred clear interactions in the gut microbiome which have been previously observed
in in vitro experiments.

Conclusions IMPARO was used to successfully infer microbial interactions in hu-
man microbiome samples as well as in a varied set of simulated data. The work also
highlights the importance of considering multiple solutions for MINs.

29
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3.1 Background

Microbes are the most abundant, widespread organisms on Earth. They can be found
in the biosphere, including all animals and plants, and most habitats in the oceans
[Blaser et al., 2016; Apprill, 2017], on land, or in air. Many studies show that microbes
play a important role in the health and well-being of the hosts they are associated
with. For example, in the human body, imbalances or changes in microbial communi-
ties correlates to various illnesses and other complications [Clemente et al., 2012; Cho
and Blaser, 2012; Khanna and Tosh, 2014; Singh et al., 2017; Hibberd, 2013; Funchain
and Eng, 2013; Kumar and Chordia, 2017]. In plants, microbes provide essential
nutrients, including all economic crops [Fitzpatrick et al., 2018; Finkel et al., 2017;
Mueller and Sachs, 2015].

In the past, studying microbial communities through cultivation in laboratories
was challenging [Hiergeist et al., 2015]. Also, as over 99% [Amann and Rosselló-
Móra, 2016; Locey and Lennon, 2016] of microbial species on earth are yet to be iden-
tified, the inability to cultivate and separate some microbial species in a laboratory
environment has hindered progress on the study of microbiota.

Due to recent advances in 16S rRNA sequencing and high throughput sequenc-
ing, scientists can now explore the nature of real-world microbial samples and recog-
nise individual species in these samples. 16S ribosomal RNA has been used by many
scientists in order to identify, categorise and classify microbes.

Microbial networks are inherently complex in nature. With longitudinal studies,
for example, it has become clear that the composition of microbial communities is
constantly changing. Now, in order to properly understand these communities, it is
important to study how they are changing, why they are changing, and how they
interact with each other. To do so, it is important to acknowledge the following
dynamics which play a part in the microbial composition changes. There could be
temporal changes that are caused by external factors such as temperature variations
[Minich et al., 2018], diurnal cycles [Thaiss et al., 2014] or seasonal variations [Smits
et al., 2017]. In addition to these, other non-random co-occurrence patterns have been
observed. Like in any other community, organisms in microbial communities interact
in various ways with each other. Some of these interactions could be categorised un-
der mutualism, competition, parasitism, predation, commensalism and amensalism.
[Faust and Raes, 2012]

Some important questions to ask about any biological community include, ‘Who
is there?’, ‘What are they doing?’, and ‘How will they respond?’ [Boon et al., 2013].
While 16S ribosomal RNA sequencing can answer the first question, the latter two
questions require an understanding of the interactions between different bacteria,
hence the importance of inferring microbial interactions. These answers will improve
our understanding of the human gut, the world’s oceans, plant root systems, lakes,
etc.
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3.1.1 Related Work

With the advance of high throughput sequencing, high throughput inferring ap-
proaches have also been recently proposed. These are shown to be more successful
than in vitro analysis of interaction patterns [Yokobayashi, 2019]. Some of these ap-
proaches are Metagenomic Microbial Interaction Simulator (MetaMIS) [Shaw et al.,
2016], Rule-based Microbial Network (RMN) algorithm [Tsai et al., 2015], Sparse
Inverse Covariance Estimation for Ecological Association Inference (SPIEC-EASI)
[Kurtz et al., 2015], Learning Interactions from Microbial Time Series (LIMITS) [Fisher
and Mehta, 2014], Boolean Abundance Analysis [Claussen et al., 2017], Boolean
Dynamic Model [Steinway et al., 2015], Stochastic Generalised Lotka-Volterra and
Extended Kalman Filter (SgLV-EKF) [Alshawaqfeh et al., 2017] and Sparse Correla-
tions for Compositional Data (SparCC) [Friedman and Alm, 2012]. These algorithms
mainly take two approaches [Shaw et al., 2016], correlation-based analysis and model
centred analysis. Often algorithms combine the two approaches to come up with a
more robust method of inferring microbial interactions.

MetaMIS [Shaw et al., 2016] uses a model-based approach where microbial inter-
actions are assumed to abide by the biologically-inspired Lotka Volterra Model. The
parameters of the Lotka Volterra model, which elucidate the interaction coefficients,
are then approximated through a Partial Least Square Regression (PLSR). With these
coefficients in place, the initial population is repopulated to recreate the community
abundance profile. The accuracy metric is the Bray–Curtis Dissimilarity between the
original and recreated abundance profiles. The authors do not use any simulated
data in their results but report inferences from male and female gut microbial com-
munities. Their reported accuracy is 78% to 82%.

RMN [Tsai et al., 2015] introduces its own model of Non-linear Regulatory OTU-
triplet (NRO) model. This is a model for three OTUs which supposedly interact with
each other. This assumption of interaction is then tested on the temporal abundance
profile by a hyperbolic tangent based lack-of-fit function which they have introduced.
The accuracy of the model is calculated based on correct inferences and correct non-
inferences as a fraction of all inferences and non-inferences. Their reported accuracy
is approximately 75% on simulated data. The authors use their method on infant gut
data and infer previously known interactions.

SPIEC-EASI [Kurtz et al., 2015] is a correlation-based statistical method, which
uses a Stability Approach to Regularisation Selection (STARS) to recreate the inter-
action correlations in form of a weighted undirected graph. Although this method
does not indicate the nature of the interaction between two OTUs, it does give an
idea of how close the OTUs are. The verification has been done through simulated
data, and accuracy is measured with the Precision-Recall (P-R) curves and Area Un-
der P-R Curves (AUPR). The authors have also presented the results from applying
their method to the American Gut Project [McDonald et al., 2018] data.

LIMITS [Fisher and Mehta, 2014], yet another model-based algorithm, uses the
discrete-time Lotka Volterra equations as the central microbial interaction model in
its approach. The parameters of the Lotka-Volterra model are approximated through
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linear regression with an iterative bootstrapping approach. The verification is done
through simulated data where the authors report a specificity of 60%–80% and a
sensitivity of 70%–80%. They also analyse two individuals’ gut samples with the
LIMITS algorithm. The major use of the LIMITS algorithm is to deduce keystone
species.

Gao et al. [2018], in their work, use a model-based approach. They use a Lotka-
Volterra model, fitted with abundance data using the non-linear least squares min-
imisation technique. Then they use a forward step-wise regression method with
bootstrap aggregation to select candidate models. These models are then filtered
through a Bayesian information criterion which results in multiple models being se-
lected. They aggregate the models into a single network as the output. The algorithm
is tested on a cheese microbial community. The authors also apply the method on the
gut microbiome of children with Type 1 diabetes. They do not present accuracy nu-
merically, but confirm that their method was successful in inferring experimentally
confirmed microbial interactions.

Boolean Analysis [Claussen et al., 2017] uses an interesting model-based ap-
proach. The underlying biology is assumed to be forming either competitive links or
synergistic links. Pairs of abundance vectors are analysed with the ESABO (Entropy
Shifts on abundance vectors under Boolean operators) to confirm either a competitive
or a synergistic link. Using a Jaccard index of the difference between the normalised
number of correctly and incorrectly classified links, with their simulated data, they
have achieved indexes ranging from 0.1–0.6 on competitive links and 0.1–0.9 on syn-
ergistic links. Their approach is also applied to a Human gut data-set.

Boolean Dynamic Model [Steinway et al., 2015] does not contain an embedded
biological model but assumes a binary relationship among OTUs. First, this method
binarises the abundance data with a k-means binarisation, which allows binarisation
with a threshold value, but with a stochastic element. Then it uses a recapitulating
approach of updating and maintaining binary rules. The last part is a perturbation
analysis, where it analyses the effects of removal (knock-out) or addition (forced over-
abundance) on the created model. This method is effective for the work’s purpose
of analysing Clostridium difficile infection in the gut. The finding is that Barnesiella
intestinihominis hinders the growth of Clostridium difficile. This has been confirmed in
in vitro experiments.

SgLV-EKF [Alshawaqfeh et al., 2017] model is a straightforward approach of using
the Lotka Volterra equations as the underlying biological model. But it improves the
generalised Lotka Volterra (LV) system by introducing a Gaussian noise term, mak-
ing it stochastic. Then the LV parameters are estimated using an Extended Kalman
Filter (EKF), giving it the name SgLV-EKF. This algorithm is tested on Monte-Carlo
simulated data, and shows an accuracy of 75%, with Mean Square Error (MSE) be-
ing the indicator of accuracy. The authors also apply the method on two mouse gut
systems infected by Clostridium difficile, one being treated with clindamycin.

SparCC [Friedman and Alm, 2012] is a co-occurrence based method which iter-
atively finds non-random co-occurrence patterns in microbial data. One of the first
methods proposed in inferring microbial interactions, SparCC has shown a consid-
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erable improvement from the Pearson Correlation method. On simulated data, it has
shown to achieve root mean squared errors (RMSE) as low as 0.02. The authors also
apply the method on Human Microbiome Project data to show its usability on real
life data.

Barberán et al. [2012] presented an early study in which they used a Checkerboard-
score along with Spearman’s correlation coefficient to uncover non-random co-occurrence
patterns in soil microbiome data. They stop short on identifying patterns of commu-
nity co-existence but raise the need for more focused experiments to study environ-
mental and community shifts over time.

Considering the literature, there seems to be a shift towards using model-based
systems, with the support of statistical methods, rather than depending purely on
statistical methods. An explanation of this is that, due to the complex nature of
the microbial communities, purely mathematical methods, which ignore the under-
lying biology, would be prone to overlooking important biological constraints. Mi-
crobial communities have biologically specific behavioural dynamics, which cause
non-independence between adjacent time-steps. Hence models which take into ac-
count these behavioural dynamics are useful in inferring the interactions.

On examining existing model-based work, it is notable that Lotka Volterra Equa-
tions or one of its adaptations has been used in many approaches as the underlying
biological model. The major reason for this use is that it has been shown that Lotka-
Volterra Model can successfully simulate a microbial community when applied to
different scenarios such as Lake Ecosystems [Dam et al., 2016], Human and murine
intestinal microbial systems [Stein et al., 2013; Marino et al., 2014] or the micro-
bial ecosystem which occurs in the process of ripening of smear cheese [Mounier
et al., 2008]. The generalised Lotka Volterra equations have the capacity to capture
the growth rates and the pairwise interactions of the OTUs, which are the impor-
tant coefficients estimated in the process of inferring Microbial Interaction Networks
(MINs).

Many of these studies have applied a new methodology to simulated data as well
as real-life data. This is important because data simulations always assume a known
biological model, and the inherent noise in a biological system is not always present
in artificially simulated data. Our work and the majority of other works are also
guilty of using the same biological model in the inference algorithms, as well as in
the data simulations. Hence some sort of verification with real-life data is obviously
important. The problem with using real-life data for verification is that sans in vitro
studies, it is difficult to discern whether the inferred interactions are in fact bona
fide interactions found in that microbial system. One potentially useful verification
strategy is to highlight the overlap between identified interactions and interactions
that were previously known. MetaMIS [Shaw et al., 2016] uses an abundance profile
reconstruction strategy to confirm their results. This system of verification influenced
our method.
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Figure 3.1: Although the real interactions are A → B and B → C, through A’s in-
fluence on B, A has an indirect influence on C. When these interactions are inferred
through an abundance profile, the indirect interaction A → C may be inferred in-
stead.

3.1.2 Motivation & Contributions

It was interesting to note that the above mentioned methods imply a unique solu-
tion to the problem of inferring a microbial interaction network, given a particular
abundance profile. In their work addressing pitfalls in inferring microbial dynamics,
however, [Cao et al., 2017] demonstrate that multiple interaction networks can lead
to the same abundance profile. This is supported by the simple scenario of three
OTUs with indirect interactions, as shown in Figure 3.1.

In this chapter, we present IMPARO (Inferring Microbial interactions through
PARameter Optimisation), an algorithm for microbial interaction inference which
incorporates biologically meaningful models for the interaction network as well as
the abundance profile.

IMPARO is the first inference method to not make the assumption of a unique
inferred solution, and to explore multiple solutions with similar accuracy levels. Be-
cause of the inherent noise in microbial abundance data, it is reasonably assumed
that small changes in accuracy do not necessarily mean superior MINs.

It is also the first to assume an underlying biological model for a microbial in-
teraction network (MIN), by using the microbial community dynamics model intro-
duced in [Gibson et al., 2016]. The shift from statistical methods to model-based
methods was inspired by using an underlying biological model for the Abundance
Profile, and models such as gLV, SgLV, NRO and entropy shift of competitive syner-
gistic links were used. Our work goes a step further in introducing an underlying
biological model for the MIN, which reduces the optimiser search space by pruning
solutions which are less feasible biologically.

It also contains a Monte Carlo approach [Metropolis and Ulam, 1949] for the pur-
pose of encompassing the effect of rarer OTUs into the inferred MIN. Most statistical
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methods fail to do justice to the effects of rarer OTUs simply because their presence
is overwhelmingly shadowed by the other OTUs. And most model-based solutions
use filtering processes which favour higher-ranked (in terms of abundance) OTUs
before the inference process. But in fact, the majority of OTUs in a community are
rarer OTUs. [Shaw et al., 2016; Caporaso et al., 2011]

Our results are verified through both simulated and real-life data. Our simula-
tions take into account the diversity of microbial communities. Community dynamics
models are used to ensure different types of communities are included in our testing.
We compare the results from IMPARO with results reported in the literature.

Key Contributions Summarised:

• Inference of interactions without the assumption of a unique solution.

• Consideration of an underlying biological model for the MIN.

• Using a Monte Carlo approach to ensure a better representation of rarer OTUs.

• Verification of the algorithm on real life and simulated data.

• Comparison of results with that of existing methods.

3.2 Results

IMPARO was used to infer interaction parameters in both simulated and real life
data. We present the overall results in this section. 1

3.2.1 Simulated Data

Data simulation was performed using the microbial community dynamics model
described above, and focuses on heterogeneity and sparsity variation. Nominal com-
ponent N is sampled from a normal distribution N (0, 1). Initial abundance values
were sampled randomly from a uniform distribution U (0, 1), as suggested in Gibson
et al. [2016]. In this study, we are interested in examining how IMPARO handles
data-sets with varying heterogeneity and sparsity. For the purpose of the simulated
study, we used ten species.

For the heterogeneity study, we use P(α) s.t. α ∈ [0.2, 0.4, 0.6, 0.8, 1.0], so that
communities with a heterogeneity favouring a minority of highly influential OTUs
are considered.

For the sparsity study we use G(n, p) s.t. p ∈ [0.2, 0.4, 0.6, 0.8, 1.0]. This would
include communities which are very sparse (p = 0.2) to fully connected (p = 1.0).

The Mean Squared Error (MSE) between the ground truth and the inferred pa-
rameters in each case as described above are shown in Table 3.1. We observe that
lower p values and higher α values—highly sparse and highly heterogeneous instances—
result in lower errors.

1Additional results and snapshots of simulated data are available in Additional file 3 of Vi-
danaarachchi et al. [2020].
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Table 3.1: MSE values from the heterogeneity and sparsity study. Heterogeneity
and sparsity were varied—through varying α and p respectively—to investigate how
IMPARO responded to microbial samples of varying nature. Mean Squared Error
(MSE) indicates how far the inference is from the ground truth.

σ = 1
P

p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 1.0

H

α = 0.2 0.05 1.32 1.36 2.55 1.99
α = 0.4 0.61 0.63 1.36 0.66 1.02
α = 0.6 0.42 0.57 1.54 1.98 1.81
α = 0.8 0.09 0.57 1.14 0.79 1.51
α = 1.0 0.34 0.28 0.71 0.73 1.28

Accuracy 79.82% Accuracy 80.77%

Figure 3.2: An example of two distinct solutions for the same simulated data-set. The
MINs corresponding to each solution, when evaluated with reconstructed abundance
profile accuracy were within 1% of each other.

Tested for robustness with Gaussian noise (µ = 0.0, σ = 0.01), IMPARO returns
solution clusters which are within mean squared errors of 0.4 - 0.5 of each other,
suggesting the solutions are robust.

3.2.2 Existence of Multiple Solutions

As we have mentioned in the literature review, it is possible to find multiple solutions
for the problem of inferring microbial interactions when the accuracy is measured
through reconstructed abundance profiles.

In Figure 3.2 we present two MINs inferred from the same abundance pro-
file, which—after recreating the abundance profile and measuring for accuracy us-
ing Bray–Curtis metric—returns accuracies within 0.1% (79.82% and 80.77% respec-
tively). Compared to the true values used in simulating the data, they indicate mean
squared errors of 0.59 and 0.58 respectively.
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Table 3.2: The results for the female faecal microbiome sample showing reconstructed
abundance profile accuracy values for varying numbers of highest-ranking OTUs.

No of Highest-Ranking OTUs Reconstructed Abundance Profile Accuracy

5 85.42%
10 84.22%
20 82.77%
30 79.93%
40 81.86%
50 82.08%
60 74.83%
69 80.11%

3.2.3 Tests on Real Life Data

For this study we use the data from human faecal microbiome samples collected
from a healthy male and a female for time spans of 15 months and 6 months respec-
tively [Caporaso et al., 2011]. This data is publicly available at MG-RAST:4457768.3-
4459735.3.

On female faecal microbiome analysing the 10 highest-ranking OTUs, our method
achieves a 84.22% reconstructed abundance profile accuracy. On the male faecal
microbiome OTU rankings, our method achieves a 81.60% accuracy. It should be
noted that in the female sample, 185 time points were taken into account. In the
male sample 442 time points were considered. In both instances, the sparsity of the
connections were assumed to be 50% for the inference process.

The results for the female faecal microbiome sample showing reconstructed abun-
dance profile accuracy values for varying numbers of highest-ranking OTUs are tab-
ulated in Table 3.2.

As a further analysis, we inferred MINs at different taxonomic resolution levels—
from Phylum to Genus. The reconstructed abundance profile values of this study
performed on the female faecal microbiome are tabulated in Table 3.3. The ten
highest-ranking OTUs were considered in this study.

3.2.4 Inference of Rarer OTU Interactions

In order to understand how our method works for rarer OTUs, we processed ran-
domly selected samples from the female faecal microbiome with at least 50% of the
considered OTUs from the rare range (average abundance lower than 0.1%). In some
studies, [Tsai et al., 2015; Shaw et al., 2016] these rare OTUs are discarded while
favouring the most abundant OTUs. But we show that rarer OTUs can indeed be
considered in the inference process, and give satisfactory results. Our samples pro-
vided an average accuracy (reconstructed abundance profile accuracy) in the order
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Table 3.3: Inspecting the reconstructed abundance profile accuracy with varying tax-
onomic resolution levels in the female faecal microbiome.

Taxonomic Resolution Level Reconstructed Abundance Profile Accuracy

Genus 76.30%
Family 84.22%
Order 87.22%
Class 87.54%

Phylum 87.63%

of 60%.

3.3 Discussion

In this section, we analyse the results obtained by IMPARO.

3.3.1 Simulated Data

The simulated study indicates that IMPARO works better with data samples with
low heterogeneity and high sparsity (low p-value). When considering highly hetero-
geneous samples, we attribute the larger errors to the difficulty in inferring near-zero
values. For less sparse data-sets this can be attributed to the difficulty in inferring
a fully connected MIN. The best case as seen in Table 3.1 being the most heteroge-
neous and sparsest instance can be attributed to it being close to the trivial case of
all zeros. It is indeed expected to have better results in the more sparse samples,
as Genetic Algorithms (GAs) tend to converge faster when the dimensions of the
parameter space are lower. Achieving better results on low heterogeneous and mod-
erately sparse samples in the simulated data explains the better results obtained in
real-life samples with the higher ranking OTUs, which are more homogeneous and
are assumed to be moderately connected.

3.3.2 Existence of Multiple Solutions

Although the reconstructed abundance profile accuracy is indicative of the prediction
accuracy of the interaction parameters, there seem to be multiple distinct solutions
for interaction matrices resulting in similar abundance profile accuracies. Also to
be noted is that these distinct solutions are within 1–2% of reconstructed abundance
profile accuracy. Because of the high noise in microbial data-sets, a solution which
is only 1–2% better in recreated abundance profile accuracy cannot be considered to
be a superior solution. A possible cause for multiple solutions could be the opti-
miser being stuck at local optima. However as the parameter space has too many
dimensions to permit visualisation, the methods need to rely on results obtained
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from multiple initialisations. While recognising GA is particularly challenged with
overcoming local optima, it is worth looking into other explanations possible. One
cause for multiple distinct solutions is the possibility that indirect interactions are
being inferred incorrectly through these methods.

We may conclude that good reconstructed abundance profile accuracy is a nec-
essary condition for a precise prediction although it is not a sufficient condition by
itself. Hence we highlight the need to widen the search for all such instances where
the reconstructed abundance profile accuracy is higher than a threshold value. An
optimisation approach which provides multiple answers is, therefore, important.

3.3.3 Tests on Real Life Data

First, we note that the inference of the male faecal microbiome resulted in a lower
accuracy compared to the female faecal microbiome. This might be due to the fact
that the male sample covers a greater time period than the female sample. (442 time
points over 15 months in comparison to 185 time points over 6 months).

Apart from the increased difficulty in predicting a longer time series, it can also
be hypothesised that the inherent changes in the microbiome itself over a longer
period of time could be a reason for the reduced predictive accuracy. Microbes, as
any other community of living organisms, change over time, which includes changes
in the nature of their interactions.

In Table 3.2 we observe a trend towards the accuracy decreasing as the number
of OTUs included is increased. The reasons for this could be two-fold. Firstly, as
the number of OTUs increases, the number of parameters to be estimated grows
quadratically. Secondly, as more lower-ranked—and rarer—OTUs are considered,
the difficulty level of inference increases.

We observe that higher accuracy levels correspond to higher taxonomic ranks in
Table 3.3. Considering that the number of OTUs remained constant in this study, we
conjecture that as abundances get more numerous for each OTU with each higher
taxonomy level, abundance profiles become less disorderly. This could have resulted
in better reconstructed abundance profile accuracies for higher taxonomic resolution
levels.

Of mutualism interactions inferred by our algorithm, some have been shown to
exist in previous studies as shown in Figure 3.3. The population of bacterial fam-
ilies of Prevotellaceae and Rikenellaceae has shown to increase simultaneously in im-
mune impaired Nod2(-/-) mice faecal microbiome [Hasegawa and Inohara, 2014].
The populations of Rikenellaceae and Verrucomicrobiaceae have been shown to simul-
taneously increase in another study of mice faecal bacteria studying diet induced
obesity [Clarke et al., 2013]. Both these results were inferred from the female faecal
microbiome sample.
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Figure 3.3: Strong microbial interactions inferred from the female faecal microbiome
have been previously observed in in vitro studies of murine microbiome.

3.3.4 Consideration of Rarer OTUs

From the results, it could be seen that when the rarer OTUs are taken into account,
the predictive power is significantly less. Even though the predictive power is less,
the approximately 60% reconstructed abundance profile accuracy suggests promise
in exploring the question of inferring interactions for rarer OTUs further. Also, when
combined with higher ranking OTUs, rarer OTUs do not significantly reduce the
accuracy of the whole sample, as indicative from the results in Table 3.2.

Analysis of Errors

We consider the reasons for the 20% error margin of IMPARO to be threefold. Firstly,
microbial interactions are prone to change over time. When interactions are inferred
over multiple points covering a large time interval, this could add a significant error.
Secondly, the high dimensionality of the search space increases the chance of local
optima, thus resulting in higher errors. Thirdly, as the input data is acquired through
experimental means, we expect the errors from the experimental procedures and data
collection to have contributed to the overall error.

To understand the implications of the errors, we have to look at the error calcu-
lation. We depend on the derived error metric RAPA as it is impossible to know
the ground truth for MIN parameters (Section 3.5.4). As the abundance profile is re-
constructed recursively with the inferred interactions, the error present at the RAPA
level reflects a propagated error from the errors at the MIN level. Hence, the error
margin of 20% is acceptable and expected. Due to the nature of the calculation, the
error is representative of all the MIN parameters proportionately.

Future Work

There are several possible ways of extending IMPARO, to alleviate some of its weak-
nesses. IMPARO attempts to infer a single interaction parameter for each OTU couple
for the entire time-line. We note that, as microbial interactions are prone to change
over time, it can be beneficial to infer interactions over separate time intervals, which
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could allow better abundance profile recreation and exploration of interaction pa-
rameter dynamics over time. Also, IMPARO currently lags at inferring rarer OTUs,
as compared to higher ranking OTUs. Supplementing genomic data with transcrip-
tomic data in the inference process can potentially increase the prediction quality. It
is also worth exploring how IMPARO can be improved to deter the disruption of the
community dynamics model by zero and non-zero values.

3.4 Conclusions

Inferring microbial interactions will advance our understanding of microbial com-
munities. We have presented IMPARO, a microbial interaction inference algorithm
based on parameter optimisation. We have conducted studies on simulated microbial
communities and on real-life data. IMPARO has shown to successfully infer inter-
action parameters corresponding to microbial systems in the human body. We also
emphasise the importance of considering multiple solutions for the MINs.

3.5 Methods

In this section, we present the methods used in IMPARO.

3.5.1 Generalised Lotka Volterra Model

The Generalised Lotka-Volterra Model (GLV) is a system of Ordinary Differential
Equations. In inferring interactions the GLV is used in its discrete form, where each
time point represents a sample in the temporal abundance profile. The differential
equations describe the difference of a single OTU’s abundance levels in two adja-
cent time points, and how it is dependant on the growth rate and its interaction
coefficients with the other OTUs.

d
dt

xi(tk) = rixi(tk) + xi(tk)
L

∑
j=1

Aijxj(tk) (3.1)

In Equation 3.1 xi(tk) describes the relative abundance of the ith OTU at time
tk. The growth rate of the ith OTU is described by ri. A is the overall interspecific
interaction matrix, where Aij describes the effect on the jth OTU by the ith OTU.
(Aij < 0 represents a negative effect on the jth OTU by the ith OTU). The saturation
terms have not been included as we do not consider communities to have known
carrying capacities (different types of LV equations are outlined in Chapter 4).

We use the above framework as it is in our implementation and add a noise term
afterwards to compensate for inherent and experimental noise in microbial data. All
the abundance values are normalised for each time point.
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3.5.2 Community Dynamics Model

Introduced by Gibson et al. [2016], the community dynamics model is best described
as a Mathematical Model consisting of a set of Matrices which represent different
qualities in microbial interactions.

A = NH ◦ Gs (3.2)

In Equation 3.2 A is the microbial interaction matrix, N is the nominal interspe-
cific interaction matrix, H is the heterogeneity matrix and G is the adjacency matrix
of the underlying ecological network. s is a scaling coefficient. The operator ◦ repre-
sents the Hadamard product (element-wise multiplication of matrices).

N ∈ Rn×n, the nominal interspecific interaction matrix has a normal distribution
with a mean of 0, and a standard deviation of σ2, i.e. Nij ∼ N (0, σ2). This matrix
warrants that the interactions are fair in the absence of an influencing factor, which is
introduced in the next component. H ∈ Rn×n, the heterogeneity matrix is a diagonal
matrix with a power-law distribution, with an exponent of α, i.e. Hii ∼ P(α). This
matrix simulates the difference in the interspecific influence levels. It is believed that
in a typical community there are a small number of highly influential species [Daw-
son et al., 2017]. Together with the interspecific interaction matrix, the heterogeneity
matrix assures a balanced community dynamics model. The next step is defining
the connectedness, as MINs are generally not fully connected but sparse. G ∈ Rn×n

is a binary matrix where Gij = 1 represents that the OTU i is affected by OTU j
and Gij = 0 represents otherwise. This matrix follows an Erdős–Rényi model with
G(n, p) where n is the number of OTUs and p is the probability of an edge which
also represents the sparsity of G. 2

3.5.3 Bray–Curtis Dissimilarity

Bray–Curtis dissimilarity [Bray and Curtis, 1957] is used in our work to determine
the dissimilarity between two samples, specifically, the dissimilarity between cor-
responding time-points in original and recreated abundance profiles. However, a
limitation of using the Bray–Curtis Dissimilarity is that the dissimilarity metric is
biased towards more abundant species.

BCD(x(tk), x∗(tk)
) =

∑L
i=1

∣∣∣xi(tk)
− x∗i(tk)

∣∣∣
∑L

i=1

(
xi(tk)

+ x∗i(tk)

) (3.3)

BCDoverall =
∑T

k=0 BCD(x(tk), x∗(tk)
)

T
(3.4)

where x(tk) and x∗(tk)
represent relative abundances of the original and recreated

abundance profile, at time k. xi(tk)
represents the relative abundance of the ith OTU

2An illustrated numerical example is given in the Additional file 1 of Vidanaarachchi et al. [2020].
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of the original abundance profile at time point k and x∗i(tk)
represents the same in the

recreated abundance profile. L is the number of OTUs in the sample, while T is the
total number of time-points in the abundance profile.

3.5.4 Reconstructed Abundance Profile Accuracy

The reconstructed abundance profile accuracy is a metric of how accurately the orig-
inal abundance profile can be reconstructed with the inferred MIN. Using the orig-
inal initial conditions, x(t0), the subsequent microbial community compositions are
calculated using the generalised Lotka-Volterra model. This reconstructed microbial
community abundance profile is then compared to the original abundance profile
using the Bray–Curtis Dissimilarity. This metric reflects the quality of the inferred
MIN.

3.5.5 Kolmogorov–Smirnov Test

We use the Kolmogorov–Smirnov Test as a goodness-of-fit test to compare the empir-
ical distribution of the inferred MIN to a model empirical distribution which follows
the Community Dynamics Model.

Dn,m = sup
x
|F1,n(x)− F2,m(x)| (3.5)

where F1,n(x) and F2,m(x) are the empirical distribution functions for the param-
eters of the microbial interaction networks. Here parameters of the interaction net-
works are considered as one-dimensional probability distributions. (i.e. each in-
teraction is considered to be independent). sup is the supremum function [Dodge,
2008].

3.5.6 Inferring MINs from Abundance Profile

We are viewing the inference of MINs as an optimisation problem. As our aim is to
estimate the elements of the matrix A, the overall interspecific interaction matrix, this
can specifically be described as a large parameter optimisation problem, because the
parameters we are estimating is in the order of N2, where N is the number of OTUs
taken into consideration. The interaction coefficients of the bacteria community are
considered to be the parameters. In the simplest case, the value we are optimising is
the averaged Bray–Curtis Dissimilarity over the time axis, for the original abundance
profile and the recreated abundance profile from generated with the parameters.
We later take the statistical similarity of the parameter set (interaction coefficients)
to the theoretical distribution of interaction coefficients according to the microbial
community model.

MINs are estimated to be sparse in nature [Chen et al., 2017]. This information
can be used to our advantage in optimising the parameters because the adjacency
matrix of a sparse MIN contains many zero values. But what we do not know is
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Figure 3.4: The process of IMPARO includes a Genetic Algorithm, which takes into
account the Bray–Curtis Dissimilarity (BCD) and the Kolmogorov–Smirnov Test to
calculate the fitness of a solution. The combined score ensures that the Microbial
Interaction Networks (MINs) provided by the algorithm are feasible solutions. XN,T
is the microbial abundance profile, with N OTUs, and T time points. X0 is the mi-
crobial abundances at the initial time point. X∗N,T, is the recreated abundance profile.
f1 and f2 respectively are the factors BCD and KS Test scores counting towards the
overall score.
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which parameters should be set to zero, and which parameters should be set a non-
zero value. Here we use a GA [Sastry et al., 2005; Holland, 1992] based approach
whose Monte-Carlo simulation of Adjacency Matrices for MINs allow an estimated
percentage of values to be set to zero, and to reevaluate that based on the BCD, which
we are trying to minimise.

For the purpose of the GA, we consider each element in the matrix A to be a
gene, and a collection of elements to be a chromosome. Because we are expecting
sparse MINs, the chromosomes do not contain N2 number of genes. This reduces
the computational complexity. The algorithm makes mutations to the genes, which
affect both row (i), column (j), and numeric effect (Aij). The crossover operation is
a single-point crossover, where a randomly selected part of a single chromosome is
replaced by the corresponding part of another chromosome.

The algorithm uses a two-fold fitness function where a score is assigned to each
chromosome based on the BCD and a penalty is assigned based on the likelihood
of being compatible with the community dynamics model. Thus, our algorithm
considers underlying biological compatibility for both the abundance profile - in
terms of OTU propagation through the generalised Lotka Volterra Equations, and
the Adjacency Matrix for MIN with the community dynamics model.

The first part of the score is straightforward, with the BCD. For the penalisation
step, it is important to explore the probability distributions of the community dy-
namics model. The matrix A’s near zero values are identified and zeroed at first, to
satisfy sparseness. The generated matrix is checked for compliance with expected
statistical properties using the Kolmogorov–Smirnov (KS) test, and penalties are ap-
plied according to the KS statistic [Dodge, 2008]. Thus a combination score makes
sure that future generations of solutions are compatible with the underlying biolog-
ical models in terms of MIN and abundance profile. This process is illustrated in
Figure 3.4. 3

The GA approach in IMPARO which uses Monte Carlo methods for gene intro-
duction allows rarer OTUs a better representation in the solution.

3Important code segments are provided in Additional file 2 of Vidanaarachchi et al. [2020].
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Chapter 4

Exploratory Study of Temporally
Dynamic Microbial Interaction
Networks

“I am not now
That which I have been.”

—Lord Byron,
Childe Harold’s Pilgrimage

This chapter is partially composed of material which were published in a manuscript ti-
tled “Exploring Computational Inference of Microbial Interactions and their Dynamics” by
Vidanaarachchi R., Shaw, M., Halgamuge, S.K. in proceedings of the 14th IEEE International
Conference on Industrial and Information Systems 2019. [Vidanaarachchi et al., 2019]

Summary

Background Next Generation Sequencing has increased detailed studies of micro-
bial communities. Understanding microbial interactions is crucial for understanding
these communities. Microbial Interaction Networks (MINs) have been inferred using
microbial abundance profiles, using multiple methods and frameworks.

Results In this chapter we explore current approaches in inferring microbial inter-
actions and demonstrate that they are dynamic in nature, and propose a visualisation
approach for observing dynamic nature of MINs. Our work highlights that even very
rare microbiota have bursts of high abundance at some time points. Further, we sug-
gest possible improvements in the field of computational inference of MINs.

Conclusion In conclusion, this work highlights the importance of considering mi-
crobial interactions to be dynamic. It also emphasises the need for furthering the
study of microbial communities past current assumptions and limitations.

47
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4.1 Background

As we discussed in Chapter 3, microbial communities are abundant in nature. They
are the most numerous of living organisms. As such, they interact and affect many
other systems [Apprill, 2017]. They can be found in water [Blaser et al., 2016], land
[Fenchel et al.] and air [Bryan et al., 2019], and in humans, animals and plants. The
presence or the absence of microbial organisms affect the health of humans and ani-
mals [Clemente et al., 2012; Cho and Blaser, 2012; Khanna and Tosh, 2014; Singh et al.,
2017; Hibberd, 2013; Funchain and Eng, 2013; Kumar and Chordia, 2017]. In plants,
the microbial communities provide essential nutrients and directly affect the yield
[Fitzpatrick et al., 2018]. In aerosphere, microbes are responsible for airborne diseases
[Bryan et al., 2019; Finkel et al., 2017; Mueller and Sachs, 2015]. In oceans, microbial
disturbances have been linked to extreme weather and climate change [Cavicchioli
et al., 2019] and also play an indispensable role in protecting coral reefs [Yang et al.,
2017]. Related to climate change, it has been shown how thermal stress on corals
are reflected on the coral microbiome [Shiu et al., 2017; Lee et al., 2015]. Indeed,
solutions for multiple biological problems will have a connection to understanding
the microbiome of ecosystems.

In Chapter 1 we discussed the three questions proposed by Boon et al. [2013], to
further our understanding of the effect of microbiota in the ecosystems mentioned
above. The research on microbial organisms traditionally relied on in vitro studies
[Hiergeist et al., 2015] but had the limitation of the inability to cultivate most mi-
crobial species in laboratory conditions [Amann and Rosselló-Móra, 2016; Locey and
Lennon, 2016]. However, with the advent of Next Generation Sequencing (NGS),
the first question was answered by analysing the 16S rRNA to identify the different
species in a microbial sampling [Janda and Abbott, 2007]. With high throughput
16S rRNA sequencing approaches that allowed the faster processing of time-series
microbial samples, more studies can be done to understand the dynamic aspects of
microbial communities. This allows us to answer the second question by observing
dynamic compositional changes in the microbiome.

External and internal influences affect the composition of microbial communities.
External influences can include variations in the temperature [Minich et al., 2018],
diurnal cycles [Thaiss et al., 2014], and seasonal changes [Smits et al., 2017]. De-
spite these external factors, non-random co-occurrence patterns have been identified
in microbial samples, which are attributed to internal influences. In addition, both
trophic and non-trophic relationships have been observed in microbial communities
[Wang et al., 2019; Tiede et al., 2016]. Faust et al. [2015] have categorised microbial in-
teractions under mutualism, competition, parasitism, predation, commensalism and
amensalism. Our interest lies in understanding these interactions of microbial com-
munities.

It has been recorded that the external factors mentioned above affect the nature
of trophic and non-trophic activities, in both macro- and microbial life. [Kim and Or,
2017; Lovett et al., 2009; Ciechanowski et al., 2007]. However, in the study of these
microbial dynamics, especially where the Microbial Interaction Networks (MINs) are
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quantified, the interactions themselves are considered to be static.
In this exploratory study, we provide an overview of existing literature and pro-

vide a clear explanation on different Lotka–Volterra models. Then we present ev-
idence for the dynamic nature of microbial interactions. We also propose a novel
way of visualising dynamic MINs. Then we provide an extensive discussion on fu-
ture research directions with dynamic interactions. Lastly, we explain the methods
utilised in this chapter. Apart from the exploration, this chapter has tutorial value in
studying the processes of microbial interaction inference.

4.1.1 Related Work

In the following sub-sections we discuss Lotka–Volterra [Wangersky, 1978] equations,
and their derivations in detail. We hope to clear some confusions regarding the
various uses of the Lotka–Volterra equations present in the literature.

4.1.1.1 Lotka–Volterra Equations

On examining existing model-based work, it is notable that Lotka–Volterra Equations
or one of its adaptations has been used in many approaches as the underlying bio-
logical model. The major reason for the use of the Lotka–Volterra Model is that it
can successfully simulate a microbial community when applied to different scenarios
such as Lake Ecosystems [Dam et al., 2016], human and murine intestinal microbial
systems [Stein et al., 2013; Marino et al., 2014] or the microbial ecosystem which
occurs in the smear cheese ripening process [Mounier et al., 2008].

Predator–Prey Equations The predator–prey equations are two first-order nonlin-
ear differential equations which describe the dynamics of a system with two inter-
acting species [Wangersky, 1978]. They form the basis for Lotka–Volterra equations.

dx
dt

= αx− βxy (4.1)

dy
dt

= δxy− γy (4.2)

In Equations 4.1 and 4.2, x is the number of prey, y is the number of predators.
dx
dt and dy

dt represent the instantaneous growth rates of the two populations. α, β, δ, γ

are positive real parameters describing the interaction between the two species.

Generalised Lotka–Volterra Equations The generalised Lotka–Volterra equations
have the capacity to capture the growth rates and the pairwise interactions of multi-
ple Operational Taxonomic Units (OTUs), which are the important coefficients esti-
mated in the process of inferring MINs.

d
dt

xi(tk) = rixi(tk) + xi(tk)
L

∑
j=1

Aijxj(tk) (4.3)
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In Equation 4.3 xi(tk) describes the relative abundance of the ith OTU at time tk.
The growth rate of the ith OTU is described by ri, which is the generalisation of the
parameters α and γ in Equations 4.1 and 4.2. Generalisation of β and δ is A, which
is called the overall interspecific interaction matrix, where Aij describes the effect on
the jth OTU by the ith OTU. (Aij < 0 represents a adverse effect on the jth OTU by the
ith OTU).

Competitive Lotka–Volterra Equations and the Saturation Term Some methods
use a version of the Lotka–Volterra equation with a saturation term [Gao et al., 2018].
This version is sometimes called the competitive form of the Lotka–Volterra equations
for species competing for a common resource and with known carrying capacities
[Wangersky, 1978]. The saturation term acts as a damping coefficient.

d
dt

xi(tk) = rixi(tk)

(
1−

∑L
j=1 Aijxj(tk)

Ki

)
(4.4)

However, we also identify certain issues with the use of Lotka–Volterra equations
in modelling microbial interactions, some of which are already discussed in literature
[Momeni et al., 2017; Gilpin and Ayala, 1973]. Firstly, with static interactions, pair-
wise modelling is not sufficient to capture the intricacies of microbial interactions.
Secondly, even if we are to consider pairwise abundance variations, as the Lotka–
Volterra equations are a set of first order linear differential equations, any dynamic
interactions are not captured from these equations.

4.1.1.2 Temporally Dynamic Interactions in Other Systems

Microbial ecological models can be compared and contrasted with many other natu-
ral and man-made systems. Literature pertaining to other systems have indications
of time-varying interactions. Song et al. [2009a] discuss time-varying interactions
between genes in gene regulatory networks. In their approach these dynamic inter-
actions were inferred through a kernel-reweighted logistic regression approach based
on time-series gene expression values. Tan et al. [2016] discuss dynamic interactions
in modelling stock market interactions, in terms of a specific stock’s influence on
others.

4.1.2 Motivation and Contributions

From literature we noted that the most frequent modelling approach for microbial
interactions are not suited for non-linear modelling or for representing temporally
varying interaction parameters. Furthermore we noted temporally varying parame-
ters were successfully used in other similar systems. With this in mind, we engaged
in an exploratory study to investigate the temporally varying nature of microbial
interactions.

Our contributions from this study lie in the area of exploring temporal dynamics
of microbial communities. Key contributions summarised:
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Figure 4.1: MIN inferred from the first ten data-points is verified for accuracy with
the subsequent time-intervals of ten data-points. LOESS trend line is shown.

• Exploration into the time-variant nature of microbial interactions

• Visualisation approach for dynamic Microbial Interaction Networks (MINs)

• Investigation of the nature of the temporal behaviour of the individual interac-
tions, and the relationship between the temporal variations of different pairwise
interactions.

4.2 Results

We investigated the dynamic nature of MINs and propose a new visualisation ap-
proach for dynamic MINs.

4.2.1 Dynamic Nature of Microbial Interactions

Using our extension on IMPARO on the data from Caporaso et al. [2011] at the fam-
ily taxonomic level, we inferred a MIN for the time interval comprising of the first
ten data points. This resulted in an Reconstructed Abundance Profile Accuracy [Vi-
danaarachchi et al., 2020] of nearly 90%. However using the same MIN for different
sliding window intervals of ten data points resulted in the results shown in Figure
4.1. Average accuracy for the entire data set was 72.42%.

4.2.2 Visualisation of Dynamic MINs

Traditional visualisation techniques for microbial interaction networks, such as heat
maps and directed graphs, are not well equipped to convey temporal dynamics of
MINs. Hence we propose the use of circular flow diagrams [Abel and Sander, 2014]
to represent MINs. Snapshots of a dynamic MIN inferred on the female faecal micro-
biome of Caporaso et al. [2011] is shown in Figure 4.2. Each chord represents a single
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interaction, whose magnitude is represented through the width of the chord. The di-
rection is represented by the arrow, while a red border around the chord indicates
negative values. Multiple such diagrams are dynamically connected to visualise the
trends of change in MINs.

4.2.3 Further Insights into Interaction Dynamics

We further investigated the nature of the temporal variance of the microbial interac-
tions. In Figure 4.3 we have indicated how a single-pairwise interaction undergoes
a significant change with time. The indicated values were obtained by using IM-
PARO [Vidanaarachchi et al., 2020] in a sliding window approach as described in
Section 4.5.

4.2.4 Categorisation of Temporal Behaviour of Microbial Interactions

After obtaining temporal variation of pairwise microbial interactions, we investigated
the relationships among the temporal variation patterns for different interactions. To
visualise these relationships we used UMAP [McInnes et al., 2018] on the temporal
interaction strength variation curves to obtain points in a reduced dimension. We
can observe clear clusters as presented in Figure 4.4.

4.3 Discussion

In this section we discuss the results that we obtained regarding dynamic microbial
interaction networks and future research directions it leads to.

4.3.1 Dynamic Nature of Microbial Interactions

Many algorithms consider MINs to be static. However, in reality this is not the case.
Microbial communities change over time, and the nature of their interactions may
also change over time. As we showed in Figure 4.1, the inferred interactions on
one time interval do not fit similarly to all time intervals. In further investigations,
we observed that single pair-wise interactions change over time, and that temporal
variation could potentially be classified into two main categories.

Dynamic interactions are found in other biological systems as well. In [Song et al.,
2009a] the authors show that interactions in gene expression during yeast cell cycles
and EEG data during motor imagination tasks can be successfully expressed using
Time Varying Dynamic Bayesian Networks.

4.3.2 Parallels with Stock Market Systems

There are non-biological systems which have temporally dynamic interactions. [Tan
et al., 2016] presents the time varying nature of stock interactions in the Shanghai
stock market and discuss techniques associated with the inference of the interactions.
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Figure 4.2: A dynamic Microbial Interaction Network inferred on the female faecal
microbial sample of Caporaso et al. [2011] at family taxonomic level using IMPARO
[Vidanaarachchi et al., 2020]. Interactions with red outlines are negative interactions.
All interactions are directed in the arrow direction. Width of the chord represents the
magnitude of the interaction, while a red border around the chord indicates negative
values. Sampled snapshots are shown. (This dynamic MIN visualisation is originally
presented in the format of an animated GIF.)
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Figure 4.3: A single pairwise interaction’s temporal change. The LOESS trendline
is shown here against sampling time-points. We note that this interaction oscillates
with time, with changes from positive to negative and vice versa. The peaks of the
interaction strength show a similar notion of periodicity as seen in the Figure 4.1.
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Figure 4.4: UMAP visualisation of microbial interaction dynamics. This figure shows
the temporal variation patterns of 400 pairwise interactions (between 20 OTUs) are
plotted using the Uniform Manifold Approximation and Projection (UMAP) dimen-
sion reduction technique. Interaction strengths at each time point were considered
to be the dimensions in the higher-dimensional space. UMAP was used to reduce
this into the lower-dimensional space. As UMAP is a neighbourhood preserving di-
mensional reduction technique, the neighbourhoods in the 2D plot are indicative of
the neighbourhoods in the higher dimension. This result indicates that the temporal
behaviour of microbial interactions can potentially be classified into a limited set of
categories.
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This work is an ideal example to observe time varying interactions in a complex sys-
tem with multiple interacting units. Stock market systems contain data in a scale not
available in microbial systems; hence observations from this parallel system are in-
teresting. Despite the fundamental differences in a stock market system and a micro-
bial community, at an abstract level these two systems have a multitude of parallels.
When we consider stock price and microbial abundance to be parallel quantifiers in
each system, we observe other parallels in the way that these two dynamic systems
operate. Hence, exploring other similar systems would be of interest.

4.3.3 Future Work

In this subsection, we discuss some of the future research directions that can follow
the ideas investigated in this exploratory study.

4.3.3.1 Testing on Real Life Data

When considering real life data, the actual microbial interactions are not well known.
Hence verification of inference methods is not straight forward. Different methods
use various solutions to overcome this issue. Some use the inferred interactions
fed into a mathematical model for microbial community propagation to recreate the
longitudinal microbial abundance profiles. Others prefer in-vitro methods, where
they cultivate selected species under controlled environments to observe whether the
change in one species is proportional to the change in another. Some studies simply
consider the inference of interactions previously reported in literature as sufficient
verification. However, considering the temporal dynamics of the interactions will
further complicate this verification process.

Some publicly available real data sets, which are suitable for this kind of a study
due to their high number of data points are listed below:

• Moving Pictures of the Human Microbiome [Caporaso et al., 2011]

• American Gut Project Data [McDonald et al., 2018]

• Murine Gut Data [Marino et al., 2014]

• Infant Gut Data [Koenig et al., 2011]

• Microbial Community on Cheese[Mounier et al., 2008]

4.3.3.2 Testing on Simulated Data

Many methods are verified against simulated data, as well as real life data. Simulated
data have two advantages. Firstly, the actual interactions are known for verification
purposes. Secondly, data could be synthesised for a variety of scenarios in high
volume. The disadvantage is that the data is generated with certain assumptions in
place and using mathematical models which are typically the same as the models
used in the inference process. To circumvent issues with circularity, some methods
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sample real life data sets to create varied simulated data which do not conform to a
mathematical model. However this approach has the disadvantage of not knowing
the underlying interactions.

4.3.3.3 Quantifying the effect of external factors

As mentioned in Section 4.1, changes in the microbial abundances are not exclusively
due to internal factors. Yet in many inference algorithms, it is assumed that there are
no external influences on the abundance of OTUs. With Hidden Markov Models
(HMM), it would be possible to quantify various external factors as a hidden state.

4.3.3.4 Existence of Multiple Solutions within a Dynamic System

The assumption of the existence of a unique solution does not always hold. [Cao
et al., 2017; Vidanaarachchi et al., 2020]. IMPARO seeks to loosen this assumption
and to provide multiple solutions. Gao et al. [2018] combine multiple intermediate
solutions into a unique MIN. Further research is possible in examining the possi-
bility of multiple solutions and their interpretations, noting that the existence of
multiple solutions is a separate question from that of dynamic solutions to the MINs.
Specifically, investigating how the probability of different solutions changes over time
would be interesting.

4.3.3.5 Rarer OTUs and their Effect

Most microbial interaction inference methods do not treat rare OTUs equally. How-
ever, as microbial communities are heterogeneously influential, the low abundance of
a certain OTU is not a guarantee that the species is not influential. Likewise, not all
abundant OTUs will have a great influence on the community. It would be of interest
to consider techniques which allow the exploration of the influence of rarer OTUs. In
some microbial profiles, rare OTUs seem to have abundance bursts as shown in Fig-
ure 4.5. As a result of considering microbial interactions to be dynamic, we can now
investigate whether the rarer OTUs have a higher influence at peaks of abundance.

4.3.3.6 Collective Pattern Recognition

There is a possibility of improving the quality of microbial inferences by supple-
menting a singular data set with other parallel data sets. Lugo-Martinez et al. [2019]
suggest promising results in using parallel data sets (for example, data sets from
multiple newborn infants, aligned using time of birth as reference). Computational
challenges associated with this approach include aligning the timescale and recognis-
ing patterns which are common across the set of samples. We take on this challenge
in the following chapter (Chapter 5).
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Figure 4.5: Abundance profiles of very rare OTUs (average abundance ≤ 0.01%) in a
male faecal data set at family taxonomic level from [Caporaso et al., 2011]. Even the
very rare OTUs have bursts of high abundance at some timepoints.

4.4 Conclusion

We compared and contrasted existing work and methodologies used in inferring
microbial interactions in detail. We proposed that Microbial Interaction Networks
(MINs) should be considered as dynamic systems, and presented a new visualisa-
tion. Then we explored the nature of the temporal variance of the interactions, and
suggested that it shows signs of categorisation. Furthermore, we discussed future
research possibilities in computational inference of microbial interactions.

4.5 Methods

We extended IMPARO [Vidanaarachchi et al., 2020] to investigate the dynamic nature
of MINs. IMPARO has reported its accuracy in the order of 80% for real-life data sets.
The authors explain that the high error margin is partly due to their assumption of
microbial interactions as static. Our method of investigating the dynamic nature of
microbial interactions is described below.

• Let X be a microbial abundance profile of time duration T for N OTUs, where
relative abundance of each species at time points (0, 1, 2...T) are given.

• Let X[t1, t2) be the time interval of X, such that, for any given time point,
t1 ≤ t < t2.

• Let A = f IMPARO(X[t1, t2)) be the MIN inferred through IMPARO by examining
the time interval X[t1, t2).

• Let acc = fRAPA(A, X[t1, t2)) be the Reconstructed Abundance Profile Accuracy
(Sub Section 4.5.1), when A is applied to the time interval X[t1, t2).

• Let ∆t be a small time difference.
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First we consider A1 = f IMPARO(X[t1, t1 +∆ta)). Then we consider the indexed set
Θ, consisting of sliding window time intervals of size ∆tb, such that, Θ = {X[0, 0 +
∆tb), X[1, 1 + ∆tb), ..., X[T − ∆tb, T)}. Lastly we plot the series of accuracy metrics,
where, acci = fRAPA(A1, Θi), for 0 ≤ i ≤ T − ∆tb.

4.5.1 Reconstructed Abundance Profile Accuracy (RAPA)

The reconstructed abundance profile accuracy [Shaw et al., 2016; Vidanaarachchi
et al., 2020] is a metric of how accurately the original abundance profile can be recon-
structed with the inferred MIN. This is useful with real-life data, because the ground
truth is not known in such cases. MINs which are capable of recreating the origi-
nal abundance profile closely are considered to be be good approximations. Using
the original initial conditions, X[0], the subsequent microbial community composi-
tions are calculated using the generalised Lotka–Volterra model. This reconstructed
microbial abundance profile is then compared to the original using the Bray-Curtis
Dissimilarity [Bray and Curtis, 1957].

4.5.2 Locally Estimated Scatterplot Smoothing (LOESS)

Locally Estimated Scatterplot Smoothing (LOESS) is a local regression method, built
on classical regression methods, with local weighting, based on the concepts of the
Zavitzky-Golay filter [Savitzky and Golay, 1964]. It obtains a smooth plot from a set
of scattered data-points while respecting local trends.

4.5.3 Uniform Manifold Approximation and Projection (UMAP)

Uniform Manifold Approximation and Projection (UMAP) [McInnes et al., 2018] is
a manifold learning technique for dimension reduction. It is considered to have
high visualisation quality and preserve more global structure than other dimension
reduction techniques such as t-SNE [Van Der Maaten and Hinton, 2008]. For our
application of comparing microbial temporal dynamics, UMAP is especially suitable
because of its global structure-preserving nature.



Chapter 5

CoPR: Collective Pattern
Recognition—a Framework for
Microbial Community Activity
Analysis

This chapter is partially composed of material that appears in a manuscript titled “CoPR:
Collective Pattern Recognition—a Framework for Microbial Community Activity Analysis”
by Vidanaarachchi R., et al. that is being finalised for submission to a journal.

Summary

Background Microbial community activities provide essential information on un-
derstanding bacterial communities. Unfortunately, they are generally not directly
observable. We rely on longitudinal abundance profiles to get insight into microbial
community activities. Often datasets do not have sufficient longitudinal sampling
points to successfully apply our algorithms. Hence, in this chapter, we are interested
in analysing multiple datasets from similar environments to alleviate the aforemen-
tioned problem. Furthermore, we wish to see whether collective pattern recognition
would enhance our understanding of microbial community activities.

Results In this chapter, we present CoPR, a framework for collective microbial lon-
gitudinal abundance data. Our visualisation shows that a single pattern for temporal
abundance variation does not exist. However, it also indicates that even complete
individuality does not exist. Consequently, our visualisation highlights the individ-
uality and conformity in the temporal variation of abundance profiles of similar host
environments. We also identify different characteristics in the TVAP (Temporal Vari-
ation of Abundance Profile) patterns with regards to cohesion and separation.

59
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Conclusions CoPR helps gain essential insights into the microbial communities and
their heterogeneity. This chapter also highlights the choice between individuality and
conformity in microbial community data analysis.

5.1 Background

In the previous chapters, we discussed that we cannot generally observe microbial
activity in the host environment and that we rely on longitudinal observations of mi-
crobial abundance profile data to infer their activity. With IMPARO [Vidanaarachchi
et al., 2020], we explored techniques for using mathematical models and optimisation
to interpret the temporal variation of the abundance profile and infer interactions in
the microbial communal activity.

In this chapter, we continue our quest for answering the question of “What are
they doing [in the microbial communities]?” [Boon et al., 2013]. In doing so, rather
than quantifying the microbial behaviour as in the previous chapters, we look at the
patterns in the temporal variation of the abundance profile (TVAP patterns). We can
define a TVAP pattern as a particular pattern observable in the graph of abundance
against time. It can be unique to a certain OTU or a specific host environment.
We believe that comparing and contrasting TVAP patterns can infer insights into
microbial community activity.

The inference of microbial activity through interaction inference algorithms is
heavily reliant on the quality of available datasets. A useful dataset’s favourable
qualities are high sampling frequency, consistent sampling frequency, and numerous
sampled time points. Unfortunately, most of the available datasets do not feature
these qualities.

For example, let us examine the Moving Pictures of the Human Microbiome study
[Caporaso et al., 2011], which was analysed in Chapter 3. This study was conducted
over up to 15 months over 396 time points and provided time-series microbial abun-
dance data of two individuals at four body sites [Caporaso et al., 2011]. The sampling
frequency of this study is daily. We achieved high accuracy in inferring microbial ac-
tivity in this dataset [Vidanaarachchi et al., 2020].

However, such datasets are not very commonplace. To illustrate the difficulty in
collecting such a dataset, consider the scenario of a longitudinal study of the gut
microbiome of a healthy individual. An individual available for daily stool analysis
for six months would be the primary requirement of such a study. Furthermore, there
will be barriers in terms of cost in studies that require specialist sample collection,
such as coral microbiome collection requiring expert divers. On the other hand,
some studies naturally have a shorter duration of interest, as in the menstrual vaginal
microbiome—where the sampling needs to happen during the menstruation period
[Song et al., 2020].

Literature shows that many studies collected data parallelly from similar micro-
bial communities–we consider microbial communities inhabiting the same type of
host environments to be similar microbial communities. When a single dataset is not
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sufficient for inferring microbial communal activity, it has been shown that multiple
datasets from similar communities could supplement the lack of data and provide
more accurate inferences [Lugo-Martinez et al., 2019]. In this chapter, we explore the
idea of collective pattern recognition for enhancing our understanding of microbial
community dynamics.

For example, one such dataset we explore in this chapter comes from a study
by La Rosa et al. [2014]. They have sequenced the microbial communities in the
guts of multiple premature infants in a neonatal Intensive Care Unit. We consider
the premature infant gut as the type of host environment. Hence we use collective
pattern recognition on microbial abundance profile datasets from all the infants in
the study. With an average of 15 time-points per dataset, each dataset lacks sufficient
data to successfully infer the microbial community dynamics. However, given that
there are data from 58 infants, we can compare and contrast the different infants’
TVAP patterns and figure out common patterns of microbial behaviour—thus, this
chapter’s motivation is to combine datasets to recognise patterns collectively.

A second issue prevalent in analysing microbial community activities is the lack
of independence from clinical or environmental factors. While the longitudinal abun-
dance variation patterns reflect microbial activity (interactions), it is hard to discern
the difference between the change in abundance due to internal—trophic or non-
trophic—microbial activity and the change due to clinical factors and external influ-
ence. Even if the clinical data and a subset of environmental details are available, it
is difficult to eliminate their factor into the abundance variation completely.

Using collective pattern recognition also allows discarding external factors up to
an extent. Unless similar external factors affect all the host environments, collectively
looking at the TVAP would identify patterns common to the host environment itself.
If there are limited ways external factors affect the microbiome, collective pattern
recognition allows identifying which host environments have been affected by the
external factors.

Given the above reasons, we believe that collective pattern recognition will im-
prove our understanding of microbial community activity.

5.1.1 Related Work

We explore related work under four main themes. Firstly, we look into the nature of
the datasets available to gain insights into the requirements of working with similar
data. Secondly, we look into microbial activity inference methods, as our end goal
is to be facilitating the activity inference processes. Thirdly, we look into collective
pattern recognition and clustering approaches, which plays a crucial role in our re-
search. Fourthly, we look into the existing literature on individuality and conformity
in microbial communities, under which we explore the ideas of microbial signatures,
community state types, and precision medicine.
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5.1.1.1 Microbial Abundance Datasets

In this section, we will summarise some datasets where 16S rRNA sequencing has
been used to collect time-series data from multiple similar host environments, which
we already mentioned in Chapter 2.

Premature Infants’ Gut Microbiome La Rosa et al. [2014] presents data from 58
neonatal infant gut microbial communities. This dataset was of interest as all the
samples were collected while the infants were undergoing care at the neonatal in-
tensive care units, which limited the gut microbiome’s interaction with the outside
world, thereby limiting the external factors into the dynamics of the microbial com-
munity. They have collected 922 samples with an average of just over 15 per infant,
up until 36 weeks of post-conception age, for all stool passings for each infant.

Vaginal Microbiome of Reproductive-Age Women Gajer et al. [2012] presents a
dataset from 32 reproductive women’s vaginal microbial communities. They col-
lected 937 samples over 16 weeks, with twice a week sampling frequency, averaging
just over 29 samples per woman.

Human Microbiome Related to Pregnancy DiGiulio et al. [2015] have collected
over 2500 samples from 49 pregnant women, pre– and post–delivery. They collected
microbial community samples from the vagina, distal gut, saliva and tooth/gum just
under 20 samples per site per woman. The collection frequency was weekly during
gestation and monthly after the delivery.

Neonatal Gut and Respiratory Microbiome Grier et al. [2018] have compiled an-
other infant dataset from 82 infants. The data was collected over up to a year after
birth with a weekly sampling frequency at the hospital and monthly thereafter. They
have collected data from the gut (average of 13 per person) and respiratory tracts
(nasal - an average of 12 and throat - an average of 6).

Availability of data of this nature makes our framework necessary and feasible.

5.1.1.2 Microbial Community Activity Inference

Out of the many microbial community activity inference approaches, most depend
on high-frequency datasets with a higher number of data points. IMPARO [Vi-
danaarachchi et al., 2020] uses an evolutionary algorithm with Lotka-Volterra equa-
tions to approximate microbial interaction parameters. MetaMIS [Shaw et al., 2016]
uses partial least square regression to estimate interaction parameters. Other meth-
ods include SparCC [Friedman and Alm, 2012], which uses statistical methods, and
the method by Lugo-Martinez et al. [2019], which uses integrated data from mul-
tiple subjects in a Dynamic Bayesian network-based model. More about microbial
community activity inference were discussed in Chapters 2, 3 and 4.
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The majority of the above methods use time-series data from a single host en-
vironment, and the results are significantly impacted by the availability of a large
number of frequently sampled data points. Also, they do not utilise the availability
of datasets with time-series samples of multiple similar host environments.

5.1.1.3 Collective Pattern Recognition, Clustering, and Temporal Aligning Ap-
proaches

The idea of collective pattern recognition has been previously discussed in multiple
works. Less so in the field of microbial interaction inference or related to microbial
abundance data, but mainly in the area of gene expression analysis. As we can draw
parallels between many biological data types, we will be looking at collective pat-
tern recognition (including clustering and temporal aligning focused) work covering
various applications.

Lugo-Martinez et al. [2019] has explored collective pattern recognition for infer-
ring microbial abundance patterns successfully. They align the temporal variation
patterns coming from multiple host environments and define a typical pattern. They
use this common pattern together with a dynamic Bayesian network to successfully
predict microbial composition.

Bar-Joseph et al. [2012] reviewed clustering mechanisms to explore the response to
external signals in time-series gene expression data. They also reviewed combining
time-series data with other dynamic and static genomics data to better model gene
expression patterns.

Bar-Joseph et al. [2003] used dataset alignment techniques and clustering to es-
timate unobserved data points in gene expression data. With datasets aligned by
modelling them as piecewise polynomials, they had been able to achieve biologically
meaningful results.

Smith et al. [2009] also used time-series aligning techniques for temporal gene ex-
pression data. What makes their work interesting is that they present clustered data
alignment, removing the assumption that all genes share the same alignment. Theirs
is the first work to not treat gene expression data as homogeneous. Their inter-
cluster independence in aligning temporal data provides more accurate alignments
than earlier methods.

Aach and Church [2001] used time warping algorithms when working with RNA
and protein expression datasets. They show that time-warping clustering is superior
to standard clustering using both interpolative and simple time-warping techniques.
Their work is interesting in not assuming time-series biological data to be homoge-
neous in their temporal variation.
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Criel and Tsiporkova [2006] also used time-warping techniques for alignment and
template matching of time-series gene expression data. In their work, they have
adapted dynamic time warping techniques from speech recognition research.

Dong et al. [2020] introduce a statistical framework for co-expression networks.
They use a kernel function to measure the similarity between subjects, which we
identify as a collective pattern recognition technique. Their method, applied to time-
series gene expression profiles of a group of subjects with respiratory virus exposure,
produced early and accurate results.

Somani et al. [2020] also analyses gene-expression data in their recent work. While
using data from multiple subjects to model disease-relevant pathways, they also al-
low personalisation through a Gaussian process to identify differentially expressed
genes. Their work claims to be more robust for identifying disease-relevant pathways
in heterogeneous diseases.

Chandereng and Gitter [2020] recently used time-series clustering techniques with
lag penalisation for gene expression and protein phosphorylation datasets. They
successfully identify clusters with distinct temporal patterns in both yeast osmotic
stress response and axolotl limb regeneration studies. This study exemplifies that
heterogeneous temporal variation behaviour is observed across various biological
processes.

Jiang et al. [2020] used dynamic time warping techniques for comparative time-
series transcriptome analysis in their recent work, TimeMeter. They were success-
ful in characterising complicated temporal gene expression associations. They un-
cover exciting patterns in mouse digit restoration and axolotl blastema differentiation
datasets.

5.1.1.4 Individuality and Conformity

Individuality is identified as a microbial community behaviour, which is not uniform
across communities of similar nature. Conformity is the opposite when similar OTU
communities behave in a set predictable pattern. The individuality of microbial com-
munities has been identified in the literature [Martins and Locke, 2015]. Especially
in research on the gut microbiome, precision medicine has been proposed and suc-
cessfully used in several studies [De Filippis et al., 2018; Cammarota et al., 2020].
Conforming behaviour has also been reported in the literature [Gong et al., 2016]. In
the case of OTU communities, the concept of Community State Types [Ravel et al.,
2011] is an existing approach of explaining the balance of individuality and confor-
mity in microbial communities.

Introduced by Ravel et al. [2011], Grier et al. [2018], DiGiulio et al. [2015] and other
studies report community state types (CSTs) in various microbial communities. The
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idea of CST is based on the composition of the constituent OTUs; as such, it is defined
for a snapshot in time. DiGiulio et al. [2015] further notes that some communities
show different state types, while some may show the same CST throughout the entire
sampling period.

However, most microbial activity inference methods consider a single microbial
community in their inference process, thus taking a highly individualistic approach.
Some reasons for this could be the complexity of the external factors affecting the
microbial community dynamics [Vidanaarachchi et al., 2020].

Lugo-Martinez et al. [2019], however, uses a unified model obtained by aligning
different microbial community TVAPs and assumes that a general microbial com-
munity of that particular type will take a particular pattern. DiGiulio et al. [2015]
considers a vaginal community signature in their analysis of the vaginal microbiome.

Looking at the literature cited above, we can acknowledge that both approaches
in considering individuality and conformity in the microbial community analysis
process have their own merits.

5.1.2 Motivation and Contributions

It was interesting to note that collective pattern recognition goes hand-in-hand with
individuality and conformity of microbial community dynamics. Considering the
availability of studies where multiple temporal datasets of similar environments are
available and the successful prior use of collective pattern recognition for biological
data analysis, we further explored collective pattern recognition for microbial com-
munity dynamics analysis. We were motivated to use the collective pattern recogni-
tion techniques to shed light on individuality and conformity in microbial commu-
nity dynamics and the heterogeneous nature of microbial abundance datasets.

We use unsupervised learning and visualisation techniques to analyse microbial
abundance datasets and examine the TVAP patterns. We also talk about individuality
and conformity, and heterogeneity of data in relation to microbial abundance datasets
in our work.

In this chapter, we present CoPR (Collective Pattern Recognition), a framework
for analysing microbial community activities, which aims to address problems in lack
of temporal abundance data and effects of external factors. CoPR primarily clusters
OTU communities based on their TVAP patterns.

Ours is the first work to analyse the balance between individuality and confor-
mity in microbial community activity patterns. Many existing works attempt to iso-
late a single pattern for temporal activity in microbial communities when working
with multiple datasets. However, we consider microbial communities to be individ-
ualistic to a certain degree and look at multiple temporal activity patterns microbial
communities can follow. Thus we believe our framework allows a more accurate
analysis of microbial community activity.

CoPR also considers the heterogeneity of microbial datasets. We talk about mi-
crobial heterogeneity on multiple aspects and show that microbial abundance data,
when treated as non-homogeneous, can uncover important details about the tempo-
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ral community activity.
We present the analysis of multiple real-life datasets and simulated data. Our

analysis identifies that the qualities of individuality and conformity in microbial
communities are present across varying taxonomic resolutions, abundance levels and
host environment types.

Key contributions summarised:

• Identifying correlations between different OTU TVAP pattern clusters.

• Framing the discourse around the balance between individuality and confor-
mity, which we believe is essential to understanding microbial community ac-
tivity.

• Exploration of heterogeneity of OTU TVAP patterns.

• Verification of the framework through the analysis of multiple real-life datasets
(varying taxonomic levels, abundance levels, from different host environments,
etc.) and simulated data.

5.2 Results

We processed several datasets—both real-life and simulated—through the pipeline
and visualised patterns in the temporal variation of abundance profiles (TVAP pat-
terns). Then we analysed the visualisations to illustrate how we can use them to
gain insights into the microbial community dynamics. We present the results that
illustrate some of the key arguments in this section. First, let us look at an example
visualisation (Figure 5.1) to clearly understand the underlying meaning.

5.2.1 Non-Conformity Among the Communities of the Same OTU in Dif-
ferent Host Environments

We explore the temporal variation of abundance patterns of four OTUs—Bacilli, Acti-
nobacteria, Clostridia, and Gammaproteobacteria—in the neonatal infant gut data set
[La Rosa et al., 2014]. These particular OTUs were selected as they form the in-
tersection of the ten highest abundant (averaged over time) OTUs in all the host
environments (infants)—we shall call these the major OTUs (see Section 5.5.3).

The first observation we would like to draw attention to is how each OTU’s TVAP
is separated into different clusters, as seen in Figure 5.2. This clustering indicates no
conformity to a typical pattern observed for an OTU across different communities.
This heterogeneous behaviour can again be identified in the TVAP curves seen in
Figure 5.3.

5.2.2 Conformity Among the Communities of the Same OTU

Secondly, we observe that the different communities neither subscribe to a typical
behaviour nor completely sporadic. Let us consider the clusters shown in Figure 5.2.
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Figure 5.1: An example visualisation. In the cluster plots, each axis represents a
dimensionally reduced component. Each dot in the cluster plot represents a spe-
cific environment’s temporal variation of the abundance profile (TVAP) of Bacilli (in
this example). Host environments where Bacilli show similar TVAPs are clustered to-
gether, while host environments where Bacilli show distinct TVAPs are placed further
away from each other. Trios of co-centred circles represent Gaussian Mixture Model
clusters, where the varying opacity indicate the likelihood of a datapoint belonging
to that cluster.

Especially the clusters of Gammaproteobacteria are tightly knit together. Although we
have clustered the Gammaproteobacteria communities into two clusters according to
the silhouette value (see Section 5.5), we observe a distinctly identifiable subcluster
within one of the main clusters. In Figure 5.3, we have increased the cluster numbers
to closely observe how the temporal variation patterns differed. It indicates that al-
though the primary separation is based on falling–rising behaviours, the subclusters
differ on when the rise happens. The communities belonging to the smaller of the
three clusters all show an initial rise in Gammaproteobacteria abundance. This cluster,
along with the cluster in the third column of Figure 5.3, where a general rising be-
haviour is observed, formed the larger cluster of Figure 5.2 (indicated in deep red).
Interestingly this conformance to a specific behaviour happens in certain subsets of
communities.

Observing the TVAP plots in Figure 5.3, we also note that the deviancy from
the cluster’s median is different for each cluster. Observation of this heterogeneous
behaviour is also of interest.

However, as a summary, we can say that there are three distinctly identifiable
TVAP patterns amongst Gammaproteobacteria communities in the infant gut. The first
is a gradual reduction of relative abundance; the second is an initial rise in relative
abundance and subsequent maintenance. The third can be categorised as a late rise
in relative abundance. In our original clustering of Figure 5.2, the two clusters rep-
resented a rise and a fall in relative abundance. In the finer clustering of Figure 5.3,
the rise was characterised into two different rising patterns. Although this behaviour
is demonstrated in the Gammaproteobacteria communities, sub-cluster separation can
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Figure 5.2: Clustering of TVAP of the major OTUs in the gut microbiome of preterm
infants while in a neonatal ICU La Rosa et al. [2014] is shown in the figure. Dis-
tances between TVAP were calculated using dynamic time warp (DTW) distance and
visualised with UMAP (Uniform Manifold Approximation and Projection). Colours
are local to each figure and represent clusters identified through Gaussian mixture
models (GMM) clustering, where the highest silhouette score determined the num-
ber of clusters. All four major OTUs (a. Bacilli, b. Actinobacteria, c. Clostridia, and
d. Gammaproteobacteria) show clear cluster separation. Gammaproteobacteria shows the
most explicit separation. Although the optimal cluster number, according to silhou-
ette score, is two, we observe sub-cluster separations in the dark red cluster. The
axes in these plots are: UMAP Component 1 (x) and UMAP Component 2 (y).
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Figure 5.3: The figure shows distinctly identifiable TVAP patterns of Gammaproteobac-
teria in the La Rosa et al. [2014] dataset. Each subfigure in the top row highlights a
separable cluster of subjects, and corresponding subfigures in the bottom row show
the TVAP of the highlighted subjects (blue lines). The thick pink line represents the
median. The highlighted cluster in the third column shows more variation than the
other two. It can be observed that the cluster from the first column encapsulates
subjects in which the Gammaproteobacteria’s relative abundance drops from birth to
discharge. In the second column, the relative abundance rises steeply soon after birth
and maintains an abundance level thereafter. The third column is harder to classify
clearly but shows a general trend of rising and falling while favouring a final rise.
The axes in the top row plots are: UMAP Component 1 (x) and UMAP Component
2 (y).
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Figure 5.4: This figure shows the distribution of the overlap coefficient between the
different clusters in the analysis of the La Rosa et al. [2014] dataset. Gammaproteobac-
teria, Clostridia, Bacilli, and Actinobacteria were clustered into three. Highest overlaps
are observed in Gammaproteobacteria and Bacilli clusters.

be identified in other communities as well. We can discern the existence of possibly
separable sub-clusters by observing silhouette scores.

5.2.3 Agreement of Clusters of Different OTUs

Next, we investigated the connection between the clusters of different OTUs. To
quantify this, we looked at the overlap coefficient (see Section 5.5) of cluster mem-
bership. The cluster membership distribution calculated for the same dataset can
be seen in Figure 5.4. Firstly, it gives us a quantitative sense of the overlaps, and
secondly, it provides us with information that is hard to discern visually.

From Figure 5.4, we identified the overlaps of Gammaproteobacteria and Bacilli.
This association between the three clusters were statistically significant, χ2 = (4, N =
54) = 43.6075, p = 7.40076E− 9 (Fisher’s exact test = 1E− 8) (< 0.01). Furthermore,
the relationship between the two main clusters of Gammaproteobacteria and Bacilli
were statistically significant, χ2 = (1, N = 54) = 10.7628, p = 0.001036(< 0.01). We
further explored the corresponding behaviour in Figure 5.5. In the left half of the
figure, we observe that Gammaproteobacteria’s TVAP rises initially and maintains that
level, while Bacilli’s corresponding TVAP falls and maintains very low. Interestingly
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Figure 5.5: The figure shows the corresponding behaviour of Gammaproteobacteria (top
row) clusters with Bacilli (bottom row) clusters. Subfigures show TVAP clustering
and the TVAP curves corresponding to the highlighted host environments (infants),
with the median curve for the subset of highlighted host environments shown as the
thick pink line. Clusters on the left show that the initial rise in Gammaproteobacteria
corresponds with an initial fall in Bacilli (The overlap coefficient for these two clusters
are 71% with a Jaccard Index of 48%). Clusters on the right show that decreasing
relative abundance of Gammaproteobacteria corresponds with the rising and falling
behaviour of Bacilli. Observations seen in the clusters on the left are in line with
the observations of La Rosa et al. [2014]. Still, while they generalise this observation
for the whole community, we highlight that this is only one of the three distinctly
identifiable trends observable in this dataset. The axes in the cluster plots are:
UMAP Component 1 (x) and UMAP Component 2 (y).

while this exchange of prominence in the bacterial community is clear, we cannot
find a clear explanation for the corresponding behaviour in the other two clusters
from the median TVAP patterns.

5.2.4 Clusters and External Factors

We were interested in investigating whether the clustering of host environments had
a connection to the external factors. Some datasets include clinical factors and other
environmental variables, which could broaden the value of our analysis. For exam-
ple, in our analysis of the neonatal gut microbial dataset [La Rosa et al., 2014], a con-
nection between the infants’ delivery method seemed to correlate to the clustering of
Bacilli and Gammaproteobacteria TVAPs. However, a chi-square test of independence
showed no significant association between the TVAP clustering and delivery method.
χ2 = (1, N = 54) = 0.8105, p > 0.1
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5.2.5 Common Themes in Multiple Real Life Datasets

We explore a second dataset, which consists of gut, nasal and throat microbiomes of
infants Grier et al. [2018]. The primary aim of this exploration is to observe common
themes which can be identified in real-life datasets.

In Figure 5.6, we note that six major OTUs are identified in the Grier et al. [2018]
gut dataset. Among the six are the four identified in the La Rosa et al. [2014] study’s
analysis. The separation of clusters also shows similarity, with Gammaproteobacteria
communities arguably separating well, although not as well as in the previous study.
Actinobacteria is also notably separated into three different clusters. However, overall,
in all the OTU clusterings, we can identify many clear subclusters. We also observe
connected clusters in Bacteroidia and Coriobacteriia communities.

In Figure 5.7, we explore the TVAP patterns in the nasal microbiome from the
Grier et al. [2018] study. We observe five major OTUs identified, of which Clostridia’s
separation and Betaproteobacteria’s separation are clearly identifiable. Most notewor-
thy out of all is Bacilli’s TVAP patterns, which show a set of triangularly intercon-
nected clusters. This cluster layout is an excellent example of the gradual behavioural
change in the communities where a balance between individuality and conformity
may exist. Bacteriodia and Actinobacteria show connected clusters as well.

In Figure 5.8, we explore the TVAP patterns of the throat microbiome of Grier
et al. [2018], where six major OTUs have been identified. We observe clearly disjoint
clusters in Fusobacteria and Betaproteobacteria. Throat microbiome is the second type
of community where Betaproteobacteria shows good separation, and the third, when
we consider Proteobacteria as a whole (Figures 5.6, 5.7 and 5.8). The cluster shapes
and directions again prove interesting, with Clostridia showing a tree-like structure.
This structure suggests that each cluster shows gradual changes in three different
directions, deviating from a central pattern

5.2.6 Differentiating Disjoint Clusters and Connected Clusters

A secondary observation we can make from Figures 5.2 and 5.3 is that in some OTUs,
the clusters are distinct and disjoint, while in other OTUs, the clusters are connected.
The same behaviour is highlighted in Figure 5.9. Here we can identify another pe-
culiar behaviour of TVAP patterns: Disjoint clusters represent TVAP patterns which
correspond to a set behaviour, as opposed to connected clusters, we can see a gradual
change of behaviour in TVAP.

5.2.7 Analysis Across Taxonomic Resolutions

In Figure 5.10, starting from the phylum (L2) taxonomic level, moving up to genus
(L6) taxonomic level, we have demonstrated that the traits of individuality and con-
formity are present at varying taxonomic levels—in addition to the observations at
the class (L3) level. Also, we observe the TVAP pattern clusters change as we traverse
through the taxonomic hierarchy. Also noteworthy is the conserved structure of the
taxonomic hierarchy of Phylum Firmicutes, Class Bacilli, Order Lactobacillales, Family
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Figure 5.6: Clustering of TVAP of the major OTUs in the gut microbiome of infants
from Grier et al. [2018] study are shown in the figure. Distances between TVAP
were calculated using DTW, and and visualised with UMAP. Colours are local to
each figure and represent clusters identified through GMM clustering, where the
highest silhouette score determined the number of clusters. All four major OTUs
(Bacilli, Gammaproteobacteria, Clostridia, and Actinobacteria) found in the La Rosa et al.
[2014] dataset are also found to be major OTUs in this dataset, with the addition of
Corriobacterlia and Bacteroidia. Similar to the La Rosa et al. [2014] study, Gammapro-
teobacteria, Bacilli, and Clostridia show clear separation into two clusters. The axes in
these plots are: UMAP Component 1 (x) and UMAP Component 2 (y).
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Figure 5.7: Clustering of TVAP of the major OTUs in the nasal microbiome of infants
from Grier et al. [2018] are shown in the left-hand figure. Distances between TVAP
were calculated using DTW and visualised with UMAP. Silhouette scores for different
cluster numbers for each of the major OTUs are plotted in the right-hand figure.
Colours are local to each sub-figure in the left-hand figure and represent clusters
identified through GMM clustering. The number of clusters was determined by
the highest silhouette scores, as shown in the right-hand figure. Three major OTUs
(Bacilli, Clostridia, and Actinobacteria) found in the La Rosa et al. [2014] dataset are
also found to be major OTUs in this dataset. The absence of Gammaproteobacteria
could be explained by the aerobic environment of the nasal cavity. While some OTUs
have silhouette scores indicative of a superior number of clusters, others have closely
competing cluster numbers. The axes in the cluster plots are: UMAP Component 1
(x) and UMAP Component 2 (y).
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Figure 5.8: Clustering of TVAP of the major OTUs in the throat microbiome of in-
fants from Grier et al. [2018] study are shown in the figure. Distances between TVAP
were calculated using DTW, and visualised using UMAP. Colours are local to each
figure and represent clusters identified through GMM clustering, where the high-
est silhouette score determined the number of clusters. Three major OTUs (Bacilli,
Clostridia, and Actinobacteria) found in the La Rosa et al. [2014] dataset are also found
to be major OTUs in this dataset. The absence of Gammaproteobacteria could again
be explained by the aerobic environment of the throat cavity. While Bacilli, Betapro-
teobacteria and Fusobacteria show clear separation, other OTUs show gradual changes
in TVAP. The axes in the cluster plots are: UMAP Component 1 (x) and UMAP
Component 2 (y).
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A

B1 B2 B3

Figure 5.9: The figure shows clustering of the major OTUs in infants’ gut micro-
biome from the Grier et al. [2018] study. Distances between TVAP were calculated
using DTW and visualised using UMAP. Colours are local to each figure and repre-
sent clusters identified through Gaussian Mixture Models (GMM) clustering, where
the highest silhouette score determined the number of clusters. The TVAP patterns of
Gammaproteobacteria show separated two main clusters and subclusters within. How-
ever, the TVAP of Bacteriodia shows gradual change across the clusters, as shown in
the subfigures B1 - B3. The axes in the cluster plots are: UMAP Component 1 (x)
and UMAP Component 2 (y).
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PHYLUM CLASS ORDER

FAMILY GENUS

Figure 5.10: This figure shows the TVAP clustering of the infants’ nasal microbiome
from Grier et al. [2018] at various taxonomic levels. Colours are local to each figure
and represent clusters identified through GMM clustering, where the highest silhou-
ette score determined the number of clusters. The number of major OTUs reduces
with the increased taxonomic resolution. However, at each resolution, we observe
separated clusters. The axes in the cluster plots are: UMAP Component 1 (x) and
UMAP Component 2 (y).

Streptococcaceae, and Genus Streptococcus which is featured in Figure 5.11. Also, at
each taxonomic level, there are both disjoint and connected clusters present.

5.2.8 Major OTUs and Secondary OTUs

We mainly focused on the major OTUs, which were defined as the most abundant
OTUs common to all the host environments. However, we are also interested in
observing the nature of secondary OTUs’ TVAP patterns. Figure 5.12 shows a data
set from the throat microbiome again, but we have chosen the second most abun-
dant taxa instead of the major ones. We notice that even the secondary OTUs show
attributes we discussed above. We especially take note in TM7-3 and Flavobacteria
which show clearly disjoint clusters. Although non-major OTUs are discarded in
some studies from the analysis [Shaw et al., 2016], we suggest that CoPR can suc-
cessfully give meaningful visualisations for those.

5.2.9 Silhouette Scores and the Number of Clusters

In using any kind of clustering, deciding the optimal number of clusters is essential.
We used the silhouette scores for this purpose. In Figure 5.7, we show the silhouette



78 CoPR: Collective Pattern Recognition for Microbial Community Activity Analysis

Phylum
Firmicutes

Class
Bacilli

Order
Lactobacillales
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Figure 5.11: A selection along a branch of the taxonomic tree from Figure 5.10. We
note change of the cluster structures across varying taxonomic levels. The axes in
the cluster plots are: UMAP Component 1 (x) and UMAP Component 2 (y).

scores next to the cluster visualisations. We observe that silhouette score graphs can
also bring invaluable information about the microbial community activity analysis.
As an example, we will look at Clostridia and Betaproteobacteria. Each of these has
clearly separated clusters, and clearly prominent peaks of silhouette scores at their
respective optimal cluster numbers show that the clustering is robust. We also ob-
serve the standard deviation (error) bands at the respective optimal cluster numbers
are small for these OTUs.

Another example is Bacteroidia, whose silhouette score peaks at three, but it also
indicates that smaller cluster numbers can also provide “good enough” silhouette
values. However, the standard deviation bands reconfirm that the clustering into
three is the most robust and consistent option, regardless of the initial points selected
for the clustering.

5.2.10 Simulated Data

After examining two real-life datasets, we look at a simulated dataset. The simulated
dataset is created to approximate a known grouping with the clustering. Although
ground-truth cluster labels are impossible to find in practice, we carry out the sim-
ulation to test the limits of CoPR in uncovering the known truths. In creating the
simulated data, we faced several challenges. Foremost, it is currently impossible to
create a dataset where the shape or the pattern of the TVAP is directly linked to
the interaction parameters while preserving randomness. Hence we created multi-
ple stencils for TVAP patterns and approximated them with known functions with
randomness in parameters and noise. The experiment was designed to achieve the
original stencil patterns as the median TVAP of each cluster.

The objective of the simulation was to approximate a typical longitudinal abun-
dance dataset. The simulation has 100 subjects in total, with 20 OTUs in the microbial
community. This number was much lower than what one would find in a typical mi-
crobial community. However, as most OTUs in a typical community are rare OTUs,
we were satisfied with the simulation data generation process’s lower number. From
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Figure 5.12: TVAP clustering of the secondary OTUs. Again, we are visualising the
infant throat microbiome from Grier et al. [2018] at Family (L3) taxonomic level,
but with non-major OTUs; Colours are local to each figure and represent clusters
identified through GMM clustering, where the highest silhouette score determined
the number of clusters. Secondary OTUs also show similar behavioural patterns to
those of major OTUs. The axes in the cluster plots are: UMAP Component 1 (x)
and UMAP Component 2 (y).
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Figure 5.13: This figure shows the visualisation of the simulated OTUs A and B,
with two corresponding clusters selected. The left-most half contains the cluster
placement in the reduced dimension scatter plot, and the right-most half shows the
TVAP of the selected clusters and the median for each cluster shown in thick pink.
The axes in the cluster plots are: UMAP Component 1 (x) and UMAP Component
2 (y).

the 20 OTUs, four were considered to be major OTUs, while the other 16 were of
secondary abundance. Approximately a major OTU’s abundance was ten times that
of a minor OTU. Out of the major OTUs, two—OTU-A and OTU-B—had two TVAP
patterns each (Figure 5.13). Grouping of TVAP patterns in OTU-A and OTU-B cor-
responded to each other, except for randomly generated outliers. These outliers are
highlighted in the TVAP cluster subplot of OTU-B corresponding to rising behaviour
(Figure 5.13). OTU-C and OTU-D had three distinct behavioural patterns, which had
no connection to each other or to that of OTU-A or OTU-B.
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Table 5.1: Summary of the Figures of Chapter 5.

Data Summary of Observations Identified Individualities Identified Conformities

Figure 5.2 La Rosa et al. [2014]
Gut (L3)

• Clear separation of clusters in all
four OTUs.
• Some sub-clusters observed.

• Existence of multiple clusters.
• Observation of sub-clusters.

• Clustering behaviour in itself.

Figure 5.3 ” • TVAP patterns correspond to
clusters

• Micro-variations within clusters • Macro-view of clustered TVAP
patterns

Figure 5.5 ” • Correspondence of clusters ex-
ists between OTUs

• Overlap is not 100%. Deviating
individuals observed.

• Majority of the community show
conforming behaviour.

Figure 5.6 Grier et al. [2018]
Gut (L3)

Similar to Figure 5.2

Figure 5.7 Grier et al. [2018]
Nasal (L3)

• Number of clusters & silhouette
values

Silhouette value is a measurement of cohesiveness and separation

Figure 5.8 Grier et al. [2018]
Throat (L3)

• Different structures of the clus-
ters

• Heterogeneity in cluster struc-
tures

•

Figure 5.9 Grier et al. [2018]
Gut (L3)

• Disjoint and joint clusters.
• Gradation of TVAP.

• Changes in the TVAP. • Observed changes are smooth.

Figure 5.10 Grier et al. [2018]
Gut (L2–L6)

Similar observations to the above—across different taxonomic resolutions

Figure 5.11 ” • Cluster structures change along
a branch in the taxonomic tree

• Not all taxonomic levels show
similar structures

• Some preserved structure across
taxonomic resolutions

Figure 5.12 Grier et al. [2018]
Throat (L3)
Secondary OTUs

Similar observations to the above—in the secondary OTUs

Figure 5.13 Simulated Data • Simulated stencils re-identified
through CoPR

• Planned individualities identi-
fied through CoPR

• Planned conformities identified
through CoPR
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5.3 Discussion

In this section, we further discuss the concepts of individuality and conformity, anal-
yse the visualisations obtained by CoPR, and discuss the significance of the key
findings.

5.3.1 Individuality versus Conformity

Individuality is a quality, trait or behaviour that separates something from the rest.
In contrast, conformity is the opposite, where something’s qualities, traits and be-
haviours are according to a set norm or standard and non-deviating from the rest.
This concept has been applied in social science to describe human populations [Mughal,
2014; Wilson, 2009]. These concepts have emerged briefly in the literature of ecology
[Hull, 1980] and made a comeback only recently in the field of microbiology [Mon-
tassier et al., 2018]. Inspired by these ideas, we would like to define the individuality
and conformity of OTU activity in the scope of this work.

Let us define individuality as the tendency of the same OTU in similar environ-
ments to show different temporal variations in their abundance profiles. Conversely,
let us define conformity as the tendency of the same OTU in similar environments
to show similar variations in their abundance profiles. In the scope of this work,
we define the traits of individuality and conformity to co-exist. We propose a fuzzy
interpretation of the concepts, where each OTU community show a membership to-
wards individuality and conformity.”

Individuality and conformity are not phenomena limited to the microbial world.
We observe this in human society, animal and plant kingdoms and many other natu-
ral and human-made systems. In most of these systems, we encounter generalisations
to be helpful to an extent. However, generalisations have to be considered, coupled
with the correct assumptions of circumstance. While generalisations are helpful, gen-
eralisation beyond reasonable assumptions is not. As an example, take plant care.
While it can be assumed that plants of the same species need similar care in most
cases, there may be individual plants that require a different kind of approach. We
hypothesise that reasoning similar to this is valid for the microbial world as well.
When we develop a generalised model for microbial community dynamics, it is es-
sential that we are aware of the singularities of each community. Our visualisations
provide qualitative insight into this balance.

Identifying these common tendencies or conformities will help us build better
models to simulate microbial communities in general. They will help us understand
better the links between different OTU communities and different types of host envi-
ronments. After identifying the conformities, we can also identify the individualities
for further analysis. Together with the conformities, the individualities give us spe-
cialised information about the specific issues related to a single OTU community.
Information on both levels will assist us in obtaining a more practical idea of the
microbial community dynamics.

Firstly, we simply do not see everything gathered in a single cluster in the reduced
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dimension scatter plots. If that were the case, it would mean every community of the
same OTU behaves in the same way. The OTUs being scattered around signify that
there is no set norm for OTU communities’ activity in a specific host environment—it
would be incorrect to assume that, for example, TVAP of Clostridia will always show
a particular tendency in a human gut environment.

Conversely, we do observe clusters rather than completely scattered points in
the reduced dimension scatter plots. This observation means that subsets of OTU
communities do show similar behaviour. When an OTU shows multiple prominent
clusters, we consider that there may be multiple likely ways for this particular OTU
communities to behave in this particular host environment. Hence, the existence of
clusters is a degree of conformity we observe in the microbial communities.

We further hypothesise a connection between individualistic traits and external
factors. Each host environment has specific environmental, clinical or other external
factors. These external factors certainly affect the microbiome and its dynamics. The
concepts of individuality and conformity may very well indicate the communities’
reaction to their environment. More individuality than conformity in a particular
microbial community’s behaviour may indicate the community’s sensitivity to the
external environment. Although CoPR visualisation does not grant knowledge qual-
ified to make a statement about the causality or correlation of the clinical factors to
the microbial dynamics, we can conclude that these correlations can be identified.

We summarise the observations from the results, together with the identified
individualities and conformities in Table 5.1. In this table, we detail how specific
observations can indicate individuality, and others, conformity. We would like to
draw attention to concurrent observations that suggest both individualist traits and
conformist traits.

5.3.2 Visualisation

In this subsection, we will discuss the visualisations available from the analysis.

5.3.2.1 GMM Clusters

The main visualisation of the analysis is the Gaussian Mixed Model (GMM) Cluster-
ing. GMM is capable of identifying non-circular clusters as well. The EM algorithm
that determines the cluster membership results in clusters of TVAP suitable for fur-
ther interpretation in the context of microbiology. Each OTU is plotted separately,
with each host environment represented by a dot plotted in the UMAP reduced di-
mensions. The UMAP dimension reduction is based on the Dynamic Time Warp
distance between the TVAP curves. The plots also indicate cluster membership at
three different membership probabilities. This visualisation primarily gives us infor-
mation on how many distinct TVAP patterns could be identified for the specific OTU
and how separated they are from each other. Secondarily we can identify cluster
placement and shapes, which can provide us with information about the microbial
dynamics.
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5.3.2.2 Median Plot

The median plot of the TVAPs is straightforward in terms of mathematics associated
but is very useful in comparing and contrasting the temporal variation across dif-
ferent clusters. The median line also helps us visualise the deviation of the member
OTU’s patterns from the typical pattern. We may pass on the median TVAP lines
from all the OTUs to a microbial interaction inference algorithm to obtain interaction
parameters.

5.3.2.3 Silhouette Index

Silhouette Index, plotted against the number of clusters, provides insight into the
nature of the clusters. The silhouette index provides a quantitative measure of the
clusters’ cohesion and separation, reflecting the microbial communities’ individuality
and conformity. This quantification complements the qualitative idea we gather from
the cluster plots. The error bars in the silhouette index plots indicate how consistent
the clustering is.

5.3.2.4 Jaccard and Overlap Indices

Jaccard and Overlap indices are suitable metrics to confirm the visual from the cluster
plots as they are quantitative measures of the agreement between the clusters of
different OTUs. These plots complement the cluster plots.

5.3.3 Assumptions Involved

In any method involving microbial dynamics, there are several assumptions involved.
These assumptions are due to the unobservable nature of the microbial dynamics
and the poor understanding of various internal and external factors that affect the
microbial communities. We also take the liberty to involve some assumptions in our
application pipeline.

The principal assumption is that the studies conducted have sampled the micro-
biome within a time duration of high interest. For example, La Rosa et al. [2014] are
interested in looking purely at the infant gut microbiome from birth to when they are
ready to be discharged from the ICU. We assume that the scientific interest purely
lies in the period between the starting event (sampling point) and the ending event
(sampling point) and not in the actual clock/calendar time. As a result of this, our
method analyses the TVAP patterns within the time duration of interest. We pass the
burden of responsibility to users to use data captured within a duration of interest.

Some of the auxiliary assumptions are:

• that the TVAP is uniform between the sampling points;

• that the microbial variation patterns are independent of/minimally affected by
external influences;
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• that different host environments’ microbial communities may have time lags
and slower or faster dynamics;

• that OTU TVAP patterns are meaningful when considered independent of the
other OTUs.

However, we do not involve some assumptions usually taken with microbial com-
munity dynamics analysis, including the assumption of a particular pattern for an
OTU behaviour.

5.3.4 Knowledge from precision medicine

Precision medicine is where an individual’s specialised needs are considered before
prescribing the medicine. Although this seems trivial, not all individualities are con-
sidered in medicine, especially when microbial individualities are concerned. There
is a growing interest in gut treatments to consider the composition and dynamics
of an individual’s gut microbial ecosystem before prescribing medicine. Further-
more, research suggests that other ailments also could be treated through the gut
microbiome targeted precision medicine therapy [Cammarota et al., 2020]. Use of
the same antibiotics and probiotics as a generalised therapy is undesirable if the pa-
tients’ gut microbial compositions are entirely different, as we can reasonably expect
that the reaction to anti/probiotics would vary for different microbial communities.
Hence, an analysis that exposes the generalisation level applicable to individuals is a
requirement for precision medicine.

5.3.5 Intra-cluster variations / sub-clusters

In some cluster configurations, we also observe sub-clusters. This observation, we
propose to indicate that even in the apparent intra-cluster conformity, some individ-
ualistic traits prevail. These subclusters, especially when visualised as abundance
variation patterns, can show us minute idiosyncrasies of the microbial dynamics. We
believe that we would explain these subclusters in the future with enough clinical
and environmental information.

5.3.6 Gammaproteobacteria & Betaproteobacteria Clusters

We identified Gammaproteobacteria as a major OTU in the gut and a secondary OTU
in the respiratory microbiome. Betaproteobacteria was identified as a major OTU in
the respiratory microbiome. The behaviour of the Proteobacteria in the visualisation
was intriguing. Summarily, they almost always showed clearly separated and tight
TVAP pattern clusters. Both Gammaproteobacteria and Betaproteobacteria were often
the most clearly separated in many datasets, which was consistent in the datasets we
examined.
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5.3.7 Separation of Clusters at Different Taxonomic Resolutions

We observe the separation of clusters and indications of individuality and conformity
at all taxonomic resolutions. We propose that this indicates that our visualisation is
not necessarily a good technique only at the class level but also at other taxonomic
levels. We observe the preserved structure in Figure 5.11 across the taxonomic hierar-
chy of Phylum Firmicutes, Class Bacilli, Order Lactobacillales, Family Streptococcaceae,
and Genus Streptococcus. We propose that we interpret this preservation of structure
as a trait (related to microbial dynamics) that is similarly observed in closely related
microbial species.

5.3.8 Heterogeneity and Complexity

We argued earlier that time-series microbial datasets are complex and heterogeneous.
The CoPR visualisations confirm that fact. We observe that the underlying structures
of the microbial abundances are not homogeneous even in similar host environments.
They are also different across different OTUs in the same host environment. We also
see connections, such as cluster agreement which appear across OTUs, and across
host environments. These observations reinforce our argument of the complexity
and heterogeneity of microbial abundance data.

5.3.9 Distinctions from Other Collective Pattern Recognition Approaches

One of the main pitfalls we identify is the assumption that a typical TVAP pattern
exists. When a method strives to achieve that typical pattern, it results in a loss of
information. However, with our visualisation, we have shown that such a common
trait does not exist, and that assumption should be invalid.

Secondly, another distinction in our approach is that it prevents the loss of indi-
viduality. Like other approaches, we also identify common patterns. However, that
conformist approach is not at the expense of loss of individuality. The dominant pat-
tern is preserved in the other approaches while forcing other patterns to transform
into it [Lugo-Martinez et al., 2019]. While we agree that using the DTW distance
can be considered a transform, its use is always pairwise—hence, it does not give
prominence to a single TVAP pattern.

5.3.10 Future Work

We have identified several future research directions made possible through the
CoPR visualisations.

Firstly, we are interested in exploring the subclusters and the intricacies involved
in their separation. In the future, with more clinical and environmental data, we
believe this could be quite an intriguing research direction to take.

Secondly, we can exploit the median TVAP curves in IMPARO to obtain MINs
for each cluster combination. Because each OTU has multiple clusters, there would
be multiple MINs inferred. However, this is in agreement with the idea presented in
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IMPARO [Vidanaarachchi et al., 2020] that we cannot infer a single solution for MIN
by examining NGS data. Hence, observations from the CoPR pipeline and observa-
tions from IMPARO directly complement each other. By identifying cluster overlaps
that are statistically significant through the CoPR pipeline, we can improve the inter-
pretation of MINs acquired through IMPARO. Isolation of overlapping clusters will
help identify the behavioural/interaction patterns of OTUs in a homogeneous subset
of environments, assisting in developing a global picture of OTU interactions where
ambiguity is minimised. These findings may shine a light on separating environ-
mental factors from MINs as well. We identify and this task as an exciting future
research direction.

Thirdly we propose it would be interesting to observe and characterise the mean-
ingful differences in the TVAP clustering patterns of major, secondary and rare
OTUs. Especially if we observe different host environments, we might be able to
find whether OTUs have different temporal dynamics when they are a major OTU
or not.

Fourthly, we propose to investigate a connection between the notion of dynamic
microbial interaction networks and CoPR, where we consider time-windows of a
lengthy dataset (such as Caporaso et al. [2011]) to be a different host environment.
Thus, we can apply collective pattern recognition techniques to a single abundance
profile and analyse the temporal dynamics of microbial interactions through the clus-
ters. Primarily, this could help us explore the repeated MINs we discussed in Chap-
ter 4.

5.4 Conclusion

The TVAP patterns show that microbial community activity is heterogeneous and
complex. We conclude that the behaviours of different OTUs across host environ-
ments vary and is best explored on a case by case basis. As per our discussion, there
is a balance of conformity and individuality in the TVAP patterns. We propose that
this behaviour can be an informative characterisation of OTU communities. We pre-
sented CoPR, a visualisation framework for collective pattern recognition for micro-
bial data. Through unsupervised clustering of the data, our visualisation approach
provided an exciting insight into the microbial communities. We believe this kind of
analysis would be ideal for analysing new datasets. We also raise the question that
the TVAP patterns may be connected with clinical factors. This question, however,
remains to be fully answered in the future.

5.5 Methods

In this section, we first introduce the datasets we processed. Then we explain the
pipeline in detail, including the techniques used and the terminology used through-
out the paper.
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5.5.1 Datasets

The following two datasets were used in our analysis.

5.5.1.1 Neonatal Infant Gut Microbial Dataset

The first dataset we process is an Infant Gut Microbial dataset collected by La Rosa
et al. [2014]. This longitudinal dataset consists of 58 subjects, with an average of
16-time points each. Each subject is an infant in an intensive care unit. Stool sam-
ples were collected from each infant during their stay, and we have access to the
abundance profiles generated through 16S rRNA sequencing and several clinical in-
formation about the infants, such as milk consumption, post-conception age, and
delivery method. In our analysis of our dataset, we try to observe whether there is
a connection between the clinical factors and the Temporal Variation of Abundance
Profile (TVAP) patterns.

5.5.1.2 Infant Gut and Respiratory Microbial Dataset

The second dataset we look at in this chapter is another Infant Microbial dataset
collected by Grier et al. [2018]. This longitudinal abundance data set has data from
82 infants, of whom 38 are pre-term and 44 are full term. We also have data from
multiple body sites. Communities from the nasal, throat and gut microbiome are
analysed, contrasted with and compared to each other.

5.5.1.3 Data Simulation

After testing the CoPR pipeline with real-life datasets, we used simulated data to
verify our analysis. In this section, we will look at how I simulated the data. The
dataset is created to approximate a known group with the clustering, as we identi-
fied correlations in the real-life datasets. I used a stencil-based approach, where a
stencil is defined through a mathematical function. Twenty such stencils were de-
fined. These included ten behavioural functions that defined major OTU behaviour
after typical temporal behaviours examined in high abundant OTUs. A further ten
reflected rare OTUs’ temporal behaviour for minor/secondary OTUs. In simulating
the data, each OTU population were probabilistically assigned stencils to follow. For
example, each OTU–A’s population had a probability of 0.4 to follow behaviour no.
1, 0.59 for behaviour no. 2, and 0.001 for behaviour nos. 11 to 20. TVAP were cal-
culated according to these pre-defined behavioural stencils, to which uniform noise
was added to complete the simulation.

5.5.2 Application Pipeline

In this subsection, we discuss the application pipeline we use in our work. The
pipeline’s input is microbial abundance data, and the output is the visualisation.
Figure 5.14 illustrates the different parts of this pipeline. We then discuss each of the
techniques we have used in the pipeline.
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Figure 5.14: The first step is to convert the abundance data in a host-environment-
wise into an OTU-wise configuration. For each host environment in the original
data, we have an OTU abundance tabled against time points. We have a two-column
table for each OTU in the new data where each row represents a patient/collection
site. The two columns correspond to the sampling time points and the correspond-
ing OTU abundance. The next step is to send the time-series abundance samples
through a symmetrical Discrete Wavelet Transform (DWT). We then take the Ap-
proximation Coefficients and perform a cubic interpolation. After the interpolation,
all the time-series are resampled to the same timeline and re-centred with respect to
mean and variance. After these pre-processing steps, pair-wise soft dynamic time
warp distances are calculated. These distances are used in place of the dimensions
for the UMAP dimension reduction. The dimension reduced data is clustered with a
Gaussian Mixed Model clustering, where the optimal cluster number has been iden-
tified through a silhouette score calculation. We also provide a k-Means clustering
visualisation in the interest of comparison. As auxiliary visualisations, we provide
the median trend for each cluster and selection and Jaccard and Overlap Coefficients
of clusters across the major OTUs.
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The first step is to convert the abundance data in a host-environment-wise config-
uration into an OTU-wise configuration. For each host environment in the original
data, we have an OTU abundance tabled against time points. We have a two-column
table for each OTU in the new data where each row represents a patient/collection
site. The two columns correspond to the sampling time points and the correspond-
ing OTU abundance. The next step is to send the time-series abundance samples
through a symmetrical Discrete Wavelet Transform (DWT). We then take the Ap-
proximation Coefficients and perform a cubic interpolation. After the interpolation,
all the time-series are resampled to the same timeline and re-centred with respect to
mean and variance. After these pre-processing steps, pair-wise soft dynamic time
warp distances are calculated. These distances are used in place of the dimensions
for the UMAP dimension reduction. The dimension reduced data is clustered with a
Gaussian Mixed Model clustering, where the optimal cluster number has been iden-
tified through a silhouette score calculation. We also provide a k-Means clustering
visualisation in the interest of comparison. As auxiliary visualisations, we provide
the median trend for each cluster and selection and Jaccard and Overlap Coefficients
of clusters across the major OTUs.

5.5.2.1 Discrete Wavelet Transform

Discrete Wavelet Transform(DWT) is the first pre-processing step. DWTs conserve
both frequency and location (time in temporal data) information; hence it is more
suitable for our task than a Fourier Transform. We use a symmetrical kernel filter
in our DWT step. A wavelet transform can act as a high-pass and low-pass filter.
We use this quality to remove the noise and small fluctuations, to obtain the general
trend we are interested in. Hence after the DWT, we discard the detailed coeffi-
cients and keep the approximation coefficients to represent the time-series data. The
DWT also increases the frequency resolution of the data. We used the PyWavelets
implementation of DWT in our application pipeline [Lee et al., 2019].

5.5.2.2 Cubic Interpolation

As the second pre-processing step, we use a 1D cubic interpolation. The interpolation
aims to fill in the gaps between the sampling time points, as we require a continuous
abundance variation pattern for comparison across host environments. Each host
environment dataset is interpolated from its first time point to the last, with no
extrapolation. Most other methods tend to use a spline interpolation; however, as
our effort focuses on identifying an overall pattern, we consider a 1D interpolation
to be more suitable in contrast with temporally localised patterns. We are assuming
that the abundance pattern variation in between the sampling points is uniform.

5.5.2.3 Mean-Variance Scaling

As a third pre-processing step, we scale each interpolated time series to be centred
around the mean, with a variance of 1 (µ = 0, σ = 1). We aim to isolate each OTU
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community’s abundance pattern from the rest of the host environment by doing this
preprocessing step. As we are merely interested in the temporal variation pattern
of each OTU across multiple host environments, this allows direct comparison. The
effect of this step is especially prominent in host environments, where there exist two
dominant OTUs. This pre-processing step will hinder any quantification of microbial
interactions. Hence, it is crucial to reiterate that we are not interested in the microbial
interactions in this visualisation pipe-line, but rather the abundance variation pattern
is our interest.

5.5.2.4 Resampling

The final step in our pre-processing approach is resampling. It is done to align
the timelines of different host environments. We acknowledge that there are solid
arguments for and against resampling the timelines across different datasets. The
resampling will shift the timelines and change the temporal scale, which results in
losing temporal information. However, when the sampling is done in a meaningful
time scale, the resampling can help find a better overlap across samples. Hence the
choice of resampling aligns with our choice of using dynamic time warp distance as
well.

5.5.2.5 Dynamic Time Warp Distance

Dynamic Time Warp (DTW) Distance has been used in many time-series clustering-
based methods in the literature. DTW is best explained as the distance between
two-time series at their best temporal alignment. We seek a temporal alignment as
different host environments could have delayed or temporally inconsistent behaviour,
which can be identified to be based on similar variation patterns. By using the DTW
distance, we can cluster similar variation patterns, despite temporal inconsistencies.
We use the tslearn [Tavenard et al., 2020] implementation of the DTW distance in our
application pipeline.

5.5.2.6 UMAP

Uniform Manifold Approximation and Projection (UMAP) [McInnes et al., 2018] is
a manifold learning technique for dimension reduction. It is considered to have
high visualisation quality and preserve more global structure than other dimension
reduction techniques such as t-SNE [Van Der Maaten and Hinton, 2008]. We use
UMAP to reduce the temporal dimensions and visualise each OTU’s TVAP as a point
in a 2-D plane. The neighbourhoods are determined by the DTW distance between
each pair of datasets. The UMAP visualisation gives us an idea about the similarities
and differences between time series data sets. We can observe that points that are
clustered together correspond to similar TVAP patterns.
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5.5.2.7 GMM Clustering

We cluster the data-points in the reduced dimension using a Gaussian Mixed Model
(GMM) clustering. The number of clusters was determined by calculating the Silhou-
ette Score for each cluster configuration. While we also consider k-Means clustering,
GMM clustering results in superior identification of clusters. Because GMM consid-
ers the variation and the mean for its clustering, GMM more accurately identifies
cluster membership of adjacent clusters of different sizes.

5.5.2.8 Silhouette Score

Silhouette score is a measure of how similar an object is to its own cluster and how
different it is compared to the objects in other clusters (cohesion vs separation). The
silhouette score graph we presented is the silhouette score as a function of the num-
ber of clusters. By examining the silhouette score graphs, we can understand how
distinct the separation is and how similar the cohesion is at different cluster num-
bers. The higher the silhouette score is, the better the cohesion and separation. We
calculate the silhouette score for the same number of clusters multiple times and take
the average. This calculation also provides us with the standard deviation (shown
with the error bar) for the silhouette scores. A narrower error bar means that the
clustering is consistent at that number. A high silhouette score with a narrower error
bar is the ideal cluster configuration we are looking for.

5.5.2.9 Overlap Coefficient & Jaccard Index

We use both the Overlap Coefficient (Szymkiewicz-Simpson Coefficient) (Equation
5.1) and the Jaccard Index (Equation 5.2) to examine the corresponding behaviour
among the clusters. While the Jaccard Index indicates a bi-directional correspon-
dence amongst two clusters, using the Overlap Coefficient allows us to identify uni-
directional correspondence.

overlap(X, Y) =
|X ∩Y|

min(|X|, |Y|) (5.1)

Jaccard(X, Y) =
|X ∩Y|
|X ∪Y| (5.2)

5.5.2.10 Bokeh Visualisation Engine

Finally, we use the Bokeh Visualisation Engine [Bokeh Development Team, 2018] to
provide interactivity to the visualisations, allowing a thorough manual exploration
of the clusters and associated TVAP patterns.
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5.5.3 Terminology

In this subsection, we will introduce some terminology which we have used through-
out the chapter.

5.5.3.1 TVAP

Temporal Variation of abundance Profile. When we look at the abundance of a cer-
tain OTU as a function of time, we get the abundance profile’s temporal variation.
We have obtained a continuous graph by interpolating between the sampling points.
This function, when visualised, will show certain tendencies. These tendencies are
what we would regard to be identifiable patterns specific to each OTU community.
As an example, we may notice rising abundance patterns, dropping abundance pat-
terns, sudden peaks, etc. We argue in this paper that we can use these patterns to
characterise an OTU community.

5.5.3.2 OTU community

For this chapter’s scope, we characterise an OTU community as the organisms of a
specific Operational Taxonomic Unit, which inhabit a particular host environment.
To illustrate, we consider Gammaproteobacteria in a specific infant’s gut microbiome
as an OTU community. There could be several Gammaproteobacteria communities in
the same infant, such as the gut Gammaproteobacteria community and the respiratory
Gammaproteobacteria community. For the purpose of this paper, we consider them to
be two separate and independent OTU communities.

5.5.3.3 Major OTU

In order to efficiently compute the CoPR analysis pipeline, we choose a subset of
OTUs. In most analyses, the interest would be on the most abundant OTUs. Hence,
consider the n highest abundant OTUs of each host environment in terms of average
abundance. For this work’s scope, let us define major OTUs as the intersection of the
sets of n highly abundant OTUs in all the parallel host environments. Likewise, let
us define secondary OTUs as the OTUs in the top 2n, excluding the major OTUs.

The parameter n can be set according to the need of the analysis.
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Chapter 6

Exploratory Study of Incremental
Microbial Signatures

“Every reference-body has its own
particular time”

—Albert Einstein,
Relativity: The Special and General

Theory (1920)

This chapter is partially composed of material that appears in a manuscript titled “Incre-
mental OTU Signatures” by Vidanaarachchi R., et al. that is being finalised for submission
to a journal.

Summary

Background Microbial community dynamics may be different in similar but het-
erogeneous environments. We are interested in understanding and visualising these
dynamics. However, being highly heterogeneous, it is hard to find a general repre-
sentation of the temporal variation of microbial abundances. It has been argued that
there is no unique signature that can represent the temporal variation of a microbial
Operational Taxonomic Unit (OTU) community across multiple host environments.
However, we still come across situations where a general representation is necessary.

Results We explore the use of incremental time microbial signatures. Our proposed
signature pipeline provides a simple solution to the problem of a unified signature.
We use time-warped distance metrics together with incremental dimensional reduc-
tion visualisation techniques to provide incremental signatures. We propound that
these signatures are helpful to characterise the microbial dynamics in similar but
heterogeneous environments.

95
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Conclusions We successfully obtain unified incremental signatures for OTU com-
munities in the human gut and respiratory environments. This exploratory study
also highlights the importance of a signature that respects microbial communities’
temporal and compositional heterogeneous nature.

6.1 Background

Understanding microbial life is crucial to our understanding of the world. Microbial
community dynamics is an essential aspect of the said understanding. Throughout
this thesis, we discussed our attempt to answer the question “What are they doing
[in the microbial communities]” raised by Boon et al. [2013].

In Chapter 5, we discussed the use of collective pattern recognition techniques to
enhance our understanding by augmenting available data. We also explored OTU
communities’ heterogeneous nature, with a balance of individuality and conformity
existing in their temporal dynamics. We further illustrated how most earlier work
on collective pattern recognition might have reduced an OTU community’s temporal
variation to a single pattern. However, we argued that this could lead to a loss
of information, especially information pertaining to the non-prominent and micro
behavioural patterns.

We argue that loss of information and generalisation of this nature is undesirable
in characterising OTU community dynamics, leading to misinformed decisions and
misrepresentation. Since microbial community dynamics are studied in sensitive set-
tings such as clinical studies, we are wary of unnecessary generalisations. Hence, we
propose a need for characterisation techniques that can represent the OTU commu-
nities as a whole, including the heterogeneous peculiarities—in terms of influence,
abundance and temporal behaviour.

We draw inspiration from the study of microbial Community State Types (CSTs),
utilised in many previous studies (Stewart et al. [2018a]; DiGiulio et al. [2015]; Grier
et al. [2018]), which is a mode of characterising the microbial communities accord-
ing to their static composition. The CSTs change across time as the compositional
changes occur. Our interest also lies in characterising these communities, but with
two distinctions. Firstly, we look at each OTU separately and examine its behaviour
in multiple similar but heterogeneous environments (e.g. a collection of gut micro-
bial environments, where not all guts are homogeneous). Secondly, we look at the
temporal dynamics over the entire time duration of interest. Summarily, our charac-
terisation is on the temporal dynamics, focused on a specific OTU.

To illustrate the utility of such a characterisation, let us consider the data-sets
we explored in Chapter 5. We identified that Gammaproteobacteria community has
potentially interesting behaviour in the neonatal infant gut (La Rosa et al. [2014]
data-set). Further to this, we noted a correlation between the Gammaproteobacteria
and the Clostridia community dynamics. We now propose two use cases. Firstly, we
can compare the behaviour of Gammaproteobacteria with that of Clostridia. Secondly,
we can compare Gammaproteobacteria’s behaviour in one set of environments to that



§6.1 Background 97

of another.

6.1.1 Related Work

Characterisation of the world around us has been instrumental in many fields in
science. We explore the literature in two directions. Firstly, we will look into the
various approaches of characterising the microbiome. Secondly, we will consider the
characterisation of time-series data in general.

6.1.1.1 Characterising the Microbiome

Static microbial signatures have been used in many studies to identify the host envi-
ronment or the state of the host environment uniquely. Desikan [2017] and Tridico
et al. [2014] show instances where the humans could be identified through various
bodily microbiome signatures. Banerjee et al. [2018] and Romero et al. [2014] recog-
nise that various illnesses could be identified and categorised using the microbial
signatures. In these works, microbial signatures refer to the static composition of a
sample.

However, other studies have used dynamic signatures as well. Gerber et al. [2012]
and Yang et al. [2019] identify instances where the dynamic microbial signatures have
been successfully used to gain knowledge about the microbiome–host-environment
relationships. Other studies propose the importance of creating customised signa-
tures using knowledge of machine learning to pick important features of longitudinal
microbial data [Knights et al., 2011].

Community State Types (CSTs) approach proposed in Ravel et al. [2011] has been
used in many studies to characterise the microbiome. CSTs respect the heterogeneous
nature of the microbial communities and have been used in time-varying settings.

6.1.1.2 Characterising Time-Series Data

Time-series data collection has a long history. Records from naval trade indicate that
the importance of time-series data was known in the early days of human civilisation
[Wilkinson et al., 2011]. In analysing data, different approaches of characterisation
have been taken. Classical statistical methods were focused on finding linear rela-
tionships Zou et al. [2019]. With recent advances, using Bayesian models and feature
selection approaches have gained more prominence. Particularly with multivariate
data available in contemporary fields of study, which require non-linear modelling
necessitates novel ways of characterising time-series data [Fulcher, 2017]. Consider-
ing the high-dimensional data we consider with longitudinal microbial abundance
profiles, we have looked into dimensional reduction approaches for feature selec-
tion. Some of the suitable methods are parametric t-SNE [Van Der Maaten, 2009],
parametric UMAP [Sainburg et al., 2020] and SONG [Senanayake et al., 2019].
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Figure 6.1: Representation of a 3D cube in 2D

6.1.2 Motivation and Contributions

From the literature, we can note the need to have a unified signature for comparison
and other calculations. It is essential that this signature can be qualified both quan-
titatively and qualitatively. We note that in their work, Lugo-Martinez et al. [2019]
uses pattern matched signatures in a Dynamic Bayesian Network to infer microbial
interactions. Their signatures are successful in both visual perceptibility and quan-
tifiability for further computational needs. However, we argue that pattern matching
approaches result in a loss of heterogeneous information and micro-behavioural in-
formation.

While we acknowledge that our method is yet to be quantified successfully, and
utility in further computations is limited, our focus is on information preservation—
specifically the heterogeneous and micro-behaviours. Signatures generated by our
method is suitable for visual and qualitative exploration of microbial communities.

We also note different dimension reduction practices from the literature and argue
that some dimension reduction approaches are better suited for temporally dynamic
data. We have successfully used dimension reduction in the previous chapter to
represent the multi-dimensional temporal dynamics into an easily comprehensible
two-dimensional plot. Our microbial signatures are also obtained by reducing the
dimensions of multidimensional temporal variation of the abundance profile into
two dimensions.

The significant challenge with our results is the ambiguity in the lower dimen-
sional representations and lack of interpretability. However, we can provide an
estimate in interpreting high dimensional data represented in a lower dimension.
A simple example is a drawing of a 3D cube on a two-dimensional pane (Fig-
ure 6.1). Although the representation is in the two dimensions, we can perceive
higher-dimensional information. Hence we propose that our lower-dimensional rep-
resentations will retain a degree of interpretability in the correct contextualisation.

Dimensional reduction and averaging may appear to have similar effects. Hence,
we would like to revisit the 3D cube example to clarify this. As we are interested
in a 2D visualisation, if we are to average the 2D panes of the cube, we will obtain
a nonsensical 2D representation. However, with the calculated ‘dimensionally re-
duced’ representation, we can still preserve information about the original structure.
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Likewise, the microbial communities in heterogeneous environments we consider in
this study cannot be successfully averaged—instead, we are tasked with devising a
meaningful dimensionality reduction method.

Summarily, our motivations for the research based on the identified gaps are:

• A need for characterisation of temporally dynamic microbial community activ-
ity.

• Current characterisations may result in a loss of information and generalisation.

• Heterogeneity preserving visualisations through dimension reduction practices
is a relatively less explored area.

In this chapter, we present an exploratory study of incremental microbial signa-
tures and a preliminary application pipeline for heterogeneity preserving character-
isations of the temporal dynamics of OTU communities. Ours is the first attempt
to extract a signature to characterise OTU communities’ temporal dynamics while
respecting the microbial communities’ heterogeneous temporal behaviours. We also
discuss challenges associated with temporally dynamic microbial activity characteri-
sation through a signature in terms of high-dimensionality, directionality, and inter-
pretability. We present the signals generated for real-world gut microbial samples
from two different studies and respiratory data sets.

Key contributions summarised:

• Characterisation of temporally dynamic OTU behaviour with reduced loss of
information.

• Presentation of qualitative and visually comparable signatures.

• Discussion on challenges pertaining to high-dimensional temporal data visual-
isation.

• Obtaining and analysing signatures for real-life data.

6.2 Results

Before presenting the signatures we have obtained from various real-life microbial
datasets, we explain how we obtain the signatures with a simple demonstration in
Figure 6.2.

First, we used our application pipeline on real-life data from the gut microbiome
in the Grier et al. [2018] dataset at the L3 Level. Out of these signatures, we have pre-
sented the signature of Coriobacteriia in Figure 6.3. We observe interesting behaviour
in the figure and have included mark-up to clarify these visually on the signature
itself.

Next, we overlapped the signatures from each of the major OTUs into the same
plot, where we centred each signature’s starting point at the origin. As individual
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Figure 6.2: Explanation of incremental signatures. Each green dot is a dimensionally
reduced representation of an OTU’s abundance across a collection of similar but
heterogeneous environments. These dots, marked sequentially as t1, t2, ..., t5 were
sequentially obtained through incremental dimensionality reduction techniques. The
blue line connecting these dots was generated using a 1D Gaussian filter. As such,
this line is representative of the change of composition of the OTU community across
multiple environments. This line is our signature.
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Figure 6.3: Signature of Coriobacteriia in a collection of 54 infant gut environments
(Grier et al. [2018]). The signature starts at the green circle. Then, the signature goes
to the lower right corner, and comes back towards the upper-left, then traverses to
the upper-right, back to lower-right and again to the upper-right forming a loop. Al-
though we are not yet armed with the complete knowledge on how to interpret these
signatures, we can suggest that it is of interest to see returning behaviour. Namely,
the regions of upper-left, lower-right and upper-right seem to be congregating areas.
The continuous blue line is the signature. The broken blue line is the projection of the
signature. Red circles are the regions of interest. The plot is a time series dimension
reduction using the SONG (Self-Organising Nebulous Growths) algorithm, and as
such, the axes are the first and second components of the dimension reduction.
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signatures are independent of each other, this shift does not affect the information
represented in the signatures. However, it facilitates the comparison between differ-
ent signatures. These visualisations are presented in Figures 6.4, 6.5 and 6.6.

Then, we generated the signatures for the microbial communities from La Rosa
et al. [2014] dataset at the L3 Level. The centred signatures are presented in Fig-
ure 6.7. We were further interested in visualising the signatures in a three-dimensional
view—presented in Figure 6.8.

6.3 Discussion

In this section, we will discuss our results and the ideas behind the characterisation
of time-series OTU behaviour. First, we discuss the data required for our methods
and scenarios where our methods are applicable. Next, we will further discuss the
results we presented in Section 6.2. We then discuss the signatures in terms of their
temporal nature, heterogeneity, visual comprehensibility, dimensionality, and other
qualities. Finally, we will discuss the future directions for this research and our
methods’ applicability in different contexts.

6.3.1 Contextualising the OTU Signatures

As an extension of the previous chapter’s idea, we consider similar data in this chap-
ter. Summarily, our data is a collection of time-series microbial abundance datasets
that have been collected from similar host environments. However, this chapter’s
aim is significantly different from the previous one; rather than exploring the micro-
bial dynamics, we are interested in characterising an OTU community’s microbial
dynamics over a collection of heterogeneous environments. As we explained in the
background section, the interest in this stems from a need to provide a single repre-
sentation akin to other methods, however, without losing heterogeneous information.
I highlight that, as we cannot adequately separate the influence of the external factors
across heterogeneous environments, a primary purpose in this characterisation is to
compare OTU communities across distinct ecosystem or host environment groups.

6.3.2 Discussion of Results and Interpretability of Signatures

We are now faced with the challenge of interpreting the incremental signatures. As
we discussed with the cube analogy earlier, with more contextual knowledge, we can
better estimate the interpretation of certain aspects of the visualisation, which is the
aim of this exploratory study. Some of the interesting features of signatures we can
theorise are,

• the tendency of the trajectory to return to the vicinity of the origin;

• stretched versus compact trajectories;

• signatures showcasing (regular/irregular) looping behaviour;
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Figure 6.4: Signatures of the major OTUs at the Class (L3) taxonomic level in a collec-
tion of 82 infant gut environments (Grier et al. [2018]). The OTU classes represented
are Bacilli, Bacteroidia, Gammaproteobacteria, Actinobacteria, Clostridia and Coriobacteriia.
Each line’s starting position is centred to the origin, as the positioning of OTUs is
independent of each other in the reduced dimension. The colours are as described in
the legend. We note the following observations that are of interest. Gammaproteobac-
teria and Bacilli tend to move in a similar direction, while Actinobacteria, Coriobacteriia,
Bacteriodia move in another direction, leaving Clostridia in its own direction in the be-
ginning. Arguably, Bacteroidia and Actinobacteria show roughly similar behaviour in
their signatures throughout as well.
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Figure 6.5: Signatures of the major OTUs at the Class (L3) taxonomic level in a
collection of 82 infant throat environments (Grier et al. [2018]). The OTUs Bacilli, Fu-
sobacteria, Bacteroidia, Betaproteobacteria, Clostridia, and Actinobacteria are shown here.
Each line’s starting position is centred to the origin, as the positioning of OTUs is
independent of each other in the reduced dimension. The colours are as described
in the legend. Again, in this figure, we can observe some OTUs moving in a similar
direction at the beginning and continuing dispersedly later. We also note that 3 out
of the 6 OTUs’ signatures return to the origin’s vicinity at certain points.
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Figure 6.6: Signatures of the major OTUs at the Class (L3) taxonomic level in a collec-
tion of 82 infant nasal environments (Grier et al. [2018]). The OTUs Bacilli, Bacteroidia,
Betaproteobacteria, Clostridia, and Actinobacteria are shown here. Each line’s starting
position is centred to the origin, as the positioning of OTUs is independent of each
other in the reduced dimension. The colours are as described in the legend. The most
interesting observation in this graph is the tendency of multiple signatures to form
loops, significantly more than in the other graphs we have examined. Potentially this
aligns with the idea of recurring dynamics, which we explored in Chapter 4. Apart
from this, we notice that Bacteroidia’s signature stays around the origin while form-
ing loops, while Actinobacteria’s signature forms a loop after travelling away from the
origin. Bacilli and Bacteroidia also show a tendency of looping, albeit more stretched.
Only Clostridia shows linear-like behaviour, though it has once returned to the origin.
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Figure 6.7: Signatures of the major OTUs at the Class (L3) taxonomic level in a collec-
tion of 54 infant gut environments during the infants’ stay at a neonatal ICU [La Rosa
et al., 2014]. The OTUs Actinobacteria, Bacilli, Clostridia, and Gammaproteobacteria are
shown here. Each line’s starting position in centred to the origin, as the position of
OTUs is independent of each other in the reduced dimension. The colours are as
described in the legend. In this figure we observe the Actinobacteria and Clostridia
signatures showing a different tendency to those of Bacilli and Gammaproteobacteria.
Also we see looping behaviour in Clostridia and Gammaproteobacteria.
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Figure 6.8: Signatures of the major OTUs at the Class (L3) taxonomic level in a collec-
tion of 54 infant gut environments during the infants’ stay at a neonatal ICU [La Rosa
et al., 2014]. The OTUs Actinobacteria, Bacilli, Clostridia, and Gammaproteobacteria are
shown here. Each line’s starting position is centred to the origin, as the position of
OTUs is independent of each other in the reduced dimension. The colours are as
described in the legend. We observe differences in this three-dimensional visualisa-
tion when compared to the two-dimensional visualisation. Specifically, we note the
similarity in the signatures of Gammaproteobacteria and Bacilli, only at the beginning.
However, we observe more looping behaviour in this visualisation.
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• straight-lined trajectories versus curved trajectories;

• direction of the trajectory (in relation to each other);

• similar but scaled trajectories;

• trajectories that stay near the origin versus trajectories that drift away;

• overlapping trajectories; and

• smooth versus chaotic trajectories.

Some of these features are present in our visualisations, but, at this point in the
study, we are unable to interpret these features of the signatures further. However,
we hypothesise the features to be representative of certain qualities of the dataset.

Comprehension is arguably the most crucial aspect of any characterisation. Com-
pared to existing methods, our method is not as easy to visually comprehend. How-
ever, it remains visually comparable. Nevertheless, we propound that pending visual
interpretation, analytically, it better represents the OTU communities in all the host
environments we consider.

6.3.3 Challenges in Characterisation due to Temporal Dynamics

Characterisation of OTU dynamics is challenging simply due to their temporal na-
ture. Time-series data are directional, which we can define as ordered data containing
probabilistic properties which depend on the direction of the time. In other words,
they are irreversible. Hence, our characterisation methods should reflect the order
and attempt to capture the directional probability. SONG [Senanayake et al., 2019]
which we use for dimensionality reduction, is suitable for continuously growing
(time-series) data.

The temporal dynamics of microbial communities are also complex. This com-
plexity stems from various causes. The data is riddled with noise; the data collection
is usually not uniform or consistent; the number of sampling points is different from
dataset to dataset; the data is sparse; the data contains an underlying structure,
mostly unknown to us, etc. Additionally, the structure of the data itself is assumed
to be dynamic, resulting in the inability to accurately model the temporal dynamics
in a system with dynamic interaction parameters, with a set of first-order differential
equations such as the Lotka-Volterra equations (as discussed in Chapter 4). When
we characterise data with these complex temporal dynamics in the form of a unified
signature, the said complexity is reflected in it.

6.3.4 Quantitative and Qualitative Representations

Quantitative data is measurable and numerically informative. The signatures we gen-
erate are not quantitative. Qualitative data is descriptive and describes phenomena
that are observable but not measurable. The signatures that we generate qualify as
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qualitative; however, as we mentioned above, they are better visually comprehended
comparatively than on their own.

Stemming from this, we discuss in Section 6.3.9 that there is a potential in further
developing the characterisation into –

1. A qualitative interpretation where a visual indication of the qualities is better
comprehensible.

2. A quantitative interpretation suitable for analytical methods for further pro-
cessing.

6.3.5 Heterogeneity

Various forms of heterogeneity are present in temporal microbial abundance data. In
this section, we discuss the ideas of heterogeneity and its manifestation in the OTU
signatures.

6.3.5.1 Heterogeneous Composition

The first and the most apparent heterogeneity is that microbial communities consist
of distinct taxa. We discussed in Chapter 3 that these taxa could be classified as high
abundance (>1%), low abundance (<1% and >0.1%), and rare (<0.1%) depending
on their average abundance. Furthermore, in considering the collation of datasets,
we introduced the concept of major OTUs, which are prominently present in all
such datasets we collate, coming from a similar host environment. These are some
heterogeneous aspects that we can identify as the heterogeneity of composition.

6.3.5.2 Individuality versus Conformity

As we discussed in the previous chapter, the second heterogeneity we discuss in the
microbial communities is that there is a balance between individuality and confor-
mity in the temporal variation. This heterogeneity is usually omitted when consid-
ering a unified pattern or a signature in current literature. In our method, we do
not simply represent the most prominent temporal abundance variation pattern as
the signature of the OTU community. Our signatures are a representation of all the
individually shown patterns with the temporal information intact.

6.3.5.3 Preservation of Representation

In a discussion of time-series OTU signatures, it is essential to consider whether a
signature represents all the communities of a specific OTU. However, it should also
characterise the whole collection of the OTU communities fairly, in a unified manner.
We achieve this in our signature by obtaining the signature as a lower-dimensional
mapping of a high-dimensional signature. In the higher dimensionality, our sig-
nature is simply the relative composition of each OTU mapped against each other
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and time. The two-dimensional mapping is a neighbourhood preserving embedding
extracted from a higher dimension.

6.3.5.4 Heterogeneity of Environments

As microbial data is acquired from heterogeneous environments, I believe a discus-
sion on the signatures across heterogeneous environments would be helpful. To
briefly compare the signatures obtained across two heterogeneous environments, we
look at Figures 6.4 and 6.7. The first shows signatures of a collection of 82 infant gut
environments from Grier et al. [2018]. The second shows signatures of a collection of
54 infant gut environments from La Rosa et al. [2014]. Both these communities share
the major OTUs Actinobacteria, Bacilli, Clostridia, and Gammaproteobacteria. Out of the
four OTUs’ signatures, we can identify Gammaproteobacteria’s signatures to show sim-
ilar characteristics. Actinobacteria’s signatures are marginally similar, while Bacilli and
Clostridia signatures in the two datasets are starkly different. Again, I highlight that
we do not have the necessary information to interpret the findings entirely. However,
I propose that the findings show promise and carry valuable information.

6.3.6 OTU Signatures Compared to Community State Types

As we noted in Section 6.1.1, Community State Types (CSTs) is an idea that is closely
related to our approach. In CST based analysis, both heterogeneity and temporal
dynamics are considered. However, the determination of the CSTs itself is static
as CST is based on the composition of a microbial community at a particular time
point. Thus, CSTs change with time, resulting in them being a representation of
heterogeneity and temporal dynamics. Similarly, when we consider multiple similar
host environments, each environment can exist in a different CST at a given time
point. Our signature, however, characterises a specific OTU community rather than
the entire microbial community in the host environment. Furthermore, our signa-
ture captures the OTU community’s temporal variation into a signature in the lower
dimension. Hence, the two concepts’ underlying idea differ, and these are distinct
characterisations based on different aspects of the data.

6.3.7 Dimension Reduction

We achieve the unified signature through the dimension reduction using SONG
[Senanayake et al., 2019]. However, we have ensured the following during the di-
mension reduction process. Firstly, the reduced dimension is representative of all the
dimensions (different host environments). Hence it does not result in a complete loss
of information. Secondly, we can visualise the change with time, preserve the tem-
poral directionality, and retain the ability to visualise the signature as time-bound
segments. However, we do lose the linearity of time. Our justification for this lies in
considering that multiple host environments may have different notions of time and
that time-warping is nevertheless included as a preprocessing step.
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Figure 6.9: Time-series OTU Signatures (our method) contrasted with a generali-
sation of other approaches. Our method unifies heterogeneous information into a
unified pattern, while the other methods obtain the most prominent pattern as a
common pattern. While both are suitable for visual comparisons, signatures ob-
tained through our method require an extra interpretation step before being used in
analytical methods.

6.3.8 How are our signatures different?

The main difference between our signature constructing approach and other ap-
proaches is that ours provide a unified characterisation of an OTU’s behaviour across
multiple host environments. However, as shown in Figure 6.9, even though both are
sufficient for visual comparison, ours will require an interpretation technique to be
used directly in analytical methods such as interaction network inference approaches.
The signature extracting approach is also different, as other methods focus on extract-
ing in the prominent pattern, while ours focus on unifying all the different patterns
observed in the dataset.

6.3.9 Future work

Following this exploratory work, we can identify several future work directions. We
will briefly discuss some of the future research directions in this Sub Section.

6.3.9.1 Further Interpretations of Signatures

The main future research direction we could identify and whose importance is high-
lighted throughout our discussion is the further interpretation of the signatures. The
features of interest we have identified in our discussion can be further explored. In
improving the interpretability, controlling the degree of randomisation of the dimen-
sion reduction stage can also be helpful.
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6.3.9.2 Actively Modified Signatures and Comparative Analysis

Another future research direction is to create a mechanism to modify the signatures.
Let us illustrate with an example. As a signature represents multiple dimensions,
say A is the set of dimensions representing the set of host environments. Let us
consider B and C as disjoint subsets of A s.t. A = B ∪ C and B ∩ C = ∅. Consider
the signatures obtained for the dimensions of B and C, which are, in essence, split
signatures of the original signature of A. Comparing the signatures of subsets of host
environments would help analyse and represent the environmental factors’ effect on
microbial behavioural dynamics. Likewise, we can split the data along any axis.
Splitting along the temporal axis—for example, following important events in the
environment— will provide a comparison helpful in analysing event-specific changes
in microbial community behaviour. Likewise, we can separate the OTU actors in
order to obtain distinct groupings of signatures.

When the described subsets are the more homogeneous clusters as identified
through CoPR (Chapter 5), we can identify a TVAP with lesser deviations. This
TVAP can be used with IMPARO and its extensions to quantify microbial interac-
tions. Conversely, the signatures generated for the subset is expected to be a general
characterisation of the OTU in this homogeneous environment. This future research
direction will be valuable to connect quantified interactions to unique characterisa-
tions provided through the incremental signatures.

6.3.9.3 Signatures for Other Applications

Lastly, we suggest that the idea of time-series signatures could be applied to other
similar systems as well. Especially gene expression data are closely related to micro-
bial abundance data, and there are existing explorations into the time-variant nature
of the gene interactions [Song et al., 2009a]. Macrobial ecosystems and their analy-
sis could also benefit from time-series signatures. For a non-biological application,
we had already discussed the similarities of microbial abundance datasets to stock
market data [Tan et al., 2016]. With fast-changing temporal behaviour and a plethora
of data available, stock markets would be an exciting system to generate time-series
signatures.

6.4 Conclusions

The signatures derived from our application pipeline characterise the temporal dy-
namics of a specific OTU community across several host environments. It is superior
to other representations in terms of inclusiveness and information preservation and
is complementary to the information provided in different methods. The signatures
are possibly informative as a single signature. However, they can be used subjec-
tively in visual comparison with other signatures across taxa and host environment
groups. The application to real-life data sets shows the signature’s effectiveness in
bringing out underlying structural information about the microbial community dy-
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namics. There needs to be more work done in quantifying the information contained
in the signature, which would be valuable to be used in further computational tasks,
and in objectively interpreting the signature, which is currently complicated due to
the dimension reduction approach used in its generation. Overall, we believe this is
a helpful tool in comparative studies of microbial communities and their temporally
dynamic behaviour.

6.5 Methods

In this section, we first introduce the data sets we processed. Then we explain the
pipeline in detail, including the specific techniques used in the pipeline and the
terminology used throughout the paper.

6.5.1 Datasets

We use the same datasets used in Chapter 5 for this analysis. However, a brief
description is provided below for the sake of completeness.

6.5.1.1 Neonatal Infant Gut Microbial Dataset (La Rosa et al. [2014])

The first dataset we process is the La Rosa et al. [2014] dataset. This longitudinal
microbial dataset consists of 58 subjects, with an average of 16-time points each. Each
subject is an infant in an Intensive Care Unit (ICU). Stool samples were collected from
each infant during their stay in the ICU, and we have access to the abundance profiles
generated through 16S rRNA sequencing and several clinical information about the
infants, such as milk consumption, post-conception age, and delivery method.

6.5.1.2 Infant Gut and Respiratory Microbial Dataset (Grier et al. [2018])

The second dataset we look at in this chapter is the Grier et al. [2018] data set.
This longitudinal abundance data set has data from 82 infants, of whom 38 are pre-
term and 44 are full term. We also have data from multiple body sites, namely the
respiratory tract (nose and throat) and the gut.

6.5.2 Application Pipeline

As this chapter is an extension of the ideas presented in CoPR (Chapter 5), we use the
first part of the CoPR pipeline as is. The latter part is distinct, functioning specifically
for signature generation. After the signatures are obtained, we have centred the
starting points of each signature to the origin by performing a simple coordinate
shift.
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Figure 6.10: Application pipeline for generating signatures. The data collected in the
form of OTU abundance tables are tabulated as one table per one host environment,
with the abundance of each OTU against the sample collection timepoint is trans-
formed to a per OTU format. These are then pre-processed with a discrete wavelet
transform, whose approximation coefficients are forwarded into a cubic interpola-
tion step. Lastly, this data is scaled with a mean-variance correction and resampled
into a common timeline. At this point of the CoPR pipeline, we re-tabulate the data
with one table per time point. Each OTU’s abundance at that particular time point
is tabulated against the host environment in each table. In summary, for each row
of data representative of an OTU, there are m dimensions, where m is the number
of host environments included in the dataset. This is then sent into the SONG al-
gorithm to be reduced dimension-wise. After the dimension reduction, the cluster
maps are analysed to identify the movement of the data points. These paths are the
incremental signatures in the visualisation.
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6.5.2.1 CoPR Pipeline

As we have discussed the CoPR pipeline methods in great detail in the previous chap-
ter, we will not repeat the details here. However, a summary of the CoPR pipeline is
provided with Figure 6.10.

6.5.2.2 Self Organising Nebulous Growths (SONG)

Self Organising Nebulous Growths [Senanayake et al., 2019] is a non-parametric di-
mension reduction algorithm that supports mapping continuously growing data in
reduced dimensions. It preserves the structure of the data as the data grows, which is
perfect for our use case of time-series microbial data coming from multiple datasets.
SONG is also better suited (compared to t-SNE [Van Der Maaten and Hinton, 2008]
and UMAP [McInnes et al., 2018]) for datasets with high variance and noise; which
is also vital for microbial data.
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Chapter 7

Conclusion

In this thesis, I sought answers to the question of “What are they [microbial OTUs]
doing [in their communities]?” presented by Boon et al. [2013]. Specifically, I have
applied data analysis methods based on systems biology’s foundations to analyse
longitudinal microbial abundance datasets. I propose that my methods and discus-
sions shine a new light on the process of analysing longitudinal microbial datasets to
understand microbial community dynamics.

My research was focused on analysing complex, heterogeneous and time-series
data. From a systems biology point of view, my research focused on modelling
microbial communities’ temporal dynamics.

Single Microbial Environments In the initial part of the thesis, I analysed microbial
abundance data pertaining to a specific environment.

Inference of Static Microbial Interactions Firstly, in Chapter 3, I looked at the
question of inferring static microbial interaction networks through analysing micro-
bial abundance profiles from a single environment. I aimed to improve model-based
approaches in parametrising microbial interactions. I treated this as a large parame-
ter optimisation problem and introduced IMPARO, a genetic algorithm-based solu-
tion. My attempt was successful in obtaining quantitatively improved results. Fur-
ther to this, I argued for the existence of multiple solutions given the nature of this
optimisation problem. I used systems biology principles to fine-tune the genetic al-
gorithm resulting in quantitatively and qualitatively improved microbial interaction
network parameters.

Temporal Dynamics of Microbial Interactions Secondly, in Chapter 4, I ex-
plored the temporally dynamic nature of the microbial interaction networks them-
selves. I base my argument on the basis that in a complex ecological dynamics model,
the static nature of the pairwise interactions is the assumption. I challenge this as-
sumption based on the improbability for interspecies interactions remaining static in
complex environments where everything else is dynamic. Here, I critically evaluated
the use of Lotka-Volterra equations for modelling microbial community ecosystems.
Exploring further, I discussed the necessity of using a system of higher-order differ-
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ential equations to model the microbial interactions successfully. I presented proof
for the interactions’ dynamic nature and argued that patterns are recognisable in the
interaction parameters themselves.

Heterogeneous Collections of Similar Environments In the latter part of the the-
sis, I capitalised on the availability of data collections from similar environments
to overcome the challenges pertaining to the lack of data that I identified earlier.
However, the aim of this part was not to infer the interactions quantitatively but to
qualitatively characterise the temporal behaviour of OTUs.

Collective Pattern Recognition Thirdly, in Chapter 5, I discussed the practical
issues in inferring microbial interactions through the limited availability of longi-
tudinal abundance profiles. I highlighted that longitudinal abundance profiles are
usually not numerous enough and that their sampling frequencies are usually low
and non-consistent to achieve a reasonable quality inference. I explored the idea
behind collective pattern recognition as a solution to this problem. I highlighted
the importance of considering the heterogeneity of the OTUs and finding a balance
between their individuality and conformity. I also presented a novel visualisation
tool that is capable of successfully identifying TVAP patterns. I argued that it would
provide invaluable insight into any collection of longitudinal microbial datasets.

Incremental Signatures for Microbial Community Activity Fourthly, in Chap-
ter 6, I explored the fascinating idea of characterising high-dimensional temporal
microbial data with unified low-dimensional signatures. In this exploration, I con-
trasted the pros and cons of existing methods of obtaining signatures with dimen-
sionally reduced signatures. I also explained the challenges and prospects of inter-
preting the signatures and the ability to be used in analytical pipelines. This chapter
was an exploration which tested the proverbial water and provided insights to future
study.

In this thesis, I have attempted to shed light on the myriad of techniques available
to us to better understand what [microbial organisms] are doing [in microbial com-
munities]. I have approached this problem through two facades. Firstly, through
inferring interactions within a microbial community, I focussed on quantifying the
driving factors behind the temporal variations. I also discussed how microbial inter-
actions are better modelled as time-varying parameters. Secondly, I looked at collec-
tions of bacterial communities and explored temporal variation of individual micro-
bial OTUs. This second approach included visualisations that qualitatively informed
patterns of microbial behaviour as well as an exploration into unique characterisa-
tions of temporal microbial behaviour. To summarise the whole idea behind these
two broader sections, I would like to revisit the thesis’s title - "Pattern Recognition
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for Complex Heterogeneous Time-Series Data: An Analysis of Microbial Commu-
nity Dynamics". My research was an exercise in understanding a complex system
of heterogeneous components with temporal dynamicity. I identified that the sec-
ond question by Boon et al. [2013], ’What are they doing?’, encompasses these three
subtleties within it. Although I probed the microbial community dynamics through
two facades, the explorations were interconnected. Throughout the thesis, I explored
links between the two broader sections. Chapter 3 laid the foundation for Chap-
ter 4 and Chapter 5. The quantification of temporal dynamics in Chapter 4 led to
the visual exploration of temporal variation patterns presented in Chapter 5. The
clustering of temporal behaviours offered a possible explanation for the multiple so-
lutions discussed in Chapter 3 and laid the groundwork to characterise the microbial
communities in Chapter 6. Though not a part of this thesis, future research directions
exist in using this characterisation in understanding the MINs.

In conclusion, I have compiled this thesis with research outcomes within the
scope of ‘What are they [microbial organisms] doing [in their communities]?’. I drew
inspiration from the answers to the challenging question of ‘Who is there?’, and I
believe that I have laid a path towards better answering the challenging question of
‘How will they respond [to external stimuli]?’.

7.1 Future Work

I also acknowledge that in this thesis, sometimes I have uncovered limitations of my
methods where extensions are possible, and sometimes I had to limit the scientific
exploration due to externally enforced constraints—such as time, not due to lack of
interest. At other times, I encountered issues that have been left unresolved to be
addressed later. In this section, I will discuss some of these and frame them as future
research questions in their own right. I will also discuss exciting prospects of future
work, for which I laid the foundations in this thesis.

7.1.1 Ranking Multiple Solutions from IMPARO

In Chapter 3 we inferred multiple solutions for microbial interaction networks with
IMPARO. However, we stopped short of ranking the solutions according to their
likelihood of being the best solution. The ranking is a particularly challenging task
as the multiple solutions are viewed equally given analytical metrics. There need to
be subjective biological considerations for the ranking, which is carried out ideally
by microbiology researchers.

7.1.2 Using Autoencoders for Interaction Inference

Autoencoders have an interesting usage in identifying underlying properties of a
dataset. When an autoencoder recreates a dataset, the latent space is a representa-
tion of the said dataset. Long-Short Term Memory (LSTM) autoencoders could be
successfully applied to recreate longitudinal abundance profiles. Hence we assume
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Figure 7.1: Central Dogma of Molecular Biology

that the latent space would carry a fair representation of the dynamics involved in
the abundance profile generation. We tried this in an attempt to capture the nature of
temporally dynamic microbial behaviour described in Chapter 4. However, we were
unsuccessful in interpreting the latent variables.

Our approach was to restrict the latent representation. In our first attempt, we
modelled the latent representation after the LV equations. We also tried a relaxed rep-
resentation of the LV equations where a set of second-order differential equations—
where the original LV parameters were modelled to vary with time—was used for
the latent space. However, the models we trained suffered from posterior collapse,
where the model learns to ignore the latent variables and the posterior mimics the
prior. This space remains an exciting area to investigate, especially with fine-tuning
the latent representation restrictions and giving it more freedom. However, that ap-
proach will require new models with more degrees of freedom than LV models to
explain the microbial dynamics.

If successful, such an approach would not be limited in the area of inferring
microbial interactions but could be used in many other instances where temporally
dynamic systems are modelled.

7.1.3 Augmentation with other Omics Data

In this thesis, we looked at longitudinal microbial abundance profiles derived from
16S rRNA sequencing data. While this metagenomic data has much informative
value, other omics data is likely to be widely available in the future. When consid-
ering the connections between the different omics data, as seen in Figure 7.1, we can
consider a future research direction where we exploit this and augment our datasets.

As technology develops, the costs associated with data collections will reduce,
allowing scientists to collect multiple omics data from a single study, which can sig-
nificantly expand the opportunities to use data analysis methods that take advantage
of all the available data.
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7.1.4 Using Collective Pattern Recognition to Understand Repeating Pat-
terns of Microbial Dynamics

In Chapters 4 and 5 we looked at dynamics of microbial interactions, and collective
pattern recognition respectively. We note that we can separate the dataset into time
windows in analysing longer longitudinal datasets and use visualising techniques
from collective pattern recognition. These techniques would allow us to examine
the microbial behavioural dynamics at different time points—such as important life
events—and acknowledge any periodic or repeating behaviour.

7.1.5 Answers to ‘How Will They Respond?’

As we explored the question ‘What are they doing?’, we are finally ready to the
advice from Boon et al. [2013] and shift our focus to understand ‘How will they
respond?’. We can integrate background and clinical data into our analysis pipelines
to investigate the potential effects of external factors on the microbiome. As we
already know, diurnal cycles, seasonal changes, temperature variations, etc., has an
observable effect on the microbiome; we can try to isolate them. A simple approach
to kick-start this research direction would be to assign external factors to a ‘dummy’
variable in the LV modelling.

7.1.6 Exploring Effects of Climate Change on the Microbiome

Extending from the above research direction, we can use the data analysis methods
we discussed in this thesis to study climate change’s effects on the microbiome. We
have published a manuscript along this idea and presented our work at an IEEEx-
plore indexed conference as mentioned in the Section 1.3. Our approach is simple.
We look at environments where significant changes are observable in the macrobial
ecology due to climate change-related events and analyse available microbial datasets
from such environments. We again look at habitually receptive (for macrobial life)
environments and analyse datasets from these. Comparing our analysis, we get a
preliminary idea of the effects on the microbiome we can expect to observe. Some
interesting results were initially obtained by comparing the microbiome of sites with
high UV exposure with that of regular sites.

7.1.7 Testing on Diverse Microbial Datasets

The methods introduced in this thesis were mainly tested on the datasets introduced
in Caporaso et al. [2011], La Rosa et al. [2014], and Grier et al. [2018]. Although they
cover different body sites, all are related to the human microbiome. In Section 2.3.1
we summarised the availability of datasets from a variety of environments. Apply-
ing these methods to a variety of microbial communities from floral, faunal, and
environmental settings is requisite.
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